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ON DERIVATIONS IN DIVISION RINGS

MoRrris WEISFELD

We are concerned with studying division rings in which Lie rings
of derivations are acting. The results include the determination of
dimension over the constant subring, an outer Galois theory, and mis-
cellaneous results on inner automorphisms and powers of derivations.

Let A be a ring with an identity 1 and B be a subring of A con-
taining 1.

1. The mappings R,:y—yx, L,:y—axy, I,:y—>x'yx,x € A are
called right multiplications, left multiplications and inner automorphisms
respectively. For any subset Nof A, Ry={R,|xe N}, Ly = {L,|x e N},
I, = {I.|xe N}. D isa derivation of B into A if and only if (x + y)D =
2D + yD and (xy)D = 2Dy + xzyD for all z,y € A. The set of all such
mappings is denoted by Der(B, A). If B = A, D is called a derivation
in A and the set of these denoted by Der(4). If D, ..., D, € Der(4),
we have for all x € A

U

(1) RDb Die= S{(P) o (B)D0s oo DI Rt ot
0<s,<k,j=1, s}

For all D, D’ € Der (A), [DD'] = DD’ — D’D e Der (A) and, if A has prime
characteristic p, D? € Der(A4). {x|xy —yx =0 forally e B;xz e A} is
called the centralizer of B in A. If ¢ belongs to the centralizer of B
in A, DR, € Der (B, A). The centralizer of A in A is called the center
of A, Let C be the center of A. <7 is a Lie ring (Lie ring over C)
of derivations in A if and only if < C Der(A) and for all D, D' ¢ &,
D—-D"e Z,[DD'le & (DR,e ). If A has prime characteristic
p, &7 1is restricted if, in addition, D? € &=

For = e A,.the mapping I):y — yx — xy is a derivation called an
inner derivation. For NC A, I} = {I'|x € N}. The elements of Der (4)
not in I} are called outer derivations. Lie ideals are defined in the
usual way for Lie rings, restricted or not, over C or not. The inner
derivations in <7 form a Lie ideal in <

Let T be a subset of Der (B, A). The set of € B such that 2D =0
for all D e T is a subring of B which we call the subring of T-constants
and which we denote by B(T'). If x € B(T') and x has a multiplicative
inverse #~' in B, then 7' € B(T'). The set of derivations D in A such
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that B € A(D) is a (restricted) Lie subring over C of Der (4) which we
denote by <7 (B).

If T, T,< Der(A), then A(T,) = A(T,); and, if B, and B, are
subrings of A containing 1, and B, € B,, then & (B) 2 <(B,). We
have the following relations:

(2) ' 2(A2")
for all (restricted) Lie subrings over C of Der (4)
(3) B c A(=(B))

(for all subrings B of A containing 1. These give

(4) A(Z2'") = A zAZ2")
for all (restricted) Lie subrings over C, &', of Der(4)
(5) 2 (B) = 2 (A(=2(B)))

for all subrings of A containing 1. Thus, B = A(<= (B)) if and only if
B = A(<r) for some (restricted) Lie subring over C of Der (4), and &' =
9(A(<')) if and only if &' = < (B) for some subring B of A con-
taining 1.

Let < be a (restricted) Lie subring over C of Der(A4). Define

S(z)={x|re Aand I'e o=} .

Regard the ring A as a (restricted) Lie algebra over C under the com-
positions (x, ¥) — xy — yx (¢ — «? if A has prime characteristic p). 3(<)
is then a (restricted) Lie subalgebra of A. X(<») is invariant under
= ; that is xD e 3(=) for v e (&) and De &, If o= <2(B)
where B is a subring of A containing 1, then X(<) is closed with re-
spect to ordinary multiplication and taking multiplicative inverses. This
leads us to make the following definition: We say <& is a (restricted)
N-Lie subring over C or Der(A) if and only if 3(<) is a subring of
A closed with respect to taking multiplicative inverses and invariant
under =2, In this case X(<) over C is called the associated algebra
of & If A is a division ring, Y(<») is a division algebra over C.
Let 4 be a division ring, @ be its center and E a division subring
of 4. The additive group of homomorphisms of (E, +) into (4, +),
Hom (E, +; 4, +) is an (R, R,)-space; that is, Hom (E, +; 4; 4) is a
vector space over R and a right vector space over R, such that

(7) (B.T)R, = R(TR,)

for all x e E,ye 4 and T € Hom(E, +; 4, +). (R, R,)-subspaces are
defined in the usual way. If E = 4, we write End(4, +). If Sis a set
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of endomorphisms of 4, End {S} is the ring of endomorphisms generat-
ed by S.

Let I" be a division subring of 4. L(E, 4) denotes the subgroup
of Hom(E, +; 4, +) of homomorphisms of the vector space E over I’
into the vector space 4 over I'. If E = 4, we write L,(4).

Topologize Hom(E, + 4, +) as follows: The sets

{9l2g = xf; 9 € Hom(E, +; 4, +)}

where ¢ € E is a subbase of neighborhoods of f e Hom(E, +; 4, +).
One verifies that L,(4) is a closed subring containing R,. That the
foregoing properties characterize L(4) is a consequence of the Jacobson-
Bourbaki theorem: if we associate with a closed subring B of End (4, +)
which contains R, the set I" of # € 4 such that L, commutes with the
elements of B, then B = L,(4), and, in fact, the mapping I' — L.(4)
is a lattice anti-isomorphism of the set of division subrings of 4 onto
the set of closed subrings of End(4, +) containing R,.

If A is a vector space and right vector space over P, [A: P], denotes
its dimension and [A: P]; its right a dimensional over p. We note the
following [E: 7], is finite if and only if [L.(E, 4): R,]; is finite and
when both are finite, they are equal. If B is a subring of End(4, +)
containing R, and [B: R,]; is finite, then B is a closed subring.

Again 4 is a division ring, @ is its center, E is a division subring
and M is the centralizer of Ein 4. IfT e End(4, +), then T* denotes
the restriction of 7 to E. If D,, --., D, are elements of L.(E, 4) not
in the algebra generated by L, and R, and o, ¢ are not zero, the de-
gree of the endomorphism

(8) Dievo DSL,R,, Kk, >0, Di=1, j=1,:-+,58,

is &, + -+ + k,. The weight of a sum of endomorphisms of the form
(8) is the largest degree for which a term with that degree appears
non-trivially. If all the terms appearing non-trivially have equal degree
h, we say the endomorphism is homogeneous (of weight ). Any endomor-
phism is a sum of homogeneous endomorphisms. Suppose D,, «--, D, € L;(4)
and are derivations of E into 4 and ¢ € 4. D¥ -+ DL, is called an
admissible endomorphism if and only if (1), restricted to E and mul-
tiplied by L,, holds, any term appearing in (1) is admissible, and, if 4
has prime characteristic p, k, < p.

LEMMA 1. Let I be an (R, R,)-subspace of Hom(E, + ; 4, +),0,,+++, 0,
be elements of 4, and D,, ---, D, be derivations of E into 4 belonging
L.(4). Suppose no right linear combination of L;“l, «++, L3, with coef-
Jicients in R, is zero, and no right linear combination of L;“uH, cee, Lf;'b
with coefficients in R, belongs to M. Suppose D}, -+, D¥ are right
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linearly independent over R, modulo I}* and no linear combination of
Df.iy o0, DY with coefficients Ry + L, Ry + +++ + L, Ry belongs to
L} 4+ M. Then the set of non-zero admissible endomorphisms by D,,---, D,
and o, ++-, g, such that some k, with j§ > r is not zero or L,j appears
with 7 > u 1s right linearly independent over R, modulo .

Proof. Suppose we had a non-trivial linear relation. Let F' be
a linear relation of lowest weight ¢ and shortest length in q. Suppose
q=0. Then F=L; R, + ---+L; R, €M, gy, +++, Ju > u, f1,€4,
1 n
ty=1,7n>1 For all x ¢ E

R.z:F — FR, = ijszM—m) F e + ijnR(z#”~an) .

This gives a shorter non-trivial relation, or p,, -+, ¢, € M, contradict-
ing our hypothesis. Note that for g, «+-, pt, e M

ijth doeee ij R“n = (RhLa,l)* 4 oeee (RMnLaj )*
= (IJF‘II,‘TJ1 4 eee L”‘nL"j”)* = L*F‘1”JI+'..+Mngfn.

Suppose ¢ > 1. Write F = F, + F,_, + -+ + F where the F'; are homo-
geneous. Let s, be the largest element among 1, ---, s such that a term
in F, has k, > 0. Make its coefficient F, equal to 1. Form

M 5 RF — FR, = G(&) + Gourf(@) + -+ + Go(x) .

This will have lower weight or shorter length in g. The coefficients of
terms in G(x) have the form R, ... If these coefficients are zero, then the
# belong to M. Since we have shorter length in g, the coefficients in G ()
must be 0. The coefficients in G,-,(x) have the form R”D”1RP1+”‘”D"1C ®,
where the p,’s belong to M. These coefficients being zero for all xe E
would contradict our hypothesis. If ¢ > 1, a term in F, has the factor
D,D, and so G,-, has a term with factor D, and, if x is chosen to make
its coefficient non-zero, we would contradict the choice of F.. Hence the
only possibility left is ¢ = 1. Hence F has the form

Df Ly, + DLy Ru+ -+ + Di Lo, Ruy + Di, R

E+1 el
+D:mRum+L:‘ Rp +'..+L;kR

u+1  Pu+l Pyt

’
+z:I,\!

+ e

Forming R.F — FR, would yield non-trivial relations unless all right
multiplications appearing belong to R, and 7,, -+ 5, < u. Hence F could
be written as a linear combination of D}, -+, D¥ with coefficients in
By + RyL, + +++ + RyL,, plus an element of L¥ + 9 and this con-
tradicts our hypothesis. Hence our assertion is true.

Suppose 4 has characteristic 0 and D is an outer derivation in 4.
Then the powers D*, k > 1 of D are right linearly independent over E,
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as just shown. If I' = 4(D), [L(4): R,] = oo and hence [4:]"], = oo.
Thus if 4 has an outer derivation D and [4:7"]; < c where I = 4(D),
then 4 must have prime characteristic p.

Suppose 4 has prime characteristic p and I” is a division subring
such that &’ = o (I"). <’ is a restricted N-Lie ring over @ of de-
rivations in 4. Suppose <’ is infinite dimensional over @. Note that
Iév ,I;t are right linearly independent over R, if and only if 1, o,,+--,0;
are linearly independent over @. For if Sp0, + ¢, =0, then 3[R, =
Izq, ov0y = 0. I XILR, =0, then 0 = 3(R,, — L, )R,, = Rs,,, — 2L, R, .
Applymg Lemma 1 ylelds the result. Thus <7" has either infinitely
many outer derivations right linearly independent over @ modulo I; or
[2(<'): @] = oo. In either case [L(4): R, will, by Lemma 1, be in-
finite dimensional and so will [4:1];.

THEOREM 1. Let 4 be a division ring having prime characteristic
p, @ be its center, < be a finite dimensional restricted N-Lie ring
over @ of derivations in 4 and I' = A(<). Then if D, -+, D, 1s
a complete set of representatives of a basis for the right vector space
D — Iy over 0, and o, -+, 0, is o basis for (<) over @, then

(9) {D;cl"'DmkmLa‘jlkizoyly""p_—l; Dg:Ily
'i=1,-~,m, jzl,"',()'}

is a basis for the right vector space End { <=, R} over R,. Moreover,
End{<r, R} = L(4), [Li(4):Rjlp=p"q=1[4:1"]; and @& = ).

Proof. Consider the set A of right linear combinations of elements
of (9) with coefficients in RE,. Then clearly End {<7, R,} 2 A. Because
l1=%0x,N, e 0,1, =L, RA e A and, hence, A D R, Since any inner
derivation belongmg to J can be written as J(R, 9 LGJR(/, Pl where
p,e @, AD Iz 2y Since any D € < can be written as DR, + I,
where )\, € @ and o€ X<z),A>D <. Wehave R.D, = D,R, + R,D for
v e 4,D}=2DR, + I; with \; e ® and o e X =), DD, = D,D, +D
with De o, and L,D; = D,L, + L,p, for o e 3(=) and, hence,
oD,e X(=). Also L, L. = L;.€ A, for ¢,7¢ 2(<r) and, hence gt e 2(&).
Thus A is a ring and so A = End {<7, R,}. The elements of (9) gene-
rate A and are right linearly independent by Lemma 1 and so they
constitute a basis for A over B,. Thus [End{<r, R,}: R,]: = p™¢ and
so is a closed subring of End(4, +) containing R,. By the Jacobson-
Bourbaki theorem we have End { <7, R,} =L(4) and [4:'],=[L(4): R,]p=
p™q. Suppose D e < (I'). Then D e Ly(4). Hence, by Lemma 1, D =
Do, + s +Dp, +I,p, oo, p,€ @ I'=R, — L, e (') and so
another application of Lemma 1 yields 7 = g\, + ++« 4+ G A, My o0+, N €D,
so that De <.
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We remark that because of the symmetry in the above situation,
we also have [4: "]y =[4:T;.

LEMMA 2. Let <7 be a (restricted if 4 has prime characteristic p)
Lie ring over @ of derivations in 4 and I' = A(<). Suppose < con-
tains all inner derivations belonging to < (I'). Let E be a division
subring of 4 containing I' and [E:I'], < c. Let M be the centralizer
of E in 4. If D* is a derivation of E into 4 and I' C A(D*), then
D* can be extended to a derivation in the centralizer of M.

Proof. D* € Ly (E, 4); hence D* can be extended to an element of
L.(4). The proof of Theorem 1 shows that L,(4) is the closure of
End{<, R,} in End(4, +). Since [E:[']; <, there is an F'e End { &, R,}
such that D* = F'*, the asterick denoting restriction to E. We have

D* = F* = 3(Djs +++ DisLy Rpty .. )*

where Dy, +--, D, L,., - -+, L% satisfy the hypotheses of Lemma 1 with
M = {0}. Hence

‘D*:D}klRl‘q_l_ e +D}kkRi‘k+I”,*’#l’ ...’/’lke M

I] leaves the elements of I' fixed so that the right hand side is a deri-
vation in the centralizer of M and belongs to <r.

In particular, if the centralizer of I" is @; that is, every non-zero
derivation in < (I") is outer, then every derivation of E into 4 can be
extended to a derivation in 4.

Henceforth, we restrict ourselves to 4 having prime characteristic p.

LemMMA 3. Let < be a finite-dimensional restricted N-Lie ring
over @ of derivations in 4 and I' = A(<r). If Bis a subring of L,(4)
containing R, and &' = B N <, then =<' is a restricted N-Lie sub-
ring over @ of &r. If <7 consists only of outer derivations, then
B=End{=’, R;}.

Proof. Clearly <’ is a finite-dimensional restricted Lie ring over
@ of derivationsin 4. Now Y(<z’) is contained in 3 (=) and [2 (=) : 0] <
., Hence [J(='):0] < . Since 1€ @ € ¥(=') and 3(<’') has no
zero divisors, it is a division ring provided that it is a ring. Let
0,0, € 2(2'); that is, I, I;, € &’. Since B contains R, and I, it
contains L,. Since B contains R, and I7,, it contains I, , = I, R,,+ L. I;,.
Hence, I)., € &' = 2 N B which implies 0,0,¢€ J(&’). If 6 e &2’
and De o',[I;,D]=1l, ¢ &' and 3(<') is invariant under < ’.
Now let Dy, +++, D, be a basis for & over @ such that D,, .-+, D, is

a basis for &' over @, r <s. By Theorem 1, B 2 End {<, R,} and we
can write
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b=2XDt ... DISCSR”’ICI'”ICS
Since we have assumed Y (<) = @. Applying Lemma 1 with B = I,
we note that no D; with § > r can appear in this expression. Hence,
BC End{<’', R,}. Clearly, End {<’, R,} < B and these facts give the
desired conclusion.

THEOREM 2. Let <7 be a finite dimensional restricted Lie ring
over @ of outer derivations in 4, '=4(<=), and <= ("). To each re-
stricted Lie subring over @, &', of <7 assign the division ring 4(<").
To each division subring E of 4 containing I' assign the restricted Lie
ring 2 (E) over @ of derivations im 4. Then the correspondences
D' - M=) and E— o (E) are inverses of each other; that is, <&'=
U(=2") and E = A(<=(E)). Moreover, <’ is a Lie ideal over @ of
Z if and only if E = A(<') s imvariant under <, and, in this
case, the restricted Lie ring over @ of derivations in E leaving the
elements of I' fixed is isomorphic to < |<’.

Proof. Let <’ be a restricted Lie subring over @ of <. <’
satisfies the conditions of Theorem 1, for, in this case, Y(<’) = @, and
thus o7 (d(=')) = &'. Next let E be a division subring of 4 contain-
ing I" and B = Ly(4). Then B is a subring of L (4) containing R,. By
Lemma 3, B = End { &', R,} where &' = BN <. Clearly &' = = (E).
On the other hand, since B = End {<’/, R,} = Ly(4), E = 4(<’'). Thus,
E = 4(=2)E)).

If E is invariant under <, then < (E) is a Lie ideal over @ in <.
Forif De <& and D' ¢ < (E), then (DD’ — D'D) = (xD)D" — («D"\D =0
for all x ¢ E. Conversely, if <’ is a Lie ideal over @ in <7, then
E = 4(=') is invariant under <. For if De <, (xD)D’ = («D')D = 0
for all x e E and D'e &’. Hence zDe 4(<’)=E for all z ¢ E.
Consider the mapping D — D* the restriction of D to D*. This is clearly
a homomorphism of <7 into the Lie ring over @ of derivations in E leav-
ing the elements of fixed. Using Lemma 2, one finds that the mapping
is onto. Its kernel is &' = o (E).

THEOREM 3. Let <7 be a (restricted if 4 has prime characteristic p)
Lie ring over @ of derivations in 4 and I' = 4(<7). Suppose <7 con-
tains all inner derivations belonging to < (I'). Let E be a division
subring of 4 containing I' and [E: ', < . If a* is an isomorphism
of E into 4 leaving the elements of I' fixed, then a* can be extended
to an inner automorphism in 4.

Proof. a* belongs to L,(E, 4); hence a* can be extended to a e L.(4).
L.(4) is the closure of End{<, R,} in End {4, +). Since [E:["], < o,
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there is an F'e End { <, R,} such that a* = F'*, where the asterick
denotes restriction to E. We can write

i

F=3Di - DSL, R, ..
1 b}

where D,, -+, D,, 0, +++, 0,, etc. are as in Lemma 1 with 9 = {0}. Since
Roa* —a*R,, = 0 for all x € E and s* = F'*, we have

Z(Dfl i D.,SCSLU RzlL . (J:a,*))* + terms - 0
J ky kgd

..ksj—p.lcl...
By Lemma 1, we obtain from a term of highest weight

axn — Mza*) =0 for all x € E and for some 0 =1 e 4.

Clearly s* can be extended to the inner automorphism determined by .

The following theorem is a special case of one due to Amitsur:
Let 4 be a division ring, D a derivation in 4 and I" = 4(D). Let S be
the set of x € 4 such that

®(D"R, + DR, + -+ +R,)=0

1

where ft, # 0, tty_y, +++, 4y € 4. Then S is a vector space over I' of
dimension < n. This result is applied in the following theorem.

THEOREM 4. Let 4 be a division ring and D an outer derivation
wn 4. Let k be the least integer greater than 1 such that D* is a deri-
vation. Then 4 has prime characteristic k. If k doesn’t exist, then
4 has characteristic zero.

Proof. By hypothesis and Leibniz’s rule

0=R.D* — DR, — R = ({)D"Rs + -+, i DR,

Choose = so that R,, = 0: If 4 has characteristic 0, (’{) =k+0. If k
exists by Lemma 1 and the Jacobson-Bourbaki Theorem, [4:"],=x >k,
and by Amitsur’s Theorem, [4:]'], <k —1< k. Hence, in this case,
k, can’t exist. If 4 has prime characteristic p, then since D? is a deriva-
tion, k¥ < p. Assume in this case k& < p. Then, <llc> =k #+ 0. Applying
Amitsur’s Theorem yields the fact that [4:7"], <k — 1< p. By Lemma
1 and the Jacobson-Bourbaki Theorem, [4:7"], > p. This is a contradic-
tion. Hence, if some power k& > 1 of an outer derivation in 4 is a deri-
vation, then 4 must have prime characteristic p and the least power
of D greater than 1 which is a derivation is D~.
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