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EXTENSIONS OF BANACH ALGEBRAS

RICHARD ARENS

l Introduction* We are concerned with propositions of four types
(1.1-1.4) about a commutative Banach algebra A and its various commu-
tative Banach algebra extensions B.

1.1 TPr. If {B%: ie 1} is a family of extensions of A, then there
is an extension B of A and topological isomorphism {fi'-i e /} where
fiBί) c B and f(a) = a for a e A.

Let us call [normally] solvable over A a system Σ of polynomials
over A (or more generally, multiple power series elements) such that
there is an extension B of A in which there is a system of elements
[whose norms do not exceed 1 and] whose substitution into Σ reduces
each member equal to 0.

1 2 Sol. Let {Σt:i e 1} be a family of solvable systems such that
no indeterminate occurs in more than one system. Then Σ = \J Σt is
solvable.

A system ^ of ideals is removable if in some extension, each
ideal / of ^ generates the ideal (1).

1.3 RId Let {J% :i e 1} be a family of removable ideals. Then
it is a removable system.

An element c e A is called [normally] subregular if it has an
inverse [of norm ^ 1] in some extension.

1 4 Inv. Let fa : i e 1} be a family of subregular elements. Then,
in some extension, each ct has an inverse.

Our findings on such propositions is that TPr is false, and that
Inv is true if I is finite, but false if a natural norm restriction is
brought in. By the finite form of 1.1-1.4 we mean that in which I is
finite. By the normal form we mean the statements obtained if in
(1.1) the f are required to be isometries, if 'solvable' in (1.2) is replaced
by 'normally solvable', and 'subregular' in (1.4) by 'normally subregular'.

This gives four forms of propostions of each type:

normal (no qualification)
(1.5)

finite normal finite .

For each type (1.1-1.4), there are rather obvious implications in
(1.5), namely to the right, and downward. (To see this, one need only
observe that c is subregular if and only if λc is normally subregular for
some λ e C, etc.). For each form (1.5) there are implications among the

Received May 4, 1959.



2 RICHARD ARENS

types:

TPr =φ Sol

Rid Inv .

(For example, the diagonal rests on this observation: if J is remov-
able then 1 — j\xλ — . . . — jnχn is solvable for some j l f , j n e J and
solving the latter removes the former.) We present our results on
these sixteen conceivable propositions in this diagrammatic way. In
each quadrant of (1.5) imagine a cluster of four symbols as in (1.6).
Affix a dagger if the proposition is false, a star if true, and a reference
to the crucial theorem. Unsettled cases have a question mark.

ΐ t t ?
? f ? ?

(1.7)
t t t (5.2) ?
? t (3.2) ? * [1,3.8]

Besides this there is a small positive result (7.1) which is a special
case of Rid.

Further results not included in the scheme (1.7) are as follows.
The cortex (class of non-removable maximal ideals) is sometimes

greater than the Shilov boundary. This is based an a class of algebras
of Shilov, whose theory we have felt obliged to sketch (sec. 4)

For completeness we have considered also the case where A has
the sup-norm (that is, |(α|| = sup ||(α)|, ξ ranging over all complex
valued homomorphisms of A.) There Sol holds (6.1): There is one ex-
tension which normally solves all normally solvable systems. Necessary
and sufficient conditions for TPr are given (5.3)

For some subalgebras A of the lλ -algebra B of a discrete abelian
group, B provides inverses of norm 1 for all normally subregular ele-
ments (3.5, 3.6).

Section 2 provides more careful definitions of extension, and shows
that when Sol can be proved, then the solving algebra can always be
taken as a quotient-algebra of a power-series algebra.

2* Analytic extension* In order to save space we shall list here
properties of a Banach algebra which we shall usually, if not always,
require.

(2.11) It is a Banach space.

(2.12) It is a linear algebra over the complex numbers C, with unit 1.
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(2.13) ||o5|| < ||α|| ||6||, | |1 | | = 1 .

(2.14) It is commutative.

Let A be such an algebra. Let I be a set (to be used as indices).
We want to define the commutative Banach algebra A(X) generated by
the family X = {xt:i e 1} and A. Because a norm has to be defined,
we need some details. First we define the free commutative semi-group
S(X) with unit generated by X. S(X) is the set of all functions from
I to {0,1,2, •••} which vanish at all but finitely many places. The
operation is addition. We write it multiplicatively, and use the notation

for the element which has the value kj at is (j = 1, •••, w) and is 0
otherwise. The function which is 0 everywhere is written as 1. A
change in the order of the factors in (2.2) does not produce a different
element, of course. Now A(X) is the set of functions / from S(X) to
A such that

(2.3)

We may let

axkl xk.n

stand for the element of A(X) which has the value a e A at the element
2.2 of S(X), and the value 0 elsewhere. We write a for αl (1 e S(X)).
Then each / has the form

(2.4) /= J>A

where each ξ3 has the form (2.2), and

(2.5) 11/11 = Σ INI.

Clearly the element of A(X) can be added and multiplied, being func-
tions with values in A. The algebra A(X) is easily seen to satisfy the
conditions 2.11-2.14. It clearly "contains" the algebra A[X] of poly-
nomials in the indeterminates with coefficients in A.

If Jo is a subset of 7, and Xo is the corresponding system of inde-
terminates, then A(XQ) can be canonically embedded in A(X). The al-
gebra A(X) is not very interesting in itself. For example, its space of
multiplicative linear functional of the form

Δ(A) x Ώι
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where Δ(A) is the corresponding space for A (compare [2, 4.1])
A Banach algebra extension of A is an isometric isomorphism of A

onto a subalgebra Aλ of a Banach algebra B where the unit of Ax is
that of B. When possible we abbreviate this by saying that B is an
extension of A, and pretend that A c B.

A system Σ = {γΛ: k e K} of elements of A(X) is called normally
solvable over A if there is a Banach algebra extension B satisfying
2.11-2.14 and if for each i e I there is an element bt e B with 11&*[ | ^ 1
such that if 6t be substituted for xt in γfc, then 0 results for each k.
(If X contains any xt not appearing in any yk9 the corresponding bt

need not be expressly exhibited. It may be chosen as 0 6 ΰ.)
For an example, see (2.9) below.

A natural attempt to "solve Σ normally'' is to form the closed

ideal J generated by Σ in A(X), and form

(2.6) Ax = A(X) mod J

The norm in As is the canonical one for residue-class algebras [5, p. 14].
The main theorem of this section (2.8) is that this construction is
always successful when Σ is normally solvable. (Obviously, if the
construction is successful, Σ must be normally solvable.)

The only possible obstacle to this approach is that, whereas A(X)
is a Banach algebra extension of A, A% might not be, because norms
of elements in A c A(X) might be diminished when A% is formed
(compare [1, pp. 537-8; 2, p. 204.])

2.7 PROPOSITION. A^ is a Banach algebra extension of A and is
normally solvable if, for each finite collection of polynomials pίf , pn

6 A(X) and indices j19 , jn9 and each element a e A, the inequality

(2.71) \\a\\^\\a-plΎji jyy.JI

holds.
The norm on the right is the one mentioned in (2.5). The proof

of (2.7) may be omitted. It suffices to deal only with polynomials pk

in (2.7) because there are dense in A(X).

It would be a waste of effort to have X contain any elements not

involved in Σ, in essaying to verify (2.71).
The converse (2.7) is valid and we thus arrive at the following.

2.8 THEOREM. Σ is normally solvable if and only if (2.71)
holds for all a, ply , pn as specified in (2.7).

To see the "only if", suppose B normally solves the system Σf

containing elements {&*}*<=/ where Io are the indices of the elements
actually appearing in Σ, such that J3{b) •==• 0 for all j. Then we can
set up a homomorphism
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h: A(X) — B

wherein h(xt) ~ bif i e Iot h(Xi) = 0, i 0 /0, and h(a) — a for a e A (re-
garded as a subalgebra of A(X) as well as of B.) Clearly \\h(f)\\ S \\f\\.
The ideal J is contained in the kernel of h, because h(jό) = 0 for all
jj e Σ. We thus arrive at a homomorphism h* of bound at most 1
[5, 7D] of As, into B. Therefore the natural image a + J of an element
a from A has a norm (in A%) not less than the norm of its image in
5. The latter is a itself, so that ||αj| ^ \\a + J\\. This implies (2.71),
so that (2.8) is shown.

The necessary and sufficient condition given by (2.8) can in special
cases be replaced by a simpler one.

2.9 THEOREM. Let c, d e A, and let n be a positive integer.

Then

c = dxn \\x\\ ^ 1

can be solved in some extension algebra if and only if, for every
a e A,

\\ca\\ ^ ||<2α|| .

The proof, which resembles [1, sec. 3], is simple and may be
omitted.

An illustration of the two-way utilization of (2.8) is the following.

2.91 THEOREM. Let c e A, and let μ > 0. Then

c = β' | | * | | ^ μ

can be solved in some extension algebra if and only if for each v > μ,
and positive integer N, there is an extension in which for some n

c =
n

Proof. It is evidently a matter of showing that c — eμx is normally
solvable precisely when c — {1 + {μxδjn)}n is normally solvable for
infinitely many nf whenever δ > 1. The former can be solved in the
latter circumstances because the class of normally solvable elements of
A(x) is closed, by (2.8). Conversely, if the latter is normally solved with
x in some extension algebra B, and n > μδ, then (letting λ = μ\n) take
y = λ-1 log(l + λaδ), and obtain eμy = c, with ||τ/|| ^ -λ- 1 log(l — λδ).

3. The union of normally solvable systems* In (1.2) we included
the condition that the solvable families whose union is to be
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involve distinct collections of indeterminates. This is natural, because
while each of the one-member families

(3.1) { I - * } , {1-2*}

is normally solvable over any algebra, the union is never solvable. As
indicated in § 1, we do not know if this condition is enough to make
even Sol (finite) hold, but we shall now show that Sol (normal, finite),
is not generally true. Our example has the special merit of dealing
with systems whose solution consists in constructing inverses, so that
it destroys Inv (normal, finite) as well, as promised by (1.7).

3.2 THEOREM. There exists a Banach algebra A (2.11-2.14) with
elements p, q over which

(3.21) 1-qx

and

(3.22) 1 - py

are normally solvable, but

(3.23) {1 - g», 1 - py}

is not normally solvable.

Proof. The algebra A is isomorphic as a topological algebra, to
the algebra of absolutely convergent power series on the unit disc. In
order to reserve letters such as z for possible use as indeterminates, we
use p for the ' 'complex variable' \ Select a real number a, a > 1.
For a e A, say,

(3.24) a = λ0 + Xφ + X2p
2 + •

we define

(3.25) ||α|| = |λj + αflλj + |λj + . . . ) .

The operations are the usual addition and multiplication of series.
(2.11-2.14) are easily verified. (In fact, this algebra is a simple speci-
men of a ring of Shilov's type K<cύn>(§4) where {an} = {1, a, a, •••}).

It is clear that

(3.26) \\pa\\^\\a\\ (a e A) .

Moreover, for 0 ̂  δ < 1 we also have

(3.27) \\qa\\ ^ \\a\\

where

(3.28) q = (l-8)-1(l
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To see (3.27), consider that

||(1 - 8p)pa\\ ̂  \\pa\\ - δ|b2α|| .

Now

\\p*a\\ = | |pα|| f so ||(1 - 8p)pa\\ Sj \\pa\\ (1 - δ) 2; (1 - δ) | |α| | ,

by (3.26).

By [1, 3.5] each of the one-element systems

(3.29) {<yj - {1 - qx} ,

(3.30) {γ2} = {1 - py} ,

is normally solvable (and, the combined system is solvable [1, 3.8]).
We submit that the following is an identity in x, y :

(3.31) 8(1 - δ)(l - Sp)-1 = x - (1 - 8)y + 7i[δ(l - δ)(l - Sp)'1 + (1 - S)y]

This is readily verified by substituting (3.29), (3.30), and (3.28) into
(3.31).

Let us now suppose {7ly γ2} is normally solvable. Let a = δ(l — δ)
(1 - Sp)-\ Then, from (3.31)

a _ 7 i [ . . . ] __ 7 a [ . . . ] == α? - (1 - δ)y .

Comparing this with (2.71), we see that

where we have used (2.5) for the norm in A(x,y). Now a— δ(l — S)
(1 + δp + δ2p2 + •) and the norm of this is given by (3.25):

| |α| | = δ(l - δ)(l + 8a + S2a + . •) = δ - δ 2 + 82a .

It thus appears that

(3.32) α ^ 1 + 2(1 - δ)δ~2 .

Thus the desired counterexample is possible. In fact, if a > 1
then some δ will make (3.32) false.

The next proposition shows how plentiful these counterexamples
really are.

3.4 THEOREM. Let A be any algebra satisfying (2.11-2.14), contain-
ing an element c which is not regular but is no topological zero-divisor.
Then A contains p, q and can be given an equivalent norm such that
{1 — qx}, {1 — py} are each normally solvable, but {1 — qx, 1 — py} is not.
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Proof. Select a complex-valued homomorphism ξ of A such that
ξ(c) = 0. We may assume that \\ac\\ ^ ||α|| for all a e A. Select any
δ such that 0 < δ < 1. / now present the p and q: p = 3c, p = 3/3c
(1 — δc) where β = ||(1 — δc)-1!!; and the new norm

(3.41) \a\ = \ξ(a)\ + a\\a - ξ(a)\\ (a > 1) .

Here a is a parameter to be fixed later. It is not hard to see that
(3.41) satisfies (2.11-2.14). Furthermore,

(3.42) | |α | |< | α | < 3 α | | α | | .

Since ξ(c) = 0 we have \3ca\ = α||3cα|| ^ 3α||α|| > \a\. It follows that
1 — 3cy is normally solvable. It is similarly established that 1 — 3βc
(1 — δc)x is normally solvable.

Now suppose some extension B of A (A with the | | norm, be it
understood) had elements x, y of norm not exceeding 1 such that

Then 3 / 5 c ( 1 ~~ h ό ) x = 1 ' 8cy = 1 .

β(l - 8c)x = y , βx - y = βScx .

Now 3/3c# = (1 — δc)"1 so we have

δ(l - 8c)-1 = 3/3x - 3τ/

Whence

(3.43) δ|(l - c)-1! fg 3(/3 + 1) .

But

|(1 - δc)"1! = 1 + α||(l - c)-1 - 1||

where the coefficient of a is not 0 because δ Φ 0. Hence a can be
chosen so that (3.43) is impossible.

The Banach algebra A used in (3.2) cannot yield a counterexample
if the parameter a is taken as 1. This follows from the following.

3.5 THEOREM. Let B satisfy (2.11-214) and let A be a subalgebra
with unit. Let Δ(B) be the space of complex-valued homomorphisms of
B, and Δ{A), the corresponding set for A. Suppose that every ξ e Δ{B)
when restricted to A falls into the Shilov boundary [4, 5] dAΔ(A).
Suppose moreover that there is a collection U of elements in B such
that

(3.51) u 6 U and a e A implies \\ua\\ = ||α||
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(3.52) {ua: u e U, a e A} is dense in B .

Then each element c of A which has an inverse of norm not exceeding
1 in some extension of A, has such an inverse in B.

Proof. If c e A has an inverse in some superalgebra, then it
cannot vanish on dAΔ(A) as each of these homeomorphisms can be extended
to any superalgebra of A. Thus c has an inverse b in 2?, and what
remains to be proved is that | |δ|| ^ 1. This will result from the fact
that necessarily, ||cα|| ^ | |α|| for all a e A [1, 3.5],

By (3.52), there exist {un}, {an} such that unan-+b. Therefore
\\cunan\\ — ||c6|| = 1. However (by 3.51)

\\cnnan\\ = ||cαΛ|| ^ | |α j | = \\unan\\ -* ||6|| .

This completes the proof of (3.5).
From this general proposition we now consider another which shows

that for the A of (3.2) with a = 1 there is a B to which A bears the
relation described in (3.5). In fact, B = L\Z) where Z is the discrete
group of integers, and A can be identified with those elements of B
which are supported by the semi-group Z+ of non-negative integers.
This pair is discussed in [5. 23C and 24E].

3.6 THEOREM. Let G be a discrete abelian group and S a subsemi-
group containing e e G. Let B = L\G), and A be the subalgebra of B
consisting of those functions whose support lies in S. Let U be the
group G as naturally imbedded in B : x —• 8X, Sx(y) = S(y — x), where
S(χ) = 0 or 1 according to whether x Φ e, or x = e. Then U, A, B
satisfy the conditions of (3.5).

The specific properties of U are obvious, and the relation of Δ(B)
and dAΔ{A) is easily established, either by analogy with [5, 24E], or by
[7, 4.6].

4, The cortex. Let A satisfy (2.11-2.14) as always. By Δ{A) we mean

the space of complex linear homomorphisms of the algebra A onto the

complex numbers C, with the weak topology. By the cortex Γ(A) of

Δ(A) (or, more briefly, the cortex of A) we mean the set of those

homomorphisms which can be extended to every extension B of A.
Now those ξ e Δ(A) which can be extended to B form a compact

set EB which is the continuous image (under the restriction map) of
Δ(B), and the cortex is evidently the intersection of these EB. More-
over, each EB contains the Shilov boundary ΘAΔ(A) [4, 5] which is never
void. Thus we have the following.

4.1 THEOREM. The cortex Γ{A) is compact, and contains the Shilov
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boundary.
When A has the sup norm, i.e, when ||α|| = sup {\ξ(a)\ : ξ e Δ(A)},

then Γ(A) = <^(A) since the extension B = ^(dΛ(Δ(A)) admits only
homomorphisms which are on the Shilov boundary. There are algebras
in which the norm is not equivalent to the sup-norm in which Γ{A)
and dA(Δ(A)) coincide, for example the A of (3.6) above.

However, the work of Shilov [6] makes it possible to exhibit alge-
bras with one generator in which Γ(A) Φ dA(Δ(A)). Because of the
rarity of this paper in these parts it may be permissible to sketch proofs
of some of Shilov's theorems.

Let {an} = {ao,alf •••} be a sequence of real numbers where, for
m, n > 0,

(4.21) tfo = 1 ^ am+n ^am- an .

Let K{a) be the space of these formal power series (which notation
makes the algebraic operations more evident)

(4.22) f(z) = aQ + aλz + a2z
2 + . . .

for which

(4.23) 11/11 = ^|α*|α*~ .

K(a) satisfies (2.11-2.14). It follows from (4.21) that r = lim (an)
lln

exists. Thus the spectrum of z (see 4.22) is the disc {|λ| ^ r}, and
this is a homeomorphic image of Δ(K(a)) under the map ξ —> ξ(z).

We now consider the possibility of enlarging the algebra by defin-
ing an also for n > 0, and norming formal Laurent series as in (4.23).
It is easy to see that if such an (n < 0) can be defined with (4.21)
holding, then for each r = 1, 2, •••,

(4.24) βr = sup aJia^Y1: n - 1, 2, . . .

must be finite. Moreover

4.25 PROPOSITION (Shilov). Letting α_w = βn for n = 1, 2, pro-
vides an extension of the K(a) when βx is finite.

The proof lies in verifying (4.21), and then observing that βr < (β1)
r.

Let us call this extension algebra K(ot} β). The spectral radius of ljz
is evidently

(4.26) s = lim (βn)
1/n

and Δ(K(a, β)) is homeomorphic to the spectrum of z, which is

(4.27) {λ : s-1 ^ |λ| ^ r} .

When βx = oo we set s"1 = 0.
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4.3 THEOREM (Shilov). The element X — z is a generalized zero-
divisor in K{a) if and only if s'1 < |λ| < r.

Now X — z is not a generalized (or topological) zero-divisor if

(4.31) inf {||(λ - z)f(z)\\ : \\f(z)\\ = 1}

is positive. The evaluation of (4.31) is facilitated by

4.32 LEMMA. Let T be a convex compact subset of a topological
(real) linear space L, and let φ0, , φ be NN + 1 real valued linear
functionals on L. Let S(x) = \φo(x)\ + + \φN(x)\, μ — min {S(x): x
e T}. Then there exist ilf i2f , in and a point x1 e T such that

(4.33) S(Xl) = μ
and

(4.34) xx is an extreme point of T relative to Z(iu •• ,i i ), where the
latter is the linear subspace defined by φt = φi= = φi = 0 .

Proof. Selection an xQ such that S(xQ) = μ and such that the num-
ber of ψi that vanish at x0 is a maximum. Let

(4.35) φ{x) = Σ'(sgn φt(xQ)) Ψi{x)

where ' is to remind the reader that sgn 0 = 0. Let {ίu , in} be
those indices for which <Pi(x0) — 0, and define z a s in (4.34). By the
maximum-property of n, each sgn φt is constant on T f) Z. There-
fore ψ(x) — S(x) on T Π Z. Now φ is linear and so there is an extreme
point xx of the convex set T Π Z such that φ{x^) — μ.

Having established the Lemma we apply it as follows to the space
LN of polynomials of degree < N. Let TN be the collection of those
members of LN whose K(a) norm is ^ 1. For f e LN let φ^f) be at

times the ith coefficient of (λ — y)f(z). It is clear that the inf in
(4.31) has the value

lim inf SN(f) .

The set Z(ilf , in) of those / e LN such that φh(f) = = φt

(/) = 0 is clearly the set of those / such that λα« = at-x for i = ilf

i2, , in (here α_x and aN are interpreted as 0.) Let the indices
be arranged so that it < i2 < < in. This sequence decomposes into
maximal blocks without gaps. If {m + 1, , m + p} = a is such a
block then

(4.36) fσ = zm(Xp + X^z + + Xzp-χzp)

lies in Z(i19 •••, in). If σ = {0, •••} let / σ = 0. If 0 Φ iχ then

1 6 Z(i x, , in) . If ΐ , i + 1 do not occur (0 < i, i + 1 ^ N) then
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zι e Z(i19 , in). Conversely, every function in Z(ilf , in) is uniquely
expressible as a linear combination of these functions just associated
with {ilf , in). Considering how the norm is taken, the extreme
points of Z(iu , in) Π TN are obviously just functions of the type

(4.37) czm(Xp - zp)(X - z)~ι

where c is any number that makes the norm 1. (Here we allow p = 1
and also m = 0 to take care of those monomials mentioned above which
are not due to gap-less blocks.)

4.4 LEMMA. The inf (4.31) can be evaluated by letting f run
through the system (4.37).

Shilov does not seem to examine the inf (4.31) to the extent we
do here, but the functions (4.37) occur in his considerations.

We now pass to a proof of (4.3). First of all, if |λ| < s"1 then z
and z — X have an inverse in K(a, β), whence z — X cannot be a topolo-
gical zero-divisor. If |λ| > r then z — X has an inverse in K(a).

Now suppose z — X is not a topological zero-divisor. We wish to
show that |λ[ < s"1 if |λ| tS r. We confine ourselves to λ ^ 0, and
assume λ ^ r. λ cannot be r or δ"1 for these yield topological zero-
divisors by Shilov's earlier theorem [6]. If X < r then for N, some
we have λ̂  < ap for p > N. From (4.31) we obtain an M < oo such
that \\{x-z)f{z)\\M>\\f{z)\\ for all / . Inspired by (4.4) we select
f(z) = χ» + λ*-1;? + + zp and obtain

λp + λ p-i α i + ... + a p < M(XP+1 + ap+1) < 2Map+1 .

For q > N and p = k + q — 1 we obtain

Xkaq < 2MXak+q ,

whence (by 4.24) Xkβk < 1 , and (by 4.26) Xs < 1 .
Using the notation of (4.3), we deduce the following [see 6. Th. 7].

4.4 COROLLARY. For K(ά) the Shilov boundary is {λ:|λ| = r},
and the cortex is {X : s"1 ^ |λ| ^ r}. For K(a, β) the Shilov boundary
is {X : s"1 = |λ| or \X\ = r} while the cortex is the same as for K(cή.
Thus if s"1 < r, then in each case the cortex is greater than the Shilov
boundary.

Shilov remarks that if t < p then examples can be constructed such
that s"1 = t, r = p. He gives no example, so we may just give one
producing the interesting case s"1 = 0, r = 1. We have, of course, to
define {a0, a19 •}. Let am = exp (λ(m)) where λ(m) is defined as follows.
Set
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Xn(m) = n~~2m when m ^ n3

= 0 when m ^> n3 .

Let λ(m) = λx(m) + λ2(m) + . It is not hard to see that λ(m) —
X(m + 1) > n — π2/6. It follows that βx = + cx> (see 4.24) and because
&.«,-! ^ A, that β r = co whence s"1 = 0 (see 4.26).

We close this section by comparing the extension K{a, β) which
Shilov has provided for K{a) when βx < co with that provided by [1, 3.1]

The least norm of z'1 in any extension of K(ά) is easily seen to be
βx, for this least norm is by [1. 3.1] the reciprocal of the inf (4.31).
Thus it is reasonable to compare Shilov's extension K(a, β) with that
provided by § 2, for normally solving 1 — βxzx.

4.5 THEOREM. Let βx < oo. In K{a, β) the norm of z~n is βn. In
the "canonical" extension of K(ά) normally solving 1 — βxzx9 the norm
of z~n is (βλ)

n.

Proof. The statement about K{a, β) is obvious.
Denote βx by β. In the extension (2.6), the norm of xn is inf

S[xn — (1 — xy)g(x, y)] extended over all polynomials g, S meaning sum of
all norms of coefficients of powers of x9 where||^/w|| = ||/3W2;W|| = βnocn. Let
p + q be a maximum for the term <γxpyq in some particular polynomial
g(x, y); and suppose p + q>n — 1. Then xn —(1 — xy)g(x, y) has jxp+1yq+1

as its highest degree term. If we modify g(x, y) by omitting the term
jxpyq, then the S-contribution from xpyq-teτms in xn — (1 — xy)g(x, y)
might become |γ| βpaq larger, but the contribution |γ| βp+1 aq+1 will disap-
pear. Hence this modification changes the S[ ] by at most a negative in-
crement. Therefore, we may confine ourselves to g's whose terms
have p + q < n — 1. Of these, g = 0 gives the minimum possible value
for S[ ], and it is βn.

This theorem (4.5) shows that K(a, β) gives the smallest possible
inverse not only to z, but to all its powers (whereas the ""canonical"
one may not do justice, so to speak, to the inverses of z2, z3, •)• This
being so, one wonders if K(a, β) might not provide the best (i.e., least-
in-norm) inverses to z — λ for |λ| < s~\ Our result (4.4), whose full
force has not really been employed above, shows that this is not gene-
rally true.

4.6 THEOREM. Consider K(a) with {α0, alf a2, •} = {1, 2,1,1, •}.
Then s~τ=r = 1 . For |λj = λ < 1 the norm of (z — XJ"1 in K(a, β) is
2(1 — λ)"1. For each Xx such that |λj = λ < 1 there is an extension of
K{a) in which the norm of (z — λ^"1 is

(4.61) (2 + λ) (1 + λ2)-1 if X ̂  1/2, and (1 - λ)-1 if X ^ 1/2 .

Proof. The details are tedious and should be accepted or verified
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by the reader. The system (4.24) comes out {β19 β2, •} = {2, 2, 2, •}
whence ||(s - X^ll = 2(1 - λ)"1 in K(a, β). Taking however a fixed λ
(one might as well suppose λ = \ >̂ 0), the best that can be done by
the canonical (and thus by any) method is a norm for (z — λ)"*1 equal
to the reciprocal of the inf (4.31). A page of calculation, based on (4.4),
yields the result stated. Curiously, the formula (4.61) gives a func-
tion which is not monotonely increasing, but has a minimum at λ = 1/2.

5. The tensor-product problem TPr. The proposition TPr {norm,
finite) is false in general because it would conflict with (3.2). However,
there is a simpler argument, which also destroys TPr (top, finite). It
rests upon the following.

5.1 THEOREM. Let B satisfy (2.11-2.14), and let {Bt:i e 1} be a
family of closed subalgebras; and let A be a closed subalgebra with
the unit of B included in each of the Bt. Let Δi be the space of com-
plex-valued homomorphisms of Bif and let Γt be the cortex, i e I. Let
T* be the restriction map

(5.11) Γ 4 * : 4 - > J ; Tf(ζ) - ζ\A .

Then for each j e I we must have

(5.12) T*(Γό) c Π 2

Proof. Let ζ belong to the right hand side of (5.12). Then ζ
extends to B, and thus ξ is for each i a restriction of some ζt e Δiy

to A.
For a pair of real numbers r, p(0 S P ^ r) let A(r, p) be the alge-

bra of functions continuous for p <; |λ| ^ r and holomorphic for
p < \X\ < r, with the sup-norm. The cortex is the set {|λ| = p}
U {|λ| = r} (deleting the former when p = 0). Let A = A(0,1), Bx =
A(l/3,1), B2 = A(2/3,1). Then A c Bx c J52 and in some sense B2 is
the desired tensor product of Bλ and B2 (over the ring A) but not in
the sense TPr for the injection of B1-^B2 is not 6i-continuous. In
fact, because Γ*(l/3) $ Γ*(4)» we have:

5.2 THEOREM. TPr does not hold for A{BXB2).
Returing briefly to (5.12), we show that it is sufficient for TPr

when all norms are swp-norms.

5.3 THEOREM. // {Bi: i e /} is a family of Banach algebra exten-

sions of A (all satisfying 2.11-2.14) and each Bt has the sup-morm

then an algebra B as in TPr (1.1) exists such that the mappings ft

are isometries, provided condition (5.12) holds for each j.
We sketch a demonstration with close reference to [3, Appendice I].
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One forms BQ = ® ( / ) Bt. Let ζ be any element of XieIΛi such that
ξi\A is independent of i. Then <g)ί€r f4 = J* is a C-homomorphism of
JB0. We define the norm of an element b e Bo as ||6|| = sup|f*(6)|, and
complete Bo in that norm. Now let b5 e Z?j have norm 1. Then |£J(&J)| = 1
1 for some ζ3 e Γj. By (5.12), this ζ3 is part of a collection {£«} of the

type used in forming the homomorphisms f*, and surely |f*(/j(^))|= 1.
Thus | |/J(6J) | | ^ ||6j||. On the other hand, if |f*(/,(6,)| > 1 then \ζ,%)\> 1
for some ξ% e Δ% which cannot be if [|64|| = 1.

Thus (5.3) is proved.

6 The Sol problem for sup-normed algebras* The non-equivalence
of Sol and TPr is brought out by the fact that Sol (norm, arb) is true
when A has the s^p-norm. For then, the algebra M{dAΔ{A)) of bounded
functions on the Shilov boundary solves normally all normally solvable
systems.

6.1 THEOREM. Let B, satisfying (2.11-2.14), normally solve a
system Σ over a subalgebra A having the sup-worm. Then M{dAΔ{A))
also normally solves Σ.

Proof. Well-order the class Δ(B) of C-homomorphisms of B. For
each ξ e dA(Δ{A))} let ξ' be the first element of Δ(B) which is an ex-
tension of ζ. Define T(b){ζ) = ξ'(b). This mapping is isometric on A,
and of bound 1 on B. These two properties insure that the homomor-
phism T preserves "normal solution'\ Thus (6.1) is proved.

It is worth noting that M(dAΔ(A)) not only solves all systems solv-
able over A but also all systems solvable over itself.

7 A fragmentary result on joint removal of ideals. Let A satisfy
(2.11-2.14), and let Δ be its space of C-homomorphisms. Let J be an
ideal of A. The hull H of J is {ζ: ξ e Δ, ζ = 0 on J}. This is com-
pact.

7.1 THEOREM. Let {J$: i e 1} be a family of removable ideals
(see § 1) and let J be a removable ideals. Let each Ju and J be a princi-
pal ideal. Let the hulls Hi converge to the hull H of J in this sense:
every neighborhood W of H contains all but finitely many of the Hi.
Then the system {J} U {Jt: i e /} is removable.

Proof. If J = cA then c is subregular (see § 1); and we can select
c so that \\ca\\ ^ | |α| | for all a e A. Elements c4 can be selected so
that each Ji = c,A with H^αll ^ | |α| | for all a e A. Let Ϊ F = {ζ : \ζ(c)\
< 1/2}. Let Hiχf •••, Hin include all those hulls which are not included
in W. Let d = c<JL cin. One can find an integer p such that

l < 1 f ° r a ^ H U U Hi- I n some extension algebra B, dcp has
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an inverse 6, | |δ| | ^ 1. If the ideals J, J% (i e I) are not all removed
by B then B has a C-homomorphism £0 which is an extension of some
ξ in HU Ufy. Now ξo(bdcp) = 1, |f0(6)| ^ 1, but |(dc*)| < 1. This is
a contradiction.

A question. Suppose clf , cn are elements of A which generate
a removable ideal. Then there are numbers μlf , μn such that
INI ^ \\cxa\\ μ1 + + \\cna\\μn. (Indeed, if 1 = cxxx + + cnxn in some
superalgebra, then one can take μk = \\xk]\.) Is the converse true?
If so, we would have that every finite collection of removable ideals is
a removable family of ideals, that is, Rid (finite). The method would
be, using the given systems

clti, •• ,cn,< (i el) ,

to construct a new system

c* = Π ok
iei ι *

(k19 '",kn a permutation of 1, •••,%) and apply t h a t converse.
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SPECTRAL THEORY FOR LINEAR SYSTEMS
OF DIFFERENTIAL EQUATIONS

FRED BRAUER

Introduction, The study of boundary value problems for systems of
first order differential equations was begun by Bliss in 1926 [1], Such
problems are of interest not only because they include boundary value
problems for single equations of arbitrary order, but also because they
arise in the calculus of variations and relativistic quantum mechanics.
Until now, attention has been concentrated on boundary value problems
on a finite interval [1, 2, 8], but an application to a particular boundary
value problem on an infinite interval has also been considered [6]. It
seems reasonable to expect that the theory of boundary value problems
and eigenfunction expansions on an infinite interval for a single differ-
ential equation of arbitrary order can be extended to first order systems.
In this paper, the extension will be carried out along lines similar to
those used by the author in [3]. It will be shown that all the results
obtained in [3] can be formulated so as to be valid for systems. Vector
and matrix notation will be used extensively, and as a result, formulae
will take a simpler and more natural form than in [3].

The elements of a matrix A will be denoted by Atj, and the com-
ponents of a row or column vector / will be denoted by ft in the usual
manner. The adjoint of a matrix A, written A*, will be the matrix
with An in the ith row, jth column, the bar indicating the complex con-
jugate. The adjoint / * of a row or column vector / will be the column
or row vector respectively with components fim It is easily seen that
(AB)* = 5* A*, whether A and B are vectors or matrices such that AB
is defined. If A is a matrix and a is a scalar, then (<xA)* = άA*.
Also, if A is a Hermitian matrix (A = A*), and / and g are column
vectors, then it is easy to see that (f*Ag)* = g*Af = (f*Ag). The
matrix dAldt, or Ar, will be the matrix with elements Af

ijy and the
vector dfldt, or / ' , will be the vector with components f[. Any an-
alytic properties, such as continuity or differentiability, postulated for a
vector or matrix will be understood to be assumed for each element
separately.

l The expansion theorem* Let AQ, A, B be n x n continuous com-
plex-valued matrix functions of t defined on an interval / — (α, 6), not
necessarily a bounded interval, with not all elements of B vanishing
identically on I and with AQ non-singular at every point of /. We are
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interested in boundary value problems for the linear system of differ-
ential equations

(1) Aox' + Ax = XBx ,

where x is an ^-dimensional column vector. The adjoint system is de-
fined to be

( 2 ) - (A*yY + A*y = XB*y .

The system (1) is called symmetric if there exists a transformation y —
C(t)x, with C a non-singular continuously differentiable matrix on /,
which transforms (1) into (2) for all values of λ. It can easily be shown
(cf. [8]) that (1) is symmetric if and only if

( 3) (A*CY - AtCA^A - A*C = 0, £*C + AfCA^B = 0 .

If (3) is satisfied, it may easily be verified that

(4) - (A*CxY + A*Cx - XB*Cx = - A*CA;\AQx' + Ax - XBx) .

It may be shown by integration by parts that if / and g are two dif-
ferentiable vector functions vanishing at the ends of the interval /,
then

Af- XBf)dt = j ^ [ - (A*CgY + A*Cg - XB*Cg]*fdt .

If the system (1) is symmetric, (4) yields

Af- XBf)dt

ff' + Ag - ΪLBg)*A*-*C*A,fdt .

Let C\{I) denote the set of continuously differentiable vector func-
tions which vanish identically outside some compact subinterval of /.
A symmetric linear system (1) is called definite if

(i) the matrix S = C*B is Hermitian, so that C*J3 = B¥C,

(ii) [f*Sfdt ^ 0 for any / e CJ(1), and

(iii) Aou' + An = 0, Bu = 0 on any subinterval J of / implies that
u vanishes identically on J.
In view of these conditions,

(6) [f,g]

may be regarded as an inner product on CJ(I). Let H be the Hubert
space completion of CJ(7) in the inner product (6). Then H is the set
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of equivalence classes of vector functions / such that \ f*Sfdt < co.

The norm in H will be denoted by | | / | | .
Let D denote the set of functions / in C\{I) such that

(7) AJ» + Af=Bp

for some p in H. Although p may not be uniquely determined as a
function by (7), the function Bp is uniquely determined. If px and p2

are elements of H with Bpx =Ξ Bp2, then

llPi - P*\\2 = J/Pi - pJ*C*B(Pl - p2)dt = 0 ,

and px and p2 define the same element of H. Thus the equation (7)
determines a unique element p of H. We define an operator L in H
with domain D, by defining Lf = p for f e D, with p determined by (7).

LEMMA 1. If £&β system (1) is symmetric and definite, then the
operator L is symmetric on D.

Proof. Let f,geD, with p as in (7) and

(8) 4ΰ' + Ag = Bq.

Then,

[Lf, g] -

-[g*A*Cf]*

using (3), (7), and integration by parts. Also,

[/, Lg] - ^q*Sfdt - ^q*B*Cfdt - J ^ ' + Ag)*Cfdt

= \(g*'A*Cf+g*A*Cf)dt,

using (8). Thus

[Lf, g] - [/,
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The integral vanishes because of (3), and the first term on the right
side vanishes because / and g vanish outside a compact subinterval of
I. Therefore [Lf,g] = [/, Lg], and L is symmetric on D.

Throughout this paper, we shall assume that (1) is symmetric and
definite, and that the symmetric operator L has a self-adjoint extension
T, considered as an operator in H. If Ao, A, and B have real coeffici-
ents, then L is a real operator and always has at least one self-adjoint
extension ([9], p. 329).

LEMMA 2. There exists a matrix k(t, s, λ) with the following
properties:

( i ) k is continuous on I x I for fixed X except on t = s, and an-
alytc in X for fixed t, s,

(ii) k(s + 0, s, λ) — k(s — 0, s, λ) is the identity matrix E for sel
and any λ,

(iii) the columns of k satisfy (1) as functions of t for t Φ s,
(iv) if J is any compact subinterval of I and f is any function

in CJ(J), then

( 9 ) /(«) = \k(t, s, X)[A0(s)f'(s) + A(s)f(s) - XB(s)f(s)]ds ,

for t e J.

Proof. Let Φ(t, X) be a fundamental matrix solution of (1), that
is, a matrix whose columns are linearly independent solutions of (1).
This matrix is non-singular for all t e /, and can be chosen so that all
its elements are analytic in X for each fixed t. For t < s, define
k(t, s, X) = 0, and for t ^ s, define k(t, s, λ) = Φ(t, X)Φ~\sf λ). The proper-
ties (i)-(iii) are immediate consequences of this definition, and the proper-
ty (iv) follows from the variation of constants formula ([5], p. 74).

The function k(t, s, 0) will be denoted by k(t,s). In this section,
we will use only k{t, s), but the more general k(t, s, λ) will be required
later. An expression such as k{t, ) will stand for k(t, s), considered as
a function of s for any fixed t. Let J be any compact subinterval of
/ and let θj be a real continuously differentiate scalar functions which
is 1 on J and which vanishes identically outside some compact subinterval
of /. Let z(t, s) = C~ι(s)k*(t, s)θj(s), an n x n matrix. It is clear that
the columns z^t, ) of z(t, ) are continuously differentiate vectors which
vanish outside a compact subinterval of J, and that each Zι{t, ) is an
element of H. If / belongs to D and vanishes identically outside J,
then we can write

f(t) = [θj(s)k(t, s)B(s)p(s)ds = f s*(ί, s)C*(s)B(s)p(s)ds
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= f z*(t, s)S(s)p(s)ds ,

using (7), (9), and S = C*B. This means that each component ft of /
(i = 1, . . fn) can be written

(10) / f(ί) - j^f(ί, s)S(s)p(s)<te - [p, *4(t, )] - [L/, s,(ί, )] .

We will make use of the theory of direct integrals and the spectral
theorem as given in [7]. The notation will be similar, but not identical,
to that used in [3] The elements of the direct integral L2(σ, v) are
v(λ)-dimensional vectors F(X)9 and the inner product

S V(λ> _

Σ F,(X)Gk(X)dσ(X)
of two elements F, G of L\σ9y) will be denoted by ί G*(X)F(X)dσ(X),

in analogy to our other notation. R will always mean the real line.
We can now state the result of this section.

THEOREM 1. Let T be a self-ad joint extension with domain Dτ of
the operator L defined for a symmetric definite system (1). The spectral
theorem furnishes a direct integral L\σ, v) and a unitary transfor-
mation U from H to L\σ, v) which diagonalizes T. This transfor-
mation is given by

(11) (Uf)(X) = j S*(ί, X)S(t)f(t)dt ,

and its inverse by

(12) (U~Ψ)(t) - ( E(t, X)F(X)dσ(X) ,
-B

with the integrals converging to the functions in the norms of the
Hilbert spaces L\σ, v) and H respectively. Here, E{t, X) is a matrix
function with n rows and v(X) columns, whose elements have locally
square-integrable derivatives with respect to t. The columns of E(t, X)
are improper eigenfunctions (not necessarily belonging to H) of the
differential equation (1) for almost all λ. If XQ is an eigenvalue of
T, then the columns of E{t, λ0) are proper eigenfunctions.

Proof. Let L2(σ, v) be a suitable direct integral and let U be the
unitary mapping of H to L\σ, v) which diagonalizes the self-adjoint
extension T of L. The fact that U is unitary is expressed by the
Parseval formula

(13) [/, g] = (Uf, Ug) = ( (Ug)*(X)(Uf)(X)dσ(X) .
JR
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Let / belong to Dτ, the domain of T, and let g be any function in H
such that Sg vanishes identically outside some compact subinterval J
of /. Let F=Uf,G = Ug, Z% = Uzt, E\t, λ) = XZ*(t, λ), where zt is as
in (10). Then

fi(t) = [Tf,zt(t, )] = (UTf, Zt(t, )) = (\Uf, Zt(t,

- (F, #'*(«, )) = \ E\t, X)F(X)dσ(X) ,

using (10), (13), and the spectral theorem. In addition,

[/, g] = \ g*s/dt = f Σ lg*S]Jidt

= ( Σto^Sίt)],}! Eί(tfX)F(X)dσ(X)\dt

= \\\ tWWSmE'Q, X)dt\F(X)dσ(X) ,

the interchange in the order of integration being justified by the absolute
convergence of the integral. We define the n x v(X) matrix E(t,X)
with rows E*(t, λ). Then we can write

t,X)dt\-F(X)dσ(X) .

On the other hand,

LΛ g] = ( G*(X)F(X)dσ(X) ,

and thus

G*(λ) - \g*(t)S(t)E(t, X)dt ,

or,

G(λ) = f E*(t, X)S(t)g(t)dt

for almost all λ.
For g e D, g vanishing identically outside J, we have seen that

(Ug)(X) - j ^ * ( i , X)S(t)g(t)dt. If Λ^' + ^ = Bp, then 5p = BTg = 0

outside J, SΓ# = 0 outside J, and we can apply the above relation to
Tg, obtaining

(UTg)(X) - ^JS?*(t, X)S(t)Tg(t)dt .

Since



SPECTRAL THEORY FOR LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 23

(UTg)(X) - X(Ug)(X) = J^7*(ί, X)S(t)g(t)dt ,

we obtain

(14)

when λ does not belong to a set Ng of measure zero, with Ng depend-
ent on g. The same is true for a sequence g3 of functions when λ does
not belong to the null set N = UΠ=i Ng . We choose the sequence g5

dense in Df] Cl(J), and then (14) holds*for all g e Dpi CJ(J) if λ 0 N.
We let E(t, X) = 0 for λ e JV, and then (14) holds for all λ. Since S =
C*£, (14) yields

?*(ί, λ)C*(t)[J5(t)Γfir(t) - XB(t)g(t)]dt = 0 ,

or

ί JS7*(ί, λ)C*(ί)[Λ(t)flfr(ί) + A(ί)flr(ί) - XB(t)g(t)]dt = 0 .

Thus the columns of C(t)E(t, X) are weak solutions of (1) on J. It fol-
lows from a well-known theorem on weak solutions of partial differential
equations that the columns of C(t)E(t, X) have locally square-integrable
derivatives with respect to t which are continuous after correction on a
null set for each λ, and that each column is a solution of (1). This
theorem is easily proved using the properties of k(t, s, λ). Since C(t)
is non-singular, the columns of E(t, X) are improper eigenfunctions of (1).

The matrix E depends on the compact subinterval /. Let Ef be
another matrix with the same properties, corresponding to an interval
J ' 3 J. Then

ί [E*(t, X) ~ E'*(t, X)]S(t)g(t)dt - 0

for almost all λ, independent of g e C\{J). It follows that S(t)E(t, X) —
S(t)Ef(t, X) = 0 for λ outside some null set. For λ in this null set we
redefine E(t, X) = E'(t, X) = 0. The columns of E(t, X) - J5"(ί, λ) satisfy
Bu = 0. At the same time, since E and E' are eigenfunctions of (1),
they satisfy Aou

r + An = XBu = 0. By hypothesis (iii) in the definiteness
of (1), E(t,X) = Er(t, X) on J for all λ. By taking a sequence of com-
pact subintervals / tending to /, we can extend E uniquely to a matrix
function defined for t e I and all λ.

If λ0 is an eigenvalue of T, then σ has a jump, which we may
assume to be a jump of 1, at λ0. We choose F = 0 except at λ0, and

= δjk for any fixed index k <£ v(λ0), Then ΐ 7 e L2(σ, v) and
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{U-'F){t) = \ E(t, \)F(\)dσ(\) = E*(t, λ0) ,

the kth. column of E(t, λ0), an element of H. Thus the columns of
E(t,XQ) are proper eigenfunctions of T if λ0 is an eigenvalue of T.

The inversion formulae (11), (12), obtained for functions / in Dτ

which vanish identically outside a compact subinterval J, can be ex-
tended to all functions in Dτ by a standard density argument. They
are valid with the integrals converging to the functions in the norms
of the appropriate Hubert spaces. These formulae give the expansion
of an arbitrary function / 6 Dτ in eigenfunctions of the system of dif-
ferential equations (1). The proof of Theorem 1 is now complete.

To prepare for the next section, we write the expansion formulae
in a different form. Let Φ(t, λ) be a fundamental matrix solution of
(1), with each element analytic in λ for fixed t. The matrix E(t,X)
can be expressed in terms of Φ(t, X) by

(15) E(t, λ) = Φ(t, X)R(X) ,

where R(X) is a matrix with n rows and v(X) columns whose elements
are functions of λ only. With the use of (15), the Parseval equality
(13) takes the form

Il/H2 - f F*(X)F(X)dσ(X)
JR

= \l\f*(t)S(t)Φ(t, \)R(\)dtl[R*(\)Φ*(s, X)S(s)f(s)dsΊdσ(X)

- ( (Vfr(X)R(X)R*(X)(Vf)(X)dσ(X) ,

where

(16) (Vf)(X) = j^*(ί, X)S(t)f(t)dt .

The formula

(17) dρ(X) = R(X)R*(X)dσ(X)

defines a Hermitian positive semi-definite n x n matrix, called a spectral
matrix. Let JEJΓ* be the Hubert space of all complex-valued ^-dimen-
sional vector functions F(X) such that

λ) = ( F*(\)dp(\)F(\)

with inner product
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(F, G) - ( G*(x)dp(x)F(X) .
JR

Then (16) defines a unitary mapping of H onto H* which diagonalizes
T. A straightforward computation gives

(18) (V-ιF)(t) = [ Φ(t, X)dp(X)F(X) .

2 Green's function and the spectral matrix. Let T be a self-adjoint
extension of L as in §1, and let Rλ = (T — X)'\ for ImX φ 0, be the
resolvent of T, a bounded operator in H.

THEOREM 2. There exists an n x n matrix G(t, s, X) defined for
t, s e I, ImX Φ 0, such that

(19) S(t)RJ(t) = J G(ί, s, \)S(8)f(8)ds ,

where J is a compact subinterval of J, ί 6 J, and / e CJ(J). This
matrix G, called the Green's matrix of the operator T, has the follow-
ing properties:

( i ) G is analytic in λ for fixed ί, s and /mλ =£ 0, is continuous in
(t, s) on / x I for fixed λ except on the diagonal t — s

(ii) G(s + 0, s, X) - G(s - 0, s, λ) = £7 for s e /, /mλ =£ 0
(iii) G(ί, 8, λ)S(s) = S(ί)G*(8, ί, λ)
(iv) considered as functions of ί, the columns of G satisfy (1) if

t Φ s
(v) G is uniquely determined by T

(vi) if / € CftI), then S(ί)/(ί) = \G(t, s, X)S(s)(T -

Proof, (cf. [7], p. 14). If / 6 Cl(J), g e C&I), then

(20) [/, fir] = \g*(t)S(t)f(t)dt = [i?λ/, (Γ - λ)flf]

- x)g(t)]*S(t)Rλf(t)dt,

by (6) and the definition of the resolvent. We make use of a matrix
k(t, s, X) as in Lemma 2. Let s0 be any point of J, V a neighbourhood
of s0 whose closure is contained in J, and #F a real scalar function in
C\{J) which is equal to 1 on V. For t e J, s e V, define

(21) p(ί, β) - (Γt - λ)[fc(ί, 8

the subscript ί indicating that the operator is applied to k(t, s, λ)(l — θv(t))
considered as a function of t for fixed s. The result of application of
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an operator to a matrix will be understood as the matrix whose columns
are obtained by applying the operator to the columns of the original
matrix. For fixed s e V, p( , s) vanishes except on a "r ing" contained
in J — V, and the matrix function p(t, s) is continuous on / x V. Con-
sider v(t) = ( P*(s, t)S(s)Rλf(s)ds. If g e Cl(V), then

(22) \g*(t)v(t)dt = 5/*^Q/*( s ' t)S(s)Rλf(s)dsdt

(t)p*(8, t)d

However, if u(s, g) = I k(s, t, X)g(t)dt, then
Jj

( P(s, ί)ff(ί)dί = ( (Γβ - λ)fc(s, t, \)g(t)dt

- [ (Ts - λ)fe(s, ί, X)θv(s)g(t)dt

- ff(8) - (Γ, - X)θv(s)u(s, g) ,

using the properties of k and (21). Substituting in (22),

\y9*(t)v(t)dt - \g*(8)S(8)Rλf(8)d8 - j[(Γβ - λ)^F(s)^(s, gψS(s)Rλf(s)ds

8, g)S(s)f(s)ds

;*(8 > t ,

using (20) and the definition of u(s, g). Since this holds for all g e C\(V)t

we obtain S{t)RJ{t) = ι (ί) + ί θv(s)k*(s, t, X)S(s)f(s)ds for almost all

teV. If ^(s, t, λ) = Λ?p(8, ί), then

= [/, U , ί, λ)] = j^fίβ, ί,

using the definition of the adjoint operator i2*. It is clear that kλ{s, t, X)
is continuous on V x / for fixed λ, /mλ Φ 0, since i2* is the inverse of
a differential operator. Now

S(t)Rλf(t) = ^[fc*(8, t, λ) + ^F(s)fc*(s, t, λ)]S(8)/(s)d8 .

and the definition

(23) G(ί, β, λ) = fc*(β, ί, λ) + 6>F(s)/b*(s, t, λ)
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yields (19). As this can be done for any s0 e J, (19) holds for all t, seJ.
The analogue of this result in [3] is proved incorrectly, as has been
pointed out to the author by Professor M. H. Stone. A correct proof
can be given essentially following the argument used here. The matrix
G depends on the interval J, but is uniquely determined by / . If Jf is
another compact subinterval of J which contains /, and G' is the cor-
responding matrix, it is easy to see that G(t, s, X) = G'{t, s, X) for t,
s e J, ImX Φ 0. Thus, by taking a sequence of compact subintervals J
tending to I, we can extend G uniquely to a matrix function defined
for t, s e I.

The remainder of the proof consists of the verification of the proper-
ties of the Green's matrix. The property (vi) follows immediately from
the definition of the resolvent and (19). Since ϋ?* = i?χ, [Rλf, g] =
[/, Rxg] for any f,ge C\(I). Then

\f{t)S{t)Rλf{t)dt ^

and, using (19), this yields

ί f flr*(ί)[G(ί, β, X)S(s) - S(t)G*(8, t,X)]f(s)dsdt - 0 .

Since this holds for all f,ge CJ(I), we obtain

(24) G(ί, 8, λ)S(s) = S(t)G*(s, t, λ) ,

which is property (iii), for almost all s,t e I. As /cx(s, ί, λ) is continuous,
(23) shows that G(t, s, λ) has the same analytic behaviour as k*(s, t, λ),
in particular the same discontinuity at s = t, and the properties (i) and
(ii) follow from Lemma 2 of §1. In view of the continuity of the
matrices involved, (24) must actually be true for all s,t e I. To prove
(iv), we begin with (vi), written as

S(t)f(t) = ^G(t, 8, λ)C*(s)[Λ(s)-|~ + A(s) -

Cr*(£, 8, λ)l* A>(s) + ^L(S) ~

L e£s

using the definition S = C*5. Application of (5) yields

(25) S(t)f(t) - - J ^ ( A O ( S ) A + A(8)

x G*(ί, s, -

Since (25) is true for all / e CJ(/), the columns of G*(ί, s, λ), considered as
functions of s, satisfy (1) for tΦs. This, together with (24), proves (iv).
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If there were two Green's matrices for ImX Φ 0, their difference would
be continuous everywhere and would be an eigenf unction of the operator
T. As the spectrum of the self-adjoint operator T is real, this is im-
possible, and the Green's matrix is therefore unique. This completes
the proof of Theorem 2.

Now we express the Green's matrix in terms of the fundamental
matrix solution Φ(t,X) of (1) introduced at the end of §1. From the
properties of the Green's matrix, it is easy to deduce that G may be
written

(26) G(t, β, λ) = S(t)Φ(t, λ)P+(λ)0*(s, λ) (s ^ ί)

G(ί, 8, λ) = S(t)Φ(t, \)P-(X)Φ*(8, X) (s ^ t) .

The matrices P + and P~ are analytic in X except possibly on the real
axis, and P~* = P + . We define the matrix P = | ( P + + P"), and then
P is analytic for ImX Φ 0 and Hermitian.

THEOREM 3 (Titchmarsh-Kodaira formula). The Green's matrix G of
T is related to the spectral matrix p associated with the fundamental
matrix solution Φ of (1) by the formula

(27) P(μ) = jJ^(λ)/(λ - μ) ,

where P is as defined above, and (27) is to be taken in the sense that

Pit*) ~ \ dp(X)l(X — μ) is analytic across the real axis on the interval
i-N

(- N, N).

Proof. Let / e Dτ, F = Vf. Then, by (18),

f(t) - ( Φ(t, X)dp(X)F(X) .

Let

u(t) = [ Φ(t, X)dρ(X)F(X)l(X - μ) .

Then

Aou' + Au - μBu = 1 XB(t)Φ(tf X)dρ(X)F(X)l(X - μ)

- \ μB(t)Φ(t, X)dp(X)F(X)l(X - μ) = B(t)f(t) ,
JR

or u = Rμf. Thus

μ(Vu)(X) = μ[φ*(t, X)S(t)u(t)dt = f Φ*(ί, X)C*(t)μB(t)u(t)dt
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= [ Φ*(t, X)C*{t)[AQ{t)u'{t) + A(t)u(t) - μB(t)f(t)]dt

*(ί, λ)C*(ί)[Λ(ίM«) + A(t)u(t)]dt -

- V(Tu)(X)

using (16), u == J?μ/, and the fact that F diagonalizes Γ. Thus
(λ — μ)(Vu)(X) = (F/*)(λ). Applying the Parseval equality to u and /,

fa, /] = ( (F/)*(λ)d/>(λ)(F^)(λ) - ( F*(X)dp(X)F(X)l(X - μ), which is
JR JR

F*(μ)\ I dp(X)l(X — μ) \F(μ) plus a matrix which is analytic unless μ

is real and \μ\ ^ N. On the other hand, S(t)u(t) = ί G(ί, s, μ)S(s)f(s)ds,

and [w,/] = ί f f*(t)G(t, s, μ)S(s)f(s)dsdt, which, using (26), is equal to
F*(μ)P(μ)F(μ) plus an analytic function. Letting / run through a dense
subset of H, which means, that F runs through a dense subset of ZP,

dρ(X)l(X — μ) is analytic unless μ is real
-N

and I μ | ^ JV.
Another form of the Titchmarsh-Kodaira formula is

p(X) = lim lim -i-^l [P(μ + is) — P(μ — iε)]dμ ,
δ-*o+ ε->o+ 2TCI J δ

with /> normalized to be continuous from the right and ρ(0) = 0, and
with the formula interpreted in the same way as (27). The proof is
exactly the same as the corresponding proof in [3], a straightforward
inversion.

3. Boundary conditions. Let DQ be the set of functions f in H
such that Aof

f + Af exists almost everywhere on / and such that (7)
is satisfied for some p in H. Let TQ be the operator in H with domain
Do defined by Tof = p for f e Do, p as in (7). We assume that To has
at least one self-adjoint restriction. Let Rk be the resolvent of some
self-ad joint restriction of To, so that

S(t)RJ(t) = f G(ί, β, X)S(s)f(s)ds ,

for f e H, ImX Φ 0. Then Rκ is a bounded operator for ImX Φ 0, mapp-
ing H into Do, whose adjoint is i?χ. Let ε(λ) be the eigenspace of To

corresponding to the value λ, the set of all solutions in Do of the dif-
ferential system (1).

LEMMA 3. To is a closed operator whose domain consists of all
f e H of the form f = Rλh + w, where h e H,w e ε(λ), for any X with
ImX Φ 0.
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Proof. Since Rλ maps H into A and ε(λ) is containined in Do, it
is clear that every / of this form belongs to A Conversely, suppose
/ e A is given. Let h = Tof - Xf, w = f - Rkh. Then

Tow = TJ - T0Rλh = TJ - XRλh - h = TJ - h - X(h - w) = λw ,

and thus w e ε(λ), while / = Rλh + w. If / is written in this way,
TJ — Xf = Λ. If /fc is a sequence in A such that / = lim/fc and / * =
lim TJh exist, we can write fk = Rλ(TQfk — Xfk) + wk9 and deduce that
w = lim wk exists and belongs to ε(λ). Letting k—> oo, we obtain / =
^λ(/* ~ λ/) + w, which implies / € A and TJ = / * . This proves that
Γo is closed.

Since To is closed and its domain Do is dense in H, TQ has a closed
adjoint Tf whose domain Dt is dense in iϊ . Also, To = Γo** = (Γo*)*.
For any subspace M of H, we let H — M denote the orthogonal com-
plement of M in H.

LEMMA 4. D* consists of all g e Do of the form g = Rλz, where
z e H — ε(λ). T%β operator Γo* is α restriction of To and is closed and
symmetric.

Proof, g* = Γ*gr means

(28) [Γo/, flf] = [/, flr*]

for every / e A By Lemma 3, any f e Do may be written / = Rφ + w,

with h e H,w e ε(λ), and then TJ = Xf + h. Substitution in (28) gives

[Rφ + w, g*] = [Xf + h,g] = [XRφ + Xw + h, g] ,

or

[h, xR*λg + g - #*</*] + [w, λg - g*] = 0

for all h e H,w e ε(λ). Then gf* — λ# = « is orthogonal to ε(λ), or
z e H ~ ε(λ), and βr = i?^(g* — Xg) = i2λa;. Since i?λ maps J ϊ into A, Q
belongs to Do. Thus Df ξΞ= Do. As it is assumed that there exists a
self-ad joint restriction T of To with domain DTf Do^ DT^ Df, and since
T is symmetric, its restriction Tf is also symmetric.

As we have seen in Lemma 1,

of, 9] ~ [/, Tog] = flf*(α)Λ*(α)C(α)/(α) - g*Φ)AΪ(b)C(b)f(b)

for /, fir e A- Here, g*{t)A*{t)C{t)f(t) is a bilinear form in /, g which
is non-degenerate for all t e I and skew-Hermitian. We define

<fg> - g*(a)A*(a)C(a)f(a) - g*{b)A*{b)C{b)f{b) .
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A homogeneous boundary condition is a condition on / e Do of the form
</α> = 0, where a is a fixed function in Do The conditions

(29) </«,> = 0, (i = l, . . . f p )

are said to be linearly independent if the only set of complex numbers
7j, , 7P for which Σ?-i7X/^> == 0 identically in / e A is γx =
- 7 , - 0 . Since [To/, fir] - [/, T*g] - </#> for f e Do, g e Z>0*, it is
easily seen that these boundary conditions are linearly independent if
and only if the functions a19 •• 9a9 are linearly independent (mod D<f).
A set of p linearly independent boundary conditions (29) is said to be
self-ad joint if ζasa^ = 0 for j , k = 1, , p. Two sets of boundary
conditions are said to be equivalent if the sets of functions satisfying
the two sets of conditions are identical.

The assumption that Γo* has a self-adjoint extension is equivalent
to the assumption that the linear spaces ε(i) and ε(— ί) have the same
dimension τ, the defect index of Tf. By exactly the same proof as
that used in [3], originally used in [4], we can obtain the following re-
lation between self-adjoint extensions of T* and boundary conditions.

THEOREM 4. If T is a self-adjoint extension of Tf (or, equival-
ently, restriction of TQ) with domain Dτ, then there exists a self-adjoint
set of T linearly independent boundary conditions such that Dτ is the
set of all f e Do satisfying these conditions. Conversely, corresponding
to a self-ad joint set of τ linearly independent boundary conditions,
there exists a self-adjoint extension T of ϊ7* whose domain Dτ is the
set of all f e Do satisfying these boundary conditions.

4. Examples* The results of this paper include as a special case
the corresponding results for a single differential equation of arbitrary
order as obtained in [3], For simplicity, we consider only equations of
even order with real coefficients. Let L and M be formally self-ad joint
linear differential operators of orders 2r and 2s respectively (r > s).
Then L and M can be written

where pr-i,qs~i are real functions having continuous derivatives up to
order i on J. We assume p0 Φ 0 on /. It is not difficult to verify, as
suggested in ([5], p. 206, problem 19), that the differential equation Lu =
XMu is equivalent to a system (1). If we let x be the vector with
components (x19 , x2r), with
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understanding zero for any expression q-k, k > 0, we obtain the system

— x'r+s — ( — vu- i = ( — l)sXqoxs

(30)

χ[ — χ2 — 0

^ 2 — ^ 3 = 0

,_x = o

Xγ-l Xγ U

*; - i-iyxjPo = o ,

which is of the form (1), where

T>

- Pr-i

R =

/0 0

\0

D

Q\

" = & >

,Q =

J

Ό -
1

0

.. 0 s

• 0

• 10

• i,

0,

Er denoting the r-dimensional unit matrix, 0r the r-dimensional zero
matrix, and all elements not shown being zero. It is an immediate
consequence of (31) that the system (30) is its own adjoint. The set of
functions D may be regarded as the set of scalar functions with 2r
continuous derivatives on / which vanish identically outside some com-
pact subinterval of J, the condition (7) being no restriction. The norm
is given by
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and to make the problem definite in the sense of §1, we must assume
(—l)*?«-i(ί) S 0(i = 0,1, •••, s). With this restriction, we obtain the
eigenfunction expansion theorem, the existence of the Green's function,
the Titchmarsh-Kodaira formula, and the nature of the boundary con-
ditions as in [3] from the results of this paper.

A problem which has arisen in relativistic quantum mechanics (cf.
[6]) involves the pair of differential equations

(32) x[ = qx{t)x2 + λa?a, x[ = — q%(t)x1 — \x± ,

where qx and q2 are real and continuous o n O ^ K ^ . This is of the

form (1) with Λ - (J J), A - (^ ~q^, B = (_J J). The adjoint sys-

tem is

(33) y[ = q2(t)y2 + Xy2f y[ =

and (32) may be transformed into (33) by y

so that S = (J J). Then | |/ | | a = j^lΛI1 + I

It can be determined that p(X) — ( Q A)

tion of (32), the expansion formulae are

x with C =

, where / = (Λ,/2)

> λ)> ι;(a?, λ)) is a solu

with JP2 not appearing because jO has rank 1. Possibly this approach
can be used to prove the existence of eigenfunction expansions in more
general applications, but its usefulness will be limited by the difficulty
in computing the spectral matrix.

REFERENCES

1. G. A. Bliss, A bou7idary value problem for a system of ordinary differential equa-
tions of the first order, Trans. Amer. Math. Soc. 28 (1926), 561-584.
2. , Definitely self-adjoint boundary value problems, Trans. Amer. Math. Soc.
4 4 (1938), 413-428.
3. F. Brauer, Spectral theory for the differential equation Lu = λMu, Can. J. Math. 1O
(1958), 431-446.
4. E. A. Coddington, The spectral representation of ordinary differential operators,
Ann. of Math. 60 (1954), 192-211.
5. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, (New



34 FRED BRAUER

York, 1955),
6. S. D. Conte and W. C. Sangren, An expansion theorem for a pair of singular first
order equations, Can. J. Math. 6 (1954), 554-560.
7. L. Garding, Applications of the theory of direct integrals of Hilbert spaces to some
integral and differential operators, Institute for Fluid Dynamics and Applied Mathematics,
University of Maryland, 1954.
8. W. T. Reid, A class of two-point boundary problems, 111. J. Math. 2 . (1958), 434-453.
9. F. Riesz and B. Sz. Nagy, Functional analysis, (New York, 1955).

UNIVERSITY OF BRITISH COLUMBIA



AREA AND NORMALITY

H . BUSEMANN AND E . G. STRAUS

l Introduction* The simplest non-Riemannian α-dimensional area
(concisely: α-area) is a translation invariant positive continuous measure
(or area) defined on the α-dimensional linear subspaces, called α-flats,
of an ^-dimensional affine space An (1 < a < ri). Such areas have been
studied by Wagner [15] and they are the subject of the present investi-
gation which is in part related to Wagner's, but has no connection
with the differential geometry of general area metrics persued principally
in Japan by Kawaguchi, Iwamoto and others.

The simplest case, a — 1, is well known. In that case a segment
with endpoints x, y has a translation invariant length d(x, y). If the
sphere d(z, x) = 1 (z fixed) has at xQ a supporting (n — l)-flat (hyper-
plane) Ho then HQ is transversal to the 1-flat (line) Lo through z and
xOf and Lo is normal to HQ.

Therefore the existence of an (n — l)-flat transversal to a given
line is equivalent to the convexity of the sphere d(z, x) = 1; which, in
turn, is equivalent to the triangle inequality for d(a, b), in other words,
to the space being Minkowskian (normed linear).

If Lo is normal to HQ at x0 then it is normal to every line L through
x0 in Ho in the two-flat spanned by Lo and L. A well-known theorem
of Blaschke [2] states that for n > 3 normality between lines is symme-
tric only in euclidean space. However, as shown by Radon [13], this
is not the case for n = 2.

Here we treat the analogous problems for arbitrary a, and then
study the special case of Minkowski area.

We cannot give more than this vague hint without some definitions.
Let (x\ ---,xn) be affine coordinates of a point x in An with origin z =
(0, "',0). The a-box [xo,xlf •••,#«] consists of all points of the form
(1 — θt)x0 + Σf.ifiA where 0 < θt, < 1; and hence is a (possibly degene-
rate) parallelepiped.

An a-area assigns to every Borel1 set M in an α-flat a measure
a(M) which is invariant under the translations of An, and continuous;
that is, a([x0, , xa]) depends continuously on xOf , xa. The invariance
under translation applied to sets in the same α-flat A yields at once that
the measure in A is determined up to a factor depending on A. If we
introduce an auxiliary euclidean metric

Received, June 19, 1958. The first named author was supported by a grant from the
National Science Foundation.

XA11 sets considered will be Borel sets.
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e(χ, v) = Γ Σ gΦ* - yι)(χ* - v*)!
L«,fc=i J

"

where the form Σ ^ i » ^ * * s positive definite, then the α-dimensional
Lebesgue measure, \M\e

a, in A which results from this euclidean metric
is invariant under translations so that

(1) a{M) = f{A)\M\l , /(A)>0.»

Translation invariance implies that f(A) = f(A') if A and A! are
parallel α-flats, and the continuity of a implies continuity of f(A). Be-
cause of the invariance under translation we may also write.

a([xQ, , xaj) = F { x λ - x 0 , , x a - x0)

where the function F{x19 ,xa) satisfies some simple conditions F19 * FA

listed at the end of § 2.
We call the area a convex if

(2) F(xJ + xx", &„••-, xa) < F(xλ', x2J , xa) + Ffa", x2, , xa)

and strictly convex if the strict inequality holds for independent xλ

r

9

X " X X

If an α-flat A and a δ-flat B intersect in a d-flat Ό, where
0 < d < min (α, 6), then they span a g-flat Q with g = α + b — d. We
call B totally transversal to A, or A totally normal to B (at D in
Q, where ambiguities are possible) if a(M) < a(M') for a projection3 Λf
parallel to β on 4 of any set Mr which lies in an α-flat A' through D in Q.
For d = 0, b = w — α this is Caratheodory's concept of trans versality4.
If A is totally normal to ΰ at ΰ , d > b + 1, then A is totally normal
to every δ'-flat, d < δ' < δ through Z) in B. We call A normal to
B at D and B transversal to A, if A is totally normal to every (d + 1) -
flat in JB through D. For d = 0, b = n — a this is Wagner's concept
of trans versality. Only for d = min (α, 6) — 1 does normality of A to
B at D imply total normality. This is the only case with d > 0 which
was studied previously in the literature, namely in [7] for Minkowski
area.

We call a totally convex if an (n — α)-flat totally transversal to a
given α-flat at a point exists. For totally convex a the α-flats minimize
area in the sense that the α-area of the union of all but one face of
a closed α-dimensional polyhedron is not less than the area of that face.

2 Therefore the case a = n is uninteresting as long as only areas for one definite An

are considered. Hence we assume 1 < a < n — 1 except in the last three sections.
3 This concept needs clarification when d >0. The precise form is found in §2.
4 Caratheodory treats more general α-dimensional variational problems. His ideas on

transversality are easiest understood by consulting volume 1 of his Gesammelte
Mathematische Schriften, Mϋnchen 1954; see in particular p. 364 and paper XX pp. 404-426.
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However, the α-flats may minimize α-area for a which are not
totally covex. On the other hand for 1 < a < n — 1 the α-flats need
not minimize area when a is merely convex. They will minimize
α-area if a is extendably convex which means the following; a assigns an
area φ(a) to every simple α-vector, α, in the space Va

n of all α-vectors,
if φ(α) can be extended to a convex function in all of Va

n then a is
extendably convex. The difference between extendable and total con-
vexity has a very palpable interpretation in Va

n.
If F2(x19 , xa) is a quadratic form in each set of variables

a?*, , xf ί = 1, , a then we call a(M) quadratic. If a(M) is eucli-
dean, that is if a(M) == \M\% for a suitable choice of e(x,y), then it is
quadratic, but a quadratic area is not necessarily euclidean when
1 < α < n — 1. The quadratic areas enter naturally as follows.

Let 0 < d < α <b < n and let a convex α-area a and a convex
δ-area β be defined in A". If normality (with respect to a) of an α-flat
A to a 6-flat B at a d-flat D is equivalent to normality (with respect
to β) of B to A at D then both areas are quadratic unless α + b —
n, d = 0. Whether the latter cases are really exceptional is not known
except for a — l,b — n ~ 1 (see below). If, in particular, a ~b and
a ΞΞ β, then equivalence of normality means that normality of two
α-flats at a d-flat is a symmetric relation. Hence symmetry of normality
implies—except for α = w/2, d = 0—that the area is quadratic. It will
be euclidean only in special cases, for instance when α < n/2 and d = 0
or α > n/2 and (2 = 2α — w. For α = δ = l, w>2 this becomes the above
mentioned result of Blaschke [2].

All the results on symmetry and equivalence of normality also hold
for total normality.

The α-dimensional Minkowski area (or measure), 2 < a < n, in an
^-dimensional Minkowski space with distance F(x — y) is the area of the
above type for which an α-dimensional unit ball in any α-flat A, that is the
set {x\F(x — x0) < 1 x, xQ e A], has the euclidean volume πα/2/Γ(α/2 + 1).
It is shown in [7] that these areas are convex and are strictly convex
or differentiable if F(x) = 1 is strictly convex or differentiate.

We do not know whether Minkowski area is totally or extendably
convex for 1 < a < n — 1.

If the α-dimensional area 1 < α < n — 1 of a Minkowski space is
quadratic then the space is euclidean. Hence if normality of an α-flat
A to a 6-flat B at a d-flat D with respect to the α-area of one Minkowski
space is equivalent to normality of B to A at D with respect to the
6-area of another, then both Minkowski spaces are euclidean, unless
a + b = n, d — 0. However only the case α = 1, 6 = w — 1, d ~0 is
really known to be exceptional when the two spaces are different. When
they are identical then already this case leads for n > 2 to an unsolved
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problem on convex bodies [10, Problem 5].
There are many interesting and difficult problems involving two

areas in a Minkowski space of which we settle only a few. In the last
section we obtain from the method and result of [8] a result of a dif-
ferent nature. If b > a and fb(B), fa{A) are the functions of (1) for
α-and δ-dimensional area of the same Minkowski space, we give an
estimate from above for fh{B) in terms of fa(A) with A c B.

2. Normality, Our first objects are the relations between the various
concepts of normality arising from different choices of d and b. In all
that follows let 0 < d < min (a, b); q = a + b — d < n. Moreover, A,
B, D, Q with or without subscripts denote α-, &-, d-, g-flats respectively
with ΰ c B c Q , A c Q , A n δ = ΰ .

Choose in B a c-flat C,c — b — d, which intersects D in exactly one
point and hence intersects A in this point only. The association of the
points of A and AQ which lie in the same c-flat parallel to C is a pro-
jection of Ao on A, which depends on the choice of C. The restriction
of this mapping to a subset Mo of Ao gives the projection of Mo on a
set M in A.

If C is a second c-flat in B which intersects D in a point, and I?*
is any δ-flat in Q parallel to B, then the projection of JS* Π Ao on A
with the use of C is the product of the projection of B* Π Ao on A
with the use of C and of a translation parallel to D (which depends
continuously on B*).

This and (1) imply.

(2.1) LEMMA. // Mo is a set in Ao and M, Mf are its projections
on A with the use of C and C respectively, then a(M) — a(Mr).

Thus the arbitrariness of C does not influence the measures of the
projections. Moreover, if 0 < a(M0) < oo, then a(M)la(M0) is according
to (1) independent of the choice of Mo in AQ.

We now define: A is totally normal to B at D in Q, or B totally
transversal to A at D in Q, if for a fixed Mo c Ao with 0 < a(M0) < oo
and a fixed C the area a(M) of the projection of Mo on A is minimal.

The preceding discussion shows that this definition is independent
of the choice of AQ, Mo and C; and hence depends only on D, B and Q.

The existence of an A normal to B at D in Q follows from two
observations.

(i) The function f(A) is continuous and has the same value for
parallel A. Hence f(A) attains its positive minimum fx and its finite
maximum f% on the compact set of α-flats through z, so that
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fΛM\l<a{M)<f2\MVa.

(ii) \M\e

a-+ oo and hence a(M) -> oo when A approaches a position
for which A Π B is greater than D.

As previously observed, a U totally transversal to a given A at D in
Q will in general fail to exist.

We now consider some properties of normality. In many of the
following statements ' 'totally'' appears in parentheses, because they
remain valid for the weaker concept of normality defined in the
Introduction.

(2.2) If A is (totally) normal toB at D in Q and the b'-flat Br lies in
Q and contains B but does not contain A, then A is (totally) normal to B'
at Df = B' Π A in Q.

This is nearly obvious. A (6 — d)-flat C in B which intersects D in
exactly one point also intersects A and hence D' in this point only.
Therefore the same C can be used for projection in both cases of
normality.

(2.3) If A is (totally) normal to B at D,d<b' < 6, then A is (totally)
normal to any bf-flat Br through D in B.

Take a (ί>' — d)-flat O in Br that intersects D in a point and choose
a (b — d)-flat C in B which contains O and intersects D in this point
only. For any A! through D in the space spanned by A and Bf the
projection of A* on A parallel to B and Br respectively coincide if we
use C and C\

Proposition (2.3) implies in particular that A is totally normal to
every (d + l)-flat through D in B. We shall see in § 5 that the con-
verse is in general not true. It does hold in an important special case.

(2.4) THEOREM. If Af)B~D, a~d + l, b — d>2 and A is
normal to every (d + l)-flat in B through D, then A is totally normal
to B at D.

For an indirect proof, assume that A is not totally normal to B

and let Z Φ A be totally normal to B at D in the space Q spanned by A

and B. A suitable δ-flat J3' in Q parallel to B intersects A and A in two

distinct cί-flats Dr and Df parallel to D. These lie therefore in a

(cί+l)-flat D+aB'. In D+ take a line L which intersects Df in a point.

Consider a set M in A with 0 < a(M) < oo. Since A is normal to

D+, the projection M of M on A parallel to L satisfies a(M) > a(M).



40 H. BUSEMANN AND E. G. STRAUS

On the other hand, let C be a (b — d)-flat in Bf which contains L and

intersects D' in L Π D' only. Projection of M on A parallel to B with

the use of C again yields the set M. Since A is totally normal to B

and A is not, we would have a(M) > a(M), a contradiction.

Defining normality of A to B at D as in the Introduction we
conclude from (2.4) that normality and total normality coincide for
d = min (α, b) — 1. Obviously (2.3) remains valid for normalily instead
of total normality. To prove (2.2) in this case we observe that a
(df + l)-flat E through Π in Br intersects B in a (d + l)-flat F D D .
For b' - b = d' - d and £7 U B spans J3' so that

dim E Γ\ B + b' = dim S + dim jB = d' + l + & = δ' + d + l .

By hypothesis A is totally normal to F at D, by (2.2) it is also totally
normal to E at Dr and hence normal to B\

Moreover (2.2) and (2.3) also show that the case b — n — α, q — n
is decisive in the following sense.

(2.5) If an (n —a)-flat (totally) transversal to A exists, then for
given DaAciQ,q = a + b — d, a b-flat (totally) transversal to A at D
in Q exists.

By hypothesis there is an (n — α)-flat N transversal to A through
a point p e D. By (2.2) A is normal to the (n — a + d)-flat B' spanned
by D and N. This settles the case q = n. If q < n then according to
(2.3) A is normal to the 6-flat B = Q n B'.

For later purposes we note the following consequence of (2.4) and
(2.5).

(2.6) LEMMA. A b-flat B transversal to A at D in Q for any given
D c A c Q will exist if and only if

(i) For p e A, every (a + l)-flat through A contains a line trans-
versal to A at p.

(ii) The set formed by the totality of all transversals to A at p in
the different (a + 1)-flats though A contains an (n — a)-flat N.

The flat N is then transversal to A.

Also for later application we notice as a consequence of the con-
tinuity of f(A) the following.

(2.7) LEMMA. If Av -> A,DV->D, Bv-+ B and Av is (totally) normal
to Bv at Dv then A is (totally) normal to B at D.

We follow these considerations up analytically using Barthel [1].
The invariance of a(M) under translation implies that the area of the
box [x0, xu , Xa\ has the form F(xx — xQ, , xa — x0) and
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( 2 . 8 ) F ( x l n . . . , α ? β ) = ί τ ( a ? ί , . . - , » ? , « , ^ , • • • , < )

= f(Ax)\[z, x19 , a?α]IS ,

where A^ is the fiat spanned by xlf , #α, if α?x, , xa are linearly
independent and F(x19 , xa) = 0 otherwise. Thus jFfo, , a?α) has the
following properties.

FΎ\ F(x19 * ,xa) is continuous in the a*n variables and symmetric

in x19 •••, xa.

F2: F{xιy . , xa) > 0 if xx A Λ xa φ 0.

F 3 : F(Xx19x29 ---9xa) = |λl FCa?!, •••,<).
F 4 : F ( ^ + λa?j, a?2, , a?α) = F f o , , xa) for j > 1.

Conversely, if a function F(x19 , xa) has the properties F19 , F4

then a well known argument (see e.g. [14, pp. 118, 124]) shows that
F(x19 , xa) has the form (2.8) with continuous f(Ax) and vanishes for
Xι A Λ xa — 0. Hence it defines an area function.

We now take definite independent vectors u19 , ua and assume
that F(xl9 — ,xd) possesses a differential as function of x\, , xΐ at
x. = ^ . Then JP3 and F 4 yield for small λ > 0 and j — 1, , a

(2.9) 8)XF(ulf , O = F ( ^ + λw.,, u2, , wβ) - F(u19 --sttα)

For λ -> 0, using the symmetry of F(x19 , a?o) we obtain the following.

(2.10) 1/ jP(a?lf •• , xa) possesses a differential as function of
xi9 , xΐ at ulf - - , ua uλ A Λ ua Φ 0, t/^en

^ — °όr \uι> > ua)
i OXk

Let A be normal to β at ΰ in Q ^ e D. Choose a non-degenerate
g-box [>, y^ , y6, wd+1, , %α] such that y19 9ya lie in D
in J5 and wd+1, , wβ i n Ά F o r a n y χd+i, , λ6 the box

£̂ι+i> •••, wj originates from the box

ί«-d+i J

by projection parallel to B. If F possesses a differential at y19 , yd,
wd+1, « ,Wα as function of α?d+1, •• , ^ + i , then normality of A to B im-
plies that F(yly —*,yd}ud+1 + Σ^iVuUa+2, — >ua) has a minimum for
λt = 0. Hence
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V d F ( y u - - . , y a , u a + 1 , * - , U a ) y i = 0 j = d + lf . . . f b .
dxd+1

Thus we have found the following.

(2.12) If the a-flat through z spanned by y19 , ydf ud+1, * ,ua is

normal to the b-flat B through z spanned by ylf •••, yb and F is dif-

ferentiable at y19 , ya, ua+lf "*,ua as function of x\, , x% for k =

d + 1, •• , a then

(2i3) v ; 8F(y19 -- ,yd, ud+1, - - - , u a ) y t Q ^ k = d +1, , a
9 a ? ί j ' i = <z + i , . . &.

We conclude from (2.11) that the matrix dF{y, u)jdx\ has rank
a — d. Therefore, if D, A, Q are given there can be at most one 6-flat
transversal to A at D in Q. For brevity we say that F(x19 •••,#«) is
individually differentiate at ^ , , ̂ α if it possesses a differential at
î> •• 9ua with respect to each of the sets of variables #&,•••,#";& =

l, , α .
With property (ii) of (2.6) in mind we state explicitly the following

consequence of our discussion.

(2.14) LEMMA. If F(xlf •••, xa) is individually differentiable at
u19 '"fua with ux A Λ ua Φ 0, and if in each (a + l)-flat containing
the a-flat Au spanned by u19 •••, ua there exists a transversal to Au;
then this transversal is unique and the y corresponding to the different
(a + 1)-flats through Au form the (n — a)-flat

ί dx{

3, Convexity, Convexity, strict convexity and differentiability for
the area a were determined in terms of the function F(x19x2, •••,#«)
in the introduction as follows.

(3.1) DEFINITION. Writing F(y9 x) = F(y9 x2, , xa) we say that a
is convex, strictly convex, or differentiable according as the curve
F{\yx + λ2ί/2, x) — 1 has those properties in the plane spanned by y19 y2

for any linearly independent y19 y2, x2t , xa.
Thus for convex a we have

F{yλ + y29 x) < F(y19 x) + F(y2, x) for yx A y2 A Λ xa Φ 0

with strict inequality for strict convexity. If we do not exclude linear
dependence of y19 y2, then setting yx = μy2 we have
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= F(yu x) + F(y2, x) if μ > 0
y19 x) = |1 + μ\F(y19 x)t

1 < F ( ^ , a?) + F(2/2, a?) if μ < 0 .

Thus we find the following.

(3.2) LEMMA. The area function a is convex if and only if

F{Vi + V2, x* , xa) < F(yl9 x2, , aα) + ί 7 ^, x2, , a?α)

/or y tΛ x2 Λ Λ #α =£ 0; and is strictly convex if and only if equali-
ty implies y1 = μya, μ> 0.

Let α be convex and % Λ Λ ua Φ 0. The function F has a dif-
ferential with respect to x[9 •••,#? at %lf , ua if and only if the curve

F(Xut + μv, u29 , ua) = 1

is differentiable at λ = 1, μ = 0 for all v with t ;Λ%iΛ Λ ua φ 0.
We have thus proved the following.

(3.3) A convex area function a is differentiable if and only if the
corresponding function F(x19 •••,#«) is individually differentiable for

»iΛ Λ xa Φ 0.

The differentiability properties of convex functions imply that for
every convex a the corresponding F has strong differentiability prop-
erties, of which we need only the following.

(3.4) LEMMA. If a is convex and u19 Λ * Λ ua Φ 0, then there
exist sequences {uίv} such that uiv-+ut (i = 1, * ,α) and such that
F(xlf •• ,#α) is individually differentiable at uiV9

 Φ",uav.

Reformulation of these properties in terms of the function f(A)
will prove useful. Since f(A) is defined relative to a definite euclidean
metric e(x, y) we may use euclidean concepts. In particular we will
speak of " perpendicularity " when we mean normality with respect to
e(x9 y).

Consider a plane P perpendicular at z to the (α — l)-flat La.τ and
choose in La_2 an (α — l)-box [z, x%9 , xa] with euclidean (a — 1)-volume
1. On each ray R in P with origin z choose yR such that F(yR, x2, 9xa) =
1. The euclidean α-volume of this box is e(z, yR). Hence, if AR is the
α-flat containing R and La^ then

F(yBf x2, , xa) = f(AB)e(z9 yR) = 1 .

If the ί-flat L ,2 < t < n — α + 1 is perpendicular to Lα_! at « we
denote by S(Lα_:, LJ the locus in Lt obtained by taking the point yR
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with e(z, yR) = f~\AR) on a variable ray R in Lt with origin z. Then
we can express our result as follows.

(3.5) LEMMA. The area function a is convex, strictly convex, con-
vex and differentiate if for any L2, Lα_x and only if for all Lt, La-19

2 < t < n — a + 1 the surface S(La-lf Lt) is convex, strictly convex,
convex and differentiable.

Following the arguments of [7] we now settle the case d =
min(α, b) — 1. The emphasis is not only on the result, but also on the
method of constructing normal and transversal flats which the proof
provides.

(3.6) THEOREM. Let d = min(α, b) — l,q = a + b—d<n. For given
d-, a-, q-flats D c A c Q, there exists a b-flat B transversal to A at D
in Q if and only if the area function a is convex. B is unique when
a is differ entiable. The normal to B at D in Q is unique for all given
D c B c Q if and only if a is strictly convex.

Proof. There are two cases.

CASE I: a = d + l,b = q — 1. If z e D a Q are given we take
the (q — d)-flat Lq-d perpendicular to D in Q at z and construct the
surface S = S(D, Lq-d) of (3.5). An α-flat A through D in Q intersects
Lq-d in two rays, each containing a point of S. Let yA be one of these
points. We claim that B is transversal to A at D in Q if and only
if it is spanned by D and a (q — d — l)-flat through z parallel to a sup-
porting flat H of S in Lq.d at yA.

The additional remarks on strict convexity and differentiability are
then obvious. For if H Π S contains more points than yA then the normal
A to B at D in Q is not unique, and if S has two different supporting
flats at yA then B is not unique.

To prove our assertion we take A1 perpendicular to B through D in
Q, and in Ax we take a set Mλ with 0 < α(ikfx) < oo. If we use C =
Lq-d Π B to define projection parallel to B, then we have for the pro-
jection M of Mi on any A

(3.7) a(M) = \M\lf(A) = \M1\i\sec(yAzyAl)\ f(A) .

Therefore B is transversal to A if and only if \ cos (yjZy^f-^A) is
maximal; or if and only if S has a supporting plane at yA which is
perpendicular to the ray from z through yAl, in other words is parallel
to B.

The construction is easily freed from the intervening metric e(x, y).
Let l<a = d+l<q<n and let z e D c Q be given. Take a non-
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degenerate d-box [z,x19 •••,#*] in D and a (g — cί)-flat L ^ in Q which
intersects D at z only. In Lα_d construct the locus

Then the α-flat spanned by x, x19 , a?d with x e S is normal to the
δ-flat J? in Q through D if and only if Bf)Lq-d is parallel to a supporting
(q - d - l)-flat of S at α?.

CASE II: b — d + l,a — q — 1. As in Case I take Lα_d perpendi-
cular to D at z in Q. Instead of using S we now take the line per-
pendicular to a variable α-flat A through D in Q. The two points yA

with e(z, yA) = f~\A) generate a locus Γ. When a is convex, strictly
convex, convex and diff erentiable then T has the corresponding property.

This time we claim that B is transversal to A at D in Q if and
only if it is spanned by D and the perpendicular to a supporting
(q — d — l)-flat of Γ in Lg_d at yA. We define Ax and M1 as in Case I
and use the line C perpendicular to Ax at z for projection parallel to B.
Then the projection M of Mλ on any A again satisfies (3.7) and
f~1(A)\cos(yAzyA)\ is maximal if and only if yA lies on a supporting flat
of T which is perpendicular to C. Since C is perpendicular to Aλ it
lies in B. The additioned remarks follow as in Case I.

The definition of T cannot be entirely freed from extraneous con-
cepts, but their role can be reduced.

If T is convex, let T' be the polar reciprocal in Lq-d of T with
respect to the metric e(x, y) (see [5, p. 28]). If T is strictly convex
(diff erentiable) then T" is diff erentiable (strictly convex). In terms of
T' we can interpret the normality relation in a manner similar to that
of Case I; only the roles of normality and transversality are interchanged.

If x e T' then the (d + l)-flat spanned by x and D is transversal
to the a-flat A through D in Q if and only if A is spanned by D and
a (q — d — lyflat parallel to a supporting flat of Tr at x.

In the most interesting case, d = 0, the surface T" has a very in-
teresting meaning. In (Q = Lα_d) take any (q = a + l)-measure invariant
under translation. The only arbitrariness is then the unit of measure.
Then T is a solution of the isoperimetric problem to minimize the
α-area among all closed convex hyper-surfaces in Q which bound a set
of given (a + l)-measure. For details see [6]. Of course T' remains
a solution even if we change the unit of (a + l)-measure.

Assume that a is convex and consider an α-flat Au through z span-
ned by u19 ,ua and such that F is individually differentiate at
u19 * -,ua. Then (3.6) (more particularly Case II) guarantees that in
every (α + l)-flat containing Au there exists a transversal to Au at z.
We conclude from (2.14) that the transversals at z to Au in the different
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(α + l)-flats form an (n — α)-flat NA and from Theorem (2.6) that this
NA is transversal to A.

If F is not individually differentiate at ulf , ua then we can find
sequences {uiv} with uiv -> ut (i = 1, , α) such that F is individually
differentiate at uiV9 *-,uav. Hence if Av contains z,utv, •• ,w«v then
there exists an (n — α)-flat Nv transversal to A, at z. By the continuity
of the area function every limit (n — α)-flat of a subsequence of Nv is
transversal to A. Thus if a is convex there exists an (n — α)-flat
transversal to A. Using (2.14) and (2.5) we have proved

(3.8) THEOREM. If the area function a is convex then, given an α-
flat A, a d-flat D c A and a q-flat Q D A with 0<d<a<q<n;
there exists a b-flat f b = q — a + d, transversal to A at D in Q, which
is unique when a is differentiate. (Wagner [15], for d = 0).

The conditions in (3.8) are also necessary, but we conclude from
(2.5) and (3.6) that we need consider only fixed d and q.

(3.9) THEOREM. With the notation of (3.8); if for fixed d,q and
all A, D, Q a b-flat transversal to A at D in Q exists (and is unique)
then a is convex (and differentiable).

A normal to B at D in Q is in general not unique even for
strictly and extendably convex a (as we shall see in (5.14)) when
d < min (α, b) — 1. For in that case normality is not equivalent to
total normality. However, because total normals exist and are normal
we have

(3.10) If the a-flat A normal to B at D in Q is unique, then A
is totally normal to B.

Even the total normal is not necessarily unique for strictly and
extendably convex a, see (5.14).

4 Area minimizing α*flats Total and extendable convexity* The
area a(Δ) of an α-dimensional polyhedron Δ is defined as the sum of
the α-areas of its α-faces. In the following we reserve Δ for the union
of all α-faces but one, Δo, of an α-dimensional polyhedron in An which
is abstractly a closed orientable α-dimensional manifold but may have
self interersections in An. By AΔ we denote the α-flat containing the
face Δo and hence the boundary of Δ.

We say that the α-flat A (strictly) minimizes α-area in the g-flat
Q D i , q > α, if a(Δ) > a(Δ0) (a(Δ) > a(ΔQ)) for all choices of Δ ψ Δo in
Q for which Aj = A. If this is true for all α-flats A in Q we say that
the α-flats (strictly) minimize area in Q.

The case a = 1 is familiar; with the help of (3.6) we may formulate
these results as follows.
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The line L minimizes α-length in the g-flat Q if and only if a (q — 1)-
flat B transversal to L in Q at a point z exists. The line L strictly
minimizes length in Q if and only if L is the only line normal to B
Sit Z.

The lines (strictly) minimize α-length in An if and only if a is
(strictly) convex.

A few of these facts extend to the general case.

(4.1) The a-flat A minimizes a-area in Q if a {q — a)-flat B
totally transversal to A at a point z exists. Let B exist. Then A strictly
minimizes a-area when A is the only a-flat totally normal to B at z
or when a is strictly convex.

Project Δ on Aj parallel to B. For topological reasons this projection
covers z/0. Let σ be an α-dimensional face of Δ which lies in the α-flat
A and let σ0 be its projection on AΔ. If dim(jB Π A) > 0 then obviously
0 = a(σQ) < a(σ). If dim(ί? Π i ) = 0 then the transversality of B to
AΔ implies a(σ0) < a(σ). This proves a(Δ) > a(Δ0).

If a is strictly convex and Δ Φ Δo then a(Δ) > a(Δ0) is obvious when
dim(.β Π A) > 0 for some A containing an α-face of Δ. Assume there-
fore dim (B nA) = 0 for all such A. There is at least one pair of
α-faces σ1, σ2 of Δ which have a common (α--l)-face and at least one of
which is not parallel to AΔ. If A1 is the α-flat containing σ* then not
both A1, A2 can be normal to B. For, if At is the α-flat parallel to A1

through Aj Π B then dim(Ax Π A2) — a — 1 and hence Aι U A2 spans
an (α + l)-flat Q which intersects B in a line L through AΔ Π B. Since
a is strictly convex at least one of the two α-flats, say Alf is by (2.3)
and (3.6) not normal to B. Hence Ar is not normal to B and a{σ') > a(σQ

r).
Hence a(Δ) > a(Δ0).

If A is the only total normal to B at z then at least one α-face
σ' of Δ is not totally normal to B and again a(σr) > a(σr

0).
The case g = α + l is completely known essentially through Minkowski

(Theorie der konvexen Korper, §27, Ges. Abh. 2, Leipzing 1911, 131-229).
His terminology is so different that we give the argument here.

For each (α + l)-flat Q through z we construct the surface TQ,
analogous to T in the discussion of Case II in the proof of (3.6), as the
locus TQ of the points yA with e(z, yA) = f~\A) on the perpendiculars to
the α-flats A through z in Q.

(4.2) The a-flat A minimizes a-area in the (a+l)-flat Q if and
only if a line transversal to A in Q exists.

A strictly minimizes area in Q if and only if a line transversal
to in Q exists and yA is not an interior point of an a-flat region on TQ.

The sufficiency of the first part of (4.2) follows from (4.1) and the
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fact that a line transversal to A is totally transversal to A. We next
prove the necessity statements in both parts of (4.2).

We choose rectangular coordinates such that Q is the flat xa+2 =
. . . = χn = 0 and define, as usual,

H(0) = 0 for x = 0, H(x) = \x\f(Ax) for x Φ 0 ,

where Ax is the α-flat through z in Q with normal & and \x\ = (Σ^)1 / 2>
so that ΓQ has the equation iϊ(ίc) = 1. The function iϊ(x) is convex
with a.

If no transversal to A exists then, according to Case II in (3.6), TQ

does not possess a supporting α-flat at yA so that yA is an interior
point of the convex closure of TQ. Hence independent points xlf , xa+1

on TQ exist such that

(4.3) H(yA) > Σ \H(Xj), yB = Σ λ,a>4» λ, > 0 .

If ^ is an interior point of an α-flat set on TQ then independent
x19 , xa+1 on TQ exist with

α+l α+i

(4.4) H(yA) = Σ ^iH-(Xi), ^ = Σ ^ Ά > λj > 0 .

Setting I = ^/1 yA |, | 4 = a?4/| ̂ έ | we have - | yA \ξ + Σ \ I &ι I ?i = °

Therefore (see Bonnesen-Fenchel [5, p. 118]),5 an (α + l)-simplex in
Q exists whose faces have exterior normals, — ξ, ξl9 , ξa and area
I x I, λx I xλ I, , λα 1 x I. The total area of the faces with normals ξ19 , ξa

is

and \x\f(Ax) — H(x) is the area of the face with normal — ξ.
The relations (4.3), (4.4) prove the necessity statements in (4.2).
To establish sufficiency in the second part of (4.2) we resume the

notation used in the last part of the proof of (4.1). We assume that Δ
lies in Q and replace B by a line L transversal to A — AΔ.

For a{Δ) = a(Δ0) it is necessary that the mapping of Δ on Δo by
projection parallel to L be one-to-one and that all α-flats carrying
α-faces of Δ be normal to L.

Now there are two supporting flats A', A!f of TQ perpendicular to L.
On the other hand the construction of the transversal in the discussion
of Case II in (3.6) shows that at the points yA which corresponds to an
A normal to L the surface TQ has supporting planes perpendicular to

5 The proof there is involved but becomes very simple in the present case where the
number of faces is α + l.
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L. Therefore A! and A!1 each contain one of the two points yA and one
of the two points yA for each A which carries an α-faee of Δ.

Since projection of Δ on ΔQ is one-to-one and Δ Φ Δo it follows that
among the points yA, yA in A' there are a + 1 which do not lie in an
(a — l)-flat. These points span an α-simplex which lies on TQ.

(4.5) COROLLARY. The a-flats minimize a-area in all (a + l)-flats
if and only if a is convex. They strictly minimize area if and only
if in addition the surface TQ contains no a-flat piece for any (α+1)-
flat Q.

Our results are not as complete for g > α + l , aΦl. Consider the vector
space VI of all contra variant a- vectors 21 in An. A simple α-vector
21 Φ 0 determines an oriented α-flat in An through the origin. For the
α-area determined by 21 we obtain a function 0(21) defined on all simple
Si-vectors whose relation to F is given by

al Φ{xλ A Λ xa) = F(xlf , xa) .

Obviously Φ satisfies t h e condit ions

Φx 0(21) > 0 for 21 Φ 0

Φ2 0(λ2l) = I λ 10(21) for all real λ .

All α-vectors are simple only when a = 1 and a = n — 1. (If we
exclude the trivial cases a = 0, n). We shall prove at the end of this
section that for 1 < a < n — 1 and convex a it is in general impossible
to extend #(21) to a convex function defined for all α-vectors. An
obviously necessary condition for extendability is

(4.6) 0(21) < Σ Φ(&t) for simple 21, 21,, with St = Σ Si* .

Condition (4.6) is also sufficient. The simple α-vectors form a basis
of Vn

a. Hence if 21 is any α-vector then simple α-vectors 21$ exist so
that

(4.7) a = Σ a,,

since any scalar multiple of a simple vector is simple. We can now
extend 0(21) to all of Vn

a by defining

0(21) = inf Σ 0(« )

where the {21*} traverse all sets of simple vectors whose sum is 21.
Because of (4.6) 0(21) is not changed by this definition for simple 2t,
and the extended function obviously is convex and satisfies Φx and 02.
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We call a extendably convex if it satisfies (4.6). As before
consider a polyhedron Δ U Λ Orient it and let %, , 2Ir be the
simple α-vectors corresponding to the α-faces in Δ. Let 2I0 correspond
to Δo. Then

Σ 2ί* = 0 or 21 = - 3Γ0 = Σ 2Ii

so that α(zl) > α(40) is equivalent to condition (4.6). In general the
relation 21 = ΣU2I* for simple 21, 21, does not imply that - S ϊ , ^ , . . . , ^
correspond to the faces of a closed polyhedron. For example, the α-flats
corresponding to 21, 2Γt through the origin z may intersect at z alone.
However it is not unlikely that the validity of (4.6) for 21, % deriving
from polyhedra implies its general validity. We have not been able to
prove this. Thus we can only state:

(4.7) If a is extendably convex then the a-flats minimize area.

We call a totally convex if an (n — α)-flat totally transversal to a
given α-flat at a point exists. If the condition in (4.7) is necessary
then (4.1) shows that total convexity entails extendable convexity. We
shall prove this directly, obtaining at the same time a very interesting
geometric interpretation for the two types of convexity. The arguments
are closely related to those of Wagner [15].

Denote by Wa the affine space associated with the vector space Vn

a,
so that we may speak of hyperplanes etc. which do not pass through
0. The simple vectors in Vn

a form the Grassmann cone and the equation
0(21) = 1 defines on that cone the indicatrix I of the area a.

Extendable convexity of a means that I lies on the boundary of its
convex closure in Wa; that is, that I possesses at every point a
supporting hyperplane in Wa.

In order to interpret total convexity we provide An with the
euclidean metric gik = δi]c. This metric induces a scalar product 2ί 93
for the simple α-vectors in An whose geomentric meaning, apart from
sign, is the product of the (euclidean) area of one vector and the area
of the orthogonal projection of the other on the α-flat of the first.

This scalar product for the vectors on the Grassmann cone can be
extended to an inner product in Vn

a and hence induces a euclidean
metric in Wa. To the projection of an α-flat A1 on an α-flat A parallel
to the (n - α)-flat B perpendicular to the α-flat B* at a point there
corresponds in Vn

a the projection of the line Ax on the line A parallel
to the hyperplane HB perpendicular to the line JS*.

Assume now 21 e I and that I possesses at 2ί a simple supporting
hyperplane HB; that is a hyperplane HB perpendicular to a line
JB* on the Grassmann cone. If 2ίχ is a simple vector lying on H

B
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(that is, interpreted in An, if | SI | = | 2IJ | for the projection SίJ of % on
the α-flat of 2ί parallel to the (n — α)-flat B which is perpendicular to
B*), then 0(2ίx) > 0(2ί) since HB is a supporting plane of I. Therefore B
is totally transversal to A.

Conversely, if B is totally transversal to A at a point, then any
simple 2^ whose projection parallel to HB is 2ϊ satisfies Φ(%) < $(2ί) = 1,
so that HB is a supporting hyperplane of /. This could, of course, be
formulated without the use of an auxiliary metric:

(4.10) The area a is totally convex if and only if the indicatrix
I posseses at every point 21 = (αλ) a simple supporting hyperplane
^ α λ 6 λ = 1, where S3 = (6λ) satisfies the conditions of a simple vector.

If I is differentiate at 21, so that the a(n — α)-flat, T, tangent to
/ at 21 exists, then any supporting hyperplane of I at 21 must pass
through T. Through a given a(n — α)-flat there is exactly one simple
hyperplane (see [15]). Since extendable convexity means only the
existence of some supporting hyperplane of / at a given point we deduce
from (4.10):

(4.11) Total convexity implies extendable convexity but not con-
versely.

That the converse is not valid does not follow from the preceding
arguments, but in (5.13) we give an example of an extendably but not
totally convex area.

We now show that convexity of a does not imply extendable
convexity (Wagner [15] states this fact for min (α, n — α) > 2 but, as
it seems to us, he only proves that a certain definite extension of convex
area is in general not convex). For this purpose we prove a lemma
which seems to be of some independent interest.

(4.12) LEMMA. Let Sa be a simple closed (a — lysurface in an
a-flat A so that at every point of Sa there is both an interior and an
exterior supporting (a — l)-sphere of radius c in A. Let z e A be in
the interior of Sa so that at the line zx from z to any xe Sa makes an
angle no less than a > 0 with the tangent (a — l)-flat of Sa at x.

Then for every ε > 0 there exists a hypersurface S D Sa such that
every L2 through z which contains a line that makes an angle greater
thβn ε with A intersects S in convex curve.

Proof. For sufficiently small 8 > 0 the interior parallel surface S'a,
which is the locus in the interior of Sa of points whose distance from Sa

is δ, obviously satisfies the hypotheses of the lemma provided the
constants c and a are replaced by suitable constants cf and a!. Let T'a
be the α-body bounded by S'a.
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Let S be the locus of points whose distance from T'a is δ. Clearly
Sa c S. Every L2 9 z intersects S in a curve C. Assume that C is not
convex then there is an x e C at which C does not have a line of
support in L2 and therefore S does not have a plane of support at x.
Thus the point x' nearest to x on T'a must lie on Si and the line zx
makes an angle less than tan"1[d(^, x')jd(z, x')] < tan-1(δ/cί) with A,
where d is the distance from z to Sα.

Now let L be the tangent line to C at x. Since L intersects the
interior of C, the cylinder Lδ, which is the locus of points whose
distance from L is δ, must intersect the interior of Tf

a. Since the
quadric Q8 = Lδ Π A is tangent to S« at as' it follows that the minimal
curvature of Qδ at x' is less than 1/c'. Let L' be the tangent line to
Qδ at x' in the direction of minimal curvature then the tangent of the
angle between L and U is less than i/δ/c7.

Thus for sufficiently small 8 the two lines L and zx make arbitrarily
small angles with the lines U and zx' in A. Since the last named lines
make an angle with each other which exceeds a! it follows that every
line in L2 makes an arbitrarily small angle with A.

Now, for example, in the space F2 of 2-vectors in A4 we can find
a three-plane generated by simple vectors which contains no two-plane
of simple vectors. Such a three-plans is L3 generated by ex Λ e29 ez Λ e4

and (e± + e3) A (e2 + e4). The simple vectors which it contains are all
of the form X(ex + μe3) Λ (e3 + μe4). We can now define the area
function F so that the indicatrix I does not lie on the boundary of its
convex hull in L3, for instance by F(e19 e2) = F(e3f β4) = F(e1 + e3, β2 + β4) = 1
and ^(βi + 2β3, e2 + e2 + 2e4) > 6 in violation of (4.6); but so that / Π L3

satisfies all the conditions of Lemma (4.12) where z is the zero element
of V4. By Lemma (4.12) we can now extend I in such a way that its
intersection with every two-plane of simple vectors is convex, in other
words, so that F is convex. However, since I does not lie on the boundary
of its convex hull, the area is not extendably convex.

5* Equivalence of normality. Example. Quadratic area. The nor-
mality relations determine the area up to a constant factor in the following
sense.

(5.1) THEOREM. Let a and a' he two a-dίmensίonal convex area
functions, a + b — d < n and d < min(α, b) — 1. For any d-flat D and
any b-flat B through D let A be normal to B at D with respect to a'
whenever this is the case with respect to a. Then a'(M) and a(M)
differ only by a constant factor.

The same holds for total normality if there exists a b-flat totally
transversal with respect to a for any given a-flat at any given d-flat
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in any given (a + b — d)-flat (in particular, when a is totally convex).

Proof. Let a = d + 1. With the notation of Case I in (3.6) we
construct the surfaces S9 S' belonging to a and a! respectively. The
hypothesis of (5.1) means in terms of S, Sf: If H and Hr are parallel
supporting (q —- d — l)-flats of S and S' then a line through z containing
a point x of S Π H also contains a point of Sf ΓΊ H'. It folllows that S
and S' are homothetic, and this conclusion remains valid when this
condition on the line zx is assumed only for those x e S at which S is
differentiate, that is H is unique.

This weakening of the hypothesis amounts to requiring that A be
normal to B at D with respect to of only when B is the unique transversal
to A at D in 4 φ ΰ with respect to α.

The fact that S and S' are homothetic means that α'(M)/α(Λf) is
constant for all M lying in α-flats through a fixed (α — l)-flat in an
(a + δ ~- d)-flat. This yields the general answer, because two arbitrary
α-flats A', A" can be joined by a finite number of α-flats Ax =
A', A2, , Ar = A" such that dim Ai Π At+1 = α — 1 for i = 1, , r — 1,

Application of the result just obtained to the pencils determined by
Ai and Ai+1 proves the theorem.

The case d < a — 1 is reduced to d = α — 1 as follows. Let j?*,
dim 2?+ = & + α — d — 1 be the unique transversal to A at an (α — l)-flat
Z>+ in A(&B+. In D+ chose a tf-flat £> and an (α - d - l)-flat £7 such
that D*=zD@E. Then D+ = D®E where ί is a δ-flat and
i φ ΰ = 4 φ j S + because E a A.

For normality we know, and for total normality we assume, that a
6-flat B' totally transversal to A at D in A φ 5 + exists. By (2.2)
£ ' © # is transversal to A at D+ in A ® £ + and Bf@E^B+ because
J5* is unique. By hypothesis Bf is transversal to A at Z) with respect
to a!\ and again by (2.2) B+ is transversal to A at Z)+ with respect to
α'.

This means that the hypothesis of the theorem is satisfied for
d = a — 1 and 6 = α + & —d — l, so that the assertion follows from
the first part of the proof.

Let 0 < d < a < n. For a given α-area a we say that normality
at cί-flats is symmetric, if normality of an α-flat A to an α-flat A' at
a cZ-flat D implies that A! is normal to A at D.

lΐθ<d<a<n and an α-area a and a δ-area /8 are given, we say
that α-normality and /S-normality at d-flats are equivalent, if normality
of an α-flat A to a δ-flat B at a d-flat D with respect to a implies that
B is normal to A at D with respect to β and conversely, normality of
B to A at Z) implies that A is normal to B at Z).

This formulation admits the possibility that a = δ. If at the same
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time a — β then equivalence means symmetry. If a = b but a Φ β then
equivalence means that normality in one norm is equivalent to trans-
versality in the other.

Symmetry and equivalence of total normality are defined in the
same way by replacing everywhere normality and transversality by
total normality or transversality.

In the next section we discuss the implications of symmetry or
equivalence of normality. Here we give some examples where these
phenomena occur and the area is not euclidean.

(5.2) For d = 0, a = l,n = 2 symmetry of normality does not imply
that the length, i.e. the corresponding two-dimensional Minkowski
metric, is euclidean. All these metrics have been determined by Radon
[13], (see also [9, p. 104]).

(5.3) For any (n — l)-dimensional convex area function β there is
a convex one-dimensional area, i.e. a Minkowski metric F(x — y), such
that normality of a hyperplane to a line for β is equivalent to nor-
mality of the line to the hyperplane for F(x — y).

To see this we construct the surface V of Case II of (3.6) for β
and d = 0. That is, on the perpendicular to a variable hyperplane BBZ
at z we take the two points yB with e(yB, z) = f~\B). These points yB

traverse a convex hypersurface T and Tr is the polar reciprocal of T
As Minkowski metric F(x — y) we take the metric with Tf as unit sphere
F(x) — 1. Then the discussion under (3.6) shows that the hyperplanes
normal (for β) to a line zw at w e Tr are the supporting planes of T
at w and these are exactly the planes transversal to zw at w for F(x — y).

The α-area a, 1 < a <n — 1 is euclidean if a(M) = \M\e

a for a sui-
table choice of e(x, y). With the summation convention Yihgikx

Ίc =
this means for F that

(5.4) Σ

We shall call a quadratic if F2 is a quadratic form in each set of
variables x\, , xn

h (i = 1, ••, a). A quadratic F2 is a quadratic form
in the Plucker coordinates.

X[ι
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of the α-flat through z spanned by %ι9' *,xa> since F(xlt , xa) =
f(A)\[z,xlf •• ,ί»β]U where the terms on the right depend only on the
Plucker coordinates.

If F is quadratic then for any Lα_x and L2 perpendicular to La^ at
z the curve S(La-lf L2) of (3.5) is an ellipse and conversely. If Q is any
(α + l)-flat through z we construct in Q the surface T of Case II of
(3.6) for D = 2. The section of T with any plane L2 3 z is obtained
from S(a-lf L2), where La^ is perpendicular at z to L2 in Q, by a rota-
tion through ττ/2. Hence Γ is an ellipsoid. This implies that the area
restricted to Q is euclidean Thus we have the following.

(5.5) THEOREM. An a-area is quadratic if and only if it is euclidean
in every (a + l)-flat that is to say, if and only if normality of a-flats
at (a — lyflats in (a + l)-flats is symmetric.

We now wish to determine under what conditions a quadratic area
is euclidean.

(5.6) A quadratic a-area is euclidean if a = 1 or a = n — 1, and
in general is not euclidean if 1 < α < w — 1.

The first part of the statement is obvious since a quadratic length
is euclidean by definition and a quadratic (n — l)-area is euclidean in
w-space by (5.5).

A simple counting argument convinces us of the truth of the second

part since a euclidean quadratic area is determined by the metric (gi})

so that the manifold of euclidean quadratic areas is n(n + l)/2-dimen-

sional, while the manifold of Plucker coordinates is of dimension

1 + a(n — a); or, in other words, there are \Z) ~~ α(w — α) — 1 indepen-

dent (quadratic) identities satisfied by the Ph'^a (see e.g. [2]). The dis-

tinct quadratic form in the Plucker coordinates therefore have dimension

which exceeds (n ~X \ whenever 1 < a < n — 1.

If, for example, we restrict our attention to α-areas for which

then no two different forms can be identical. Thus the dimension of

this set is ί^Ί while the dimension of each equivalence class is no

greater than (^ +
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In particular, the Cartesian form

(5.7) F\xly ...,αjn) = Σ ( ^ ί-)1

is preserved only under orthogonal transformations. For, if we assume
the existence of a matrix gtj Φ StJ which preserves the form (5.7) then,
for a suitable choice of Cartesian coordinates, we have gtj = Ai?>i3 and
(5.7) becomes

(5.8) F\x19 , xn) = ΣAh A<e(P*i"V

Now, if (5.8) is Cartesian in one Cartesian coordinate system then
it is Cartesian in all. Thus Atl Aia = 1 for all ix < < ia. Since
n > a this implies At = 1 and #^ = δ o .

Since every euclidean area can be brought to Cartesian form we
have also proved the following (which also follows from Theorem 9.1).

(5.9) If two metrics gυ and gf

Xi give rise to identical a-areas,
a <n, then gi} = g'tJ.

We can now determine the relations which suffice to make a quad-
ratic α-area euclidean:

(5.10) THEOREM. A quadratic a-area is euclidean if it is euclidean
in every (a + 2)-flat.

Proof. We proceed by induction. Assuming the area is euclidean
is every m-flat, m > a + 2, we wish to prove it euclidean in every
(m + l)-flat. Let the (m + l)-flat Lm+1 have the equations xm+2 = =
xn = 0. Since the area is euclidean in every sub-flat x* = 0 (i =
1, , m + 1), there exists a matrix g™ (1 < p, q < m + 1 p, q Φ ϊ) so
that the area function has the form (5.4) in this sub-flat. By (5.9) we
have g™ = g$ if p, q φ i, j since that is the unique metric in the com-
mon sub-flat x* = xj = 0. Thus there exists a matrix gpq = gψq (i Φ p, q)
that defines a euclidean α-area in Lm+1 which coincides with the given
α-area in every coordinate sub-flat.

Without loss of generality we may assume the coordinates in Lm+ι

chosen so that gpq = Spq. Then on Lm+1 we have

(5.11) F\xly , xa) = Σ (PV V>2 + R

where R involves the products of distinct Plϋcker coordinates so that
every index 1, , m + 1 appears in every product (if m + 1 > 2α then
there are no such terms and the proof is complete).

Consider the sub-flat xm+1 = \xm of Lm+1 and introduce the coordi-
nates y* = x* (i = 1, , m - 1), ym = (1 + λ2)"V\ In terms of these
coordinates (5.11) becomes
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(5.12) F\xlf , a?α) = Σ (PΊ 'α)* + Λ'

where Rf involves only products in which there appears every index
1, * ,m. Now (5.12) is euclidean by hypothesis and the matrix gf

l5

which represents it in the form (5.4) reduces to the identity matrix in
every coordinate sub-flat. Hence g\3 = 8tJ and Rr Ξ= 0. This means R = 0
in every sub-flat xm+1 = Xxm, that is, R Ξ= 0 so that (5.11) is euclidean.

The simplest case of an α-area with 1 < a < w — 1, namely quadratic
2-area in A\ already povides examples to show that:

(5.13) For 1 <. a < n ~ 1 an extendably convex a-area need not be
totally convex.

For, denote the euclidean area in A4 which belongs to gite = 8ik by
E(x19 x2) and put et = (δ41, , δ<4). For any ε > 0

defines a quadratic 2-area which obviously is extendably convex. The
(&\ #2)-plane P1 2 is normal to every line in the (x*, x4)-]Aa,ne P34, because
for arbitrary λ, μ, p we have

i * 1 2 ^ + λe3 + μet, e2 + pXe3 + PfM4) > εE\eu e2)
1 0
0 1

λ μ
p\ pμ

= ε + 1 = i^2(βx, e2) .

Thus P1 2 is normal to P3 4. However, for small ε, P1 2 is not totally
normal to P34, since then

F\eλ + ez + eJ2, e2 + e3- eJ2) = εE\eλ + e3 + β4/2, β2 + β3 - β4/2) < 1 + ε.

According to (3.10) the plane normal to P3 4 at z cannot be unique.
Actually there is a one-parameter family of planes totally normal to P3 4

at z. To see this we observe that

F\eγ + λβ3 + μ4, e2 + ρe3 + σe4)

= ε(l + λ2 + μ2 + (? + σ2 + (Xσ - μp)2) + (1 + Xσ - μp)2.

For a given ε with 0 < ε < 1 this expression attains the minimal
value 4ε/(l+ε) for λ= -σ=8 cos θ, μ=ρ=δ sin θ where δ = (l-ε)1 / 2(l+ε)-1 / 2

and θ is arbitrary. Hence

(5.14) If l<a<n — 1 ί/̂ ê  extendable strict convexity of an a-area
does not imply that the a-flat totally normal to an (n — a)~flat at
a point is unique. More generally, the a-flat totally normal to a b-flat
at a d-flat is not necessarily^unique when d < min (α, 6) — 1.
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6* Equivalence of normality* Implications. Equivalence of nor-
mality for two convex areas implies for most combinations of the dimen-
sions α, bf d that both areas are quadratic.

(6.1) THEOREM. Let 0 <d<a<b<n a+b—d<n, but not a+b—n
and d = 0. If a convex a-area a and a convex b-area β have the property
that (total) a-normality and (total) β-normality at d-flats are equivalent,
then both a and β are quadratic.

(6.2) COROLLARY. If for a convex a-area (total) normality at d-flats
is symmetric then the area is quadratic unless n = 2a and d — 0.

We know from (5.3) that α = 1, b — n — 1 is actually exceptional
but no examples are known for a > 1. (See note at end of paper).

The following proof is arranged so that only the existence of normals
and not of transversals is used. Since the total normals exist, the proofs
remain valid when normality is replaced everywhere by total normality.

Since normals and total normals do exist for non-convex areas, it
is possible that (6.1) also holds without the assumption that a and β
be convex. However the present proof uses convexity.

The hypothesis on the dimensions means that either (1) a + b < n + d
or (2) a + b — n + d and d > 0. We consider the two cases separately.

In case (1) we show first (denoting an i-flat by L4):
(A) Given6 La-λ c La+1 c La+2 there exists an La c La+2 with

La Π La+1 = Lα_! such that the α-flats through Lα_x in La+1 are normal
to La.

(A') The same as (A) with b replacing α.6

The proofs are entirely analogous with a slight simplification for
(A) which we shall point out.

To prove (A) take Ln,b+d ZD La+1 with Ln-b+d Π La+2 = Lα+1, then take
B normal to Ln-b+d at D c Lα-lβ If d + 1 < a choose the (a — 1 — d)~
flat C such that D 0 C = Lα_x. Since ΰ 0 L n _ δ _ , = An we can find La

with L ^ c ^ c B φ C and L α 0 L α + 1 = L α + 2 . (Here we can take L f l cS,
but in the proof of (A') there would exist no Lh c A for b > α, whereas
Lb c A φ C exists because C is α ( 6 - 1 - d)-flat and hence dim
^40C —j)_i_d+a>b.) B is normal, hence by hypothesis transversal
at D to any α-flat Af in Ln_&+(ϊ through D. If Lw_δ+d D A ' D Lα_x then
Af is normal to 5 φ C at Lα_! and hence is normal to La at La-X.

We now show that (A) implies that a is quadratic. Let z e La c Lα+2

and take L3 through a perpendicular to Lα-χ in Lα+2. Construct the
surface S = S(L3, Lα_!) of (3.5). It follows from the discussion of (3.6)
Case I that for two lines G, H through z in L3 the α-flat G 0 La_x is normal
to Hξ&La-x if and only if H is parallel to a supporting line of S at
one of the two points G Γι S.

6 a + 2 < b + 2 <>n since b <n + d - a <n— 1.
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Now it follows from (A): Given L2 through z in L3 there exists in L3

a G a z such that for z e H c L2 the α-flat i ϊ φ Lα-λ is normal to G φ Lα-X.
In terms of S this means that every intersection of S with a plane
through z lies in some circumscribed cylinder of S.

A well known theorem of Blaschke [3] (see also [4, p. 157]) states
that a closed convex surface S' in A3 is an ellipsoid if every cylinder
touches S' in a plane curve. Blaschke assumes that Sf is differentiate
but not that S' has a center. The differentiability hypothesis is very
easily removed (see e.g. [9, p. 93]).

Under the hypothesis that S' has a center z the hypothesis may be
relaxed in two ways.

(Bj) Sr is an ellipsoid when every plane section of S' through z
lies on a circumscribed cylinder.

(B2) Sf is an ellipsoid when every circumscribed cylinder contains
a plane section of S' through z.

(Bx) is proved by a trivial modification of the proof of Blaschke's
theorem and is also well known from the theory of Banach spaces.

The proof of (B2) requires a less obvious but far from difficult
modification of Blasehke's proof. (Bx) and (A) show that S is an ellipsoid.
It follows that S (La-lf Ln-a+1) is also an ellipsoid (compare for example
[9, p. 91]).

In the same way we deduce from (A') and (Bx) that the surface
S(Lb_j, L3) constructed with the area β is an ellipsoid so that β is also
quadratic.

We now turn to the case a + b ~ n + d, d > 0 and prove:

(C) Given z e Lα_2 c ha-x c La+1 there is an a-flat A in La+1 with
A Π La-λ = Lα_2 such that the a-flats AQ in Lα+1 through La-λ are normal
to A. The same holds with b replacing a.

Take B normal to La-1 at an La-τ c Lα_2. Such a B exists because
a — 1 + b — n + d — 1, moreover La-X φ B = An.

For any line G through z in B the α-flat AQ = La^@G is transversal
to B at DG = La-iφCr. Hence AG is, by hypothesis, normal to B at
Do. If a > d + 1 choose an (a — d — l)-flat C through z in La^ such
that L d . 1 φ C = L a . l c L β . 1 . Then AG is normal to £ φ C at L^_x = De®C.
Let z e L2a B, L2 Γ) La-λ = ^,L 2 ®i α -i = iα-i This L2 exists because
Lα_x n ΰ = L*-! and 1 ^ 0 5 = An. Then A = L 2 φL α _ 2 c J ? @ C and
for^eG c L 2 the α-flat AG is normal to A at Lα-i

We now construct a surface T as in Case II of (3.6). On the line
perpendicular to a given α-flat A* through z in La+1 we take yΛ, with
e(z, 2/̂ 0 =/"'1(A'). The points y4/' traverse T.

Also, for a given Lα_2 with ί? e Lα_2 c La+ι we take the L3
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perpendicular to Lα_2 through z (L3 = La+1 if a = 2). If A! z> Lα_2 then
the perpendicular to A' at 2; lies in L3. The perpendiculars to the
A' ~D Lα_2 therefore intersect T in a surface To and it suffices to prove
that To, or its polar reciprocal T'o in L3, is an ellipsoid.

According to the discussion of Case II the α-flat spanned by x e To
and Lα_2 is transversal to the α-flat A! H) Lα_2 if and only if A! is
spanned by Lα_2 and a plane L2 through 2 parallel to a supporting plane
of Γό at x. Then A' is normal also to every α-flat in La+1 through Lα_2

and x.
Statement (C) means in terms of T'o, that given a line H through

z ( j y φ L α _ 2 is the Lα_! in the hypothesis of (C)) the cylinder parallel
to H circumscribed to To touches To in a set containing a section of
To by a plane L2 through z (£ΓφL α _ 2 is the La in the assertion of (C)).
It now follows from (B2) that TJ is an ellipsoid.

The proof that β is quadratic for a + b = n + d,d>0 is again
entirely analogous.

The Corollary (6.2) can be improved in special cases as follows:

(6.3) THEOREM. If a < n\2 and d = 0 or a > n/2 and d = 2α — n

and for a (totally) convex a-area a (total) normality at d-flats is
symmetric, then a is euclidean.

The area function is differentiate because, according to (6.2), it is
quadratic (in other respects the present proof is independent of (6.2)).

Let a < w/2, A 3 z and let BA be the (n — α)-flat transversal to A
at z. Then each α-flat Af 3 z in BA is transversal to A. Hence by
hypothesis Af is normal to A so that BΛ, D A. Thus A! ~D BA implies
BA, ID A. The mapping A-* BA can therefore be extended to a correla-
tion φ on itself of the bundle consisting of all i-flats (1 < i < n — 1)
through z (see [2, pp. 51-53]). Moreover ψ is a polarity because Aφ2 =
Af and if Lλ B Z then L ^ does not contain Lλ. Thus φ coincides with
the mapping which belongs to a suitable ellipsoid E with center z which
associates LλB z with its diametral hyper plane Lλφ. This nearly obvious
fact may be seen as follows.

We extend An to a protective space Pn and the correlation φ to
a correlation of P w by first associating z = (0, •••, 0,1) with the hyper-
plane at infinity if = (0, , 0,1). With the intersection Lλ Π H =
(#1, •> #n> 0) w e associate the hyperplane Lxφ = (ξ19 , ξn, 0). If T is

0 — 1 / * s

the matrix of a polarity in Pn which defines the ellipsoid E with the
above property.

This ellipsoid taken as unit sphere defines a euclidean metric in An

and also a euclidean α~area. By construction normality of α-flats at z
for this area coincides with α-normality of α-flats at z. According to
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(5.1) this shows that the two areas differ only by a constant factor so
that a is also euclidean.

The case a > nl2, d = 2a — n is very similar. If ABZ we take the
(n — α)-flat BA transversal to A at z. This time if A' 3 BΛ then A! is
transversal to A at A' Π A where dim A' f] A — 2a — n. By hypothesis
A! is normal to A so that J5̂ , c A. Since A' ID 2?̂  implies BA, c A,
the mapping A-+ BA can again be extended to a correlation of the
bundle of all i-flats (1 < i < n — 1) through z on itself. From here on
the proof proceeds exactly as in the first case.

7 Minkowski area. We now apply our results to the special cases
from which the general theory originated.

Consider a symmetric Minkowski metric (or a 1-dimension convex
area) F(x) in A\ We denote its unit ball F(x) < 1 by U and let U(A)
denote the intersection of U with the α-flat A through z. For any
α-flat A parallel to A the intersection (F(x — z) < 1) Π A, z e A originates
from U(A) by translation and is a unit ball in A for the metric induced
by F(x) in A. Following [7] we define an α-dimensional area 1 < a <
n in An by stipulating that the measure of U(A) have the euclidean
volume

(in particular πτ — 2, ττ2 = TΓ) SO that for a definite euclidean metric e we
have

The functions corresponding to our previous a(M) and J F 7 ^ , •••,#«)
will be denoted by |Λf | α and Fa(x19 , xa) so t h a t

\M\a=fa{A)\M\i,

Fa(x19 -- , ^ ) = fa(A)\[z, xlf •••JOJJU

and ^(ίc) = ^(α;). Since we admitted α = n we also have an ^-dimen-
sional measure

For a < n let La-X B z be an (α — l)-flat and L2 the plane perpendi-
cular to Lα_x at 2;. On a variable ray J? with origin z in L2 take the
point yR with

Φ, yΛ) = Λ" 1 ^) = I U(AB) IX"1, AR = Lβ.x φ Λ .
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That is the curve S(La-u L2) for fa as constructed in (3.5). It is a funda-
mental and non-trivial fact (see [7, p. 164]) that S(La-u L2) for fa is
always convex and is strictly convex or differentiable when the unit
sphere F(x) = 1 of the space is strictly convex or differentiable respec-
tively. Thus we have the following.

(7.1) THEOREM. The Minkowski areas \M\a, (1 < a < n — 1) are
all convex. They are strictly convex or differentiable if the unit sphere
F(x) = 1 is strictly convex or differentiable.

The question whether Minkowski areas are totally convex for
1 < a < n — 1 is equivalent to a difficult problem on convex bodies.
Even extendable convexity is not known (see Problem 10 in [10]).

We mention the following further property of Minkowski area which
is important for differential geometric investigations and was proved by
Barthel [1].

(7.2) If F{x) is of class Cr for x Φ 0 then Fa(x19 •••,#„) is of class

Cr for x1A-"AxaΦ 0.

We also note^

(7.3) If the a-area, l<a<n — l, of a Minkowski space is quadratic
then the space is euclidean.

For, if a > 1 then we conclude from (6.3) that the area in any
(a + l)-dimensional subspace is euclidean. It is easily seen and contained
in Theorem (9.1) that therefore the metric in this subspace is euclidean.
It is well known (see e.g. [9, (16.12) p. 91]) that then the metric of the
whole space is euclidean. Therefore (6.1) and (6.2) yield the following.

(7.4) THEOREM. Let 0 < d < a <b < n but not a + b = n and d =

0. If a, β are Minkowski a-and b-areas respectively (not necessarily
relative to the same Minkowski metric) and a-normality and β-nor-
mality at d-flats are equivalent then both Minkowski metrics are
euclidean.

If normality of a-fiats at d-flats in a Minkowski space is sym-
metric then the space is euclidean unless a = n/2, d = 0.

We note in particular that for all n > 2 symmetry of normality of
α-flats at (a — l)-flats suffices to make the Minkowski space euclidean.
From (5.2) we know that the case α = l ,δ = w — l ,d = 0 is exceptional
for two distinct Minkowski metrics. Whether this case is exceptional
when a and β belong to the same Minkowski space amounts (unless
a = b = 1) to an interesting open problem on convex bodies (see [10,
Problem 5]).
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Finally we see from Theorem (7.4) and the example at the end of
§ 6 that convex area functions—even quadratic area functions—are in
general not Minkowskian. The problem of characterization of Minkowski
areas among the convex area functions remains open, (see § 9).

The fact that area functions are now defined for all a leads to new
concepts, in particular to a sine function. If A Π B = D a z, where
0 < d < min(α, b) — 1 and A φ B = Q, take a non-degenerate g-box,
[z> Vi, , Vb, Xa+it > ffj, s u c h t h a t y l f , y a e D y a + 1 , * ,ybeB — D
and xΛ+1, , xa e A — D. Now put

(7.5) sm (A, B) = ^ ^ "

where i^0 — 1. The number sm(A, J5) is called the Minkowski sine of
the flats A, J3 because it depends only on the latter and not on the choice
of the g-box. For example, if d > 0 then replacing y19 * 'fyd by other
independent yl9 , yA e D amounts to multiplying all four terms Fa,
Fq, Fa9 Fb in (7.5) by

Ifo 2/i, •• ,^]IS/l[^yi» ••-! Va\\ea -

If D does not contain ^, but ^ e f l then the vectors yif xs in (7.5)
must be replaced by y, — z, Xj —• z.

The sine function is not the function of a number, " t h e angle be-
tween A and B". Even in the euclidean case this angle is defined only
for d — min(α, 6)-l. Hence the restriction to this case in [7] and [1].
The sine function for the euclidean metric will be denoted by se. Then
obviously, with f(LQ) = 1, we have

(7.6) sm(A, B) - se(A, B)fd(D)fq(O)fά\A)fi\B) .

For any λj, k = d + 1, , b j = d + 1, , a put

= Σ

Then the boxes of the form [z, y19 , yd, xd+1 + i/d+i(λ), , xa + y

have [z,y19 •••, i/d, a?d+1, •• ,a?α]
 a s projection in Q parallel to JB on

Since

does not depend on the λ*, the α-flat A is totally normal to B at
in Q if and only if

sm(A, B) > sm(A*, B) for A* n B - D, A* c Q .
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We denote this maximal value of sm(A*,J5) for given B,D,Q by
a(B, D, Q). If q = n then Q — An is unique and we write simply a(B, D).

(7.7) //

sm (Alf Bλ) = maxα(i, D, Q),
A

then

sm (A19 2?i) = max a(B, D, Q),
B

and converselyy hence A2 is totally normal to B2 and B2 is totally normal
to A2.

Proof. If A is normal to B then

(7.8) a(B, D, Q) = sm (A, B) < a(A, D, Q)

hence

(7.9) maxα(£, D, Q) < maxα(4, D, Q)
B A

Similarly, if B' is totally normal to A! then

(7.10) α(A', D, Q) = sm (A', B') < a(B', D, Q) .

Whence together with (7.9) we have

(7.11) max a(B, D, Q) = max a(A, D, Q).
B A

If

sm(Alf Bλ) = maxα(4, D, Q) = a(Alf D, Q)

then Bλ is totally normal to Ax. Hence (7.11) and (7.10) imply

sm (Alf Bλ) = a(Blf D, Q) = max {B, D, Q)

so that Ax is totally normal to Bx.

(7.12) If for given A (B) in Q through D there exists a b-flat
(a-flat) totally transversal to B (A) at D in Q (which is always the case
for min (α, b) = d + 1) and

sm(A2, B2) = min a(B, D, Q)

A

then

sm (A2, B2) = min a(B, Ό, Q)
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and A2, B2 are normal to each other.

For, if A is totally transversal to a given B, then

a(A2, D, Q) = sm (A, B) < a(B, D, Q) .

Hence

min a(B, D, Q) < mina(B, Ό, Q) .
A B

The proof is analogous to that of (7.7).
As a consequence of (7.11) and (7.12) we have the following.

(7.13) COROLLARY. If the function a(A, D, Q) is constant for fixed
Ό, Q then a(B, D, Q) is constant and conversely. Moreover the constants
have the same value. If a(A, D, Q) or a(B, Ό, Q) is constant then total
normality of A to B and total normality of B to A are equivalent.

The equivalence of total normality follows from the fact that for
any A totally normal to B we have

sm(A, B) = maxα(A, D, Q) .

The equivalence of normality implies that B (A) totally transversal
to A (B) at D in Q exist. Therefore both (7.11) and (7.12) apply.

Whether the converse of the second statement in (7.13) always holds
is not known. However the proof of (3.6) yields the following special
case.

(7.14) If d = min(α, b) — 1 and normality of A to B at D in Q is
equivalent to normality of B to A, then a(A, D, Q) and a(B, D, Q) are
constant.

Proof. If z e D we take as in Case I of (3.6) the (q - <Z)-flat Lq-d

perpendicular to D at z and construct, if a < b say, the surface S by
taking on each ray R in Lq-d with origin z the point yR with e(z, yR) =
fa\AR) where AR^D®R.

For the 6-area we construct T as in Case II by taking on the per-
pendicular in Q to a 6-flat B through D in Q the two points yR with
e(z, yR) — fς\B), and denote by I" the polar reciprocal of Γin Lq-d with
respect to the metric e(x, y).

If wR is the point R f] T then the supporting (q — d — l)-flat of T
at wR spans together with the d-flat parallel to D through wB a 6-flat
B normal to AR. The reciprocity of T and T implies that B has dis-
tance fh{B) from z. Hence by (7.6) we have7

7 Because d = min (α, b) - 1 the function se is the ordinary sine of the angle between
AR and B in the metric e(x, y).
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a(As, D, Q) = sm(4,, B) = se{AR, B)fd(D)fq(Q)fά1(ΛR)fi1(B) .

But

fb{B) = ae(AR, B)e{z, wR),fa{AR) = e~\zf yR) ,

so that we have the following nice interpretation for a(AR, D, Q):

a(AB, D, Q) = fd-
1(D)f-1(Q)e(z9 yR)\e(z, wR) .

If normality of A to B at D in Q is equivalent to that of B to A
then S and T" are homothetic. Hence e(z, yB)le(z, wR) is constant, which
proves (7.14).

8 The range of the sine functions. Problems regarding the ranges
of a(B, D, Q) are important for Minkowskian geometry and are geometri-
cally very attractive, but unfortunately often quite difficult—only in the
simplest case n = 2 hence α = δ = l,cϊ = 0 do we have complete
answers owing to Petty [12] who found the following.

For any line L± in A2 through z we put oc(Lιy z, A2) == a(L) and
denote by CF the unit circle F(x) = 1. Then

i) = π/4, maxα(Li) = π/2 ,
Lv F Lv F

and a(Lx) — π/4 or a(Lλ) — π/2 imply that CF is a parallelogram and
Lx a suitable line (different in the two cases).

Also

max min a(Lx) = πβ ,
F LF

where the maximum is attained only when CF is a hexagon which is
regular for a suitable e(x, y).

Finally

min max a(L^) = 1 ,
F

where the minimum is attained only when CF is an ellipse, that is
when the metric is euclidean.

By (7.13) and (7.14) we have a(Lλ) = kF, that is a(L^) is indepen-
dent of L19 if and only if normality of lines in the plane is symmetric.
This means that CF is one of the curves discovered by Radon [13] which
we encountered already several times implicitly and which we shall call
Radon curves. Their construction is also found in Petty [12] and in
[9, p. 104]. Since the regular hexagon is a Radon curve we find 1 <
kF < π/3 with kF = 1 only for the euclidean metric and kF = τr/3 only
when CF is a regular hexagon.
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Under the hypothesis of (7.14), if a — 6 and hence d — a — 1 then
S and T are Radon curves and we can derive the range of a(La, La-lf La+1)
(when constant) from Petty's results. Otherwise the ranges for a(A, D, Q)
with D, Q fixed are not known. For variable D, Q we deduce from (7.13)
and (7.14) the following.

(8.1) THEOREM. If 0 < d < a <b < n but not a + b ~ n and d = 0

then (x{La, La, La+b-d) is independent of Laf Ld, La+b~d only in the eucli-
dean geometry (where all a-functions are equal to 1).

Beyond this result only very few facts on the ranges of the sine
functions are known for n > 2, which we shall now discuss.

(8.2) m i n ^ L i , Lo) = min a(Ln-19 Lo) = πnj

(8.3) maxa(Llf Lo) = maxα(Ln^x, LQ) = n

In the first of these relations equality is obtained only when the
unit sphere S, that is F(x) = 1, is a cylinder and in the second only
when S is a double cone.

The proof is very simple. The equality of the first two members
in (8.2) or (8.3) follows from (7.12) and (7.7). Let H be a hyperplane
through z and Lx normal to H at z. If p, pf are the points Lx Π S and
Z7H = U Π H then the hyperplanes parallel to H through p and pf are
supporting planes of U. Moreover UH has maximal (n — l)-dimensional
volume among all sections U by hyperplanes parallel to H. Therefore

πn = I UI n < F ( p - p') I UHI „_! sm (L l f -ff) = 2πn-xa(H> «)

with equality only for cylinders.
On the other hand ?7 contains the double cone formed by the cones

with apexes p, pf and bases UH so that

with equality only for double cones.
These relations successively provide bounds for all α(Lα, Ld), but

these bounds are not sharp. We exemplify the procedure with a(Ln.2, Lo).
If Ln-2 is normal to L2 at z then we consider in L2 lines L[ and Lx

through z such that L[ is normal to Lx. Since Ln_2 is normal to Lx and
L[ we have, with Ln_x = L n . a φ L i ,

sm(Lw_2, L2)sm(L[, Lx) = sm(LΛ^2> I/i)sm(Lί, Lft-χ)

or

sm (Ln_2, L2) = a(Lx> z, Ln-X) sm(LJ, Ln^a'\Llf z, L2)

< ^ ~ "•*• ^ - 1 ^L ^n 4 __
— 9 TΓ 9 rr TΓ
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It is easily seen that with a proper choice of L19 L[ in L2 the line
L[ is normal to Ln_x. Hence

2 7ΓW_2 2 7rw_! π 2π πn.2

so that
1

Z7Γ
L. < α(LM_2, Lo)

The only exact bound other than (8.2) and (8.3) which has been
determined is the following.

(8.4) max a(Ln.lf Ln_2) = 2τrn_27rw/^_i .

This equality holds only for a cylindrical unit sphere with (n — 2)-
dimensional generators and a parallelogram as 2-dimensional crosssection
whose exact definition will emerge from the proof.

If an Lw_2 is given we choose coordinates so that its equations are
#n-i = xn = 0 and put #„_.,. = p cos9, xn — p Bmφ so that a?x, , a?n-3> P>Ψ
are our coordinates. Set U(Ln-2) = F. For given α?, ̂> with a? e V let
(a?, r(ίu, φ), φ) lie on the unit sphere S. Then, with e\x, y) — ^(x1 — j/*)a,

S = ̂  Γ ( r\x, φ)dxdφ >
2 Jo J F

with equality only when r(x, φ) is independent of x.

Now 1 r(α;, ̂ >0)^^ is the euclidean volume A(φ0) of the intersection
JV

of ί7 with the half-hyperplane φ = ^>0. Hence if P^o is the hyperplane
containing φ ~ φ0 we have

q r γ Ί /p p N _ s inl^! - φ2\2A(φ1)2A(φ2) _ πn-2πn

(1/2)Γ
Jo

Considering the convex curve p = A(̂ >) in «?!=•••= xn-2 — 0 we
see that the first factor on the right attains its maximum 2 when the
curve is a parallelogram and φlf φ2 fall in the diagonals. There will be
equality in (8.4) if and only if in addition r(x, ψ) is independent of x.
For n = 3 we have equality only for a parallelepiped.

The most important questions regarding the ranges of the sine func-
tions concern

min max a(La, Ld) = min max a(Ln-a+d, Ld) ,
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in particular whether, or for which α, d this number equals 1; and
whether the value 1 characterizes euclidean geometry. The case a ~
1, d = 0 is Problem 6 in [10].

9. Relations between the functions fa. The Minkowski areas are
derived from—and hence determined by—the Minkowski length. The
question arises whether in a Minkowski geometry any of the areas
(1 < a < n) determine the remaining ones.

(9.1) THEOREM. An a-dίmensional area function Fa(xlf , xa), 1 <
a < n — 1, is an a-dimensional Minkowski area for at most one Min-
kowski geometry. In other words, if Fa(xlt , xa) is known then F(x)
and hence the remaining Fb(xlf ,xb) are determined.

This follows from a theorem of P. Funk [11]:

Let Se be the sphere e(z, x) — 1 in B and let S(A) be its intersection
with A B z. Let g^x), i — 1,2 be an even continuous function on Se and
denote by S(A, gt) the integral of gi{x) over S(A) with respect to (a — 1)-
dimensional area. If S(A, gλ) = S(A, g2) for each A with z e AcB then

Induction reduces this statement to a = b — 1.
A proof for 6 = 3 is found in [5, p. 138], A proof for general b is

obtained by using expansion in terms of spherical harmonics. If x e Se

then xF~\x) lies on F(x) - 1. Hence | U(A)\e

a = S(A, arxF-a{x)) so that
by Funk's theorem this relation determines F(x).

An explicit expression of F(x) in terms of fa(A) can be found in
[4, pp. 154, 155], and this yields, in principle, the value fb(B) for given
B. Actually the expression thus obtained is much too involved to deduce
pertinent information from it. There is however an inequality of a very
simple form, although its proof is involved, which relates fb and fa and
which we are now going to derive from the results of [8].

If n>b>a>l,Bsz then

(9.2) Dφ, a)fς\B) > \ fάb(A)dA

with equality only for the ellipsoid. In this formula dA is the kinematic
density for α-flats in Bf the quantity D(b, a) is the measure of all α-flats
through z in B and hence is a constant which depends only on a and b.

Since in (9.2) B acts as the whole space we may take b = n. The
inequality is a special case of a relation between the functions

= πj\ ϋ-4(A)li, /,,„ = πnl\Ut\i i = 1, - , a

belonging to different Minkowski metrics with unit spheres Ut, •• ,*U
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with common center z:

(9.3) D(n, a) f[ frf > \ Π fa/a(A)dA ,

with equality only when the Ut are homothetic ellipsoids, i.e. when the
corresponding Minkowski metrics are proportional euclidean metrics.

The inequality (9.3) is in turn a consequence of a still more general
inequality.

Let M19 , Ma be convex bodies in the ^-dimensional euclidean
space En, n >3,2 <a <n — I then

(9.4)

x ( \M1 ΓΊ A\T . - . \Ma n A\n

a

/adA,
JABABz

with equality for | Λft | n > 0 only when the Mt are homothetic ellipsoids
with center z. The measure \M\t is of course, the ί-dimensional Lebesgue
measure in En.

We deduce (9.4) from the following relation for any closed bounded
sets M19 , Ma.

(9.5)

JABz JM^

where T(Plf , Pα,«) is the α-dimensional measure of the (possibly
degenerate) simplex with vertices Plf ,Pafz and dVpi is the area
element of A at P 4 e M4 Π A. The symbol Cέ(n, α) denotes a constant
which depends only on n and a.

For α = w — 1 and α = n — 2 (9.5) is proved in [8, (2), (17)], hence
we prove (9.5) by induction for decreasing α. Assume (9.5) to hold for
some a + 1 <n — 1. As Ma+1 we take the euclidean unit ball U with
center z. Then if B denotes an (a + l)-flat we have

( ( ••• ί
Now Ma+1 n -B is an (a + 1) — dimensional unit ball ί7, and if ψ is

the angle between the α-flats spanned by Plf , Pa and the line through
z and Pα+i, then

Γ(P l f , P α + 1 , «) = (α + l ) - χ φ , Pα+1)!sin<p| Γ(P t, , P β ,

Since
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f β»-«-i(s, pβ+1)|sin"-β-x

depends only on n and a we obtain, after carrying out the integration
ever U,

x \ [ ... f T"-^{Ply •• ,Pa,
jB3z JM^B J ^ α n j 3

For a variable α-flat A through 2 in J5 we have (see [8, (12)])

Integration first over all A through z in B, and then over all B
through z can, according to the properties of kinematic measure, be in-
terpreted as an integration over all A through z (except for a factor
which depends only on α), and this proves (9.5).

Steiner's symmetrization leads from (9.5) to (9.4). Consider a fixed
α-flat A through z and let Mly , Ma be convex bodies. It is shown in
[8, pp. 8-10] that under simultaneous symmetrization of the sets Mt Π A
in any (a — l)-flat C through z in A the integral

decreases unless the centers of all chords of all Mt Π A perpendicular to
C are coplanar with z. Hence the Mλ Γi A are homothetic ellipsoids
with center z if the last integral is to be minimized. The minimum is
actually attained for such ellipsoids [8, pp. 10, 11] and the integral has
then the value

C\n,d)\Mx n AlS / α - \Ma KA\aJa.

This proves (9.4).
We note two consequences of these results.

(9.6) The ellipsoids with center z maximize \ \M Π A\ldA among

all convex bodies with a given volume.
Application of (9.4) to the case M2 = = Ma = U yields

(9.7) |ΛΓU > πnπ~a

n/aD-ι{n, a)\ \M n A\nJadA ,
jΛβz

with equality only for the sphere. Hence the sphere gives the maximum
of min \M Π A\n

a\M\tn for given volume \M\ > 0f
A
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CHARACTERIZATIONS OF TREE-LIKE CONTINUA

J. H. CASE AND R. E. CHAMBERLIN

1. Introduction* It has been conjectured by J. R. Isbell that every
one dimensional continuum with trivial Cech homology (arbitrary coeffici-
ent group) is tree-like. In this note we give an example showing the
conjecture is false. Moreover, the example has the Cech homology
groups, the Cech cohomology groups, and the Cech fundamental group
(see [3]) of a point. Also, the example cannot be mapped essentially
onto a circle, but can be mapped essentially onto a "figure 8". We
precede the example with two characterizations of tree-like continua.

2. Preliminaries* Throughout this note by a continuum we will
mean a compact connected metric space and unless otherwise specified
by a complex we will mean a finite complex. Also, by a linear graph
we will mean a one dimensional connected complex.

For this section let X be any one dimensional continuum, K be any
linear graph, and ^{X) be the collection of all essential finite open
covers of order two of X. For U e <%s e <Sf (X) let ^v{^) denote the
nerve (see page 68 of [5]) of <%s and σ(U) denote that vertex in ^^Vi^/)
corresponding to U. Note that for any ^ e ^(X), ^4^{^/) is a linear
graph. Where ^/ e ^(X) and x e X let Δ{^/, x) be the simplex in

\ ^ ( ^ 0 which has as vertices the collection of all σ(U) such that
x 6 U 6 <%s. Where <%s e ^(X), a continuous function / from X to
Λf{&) is said to be a ^/-canonical mapping provided that f(x) e A{"?/, x)
for all x e X. Where / is a continuous function from X to K, let jSf (/)
be the collection of all non-empty inverse images under / of open stars
of vertices in K. Note that J*f{f) β ^(X). Where / is a continuous
function from X to K let / ' be that simplicial mapping from
to K which satisfies the condition.

'1 [open star of v])) = v

for all vertices v in K such that

f*1 [open star of v]

is non-empty. Where 5̂ ~ and <%s are two elements of ^(X) such that
^ refines ^ , a simplicial mapping p from ^v^) to ^{^) is said
to be a projection if

p(σ(V)) - σ(U)

Received March 16, 1959.
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implies that V c Ufor all V e ^ and U e <%r. If 5^ refines <?/ then
there is always a projection from ^ ( 5 θ to Λ^i&s) (see page 135 of
[5]).

PI. For any continuous function / from X to K there exists an-
other, say g, which is homotopic to / and is such that g[X] is a sub-
complex of K.

This is proved by deforming the map / so as to uncover the interior
of any simplex whose interior is not completely covered by / and keep-
ing / fixed on the rest of the complex.

P2. For any <%/ e <ϊf(X) there exists a ^-canonical mapping g from
X to ^/"i^/) such that g[X] is a subcomplex of ^y"(^).

The existence of a ^-canonical mapping / from X to ^i^(^) is
established on page 286 of [2]. We use the method described for prov-
ing PI to deform / to a mapping g such that g[X] is a subcomplex of

Under this natural deformation, g is ^-canonical.

P3. If ^ 6 ^(X) and c is a ^-canonical mapping from X to
Λ^i?/) then ^f(c) refines <%?'.

The proof is immediate from the fact that

c-1 [open star of σ(U)] c U

for any U e %/.

P4. If / is a continuous function from X onto K then / ' is a sim-
plicial isomorphism from Λ^ijSfif)) onto if.

This is a special case of proposition D on page 69 of [5].

P5. If / is a continuous function from X onto K, <%/ e
refines Jδf(/), p is a projection from ^ r ( ^ ) to ^"(jSf(/)), and c is a
canonical mapping from X to ^V(^/) then / ' pc is homotopic to /.

For any a? e X, let S(x) be the smallest simplex in K which con-
tains f(x). It follows immediately from the definitions that / ' pc(x)
and f(x) are both in S(x) for any x e X. Therefore / ' pc is homotopic
to /.

3. Two characterizations of tree-like continua A one dimensional
continuum X is said to be tree-like provided that every open cover of
X can be refined by a finite open cover having nerve a tree, that is,
having nerve a simply connected linear graph. A continuous mapping
/ from X to K is said to be inessential if it is homotopic to a constant
map — otherwise it is said to be essential.

We shall prove the following two theorems simultaneously:

THEOREM 1. A given one dimensional continuum X is tree-like if
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and only if every continuous mapping of X into any linear graph is
inessential.

THEOREM 2. A given one dimensional continum X is tree-like if
and only if for every <& e C^(X) there exists an element 5̂ " of ^(X)
which refines ^/ and is such that any projection from Λ^{^~) to

is inessential.

Proof.
Part A. Suppose that X is tree-like and <?/ is any element of

cά\X). Since X is tree-like we may take ^" e W{X) such that 5*~
refines W and Λ^iΨ") is a tree. Since ^"(^~) is a tree this nerve is
contractible and any mapping (in particular any projection) from Λ/"(ί&~)
to Λr{^/) is inessential.

Part B. Suppose that for any W e W{X) there exists 7" e
such that 5^ refines W and any projection from Λ\Ψ~) to ^\"2/) is
inessential. Let / be any continuous mapping of X into any linear
graph K. In view of PI we may assume that / is onto. Now we
have that ^f(f) e <ίf(X). Take <%/ e 9f(X) such that W refines £?(f)
and any projection from Λr{$s) to Λ^i^fif)) is inessential. Let p be
such a projection and let c be a canonical mapping from X to Λ^(<?/).

By P5, the composite mapping / ' pc is homotopic to /. Since p
is inessential so are / ' pc and /.

Part C. Suppose that every continuous mapping of X into any
linear graph is inessential. Let έ? be any open cover of X. Since X
is a one dimensional continuum we may take €fc e (6'(X) such that <?/
refines &.

Let c be a canonical mapping of X into ^\W) such that c[X] is
a subcomplex of <_Ar{W). Let K be the universal covering space of
,yί (&?) with projection π. The space ίΓis a complex (in general infinite)
and π is simplicial. Since by our hypothesis c is inessential there exists
a continuous mapping c* from X to if such that πc* = c. Let T = c*[X|.
Then Γ is a tree. By P4 the nerve .^"(jSf (c*)) is isomorphic to T and
hence is a tree. Also ^f(c*) refines jSf (c) which refines ^/ which re-
fines έ? and therefore jSf(c*) refines ^ .

4. A group theoretic Lemma, The group theoretic situation discus-
sed in this section is fundamental to the construction of the example
in the following section.

Let G be a free non-Abelian group on two generators a and b. Let
h be that endomorphism of G characterized by

h(a) = aba-1 b~x
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and

h(b) = aΨa-2b-2 .

Let Q be the set of all ordered pairs (α, n) such that n is a integer
and a is either α or 6. For any {a, n) e Q let e(a, n) = an. Let S be
the collection of all finite sequences {(au nt)} [=1 in Q such that

nt Φ 0 for i = 1, , r

and

α4 Φ at+1 for i = 1, , r — 1

For each element g of G other than the identity there exists a unique
{(^i, nί)}ϊ=1 in S such that

# = Π e(ai9 nt) .
i = i

r

In this case Π e{au nύ ίβ called the preferred representation of g and
1 = 1

r is called the length of #.

LEMMA. If g is an element of positive length r in G then the
length of h(g) is greater than or equal to 3r.

In order to prove the Lemma we will prove by induction the follow-
ing somewhat stronger proposition:

r

(*) If g is any element of G with preferred representation Π e(au nt)
« ί = l

and h(g) has preferred representation Π e(βu w>i) then
( i ) s ^ 3 r ,
(ii) ar — a and nr > 0 imply βs = b and ms — — 1 ,
(iii) α r = a and wr < 0 imply βs — a and m s = — 1 ,
(iv) ar—b and nr > 0 imply βs = b and m s = — 2 ,
and
(v) α r = b and wr < 0 imply βs = α and m s = — 2 .
Observing that

/^α-1) = bob-1 a-1

a n d ^(δ-1) = &2α26-2α-2

proposition (*) is obviously true for r = 1.
Suppose that proposition (*) is true for the positive integer r. Let

g be any element of G with length r + 1.
Say

r

9 = Π efa, w4) e(α, w)
r

and this is the preferred representation of g. Let / = Π e(ai> nd- This
i = l

is the preferred representation of / . Let
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Hf) = Π e(βι, mt)
1 = 1

be the preferred representation of h{f). Note that

h(g) = λ[/ β(α, w)] - h(f) • Λ(α, w)

= Π eiβu mt) A(α, n) .

In order to conclude (i) — (v) of (*) we break the situation down into
the following cases:

Case I ar = α, nr > 0, α = b, and w > 0 .

Case II. αr = α, % > 0, a — 6, and w < 0 .

Case III. ar — a,nr <0, a = 6, and w > 0 .

Case IV. a r = a, % < 0, a = 6, and n < 0 .

Case V. a r = 6, n r > 0, a = a, and ̂  > 0 .

Case VI. a r — b,nr 0, a = a, and w < 0 .

Case VII. ar = 6, n r < 0, a — a, and w > 0 .

Case VIII. a r = 6, % < 0, a = a, and n < 0 .

For convenience let k be the absolute value of n.
Case I. Define {yjf q3}ό% by

= α, qu+1 = 2

= &, <?4i + 2 = 2

= df Qu+3 = ~ 2

for i = 0 , l , 2 , - . . , fc- 1. Then

4, m t) Π β(7j,
l

is the preferred representation of h(g) and h(g) has length s + ik
Zr + 4k ̂  3r + 3 ̂  3(r + 1) .

Also

γ4Λ = 6 and q4Jύ = - 2 .

Case II. Define {γ̂ , gj}/i2 by

7 4*+i = b, q4ί+1 = 2

7 4 ί + 2 = <̂ » ^ 4 i + 2 = 2

* y 4 ί + 3 = = ^> ^4«+3 — ^

γ 4 i + 4 = a, g4 ί + 4 = — 2
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for i = 0,1, 2, , k - 1 and 4ΐ + 1 Φ 1.

Then

Π f t m J e(6, 1) Π β(7j, «j)

is the prefered representation of h(g) and /&(#) has lengh

s + 4fe - 1 ^ 3r + 4fc - 1 ^ 3r + 3 ^ 3(r + 1) .

Also

y4fΰ = α and g4fc = - 2 .

These two cases are representative of all of them. In every case the
length of h(g) is either s + 4fc or s + 4fc — 1 and hence is greater than
or equal to 3(r + 1). Cancellation can occur in at most one place and
that is where the terminal factor of h(f) lies next to the initial factor
of h(a, ri). Conditions (ii) — (v) of (*) follow immediately.

5 An example. Let C be the collection of all complex numbers
having modulus 1. Let

B=[Cx {1}] U [{1}] xC]

and let δ0 = (1, 1). In geometrical terms B is the union of two tan-
gent circles and δ0 is the point of tangency. Define the function / from
B to itself by the following formulas:

f(u, 1) =

and

/(I, v) =

« 1) for 0 ^ arg (u) ^ π/2

(1, u") for π/2 ^ arg (u) g π

(u~\ 1) for π ^ arg (u) ^ 3ττ/2

(1, u~") for 3ττ/2 ^ arg (u) ^ 2π

{v\ 1) for 0 ^ arg (v) ^ π/2

(1, w8) for π/2 fg arg ('y) ^ π

(v~\ 1) for π ^ arg (v) ^ 3π/2

(1, v~8) for 3π/2 ^ arg (v) £ 2π

for all uyveC where w1 and v"1 are the complex conjugates of u and
v respectively. Note that / is continuous, onto, and takes 60 into 60.

We will represent the fundamental group π(B, δ0) of B with base
point δ0 as the homotopy classes of continuous mappings σ from C to
B such that σ(l) = δ0. Let a be that element of π(B, δ0) represented
by the continuous mapping a from C to B defined by

a{u) =
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for all u e C. Let b be that element of π(B, b0) represented by the
continuous mapping β from C to B defined by

β(u) = (1, u)

for all u e C. It is well known that π(B, b0) is a free non-Abelian
group on the two generators a and 6. It follows immediately from the
definition of the group operation on π(B, bQ) that the natural induced
endomorphism / * of π(B, b0) satisfies the conditions

/*(α) = aba~ιb~ι

a n d /*(δ) = aΨa-2b-" .

Therefore the group π(B, b0) and the endomorphism / * of this group
satisfy the hypothesis of the group theoretic lemma in the preceding
section. It also follows that the induced endomorphisms f% and /* on
the one dimensional homology group H^B) and on the one dimensional
cohomology group H\B) respectively are the zero endomorphisms — no
matter what coefficient group is used.

We define the space M to be the limit of the inverse system

β < f ... B J— B <r-ϊ— . . . .

M may be described in a more elementary but more tedious way as
the intersection of certain nest of closed tubular neighborhoods of
"figure 8 V in three dimensional Euclidean space.

Ql. M is a continuum
This follows immediately from results in Chapter VIII of [2].
In establishing some of the other properties it will be convenient

to give a more explicit definition of M. The set M is the collection of
all sequences

of points in B such that

for all i. For each ί we define the projection πi from M to B by the
formula

π%(x) = xt

for all x e M. The collection of all subsets of M of the form 7t~l[U)
where ί is any positive integer and U is any open subset of B from a
basis for the topology of M. Moreover, the intersection of any two of
these basic open sets is another. For all i < j we let
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be the mapping from B onto itself obtained by j — i iterations of / .
Let m0 be that point in M defined by

πi(mQ) = b0

for all ί.

Q2. For each i, π% is a continuous mapping of M onto B.
This follows from Corollary 3.9 on page 218 of [2].

Q3. For any open cover ^/ of M there exists a positive integer j
and a finite open cover 5^ of B such that the collection of all πj*[V]
for 7 e 7 refines <%s.

Proof. Let ^/ be any open cover of M. Since M is compact <%/
may be refined by a finite cover ^ of basic open sets. Let F be a
finite set of pairs having first coordinate a positive integer and second
coordinate an open subset of B such that & is the collection of all
π^[N] for (i, iV) 6 i*7. Let j be greater than any of the first coordina-
tes of members of F. Let 5^ be the collection of all [π/]"1 [JV] for
(i, JV) € i*7. Then for each (ί, N) e F we have

Therefore, ^ is the set of all T Γ J ^ F ] for F e f and & refines vs.

Q4. ikί is one dimensional.

Proof. Let ^ be any open cover of M. By Q3 we may take a
positive integer j and a finite open cover ^ oί B such that the collec-
tion of all π j ^ F ] for F e f refines ^ . Since β is a one dimensional
continuum we may take *W~ to be a finite open cover of B which refines
<2S and is of order 2. Now the collection of all πjτ[W] for W e 5^~
is of order 2. The collection of all πjx[W] for We<W is a finite
open cover of M which refines <%S and is of order 2. Therefore, the
continuum M has dimension less than or equal to one. We need only
observe that it contains more than one point to see that it is one
dimensional.

Since M is one dimensional all of the higher groups of M are tri-
vial and we do not mention them further.

Q5. Hλ{M) and H\M) are zero for an arbitrary coefficient group.

Proof. The Cech homology and Cech cohomology satisfy the con-
tinuity axiom (see Chapter X of [2]). Therefore, HX{M) is isomorphic
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to the limit of the inverse system

and H\B) is isomorphic to the limit of the direct system

/* /* /*
H\B) > H\B) > H\B) >

We have already observed that both / and / are the zero homomor-
phisms. Therefore both HX(M) and H\M) are the zero groups.

Q6. M cannot be mapped essentially onto the circle.

Proof. Making use of the fact that M is a one dimensional com-
pact space and H\M) with integer coefficients is zero, we see that Q6
follows immediately from the corollary on page 150 in [5] to Hopf 's ex-
tension theorem.

Q7. The Cech fundamental group π(M, m0) of M with base point
m0 is zero.

Proof. The Cech fundamental group also satisfies the continuity
axiom (see [3]) and agrees with the usual fundamental group on com-
plexes. Therefore π(M, m0) is isomorphic to the limit of the inverse
system.

π(B, 60) ̂ - π(B,b0) ^~ π(B, bQ) ̂ ~

of non-Abelian groups and homomorphisms. We now apply the group
theoretic lemma of the previous section. Suppose there is an element
g other than the identity in this inverse limit. Then g = {gt}Γ.i
where for each i

gt € π(B, £>0)

and /*074+i) = gt. Moreover we may take n such that gt is not equal
to the identity for all i S n. Therefore for any i > n, git has positive
length,

) \y)
(f
\J

and gn has length greater than or equal to 3(i — n). This says that gn

has infinite length, a contradiction.
We have yet to establish that M is not tree-like. For this purpose

we make use of Theorem 1 although we could just as well use Theorem 2.
We construct an essential mapping q of M onto B. For each i, let
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/ ' be the mapping from B to itself obtained by i iterations of /. Note
that for all ί < j

Define the mapping q from M to B by

q(x) = /(x,) .

Actually q — fπ19 but for clarity we use this different notation. Note
that for any ί

Q8. For every positive integer i the mapping fι from B into
itself is essential.

Proof. According to the algebraic lemma of the preceding section
the endomorphism / * of π(B, b0) is an automorphism. Therefore, the
endomorphism (/*)* which equals (/*)* is also an automorphism. Now
since the group π(B, b0) is not zero, the automorphism (/')* is not zero
and the mapping / ' is essential.

Q9. The continuous mapping q from M onto the ''figure 8" B is
essential and therefore M is not tree-like.

Proof. By way of contradiction, suppose that q is inessential. Let
B be the universal covering space of B with projection p. Since the
mapping q from M to B is inessential there exists a continuous map-
ping g* from M to B such that pg* = q .

Let S? be an open cover of q*[M] by open sets of B such that for
any E e & the mapping pE obtained by restricting p to E is a
homeomorphism of E onto the open set p[E] in B. Let W be the
collection of all inverse images under g* of elements of g\ According
to Q3 we may take a positive integer i and an open cover 3^ of B
such that the collection of all πϊx[V] for 7 e f refines ^/.

Define the function c from B to B as follows:

for any x e B and 2
Clearly

for any x e B and 2 e TΓΓ1!^]. Therefore, if c is a continuous function
it will cover /*.
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To show that c is single valued, let x be any point in B and let
z, zr e πjι[x].
Then

Therefore pq*(z) = pq*(zf). By the choice of ί and 5^ we know that
there exists E e g? such that

?*[*Γι[&]] c E.

Therefore q*(z), q*{zf) e E. We also know that p restricted to E is a
homeomorphism. Therefore g*(z) = q*(zf) and we have that c as defined
above is single valued.

It is immediate from the fact that τΐt[M] = B that the domain of
c is J3.

In order to show continuity note that for any x e V e 5^,

where £7 is an element of g* such that

cz E .

Therefore c is continuous on each member of 5^, an open cover of B,
and therefore c is continuous on all of B.

Now we have lifted the map /* from B to B to the map c from
B to the universal covering space of B. Since B is a linear graph the
sub-continuum c[B] of 2? is contractible and hence c is inessential. Since
pc = /* the map /* is inessential, a contradiction of Q8.

Further remarks* Theorems 1 and 2 give us two conditions each
of which is equivalent to saying that a given one dimensional continuum
X is tree-like. We list without proof some other likely characterizations:
(1) X has no non-trivial connected generalized covering space.
(2) X cannot be mapped essentially into the Universal one dimensional
curve.
(3) X is an inverse limit of 2-cells.
Condition (3) leads us to stating another question. First let us say that
a continuum X is disk-like if it is an inverse limit of 2-cells or equiva-
lently if every open cover of X can be refined by one which has nerve
a disk. The tree-like continua are precisely the one dimensional disk-
like continua. Also, those disk-like continua that can be imbedded in
the plane are precisely the continua which can be imbedded in the plane
and do not separate the plane.
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Question. Does every disk-like continuum have the fixed point
property?

Obviously an affirmative answer to this problem would give affirma-
tive answers to the fixed point problem for tree-like continua and for
those sub-continua of the plane which do not separate it.

The continuum M described in this paper gives further insight into
the difficulties of generalizing the definition of the fundamental group.
We may conclude that any generalization of the fundamental group,
which agrees with the usual fundamental group on complexes, and which
also satisfies the continuity axiom cannot distinguish the tree-like con-
tinua from the other one-dimensional continua. This difficulty will be
described more explicitly in another paper which will include the verifi-
cation of condition (1) of this section.

The referee pointed out our lack of reference to the known results
on the fixed point problem for continua which are inverse limits of
w-cells with n Φ 2. We remark that snake-like continua (those which
are inverse limits of 1-cells) have the fixed point property (see [4]) but
there exist cube-like continua (those which are inverse limits of 3-cells)
which do not have the fixed point property (see [1]).
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CHARACTERISTIC SUBGROUPS OF MONOMIAL GROUPS

R. B. CROUCH

1. Introduction* Let U be a set, o(U) — B = λ'w, u ;> 0, where o(U)
means the number of elements of U. Let H be a fixed group. A monomial
substitution y is a transformation that maps every x of U in a one-to-one
fashion into an x of £7 multiplied on the left by an element hx of H.
Multiplication of substitutions means successive applications. The set of
all monomial substitutions forms the monomial group Σ. Ore [5] has studied
this group for finite U, and some of his results have been generalized
to general U in [2], [3], and [4].

This paper determines the structure of the characteristic subgroups
for the case when U is infinite in the cases where normal subgroups and
automorphisms are known. The method used makes clear how corre-
sponding theorems for the case where U is finite might be proved but
does not list these results.

2, Definitions and preliminaries• Let d be the cardinal of the integers.
Let B be an infinite cardinal; B+, the successor of B; U, a set such that
o(U) = B; and C such that d £ C <£ B*. Let H be a fixed group and e
the identity of H. Denote by Σ = Σ(H; B,d, C) the monomial group of
U over H whose elements are of the form

( l ) y

where only a finite number of the hs are not e and the number of x not
mapped into themselves is less than C. Any element of Σ may be writ-
ten in the form

or y = vs where v sends every x into itself and every h of s is e. Elements
of the form of

are multiplications and all such elements form a normal subgroup, ί&e
δcms groups V(By d) = F of I7. The ftε of /̂ are called the factors of /̂.
Elements of the form of s are permutations and all such elements form
a subgroup, the permutation group, S(B, C)~S of ^(JH"; 5, d, C). Cycles
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of s will also be written as (x19 , xn) and ( , x_19 x0, x19 •)- Baer
[1] has shown that the normal subgroups of S(B, C) are the alternating
group, A=A(B, d), and S(B, D) where d <> D <: C. Let E be the identity
of Σ, I the identity of S.

3. Characteristic subgroups of Σ(H; B, d, C), d ^ C < B+. The nor-
mal subgroups of Σ(H; B, d, C) are known [2], [3]. They are classified
first as to whether or not they are contained in the basis group V.

If JV is normal in Σ and JVc 7 its elements are multiplications
with only a finite number of non-identity factors which are contained in
a normal subgroup G of H. The set of all possible products of factors
of all elements of JV form a normal subgroup Gx of H. The group G/Gi
is Abelian and GjG1 is in the center of H/G^

If M is normal in Σ and M ς£ V then Mf)S = PφEi&a normal
subgroup of S. The group JV = M Π V is as above except that G = H.
It becomes necessary to consider the cases where P = S(B, D) with
^ f l ^ C a n d P = A(B, d). When P = S(B, D) then M = JV U P.

If M is normal in Σ, M <£ V, P = A(B, d), Jlf Π F=JV, MIN = A(B, d)
then M - JV U A(B, d).

If M is normal in Σ, M £ V, P - A (B, d), M n F = JV, M/JV ^ A(B, d)
then M = JV U A(B, c?) U L where L is the cyclic group generated by
[β, α](1, 2) with α 2 eG l y aφG λ .

The converses of these theorems are true. That is, if one starts with
the proper subgroups of H and constructs JV or M as above the resulting
group is normal in Σ.

The automorphisms of Σ(H; B, d, C) are known [4]. A mapping θ is
an automorphism of Σ(H; B, d, C) if and only if θ = T+I(s+)I(υ+) where
Γ+, 7(s+), /(„+) are automorphisms of Σ defined as follows. Let T be any
automorphism of H. Then

Let s+ e S(B, B+). Then J ( β + ) is defined by yI(s+) = s+^s*)- 1. Let v+ 6
, B+) if C = cί, v* e V(B, d) if d < C then J ( ϋ + ) is defined by j//(t,+)=

THEOREM 1. If N is a subgroup of Σ(H; B, d, C) contained in the basis
group then JV is characteristic in Σ if and only if JV is normal in Σ,
(hence is as described above) and G, Gλ are characteristic in H.

Proof. Assume JV is characteristic in Σ. Then JV is normal in Σ
and its structure is known. Choose θ = T+ with T arbitrary in the
automorphism group of H and v arbitrary in JV. Then
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vθ = [e, -- , e , e, fftl,e, ---,e,gin,e, *-]T+

= [e, ---,g\,e, - ,e,gΐn,e, •••] .

The elements #ζ must be in G. This shows G is characteristic in H.
Furthermore glgΐ9 ••^ξ>=(flftι • Λn)Γ m ^ s t be in Gx and since #4 •••£• is
arbitrary in G2, Gx is characteristic in ϋ .

Conversely, iί Na V(B, d), N is normal in J , G, Gx are characteristic
in H then JV is characteristic in Σ. To see this let v1 be arbitrary in
JV. Then v1θ~v1TI{s^)I{Ό+) = vJ^+J^+y The non-identity factors of t;2 are
in G and their product in Gx by G, Gx characteristic in iJ. Now vJ(s+} I(υ+) —
(^+)(s+)^2(s+)-1(^+)-1. The effect of I(8+} on ^2 is to permute the non-
identity factors so (^+)(^3)(/y+)~1 is now to be considered with vz in N.
Since G is normal in H in G/Gx is in the center of HjGu ( ^ ^ ( V ) " 1

will be in JV.

THEOREM 2. Let M = ΛΓ U P δe α normal subgroup of Σ(H; B, d, C),
d ^ C < B+, where N is as described above, P = S(j?, D). ΓΛβ^ Λf is
characteristic in Σ if and only if G1 is characteristic in H.

Proof. By an argument similar to that used in Theorem 1, Gx is
characteristic in H.

Conversely, if y = VA is arbitrary in M then

Since Gj is characteristic in £Γ, ι;a belongs to ΛΓ. Now consider

The multiplication f3 is in N since the factors are still in H, and the
product of the factors is still in Gλ since H1G1 is Abelian. The permu-
tation s2 is in P since P is normal in S(B, B+). It is now convenient to
consider two cases. If C—d the permutation s2 is finite and (v+)^3s2(t;+)~1=
(v+)v3v4s2 where the factors of v4 differ from the inverse of those in(#+)
in only a finite number of places. Therefore {v*)vzvA will have a finite
number of factors of the form kjιzkΐ\ If ks Φ kh then A?lβλίgftα, kisΦkai

will be a factor of (v)vzv4. Since ίΓ/Gj is Abelian the product of the factors
is in Gj. Therefore, (v+)v^v4s2 = ι;5s2 belongs to M. lί C > d then (t>+),
^4 have only a finite number of non-identity factors and the same argu-
ment holds. Therefore (v+)v3v4s2 belongs to M.

THEOREM 3. Let M~N[j A{B, d) be a normal subgroup of Σ(H;B,drC),
d <J C < B+. Then M is characteristic in Σ if and only if Gx is charac-
teristic in H.



R. B. CROUCH

Proof. The argument used in the proof of Theorem 1 may be used
to show that Gx is characteristic in H if M is characteristic in Σ.

Conversely, if y = vxsλ is arbitrary in M then

Now v2eN bγ Gλ characteristic in H and v3 will be in ΛΓ by H/G1 Abe-
lian. Since A(B, d) is normal in S(B, B+), s2 belongs to A(B, d). The
factors of v± differ from the inverse of those in v in only a finite num-
ber of places since s2 moves only a finite number of x. Therefore,
{v+)v3v4 eN, s2e A(B, d) and M is characteristic in Σ.

THEOREM 4. Let M1 = N[jA[jLbea normal subgroup of Σ(H;
By d, C), d ^ C < B+. Let L be generated by y — [e, a] (1, 2) mέfe a2 e Glf

a 0 Gλ. Then M1 is characteristic in Σ if and only if Gx is character-
istic in H, and aτ belongs to the coset aGx for all automorphisms T
of H.

Proof. By considering v e JVand θ = T+ we see that G± is character-
istic in H. By considering 7/ = [β, α] (1, 2) of Mλ and Θ — T+ we see that
[e, αΓ](l, 2) must belong to Mλ. This means aτ belongs to aG.

Conversely, if v1s1eM1 then

vlSlθ - v1s1T
+I(s+)I(υ+) = v2s1l(s+)l(υ^) = (v+X

Now âSi is in M1 by Gx characteristic if the product of the factors of vλ

is in Gλ and by aτ in aGx if the product of the factors is in aGλ. The
multiplication v3 has only a finite number of non-identity factors because
v2 has only a finite number of non-identity factors. Since s2 is finite, s2

is a finite permutation and is even or odd as sx is even or odd. There-
fore, v4 has only a finite number of factors different from the inverse of
the factors of (v+). The factors of (v+)v3v4 have their product in Gλ

or aGi according as v3 has its product in Gλ or aGλ. Therefore, if sx was
even s2 is even, vx had the product of its factors in Gλ and so does
(v+)v3v4. If sx was odd so is s2 and vλ had the product of its factors in
aG± and so does (v+)vsv4. That is, M1 is characteristic.

4 Characteristic subgroups of ΣA(H; B, d, d). The normal subgroups
of ΣA(H; By d, d) are precisely those of Σ(H; B, d, d) that are contained
in ΣA(H; Bydyd) [2, p. 210]. The automorphism of ΣA(H; Bf d, d) are
those of Σ(H; Bf d, d) restricted to Σ(H; B, d, d)[4, p. 84].
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THEOREM 5. Let Nbe a subgroup of ΣA(H; B, d, d) contained in the
basis group. Then N is characteristic in ΣA if and only if N is nor-
mal in ΣA and G, Gx are characteristic in H.

THEOREM 6. Let M be a subgroup of ΣA(H; B,d,d), M <£ V(B, d).
Then M is characteristic in ΣA if and only if M is normal, i.e. M =
N \J A, and Gx is characteristic in H.
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EXISTENCE THEOREMS FOR CERTAIN CLASSES
OF TWO-POINT BOUNDARY PROBLEMS

BY VARIATIONAL METHODS

RICHARD J. DRISCOLL

Prefatory remarks. The principal results of this paper are existence
theorems for solutions of two classes of vector differential systems; in
each case the existence theorem is established by variational methods.
In particular, the second system considered is a generalization of a scalar
system, including as a special case the so-called Fermi-Thomas equation,
studied by Sansone [8; pp. 445-450]. In spite of similarities occurring
in the discussion of the two systems considered, the two problems are
sufficiently distinct to warrant separate treatment. Accordingly, we shall
divide the remaining sections of this paper into two parts, in which the
numbering of sections and of displayed material will be independent the
bibliography, however, will apply to both parts.

Matrix notation will be used throughout and all matrices will have
real elements; in particular, a vector u = {u3)9 (j = 1, 2, , n), will be
regarded as an n x 1 matrix. If M is a matrix, M* will denote the
transpose of M, while for a vector u = (u3)9 (j = 1, 2, , n), we define
I u I = (u\ + + ul)1'2. For F(u) a scalar function of the vector u, the
symbol Fu(u) will denote the vector function (FUj(u)) if G(u) is a vector
function {Gt{n))9 (i = 1, 2, , m), of the vector u, then GJu) will denote
the m x n matrix || ΘGJdUj ||, (i = 1, , m j = 1, , n). If M and N
are matrices, the notation M > N is used to signify that M and N are
real symmetric matrices of the same dimensions and M — N is non-
negative. As usual, the symbol C(n) represents the class of finite dimen-
sional matrix functions which are continuous and have continuous deri-
vatives of the first n orders on some given set.

PART I

l Introduction* This part of the paper will be concerned with
vector differential systems of the form

Π ι\ V" = /fat V,V9) , a <x <b ,

y(a) = ylf y(b) = y2 ,
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where f(x, y, z) is an ^-dimensional real vector function of the real scalar
x and the real ^-dimensional vectors y and z. It will be shown that the
system (1.1) has a solution, under the hypotheses H19 H2, Hs, Hδ, of §3
and Hf of § 4. For reasons of convenience, we shall work primarily with
the system

π 2) y" = f(χ>y>yr), a <x <b,
y(a) = 0 = y(b) ,

and show in §4 how a system (1.1) may be reduced to such a system.
The existence proof will use variational methods applied to the

functional

(1.3) I(y, z) = \\\ y'-z\*+\z' -f(x, y, z) f)dx ,

with (y, z) in the class K of function pairs defined below. In § 2 there
are listed some lemmas to be used later. In § 3 an existence theorem
for a solution of (1.2) is established by showing, in effect, that I{y, z)
has a minimum for (y, z) in K, and that this minimum is zero. The
relation between systems of the forms (1.1) and (1.2) is considered in
§ 4, while § 5 contains a comment on a modification of hypotheses.
Finally, § 6 is devoted to an example of a class of problems to which the
existence theorem proved here is applicable.

In what follows, A2 will denote the class of vector functions y(x)
which are absolutely continuous and for which | y'{x) |2 is integrable on
a < x < 6, while K is the class of vector function pairs (y, z) with y(x)
and z(x) in A2 and with y(a) = 0 = y(b).

2. Some useful lemmas. For future reference we collect here certain
auxiliary results.

LEMMA 2.1. Suppose that the matrix fz(x, y, z) exists and is con-
tinuous for a < x < b, all y, and all z. If for each p > 0 the elements
of fz are bounded for a < x < 6, \y\ < p and z arbitrary, then there
are values Kλ = Kx(p) and K2 = K2(p) such that

I f{x, y,z)\<Kλ\z\+ K2, for a <x <b, \y\ < p, z arbitrary.

LEMMA 2.2. If {wm(x)}, (m = 1, 2, •••)> is a sequence of vector

functions of class A2 such that the two sequences \\ \wm\2dx\ and
(Γ& ) I J α )

j \ | ^ml 2 ^r tt^β bounded, then the wm(x) are uniformly bounded on
a < x < 6, and there exists a w(x) in A2 and a subsequence {wm (x)}
such that wm(x) —> w(x) uniformly and w'mj(x) —* w\x) weakly in the
class of integrable square functions on a < x <b.



EXISTENCE THEOREMS FOR CERTAIN CLASSES 93

This lemma is a ready consequence of well-known results for the
Hubert space of real-valued measurable functions whose squares are
Lebesgue integrable on a < x < 6, see, for example, [7; §§32, 99],

LEMMA 2.3. If y(x) is in A2 and y(a) = 0, then

\b\y'\*dx> π* S\v\*dx.

This is a well-known condition on the smallest proper value of the
differential system y" + λ# = 0, y(a) = 0 — y'(b). For an independent
proof see [2; p. 184]; the present inequality follows from (7.7.1) of [2]
by a simple change of variable.

We will also need some results related to non-oscillation of the scalar
differential equation

(2.1) {ψι(x)u\x))r - ψ2(x)u(x) = 0 , a < x < b ,

where ψx is of class C and ψ2 continuous on a < x < b. The equation
(2.1) is termed non-oscillatory on a < x < b if for two arbitrary points
xu x2 satisfying a < x1 < x2 < 6, any solution u(x) of (2.1) vanishing at
xx and at x2 vanishes identically on a < x < b. It is well-known that if
ψx(x) > 0 on a < x < b, then (2.1) is non-oscillatory on a < x < b if and
only if

(2.2) J(u) ΞΞ [\ψ1(;x)uf\x) + ψ2(x)u\x))dx > 0
Jα

holds for all non-identically vanishing u{x) belonging to A2 and satisfying
u(a) = 0 ~u{b). For a proof of this statement see, for example, [5;
Theorem 2.1], where a more general result is proved. Moreover, if (2.1)
is non-oscillatory on a < x < δ, the infimum of J(u) for u(x) in A2 and

u2dx =• 1 is greater than zero, as can be
a

seen from an indirect argument. Indeed, if the infimum were equal to
zero, then there would be a sequence of functions u3 in A2 with Uj(a) =
0 = Uj(b), \ u)dx = 1, j = 1, 2, , and with J{uό) —> 0. One readily

J α (Cb \

verifies that the sequence \ 1 u'fdxί would be bounded, so that, by Lemma
2.2, there would be a u(x) in A2 and a subsequence of {%}, denoted
again by {Uj}, such that u3(x) —* u(x) uniformly on a < x < 6, and u](x)
-*u\x) weakly on this interval. The identity

J(Uj) = J(u) + (Vi(^)[2^W - ur) + (u'j - u'2)]dx + ί&ir2(x)(u2j - u2)dx
Jα J

would then imply that 0 = lim Jίuλ > Jin), contrary to (2.2), since

S 6

u2dx = 1. With these comments one readily estab-
α

lishes the following result.
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LEMMA 2.4. If (2.1) is non-oscillatory on a < x < b, and ψ^x) > 0
on this interval, then there exists an e > 0 such that if h(x) is any
function continuous and satisfying \ h(x) | < ε on a < x < b, then the
equation (ψ^u')' — (ψ2(x) + h(x))u = 0 is non-oscillatory on a < x <b.

3 Existence theorem for a solution of (1 2) In the future sections
we will make reference to the following hypotheses on the real-valued
vector function f(x, y, z):

•Hi fin* V> z ) i s c o n t i n u o u s f o r (x, y , z) i n Ω : a < x < b, \y\ < °°,
\z\ < oo.

H2. The matrices fv and f2 exist and are continuous for (x, y, z)
in Ω.

iϋΓ3. For any p > 0, there exists a K = Kp such that \ dfjdzj | < K
for \y\<ρ, a<x<b, \z\ < oo, (ί, j = l, . . . , n).

iϊ4. For arbitrary p > 0 there exist scalar functions ψλ(x) =
ψ^x p) e C, ψ2(x) = ψ2(^ p) e C with ψ2(x) > 0 on a < x <b, and a
constant N= N(p) such that:

(a) the scalar differential equation (ψ2(%)wΎ — ψ1(x)w — 0 is non-
oscillatory on a < x <b;

(b) the integral inequality

*f(x, y, z)dx > j & [(ψ2 - 1)| y' |2 + ^ | y \>]dx - N
J a

holds for all y(x), z{x) in A2 satisfying y(a) = 0 = y(b) and

[\y'-z\2dx<p .

Hδ. For arbitrary y{x), z(x) in A2, the vector differential system

~ fy(x> y(χϊ> z(χ))w = ° » a <x <b(3.1) w ~ f*(x' y(x>' z

w(a) — 0 = w{b)

has only the solution w(x) = 0, a < x < b.
We now prove the following theorem.

THEOREM 3.1. Under the hypotheses Hλ-Hb there exists a solution
of the system (1.2).

Let {ym(x)f zm(x)}, m = 1, 2, , be a sequence of function pairs of
class K such that I(ym, zm) —• I09 where Io denotes the infimum of I(y, z)
on K. Since {I(ym, zm)} is a convergent sequence, there exists a constant
MQ such that I(ym, zm) < Mo, m = 1, 2, . It will be shown first that
the inequality

(3.2) Γ( | y'm(x) |2 + 2y*(x)f(x, ym(x), zm{x)))dx <M, m = 1, 2, . . .
J
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holds for

(3.3) M = 2MJk , where k = Min (1, ττ2/[4(δ - of}) .

Let vjx) = \fm(s)ds + zm(a)9 where /TO(a?) = f(x, ym(x)f zjx)). Then
Jα

um(x) = «w(ίc) — vm(a?) is in A2, and um(a) — 0, so that by Lemma 2.3,

5 b Γb —2 Γb

α Jα 4(6 — α ) 2 Jα

This inequality yields

(3.4) Mo > k\\\ y>m-Zmf +
Ja

where k is as in (3.3). Since

- vm
\y'n-vn \2dx

y'*vmdx = y*vn

b fb Γb

- 1 yZv'md% = - 1 y%fmdx ,
α Jα Jα

relation (3.2), with M given by (3.3), results from (3.4) and the obvious
inequality

dx > ί&(| y'm |2 - 2yt'vm)dx .
J

write

Jα

Since the sequence \\ \y'm — zm\2dx\ is bounded, we may use H4 to

, ym, zjdx | y'm |2 + ψt\ ym \2]dx - N,

where ψ2(x), ψi(%), and iVhave the properties stated in iί4. This relation
with (3.2) yields

Since {^2{x)nf)r — ψ^u = 0 is non-oscillatory on a < x < 6, Lemma 2.4
implies that there is an r with 0 < r < 1 such that (ψ2^')' ~ (Xlτ)ψιu = 0
is non-oscillatory on α < cc < 6. As 2/m(α) = 0 = ym(b), we then have

and

where r0 = (1 — r) Minβ^^2(a?). Thus, the sequence \\ \yf

m\2dxl is
V Ja )
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bounded, and since each ym(x) vanishes at a and b, the vector functions
ym(x) are uniformly bounded on a < x < b. Moreover,

<2^\y'm\'dx + 2Ϋ\zm -
ja J

<2[\y'm\2dx
Ja

so that the sequence jl |2m |2d#[ is bounded. Finally, with fm(x) con-

tinuing to denote f(x, ym{x), zm(x)), we have

[\z'm\*dx=\b\(z'm-fm)+fm\*dx
Ja Ja

As the vector functions ym(x), (m = 1, 2, •)> are bounded uniformly on
a < x < b, in view of hypothesis Hz and the result of Lemma 2.1, this
latter inequality implies Γ | z'm \2dx < K' + K"\\zm \2dx + 2M0, for suita-

Jo Ja

ble constants K', K". Hence, the two sequence {ym(x)}> {zm(x)} satisfy
the hypotheses of Lemma 2.2, and we conclude that there exist sub-
sequences, which will be denoted simply by {ym{x)} and {zm(x)}, and a
pair of functions y(x), z(x) in A2, such that ym(x) —> y(x) and zm(x) —> z{x)
uniformly on a < x < 6, while y'Jx) -* y\x) and z'm(x) —»z'(x) weakly on
the same interval.

With fjx) as above and f(x) = f(x, y(x), z(x)) we have

I(Vmf *m) = I(V, «) + Il.m + km t

where

Ja

and

Since ym(x)->y(x), zjx)-*z(x) uniformly, we also have fjx)-*f(x)
uniformly on a < x < b. This, and the fact that y'm -> y', z'm -> zr weakly
on the same interval, implies that I3tia —• 0 as m —> oo. As Ilt1Λ > 0, it
follows that
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Io = Km I(ym9 zm) > I(y, z) .

On the other hand, the definition of /0 requires IQ < I(y, z), so that
IQ — I(y> z) that is, (y, z) renders I(y, z) a minimum in the class of
function pairs K.

It follows that for arbitrary τJ(χ)J ξ(χ) in A2 with η(a) = 0 = η(b),
and θ a real parameter, the functional I(y + θη, z + θξ) has a minimum
at θ = 0, and therefore {djdθ)I{y + θη, z + θζ) = 0 for 0 = 0; that is,

(3.5) (*[(»*' - **)(>/ - f) + (**' - /*)(£' - fvη - fzζ)]dx = 0 ,
Jos

where the arguments of /, fyt fz are x, y(x), z(x).
In view of iϊ5, (see [4; pp. 213-214]), for an arbitrary continuous

function g{x), a < x < b, there exists a solution (y](x), ξ(x)) of the dif-
ferential system

V' - ξ = 0 ,

f - Λ(»»»(«)»2:(^)))? - L(v> v(χ)> z(χ))ζ = 0(®)» α < a? < b >

V(a) - 0 - η(b) .

[z*f — /*(%> V> z)]g{x)dx = 0 for arbitrary g(x) continuous on

a

a < x <b, and consequently z'(x) — f(x, y(x), z(x)) = 0 a.e. on the same
interval. Relation (3.5), with η{x) chosen identically zero on a < x < 6,

ζ*{yf — z)dx = 0 for arbitrary f in ̂ 42, and hence y\x) = «(a?)
a.e. on α < x < b. From the relations z(x) = «(α) + \ /(s, ̂ /(s), ^(s))cίs,

z(s)ds, it then follows that y(x) and «(α?) are of class C, and
a

that yf(a?) = (̂a?), z\x) = /(α?, ^/(x), «(a?)) for α < α? < 6, so that j/(a?) is of
class C" and satisfies (1.2).

4. Existence of a solution of (l. l) For the system

^ ^ y" = /(», #,#')> α < a? < b ,
i/(α) = Vi 9 vΦ) = 2/2 >

let JP(«J, y, ̂ ) ΞΞ / ($, 2/ + λ(a?), z + λ'(a?)) — λ"(a?), where X(x) is any vector
function of class C" on a < x < b satisfying λ(α) = yl9 λ(δ) = y2. Then
(1.1) is equivalent, with u = y — λ, to

,. jx u" = F(a?, te, w') , α < a? < b ,

tt(α) = 0 = w(6) .

This leads us to formulate the following hypothesis.
H?. There exists X(x) of class C" on a < x < b with λ(α) = ylf

χ(b) = y2, and such that for arbitrary p > 0 there exist scalar functions



98 RICHARD J. DRISCOLL

ψλ{x) = ψ^x; p), continuous on a < x < 6, ψ2(x) = ψJfa] p) of class O on
a < x < b with ψ2(x) > 0, and a constant N = N(p) such that:

(a) the scalar differential system (ψ2(x)^fY — ψλ(x)w = 0 is won-
oscillatory on a < x < b

(b) ίfee integral inequality

*f(χ, y + x,z + \')dx > [ [(ψ2 - 1)| 2/' I2 + Ψ Ί | » | 2 ] ώ χ - N
Jα

/or all y(x)y z(x) in A2 satisfying y(a) = 0 = y(b) and

[b\yr -z\2dx <ρ .
Ja

THEOREM 4.1. Under hypotheses Hlf H2J H3, iϊf, H5, the system (1.1)
has a solution.

Let F(x, y, z) = f(x, y + X(x), z + X'(x)) — X"(x), where X(x) is the
function described in Hf. Clearly, F(x, y, z) satisfies Hlf H2, H3. Since
/ satisfies Hf, we have

*f(x, y + X,z + X')dx > \\(ψ2 - 1)| y' | 2 + ^ | y \>]dx - N
Ja

f o r a r b i t r a r y y ( x ) , z(x) s a t i s f y i n g y(a) = 0 = y(b) a n d I \yf — z\2dx < p .
Ja

Hence, for such y(x), z(x) we have

2[by*F(x, y, z)dx > [[(ψ, ~ l)\yf (2 + ψ^y^dx -N- 2Ϋy*X"(x)dx
Ja Ja Ja

for any ε > 0. But by Lemma 2.4, ε can be chosen so small that
(ψ2w')r — (ψi — έ)w = 0 is still non-oscillatory on a < x < b. Thus,
F(x, y, z) satisfies iJ4. Finally, one easily verifies that if f(x, y, z) satis-
fies Hδ then F(x, y, z) satisfies Hδ. Thus, whenever f(x, y, z) satisfies
the hypotheses of Theorem 4.1, the corresponding function F{x, y, z) of
(4.1) satisfies the hypotheses of Theorem 3.1, so that the result of
Theorem 4.1 is a direct corollary of Theorem 3.1.

5 A comment on altered hypotheses* We note here that hypothesis
H± is implied by the more restrictive but simpler hypotheses H[ and H".

H\. There exists a constant C such that

\ y*(f{x, y, z2) - f(x, y, z1)) I < CI y 11 z2 - zx \ , for (x, y, z1), (x, y, z2) in Ω.

H". There exist scalar functions ψ^x), continuous on a < x <b,
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and ψ2(x) > 0 of class Cf on a < x < b, and a constant N such that:
(a) the scalar differential system (ψ2(x)w'Y — ψi(x)w = 0 is non-

oscillatory on a < x <b;
(b) the integral inequality

2\by*f(χ, y, y')dχ > Γ [(ψ2 - 1)1 y' I2 + ψJ y \2]dx - N
Ja Ja

holds for all y(x) in A2 satisfying y{a) — 0 = y(b).
To see that HA is implied by H[ and H" (assuming, of course, H19

H2), for y(x), z(x) in A2 and ε > 0 we write,

(x, y, yf)dx + 2^y*[f{x, y, z) ~ f(χ, y, yf)]dx
Ja

, y, y')dx - 2cΓ| y 11 y' - z \dx
Ja

, y, y')dx - CeVlyfdx - {Clε)[\y'-z\2dx
J a Ja

> [ [(f 2 - 1)1 V' I3 + (tx - Ce)| y \ψx - [(Cp)ls + N]
Ja

Cb

for all y(x), z(x) in A2 with y(a) = 0 = i/(6) and I \y' — z \2dx < /?. Since
Jα

ε can be chosen so small that (ψ2w')f — {ψλ — εC)w = 0 is still non-oscil-
latory on a < x < b, we see that H{ and H" imply ίf4.

It is to be noted that if the elements of fβ(x, y, z) are bounded for
(x, y, z) in Ω, then f(x, y, z) satisfies both H3 and H'4.

6. An example* Let f(x, y, z) = g(x, y)(l + zψ\ where z is a scalar
and g(x, y) is a scalar function of the scalars x and y satisfying the
conditions :

(a) g(x, y) and gy(xt y) are continuous for a < x < 6, —«> < ^ / < o o ;

(6.1) (b) gy(x, y)>0 for a<x<b, - c o < y < co

(c) ίAβre βxtsίs α constant A > 0 sw& £&α£ i/ | /̂1 ;> A
, a <x <b .

One may verify that f(x, y, z) satisfies hypotheses Hlf H2, Hz, Hf,
and JBΓ5.

PART II

l Introduction* Sansone [8; pp. 445-450] has proved the existence
and uniqueness of a solution of the scalar differential system

y" = <f(x)φ(x, y) , 0 < x < oo ,

(1.1) V(0) = y0, tf(+oo) = 0 ,

y e O on 0 < α ? < c o ,
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under assumptions which are related to hypotheses H^-HQ (see §§ 2, 7)
of this paper. The product ψ(x)φ(x, y) appears in (1.1) to facilitate
stating the hypotheses in such a way as to include the Fermi-Thomas
system (see [8; p. 445]),

(1.2) y -% y ,
y(0) = 1 , lim y(x) = 0 .

X—>oo

In this paper we consider solutions of a vector differential system, for
which we prove an existence and uniqueness theorem which includes the
results of Sansone.

The proof given in [8] may be considered in two parts. In the first
part the author proves, in effect, that under his hypotheses the system

y" = ψ(χ)φ(χ, y) , 0 < x < oo ,

(1.3) 7/(0) = y0 , y(x) bounded on 0 < x < oo,

y e C" on 0 < # < o o ,

has a unique solution. Essential to Sansone's proof of this result is the
fact that his hypotheses guarantee a local uniqueness property for solu-
tions of

(1.4) y" = ψ(x)φ(x, y)

that is, under his hypotheses, (1.4) has for 0 < x0 < oo exactly one
solution satisfying y(x0) = yOf y'(x0) = y[. The hypotheses of the present
paper, however, are not strong enough to imply such local uniqueness,
as will be shown by an example in §2. In the second phase of his
proof, Sansone appeals to hypotheses which are designed to guarantee
that the bounded solutions of (1.3) actually satisfy (1.1). In this paper
we make a similar step, but again our hypothesis is weaker than the
corresponding ones in [8], as will be made clear in §7.

Sections 2-5 of this paper present an existence and uniqueness
theorem for a solution of the vector generalization of Sansone's system
mentioned above. This proof is primarily by variational methods, and
the solutions are shown to be characterized by an extremal property.
In § 6 there is given a different characterization of these solutions, while
§7 contains several theorems relating to the asymptotic behavior of
solutions. Finally, §8 is devoted to properties of solutions of (2.1) as
functions of initial values.

2. Formulation of the problem. Let g{x, y) be a real-valued scalar
function of the scalar x and the ^-dimensional vector y = (y3). We will
denote by gy(x, y) the vector (gυ (x, y)), and consider the problem of
solving the vector differential system
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^21) v"(χ) = Sv(%> v(χ)) > ° < χ < ° ° »
2/(0) = y0 , #(#) bounded on 0 < a? < co ,

where j/(ί») e C on 0 < # < oo and y(x) e C" on 0 < a? < oo. We will
suppose that g(#, 1/) has the form g(x, y) = ψ(ίc)G(x, 3/), where Λ/Γ(O?) and
G(x, y) are real-valued functions which satisfy the following hypotheses:

Hλ. G(x, y) is continuous in (xfy) on Ω: 0 < x < oo, | y \ < oo,
and G(x, 0) = 0 /or 0 < x < co.

£Γ2. Gy(^, ̂ /) ea?ίsίs and is continuous in (x, y) on Ω.
Hz. y*Gy(x, y) > 0 for (x, y) on Ω.
H4. 7]*[Gv(x, y + η)- Gy(x, y)] > 0 for (x, y), (x, rj) on Ω.
Hδ. ψ(x) is continuous and positive for x > 0 and integrable on

any finite closed interval 0 < x < A.
It is to be noted that g(x, y) may satisfy Hx-Hh without the equa-

tion yn = gy(x, y) having the local uniqueness property mentioned in § 1.
Indeed, if we take

, y) = \W ' ^ ° '
( 0 , y < 0 ,

so that

( 0 , y<0,

it is easily verified that g(x, y) satisfies H^-H^ with ψ(x) Ξ 1. However,
the function yx(x) ~(x~ xQ)\ x0 > 0, satisfies the equation y"(x) — gy(x, y{x)),
as does the function y2(x) = 0. Since we have yλ{xQ) — y2(x0), vΊi^o) — Vίi^o),
it follows that the local uniqueness property does not obtain here.

A few consequences of the above hypotheses are worthy of com-
ment. First, observe that H2 and Hz imply Gy(x, 0) Ξ= 0 for 0 < x < co.
Also, since G(x, 0) Ξ= 0 by H19 and

G(x, y) = [\JLG(X, sy)ds] - [y*Gy(x, sy)ds - \8-\*u*Gv(x, sy))ds ,
JoLds J Jo Jo

we have by Hz that G{x> y) > 0 on Ω. Moreover, if y(x) is continuous
on 0 < x < A, A > 0, and 2/"(#) exists and satisfies y"(x) —gy(x, y(x))
for 0 < a? < A, then # e C on 0 < x < A. To see this we write

yf(x) = yf(A) — \ y"{t)dt = y'{A) — 1 ψ(t)Gy(t, y(t))dt , 0 < x < A .
Jz Jx

Hence, limx^oy
f(x) exists. This, with the fact that y(x) is continuous

for 0 < x < A, implies yf(0) exists and that limx^oy
f(x) = y'(0).

Next we note that if G(x, y) satisfies Hλ and H2, then H4 is equiva-
lent to the statement that G(x, y) is convex in y; that is,
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G(x, y2) - G (x, yx) - (y2 - y1)*Gy(xf yλ) > 0

for arbitrary (x, y^)> (x, y2) in Ω. Finally, we note that the condition
G(x, 0) ΞΞΞ 0 of Hλ is no essential restriction, since if G(x, y) satisfies
H±-Hb with the exception of this condition, then the function Gx(x, y) =
G(x, y) — G(x, 0) satisfies Hx-Hb and presents the same differential system
(2.1).

3* Some properties of solutions* In addition to the system (2.1),
we will consider also the system

(3 β l) y"(x) = gυ(x, y(x)), 0 < a < x < b ,

y(a) = Va 9 vΦ) = y*,

where y is of class C" on a < x < b, with the obvious modification in
case a = 0. For these systems we prove the following theorem.

THEOREM 3.1. Under hypotheses H^H^ the systems (2.1) and (3.1)
have at most one solution.

We will give the proof for (2.1); the proof for (3.1) is similar. If
yλ{x) and y2(x) are two solutions of (2.1), let η(x) = yλ{x) — y2{x). By H4

and Hδ we have for 0 < x < oo,

0 < η*[gy(x, y2 + V)- 9y(x> tfi)l = V*[9v(*f Vi) ~ Ovfa %)] = ΨΨ »

and hence,

[X ψ{t)ψ{t)dt > 0 , 0 < x < oo .
Jo

Consequently, upon integration by parts, we get

η*{x)η\x)> [X\η'\2dt> 0 .
Jo

Since (| η |2)' = 2η*rf and (| rf ψ = 2| ^ |2 + 2 ^ ' , it then follows that

| 2 ) ' > 0 , and ( | ^ ) | T > 0 , 0 < x < oo .

Consequently, either rj(x) = 0, 0 < x < oo, or else | η(x) \ —> oo as # —> oo
Since the latter is impossible, (2.1) has at most one solution.

The following result will be of use later.

LEMMA 3.1. If g(x, y) satisfies Hx-H^ and y(x) is a solution of
I y' \2dx < oo, then y(x) is

0

bounded on 0 < x < oo.
If y(x) satisfies y" = gv(x, y\ then, since (| y \2)" = 2| »f |2 + 2y*y" =

2| /̂f |2 + 2y*gy(x, y) > 0, we know that either there is an xx such that
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? / | Ξ 0 for x > x19 or else there is an x2 such that | y \ ψ 0 for x > x2.
In the latter case we have

\y\\y\' - v*y' > % > %*,

and

i y H y i " - i v \ \ y * y " ) + {\y f \ y f I2 - 0 / V ) 2 ) > 0 , x > χ2,

since y*y" = y*gy(x, y) > 0. Hence, either 12/1' < 0 for # > a?a, in which
case l i m ^ J y(x) \ < \ y(x2) |, or there is an a > 0 and an #3 > x2 such that
1/ Γ > OL > 0 for x > xz. In this latter case, for x > xz we have

I y 11 y'\ > y*y} = 11/11 y Γ > α| y I, so that 11/' j > α: > 0 and consequently

ί | 2/' |2(2# = oo. Since this is the only case in which y(x) would be un-
. 0 Coo

bounded, we conclude that if y(x) is unbounded then I | yf \2dx = oo.
Jo

4<> A preliininary existence theorem* In what follows I(y; a, b) will
denote the functional

I(y; a, b) = Γ [| y* |2 + 2g(x,ly)]dx , V&) in iΓ(α, 6) ,

where if (α, &) is the class of absolutely continuous vector functions y(x)
with I y'{x) |2 integrable on a < x < b, and satisfying y(aj = ί/α, y(b) = /̂δ.
We prove the following result.

THEOREM 4.1. If g(x, y) satisfies hypotheses Hϊ~H5f then for any

a, b satisfying 0 < a < b, the system (3.1) has a unique solution. More-

over, this solution is a unique minimizing function for I(y;atb) in

the class K(a, b).

By H5 and the fact that g(x, y) > 0, we see that I(y, a, b) > 0 for

y in K(a, 6). Let J(α, b) denote the infimum of I(y; a, b) for y in K{a, 6),

and let {ym{x)} be a sequence of elements of K(a, b) such the I(ym; α, 6) —>

J(α, 6). As #(#, 3/TO(α0) > 0 on a < α? < b, we have

I y'm \2dx = /(ί/TO; α, 6) - 21 flf(a;, yjdx < I(ym; α, 6) ,

a Ja

I y'm fdx < iV for m — 1, 2, .

Moreover, for a < x < δ,

(b - a)\*\y'»
Jα

*dt ,

so that Iyjx)-ya\<[(b-~a)N]^\ and hence |yjx) | < |ya\ + [(6 -
Consequently, we may use Lemma 2.2 of Part I to conclude that there
is a subsequence, which we will denote again by {ym(x)}, and a function
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y(x) in K(a, &), such that ym(x) —> y(x) uniformly on a < x < δ, and
Vm(χ) —* V\χ) weakly on this interval.

From the identity

; a, b) = Γ [| y'm -y'\2 + 2(g(x, yM) - g(x, y))
Jα

+ 2(y'm - y')*y']dx ,

and the fact that ym(x) —> y(x) uniformly on a < x < b while y'm(x) —> y'(x)
weakly on this interval, one obtains the lower semi-continuity relation

ϊ(α, b) = lim I(ym; a, b) > I(y; a, b) .

Since the definition of ΐ(α, b) requires that /(α, b) < I(y; α, 6), we see
that T(a, b) = 7(τ/; α, &); that is, τ/(x) minimizes I(y; α, 6) in the class
K(a, b).

It follows that if f](x) is absolutely continuous with Ύ](a) — 0 = 37(6)
and I η\x) |2 is integrable on a < x < b, and Θ is a real parameter, then
I(y + θη; a,b) has a minimum at # = 0. From this it follows that
(d/dθ)I(y + θη\ a, b) = 0 at (9 = 0; that is,

In particular, this last equality holds for arbitrary η of class C" on
a < x < b with η(a) = 0 = ^(6) = 5y'(α) = ^y'(δ), and for such an η inte-
gration by parts leads to

(4.1) jV*[:*/0*0 - J[<foj/y(*> »(ί))dί]d* = 0 .

By the fundamental lemma of the calculus of variations, there exist
constant vectors ξx and ξ2 such that

y(x) = [Xds [gy(t, y(t)) dt + ξxx + ξ2 , a < x < b .
Jα Jα

Therefore, y"(x) exists and satisfies

y"(x) = gy(x, y(x)) , a < x < b ,

with the understanding that if a = 0, then #"(#) may fail to exist at
x = 0. Since #(α) = 2/α, 3/(6) = ΐ/δ, it follows that y(x) satisfies (3.1).
The uniqueness of this solution follows from Theorem 3.1. Moreover,
since the above argument shows that any function of class K(a, b) that
minimizes I(y; α, b) is a solution of (3.1), it follows that the above deter-
mined y{x) is the unique minimizing function for I(y; α, b) in K(a, b).



EXISTENCE THEOREMS FOR CERTAIN CLASSES 105

5. An existence theorem for a solution of (2Λ). In what follows,
K will denote the class of absolutely continuous vector functions y(x)
with I yr |2 integrable on 0 < x < oo and satisfying y(0) = yOt I(y 0, oo)< OO ,
where

o
; 0, oo) =

We now prove the following result. .

THEOREM 5.1. Under hypotheses Hλ-H6 the system (2.1) has a unique
solution] moreover, this solution is a unique minimizing function for
I(y; 0, oo) in the class K.

Let {ym(x)}9 m = 1, 2, , be a sequence of functions in K such that

I(yml 0> °°) —* £ where 7 denotes the infimum of I(y; 0, 00) for y in if.

Then the non-negativeness of g{x> y) implies that the sequence \\ \y'm \2dx I
(Jo )

is bounded, and since ym(0) = y0 for every m, as in the proof of Theorem
4.1, the ym(x) are uniformly bounded on each finite interval. Hence, by
Lemma 2.2 of Part I, there is a subsequence, say {yjx)} again, and an
absolutely continuous function y(x), such that on each finite interval
Vtai®) —* y(χ) uniformly, and y'm{x) —* y\x) weakly. Now for any A > 0
we have I{ym) 0, 00) > I(ym; 0, A); moreover, as in §4 we have

I(ym; 0, A) - I(y; 0, A) > 2\A[(g(x, ym) - ff(a?, »)) + (y'n - y')*V']dx
Jo

and consequently lim mίm^I(ym; 0, A) > I(y; 0, A). Hence

/ - lim I(ym; 0, 00) > I(y; 0, A) , A > 0 ,

and finally,

/ > /(y; 0, 00) = lim I(y; 0, A) .

In particular, this latter relation implies that y(x) is in if, and in view
of the definition of 7 we have I(y; 0, cx>) > /, so that 10/; 0, CXD) = J.
That is, y(x) minimizes I(y; 0, oo) in the class K.

Now on any finite interval 0 < x < A, the thus determined y(x)
must coincide with the unique vector function which minimizes I(y 0, A)
in the class iΓ(0, A) of curves joining (0, yo) and (A, j/(A)), for otherwise
one could piece together a curve which would give I(y;0, oo) a smaller
value than does t/(α?). By Theorem 4.1 it then follows that y(x) satisfies
y"(x) = gy(x, y(x)) on 0 < x < A, where A is arbitrary, and consequently
y"(x) — gv(x, y{x)) on 0 < x < oo. Since I(y; 0, oo) is finite, Lemma 3.1
implies that y(x) is bounded on 0 < x < co and therefore is a solution
of (2.1). The uniqueness of this solution follows from Theorem 3.1,



106 RICHARD J. DRISCOLL

Inasmuch as we have actually shown that any y(x) that minimizes
I(y, 0, oo) in K is a solution of (2.1), the uniqueness of y(x) as a mini-
mizing function follows from its uniqueness as a solution of (2.1).

6. A further characterization of solutions of (2 1)

THEOREM 6.1. Suppose that hypotheses Rx-Hh are satisfied, and
yoo(x) is the unique solution of (2.1) guaranteed by Theorem 5.1. //,
for a given vector, ξ, y = yN{x, ξ), 0 < x < N, is the solution of

(6.1α) y" = gy(x, y(x)) ,

(6.16) 0(0) - y0 , y(N) - ξ , 2SΓ = 1,2, .--,

^(tf, ξ) —» ί/oo(̂ ) αncZ ^(cc, f) —• 2/L(#) uniformly on each subinterval
0 <x<A.

We will suppose in what follows that the definition of yN(x, ξ) has
been extended so that yN{x, ξ)—ξ for x>N. The inequality (| yN(x9 ξ) |2)">0
and the end conditions (6.1b) then imply that

(6.2) \ y N ( x , ξ ) \ < M ξ i x ( \ y 0 \ , \ ξ \ ) , 0<x<™, J S Γ = 1 , 2 , . . . .

Moreover, the identity

(6.3) y'N(x, ξ) - j\yM, t)~Vo

0 < x < A , iV> 4̂ ,

shows that the sequence {| y'N(x, ξ) |} is uniformly bounded on 0 < x < A.
Consequently, the sequence {yN(x, ξ)} is uniformly bounded and equi-
continuous on any finite interval, so that we may select a subsequence
{yπ {x, £)} which converges uniformly on any finite interval to a continu-
ous function y(x). From (4.1) it follows that if η(x) is of class C" on
0 < x < oo, and η(0) = 0 = >/(0) = τf(A), η(x) = 0 for x > A, then

8\[θv(t9 V*p, ξ))dt]dx - 0 , N> A .

Since yN(x, ξ) —> y(x) uniformly on 0 < x < A, we then have

As before, application of the fundamental lemma of the calculus of vari-
ation yields the result that y"(x) exists and y" = gy(x, y) for 0 < x < A.
Since A is arbitrary, it follows that yn(x) = gy(x, y(x)) on 0 < x < CΌ .
Moreover, y(0) = y0, while the relation (6.2) shows that y(x) is bounded
on 0 < x < oo, so that in view of Theorem 5.1 we have y(x) = y^x).

Now for 0 < x0 < oo, let η be any accumulation point of the bounded
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sequence {yN(xQ, ξ)}, and let a subsequence {yN(xύf ξ)} be chosen such
that yN.(x0,1) —> V- Then, as before, the sequence {yN{(x, ξ)} is uniformly
bounded and equicontinuous on any finite interval, so that we may select
a subsequence which approaches y^(x) on 0 < x < oo. Consequently, the
sequence {YN(xQf ξ)} has only one accumulation point, namely η = y^x^),
from which it follows that yN{x, ξ) —• yjx) for 0 < x < oo.

With ζN{x) — yN(x, ξ) — y^x), as in the proof of Theorem 3.1 we
have that (| ζN{x) | 2)' > 0, 0 < x < N. This implies that for any A > 0
and N > A we have | ζN(x) \ < \ ζN{A) | on 0 < x < A, and thus y^(a?, ξ) ->
2/̂ (0?) uniformly on 0 < a? < ^4.

The fact that #^(#, ξ) —> ?/̂ (ίc) uniformly on 0 < OJ < A now follows
from (6.3), and the corresponding identity obtained by replacing yN(x, ξ)
by yjx).

7Φ Asymptotic behavior of solutions of (2Λ). At this point we
introduce the following hypotheses:

H6. For each c > 0 there is an xc > 0 and a Ψ(x, c) > 0 with x¥(x, c)

integrable on every finite subinterval of xc < x < co, I χψ(χ, c)dx = oo,

and such that for x > xc, \y\> c we have y*gy(x, y) > Ψ(x, c).
H7. If y(x) is in C and \y(x)\> c> 0 for 0 < α ? < o o , then

I(y(x);0, oo) = oo.
We have the following result.

THEOREM 7.1. If in addition to H^H^, either Hβ or H7 is also
satisfied, then any solution of (2.1) approaches zero as x—> oo.

If y(x) is a solution of (2.1), then (\y\2)" = 2 » V + 2\y>\2 > 0.
Since y(x) is bounded on 0 < x < oo, it follows that (\y\2Y < 0, so that
either | y(x) | is bounded away from zero or else y(x) —• 0. If H7 is
satisfied then, in view of the fact that I(y(x); 0, oo) is finite for y(x) a
solution of (2.1), it follows that \y(x)\ cannot be bounded from zero;
that is, y(x) —* 0.

Suppose now that Hβ is satisfied. As was noted in the preceding
paragraph, (| y |2)' is non-decreasing and non-positive, so that lim^^d y | 2)'
exists. This limit is zero, since \y\2 is non-negative, and hence

jy^y' = 0. This fact leads to the following relations,

-2y*{x)y\x) = \(\y\*)"dt = 2^\y*y" + W\2)dt ,

-2y*(x)y'{x) = 2^(y*(t)gy(t, y{t)) + | y'{t) γ)dt ,

-y*(χ)y'(χ) > \"y*(t)gy(t, y(t))dt.
Jx

Integration now yields
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±-\y(χ)I2 - \
Δ Δ

and hence

> I ds \ y*gydt .

Finally, upon integration by parts we obtain

1 Γ°° r oo ΓA

~\y(x) \2>A\ y*gydt - x\ y*gydt + I sy*(s)gy(s, y(s))ds .
2 JΛ Jx Jx

If there is a c > 0 such that | y(x) \ > c on xc < x < oo , then by HQ

it follows that for all x and A satisfying xc < x < A < co

> \AsΨ(s, c)ds - x\~y*gy(t, y(t))dt .
Js Jα

But this implies that I sΨ(s,c)ds < oo, contrary to assumption. Thus,
Jx

there is no c > 0 such that | y(x) \> c on an interval of the form xc <
x < oo, and since | y(x) \ is non-increasing it follows that | y(x) | —> 0 as

In connection with the comments in § 1 of this paper, it is to be
noted that the hypotheses used in [8] to establish the analogue of our
Theorem 7.1 correspond to the assumption that the Ψ(x) of H6 satisfies

Ψ(x)dx = CXD , instead of the weaker requirement made here.
0

For the next two theorems we will make use of the following
hypothesis.

H8. There exists a function φ(x) such that

1 9 y ( % , y i ) - gy(%,y*)I < Φ ( % ) \ y * - y i \ ,
for 0 <X < oo, I yχ I < oo , I y2 | < oo ,

where φ(x) > 0, xφ(x) is integrable on any finite subinterval of 0 <

S oo

xφ(x)dx < oo.
0

We prove the following theorem:

THEOREM 7.2. If g(x, y) satisfies Hlf H2, Hδ, H8, and gy(x, 0) = 0,
and if a is any constant vector, then there is a unique solution y(x)
of y" = gy(x, y) for which y(x) —> a as x —> oo.

Let G(x) = I tφ(t)dt. Imitating Hille [3; p. 238], we consider the
JX

following successive approximations corresponding to a given vector α,

yo(x) = a , 0 < x < oo .

yk(x) = a + \ (t — x)gy(ty yk-1(t))dt , 0 < x < oo .
Jx
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We will show by induction that for 0 < x < oo ,

(a) yk(x) is defined;

PA) (b) | Λ W ^ »«.,(») [ < | α i » < l i

W e h a v e | yx(x) — yQ(x) 1 = 1 (t — x)gv(^ a ) d t . T h e i n t e g r a l h e r e e x i s t s

since on x < t < oo we have 11 — x \ \ gy(t, ά)\ <t\ gy(t, a) \ < tφ(t) \ a |,

which is integrable on x < t < oo. Moreover,

I Vi(x) ~ ylx) I < I a I ̂ tφ(t)dt = I a

so that (7.1) is satisfied for k = 1.
Suppose (7.1) is true for & = 1, 2, , N — 1. Then ^ ( # ) is defined,

since | gy(t, yN-x{t) \ < Φ(t) \ yN^(t) |, where yN-.λ{t) is bounded on 0 < t < oo.
Moreover,

\ (t — x)(gy(t, yN-τit)) — gy(t, yN_2(t)))dt
Jx

Since GN~\t) is bounded, all the integrals above exist. Hence,

- v»-i(χ) I < ^ ί τ i

Now yN{x) - a^{yι- y0) + (i/2 — 2/1) + + ( ^ - ^ - 0 , and the
series Σ*Γ-i 12/*(̂ ) — 2/*-i(̂ ) I converges uniformly on 0 < x < oo by (7.1b).
Hence y(x) = ΠmiVr_>0O?/Λr(x) exists moreover /̂(̂ ) is continuous on 0 < x < oo
and satisfies | y(x) \ < \ a | exp {G(x)}. Therefore | y(x) \ is bounded on
0 < x < oo, and iZ"8 with the uniform convergence of {yN(x)} on 0 < x < oo

(ί — x)gy{ty y(t))dty so that

y"(x) = flfy(a?, 2/(»)) , 0 < $ < co ,

lim y(x) = α .

If Γ(a?) satisfies Y"(x) = gy(α;, Γ(α )) on 0 < a? < oo and Y(x) -> /S

as x —> oo, then the integral I (ί — x)gy(t, Y(t))dt, 0 < x < oo, exists

and 3?(a) Ξ Γ(a ) - β - f°°(ί - aΓ)^(*, Y(t))dt is such that ^;(a;) = 0,

0 < x < oo, and r;(aθ -^0 as x -> oo. Hence, ??(&) = 0 and Γ(x) = /3 +

1 (ί — ^) ĵ/(ί, Y(t))dt. With #(#) as above we then have
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I y(x) — Y(x) I = a — β + I (ί — x)[gy(ι

-Y{t)\dt,

so that by a simple modification of Gronwall's lemma, (see [1; p. 35]),
it follows that

I y(x) - Y(x) I < I a - β | exp {G(x)} .

If β = a then Y(x) == y(x), which proves the uniqueness of solutions of
y" = gy(χ, y) with given limit as x —* oo. Moreover, | y(x) — Y(x) \ <
I α — β I exp {G(0)}, so that we have the following corollary.

COROLLARY 7.1. The solution y(x) described in Theorem 7.2 is a
continuous function of a = 2/(°°).

We now prove the following theorem on the order of growth of
solutions.

THEOREM 7.3. If g(x, y) satisfies Hlf H2, Hδ, H8, and gy(x, 0) = 0, and
if y(x) satisfies y" = gy(x, y) on 0 < x < oo, then ΎJ = limx^l3Oy\x) exists
and is finite, cmeZ /̂(o?) = #[)? + o(l)].

Note the H8 implies | gy{x, y) \ < φ(x) \y\, which is all that is needed
here. If y(x) satisfies y" = gy(x, y), then following Bellman [1; p. 114]
we write

y(x) = y(0) + xy'(0) + \*(χ - t)gy(tf y(t))dt .
JO

Hence, for x > 1,

I y(x) I < x(\ y(0) \ + \ y'(0) |) + x[φ(t) \ y(t) \ dt
Jo

or

1 v(%) 1
X

Therefore, by Gronwall's lemma, (see [1; p. 35]),

< (I v(0) I + I y'(0) I) + \*tφ(t)ίyψ±dt.
Jo t

^ < (12/(0) I + 12/'(0) I) exp [^(t)dt} ,

and hence there is a constant M such that

I y(x) \<Mx , x > 1.

Now for x > 1 we have
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so that 1 I gy(t, y(t)) \ dt exists. Since
Jo

V'(x) = V'(0) + [gy(t, y(t))dt ,
Jo

we have that y\x) -~*y] as x —> oo, where

V =

The final equality in the theorem is a ready consequence of this finite
limit of y\x).

8» Behavior of solutions of (2Λ) with respect to initial values* We
continue to suppose here that Hi~H5 are satisfied, but not necessarily
any other hypotheses. Let yx{x), y%{x) be two bounded solutions of y" =
gy(x, y) on 0 < x < oo, and set η(x) = y1(x) — ya(α0 Then by Hif we have
ψη" > 0, so that (| η \ψ = 217?; |2 + 2^*)y" > 0. Since )y(̂ ) is bounded,
we must have | η(x) \ non-increasing in particular, | η(x) | < | η(0) | on
0 < x < oo. Suppose now we denote by y(x a) the unique bounded
solution of y" = gy(x,y) which satisfies 2/(0;α) = α. Then /̂(α α) is
continuous in x and a jointly, as may be seen from the inequality

a) - y(x, a)\<\y(x;a) -y(x;a)\ + \y(x;a) ~y(x;a)\,

<\a — a\ + \y(x;a) — y(x;a)\ .

Moreover, for any A > 0,

(8.1) y\x a) - j [ » ( 4 «) ~ »(0 a) - ^ds^gy(t, y(t α))dί] ,

so that /̂'(a; α) is also continuous in x and a.
We turn now to the question of differentiability of solutions with

respect to initial values. The derivation of our results will involve the
use of a lemma, the proof of which is based on certain theorems due
to W. T. Reid. In [6], Reid has discussed a class of non-oscillatory
linear matrix differential equations which includes as a special case the
matrix equation

(8.2) U" = P(x)U, a<x < oo

where P(x) is a non-negative definite symmetric matrix with continuous
real-valued elements. As shown in Theorem 6.1 of [6], if U(x) is a
solution of (8.2) which is non-singular on a subinterval b < x < oo, and
the necessarily constant matrix TJ*(x)U'{x) — U*'(x)U{x) is the zero
matrix, then
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M(b; U) = \\m([X U-

exists and is finite. Moreover, such a U(x) is a principal solution of
(8.2) in the sense of Reid [6] if and only if M(b U) == 0. In addition,
a principal solution U(x) is characterized by £7(x) = Uυ>oo(x)C, where C
is a non-singular constant matrix and ?76>OO = lim^^Ut^x), where Ubιt(x),
t > b, is the unique solution of (8.2) satisfying Z76iί(δ) = E, Ubtt(t) = 0.

It follows as a special case of Theorem 5.1 of this paper that the
vector system

/Q o\ u" = A(x)u , 0 < cc < co

%(0) = u0 , I w(cc) I bounded on 0 < x < oo ,

where A(x) is a real symmetric non-negative matrix of functions con-
tinuous on 0 < x < CXD, has a unique solution. Moreover, Theorem 6.1
shows that the solution u(x) of (8.3) is the limit, as N—> oo, of a func-
tion Mjy(αO satisfying u'£ = A(aj)%jv, ^ ( 0 ) =te0, μN(N) = 0, Λ r = 1, 2,
In view of the similar characterization of this solution and of the principal
solutions described above, it follows that the column vectors of U{x),
where U(x) is a principal solution of U" = A(x)U, are particular bound-
ed solutions of u" = A(x)u. This fact will be used in the proof of the
following lemma.

LEMMA 8.1. Suppose A(xm, h) is an n x n non-negative definite sym-
metric matrix, continuous jointly in the scalar x and the vector h for
0 < x < oo and h in some open set H. Let Wh(x) be the unique princi-
pal solution of

satisfying

Wh(0) = E.

Then, if h0 is in H we have limh^HWh(x) = WH(x), uniformly for x on
any interval 0 < x < X.

We consider the solutions U = Uh(x) of the system

( 8 > 4 ) U" = A(x;h)U

ϋ(0) = E , U'(0) = E

or, equivalently,

U' = V

(8.5) V' = A(x;h)U

U(0) = E , V(0) = E .
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The latter is of the form (2.4') of [6] with A = 0, B = Ey C = A(x h).
The solution of (8.4) is non-singular on 0 < x < <χ>, since if | is a constant
vector such that u = Z7(a?)| satisfies w(#0) = 0 with #0 > 0, then

0 = [*u*(u" - Au)dx ,
Jo

- u*u' X° - [*°(| u' |2 + u*Au)dx ,
o Jo

= - If I2 - Γ°(iu ' i2 + u*Au)dx ,
Jo

so that | = 0.

Continuing to use the notation of [6; § 3], we compute the value of
the constant matrix {U, U] = U*{x)V{x) - V*{x)U{x) to be C/*(0)F(0) -
F*(0)i7(0) = 0, and we find that T = JB7. By Theorem 3.1 of [6] we
know that any solution Y(x) of Y" = A(a?)Γ with Γ(0) = JS' has the
form

for some constant matrix Ko.

Now by Theorems 5.1 and 6.1 of [6] we have Wh{x) = lim^^Γo^ίa;),
where Y^ =-A(x,h)Ym, Y0N(0) = E, Y0N(N)^0. But in view of the
boundary conditions satisfied by Y0N(x) we have

YQN(x) =

with

Hence,

and finally,

(8.6) Wh(x) = ^(^[jg? -(J* t/-C7*-^)M(0; C/j] .

We now need an estimate of Ul\x)Ut~ι(x) for large x. To this end
put Zh(x) = (1 + x)~ιUh{x), In view of (8.4), one readily verifies that

((1 + xyZiY - (1 + xfA{x h)Zh - 0 , Zh(0) - JS?, Zi(0) - 0 .

From this fact it follows that
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0 = Zt[((l + ϊfZ'h)' - (1 + ΐfAψ, h)Zh]dt
JO

X

= \± "T" v) &n &h
0

and therefore

-\- X) Zjh \X)Δh\X) — \ (1 + t) γΔh Δh + Δh AZ/h\at .

Consequently, (Z*ZJ = Zft*ZJ + Zί'Zh = 2Z£Zί > 0 on 0 < x < co, and
Zί(x)Zh(x) > ZA*(0)Zft(0) - # for a? > 0; that is, [^(αOE/^) > (1 + *02#
and hence Uς\x)U£-\x) < (1 + tf)-2^ on 0 < a? < oo for h in H.

Since as h—>hQ we have Ϊ7ft(ίc) —> ί7Λo(^) uniformly on each finite
interval 0 < x < X, it follows that

This result, with (8.6), proves the lemma.
We can now prove the following theorem:

THEOREM 8.1. If gyy(x, y) = ||flfy<y || exists and is continuous for
(x,y) in Ω: 0 < x < oo, | y \ < oo, and if g(x, y) satisfies Hλ-Hb, then
with y(x; a) as in the beginning of this section, we have that dy(x; a)ldaj
and dy'(x; a)ldaj exist and are continuous in x, a for 0<x< oo,

α | < °o, j = 1, 2, •••, w.
Note that if the hypotheses of this theorem are satisfied, then

9yy(χf v) ^ 0 for (x, y) in Ω. We denote by e(j) the unit vector having all
components zero but the jth, and we let Δa = e())h, Δy = y(x a + Δd) —
y(x a), where h is a real scalar. Then

(Δy)" = flrv(aj, 2/(05; α + Δa)) - gy(x, y(x;a))

so that

In Lemma 8.1 we identity A(aj; /̂ ) as I gyy(x, y(x; a) + ΘΔy)dθ, where
Jo

a is fixed, and we identify h0 as zero. We note that

and aQ 1 < 1 Δy(0) \

T"-πxr-
0 < x < oo. Hence, (l/h)Δy is the unique bounded solution of 2" = A(x; h)z
satisfying ^ (O) = e(j\ As explained above, the unique principal solution
of



EXISTENCE THEOREMS FOR CERTAIN CLASSES 115

(8.70 Zl'

satisfying

(8.7") Zh(0) - E ,

is the same as the bounded solution of (8.7'), (8.7") guaranteed by
Theorem 6.1 of this paper, of which {llh)Δy is the jth column vector,
for h Φ 0. Lemma 8.1 then implies that \imh-JXIh)Δy(x) exists and is
equal to the yth column vector of ZQ(x); that is, for all a, the vector
function yafx cή ~ (d/da^yix a) exists and satisfies

(8.8) (yΛj(x α ) ) " = g y y ( x , y{% oc))yΛj(x a ) ; 0 < x < co .

Since | yΛ(x; oc)\ <1, we may use Lemma 8.1 with h = a in conjunction
with the inequality

I yΛβ, a) ~ y«Ί{x, a)\<\ yaβ a) ~ y»£% a) \ + | yΛj(x a) - yΛj(x a) \

to show that yΫ (x a) is continuous in x and a. Differentiation of the
right hand member of (8.1) with respect to a} shows the existence of
(d/dajy'ix a) and its continuity with respect to x and a.
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A CLASS OF HYPER-FC-GROUPS

A. M. DUGUID

l Introduction* An element g of an arbitrary group G is called an
FC element if it has a finite number of conjugates in G. The set of
all FC elements of G forms a characteristic subgroup H of G (see Baer
[1]). The upper FC-serίes of G, introduced by Haimo [4] as the FC-
chain, may be defined by

Ho - {1} ,
Ht+JH€ = H(GIHt) ,

the subgroup of all FC elements of Gjϋ^ The upper FC-series is
continued transfinitely in the usual way, by defining

HΛ = U Hβ ,
β«*

when a is a limit ordinal. If Hy = G, but JEΓ8 =£ G, for all 8 < 7, we
say that the group G is hyper-FC of FC-class y, following McLain [7].

A group G in which the transfinite upper central series

{1} ^Z0<Zt< . . <ZΛ< •••

reaches the whole group is called a ZA-group (Kurosh [6]), and we may
say that G has class a if 2ΓΛ — G, but Zβ =̂  G, for all β <a. Glushkov
[3] and McLain [7] have given constructions for a ZA-grovφ of any given
class. The main object of this note is to construct groups of given
FC-class.

2. Constructions and proofs*

DEFINITION. We say that a group G is of type QΛ if

1. G has FC-class a, with upper jPC-series

{1} = i ϊ 0 < # * < . - • <Ha^G,

2. Hy+JHy is infinite, for all 7 <ct, and

3. Hy+JHy has the unit subgroup for its centre, for all γ < a.

Thus the group with only one element is of type Qo, and, in
constructing a group G of type Q#, we may assume the existence of a
group Gβ of type Qβ, for each β < a. If α is a limit ordinal, we
define G to be the ordinary (restricted) direct product of the groups Gβ9

for all β < a. Then G has the properties 1 — 3, and thus has type Qω.
For the case a — β + 1 we shall construct G by 'wreathing' the regular

Received March 5, 1959.
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representation of Gβ with a certain kind of infinite centreless jPC-group
of permutations of the positive integers. (For convenience, we say that
a group is centreless if its centre consists of the unit element alone.)

DEFINITION. A faithful representation of a group G by permuta-
tions of the positive integers will be called a special representation of
G if

(i) the stabiliser of each integer has finite index in G and
(ii) the intersection of the stabilisers of the elements of any set

of all but a finite number of these integers is the unit subgroup.

DEFINITION. An infinite centreless jFC-group possessing a special
representation will be called a group of type F.

To construct an example of a group of type F, let D = Bx x B2 x
be the ordinary direct product of an infinite sequence of finite centreless
groups Bif ί = 1,2, •••. Let Dn — Bn+1 x Bn+2 x •••, let kn be the order
of D\Όn and let the elements of D/Dn, in an arbitrary order, be

F o r e a c h e l e m e n t geD a n d e a c h n = 1, 2, •••, define t h e p e r m u t a t i o n
πgn of t h e i n t e g e r s 1, 2, •••, kn b y t h e r u l e

(1) πgn(i) = j when gXn

t = X? .

Now, for each g e G, define the permutation πg of the positive integers
by the rule

(2) πli + Σ kλ = τr,n(i) + Σfc,,

for all i = 1, 2, •••, fcw, and n = 1, 2, •••. The systems of transitivity
in this permutation representation of D are the sets Tn of integers m
such that Σ?-ϊfc« < m < Σ*=i&*, for w = 1, 2, •••. If m e Γn, then
the subgroup Dn of D is contained in the stabiliser of m. Hence the
stabiliser in D of each positive integer has finite index in D. On the
other hand, suppose g is in the stabiliser in D of all but a finite number
of the positive integers. Then there is a number n0 such that g is in
the stabiliser of each integer of each system Tn with n > nQ. So if
i is any integer in the range 1 < i < kn, n>n0, we know that g is
in the stabiliser of i + Σ5-ϊ kj9 and this means that gX\ = X%. Thus
g e Dn. But the subgroups Dn, with w > %0, intersect in the unit
subgroup of D. So g = 1. We observe also that the permutation
representation of Z? defined by (1) and (2) is faithful. Thus we have
a special representation of the infinite centreless jFC-group D, which
is therefore a group of type F.

LEMMA. If Gβ is a group of type Qβ and J is a group of type F,
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then a group G formed by wreathing the regular representation of Gβ

with a special representation R of J is a group of type Qβ+1.

Proof, The wreath group G may be regarded as a semi-direct
product

where K = ΪLΞi ^ is the direct product of a sequence of groups, each
isomorphic to Gβ, and E is isomorphic to J . The automorphisms of K
induced by elements of E permute the subgroups Au i — 1, 2, • ••,
realizing the special representation R of J ~ E. Associated with G is
a set of isomorphisms θtJ, i, j = 1, 2, ••• such that θtj(At) = AJf and
if a e Aif g e E and g-^g—Aj, then g~λag — θi3{a). Θu is the
identity automorphism, for all i. (A brief general description of wreath
groups, and further references, may be found in Hall [5].)

Let Cι be the set of all elements g in E such that g^Ai g — Alt

Then Ct is the centraliser in E of each element of At. Since the
representation R is special, the subgroup Ct of E has finite index in E,
for each i, and the unit element is the only element of E common to
all the subgroups of any set of all but a finite number of the C's.

For all 7 < β, put Hy = Hy(K), the 7th term of the upper FC-
series of K. If possible, let τ + 1 be the least such ordinal for which
HT+1(G) Φ HT+1. Now any element k of K can be written as the product
of a finite number of elements aiv e Aiv, v~l, 2, ,n, and the
subgroup C(k) = Ov-i C*v has finite index in E. But C(k) is contained
in the centraliser of k in 2?, so g~Ύkg, with g e E, is finite valued.
Hence

H7+1(G) Π K = U τ + i .

Suppose &# e iJτ+1(G), where k e K and g e E, g Φ 1. Let σ + 1 be
the least ordinal in the range τ + l < σ + l < / 3 such that fc e fζr+i.
Now Hσ is a characteristic subgroup of K, and hence is normal in G,
and both kHσ and ΛfifίZo. are F C elements of GjHσ. Hence gHσ is FC
in G/fΓσ.

We can choose an infinite sequence of distinct positive integers,
[hi fat •••> such that g^Aμ.g Φ Aμ<, for all i — 1, 2, •••, for otherwise
</ would belong to all but a finite number of the C's. Moreover, since
Cι has finite index in E, for each i, we can choose the sequence μ19

μ2, ••• so that distinct terms belong to distinct systems of transitivity
in the representation R of Έ. By relabelling the subgroups Au i = 1,
2, , we may arrange that the sequence μlf μ2, is just the sequ-
ence of odd positive integers. So if n is any odd positive integer,
and g'1 Ang = A n, then n is even. Since a < β, we can choose
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an 6 An — Hσ(An), for n = 1, 3, •••. Let a-n = g~xang, and define

cw = 0" 1 flfα» = <f»an , ra = 1, 3,

Then

If n Φ m, the four integers w, ?i, m and m are all distinct and thus
(g**)-1 gam $ Hσ. Thus gHσ is not FC in GIHσ, contrary to what we
have already proved.

It follows that the upper J^C-series of G is

{1} =HQ <!!,<.•• <Hβ = K<G,

for G/K ~ E ~ J, and J is an .PC-group. Moreover J is infinite and
centreless, and the factors Hy+1IHy are infinite and centreless, for all
7 < β, since Gβ is a group of type Qβ, and if is a direct product of
groups isomorphic with Gβ. Thus G is a group of type Qβ+1, as required.

We have now shown how to construct a group of type Qa, given
groups of type Qβ for all β < a, whether a is a limit ordinal or not.
So, by transfinite induction, we have :

THEOREM. There exist groups of type QΛ, for any ordinal a.

I should like to express my thanks to Prof. P. Hall of Kings
College, Cambridge, who suggested the topic of this paper to me while
I was studying under his direction.
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THE CALCULATION OF CONFORMAL PARAMETERS

FOR SOME IMBEDDED RIEMANN SURFACES

A. M. GARSIA

Introduction^ Riemann surfaces were originally introduced as a tool
for the study of multiple valued analytic functions. In Riemann's
work they appear as covering surfaces of the complex plane with given
branch points. Since then Riemann surfaces have been considered from
several different aspects.

Here we shall follow the point of view assumed by Beltrami and
Klein, who visualized these surfaces as two-dimensional submanifolds of
Euclidean space whose conformal structure is defined by the surrounding
metric.

Recent results of J. Nash1 on isometric imbeddings of Riemannian
manifolds assure that all models of Riemann surfaces with the natural
Poincare metric can be C°° isometrically imbedded in a sufficiently high
(51) dimensional Euclidean space. However, the question still remains
open whether or not every Riemann surface has a conformally equivalent
representative in the ordinary three-dimmensional space.

Although the dimension requirement seems restrictive, there is
reason to believe that, since only conformality is required, at least the
compact surfaces can be conf ormally imbedded. We shall not be
directly concerned here with this existence problem instead, we shall
present a family of elementary surfaces which may contain all conformal
types and whose conformal structure can be easily characterized.

In the genus one case, the conformal structure is usually described
by a complex parameter v which gives the ratio of two principal periods
of an abelian differential of the surface. It is always possible to
choose these periods so that their ratio v lies in the region 3Jϊ of the
Gauss plane defined by the inequalities:

Smv < 0, - ί < 9tev ^ £ | v \ > 1 for <$\w < 0, | v | ^ 1 for 2ΐev ^ 0 .

It is well known that every Riemann surface of genus one has in 2Jί
one and only one representative point.

It is easy to verify that the representative points v of the tori of
revolution lie in the imaginary axis and cover it completely. Thus it
seems plausible that the affine images of the tori of revolution should
cover all conformal types in the genus one case; however, we have

Received February 12, 1959. This research was supported in whole by the United States
Air Force No. AF49 (638)-42, monitored by the AF Office of Scientific Research of the Air
Research and Development Command.

1 "The imbedding problem for Riemannian manifolds". Annals of Mathematics, 63
(1956), pp. 20-63.
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found no proof of this fact. Indeed the characterization of the parameter
v for an imbedded surface leads in general to rather difficult problems.

For this reason, for quite some time there have been no known
examples of surfaces whose representative point in SDΐ lies off the
imaginary axis. In 1944, 0. Teichmϋller2 proved the existence of
these surfaces by showing that there are small deformations of the
tori of revolution for which the variation of v is not purely imaginary.

Led by these observations we have tried to develop a method of
uniformizing a given Riemann surface that could be of practical
application for some wide enough family of surfaces. To make our
considerations applicable to surfaces of higher genus we needed to
introduce some parameters to take the role that v plays in the genus
one case. To this end we have adopted as a canonical form of a
Riemann surface the result of the Schottky uniformization. In fact,
some imbedded surfaces can be considered topologically " marked" in a
natural way, and the Schottky uniformization associates with every
marked surface of genus g (> 1) a complete set of geometrical invariants
which can be expressed by means of 3# — 3 independent complex
parameters.

In view of the importance of these parameters we deemed neces-
sary to include in the first section of this paper a description of the
Schottky uniformization and some general facts associated with it. In
the second section we present a definition of " M-surfaces". These
are imbedded surfaces which may have edge type singularities along
curves but can be made into Riemann surfaces in a natural way. To
generate these surfaces we adopt a process which uses surfaces of genus
zero as building blocks to construct surfaces of genus one and sur-
faces of genus one to construct surface of higher genus.

In the third section we present a method of constructing the
Schottky uniformization of a given M-surface. This method is more
general than it appears in the context since from the existence of
the Schottky uniformization, every marked surface can be considered
an M-surface (dropping the condition that the building surfaces of
genus zero should be globally imbedded.) As will be shown in the
fourth section, this method assumes practical importance when the
building blocks of M-surfaces are ordinary spheres. These special
M-surfaces we have called "natural" .

To present our results in this case we made use of anallagmatic
coordinates of spheres as introduced by E. Cartain in [2] for the sake
of completeness a brief introduction to these coordinate is also included.

In the last section a few properties of natural M-surfaces of genus

2 "Beweis der analytischen AbMngigkeit des konformen Moduls einer analytischen
Ringfl&chenschar von den Parametern", Deutsche Math. 7 (1944), 309-336.
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one are studied, and some of the results are used to construct the
Teichmίiller models. At the end a process is given by means of which
all natural M-surfaces can be made into C°° smooth canal surfaces.
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1* A choice of conf ormal parameters for compact Riemartn surfaces*

1Λ Here and in the following Σ shall denote a given 2-sphere
" a coordinate in Σ" shall mean an extended valued complex coordinate
introduced by a stereographic projection of Σ upon the Gauss-plane.
Let z be such a coordinate. Since z is defined up to a Moebius transfor-
mation of Σ onto itself, we can assume that the points 0, 1, oo are
situated wherever we may wish. Whenever it does not lea^to am-
biguities, we shall make use of the same symbol for a point of Σ and
its complex coordinate.

If A is a Jordan curve and a a point of Σ not lying in A, we
shall denote by A(a) the connected component of Σ — A which contains
a. A(a) will be called the interior of A with respect to a. If A
separates a from another point β of Σ we have of course

Σ = A(a) + A + Λ(β).

Let now at, βt (ί ~ 1, 2, •••, g) be 2g distinct points of Σ and
a). (% — l, 2, , g) given complex numbers of absolute value greater
than one. Let τt be the Moebius transformation of Σ onto itself defined
by the equation

(1) l*L=L*=ωJL^
TZ βT,Z - βt Z - βt

We assume for a moment that aγ = 0 and βx — oo. Under this
coordinate system we have

Let px and ρ2 be the smallest and the largest of the absolute values

I a% I , I βi I i = 2, 3, , g .

If \ω1\> (llη)(p2lpi) for some 0 < rj < 1, a circle with center at 0
and radius r = ηρι is transformed by τx onto a concentrical circle of
radius
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rr = \ ω 1 \ r > ρ 2 .

Thus if I ω1 | > p2fp1 there are infinitely many circles A such that
the points a2, β2; •••; agy βg are all interior to the anulus

Λ(oo) n M ( 0 ) .

Before expressing this fact in an invariant way we shall introduce
a notation. If a and β are two distinct points of Σ by P(a, β) we
shall denote the pencil of circles which admit a, β as a couple of
inverse points.

We have thus shown that:

I. Provided \ co1\ is sufficiently large we can choose a circle A in
an infinite number of ways so that

( a ) AeP(aly ft)
(b ) the points a2, β2; : ag, βg are contained in the domain A(β1) Π

Let A1 be one of these circles.
We shall show now that:

II. Provided the | ωt |'s are sufficiently large the circles Ai can be
chosen in an infinite number of ways so that

( a ) Λ6P(α 4,/3 4)
( b) the closed disks

are exterior to each other.
Because of I we can prove II inductively.
Suppose that the circles A19 A2, •••, Ai_ι have been chosen in such

a way that
( a ) A3eP(a3, βj) (j = 1, 2, > > - ^ - 1) ,

( b ) the closed disks A(#i), Mi(/3i); •••; ̂ i-iί^-!), T V ^ - I O V I ) are
exterior to each other,

( c ) the remaining points aJf β3 (j = i, i + i, •••, ̂ ) are contained
in the domain

Π {Λ03) Π M ^ α , ) } .
j = l,ί-l

We temporarily assume that a% = 0 and /3t = CΌ . We let <S be the
set consisting of the closed disks

and (if i < g) t h e points
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Under this coordinate system let ft and ρ2 be the minimum and
the maximum value assumed by \z\ as 2 varies in S. Clearly the
argument can be completed since, for the same reasons as before, if
\ωi\ > pJPu the circle A can be chosen in an infinite number of ways
so that

( a ) AeP(ai} βt)

( b ) the set S is exterior to A{at) and τtA(βt). Let At be one of
these circles.

A further investigation on the nature of the inequalites to which
the I α>4 |'s are to be subjected, for such a construction to be possible
would be of some interest, but for our immediate purposes it is not
needed.

We would like to point out, however, that if for a given set of
complex numbers {a19 βlf ωx\ •••; ag, βgy ωg} the construction in II is
possible, then it is also possible for any other set {aί9 β19 ω[\ •• \ag, βg, ωg}
such that

\ω'i\>:\ωi\ i = 1, 2, •••, g .

1»2 Let SSRg be the subset of the 3^-dimensional complex cartesian
space composed of those points

m~ {a19 βlt ωλ; •••; ag, βfff ωg}

for which it is possible to choose g Jordan curves A19 A2, , Ag of Σ
such that

( a ) each Ai separates at from βi9

( b) the closed sets Λ(αJ, τ v ζ p j , , Λg(ag)f τgΛg(βgf are exterior

> to each other.

III. The points of 9Jίg give rise to compact Riemann surfaces of
genus g.*

If m<*" {a19 β19 ωx; •••; agf βg9 ωg} and Λ19 A2, •••, Ag are chosen

to satisfy (a) and (b), we set

R = Π {Mβi) n

We then identify the points of the boundaries A% and z%At of R by
means of the transformation τ,. In other words we set Q ~ TtQ for
each Qe At. We do this for i = 1, 2, •••, g. Let X denote the result-
ing space.

We shall make X into a Riemann surface introducing local uni-

formizers.
3 Here the π's are again given by (1).
4 The construction presented here is to some extent contained in a paper of Schottky

published in Crelle's Journal (1887, cfr. [8]). See also Hurwitz-Courant [5], p. 462.



126 A. M. GARSIA

If P is a point of X which is interior to R and N is a neighborhood
of P contained in R we take as a local uniformizer any coordinate in
Σ which does not attain the value oo within N.

If P is a point of X which lies on one of the Λ's, say Au we have
to proceed in a different way.

First we take a neighborhood N of P in Σ which is so small that
it is contained in the set

R U τ^R .

Then we define a corresponding neighborhood iV* of P in X by
setting

JV* = {At{βt) n N} + τ4{Λ4(α4) Π N} =Rf](N+ T.N) .

If z(p) is a coordinate in 21 which does not attain the value <χ> in
N, we introduce as a local unif ormizer in iV* the function on X which
takes the value z(p) for p e R Π N and the value z^^p) for a point p
of R Π τ4iV.

We proceed in a similar way for each of the curves At. The
resulting manifold is a Riemann surface of genus g; it will be denoted
by Γ(m; A19 A2, •••, Ag) and referred to as a "Schottky model".

1.3 We shall give statement III a more precise meaning by show-
ing that

IV. Any two surfaces Γ(m; Alf A2y , Ao) and Γ'(m; A[, A'2, , A'g)
{same m), are conformally equivalent.

Let G be the group of Moebius transformations generated by the
r4's. G constitutes what is usually called a "Schottky group".

We shall denote by Γ(m) the set obtained from Σ by deleting the
limit points of G.

The following properties of G are well known (cfr. for instance [4]
pages 37 to 66), and can be easily established:

( a ) The group G is free.

( b) The sets D = fl {Mβd Π M4(α4)} and D* = Π

are fundamental regions of G.

( c ) The images of D (as well as those of Π) decompose and cover

completely the set Γ(m), i.e. f{m) = Σ τ ί 3 = Σ

These relations yield

( 3 ) D=ΣD{\τDr

(4) Z>' = Σ D' Π τZ)

6 We should emphasize that Γ{m) is a disjoint union of the images of D and Z)'.
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since D and Df are bounded away from the limit points of GQ both
these sums, after a finite number of terms, terminate with a string of
empty sets. The equality in (3) is also equivalent to

(5) D - Σ - D Π τ-ιD'
rβG

and (4) can be written in the form

( 6 ) fl^Σ^n τ~ιD') .

We define a mapping7 φ: D^> D' by setting

φp = τp for p e D f] τ^D' .

Since the unions on the right hand sides of (5) and (6) are disjoint
φ is well defined. Clearly φ preserves the identification of points in Γ
and Γ' and thus defines a topological mapping of Γ onto /"", in addition
it maps every sufficiently small neighborhood of Γ conformally onto
neighborhood of Γ9.

From this the assertion follows.

\A+ The abstract Riemann surface represented by any one of the
surfaces Γ(m; A19 A2J •••, Ag) shall be denoted by Γ(m); it shall be
referred to as "the Schottky model corresponding to m."

Suppose now that there exists a Moebius transformation of Σ onto
itself which sends the points a19 &; ag1 βg respectively onto the
points a[, β[; •••; ag9 βg and assume that the parameters ωu ω2, •••, ωg

have been chosen in such a way that both m~ (au β19 ωx\ •; ag, βg9 ωg)
and mf ~ (a[, β[, ωx\ •••; ag, β'g, ωg) lie in 3)ϊff. Then the corresponding
models Γ(m) and Γ{m') are conformally equivalent. Under these circum-
stances, it is natural to identify any two points m and mr of 3Jlg for
which we have

o)t = ω\ ,

( 7 ) if g ^ 2 OS,, alf a2, β,) - {β\, a[, αj, β[f i^2,*--9g,

if g ^ 3 (aif a19 a29 β,) = (a'i9 a[9 a'%9 β[) i = 3, , g .

If Γ is a Riemann surface of genus g, the Jordan curves A19 A2, , Λg

will be said to form a "canonical semi-basis" if they can be completed
to a canonical basis for the cycles of Γ.

The Riemann surface Γ will be said "marked" if a canonical semi-

6 The limit points of G are contained in the sets τ^Λjiaj), τϊ^jΛjiβj) and nAj(aj)
(i, i = l, 2, ~,g).

7 Here and in the following a ''mapping" shall mean a "one-to-one mapping".
8 By the symbol (x, y, z, w) where x, y, z, w are given distinct complex numbers we

mean the cross-ratio (x - y){z - w)/(x - w)(z - y).
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basis has been chosen in Γ. The surface Γ marked by A19 A2, •••, Ag

shall be denoted by the symbol Γ(A19 A2, •••, Ag).
We shall consider two marked surfaces Γ(A19 A29 , Ag) and

Γ\A\9 A'29 , Af

g) as the same object whenever Γ ~ Γ' (conformally) and
At is homotopic to A\ (for ί = 1, 2, •••,#). With these identifications
the following theorem holds:

V. The points of %Jlg are in a one-to-one correspondence with the
marked Riemann surfaces of genus g.

Proof. Clearly, every Schottky model Γ(m; A19 A2, , Ag) can be
considered a marked surface by the choice of A19 A29 , Λg as a canonical
semi-basis.

But the converse is also true: namely, to each marked surface
Γ(A19 A29 , Ag) there corresponds a Schottky model, uniquely defined
up to a Moebius transformation, and thereby a point of 2K,. This cor-
respondence is easily established after constructing the so-called "Schot-
tky covering surface" of each marked surface. This concept is well
known (see for instance [4], pp. 256-257), but for the sake of comple-
teness, we shall sketch its definition.

Let Γ(A19 A29 •••, Ag) be a given marked surface.
Let M19 M2J * ,Mg be a completion of A19 A29 •••, Ag to a canonical

basis, and ^J? denote the free group generated by the cycles M19

M29 " 9Mg.
We imagine the surface Γ{A19 A29 , Ag) cut along the curves At to

yield a planar region X bounded by the 2g Jordan curves A19 A29 , Ag;

Aΐ1, A;\ •••, A~19 of Γ. We then reproduce an infinite number of exact

replicas XM of X, one for each M e ^f. The closed sets XM are then

glued together according to the following rules:

( i ) If M = M*M* (and the first factor of Λf * is not Mϊ1) then the

points of the curve Aϊ1 of XM* are identified with the corresponding

ones in the curve A% of XM.

(ii) If M=M:1M* (and the first factor of ikP is not Λf,) then

the points of the curve At of XM* are identified with the corresponding

ones in the curve AΪ1 of XM.

With these identifications the set Σ XM becomes a covering surface

of Γ. We shall denote it ΓΛ and call it the "Schottky covering surface7'

o f Γ(A19 Λ , ••-, A g ) .
What then remains to be proved is a consequence of the following

well known properties of the surface ΓΛ. (cfr. for instance [5] pp.
483-484 or [4] Chapter X).

9 We tacitly assume, without restriction, that the curves Λι do not intersect each other.
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( a ) ΓΛ is of planar character, it can be conformally mapped into
the sphere Σ,

( b ) The mapping μt of ΓΛ <-> ΓΛ which sends each region XM of

ΓΛ onto the adjacent region XMiM is a cover transformation of ΓΛ.

( c ) The group of cover transformations of ΓΛ is free and admits

the mappings μ19 μ2, •••, μg as generators.

( d ) If φ is any conformal mapping of ΓΛ into Σ, the cover trans-
formations of fΛ induce in Σ, through the mapping φ, a set G of
Moebius transformations which is a Schottky group. The generators of
G are given by the Moebius transformations

τx = φμ&~x

9 τ2 = φμ2φ-\ , τg = φμgφ~x .

( e ) The image φXE of XE (where by E we mean the identity in
Λ?) constitutes a fundamental region for G; its boundary consists of the
curves φA19 φA21 •• ,φAg; φAϊ1, φA2

ι

y •••, φA"1, and φAi1 is t h e image

of φAi under the transformation τi for each i.
Thereby φXE and T1T21 •••, τg originate a Schottky model which is

conf ormally equivalent to Γ(A19 A2, , Ag).

( f ) If φ' is any other conformal mapping of ΓΛ into Σ, φrφ~ι

induces a Moebius transformation of Σ; thus, if we set

and

τ.z-β, 'z-β,' τ\z-β\ ι z - β \

(under some coordinate system in Σ), the corresponding points

m ~ (alf β19 o)ΐ9 ag9 βg, ωg)

m' ~{a[, β[, ω\\ •••; α j , B'g, ωf

g)

of 9Jϊg are to be considered the same since the equalities in (7) will
necessarily be satisfied.

1 5 After Statement V it is natural to adopt the following:

DEFINITION. If Γ(A19 A2> , Ag) is a given marked Riemann surface
and m~ {a19 βlf w±; •• \ag9 βg9 ωg} is the point of Wlg corresponding
to it, the complex numbers

ω19 ω2y , ωg

( 8 ) ωi+g.x - (βt, alf a2, βx) (ί - 2, . , g if g ^ 2)

α> i + 2 g_3 = (α i f α x, α 2 , A) (i = 3, , g if flr ^ 3)
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wil l b e c a l l e d "the conformal parameters" of Γ(Δlf A 2 , •••, A g ) .
In the following we shall say that a marked Riemann surface

Γ(Alf A2, • ••, Ag) has been "uniformized" if the mapping of ΓA into Σ
and the conformal parameters of Γ(A19 A2, • ••, Ag) have been charac-
terized.

It is interesting to note that Schottky in [8] expressed the abelian
differentials and their periods as analytic functions of the parameters
°ti> fin ωi> •••; ag> βgy <og; unfortunately, there are some restrictive
hypotheses in his proofs, and the results, although explicit, assume
formidable expressions.

2. Some special models of compact Riemann surfaces*

2.1. The three-dimensional Euclidean space shall be denoted by Ez.
Any smooth (four times continuously differentiable), non self-intersecting
surface of Ez, homeomorphic to a sphere, shall be called a p-sphere.

A p-sphere shall always be assumed to have been assigned a specific
orientation.

Let J be a Jordan curve of a p-sphere Γ. If a is a point of Γ
not lying in A, as before, we shall denote by A(a) the connected com-
ponent of Γ — A which contains α.

We can define an orientation of A by specifying which of the two
connected components of Γ — A is to be the interior or the exterior of
A; conversely if A has been oriented, we can accordingly speak of the
interior and the exterior of A in Γ. To this end we shall adopt the
following convention:

If Q is a point of A, t and b are unit vectors having respectively
the direction of the positive tangent to A and the positive normal to Γ
at Q, and if the unit vector n, normal to A and tangent to Γ at Q,
points towards the interior of A, then the ordered triplet t, n, b should
form a left handed frame.

Any oriented surface of E3 can be made into a Riemann surface in
a natural way by means of the conformal structure induced by the
surrounding metric. In this fashion every ^-sphere can be considered
a compact Riemann surface of genus zero, and therefore it can be map-
ped conformally onto a sphere.

2.2. Let Σ be a sphere, and z a complex coordinate in £. If Γ is
a p-sphere, let z = φp be a conformal mapping of Γ onto Σ. By means
of φ we can transfer to Γ several conformally invariant properties of
Σ. We shall define the cross-ratio of any four points α, β, γ, δ of Γ
by setting

( 1 ) (a, β, 7, δ) = (φa, φβ, <P7,
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The right hand side of (1) is independent of the mapping φ. In fact,
if ψ is any other conformal mapping of Γ onto Σ, the mapping τ = ψφ-1

of Σ onto itself is conformal and necessarily a Moebius transformation.
A Jordan curve A of Γ will be called a p-circle if the cross ratio

of any four points of A is real; i.e., if the curve φA is a circle in Σ.
If A is a ^-circle of Γ and a, β, 7 are distinct points of A by an

"inversion with respect to J υ we shall mean the transformation σ
defined by the equation

(2) {σp, a, β, 7) = (p, a, β, 7)

the bar meaning complex conjugation. Clearly φσφ~x is in Σ an inver-
sion with respect to the circle φA.

The most general conformal mapping r of Γ onto itself is determined
by the images α', β\ γ' of any three distinct points a, β, 7 of Γ, and
its equation can be written in the form

(τp, a\ β\ 7') - (p, a, β, 7) .

Such a mapping will be referred to as "a Moebius transformation of
the ^-sphere Γ".

We will find it convenient, in order to avoid having to refer back
to the sphere Σ, to consider Schottky models imbedded in a p-sphere.
Indeed, the construction of these models can be carried out for ^-spheres
in exactly the same way it was done in the last section for ordinary
spheres; thus we shall not repeat it.

2 3 Let Γx and Γ2 be two p-spheres which intersect along a Jordan
curve A. Suppose that there exists a conformal mapping φ of Γ1 onto
Γ2 which leaves fixed the points of the intersection A.

The mapping φ is unique.
In fact, if ψ is another conformal mapping of Γx onto Γ2 which

leaves the points of A fixed, then the mapping ψφ"1: Γ2+^Γ2 leaves*
more than three points fixed and must necessarily be the identity.

This shows that φ is completely determined by the conditions
imposed on it by three distinct points of the curve A, hence φ may not
exist if the intersection of Γt and Γ2 is arbitrary.

A class of examples of couples of intersecting ^-spheres for which
such a mapping exists can be obtained by constructing surfaces which
have a common axis of revolution and intersect along a common parallel,
then taking their images under arbitrary Moebius transformations of
space.

Suppose now that the finite ordered set of p-spheres Γo, Γlf , Γn~t

is such that for each i = 1, 2, •••, n:
(a) The surface /Vi intersects the successive one Γέ along a Jordan
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curve A which we shall suppose sufficiently well behaved. (We set
-A — A> Γn — Γo).

( b ) There exists a conformal mapping Δ% of /Vi onto Γi which
leaves fixed the points of the curve A

( c ) A-i has on points in common with A
Let each A be oriented in such a way that the interior of A in

/Vi contains the curve A-i Let A7 and At denote respectively the
interior of A in Γ^x and the exterior of A in Γ4. With this notation
we have

AA" + A + A+ - Λ .

The ordered set of p-spheres Γo, Γ19 , Γn-λ will be said to generate
4'a link of ikf-surface", if in addition to (a), (b), (c) it satisfies the fol-
lowing conditons:

( d ) The exterior A+-i of A-i in Γt-X contains the curve A
( e ) No two of the sets A-i+A+-ifΊA~ have any points in common.
These conditions being satisfied, the set

L = A + A* n A- + A + A+ n A" + + A.-i + ^i-i n A"

constitutes a compact, piece wise smooth, surface of genus one. We
shall make L into a Riemann surface.

For each ί = 0, 1, •••, n — Γ° let ψi be a conformal mapping of Γ4

onto a given sphere 21.
Let φn = 9>0, J w = Jo, Γ>! = Γn-!, J_χ = An-lf etc...
If p0 is a point of A+ ΓΊ A"+i and i\Γ a neighborhood of p0 in Γέ,

small enough to be contained in At Π A~+i> we take as local unif ormizer
in N the function 2; = φφ, where z is any coordinate in Σ which does
not assume the value cx> in φtN.

If p0 is a point of A> l e t N be a neighborhood of p0 in Γ t small
enough to be contained in the domain {J4A

+-i} ΠA"+i We take as a
"neighborhood of p0 in L the set

ΛΓ* = {Jϊ'N} n A" + Nf] A + ΛΓ n A" .

We introduce as local uniformizer in N* the function defined by setting

z = ^ίΛp for p e {JfW} Π Aϊ

and

z = <ptp fovpeNO {A, + At}

Again, z is any coordinate in Σ which does not assume the value infinity
in <PiN.

10 Here and in the following we shall assume a link to consist of at least 3 jo-spheres.
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The conformal structure thus introduced in L agrees in a natural
way with that induced by the surrounding metric of Ez. Of course, in
general along the curves At there will be discrepancies between angles
measured in #3 and angles measured in L.

The surface L will be referred to as a "link of Λf-surface" or
briefly a "link". It will be denoted by L(Γ0, Γ19 •• ,Γn. 1).

2Λ. We shall now construct surfaces of higher genus by putting
together several links. There are several ways to achieve this. For
our purposes it will be sufficient to construct only surfaces which consist
of a p-sphere Γo with many handles, each handle being part of a link
containing ΓQ.

Let Llf L2, , Lg be the links

\,0t Γ2.U ' * 9 A,W.,-l)

With the same notations as before we shall use the symbols AiJf

Λij, Φίj where the first index will denote which link the object represented
belongs to, and the second index, which position it occupies in the link
itself.

Suppose that Llf L2, •••, Lg satisfy the following conditions:
( f ) The initial surfaces Γ 1 0 , , ΓgΛ are all the same p-sphere Γo.
( g ) No two of the sets Lι — ΓQ have any point in common.
( h ) The closed sets Γo — Att0, Γo — Ajtl (i, j = 1, 2, •••, g) are all

exterior to each other.
Then the set Ξ defined by

Ξ = LX n L2 n n I/, + Σι (£« — Λ) >
l . f l f

or, which is the same, by

B = Σi (A* + AΛ) +tQyto n Λ:J + Σι (Li - r0)

shall be called an "M-surface".
Ξ can be made into a Riemann surface using the same local

uniformizers which were introduced for the Lt

9s themselves.
However, some care has to be applied in the choice of permissible

neighborhoods, and this is solely for points of the surface Γo.
We shall illustrate the situation with representative cases:
Suppose that P is a point of Ξ that is in ΓQ.
If P e Π {Λ+oΠ A"i}, then we can take as a neighborhood of P in
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Ξ any neighborhood of P in Γo which is small enough to be contained
in Π {A

,g

If P e AjΛ9 we choose first a neighborhood N of P in Γo which is
small enough to be contained in the domain

Jj>n {Δln x Π Ajt0] + AJΛ + Π {4% Π Λ"i} ,

then we take as a neighborhood of P in Ξ the set

iv* = {jjĵ iSΓ} n Ajt0 + Nn AJtQ + Nn At,.

If Pe AjΛ, we choose a neighborhood iV of P in Γ j ( 1 so small that

Nd ΔjΛ{Π (Ato Π Λ.ΰ)} + ^ j ( 1 + At, Π ̂ 7)2 .

We then take as a neighorhood of P in Ξ the set

iv* = {j-ijsΓ} n Jj.i + # n Λ.I + ^ n Λ i

3 Characterization of the conformal parameters^

3.1. Let Ξ ~ (Lx, L2, , Lg) be a given M-surface, and E(A1Λ, A2Λ,
•••, Ag>1) denote the surface Ξ marked by the set of curves

A l t l f A i Λ f •••, A g Λ .

We shall now present a construction of the Schottky model cor-
r e s p o n d i n g t o E(Altl, A 2 Λ , •••, A g ί l ) .

Let us first take under consideration the case that Ξ consists of a
single link L(ΓQ, Γ19 •••, Γn^).

We imagine to have cut L along the curve A1

Using the mapping A2 we can collapse the portion Aλ + At Γ) Λς of
L into the p-sphere Γ2. The new set

with the points of its boundaries x̂ and z/2J! identified by the transforma-
tion z/2, can also be considered a Riemann surface.

We shall briefly describe the neighborhoods and the local uniformizers
at the points of the set Δ2{Aλ + At[\A2} + A2.

If j)6 4 4 we choose Nap in Γ2 so that

Δ^N c Δλ{Λί Π A~) + Λ + ^i+ Π Aς ,

we then take

iV* = { J Γ ^ Γ W } n AT + N Π Λ { Λ + Λ+} .

As a uniformizer in iV* we take the function
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z = ψφ for p e N Π 4 {A + A+}

z = ψiAiΔφ for p 6 {A'MjW} Π A"

(provided that 2 ^ co in JV).
If peA{A*ΠA"} we choose iVap so that

NaΔMt n 4-}

then set JV* = N and z = <̂ 2£> (assuming z Φ oo in N).
If p e A we choose NBP SO that

2V c A{A+ n A~} + 4 + 4+ n Aΐ,

then set iSΓ* = iNΓ and « = φ2p (assuming z Φ oo in JV).
L and Xx are conformally equivalent.
In fact, the function ψx defined by

ψ,p = p for p e Λ + J2

+ π As + + Λ + ^ Π

ψ ^ = z/2p for p e Λ + At Π A~

induces a conformal mapping of L onto Xx.
We proceed in a similar way, and collapse the subset

4{Λ + At n A~} + Λ + Λ+ n Λ~

of Γ2 into /̂ 3 by means of the mapping ΔBf the subset

ΛΛ{Λ + .̂+ n A~} + A {A + A+ n A"} + A + A+ n A~

of Fg into Γ4 by means of the mapping ΔA, e t c . , the subset

of Γfc_! into Γk by means of the mapping Δk, and set

Xk^ = JΛ A{A + A+ n A"} + + Λ{A~i + A+-i n A"}

+ A + A+ n AΪ+1 + . + An + AT n A" + 4 .

Again, X ^ is made into a Riemann surface, by introducing local
uniformizers in such a way that the function ψ^^ defined by

ΨK-IP = P for p e A + At n ^Γ+i + + A + At Π A" ,

^ - i P = Δkp for p e A - ! + yίfc
+_x Π ^ ,

for p e A + A+ Π A~

induces a conformal mapping between L and X ^ .
In this fashion, at each step of the process L and Xk-X are kept

conformally equivalent, in particular for k = n we obtain that L is
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conformally equivalent to the subset

Xn-X = ΔnΔn.λ z/2{A + At n A;} +

+ 4 R - i + A+-i n A-} +An + Λ+ n A" + A

of the p-sphere Fo. Of course the points of the boundaries A and
ΔnΔn-λ ••• Δ2Alf of Xw_i are to be considered identified by the mapping
ΔnΔn-x Δ2 or, which is the same11, by the transformation τ — ΔnΔn.x

• Δ2Δλ.

3 2 We shall now prove that

I. Xn-λ is a Schottky model in ΓQ.

Since τ is necessarily a Moebius transformation of Γo, all we have
to show, to justify our assertion, is that τ is hyperbolic or loxodromic,
that it has two fixed points aeΓ0 — Λf and βeτΛϊ, and that

ZD Aλ(a) .

Now for each k we have

Λί/Vi - A") = Λ + Λ+

and since

we have

(1) ΛA+-i =3 A+ .

Thus if

Λ-i 4{Λ-Λr} 3Λ+-i,

because of (1) it will follow that

(2) z/fc Λ{Λ-Λ"} =^Λ+.

However, we have Λ{Λ) — Λ"} = Λ + At 3 Λ+; hence (2) is true and
for k = n we have

(3) τ{Γ0-Λ~} = > A + = > Λ - 4 - .

Since Γo — Aι is closed and At is open, the boundaries A and τAx of
Γo — ̂ Γ and τ{Γ0 — Aϊ} cannot have any point in common. Therefore,
if α* and β* are two points of Γo such that α* e Γo — Δϊ and β* e Aϊ,
otherwise arbitrary, from (3) follows:

u ΔnΔn-χ . J 2 and Λ ^ - i ^2^1 agree along Λ\.
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τ^A^a*) c A(#*)

and

τΊW) c Λ08*)

From these inclusions we can deduce that τ is neither parabolic nor
elliptic:

In fact, if τ were parabolic with 7 as a fixed point, then

7 = lim τ-na* = lim τnβ% .

But this would imply that

7 € Ji(α*) f

which is absurd.

If τ were elliptic and p e Δ^a*), then τ^p e Ax(a*) and thus τ~lrp
would be contained in an open set Ό c A^a*); consequently r" κΰcΛ(«*)
for all n*zl; but for a suitable value of n τ~nD would cover p. This
Iwould imply that every point of A(α*) is interior to A^a*) which is
kbsurd.
ί Thus τ is hyperbolic or loxodromic and its fixed points are determined
foy the limits

a = limτ-w{Γ0 - Λ"}

β = lim ΓMΓ .

With this notation under any coordinate system in Γo the equation of
r takes the form

τ^ — a z — a
= O) -

τz ~ β z - β

vith \ω\ > 1. Finally, since aeΓQ — Aϊ, from (3) we obtain

3 3«. We shall now consider the general case.
Let B ~ (I/!, L2, , Lg), imagine Ξ(Λ.i» A,u % -̂ g.i) c u t along the

curves

Ve then apply to each link L4 the previous construction. Each handle

Λ.x + AM n Λ:, + + Λ.»,-i + A\- ι n ΛΓQ (ί = 1,2, , g)
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of Ξ, is flattened into Γo by means of the mapping ψi defined by the
equalities:

ψiP = Ai>n. Δi>zΔiι2v for p 6 ΔiΛ + A*i Π AΓ,2

ψiP = Δitn. J i i 3 p for p e A,2 + A*2 Π Λ",8
( 4 ) . . /

ψiP = ^t,ntp fo r p € .^i.^-! + At» r i n A~o.

The resulting subregion X of the p-sphere Γo can be considered to be
the intersection

x = xW l_x n -Xn,-! n n x ^ ^

of the Schottky models Xnrl corresponding to each link of B.
The pairs of boundaries ΛiΛ and Δi>7lι ••• ΔitZΔit2ΔiΛ of X should be

considered identified by the mapping Δiιn Δi>3Δiι2 or, which is the
same thing, by the mapping τ έ = Δi>ni Δί>2ΔiΛ. Furthermore:

II. X is a Schottky model conformally equivalent to S.

Proof. As a by-product of the proof of Statement I we obtain that
( a ) Each mapping τt (i = 1, 2, , g) is a hyperbolic or loxodromic

Moebius transformation of Γo.

( b ) The fixed points aif βt of τt are respectively contained in

Γo — A~i and Δϊtl.
( c ) In any coordinate system in Γo the equation of τt writes

( 5 ) ^ ^ z a

TtZ βi Z Pi

with | ω, | > 1.
( d ) Each Ti satisfies the inclusions (see (3))

or, changing notation:

( 6 ) τJLlaΛ^Λ

Since A.oO**) i s ° P e n w e c a n safely conclude that (6) implies

Condition (c) in the definition of a M-surface requires the closed sets

Γo - A+o = AAβt), Λ - Ajx = Λ}Λ(a3) (i, i = 1, 2, , g)

to be disjoint. However, the inclusions
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τtA.i(«i) => A.o(«i)

imply

: A.0O8,)

hence we must have

Therefore also the closed sets

τΛΛ(βi)f ΛJΛ(as) (i, j = 1, 2, . , g)

are disjoint. With this, the conditions for X to be a Schottky model
are all satisfied.

The conformal equivalence of X to Ξ is a consequence of the fact
that the function ψ defined by the equalities

ψp^p for p 6 Lx n L2 n Π Lg - Σ A.i

and (see (4))

ψP = ψ*ί> for p e Lt - Γo + ΛiΛ (i = 1, 2, , 0 )

induces a conformal mapping of B onto X.

3 4 The mapping ψ, or rather its analytic continuation in Ξ,

uniformizes the marked surface S(A,i» A,i» •••» ^g.O

Let BΛ represent the Schottky covering surface of S(A.i> A.i» •> ^α.i)
and X^ the region obtained by cutting S along the curves A1Λ, JiΛf , A.i

Let the cycles AIΊ, Af2, •• ,ikfff of a completion of A1Λ, A2Λ, •• ,ΔgΛ

to a canonical basis of S be chosen in such a way that each Mt inter-
sects the curves Att3(j = 1, 2, •••, w4) in the order

A.*,* A , f i 4 - i > •••> A,s> A . i

As before, let . ^ ^ be the free group generated by the Mt'& and XM

for each Meκy/ί an exact replica of XB.
Then we have

where again the boundaries of the X^'s are identified according to the
rules (i), (ii) stated in § 1.4.

For each Me^έt let τMeG12 be the Moebius transformation cor-
responding to M under the isomorphism of ^// onto G defined by setting

12 As before G 4enotes the group generated by the τVs,
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Mt< >τ, (i = 1, 2, ...,flf)

The mapping ψ of BΛ into Γo is then obtained taking

ψp = *V|rp for p e ΐ M - Σ AΓί ,

and the region of Γo onto which B^ is mapped is given by the union

ψBΛ = Σ
e

This shows that X is the Schottky model corresponding to
B(Λ1Λ, Λ2>1, •••, Agtl) and therefore that the conf ormal parameters of
S(Λ.i> Λ2>i> * * f Λ.i) a r e characterized by the invariants ωt and the fixed
points ai9 βt of the transformations τt.

4 Links of spheres*

4 1 Given two oriented spheres Γx and Γ2 intersecting along a
circle J , there always exists a conf ormal mapping J of Γx onto Γ2 which
leaves unchanged the points of A.

The mapping A can be constructed in the following way:
Let τ be a Moebius transformation of E3 which sends a point of

A onto the point at infinity. The circle A is taken by τ onto a straight
line τA and the spheres Γx and F 2 onto two planes τΓ19 τΓ2 intersecting
along τA. If πx and 7Γ2 denote the two planes through τA which bisect
the dihedral angle formed by τΓ± and τΓ2, the two transformations τπχ

and τπ 2 obtained by reflection across πx and π2 respectively, map τΓλ onto
τΓ2 with preservation of angles and leave unchanged the points of τA.

The corresponding spheres τ"γπλ and τ~λπ2 generate the inversions
τλ — τ~λτπi:, τ2 = τ~Ύτπ^ which map Γλ onto Γ2 with preservation of
angles and leave unchanged the points of A. These two spheres are
called the spheres of antisimilitude of Γx and Γ2 (see also [3] page 230).

To see which of τt and τ2 defines the conf ormal mapping A, suppose
that we transfer the orientation of Γx and Γ2 onto τΓτ and τΓ2 by means
of τ. The product R = τπ^uH is a rotation of TΓ radians around τA,
therefore whatever may be the orientations of τΓx and τΓ2, R generates
a sense reversing transformation of τΓ1 and τΓ2 onto themselves. The
same will also be true for the product

R' = τ-χRτ

with respect to Γx and Γ2. Since rx = {τ^τ^τ^τ} {τ^τ^τ} = R'τ2, either
τλ or τ2 is orientation preserving (as a transformation of Γλ onto JΠ2).
But each of them is a sense reversing transformation of E3, therefore
the transformation A is given by that one of τx and τ2 which sends
the interior of Γx onto the exterior of Γ2. The one of τ~τπx and τ~Ύπ2
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which generates Δ will be called the "direct" sphere of antisimilitude
of Γ1 and Γ2.

We can thus construct M-surfaces by means of collections of inter-
secting oriented spheres. Such ikf-surfaces will be called "natural".

Natural ikf-surfaces form a wide family for which the canal surfaces13

are limit elements. It seems reasonable to conjecture that every Riemann
surface can be realized as a natural M-surface. We shall later show
that every natural ikf-surface can be deformed into a C°° canal surface
without altering its conformal structure. For these reasons we found
it of some interest to present a brief study of the conformal parameters
of natural ikΓ-surfaces. This will lead to a few results concerning the
conformal imbedding of Riemann surfaces of genus one.

Before presenting these results we need to introduce a few tools.

4 2» The conformal geometry of the 3 dimensional space is simplified
by the use of "anallagmatic coordinates". An introduction to these
coordinates can be found in a paper by E. Cartan [2] or in a book by
R. Lagrange [6]. Here we will give only a brief description of them.

The collection of all planes, properly or improperly real spheres,
and points of E3 shall be called the "3 dimensional anallagmatic space";
we shall denote it by j ^ 3 .

A one-to-one correspondence between the points of a 4-dimensional
real protective space ^ 4 ~ (aOf alf a2, a3, α:4) and the elements of sfz

can be generated in the following way:
To each point a ~ (a0, alf a2, aa, α4) of ^ 4 , if xlf x2J x3 denote the

cartesian coordinates of a point of E3, we can associate the equation

(1) ao(x\ + x\ + xξ) — 2a1x1 — 2a2x2 — 2a3x5 + a4 = 0 .

If a0 = 0 this equation defines a plane of E3.
If aQ Φ 0 (1) is equivalent to the equation

α0/ V aj \ aj a2

0

which defines a real sphere, a point or an improperly real sphere accord-
ing as the quadratic form

(3) (α, a) = at + a\ + α? - α0α4

is greater, equal or less than zero.
This correspondence between ^ 4 and s/z is clearly invertible. The

five real numbers a0, au a2, a3, a± (determined up to a common factor
of proportionality) thus associated to each element of J^f3i are called the
"anallagmatic coordinates" of that element. When expressed in anal-

13 Surfaces which are envelopes of spheres (see [1]).
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lagmatic coordinates, the Moebius transformations of Ez become the
homographies of ^ 4 which leave invariant the binary form

(4) (*, β) = aJ3x + a2β2 + adβd - ^{aβ, + aβ0) .

This form is assumed as a scalar product in ^ 4 . We have to
distinguish it from the Euclidean scalar product

( 5) Λ: y = xλyx + x2y2 + xzyΆ ,

which will also figure in our subsequent formulas. To this end vectors
with 5 components will be denoted by means of Greek characters and
vectors with 3 components by means of Latin characters. We shall
always denote (4) by (α, β) and (5) by x y, x x often by JC2, a point
a of ^ 4 briefly

a ~ (a0, a, α4) ,

and the binary form (4)

(6 ) (α, β) = a b - i(a0β4 + aβ0) .

To represent oriented spheres of Ez it is convenient to normalize
the anallagmatic coordinates by making use of the factor of propor-
tionality so as to express orientations in an invariant way (see [2]).
This is achieved by requiring that:

(1) If a ~ (aQ, a, α4) corresponds to a point of E3 we should have

a0 + a, > 0

(2) If a corresponds to a real oriented sphere Γ of E3 and
ξ ~ (xQ, x, x4) corresponds to an interior point of Γ we should have

(α, a) = 1

(α, ξ) > 0 .

(3) If α corresponds to an oriented plane π and ξ to a point of
the half-space towards which the positive normal of π is directed, we
should have

(a, a) = 1

(a, ξ) > 0 .

(4) If a corresponds to an improperly real sphere, we should have

(α, α) = - 1

a0 + a4 > 0 .

The transition from Euclidean to normalized anallagmatic coordinates
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can be carried out according to the following rules:
(a) If p ~ ξ is a point of E3 and λ > 0 then

ξ = λ(l, p, p") .

(b) If Γ ~ a is a sphere or radius R and center in c, oriented so
that c is an interior point

a - 1 ( 1 , c,&- R2) .
it

(c) If Γ ~ a has the same center but imaginary radius

a = 1 ( 1 , c, & + i22) .
it

(d) If π ̂  α is a plane which contains the point Q and has the
unit vector n as positive normal

a = (0, n, 2/ι Q) .

By means of these formulas it can be easily verified that:
( i ) The cosine of the Euclidean angle formed by two oriented

spheres Γx^a and Γ2 ~ β is given by the binary form (6).
(ii) A point p ~ ξ belongs to a sphere Γ <•>*> a if and only if

(a, ξ) - 0.
(iii) The equation of the inversion Δ generated by a real sphere

Γ r^i when expressed in normalized anallagmatic coordinates takes the
form14

(7) Λ£ = f - 2 ( £ , «)8,

where ξ denotes a variable element of <f̂ 4.
The normalization (1) for anallagmatic coordinates of points of E3

is invariant under products of inversions generated by real spheres. In
fact, from (7) follows that if i = l/jβ(l, c, c2 - R2) and ξ = λ(l, py p2)
then

( 7 ) * Δξ - l ^ £ l
R2

with

Pf = c + , " ,a(p - c) .

Thus z/f satisfies condition (1) whenever f does.

See also [6] pages 25-26.



144 A. M. GARSIA

Using (7) we can readily obtain the anallagmatic coordinates of the
direct sphere of antisimilitude of two given intersecting oriented spheres
Γx ~ aλ and Γ2~ a2. According to the considerations in § 4.1, the sphere
Γ <— 8 is the direct sphere of antisimilitude of Γx and Γ2 if and only if
the inversion Δ which it generates, transforms the oriented sphere Γλ

onto the sphere Γ2 oriented in the opposite way; thus in anallagmatic
coordinates we should have

Δat = - a2,

and by (7)

( 8 ) « ! - 2 ( α l f . 8 ) ί = - α 2 ,

or

( 9 ) (α l f ί ) i = 5 L ± α f i .

To find (alf 8) we multiply both sides of (9) scalarly by aλ obtaining

(10) (au S)=± i/TΞψϊί

where by φ we indicate the Euclidean angle formed by Γ1 and Γ2.
Now, (al9 8) does not vanish, for otherwise (8) yields aλ — — α2; and
since the orientation of 8 does not affect the outcome of (7) we can
choose the positive sign in (10) so that we obtain

(11) 8-

4,3 The conformal parameters of natural ikf-surf aces admit a purely
algebraic characterization in terms of the anallagmatic coordinates of
the generating spheres.

Suppose first that L~(Γ0, Γlf •••, Γn^) is a given natural link,
and that Γt ~ at (ί = 0, 1, , n — 1). Set Γn = Γ09 an — α0 and φt equal
to the angle formed by Γt^ and Γt (ί = 1, 2, •••, n).

Let Γ'i ~8t be the direct sphere of antisimilitude of Γi^1 and Γ% and
Δt be the Moebius inversion generated by 8t. In other words

2 cos

The results of § 3.2 imply that the Moebius transformation which
defines in Γo the Schottky model corresponding to L is given by the
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product of inversions

T = zLzL 1 ΔΛ .

The conformal parameter of L is related in a simple way to the
eigenvalues of r.

The study of this transformation can be simplified if we introduce
a complex coordinate in Γo and make use of the results established in
§3.2.

To construct a stereographic projection p — φz of the complex plane
π onto the sphere Γo we can proceed in the following way:

We first choose a basis in ^ 4 which consists of α0 and four other
normalized vectors y0, εly ε2f yx representing respectively

( a ) y0 and yx: two distinct real points of ΓQ.
( b ) εx and ε2: two real spheres containing the points represented

by y0 and yly orthogonal to each other and to the sphere Γo.
We then normalize y0 and y1 so that

(Ύo, Ύΰ = - 1/2 ,15

and set for each z = x + iy of π:

φz = λo(yo + ίcβx + yε2 + {α?2 + ^Z2}̂ ) ,

where the indeterminate λ0 is only restricted to be a positive real
number.

Introducing the two complex points

the equation of φ assumes the more suggestive form

(12) φz = λo(yo + zy + Z7 + zzy±) .

To find the inverse of φ, we observe that if

ξ = λoyo + Xy + Vγ + λ ^

represents a real point of ΓQ we must have f = ξ and (f, f) = 0; this
yields

and

This means that such a f can always be written in the form

is The scalar product of two normalized vectors of &ί which represent real points of

is always negative.
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ξ = λ/y0 + Ay + Ay + AAyΛ .«
^ \n Ajn Xn Xn 'λ 0 .

Thus we can set

(13) φ-*ξ = A .

In view of the results of § 3.2, the mapping τ — An Jif restricted to
Γo, is a loxodromic (in particular hyperbolic) Moebius transformation.
Let us denote then by A and B its two fixed points in Γo and assume
that A is the source and B is the sink.

If we set

I Λ A%\ *u (A ΐf I?2>\

and take for ε1 and e2 any two spheres satisfying condition (b), since
φ-1 maps A onto the origin and B onto the point at infinity of π, the
equation of the Moebius transformation τ* = φ~λτφ of π will assume the
simple form

(14) τ*z = peiΘz ,

with p > 1 and — π < θ <̂  π.
Thus for each point

ξ = λ o γ o + λ y + Xy + ψJfl ,
λ 0

we have (using (13), (14) and (12)):

τξ =: ψτ^φ-^ξ = φτ*— = φpeiθ —
X X

XQ XQ

or

τξ = Ά ( χ o y o + ^ λ y + ^ λ y + ^ ^
λ 0 \ λ 0

A priori the indeterminate λj is only restricted to be a positive real
number. However, the ratio λj/λo depends solely upon the transforma-
tion τ.

16 By λβo we mean an extended valued complex number.
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In fact, since τ preserves the scalar product of ^ 4 we must have

{τξ, y0) - {ξ, τ- 1^) ,

(15) {τξ, yx) - {ξ, τ- 1^) ,

(roy, ryx) = (y0> yx) .

Since y0 and yx represent fixed points of τ

τy0 =

for some positive real numbers JM0 and μx. Substituting in the equations
(15) we obtain

λ ° - 1 a - 1 u - o
λ 0 jt> />

This gives

τy =

τy = e~iθy .

• λυAj

~ j - ,

and since λ is arbitrary

Finally, the relation ΔfiL^ = — α, for ΐ = 1, 2, •••, n implies

With this we have shown that the eigenvalues of τ are (—l)w,
/o, eίθ, e~ίθ. Thereby the relation between these eigenvalues and the
conformal parameter of L is established.

Only little has to be added concerning the general case.
If S ~ (Llt L2, , Lg) is a given natural M-surface and Γo is the

common initial sphere of the L/s, we operate separately on each link
Lt and determine the transformation τt generated by the spheres of Lέ.

These transformations alone carry complete information regarding
the conformal parameters of Ξ.

However, unlike the case of a single link, the eigenvalues of the
τ/s are not sufficient by themselves to characterize the conformal
parameters of B, since they yield only the first g of them. The real
eigenvectors of these transformations have to be determined also, and
among them those representing the fixed points Ai9 Bt of each τi have
to be selected. Then, according to the definition (formulas (8) of § 1.5),
the remaining parameters are given by the coordinates of the points
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B2\ A3, B3; •••; Agf Bg in a coordinate system in Γo for which AXBX and
A2 have coordinates 0, oo and ί respectively.

4.4. With the same notation as in §2.3, let L ~ (Γo, Γlf •• ,ΓW_1)
be a natural link and A be the intersection of the sphere Γi-1 with
the sphere Ft. If ω = />eiβ is the conformal parameter of L, we shall
say that /? is the thinness and # the torsion of L.

The thinness of the link L can be estimated in terms of the ca-
pacities of the annular domains Λt-λ Π A7". In fact, we have the fol-
lowing:

THEOREM. Suppose that each annulus A+-i Π AΓ has a capacity ct

satisfying the inequality

(16) (
log Pi

for some ρi > 1. Then the thinness p of L satisfies the inequality

(17) p ^ ftft pn ,

fcβ eg^aϊ sίgr^ /̂ oZcίs if and only if (16) are equalities and the
spheres Γo, Γlf , Γw_2 are all orthogonal to the spheres of a hyperbolic
pencil.

To prove this theorem, we need a few preliminary considerations.
If τ is a loxodromic transformation of a sphere Γ\ i.e. if for some

coordinate system in Γ

ω

τz — β z — β

the number | ω \ (which can always be supposed greater than one) will
be called the "stretching factor" of τ.

Let A and A' be two circles of Γ having no points in common and
suppose that a0 and β0 are the two points of Γ which belong to the
elliptic pencil generated by A and A'. Let a0 and β0 be ordered in such
a way that the disks A(a0) and Δ'(β0) are exterior to each other.

LEMMA I. Among all Moebius transformations of Γ which map
A(a0) onto A'(a0) only those which admit a0 and β0 as fixed points have
the smallest stretching factor.

Proof. Let us choose a complex coordinate in Γ which is such that
aQ = 0, β0 = oo and A has the equation | z \ = 1. The equation of Λ'
will then be
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\z\ = p

for a suitable p > 1.
If τ is a Moebius transformation of Γ which sends A(a0) onto A'(a0)

its equation can be written in the form

TZ — a __ z — a

τz - β " z — β

with a e A(aQ), β e Ar(β0) and | ω | > I1 7. Now, τ must send the points

1/α and 1//3 respectively onto the points p2\a and jO2/ .̂ In other words,

we must have

(18)a, b PTa ~ a ^ω1!*-*, P2IP ~ a

 = , M z l

ρ2\a-β lla-β pηβ-β 1/β-β

and

(19) (α, β, 1/α, 1//3) = (α, β, ρ2lά, ρ2lβ) .

Equation (18)a gives

__ p2 — aa 1 — aβco — —- _— f

1 — aa ρ2 — aβ

equation (19), after a few eliminations, yields

p2 — άβ p2 —

1-aβ 1-aβ

Therefore we have

_ 2

1 — aa

But αα < 1 (since α e Λ(aQ)), thus

and the equality sign holds if and only if aa. — 0. However, when
a = 0 equations (18)a,b give /3 — oo. This proves the assertion.

Let the Moebius transformation (τz — a)\(τz ~ β) — ω(z — cήfcz — β)
define in Σ a Schottky model M(τ). Any circle A such that the closed
disks Λ{a) and τA(β) are mutually exclusive cuts M(τ) into a region
A(β) Π τA(a) which is an annulus. As a consequence of the previous
lemma we can show that:

17 This follows from an argument similar to that presented in § 3.2,
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LEMMA II. Among all circles A for which A(a) and τA(β) are
disjoint, only those belonging to the pencil P(α, β) cut M(τ) into an
anulus of minimum capacity.

Proof. Let a0 and β0 be the two points belonging to the elliptic
pencil generated by A and τA, and assume that oc0e A(a) and β0 eτA(β).18

If c denotes the capacity of the anulus A(β) n τA(a) the stretching
factor of every Moebius transformation which sends A(a) onto τA(a) and
admits a0 and β0 as fixed points is given by p = e1/c.

By Lemma I we must have

I ω I :> ellc

or, which is the same (since | ω | > 1)

c ^ I/log I ω I

with equality possible if and only if a = a0 and /3 = β0. Q.E.D.
We can now give a proof of the theorem.
If c denotes the capacity of the annulus

AT - τA: = Δn... z/2{Λ + Λ2

+ n A"} + •

+ zUA-i + AT-i n Λ-} + A + A+ n A",

from a well known inequality of potential theory (cfr. [7]) we obtain

(20) I S I + I + . . . + i ,
c cλ c% cn

and the equality sign holds if and only if the circles Δn AA>
Δn Δ^A2, •••, ΔnAn-19 Ao, A belong to the same pencil. Since the thin-
ness p of the link L is equal to the stretching factor of the transforma-
tion ΔnΔn^ Δu from Lemma II we get

(21) p ^ ellc ,

thus from (20) and (16) the desired inequality follows.
To prove the last statement of the theorem, we observe that the

equal sign will occur in (17) if and only if, (16) being equalities, equality
holds simultaneously in (20) and (21). However, this happens if and
only if all the circles Δn AA» A ••• AA» •••> AA-n A, A belong
to the pencil generated by the fixed points a, β of the transformation

τ = AA-i A

Let then Γ be any sphere orthogonal to ΓQ and containing α and

!β This is always the case after a suitable labeling of a0 and
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β. Since Γ is orthogonal to AQ, Γ will be orthogonal to Γn.x and Γ'n (the
direct sphere of antisimilitude of Γn^ and ΓQ.)

Therefore ΔnΓ = Γ and consequently Γ is orthogonal to Δn{ΔnAn_^ =
A-i ^ will then be orthogonal to Γw_2 and to Γf

n^ (the direct sphere
of antisimilitude of Γw_2 and / V J . But this implies that Δn^ΔnΓ = Γ
and consequently Γ is orthogonal to Δn-1Δn(ΔnΔn-1Δn-2) = Λw_2, etc.
Proceeding in this fashion we obtain that Γ is also orthogonal to
Γn_3, /V4, •••, F 2 , Γλ. The spheres orthogonal to Γo and containing α
and β form a hyperbolic pencil.

Conversely if the spheres Γo, Γlf •••, Γw_x are orthogonal to the
spheres of a hyperbolic pencil P, so will also be the spheres of anti-
similitude Γ'2t Γ'2j , Γf

n\ consequently each sphere of P will be invariant
under any of the transformations Δlf Δ2, •••, Δn.

We can then easily deduce that the circles Δn Δ2Δ19 , ΔnAn-lf Ao

are orthogonal to the spheres of P and thus they all belong to the
pencil generated by the two points a and β intersection of ΓQ and the
spheres of P. But a and β are the fixed points of the transformation
4A-! 4.

Our proof is thus complete.
Although it will not be needed in the following we would like to

point out that the inequality (17) holds also for general links. In fact,
Lemma II is valid in the stronger form:

"Among all smooth Jordan curves A for which A(a) and τA(β) are
disjoint, only the circles of the pencil P(a, β) cut M(τ) into an annulus
of minimum capacity."

This statement follows from standard potential theoretical consider-
ations.

5 Some special links,

5 1. Let πλ denote the w-plane and wlf w2 two complex numbers
for which

1fw2 < 0 .

Let G denote the group generated by the translations

— W + Wx

^ ' τ2w = w + w2 .

If we identify the points of π which are images of each other under
the transformations of <?, we obtain a Riemann surface of genus one
Γ(wu w2).

The surface Γ(wu w2) can also be thought of as the parallelogram
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= {w : w = λ^x + μw2; O ^ λ ^ l , 0 <: μ <;

with opposite sides identified by the transformations (1).

This standard construction generates every Riemann surface of genus

one: as a m a t t e r of fact, as w1 and w2 vary, Γ(wl9 w2) assumes every

conformal type and each an infinite number of t imes.

I t is clear t h a t two Riemann surfaces Γ(wlf w2) and Γ{w[, w2) are

conformally equivalent if and only if t h e lattices

L <**>> {m1w1 + m2wΛ

τ, , ™» m, = o, ± i , ± 2 , . . .

can be superimposed by a similarity. Now it is well known that this

is possible if and only if the two ratios

w2 w2

are images of each other under a transformation of the restricted

unimodular group; in other words if and only if there exist integers

α, 6, c, d for which ad — be = 1 and

av

cv + d '

The set

m = {v.Zmv < 0; -1/2 < 9ϊe v ^ 1/2; M > 1

for 9ΐe v < 0; | v \ ^ 1 for 9ΐe y ^ 0}

is a fundamental region of the restricted unimodular group; thus two
Riemann surfaces Γ(wlf w2) and Γ'(wu w2) will be conformally equivalent
if and only if the complex numbers wλ\w2 and w\\wf

2 have the same image
point in 9Jί.

If we have a Schottky model M(τ) defined by a Moebius transforma-
tion

S f < J <P>U-*<»**>

of some sphere Σ, a conformally equivalent model is given by the surface
Γ(log p + iθ, 2πϊ). In fact, the function w = log (z — a)/(z — β) defines
a conformal mapping of M(τ) onto Γ(\og p + iθ, 2πi).

The point

V ~~~2JV 2π
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belongs to SDΐ if

\2πJ
| + ( i ^ Y > 1 when θ > 0

Thus can we conclude that two distinct Schottky models M(τ) and
M(τr) whose conformal parameters ρeίθ and ρfew satisfy the inequalities
(2) are never conformally equivalent.

We shall proceed to show that there exist natural links which are
not conformally equivalent to any of the models Γ(log p, 2πi).

5.2. Let a = l/jβ(l, c, c2 - R2), a, = l/jβ(l, c19 c\ - R2) and
α2 = 1/-R(1, c2, c\ — iί2) be three given spheres19 of equal radius and
suppose that ccx — cc2 — 2δ, δ < i? < cxcj2.

Let J x and Λ2 be the circles of intersection of α, αx and α, α2

respectively, πx and π2 be the planes containing Ax and J2, cί the
intersection of π19 and π2 (proper or improper), p the intersection of d
with the plane through c perpendicular to d, and /?!, i?2 represent the
points of contact of the two planes through d which are tangent to a.

We would like to compute the capacity of the annulus

D = Λ(A) n Λ(A)

To do this it is sufficient to compute the stretching factor of a
Moebius transformation of a which admits px and p2 as fixed points and
sends A(JPI) onto Λ(/>i).

Let 7ϋ denote the plane through c and d, and o the sphere through
A2 which is orthogonal to α. Clearly the product

r = rστπ

of the inversions τπ and τσ with respect to π and σ generates a
transformation of α which is of the type requested. We shall compute
its equation.

We indicate by a and b two unit vectors with the directions of c^
and cp respectively. Let us assume for simplicity that the origin of
the coordinate system of Ez is at c. We then have

a - 1 (1 , 0, -i22)

π = (0, a, 0) .
19 Occasionally we shall make use of the same symbol to denote a geometric object ancl

its representative i n " ^ .
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Setting φ — pccλ = pcc2 and ψ = pcpλ =

πx = (0, —sin <pα + cos φb, 28) ,

π2 = (0, sin φa + cos <pδ, 2δ) ,

= — ( 1 , P?, Pi) = 1577^ (1, - ^ s i n ^ α + Rcosψb, R2),
P/λ 2iί Sin ψ

p2, pi) = —-Λ (1, iZsinψα + Rco&ψb, R2) .
2i2smψ

By its definition a belongs to the pencil generated by yx and γ2, as
well as to the pencil generated by a and π2.

Thus for suitable values of μ, λ, μ\ λ'

(3) a = / ^ + λy2 = //'α + λ'π2 .

Observing that since {a, a) = 1 and (y^ ^ ^ —1/2 we must have λ = —IIμ,
equating the middle components of (3) we obtain

λ2 — 1

Now

^σ7i = 7i - 2(yi, σ)σ = λ2γ2 and analogously τσγ2 = (l/λ2)ylβ

Thus for the stretching factor /? of the product τστπ we get

( 4 ) p = λ2 = t a n ^ + tan Λ/Γ

tan >̂ — tan ψ

this determines the capacity of D20.

53. It is easy to show that every point of 9Ji which lies in the
imaginary axis can be obtained as an image of an imbedded surface.

In fact, the image of a torus in 9Jί is always pure imaginary, and
as we vary the radius of the generating circle, keeping the center fixed,
we can describe the whole imaginary axis.

We shall exhibit a family of natural links with the same property,
and at the same time illustrate our way of computing the conformal
parameters of natural links.

Let α, 6, c be unit vectors forming a left handed orthogonal triplet
and set

2 0 The obvious argument based on the fact that the stereographic projection is a cross-
ratio-preserving transformation would lead to the same result with more or less the same
effort.
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a, = -l/l, cos i— a + sin i—b, 1 - R2

R\ n n

(assume n Ξ> 3). It can be readily verified that aoyau •••, an^1 define
a natural link for every value of R greater than sin π In and less than
one.

Let A% denote the intersection of α ^ with aif and the sets Λϊ, At
have the same meaning as in § 2.3, To compute the conf ormal parameters
of the link

L(n, R) - A + Λ+ Π Λ" + + Λ*-i + ΛJ-i Π Aι ,

according to the results of § 4.3 we should study the transformation τ
product of successive inversions with respect to the spheres

2 vR2 — sm2 π/n
1,2,

This does not present any difficulty. In fact, we observe that each
of the α/s is orthogonal to the plane

e1 = (0, c, 0)

and the sphere

°
Thus all the spheres of P(e1, e2) (the pencil generated by ex and e2)

are orthogonal to each of the α/s and therefore also to each of the St's.
This implies that the spheres of P(slf ε2) are all invariant under the
transformation τ. Consequently also the points yQ and %, which a0 has
in common with the spheres of the pencil P(elf β2) are invariant under
T. We can then conclude that τ admits the decomposition

τε2 = ε2

with a suitable p > 0 (if %, and ^ are properly labeled p will result
greater than one).

Thus the torsion of L(n, R) vanishes independently of n and R.
To determine the thinness p we use the formula (4) of last section and
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obtain for the capacity ct of each anulus A^ + Λ*-i Π Aΐ

_ U it! cos π\n + sin ττ/n i/ l — R2

1 iϋ cos π\n — sin π/n i/ l — R2

Applying the theorem of § 4.4 we obtain

— R2\n

- RV
/ϋ? cos π\n + sin π/w T/1 — R2\n

~VR cos π\n - sin π\n Vl

Clearly for any given n > 3 this function increases from 1 to ω as
R decreases from 1 to sinπ/w.

It is interesting to note that if R is kept fixed in (5) and we let n
tend to infinity we obtain

lin p = e 2 * ^ - .
W->oo

This result is not surprising since the link L(n, R) then approaches
the torus enveloped by a sphere of radius R as its center describes a
circle of radius one,

5A. The fact that each link L(nf R) has torsion zero could have
been predicted. We can show that if a natural link admits a plane of
symmetry or a sphere of inversion (which amounts to the same thing)
then its torsion must vanish.

We shall consider two representative cases.

Case 1. All the spheres of the link are orthogonal to the sphere
of inversion.

Let a0, alf , αn_i be the generating spheres and ε be a real sphere
such that

(oti, e) = 0 (i = 0, 1, . . - , w - 1 ) .

From this follows that the spheres of antίsimilitude Slf δ2, •••, Sn

will also be orthogonal to ε and therefore

(6) τε = z / ^ ^ Λe = e .

We suppose that y0, yly y, y decompose τ, and set (as in § 4.3)

zy0 = — y09 τyx = pyu τy — eiθy, τy = e~ίθy ,
P

Since ε is orthogonal to α0 it must be of the form

(7) ε = λo yo + λtf! + Xy + M
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however, for a natural link p > 1 (cfr. theorem of § 4.4), and thus the
hypothesis eiΘ Φ 1 is incompatible with (6) and (7).

Case 2. The spheres of the link are interchanged by the sphere of
inversion. By means of two or more additional spheres we can reduce
(without altering the conformal structure of the link) every possible
situation to the following one:

The spheres α0, alf , an^ are an even number n — 2p and further-
more the sphere of inversion e is such that

The spheres of antisimilitude will then be related in the following way

Sn = τeSl9 δn_x — rεδ2, , Bp+1 = r ^ .

This implies that the transformation τ = J ^ . i Ji can be written in
the form

τ = τzΔxΔ% Δ9τzΔvΔ9-x Λ

or, setting σ = ΔΏά^x Jj:

Assuming that y0, ^ are the source and the sink of the transformation
τ, for a suitable p > 1 we have

In view of the unicity of γj (since p φ 1) we must have

( 8 ) τyy0 = %, - 2(γ 0 , β)β = λy x

for some λ > 0 (cfr. the properties of the normalization in § 4.2). Scalar
multiplication of (8) by y0 yields 2(y0, ε) = ± V λ so that choosing the
positive sign (the orientation of ε is irrelevant) we obtain

(9) e = iy0-VrλV1.
v K>

Considering the spheres α4 in the different order

&P> otp+1, , α0, alf , α p _ x ,

we obtain again the same link; the source and the sink of the corre-
sponding Moebius transformation r* = aτzσ~λτz will then be the points
Vo = σtYo and y[ — σylβ Therefore we must also have

2 1 By τs we mean the inversion generated by ε.
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(10) ε = J = y ; - V~μy[

for some μ > 0.
We set y — (ε1 — iea)/2, y — (ex + iea)/2 where βi and e2 are any real

spheres containing y0 and yλ orthogonal to each other and to the sphere
αo; from (9) follows that

TzΎ = y, τεy = <y .

Now (</γ, <J<y0) = (y, y0) = 0 and similarly (σy, σyj^iσy, σyo) = (σy, σy,) = 0,
therefore in view of (10) we deduce

τεστsy = τεtfy = σy , τeστzy = τεtfy = σy ,

and

τy — σ~ισy = y , τy = σ-Vy = y .22

which is what we wanted to show.
Case 2 illustrates the intuitive fact that if a link L admits a plane

of symmetry then whatever torsion L might inherit from one of its
symmetric parts is taken away by the other. This property is not peculiar
to natural links but it holds for all Riemann surfaces of genus one im-
bedded in E3.
We shall give only a sketch of the proof for the general case.

If a surface admits a plane of symmetry then it admits an anticonfor-
mal (sense-reversing angle-preserving) mapping onto itself. This fact by
itself is sufficient to exclude that the corresponding parallelgramm lattice
could be a general one, it must have rectangular or rhomboidal genera-
tors.23

However, the case of rhomboidal generators can be excluded also.
The anticonformal mapping generated by a plane of symmetry in E3 will
always leave invariant two distinct closed curves of the surface as loci
of fixed points. On the other hand, if a rhomboidal lattice is a general
one, the reflections which preserve the identification of points admit also
two distinct invariant curves, but only one of them as a locus of fixed
points.

5.5. In contrast with the results of the previous section, it is not
difficult to construct natural links whose torsion does not vanish. The
simplest models of such links can be obtained using five linearly indepen-
dent spheres.

22 A shorter but less illustrative proof could be derived from the fact that the equation

Tsγ = vy together with (8) leads to an absurdity.
2 3 We owe this observation to Professor H. Royden.
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In fact, we can show that
// a link L is generated by five spheres oc0falf •••, tf4 then its torsion
vanishes if and only if the vectors a% are linearly dependent.

The torsion of L vanishes if and only if there exist vectors which
are invariant under the product of inversions τ = Δ5Δ± Δx generated
by the spheres h%. Now, the transform of a vector ξ by τ (after a re-
peated application of formula (7) of § 4.2) can be written in the form

2 (f, 2(4

and the equation

4f , Sb)S5

- 0

can be satisfied when and only when the δ/s are dependent. On the
other hand if we let a denote the matrix whose columns are the vectors
aiy S denote the matrix whose columns are the vectors Sif and set
μi = i/l + (a,_x, α,)/2 24 we have

1/2//
1/2//

0

0

0

I 0

Il2μ2

0

0

0
0

l/2^3

Il2μs

0

0
0

0

1/2/*,
l/2/£4

l/2μ.
0

0

0

1/2//

and

(11)
detα

Thus the δ/s are dependent or independent together with the α/s. This
proves the assertion.

This result does not quite solve our original problem of constructing
models whose representative point in 3Ji is off the imaginary axis, at
least as long as we do not know when the point θβπ — i (log p)/2π is
contained in 2JΪ. We shall get around this difficulty by showing that our
models can be made sufficiently thin (cfr. the inequalities (2) of § 5.1).
To this end we shall exhibit a family of links within which this defor-
mation is possible.

Let Co, Clf •••, C4 be points of Ez arid P denote the closed polygonal
line CQC^ C4C0. Suppose that each segment CiCi+1 (i = 0, , 4; Cδ = Co)
has length equal to twice that of the unit of measure, and set 2φi =

angle Ci^CiC^^ Let at be a sphere of radius R and center Ct, i.e.,

cfr. (10), (11) of § 4.2.
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(12) α, = ±{1, Ct, C\ -
K

In order that the spheres at fulfill the conditions (α), (6), (c), (d), (e) of
§ 2.3, so that they can be used to define a link, it is sufficient to require
that for each i — 1, •••, 5 ai-1 intersects a% and does not intersect
α i + 1(Setα6 = ax). We shall thus assume that P is such that

(13) φt > ττ/6 + tf, or C^C^ > 2(1 + ε) .

for some 0 < σ < π/3, 0 < ε < 1, and restrict i2 to satisfy

(14) 1 < R < 1 + ε .

Let L(P, R) denote the link defined by such a choice of P and R.
From (12) follows that

(15) det a = —

1 / ^ ^ 2

1 C2 Cϊ

c, cj

therefore the torsion of L{P, R) vanishes if and only if the vertices of
P lie on the same sphere. Now, it is geometrically evident that if we
keep P fixed and let R decrease to 1 the capacities of the anuli A*-i Π ΛΓ

will decrease to zero (see also formula (4) of §5.2) and thus by the
theorem of § 4.4 we can predict that the thinness of L{P, R) will tend
to infinity.

This proves the existence of links whose torsion does not vanish and
whose representative point is in 501.

More accurate results about the links. L(P, R) could be obtained by
a direct calculation of the eigenvalues of the corresponding Moebius
transformations. However, without going into tedious computations we
can show that: the portion of 3Jί covered by the images of the links
L{P, R) contains a strip of constant width around the imaginary axis.

It can be shown (see [6] pp. 26-28 and 154-155) that the character-
istic polynomial of the Moebius transformation generated by a set of
linearly independent spheres S19 δ2, * ,δ 5 is given by the expression

(16) as(λ) = det

λ δ,, δ2)

+ λ
2(Blf Sδ)

2(δ2,δ5)

2λ(*lf ίβ) 2λ(δ2, δδ) 1 + λ

On the other hand, from the results of § 4.3 we have
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(17) x(X) = (λ2 - 2 cos ΘX + l)(λ2 - 2 cos ftσλ + l)(λ + I)25 .

(we have set cos hσ = l/2(/> + l/i°)) Evaluating (16) and (17) for λ = 1
and equating the results we obtain

(18) sin h2σj2 sin2 θβ = - det || («„ «j

If we recall the definition of the scalar product ((4) of § 4.2) we see that
it is

/ 0 0 0 0 -1/2 \

0 1 0 0 0

(«„«,) II = δΓ

this means that

det

0 0 1 0 0

0 0 0 1 0

V —1/2 0 0 0 0 )

= -l/4{detδ} 2 .

Substituting in (18) we obtain

(19) sin 0/2 I = 1/2 i :det δ I
sin hσ{2

We now observe that for a link L(P, R) we have (at-it at) = 1 — 2/R2 and
setting r = VR"1 — 1 , (11) gives

detδ =

so that, using (15), (19) yields

R5det a
2V

1 C

(20) I det

I sin 0/2 I = 4 C\
25r5 sin hσ/2

We shall get upper and lower bounds for sinλίj/2.
Let y° be the sink of the Moebius transformation corresponding to

L(P, R), and set

Since 8, = l/r(l,
§ 4.2 we obtain

?) with 4̂έ = (C^ + C4)/2, recalling formula (7)* of

2 5 (λ + 1), since the number of spheres is odd.
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GX GX--GX

But each Gt is a point of the corresponding sphere aif thus we get

(21) (1 +

The theorem of § 4.4 gives a bound from below. Let Ct denote the
capacity of the anulus Λf-i Π ΛΓ, using (4) of §5.2 and some geometrical
considerations we obtain

Ct = iny, + τ/1 -
sin φ* — l/l — i?2 •r

thus

(R sin ψx + l/l - i22 cos2 φ$ sin ^>5 + l / l - JS2 cos2^5)
2 .

• «

since we keep R < 2 sin φt each of the factors in the numerator of the
right hand side is greater than one therefore

(22) P>λr-

Finally (21) and (22) used in (20) yield (assuming r ^ 1):

1 f~^ /""'

det

(23)

/ 0 ^ 0

/4 C 4

det

g I sin 0/2 I ^ 1 C4 C
2

24(1 - r10)

These inequalities imply our assertion:
For each polygon P ~ C0C1 C4C0 let D(P) denote the value of

det

C\

1 C4 C
2

If Po is a regular pentagon of side 2 then the link L(P0, R) is certainly
well defined when 1 < R V 2 . Simple geometrical considerations to-
gether with formula (5) of § 5.3 show that the link L(PQ, i/lΓ)has a thin-
ness p0 for which log p0 < 2π. Let then P vary among the polygonals
which satisfy the following conditions.

(1) D(P)Φ0.
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(2) The link L(P, VY) is well defined.
( 3 ) The point v{P) = (θ(P)/2π) - i (log p(P))l2π corresponding to

L(P,1/ 2) is contained in the region | Rev | < 1/2, | v | ^ 1.
Assume 1 < R < VΎ and set v(P, R) = (0(P, JB)/2τr) - i(log ρ(P, R))l2π
where Θ(P, R) and p(P, R) represent the thinness and the torsion of
L(P, R). _

For every fixed P, as R decreases from V 2 to 1, the point v(P, R)
describes a curve M{P) which starts from a point outside 3JΪ, enters
9K for a suitably small value of R and tends to infinity from within
m as R -> 1.

The first inequality in (23) shows that each curve M(P) is bounded
away from the imaginary axis. Then, if we let P approach Po, because
of the second inequality in (23), M{P) will tend to the imaginary axis
and sweep a neighborhood of the type asserted.

A family of polygons satisfying the conditions (1), (2), (3) can be ob-
tained from the following model. Let (x, y, z) be a cartesian coordinate
system in E3. Let

Co - (1/sin π/5, 0, 0), Cx = (x(φ), y(φ), z(φ)), C2 = (-cot τr/5,1, 0)

C3 - (-cotττ/5, -1,0), C4 = (x(ψ), ~y(ψ), -z(ψ))

with

x(ψ) = 1/2 + 2 sin π/5 sin ττ/10 cos ψ

sin 27Γ/5

y(ψ) = 1/2 + 2 sin ττ/5 cos ττ/10 cos ψ

z(ψ) = 2 sin π/5 sin ψ ,

and set P(ψ) ~ CQCι{ψ)C2CzClψ)CQ. The points C* have been chosen so
that P(0) is the regular pentagon of side 2 which lies in the plane x, y,
has its center at the origin and a vertex in the positive real axis. When
ψ varies C1(ψ)J C4(ψ) describe the circles H, K loci of points whose dis-
tances from C70, C2 and Co, C3 respectively are equal to 2. A short cal-
culation gives (for ψ < ττ/2)

(24) D{P) = 25 sin ττ/5 sin π/10 sin i/r(l - cos -ψ ) .

It can be easily seen that the links L{P(ψ), l/ΊΓ) are well defined when
defined when | ψ \ < τr/4 (the only critical distance in this range is C1C4

and it is well above 2\/Ύ).
Numerical estimates of the width of the strip covered are poor,

since (21) is rather crude. Nevertheless using (23) and (24) with
R = 1.2 and p ;> 11 we obtain | θ \ > 2 degrees.
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5.6. We shall conclude by showing that each natural M-surface can
be deformed into a conformally equivalent C°° canal surface. Our con-
struction is based on the following observation.

Let Γ be a Riemann surface, iVa subregion of Γ and A the boundary
of N. Let ΛΓ* be a Riemann surface with a boundary A* and suppose
there exists a conformal mapping Δ of ΛΓ* onto N which is defined and
continuous up to Λ*. Then we can make the set

Γ* = (Γ - iSΓ) + iV*

into a Riemann surface conformally equivalent to Γ. The proof is im-
mediate. We introduce local uniformizers in F* so that the mapping
φ(P) of Γ* onto Γ defined by

P for PeΓ*-N*

Φ(P) = J P for PeiV*

is conf ormal.26

We shall illustrate the use of this observation in a simple case.
Suppose Γ is imbedded in Ez. Assume that N is a simply connected
piece of a surface of revolution whose boundary is a parallel. Let iV*
be any other simply connected piece of surface of revolution which has
the same boundary and the same axis as N. The existence of the mapp-
ing Δ in this case is trivial. The observation can thus be applied, and
we can deduce that Γ and Γ* = (Γ — N) + iV* must inherit the same
conformal structure from E3.

If Γ is C°° across A and we want Γ* to possess the same property,
then we have to restrict JV* to osculate N along A to an infinite degree.

Our next application will be the smoothing of natural M-surfaces.
Let L be a given natural link and suppose that we want to render
smooth the edge formed by the spheres Γx and Γ2 of L. Let A be the
circle of intersection of Γx and Γ2. For simplicity we shall assume that
the whole space has been subjected to a Moebius transformation so that
Γλ and Γ2 have become spheres of equal radius, their centers being interior
points. Let A~, A+ be the portions of Γx and Γ2 which are exterior to
Γ2 and Γ1 respectively, π the plane of A; πλ and π2 two planes parallel
to π at a small distance ε from π. Assume that πx and π2 intersect A"
and J + respectively and set

A = πλ Π A" , A2 = π2 Π A+ .

Let a be the straight line which contains the centers of Γx and Γ2, v
a half plane bounded by α; ^ and fc2 the semicircles Γ1 Π v, Γ2 n v
respectively. Let

26 In § 2.3 we have proceeded in a similar way.
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A1 — v 0 A , A — v f) Λ , A2 = v f] A .

Let N be the portion of L generated by the rotation of the arcs
AykxA and Ak2A2 around α.27

We shall choose k to be a curve of v which joins Ax to A2 and fits
with kx and k2 at its end points in a C°° fashion. Let N*{k) be the
surface of revolution generated by rotation of the arc AJcA2 around α.
It is easy to see that when the non-Euclidean length of the arc AJcA2

in the half-plane v is equal to the sum of the non-Euclidean lengths of
the arcs AxkxA and Ak2A2 there exists a conformal mapping Δ of iV*(&)
onto N which leaves invariants the points of Ax and A2. And then, in
view of our observation, N*(k) can be used to replace N in L. It remains
to be shown that such a k can be found.

Let us first choose k to be the semicircle of v which joins Ax with
A2 and is orthogonal to α. Since k is then a geodesic, using the triangle
inequality, we obtain

(25) n. ϊ?.l.AxkA2 < n. ξ?.l.AxkxA + n. W.l.Ak2A2 .

Now, k can be deformed at its end points to fit with k19 and k2 as
smoothly as we please, increasing its length as little as we wish. There-
after, if necessary, we can increase the length of k to change (25) into
an equality.

To complete our argument we must show that L can be rendered
smooth without introducing self-inter sections. However, it is clear that
k can be chosen to be a simple curve contained in the circle of center
A and radius the (Euclidean) length of the segment AAl9 for any given
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HOMOMORPHISMS OF CERTAIN ALGEBRAS

OF MEASURES

IRVING GLICKSBERG

The problem of determining all isomorphisms between the Lt alge-
bras of a pair of locally compact groups G and H has been considered
by J. G. Wendel [16, 17] and H. Helson [7] (in the abelian case); these
authors showed in particular that all norm-decreasing isomorphisms
arise essentially from isomorphisms between the groups (and are iso-
metries). In the abelian case a device suggested by Helson leads to
much more, and we shall determine all norm-decreasing homomorphisms
of certain algebras of measures (similar to Lj) on G into the algebra
of measures on iϊ(cf. 2.1 below.).

Let M(G) denote the Banach algebra of all finite, complex, regular
Borel measures on G, with convolution as multiplication. LX{G) forms
a subalgebra of M(G), in fact an ideal. Because of this, knowledge of
the norm-decreasing homomorphisms of Lx algebras into algebras of
measures on another group leads to the determination of all norm-de-
creasing isomorphisms between M(G) and M(H); indeed when G and H
are abelian we shall show that for each norm-decreasing isomorphism
of a (not necessarily closed) subalgebra of M(G) which contains Lλ{G)
with a similar subalgebra of M(H) there is an isomorphism γ of G
onto H and a fixed character g of G for which Tμ is just the measure
gμ transported to H via 7 (whence TLλ{G) = L^H) and T is an iso-
metry). This is exactly the abelian Helson-Wendel result extended to
superalgebras of L^ in the non-commutative situation we can only
obtain the analogous result for compact groups.

Aside from familiar facts about harmonic analysis (as given in [10,
15]) our main tools will be the following results obtained in [6] for a
compact group G:

(1) each multiplicative subgroup of non-negative elements of the
unit ball of M(G), other than the trivial subgroup {0}, consists of
translates of Haar measure of a fixed normal subgroup of G [6, 2.4];

(2) each non-zero idempotent in the unit ball of M{G) is Haar
measure of a subgroup multiplied by a multiplicative character of
this subgroup [6, 4.3].

It is a pleasure to record the author's indebtedness to K. de Leeuw
for many stimulating comments and suggestions.

NOTATION. AS usual C0(G) will denote the continuous complex
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functions on G vanishing at infinity; M(G) is of course C0(G)*. The
space of all continuous bounded complex functions on G will be denoted
by C(G).

When G is abelian, G~ will denote its character group with generic
element g; the respective identities of G and GΛ will be g0 and g0. In
general measures on G will be denote by the letter μ and those on H
by v with μg(vh) the mass 1 at g (h). It will be convenient to use μ
for the measure and also for the corresponding integral, writing μ(f) =

\f(g)μ(dg) where integration is always over the entire group. For

notational ease we shall take the Fourier-Stieltjes transform μ of μ to

be defined by μ(g) = \(g, g)μ(dg)( = μ(g)); in particular for absolutely

continuous measures, inversion will involve the familiar conjugation.
On occasion we shall need to multiply a measure μ by a function

/ : fμ will denote the measure we might define by fμ(dx) = f(x)μ(dx).
Finally it should perhaps be stated explicitly that the term "subalgebra"
should only be taken in the algebraic sense, and all references to
norms on subalgebras of M(G) are to the norm of M(G).

1. Preliminaries* If T is an isomorphism of Lλ(G) onto LX(H), and
G and H are abelian then one has a dual homeomorphism τ of f P onto
G" for which (TμY = μ o τ. This fact from the Gelfand theory formed
the starting point of Helson's investigation [7], which proceeded to show
τ had algebraic properties as well when T is norm-decreasing. Helson
observed [7, §2] that τ could be extended to map almost periodic func-
tions in a linear norm-decreasing fashion, but found no application for
his observation, which will be fundamental for our abelian results.

Our first result yields the algebraic content of the norm-decreasing
character of somewhat more general maps. Here and elsewhere || H*,
will denote the usual supremum norm for functions, and 0 the func-
tion identically zero.

THEOREM 1.1. Let G and H be a pair of abelian topological
groups, with G~ and ί P their (algebraic) groups of continuous charac-
ters. Let T be any map of ί P into G~ U {0} with zh0 = g0. If

II n
 A II \\ n Λ II

(i ii) Σ«Λ < Σ«Λli-1

for any trigonometric polynomial Σi-iaJ*Ί o n H> ^ e n τ~ι ^ ^s a

subgroup of H~ and the restriction of τ to this subgroup an algebraic
homomorphism.1

1 Actually we could take G^ and H~ to be any groups of (multiplicative) characters on
a pair of (not necessarily abelian) groups G and H. One need only replace G* and H*
(below) by the duals of the (discrete) groups G^, H~ (into which G and H map onto dense
subsets).
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COROLLARY 1.2. If τ: iϊ"->G"u{0} satisfies (1.11) and τ 4 e G"

then σ : h —• τ(h^)-ιτ(hh^ is multiplicative on the subgroup h^ιτ'\G^) of
ϋΓ\ and otherwise vanishes.

COROLLARY 1.3. If τ : £ P —> G~ satisfies (1.11) ίλen σ \h-> {τh^τh
is a homomorphism of H~ into G~. Conversely if σ is a homomorphism
(1.11) λoίdta. Finally identical equality obtains in (1.11) ijf r is one-
to-one as well.

Proofs. In (1.11) we are of course demanding that the obvious
linear extension of τ mapping trigonometric polynomials on H into those
on G be norm-decreasing, and thus we have a norm-decreasing exten-
sion of this map taking §l(iϊ), the almost periodic functions on H, into
2ί(G). Letting if* and G* be the almost periodic compactifications2 of
H and G we then have a norm-decreasing map T of C(H*) into C(G*)
with Tίί*^cG*^U {0}. As a consequence the norm-decreasing adjoint
map T* of C(G*)* - M(G) into C(Hψ - Λf(#*) is multiplicative, for
Γ*(A * /**)$) = #L * #,(2%) = μ^TlήμlTh) = T^μ^ίήT^μJJi) since 7% is
either 0 or a character. Hence (T*(/^ * μ2)Γ = ( T ^ Π T ^ Γ and
from the one-to-one nature of ^ we obtain T*(μ± * /̂ 2) — T*μx * Γ*jM2.

Moreover from ThQ — τΛ0 = g0 we see that Γ* preserves non-nega-
tivity; for μ>0 and \\μ\\ - 1 imply 1 == μ(g0) ^ μ(Th0) = T*μ(h0) <

II Γ*μ|| < ||/^|| = 1 so that Γ*^(l) = 1 = || T*μ||, and therefore T*μ>0.
Consequently Γ* maps the multiplicative subgroup {μg:g e G*} of

the unit ball of M(G*) into a subgroup of the unit ball of M(H*)
which consists of non-negative measures. Thus by [6, 2.4] (cf. in-
troduction (1)) the image consists of translates of Haar measure v of
some subgroup K of H*, and we can write T*μg = vy(g) where vy(g) is
the translate of v to the coset j{g) e H*jK. For h in Kx( — the subgroup
of JBΓ*~ = fί^ of all characters identically 1 on K, hence constant on
cosets mod K) we have (y(g), h) = vw(fe) = Γ*/ (̂&) - JH,(2%) = (g, τh)
for all gr in G c G * . But as usual this implies τ is multiplicative on the
subgroup KL of ϋΓ since, for fc^ fea in JK"1, (fif, τ{hxh^) = (γ(#), A^2) ~
(7(flf), k)(7(g), k) = (̂ , ^i)(^, ̂ "4) = to, τ4τ4) for all # in G. On the
other hand for £ 0 Kλ we have 0 - vy(g)(h) = Γ*^^) - ^g(ΓΛ) - (g, r^)
for all g in G, and thus τh = 0; consequently r~xG^ is precisely the
subgroup if1 of ίΓ\ and our proof of Theorem 1.1 is complete.

We might remark that the converse of 1.1 can be obtained in
somewhat the fashion of the corresponding assertion of 1.3 (below), and

2 It will be convenient to view G as a dense subset of G* and W(G) as the restrictions
to G of the elements of C(G*) [10, 15]. Similarly we consider the elements of G~ as the
restrictions to G of the elements of G**.
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equality obtains identically in (1.11) iff TH^CZG^ and, as in 1.3, τ is
one-to-one. Since we shall have no use for these facts proofs will be
omitted.

The proof of Corollary 1.2 follows immediately from noting that

(so that (1.11) holds for σ) while σ(h0) = g0. Evidently σ is independent
of the particular choice of hλ.

The direct portion of Corollary 1.3 is a consequence of 1.2, taking
h1 — h0. For the converse part we note that if σ is a homomorphism
then interpreting it as a map of iϊ*^ into G*^ we have a dual homo-
morphism γ of G* into if*, and

Consequently (since we may consider G and H as dense subsets of G*
and if*) we have

(1.12) Σ Whig) = sup
i = l I <3*

Σ
ί = l

= sup Σ '
y(G*) i= i

and (1.11) holds. Clearly identical equality obtains if 7(G*) = H*. On
the other hand since γ is continuous and G* compact, γ(G*) is a com-
pact subgroup of if*, and if γ(G*) ̂  if* some non-zero / in C(H*)
vanishes on τ(G*); since / can be approximated uniformly by trigono-
metric polynomials equality in (1.12) cannot always obtain. Thus identi-
cal equality is equivalent to γ(G*) = i/*, or dually, to the one-to-oneness
of σ, hence of τ.

We shall return to some reformulations and analogues of these re-
sults in §6.

2 Homomorphisms. In order to utilize the device suggested by
Helson we need not restrict our attention to Banach algebras. We
need only insist that our subalgebra A of M(G) have G^ U {0} as its
space of multiplicative f unctionals and be large enough to determine the
norm of each trigonometric polynomial on G. Unless something to the
contrary is stated G and H will represent locally compact abelian groups
throughout this section.

It will be convenient to extend the definition of the Fourier-Stielt jes
transform μ of μ in M(G) by setting μ(0) = μ(0) — 0, and regard
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G~ U {0} as the one point compactification of G~. Consider the following
conditions on a subalgebra A of M(G):

(2.01) For each trigonometric polynomial Σ?=iα«ί7i o n G

-

(2.02) The set of maps μ—>μ(g),geG~\j{0}, corresponds in a
one-to-one fashion to the set of all multiplicative linear functionals
on A, and AAcC(GAU{0}).

When both conditions hold A~ contains* sufficiently many functions
to determine the topology of G"U{0}; for (2.01) implies A" separates
any pair of elements of the compact space G~ U {0}, and thus each gx

in Gs U {0} has a base of neighborhoods of the form {g:\μi(g) — μi(g1)\<ef

i = 1, 2, , n], where μ% e A. A — LX(G) clearly satisfies these condi-
tion, and will of course be the most important example.

THEOREM 2.1 Let A satisfy (2.01) and (2.02). Then if T is a non-
zero norm-decreasing homomorphism of A into M(H) there is a compact
subgroup HQ of H, a continuous (not necessarily open) homomorphism
7 of G into HIH0, and characters g of G and h of H for which

(2.11) Tμ(f) = μ(g[S(hf) o γ]), / e CQ(H) ,

where S denotes the map of C0(H) onto C0(HIH0) defined by Sf(hH0) =

\ f(hhr)v(dhr) (where v is Haar measure on Ho); alternatively

(2.12) Tμ = hS*Γgμ

where Γ is the homomorphism of M(G) into M(HIH0) defined by setting
Γμ(f) = μ(fo γ ) ,/e C0(HIH0), and S* is the adjoint of S mapping
M(HIH0) into M(H). Conversely each such quadruple Ho, γ, g, h defines
a non-zero norm-decreasing T via (2.11) or (2.12).

Proof. For each h in ίΓ\ μ—* (Tμf(h) defines a multiplicative
functional on A, and thus we obtain a unique τh in G~ (J {0} for which
(Tμ)~(h) — μ(τh). Since the elements of A~ suffice to define the topology
of G^U{0} and the functions (TμY* are continuous on H~ one clearly
has τ: H^ —* G~ U {0} continuous.

On the other hand τ satisfies (1.11) as a consequence of (2.01):

(2.13) | |Σ<VΓ/U| = sup
I U 1 IJ l l l l

3 Of course this holds when A* is only a separating subalgebra of C(G^U{0}); but
then we can only assert that G~ forms a subspace of the space of multiplicative functionals
on A (taken in the w* topology).
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= sup

< sup
II

Tμ

Thus in order to apply Corollary 1.2 we need only verify that τ ^ e G "
for some hλ in H~; but such an hλ exists since otherwise τH~ = 0,
{TAf(H~) — 0 and thus TA = 0 by the one-to-oneness of the Fourier-
Stieltjes transformation. Consequently σ : h —> (rΛ1)""

1r(ΛΛ1) is multiplica-
tive on the subgroup K = σ~ι(G~) — Jfi^τ~\G~) of i Γ \ and of course
vanishes elsewhere. As we have seen τ, and thus σ, is continuous on
ϋ P so that tf-^O} is closed and K— σ~\G~) is open. Therefore K is
an open and closed subgroup of H~, whence H~/K is discrete, and the
dual Ho — KL of H~/K is a compact subgroup of H.

Dual to the continuous homomorphism σ\K: K—>G~ we have a
continuous homomorphism γ of G into JK"̂  = H[Kλ — HjH0, and thus
for h in K and # in G, (#, σfc) = (γ(#), h) = vy(9\h), where v7(9) is again
the translate to the coset j(g) of Haar measure v on iί0. Moreover the
formula

(2.25) (g, σh) = v^\h)

clearly also holds when h <£ K— H^, since both sides are then zero.

Combining (2.25) with σ(h)τ(hD = r(Mx), or σ(kh^1)τ(h^) — τ(h), we make

the following computation, with F e L^H^):

Tμ{F) = [F(h)Tμ(dh) = \¥(h)(TμΓ(h)dh

= \¥(h)ft(τh)dh = (ί^TOίff, τh)μ(dg)dh

-S){g, τhjdhμidg)

, h)dh){h, h^)v

, τhjμ(dg)

or, setting h = h'1 and £ =
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(2.26) Tμφ) - μ(g . [S0) o 7])

since L^JEΓX is dense in C0(H) and both sides of (2.11) are continuous
in /, (2.11) follows. The alternative form (2.12) follows when we make
the obvious notational transfer.

Conversely given HQ, 7, g and h, and thus 5* and Γ, the right side
of (2.12) clearly defines a norm-decreasing homomorphism of M(G) —»
M(H), as the composition of four norm-decreasing homomorphisms. To
see that T Φ 0 we need only verify that (2.11) remain valid for / =
h'eH~; for then

Tμφ) - μ(g[S(hh>) o 7])

while S(hhf)e(ίf/ί/oΓ if &&'e#o\ and then S(hhf) o γ ^ ^ e G A . Con-
sequently TA{k) = A(gfif') = A"(^^0 Φ {0} for an appropriate h'9 by
(2.02).

But that (2.11) remains valid for / — h! 6 JHΓ̂  follows from the same
sort of computation as the preceding; with F e L^H") one obtains

- J(fif, g)S(hP)(7(g))μ(dg)

- JJ(ff, d)(Λ, h)¥ϊh)v^\dh)μ{dg)

whence (Tμ)φ) = μ(g[S(hh') o 7]) for almost all Λ'. But the second ex-
pression vanishes for A' in the open complement of h~ιHt so that (by
continuity) the first also vanishes there. On the other hand for h! in
h~ιH$- (also open) we have μ(g[S(hhf) o 7]) continuous as a function of
hi since S(hh') 07 = o (M') where σ is the continuous homomorphism of
Hi~ = (iJ/jffo)̂  —> G^ dual to 7. Consequently both expressions are con-
tinuous functions of &' on h"1!!^ as well, and thus coincide on this open
set.

2.2 REMARK. When the subgroup HQ is trivial (i.e. = {hQ}) one may
write 2.12 in the more concise form Tμ = Γgμ; for clearly we have
Tμ = hΓgμ so that Γ/ι(/) = μ{g{{hf) o 7]) = M^(^ ° Ί)(f*iί) and we
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may replace g by g(h o γ) e G"\ This situation will of course occur if
each h in H~ produces a non-zero functional on TA, i.e. when r u P c G " ;
for then Hϊ = ίΓ = JET".

2.3 REMARK. If A is an ideal of a larger subalgebra Ao of ikf(G)
and A satisfies (2.01) and (2.02) there is the possibility of applying
Theorem 2.1 to certain norm-decreasing homomorphisms T on Ao. For
provided TA φ {0}, we may apply the result to the pair A and T\A to
obtain T\A= TX\A where Tx represents the homomorphism (given by
the right side of (2.12)) of all of M(G) into M(H); consequently (since
A is an ideal in Ao) for μ e A, μ' e Ao,

Tμr *Tμ= T(μr * μ) = Tλ{μ' * μ) = Txμ' * Txμ =

and (Tμ' - Txμ') * Tμ = 0. Hence Tμ' - Γ^' annihilates ΓA, and we
need only know that TA has no non-zero annihilators in M(H) (not
TA0) to conclude that Tμ' = ^ μ ' for all μ' in Ao. As a particular case

COROLLARY 2.31. Lei A satisfy (2.01) and (2.02) and Zet Ao be a
larger subalgebra of M(G) in which A forms an ideal. If T is a
norm-decreasing isomorphism of AQ onto M(H), then T is determined
as in Theorem 2.1, indeed as in 2.2 since Ho = {h0}.

Since μ*A = 0 implies μJC — 0 while A~(g) Φ {0} for each g in G
by (2.02), A has no non-zero annihilators in Ao. Thus since T is an
isomorphism, TA has no non-zero annihilators in TA0 = M(H), and
Tμ = hS*Γgμ. But if v denotes Haar measure of Ho one clearly has
(λy) * Tμ = Tμ so that we must have hv the identity of M{H)y hence

2A. The following example shows how completely wrong Theorem
2.1 is for arbitrary large subalgebras of M(G) in general; it was sug-
gested to the author by K. de Leeuw. Let G be any non-discrete
locally compact abelian group and, for μ in M(G), let μ — μp + μc be
the Lebesgue decomposition of μ into discrete and continuous parts,
i.e., μp is a countable linear combination of point masses (converging in
norm) and μc vanishes on all one point sets. Since the continuous
measures form an ideal and μf * μξ is still discrete, μ—*μv is a norm-
decreasing homomorphism of M(G) —> M(G), or indeed of M(G) onto
M(Gd)(Gd = G in the discrete topology); clearly the map is not induced
by any continuous γ :G—>Gd.

2.5. The restriction that T be norm-decreasing in Theorem 2.1 can
be replaced by apparently weaker conditions in certain cases. The fol-
lowing result has a much simpler proof when A = LX(G).
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THEOREM 2.5. Let A be a subalgebra of M(G) satisfying (2.02)
which is spanned by its non-negative elements and has sufficiently
many of these to determine the non-negative almost periodic functions,
i.e.,

(2.51) / e SI(G) and μ(f) > 0 for all μ > 0 in A imply / > 0.
If T is any non-zero homomorphism of A into M(H) which preserves
order (μ > 0 =Φ> Tμ > 0) then T is norm-decreasing. If A also satisfies
(2.01) then Tμ = S*Γμ,μeA.

Proof. As in Theorem 2.1 we obtain τ : ί Γ -> G" U {0} with Tμ{h) =

μ(τh). The functional μ—• Tμ(h0) cannot be zero for then 0 = Tμ(l) =

11 Γ//11 for μ>0, whence ΓA = 0 since the non-negative elements span

A. For μ > 0 in A, μ(τλ0) = 7>(fe0) > 0 so that τh0 > 0 by (2.51), and

thus τh0 = <70. Consequently for μ > 0, | | μ | | = μ(0o) = μ(τft0) = Tμ(h0) =

\\Tμ\\\

Let τ0 denote the linear extension of τ mapping trigonometric poly-

nomials. If p is a non-negative trigonometric polynomial on H and

μ > 0 is in A then μ(τop) = Tμ(p) > 0, so that ro2> > 0 by (2.51). Thus

τ0 preserves the order of real valued trigonometric polynomials, and

since τh0 = g0, — 1 ^ p <̂  1 implies — 1 ^ τop ̂  1. But for any trigono-

metric polynomial p = Σ?=i#A> if £>* = ΣΓ=i^ί^"ί t h e n (P + 2>*)/2 and

(ί) — p*)/2i are real valued, with values bounded by — | |p |U, | |p |U. Hence

l|τfl(p + p*)/2|U ^ IIPlU, | |τo(p - p*)/2|U = | |ro(p - p*)/2ί|U ^ | |p |U, and

therefore ||-ε-αϊ>|| ^ 2||2>||oo.
Consequently r0 extends to a bounded map of Sl(iϊ) into 2ί(G), which

we may view as a map of C(H*) into C(G*); calling the extension r0

we have Tμ(f) = μ(τof), μe A,f e C(H*), since this held for trigono-
metric polynomials. Moreover this identity implies r0 (as extended)
preserves order by (2.51), so the adjoint r* : M(G*) —> M(H*) must also
preserve order. As before we conclude from τoho = ̂ 0 that | | r *μ | | = \\μ\\
ΐov μ >0 in M(G*). Therefore r* maps the point masses on G* into
the unit ball of ikf(£Γ*), and thus their w* closed convex circled hull
into the same set. Since the hull coincides with the unit ball of
M(G*), IIτ0*II = IIτo | | ^ 1, and, for μ in A,

sup \Tμ{f)\= sup | J H ( T O / ) | ^ sup \μ(τof)\ ^ \\μ\\
H/IUίSi ll/llco^i | |τ0/|joo^i

where / varies in Sί(ίί). But the norm of Tμ as a functional on
coincides with its norm as a measure ([4], [6, §5]), whence
| |μ | | , and T is norm-decreasing.

For the final statement in 2.5 we need only note that since τhQ—g0,
4 At this point the proof for A — L\ is essentially complete for T is clearly norm-

decreasing on simple functions (rather, on the corresponding measures) and these are dense.
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and since our present τ coincides with that obtained in the proof of

Theorem 2.1, we may take hλ = h0 in deriving (2.26), so that h = h09

g = gQ in (2.12), completing our proof.
It should perhaps be noted that portions of the above proof can be

used to obtain an analogue of Theorem 1.1 in which (1.11) is replaced

by "Σi=iaiτhί > 0 if S i U a A > 0 " ; f° r clearly our argument shows
this condition implies (1.11).

If the group if has a connected dual we can replace " norm-de-
creasing" in Theorem 2.1 by " bounded".

THEOREM 2.6. Let A be a subalgebra of M(G) satisfying (2.01)
and (2.02), and suppose H~ is connected. If T is any bounded non-
zero homomorphism of A into M(H), then T is norm-decreasing; con-
sequently there is a homomorphism 7 : G —• H and a g in G~ for which
Tμ — Γgμ, μ e A. In particular if A is a closed subalgebra, all non-
zero homomorphisms of A into M(H) arise in this fashion*

Proof. As in the proof of Theorem 2.1 we obtain a continuous
map τ : H~ —> G~ U {0} with τ ^ G " Φ φ; further, the linear extension of
r mapping trigonometric polynomials is bounded by a computation an-
alogous to (2.13), and we may view this as extending to a bounded map
τo:C(H*)->C(G*). Again τ0* : M(G*) -> M(H*) is multiplicative (as in
1.1), for τ*μ{h) = μ(τoh) = μ(τh), or (τ*μ)~ = μ <> τ, μ e M(G*).

Now (for any locally compact abelian G) if we define μ e M(G*)

corresponding to μeM(G) by setting μ(f) = \ f(g)μ(dg)ff e C(G*) (so
JG

that μ represents the restriction of the integral corresponding to μ to
almost periodic functions) then μ-^μ is an isometric isomorphism of M(G)
into M(G*) ([4], or [6, §5]), and, as functions on the set G~t μ=^μ. Moreover
as a consequence of a theorem of Bochner-Schoenberg-Eberlein [4], M(Gy
consists of just those μ in M(G*) with μ continuous on the space G~.
Thus, for μ in M(G), since τ is continuous and (r*/ϊ)Λ = μoτ = μ°τ,
we have {τtμT the transform of some measure σμ in M(H), i.e.,
τ^μ = (σμy. Clearly σ is a multiplicative map of ikf(G) into M{H).
Since τ - 1 G^ Φ φ for any h therein we have \oμg{h)\ = \τ*μg{h)\ =
\μg(τh)\ = \μg(τh)\ = 1 for all g in G, whence σμg Φ 0. Consequently
if E denotes the set of all point masses on G, σE forms a bounded
non-zero subgroup of M(H) so that (i-P being connected) by a theorem
of Beurling and Helson [3, §5] σE consists of unimodular multiples of
point masses on H. Thus E maps into the unit ball of M(H) under σ,

5 Such homomorphisms being automatically bounded since A is a Banach algebra and
M(H) is semisimple.
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or equivalently E~ maps into the unit ball of M{H*) under τ*. But
E~ is w* dense in the set of point masses on G*f and thus τ0* carries
all point masses on G* into the unit ball of M(H*). As in the proof
of Theorem 2.5 this implies || Tμ\\ < \\μ\\, μe A. The final assertions
of 2.6 now follow from 2.1 and 2.2, since the connectedness of H~
precludes the existence of any non-trivial compact subgroup Ho of H.
A consequence of our proof is

COROLLARY 2.61. Let H" be connected, and let τ : ΈΓ-* G"U {0}
be any non-zero continuous map for which

for all trigonometric polynomials Σ?-i α A o n H- Then M can be re-
placed by 1, τH~aG~, and h—* (τh^~λτh is a homomorphism.6

For the map again extends to a bounded map τ0 of C(H*) into
C(G*) with ||τ01| = ||r0*|| ^ 1 so that M can be replaced by 1. Since a
translate of τ~λG~ provides us with an open subgroup of H" by 1.1,
r~2G^ = H* and we need only apply 1.3.

2 7. A result of Leibenson [9], improved by Kahane [8], can be
stated as follows: the only maps τ of the circle group T1 into itself for
which / o r has an absolutely convergent series whenever / does are of
the form τ(t) — tλ tn, where tλ e T1 and n is an integer. The following
corollary of 2.6 yields a stronger assertion as a special case (G~ —
jfjp = T1, A — Li(G)); the result is of course essentially a dual formula-
tion of 2.6.

COROLLARY 2.71. Let A be a closed subalgebra of M(G) satisfying
(2.01) and (2.02), and let H~ be connected.7 Then any map τ of H*
into G~ for which

feA~ implies / o r e M(HΓ

must be of the form

where g eG~ and σ is a continuous homomorphism of H~ into G"
6 Note that continuity cannot be dropped from our hypothesis: for a map of R^ which

merely interchanges two elements produces a bounded map of trigonometric polynomials
on R.

7 In this and our subsequent results involving a connected dual (viz: parts of 3.5, 4.2,
4.3, and 5.1) (2.01) can always be replaced by the requirement that | | /?||oo <I /£sup {| μ(p)\:
μ£A, \\μ\\ ̂ s 1} for all trigonometric polynomials p.
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Proof. Let Tμ be that element of M(H) for which (Tμf = μ o τ,
μeA. Clearly Γ is an algebraic homomorphism of A into M(H), which
must be bounded since A is a Banach algebra and M(H) is semisimple.
Moreover T is non-zero, since otherwise AΓ(τH~) = 0, contradicting
(2.02). Thus 2.6 applies to yield a continuous homomorphism γ:G—>H
and a ^ in GA with Tμ = Fgμ, μe A, whence as before

/*) - Tμ(h) = Γ ^ ) = j"(ff$ ° 7)) = jft(ff(Λ o γ))

for all μ in i , ft in ίΓ\ Consequently τ(h) = g(h 07) = gσ(h) where
a : H~ —• G" is the continuous homomorphism dual to 7.

It should be noted that we cannot obtain the type of boundedness
required in 2.6 by simply assuming A is a Banach algebra under some
norm.

An analogous result, in which connectedness is replaced by more
stringent requirements on τ, is a consequence of 2.5 and Bochner's
theorem. We shall omit its most general statement, taking our algebra
A to be LX(G) so that no specific hypotheses concerning the algebra
appear.

COROLLARY. 2.72. Let τ be a map of ΈΓ into G" for which φoτ
is positive definite on H~ whenever φ is a positive definite element
°f C0(G~). Then τ is a continuous (but not necessarily open) homo-
morphism.

Proof. Since the Fourier-Stieltjes transform of a measure is a
linear combination of four positive definite functions we may define Tμ
as before for μ in A = Lλ(G) to obtain a non-zero homomorphism of
LX(G) into M(H). Moreover, μ>0,μe Lλ{G) imply μ is a positive de-
finite element of C0(G"), and thus (Tμ)" = μ o τ is positive definite.
Thus (by Bochner's theorem again) Tμ > 0, and we may apply 2.5 to
obtain Tμ = S*Γμ, μe Lx(G)f in the notation of Theorem 2.1. But for
h 0 Ht we have Lx(Gf(τh) - (TL,(G)Γ(h) = (S*ΓL1(G))"(ft) = 0; hence
from TH^CLG" we conclude that H^ = H~ and Ho is trivial, Tμ = Γμ
and therefore Tμ(h) = μ(τh) = μ(h 07), so that τ appears as the dual
to 7, completing our proof.

The same proof (except for the final step) applies if one takes τ
only to be a non-trivial map of ΈΓ into G"u {0} (i.e., with T'HJT Φ Φ);
one obtains the fact that Tμ = S*Γμ, μeLX(G), and concludes that τ
is a continuous homomorphism on the open subgroup τ"λG" of H" (in
order to consider φ o τ as defined on all of ΈΓ one should include 0 in
the domain of φ, with <p(0) = 0).

2 8 It is tempting to try the same approach in the non-commuta-
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tive situation, replacing characters by finite dimensional matricial rep-
resentations; apparently only in case H is compact can we obtain any
consequences without a deeper investigation.

For any map σ of functions and matrix U = (ui5) of functions let
σU represent the matrix (σ(utJ)). Then if U is any bounded continuous
finite dimensional matricial representation of H,v—*v{U) is a bounded
representation of M(H). Moreover if T : LX{G) —> M(H) is any bounded
homomorphism, then μ —> Tμ( U) is a bounded representation of Lλ(G)
and, as is well known, must be of the form μ-^μ(U), where U is a
continuous bounded matricial representation8 of G. Viewing C(H) as a
subspace of M(if)*, the adjoint T* maps C(H) into L^G)* = L^G),
and we may clearly identify U and T*C7 = ( ϊ 7 * ^ ) as identical matrices
of elements of L^G). Consequently we can take T*utJ as a continuous
function, indeed an almost periodic function, on G.

Now if H is compact the Peter-Weyl theorem assures us that we
can view ϊ7* as mapping C(H) into Sί(G); moreover this map τ is clear-
ly norm-decreasing if T is. Each μ in M(G) provides us with a func-
tional μ on 2I(G), and since τ* : 2ί(G)* —• M(H) is norm-decreasing,
||r*jδ|| < Hμll < Hμll so that σ:μ—>τ*μ is a norm-decreasing map of
ikί(G) into M(H). But σ is automatically multiplicative: for

σ(μ * μ')(U) = (JM * ^)^(^^) = μ*μ\U) = μ(U)μ'(U)
= σμ{U)σμ'{U) =

for all [/, so that σ(// * μ') = σ(/̂ ) * o (/̂ ') by the Peter-Weyl theorem.
Thus E = {tfμα: ^ e G} forms a multiplicative group in the unit ball of
M(H).

Unfortunately the results of [6] do not determine all groups in the
ball of M(H) in the non-abelian case, but only those consisting of non-
negative measures. E will be such a group if T (and therefore ϊ7*,
τ, τ* and σ) preserves order; moreover we then have μ —> Tμ(l) a non-
zero representation of L±{G) if T Ψ 0 (otherwise 0 = Tμ(l) = | |2> | | for
all μ>0, hence for all μ). Since μ-+Tμ(l) also preserves order,
T*l = 1. As a consequence T is automatically norm-decreasing (cf.
footnote 4), and E Φ {0} since σμg(l) = μ,(rl) = /^g(Γ*l) = 1. We thus
have E a set of translates of Haar measure of a normal subgroup Ho

of H, and can write as before σμg = vy(g\ y(g) e HjH0.
But the map g -> μg of G into 2t(G)* (taken in the w* topology) is

continuous, so that g —• τ*μg = v7(g) is w* continuous, and one can easily
conclude that γ is a continuous homomorphism of G into HjH0. More-
over since g —> μg is w* continuous we can represent μ as the w* con-
vergent vector valued integral \μgμ(dg), μe M(G). Applying τ* we

8 That is, a homomorphism into a group of (possibly singular) matrices.
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τ*μ = ^τ*μgμ(dg) = \v^μ(dg) so that τ*μ(f) = ji

γ),/e C(H), in our earlier notation. Finally we ha
obtain y γ
μ(Sfoγ)9fe C(H), in our earlier notation. Finally we have τ*μ = Tμ,
μ6Lλ{G): for τ*μ{U) = μ{τU) = μ(T*U) =z Tμ{U), all [/. Hence we
may write Γ = S*Γ.

Actually if I7 is any non-zero norm-decreasing homomorphism what
we really need to know is that some one-dimensional representation of
H induces a non-zero representation of LX(G). For then we have multi-
plicative characters χ' and χ of H and G respectively for which Tμ(χ') =
μ(χ); consequently χ'Tχ^μil) = Tχ^μiχ') = χ-^(χ) = μ(l) and the norm-
decreasing map To: μ—> χ'Tχ^μ has T*l = 1, whence it is easily seen
to preserve order (as in 1.1). Thus Tμ = (χ')~1S*Γχμ.

THEOREM 2.9. Let G be any locally compact group, H any compact
group. Then any non-zero order-preserving homomorphism T: LX{G) —>
M(H) is of the form S T . If T is merely norm-decreasing and T*χf

is a non-zero element of LJβ) for some multiplicative character χ' of
H, then Tμ = χ"S*Γχμ, where χ", χ are multiplicative characters of
H and G respectively; indeed χ" = (χ')-1> χ = T*χ'.

3 Isomorphisms* An almost immediate consequence of Corollary
2.31 is the fact that isometric isomorphisms between M(G) and M{H)
arise in the same simple fashion as in the case of Lx algebras. Actually
we have a stronger result.

THEOREM 3.1. Let G and H be locally compact abelian groups,
and let A be a subalgebra of M(G) containing Lλ{G), B a similar sub-
algebra of M{H). Then for any isomorphism T of A onto B which is
norm-decreasing on LX{G) there is an isomorphism γ of G onto H and
a character g of G for which

Tμ(f) = μ(g(f o γ)), / 6 C0(H), μeA.

Thus T is an isometry and Tλ(G) — Lλ{H).
Before proceeding to the proof of Theorem 3.1 we might note that

Lλ(G) can be replaced in our hypothesis by any subalgebra of M(G)
satisfying (2.01) and (2.02) which is an ideal in A.

Proof of Theorem 3.1. Applying Theorem 2.1 to the restriction of
T to Lλ{G) we obtain characters gλ and hlf and operators S* and Γ for
which Tμ = h1S*Γg1μ, μe L^G). Consider the norm-decreasing isomor-
phism To = h^Tgϊ1 of Ao = gxA onto Bo = h^B. Ao contains LX(G), and
Bo contains Lλ{H)9 while Toμ = S*Γμ for μ in L±(G). Evidently
v * Toμ = Toμ, μeLλ(G), where v is Haar measure on Ho. Since v is an
idempotent, μ—>v* Toμ is a homomorphism of Ao into M(H) which is
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one-to-one on L^G). Consequently it is one-to-one on all of Ao: for
v * Toμ — 0 implies v * T0(μ * μ') = 0, μ' e LX(G), whence μ* μ' = 0 by the
one-to-oneness on L^G), and μ — 0. But if J3"0 ̂  {&0} we have Ht a
proper open and closed subgroup of H~ so that we can find a v in
LiίflΓ), v =£ 0, with ^(ίίo1) = 0, by the regularity of Lλ{H). Since έ is
the characteristic function of iJ0~S (2 * vf = Pί> = 0, and 5 * y = 0; on the
other hand v — Toμ, μ e Ao, μ Φ 0, so that v * v Φ 0 by the one-to-oneness
of μ —> 5 * T0/i, and we conclude that jfiΓ0 = {K} Thus 7 appears as a
continuous homomorphism of G into iT, and we may now write Toμ =
Γμ.μeL^G).

As a consequence9 we have (TQμ)~(h) = (FμT(h) = μ(/£ 07) = μ(hoj),
μeL^G), with fcoγeGΛ, so Toμ-+(Toμy(h) is a non-zero functional on
TJjλ{G). Repeating a previous computation, we have, for μ in Ao and
// in Li(G)

Γ0/i * To// = To(/^ * //') - Γ(μ * //') = Γμ * Γ^ f = Γ/i * TQμ' ,

Li(G) being an ideal, so that (Toμ - Γμ) * T,Lλ{G) = 0. Thus for each

λ, (Toμ - ΓμΓ(h) = 0 whence 7 ^ = Γμ, μeAQ. Consequently ϊ > ( / ) =

hΓgμ(f) - Γgμ{hf) = gμ(h o γ . / o γ) = / i ^ / 0 7 ) ) for // in A, and it

remains to show 7 is an isomorphism of G onto H.

First 7(G) is dense in H; for otherwise we have a non-zero / in
C0(H) with / o 7 = 0, while v( f) Φ 0 for some v in Lx(iJ), 1; = TQμ,
whence 0 Φ v(f) = Toμ(f) = /^(/° 7) = 0. Moreover 7 is one-to-one since
if 7(0i) = 7(&) then μ = μH- μg% has Γμ = 0 (for /</o 7) =/(7(&)) -
f(j(g2)) = 0). But then for // in L^G) we have μ * μf e L^G) and
Γ0(μ * μ') = Γ(μ * μ') = Γμ* Γμf = 0 whence μ* μ' = 0 for all // in
Li(G), and clearly μ = 0, & = ^2 Indeed the argument shows Γ is one-
to-one on M(G).

Consequently it is sufficient to show 7"1 is continuous on γ(G); for
then 7 is a homeomorphism, 7(G) is therefore locally compact and, be-
ing dense in H, must coincide with H as is well known. Suppose then
that the net hδ = 7(ffβ) -+K — 7(ffo) Clearly Γμg8 = vH. For μ in Ao

with Toμ in L^ίΓ) we have vH * Toμe L^H^T.A, = ΓA0; clearly
A/̂ αβ * £θ = Λ̂δ * ^ = yΛδ * TV* s o that μg8* μe Ao since Γ is one-to-one
on M(G), and further T o (/^ * μ) = vftβ * Γoμ. But || Γ o ( ^ * μ ) - T,μ\\ =
\\vH* Toμ - Toμ\\ -> 0, Γoμ being in L^fί), and since Γo^l^jfί) is auto-
matically continuous, \\μ98 * μ — μ\\ —• 0. As a consequence {#δ: δ > δ0} is
contained in some compact KaG for some δo; otherwise a cofinal subnet
tends to infinity and lim \\μgB * μ — μ\\ = 2| |μ | | for each such μ. If g
is any cluster point of {gs} in K then, for each g, μg * μ(^) is a cluster

9 This follows as in the final part of the proof of 2.1,
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point of {μgs * μ(g)}, which of course converges to μ(g) since
llj"oa * J" - /Ίl -* ° T h υ s - t*o * J" = i" a n d Toi" = Γμ = Γ(μg * μ) =
VΊ{9) * /7* = ŷfα) * Toμ; since Toμ is an arbitrary element of Lλ(H) we
clearly have y(g) = fe0 and 0 = g0. Consequently {g8} converges to g0 by
the compactness of K, and 7"1 is continuous.

Finally we have ΓLX{G) = L^JHΓ) since strong continuity of the map
g —• μg * μ is equivalent to strong continuity of h-^vh* Γμ, and Lx con-
sists of just those measures for which strong continuity holds, by a
theorem of Plessner. Consequently TLλ(G) = Lλ(H) and our proof is
complete.

Applying 2.5 and 2.6 to T\Lx(G)y we obtain

COROLLARY 3.11. Let T be any isomorphism of A onto B for which
μ > 0, μe Lλ(G) imply Tμ>0. Then T is an isometry Γ induced by
an isomorphism γ of G onto H.

COROLLARY 3.12. If H^ is connected any isomorphism T of A
onto B is on isometry determined as in 3.1.

THEOREM 3.2. When G and H are arbitrary compact groups, the
conclusions drawn in Theorem 3.1 and Corollary 3.11 continue to hold.

Proof. Consider first the situation indicated by 3.1, and let μ°, v°
be the Haar measures on G and H. Then Tμ° is a non-zero idempotent
in the unit ball of M(H), and thus, by the result (2) cited in the in-
troduction, of the form χλv where v is Haar measure of a subgroup of
H, and χt is a multiplicative character of this subgroup.

But A * μ° = Kμ\ K the complex field, so B * (χ.v) = K(χxv). Tak-
ing M(H) — C(H)* in the w* topology, the linear map v'—> v' * (fty) of
M(H) into itself is of course continuous, and clearly is of norm ^ 1.
In particular the unit ball of B maps into D (χ^), where D is the
unit disc {z: | z | <̂  1} in K. Since each 24 is w* adherent to the unit
ball of L^fyczB, we obtain vh * {χλv) e D(χ1v) for each h in iϊ, and the
carrier of v must be translation invariant. Consequently v = v° and
#! appears as a character of the full group H.

Thus μ —> Tμίχϊ1) is a non-trivial one-dimensional representation of
L2(G): for Tμ\χ^) = χytχΓ1) = 1. As in 2.8 we obtain a multiplicative
character χ of G for which Tμiχϊ1) = μ(χ); since //(χ) = 1, χ = 1, and
by 2.9 we have ϊ > = χβ*Γμ, μ e Lλ{G). Setting Toμ = χ Γ 1 ^ we obtain
an isomorphism of A onto BQ = χΓ1- ,̂ with Toμ = S*Γμ, μe L^G), and,
in particular, Toμ° = χΓ1?7^0 = v\

As in 3.1, 7 must be one-to-one; otherwise we have a μ Φ 0 in
Λf(G) with Γμ = 0 so that :Γ0(μ * //') = S*Γ(μ * //') = S*Γ/i * S*Γμ' = 0
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for all μ' in Lλ(G), and10 μ * L^G) = 0, μ = 0. Moreover if the compact
image j(G) of G in HjHQ were not all of HjH0 we should have an / in
C(HjHQ) with /=£ 0 , / > 0,/oγ = 0; thus if p denotes the canonical
map of H onto HIHQ,

0 < v%f o p) = 2V^(/o /o) = S*Γμ\f o p) = Γμ\f) = //>(/ o 7) - 0

consequently γ maps G onto fl/fli* and therefore is a homeomorphism
and isomorphism between these groups. But now Γ appears as an
isometry mapping M(G) onto M(HIHQ), and since S* is easily seen to
be an isometry, 2\ = TQ\LX(G) = S*Γ|LχG) is isometric. This combines
with To// = vQ to show 7\ and Tϊ1 preserve order: for

μ ^04^ μ* f* =
0 .

Consequently Γ2 maps {μ:0 < μ < μ0} onto {y : 0 <̂  v ̂  v0}, or, more
generally, the algebra Lj(G)μ* = {f-μQ:fe L^G)} onto £„(#) iΛ As
an isometry T7! thus maps closure onto closure, or Lλ(G) onto LX(H),
and we are forced to conclude that Ho is trivial since its Haar measure
acts as an identity on TJJ^G) = LX(H). Hence γ is an isomorphism of
G onto H, and Tλμ = Fμ. As before we conclude that Γ0/i — Γμ,
μeA:ίor with //; e LX{G), Toμ * Γo//' = TQ(μ * //') = Γ(μ * //') = Γ// * Γμr =
ΓJM * 2V*' and (TΌμ - Γ//) * LX{H) = 0. Thus we have 2^ = χxΓ^ = Γχμ,
as in 2.2, or Tμ(f) = /i(χ (/07)), proving the analogue of 3.1. The
analogue of 3.11 follows since our T must then be norm-decreasing on
LX(G) as in 2.8.

3 3 Returning to the abelian case, the results of Sreider [14] for
G — R indicate that G~ forms a smaller part of the maximal ideal
space of M(G) than one might initially presume. As one would suspect
from the one-to-one nature of the Fourier-Stieltjes transformation
however, G~ would seem still to occupy a rather dominant role in the
Gelfand representation of M(G); this view is certainly reinforced by 3.1
since it shows the norm-decreasing automorphisms of M(G) can only
induce self-homeomorphisms of the maximal ideal space which leave G~
invariant, and indeed preserve its algebraic structure.

3A. A variant of the proof of Theorem 3.1 yields the form of all
norm-decreasing isomorphisms of Lλ(G) onto a closed subalgebra of
L^H); when G~ is connected this yields the answer to the question:
what (proper, closed) subalgebras isomorphic to Lλ(G) can Lλ(G) contain?
Clearly if G1 is a proper open subgroup isomorphic to G then LX{G)

10 If μ^L1(G) = 0 then for f,FβC(G) we have 0 = J $ f(gι9 Mdgι)F(g~%°(dg2) =
$ ) , whence μ = 0 since such convolutions f*F are dense in C(G).
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provides such a subalgebra; when CΓ is connected these are the only
candidates.11

THEOREM 3.5. Let A be a closed ideal in M(G) satisfying (2.01)
and (2.02) and let T be an isomorphism of A onto a closed subalgebra
B of Lλ(H). If T is norm-decreasing then Tμ — hS*Γgμ (as in 2.1)
where γ is an isomorphism of G onto an open subgroup of HjH0. In
particular if H~ is connected any isomorphism of A onto B is of the
form μ —> Γgμ, where γ maps G isomorphically onto an open subgroup
of H.

Proof. By 2.6 the second assertion follows from the first. By 2.1
we have Tμ = hS*Γgμ; as before we can eliminate g, h, and may as
well assume Tμ = S*Γμ. Since A is an ideal in M(G) and μ * A = 0
implies μ — 0 by (2.02), we conclude exactly as in 3.1 that γ is one-to-
one.

Moreover if γ"1 isn't continuous on γ(G)cίZ"/iί0, for some neighbor-
hood U of g0 we have <γ-\VH^C[U9 Φ φ for each neighborhood V of
ho; let gv e j-^VHo) f] Ur and let j(gv) = hvH0 where hve V. Since

T(μ * μgγ) = S*Γ(μ * μQγ) = S*Γμ * ^<'r> = S*Γμ * vhy = Tμ * » v

(where v7(ί/) is the translate to <γ(g) of Haar measure on Ho as before)
we conclude from the strong convergence of Tμ * vh to Tμ and the
automatic continuity of T" 1 (B being closed) that Hμ*/^ — μ\\—*0.
Noting that μ^ μg — μ for all μ in A implies g — g0 by (2.02), our
previous argument yields the fact that #F —> #0, contradicting #F e U\
Thus γ is a (topological) isomorphism, γ(G) is locally compact and there-
fore closed, and we need only show γ(G) open to complete our proof.

Let Hλ be the inverse image of y(G) under the canonical homomor-
phism of H onto HIH0, a closed subgroup of H. If / 6 CQ(H) vanishes
on ίZΊ we clearly have S*Γμ(f) = 0 so that the regular Borel measure
S*Γμ vanishes on all Borel subsets of the complement of Hλ. Since
S*Γμ is a non-zero element of Lλ(H) for some μ, Hx clearly contains
some compact set C of positive Haar measure, and thus must be open12;
hence γ(G) is open and our proof complete.

1 1 It is of course not the answer otherwise. For example let An be the algebra of
integrable / on the circle T1 with f(eiθ) =/(β*(β+2*/n)); then setting g(t) =/(ί1/w) yields a
well defined element g of Li(Tί), and /-> g is easily seen to be an isomorphism of Λn with

1 2 For we can find a Baire subset E of H containing C with E\C of (Haar) measure
zero; then the Borel measurable function &-» <pE(1I)<PE~Kh~1hr) - φc{h)φo~1(h-1h') (for hr

fixed, φE the characteristic function) differs from zero only on a subset of (E\C){j(h'E\hfC)
so that ΨE * <PE~Kh!) = \φoih)φo~ι{h~ιhr)dh. As usual the fact that φE * ΨE~X Φ 0 on a
neighborhood C/ of ft0 yields for hr 6 C7 a h in C with /̂ r 6 /tC"1 cz iϊi whence Ucz Hλ and
Ifj is open.
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4. Some other isomorphisms* The role of condition (2.02) in §2
was confined to providing us with a map τ of character groups dual to
a given homomorphism of our algebra A. In certain situations such a
τ arises naturally in the absence of (2.02) and provided (2.01) holds, our
approach may again be applicable. For example suppose A is a closed
subalgebra of M(G) satisfying (2.01) for which G~ forms a subspace of
the maximal ideal space 5DΪ of 4; further suppose G~ is connected.
Then any endomorphism T of A for which the dual map τ : 3Jί —• 9K
sends G~ into itself necessarily has τ(g) = gx σ(g), g e 6Γ\ where σ is
an endomorphism of G*. For T is necessarily bounded so that r in-
duces a bounded map of 3ί(G) into itself (by an analogue of (2.13), using
(2.01)), and Corollary 2.61 applies. Consequently T is itself determined
as before; similarly if G~ is not connected but T is also norm-decreas-
ing, or order-preserving while (2.51) obtains, we can apply Corollary
1.3 or the remark following 2.5 to the same end.

Exactly such a situation arises in connection with the Arens-Singer
theory of generalized analytic functions [1], in particular in Arens'
subsequent generalization of the conformal mappings of the disc [2].
There (among other things) Arens is interested in the automorphisms13

of a certain closed subalgebra Ax of Lx(G)yG locally compact abelian;
one has a fixed closed subset G+ of G satisfying [1, §2]

(4.01) G+ is a subsemigroup of G, i.e., x,yeG+ imply xyeG+,
(4.02) the interior of G+ is dense in G+ and generates G;

Ax = Lλ(G+) is then the set of all elements of Lλ(G) vanishing off G+.
As Arens and Singer showed, Lλ{G+) has G~ as the Silov boundary of
its maximal ideal space; consequently (by a well known property of the
Silov boundary) any automorphism T of L^G*) induces a self-homeomor-
phism τ of its maximal ideal space which maps G~ onto itself. More-
over the fact that G+ generates G shows (2.01) and (2.51) hold for L^G*).
For the closure G+ of G+ in G* is a generating subsemigroup of G*,
while any closed subsemigroup of a compact group is a subgroup [5, 11].
Thus G; = G*, and G+, as well as its interior, is dense in G*; since
point masses concentrated at interior points can clearly be approximated
by elements of the unit ball of Lλ(G+) in the weak topology defined by
almost periodic functions, we obtain (2.01) and (2.51).

Consequently if G~ is connected we have τ{g) — gx σ(g), g e G~, by
2.61, where σ is an automorphism of GΛ. Writing elements of LX(G)
as functions rather than measures, we thus have (Tfy(g)=f(g1σ(g))
~{QifY(σ{g)) = Άiΰif) ° ΎT(θ)> where γ"1 is the automorphism of G dual
to σ, and k > 0 compensates for the change in Haar measure produced by
γ (of course k = 1 if G is discrete). Clearly Tf=k(g1f) o γ says yG+=G+

1 3 These are not Arens' full set of generalized conformal mappings, which correspond
to the automorphisms of his algebra ΛQ.
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and we have additional information about τ. Thus in the classical case
of the Arens-Singer theory (where G is the group Z of integers, G+
the non-negative integers, and Lx(G+y may be viewed14 as the algebra
of analytic functions with absolutely convergent Taylor series on the
disc \z\ ^ 1 (the maximal ideal space of Lλ(G+))) γ must be the identity,
so that τ reduces to a rotation on \z\ = 1, hence15 is a rotation of
\z\ < 1. In other words the only self-homeomorphisms τ of the disc
which (via F —• F o τ) map the set of analytic functions with absolutely
convergent series on the disc onto itself are rotations.

Again in the case G = Z x Z,G+ = {(m, n): m, n > 0}, where LX(G+)
can be viewed as the algebra of analytic functions of two complex
variables with power series absolutely convergent on | 2 | < l , | w | g ; i ,
there are clearly only two candidates for γ ((m, n) —> (n, m) and the
identity), and thus the general automorphism is of the form

or

where c and d are fixed unimodular constants; in other words each
automorphism is induced by separate rotations of each disc \z\ < 1,
\w\ <1, plus a possible interchange of variables. Clearly this extends
to n complex variables.

Generalizing our setting slightly we have

THEOREM 4.1. Let G and H be locally compact abelian groups with
closed subsemigroups G+ and H+ satisfying (4.02), and let L1(G+)f

Lλ{H+) be defined as above. Then if either group has a connected dual
an isomorphism T of L^G^.) onto L1(H+) is an isometry of the form
Tf — k(gf) o γ, where k is a positive constant and γ an isomorphism of
H onto G with jH+ = G+. Without connectedness the same applies to
order-preserving or norm-decreasing isomorphisms.

4 2 Clearly most of what we have said applies equally well to any

closed algebra satisfying (2.01) for which G~ yields the Silov boundary.

And any closed subalgebra A of L^G), with A~ a translation invariant

14 More precisely Z/i(G+)^ is the set of restrictions to \z\ = 1 of these functions
(since ^ still is the Fourier transformation and not the full Gelfand representation, cf. [1O,
P 72]).

1 5 For τ is analytic as the function representing the characteristic function of {1]
under the full Gelfand representation. Alternatively we could note that knowledge of τ or
the Silov boundary determines r among all automorphism-inducing self-homeomorphisms oί
W\ since here rotation of the full disc is clearly such a homeomorphism it coincides with
r on the full disc.
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set of functions on G~ which separate the elements of G~ U {0}, has G~
the Silov boundary Θ of its maximal ideal space. For G~ forms a sub-
space of the maximal ideal space (cf. footnote 3), while if μ —» μ° is
the Gelfand representation of A, | |μ o |U = lim \\μ(n)\\lln = ||/β||oo = \μ(g)\
for some g in G~9 for each μ in A, and 9 c G^. But since A~ is transla-
tion invariant we clearly have d a translation invariant subset of GΓ\
and d — 6Γ (this is precisely the argument of [1]).

Consequently we obtain as before

THEOREM 4.3. Let A be a closed subalgebra of Lλ{G) which is closed
under multiplication by elements of G~, B a similar subalgebra of
LX{H), and suppose A satisfies (2.01) while B merely has B~ a separat-
ing set of functions on H~ U {0}. Then if £ P is connected any iso-
morphism T of A onto B is an isometry of the form Tμ — Γgμ {nota-
tion as in 2.1), where 7 is an isomorphism of G onto H. Without
connectedness the same applies to norm-decreasing {or, if A satisfies
2.51, order-preserving) isomorphisms.

Here 7 is the isomorphism dual to the isomorphism a we obtain
from 2.61, etc., rather than its inverse, which is the 7 of 4.1.

5. When G is discrete a general theorem of Silov [13] shows that
Li(G) is the direct sum of a pair of ideals if and only if G~ is discon-
nected. When G~ is connected Lλ{G) may still be the vector space
direct sum of a closed ideal and a closed subalgebra, and Theorem 2.6
then reveals the exact situation.

THEOREM 5.1. Let G~ be connected, and LX{G) — A@I where A is
a {non-zero) closed subalgebra and I a {non-zero) closed ideal. Then G
is the direct product of a discrete subgroup Gj and an open subgroup
G2 for which A = Lλ{G2) and 1 = {μ : μ e L,{G), μ{gλGt) = 0}, where gλ e G2

X.
Conversely any such decomposition of G and character gλ orthogonal to
G2 yields a decomposition of Lλ{G) of the type described.

Proof. Let T be the projection of Lλ{G) onto A, a nonzero homomor-
phism. By 2.6, Tμ = Fgλμ where Γ is induced by a continuous endo-
morphism γ of G. Let σ be the endomorphism of G~ dual to γ, so that
goΎ = σ{g) and Tμ{g) = μ{gλ{g oγ)) = μ{gλσ{g)). Since T2 = T, μ{g,σ{g)) =
T2μ{g) = Tμ{g±σ{g)) = μ^^g^g))). Consequently σ(g) = σ{gλσ{g)) =
σ{g1)σ{σ{g)) whence (setting g = gQ) g0 — σ{gλ) = ^ 0 7 and σ o σ = a.
Dually 7 0 7 = 7, and thus the algebraic subgroup G2 = y(G) of G, on
which 7 acts as an identity map, is closed (for γ{g8) —± g implies 7(7(03)) =
7(9i) -+ 7{g) and —• g whence g = j{g) e G2). Moreover the fact that
<7o = 9i°y says gλeGt.

But G2 is open as well. For Γμ is a non-zero element of Lλ{G) for
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some μ in Lλ{G), while Γμ(f) = μ(f oγ) = 0 f or / e C0(G) vanishing on
G2 = 7(G), so that the regular Borel measure Γμ vanishes on all Borel
sets in the complement of G2; thus G2 contains some compact subset C
of positive Haar measure, and must be open (cf. footnote 12).

Set Gx — {gyig)'1: g eG}, clearly an algebraic subgroup of G. Then
9 = (QΎioY1) Ύ(g) yields a direct product decomposition of G, G = GX§Z)G2:
for geG1nG2 implies g = g'^g'Y1 = 7(flf) = 7(#')7(#')~1 = g0- Since G2 is
open, Gx is clearly discrete, and evidently γ is the projection of G onto
G2 corresponding to our decomposition.

Let μ9Λ be the restriction of the measure μ in Lλ{G) to fl^Ga, so

that μ = Σ ^ e ^ / ^ Λ a n d

Since

and 0! ^ = 7(0) for 0 e ^Ga we have Γ/i = Σ^eβ, AVr1 * ^^lί?2 B u t

clearly implies Γ, and therefore T, maps L^G) into L^G^; indeed it
shows Γ and (since gτ^Gi) T leave elements of Li(G2) fixed so that A =
TLλ(G) — Lλ(G2). On the other hand /, being the kernel of T7, consists
of just those μ in LX(G) with Γ ^ μ = 0, i.e. with μ(gxσ(g)) = 0,geG~.
Thus μ e I if and only if μig^G")) = 0 or μ{gλGt) = 0 since σ, as the
dual to the projection 7 of fGχ 0 G2 onto G2, is the projection of G^ =
Gϊ®GΪ onto Gi1-.

Conversely given G — Gx^ G2, ̂  e G2

X one need only set Tμ =
Σ^eβ^f x * (git*01**2) to obtain a projection of L^G) onto L1(G2); writing
g[gf2 (with g[εG2, g'2eGt) as the generic element of G^ an easy com-
putation shows Tμ(g[g2) — μ{gλg

f

2) so that T is clearly multiplicative and
J, as described, is its kernel.

If G^ is disconnected our present tools can only be applied to those
decompositions for which | | T | | = 1 (that other cases occur can be seen
from the results of [12] for G the circle group); one can then obtain
an analogous result, somewhat complicated by the fact that 7 appears
as a homomorphism of G into GIG0, Go compact, and indeed the decom-
position of Lλ arises from a decomposition of GIG0, GjGϋ = GJGQ ® G2IG09

and A appears as S^L^G^GQ).

6. Some reformulations^ When G and H are compact abelian
groups Corollary 1.3 has an interesting reformulation; our final section
will be devoted to this result and some analogues.

THEOREM 6.1. Let G and H be compact abelian groups and let Ί
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be any norm-decreasing linear map of the Banach space C(H) into
C(G) for which TH~cG~. Then there is a homomorphism 7 of G into
H for which Tf = (Th0) -foy,fe C(H). In particular if Th0 = g0

then T is a Banach algebra homomorphism when C(G) and C(H) are
equipped with ordinary multiplication.

Further the range of T is dense iff 7 is one-to-one, and then
TJEP — G^ and T is onto, while T is an isometry iff γ(G) = H.

Although we could obtain a proof by noting that T is merely the
linear extension of τ = T\H~ we obtain in the proof of Theorem 1.1,
an appeal to Corollary 1.3 is more direct. Clearly τ satisfies the hypo-
thesis of 1.3, and thus σ : h —> {τh^τh is a homomorphism of ΉΓ into
GΛ. Since ΉΓ and G~ are discrete, and a thus continuous, we have a
continuous dual homomorphism γ : (g, σ(h)) — (j(g), h). Thus

) = (9,

or ΓΣ ath = τH ( Σ aAΣ

Since trigonometric polynomials are dense Tf=τh0 (fo<γ),fe C(H).
For the final statements, we clearly need only consider the case

Th0 = g0. Note that if 7 is not one-to-one then Tf — f o γ says the
range of T consists of functions constant on the cosets of the non-
trivial kernel of 7, and thus the range cannot be dense in C(G). On
the other hand if 7 is one-to-one, then (by compactness) it is an iso-
morphism of G with a subgroup j(G) of H. Thus for any character χ
of 7(G) we have a character g of G for which χ o 7 = £, and since χ =
Λ|7(G) for some h in JEP we obtain ί o γ = p γ = g, whence GΛ = TΉΛ
Further if i*7 e C(G) then any continuous extension / of Fo 7-1 e C(j(G))
to all of i ϊ (available by Urysohn's lemma) yields / o 7 = F, and T is
onto. Lastly, if γ(G) is proper we have an non-zero / € C(H) vanish-
ing on 7(G) so that Tf = /© 7 = 0, and Γ is not even one-to-one, while
if γ(G) = £Γ then Γ is clearly an isometry.

In one case specific mention of characters as such can be eliminated,
yielding the weaker result: if T is a linear norm-decreasing one-to-one
map of C(H) into C(G) taking the positive definite functions in the ball
of C(H), P0(H), onto P0(G), then f—iTh^Tf is multiplicative. For
with one-to-oneness the set of extreme points H~ U {0} of PQ(H) maps
onto those of P0(G), G" U {0}.

In this form we have an indication that a similar result can be
obtained for the Lλ algebras of locally compact abelian groups.

THEOREM 6.2. Let G and H be locally compact abelian groups and
PX{G), P^H) be the integrable positive definite functions. If T is a
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linear isometry of the Banach space L±(G) onto Lλ(H) with TPλ(G) —
Pλ(H) then T is an algebra isomorphism.

Before proceeding to a proof of 6.2 we should perhaps note an
abstract version. Recall that an extreme positive (extendable) func-
tional on a commutative Banach * algebra is a * preserving multiplica-
tive functional. Then

THEOREM 6.3. Let A and B be commutative Banach * algebras
with (without) identities, and suppose B is semisimple and symmetric.
Let T be a linear isometry of the Banach space A into B for which
the adjoint map Γ* takes the positive (extendable) functionals on B
onto those on A. Then T is a * isomorphism of the algebras A into B.

Proof. Let P(A), P(B) be the set of positive (extendable) functionals
of norm 1 on A, B. We know Γ*, being an isometry, maps P(A) onto
P(B). Since it is one-to-one Γ* must map the set P(A)e of extreme
points of P(A) onto P(B)e. But these sets consist of * preserving multi-
plicative functionals, and since each multiplicative functional on B is *
preserving by hypothesis, and thus an extreme positive (extendable)
functional, Γ* provides us with a map of yjlB, the maximal ideal space
of B, into 2J .̂ Consequently (with ~ now the Gelfand representation),
(TaaT(M) = (ααT(T*AΓ) = α(Γ*M)<z'(Γ*M) = (Taf{M) . (Γα'Γ(M).
Since B is semisimple, Taa1 = Ta 2V, and we need only verify Γα* =
(Γα)*. But since M and Γ*M are * preserving for M in SΰlBf (Ta*T(M) =
α*(Γ*M) = ά(T*M) = (TaΓ(M) = (Ta)*~(M), so Γα* - (Γα)* also fol-
lows from the semisimplicity of B.

The proof of Theorem 6.2 now follows quite simply, for, as is well
known, the positive (extendable) functionals on L^G) form the polar
cone of Pλ(G). Thus the adjoint of Γ satisfies the requirements of 6.3
when A = LX(G), B = LX(H), and Γ is an algebra isomorphism.
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SOME APPLICATIONS OF EXPANSION CONSTANTS

B. GRUNBAUM

l For any metric space X (with distance function d) the expansion
constant E(X) of X is the greatest lower bound of real numbers μ which
possess the following property (S(x; p) = Sx(x; p) = {y e X; d{x, y) < p}
denotes the closed cell with center x and radius p):

For any family {S(xa pa) a e A} of pairwise intersecting cells in X,

Γ\ S(xΛ] μρΛ) φ φ .
oceA

If for every such family Γ)aeAS(xa; E(X)ρΛ) Φ φ, E(X) is called
exact.

The expansion constants of Minkowski spaces have been studied in
[5]. In the present paper we deal (in §2) with an application of the
expansion constants to a problem on projections in Banach spaces; as
corollaries we obtain Nachbin's [10] geometric characterization of Banach
spaces with the Hahn-Banach extension property (§ 2) and Bohnenblust's
[3] result on projections in Minkowski spaces, as well as some results
which we believe to be new (§4). In § 3 we discuss the relation of
expansion constants to a property of retractions in metric spaces, es-
pecially those convex in Menger's sense; as a corollary we obtain Aron-
szajn-Panitchpakdi's [2] characterization of spaces with the unlimited
uniform extension property. Section 4 contains additional remarks and
examples.

2 In order to apply expansion constants to projections in Banach
spaces, it is convenient to introduce the notion of projection constants.

DEFINITION 1. For any normed space X the projection constant
p{X) is the greatest lower bound of real numbers μ which possess the
following property: For any normed space Y which contains X as a sub-
space of deficiency 1, there exists a projection P of Yonto X such that
| | P 11 < μ. If for any such Y there exists a projection of norm less than
or equal to p(X), the projection constant p(X) is called exact.

(The projection constant p(X) should not be confused with the pro-
jection constant ^(X) studied in [6].)

We show now that if X is a normed space then E(X) actually coin-
cides with p(X).

Received April 6, 1959. Part of the results of this paper are taken from §6 of the
author's Ph. D. thesis, "On some properties of Minkowski spaces," (in Hebrew), prepared
under the guidance of Prof. A. Dvoretzky at The Hebrew University in Jerusalem. The
remaining results have been obtained under contract AF 61 (052)-04.
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THEOREM 1. For any normed space X we have p(X) = E(X); more-
over, if one of the constants is exact, so is the other.

Proof. If X is not complete, then p(X) = 00= E{X). The first
part follows immediately from the remark that, if Y is any subspace of
the completion of X containing X as a subspace of deficiency 1, there
exists no projection of Yonto X. On the other hand, E(X) = 00 for any
metric space X which is not complete. Indeed, if {xn; n = 1, 2, •} is a
Cauchy sequence in X which is not convergent, let pn = 2\imj6^oo d(xn, xk),
for n = 1, 2, . . . . Then the cells {S(xn; pn); n = 1, 2, - •} are mutually
intersecting, but fl £-1 S(xn μρn) = φ for any μ, which implies E(X) =
co. (We shall see in §4 that if X is a complete metric space then
E(X) < 2.)

Thus we may assume that Xis complete. We shall first prove that
^(X) < p(X). To that effect, let Y be the linear sum of X (considered
as a vector space) and a point y0 $ X. For any given family {S(xa pa)
a e A} of mutually intersecting cells (of X) we shall define a norm in
Y, such that Y becomes a Banach space containing X as a subspace,
and that for any projection P of Y onto X we have:

(2.1) ΠS(xΛ;\\P\\ pΛ)Φφ.
cύβA

If inf pΛ = 0 any norm on Y establishes (2.1) since Γi»eAS(xΛ; pΛ) Φ
φ. We prove this relation in the following way: If for some β e A
we have pβ = 0, then xβ e S(xa; pa) for all a e A. On the other hand,
if for a sequence of indices an e A we have \impΛ = 0, then (since
d(xΛ, xβ) < pa + pβ) {XccJ is a Cauchy sequence. Since X is complete
there exists x0 = lim^^^. We claim that x0 e f |« 6 iS(^> P<*)- Indeed, for
any a e A and any ε > 0, let n be such that pΛn < 1/2ε and d(xΛn, x0) <
1/2 ε; then d(xa, x0) < d(xaf xΛJ + d(xΛn, x0) < ρΛ + ε. Since ε is arbitrary,
it follows that x0 e S(xa; ρa) for any a e A, as required.

Thus we are left with the case inf pΛ > 0. Let yΛ = (xΛ + yo)IPa
for each a e A and K = {ya; a e A}. If S is the unit cell of X, we
denote by T the closure (in the product topology of Y = X x Ry0) of
the convex hull of the set S U K U (-K) c Γ. Since T is a centrally
symmetric convex body in Y it defines a norm (according to which T is
the unit cell). We claim that T f] X = S, i.e. that X (as a Banach space)
is a subspace of Y". Obviously, this will be established if we show that
the intersection of X with a segment connecting a point of K with
a point of —if belongs to S. Now, an elementary computation shows
that [yΛ, —yβ]ΓiX is the point (xΛ — xβ)l(ρΛ + pβ) whose norm is less
than or equal to 1, since || xΛ — xβ \\ < pa + pβ is a consequence of the
assumption that the members of {£(#* pΛ)} are pairwise intersecting.
Now let P be any projection of Y onto X and let x0 = —P(y0)- Then
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P(ya) = p( x« + yo) = , a « - S o a n d therefore

< II-PII l l v . l l < 11*11 f o r e a c h α 6

In other words, xQ e S(xΛ; \\P\\ pΛ) for each a e A which implies (2.1)
and thus establishes E(X) < p(X).

In order to derive the converse inequality p{X) < E(X) let Y be any
Banach space containing J a s a maximal subspace, and let yQ eY,yQ$ X.
The triangle inequality implies that Sx(x, || x — y01|) Π Sx(x', \\ xr — j/01[) =£ Φ
for any x, xr e X Let μ be such that Π*eχ Sχ(#; μ II a? — Vo II =£ Φ, and
denote by x0 any point of that intersection. Thus || x — x0 \\ < μ || x — y0 \\
for any x e X. We define a projection P of Y onto X by P(x + λy0) =
x + λx0, and we shall show that || P(x + λ^0) I! < μ II x + ^Vo II, i.e., that
|| PII < μ. Obviously, we may assume λ Φ 0 and then, by the definition
of x0, we have | |P(α + Xy0) \\ = || a? + λ#01| = | λ | || - x/X — xo\\ <

μ \ \ \ \\ - x j X - Vo\\ = μ \ \ x + *Vo II .
This completes the proof of our last assertion, and thus also the

proof of Theorem 1.
The connection between projection constants and extensions of linear

transformations may be found using the following lemma:
If X and Y are any normed spaces, if Z contains Y as a sub-

space of deficiency 1, and if f is any linear transformation from Y
to Xy then there exist a normed space W and a linear transformation
F from Z to W such that:

( i ) W contains X as a subspace of deficiency 1
(ii) F coincides with f on Y;
(iii) | | F | | = 11/11.
We omit the simple proof of this lemma since a more general ex-

tension theorem of this type has been proved by Sobczyk [13, Theorem
4.1].

Using the above lemma, the following corollary results immediately
from Theorem 1:

For any Banach spaces X, Y and Z, with Y a maximal subspace
of Z, any linear transformation f from Y to X, and any μ > p(X) =
E(X), there exists a linear transformation F from Z to X, coinciding
with f on Y, such that | | j F Ί | < | | μ | | / Ί I ; if p(X) is exact, there exists
such an F even for μ = p(X)-

A standard application of Zorn's lemma or transfinite induction
yields therefore:

The following two properties of a normed space X are equivalent:
(i) E(X) = 1 and is exact
(ii) For any normed spaces Y and Zf with Y c Zt and any linear
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transformation f from Y to X, there exists a linear transformation F
from Z to X such that F coincides with f on Y and \\F\\ = | | / | | .

Since the " binary intersection property" of Nachbin [10] is equiva-
lent to "E(X)=1 and is exact/' the last statement is precisely Nachbin's
characterization of spaces with the Hahn-Banach extension property [10,
Theorem 1],

3 In the case of metric spaces, expansion constants may be used
to obtain information on retraction properties, in close analogy to the
procedure applied in §2 to projections in normed spaces.

A retraction r of a metric space Y onto a metric space I c 7 is
a (continuous) mapping of Y onto X such that r(x) = x for each x e X.

DEFINITION 2. The norm | | r | | of a retraction r of Y onto XczY
is the greatest lower bound of numbers μ such that d(r{y^), r(y2)) <
μd(Vi, 2/2) for all y19 y2 e Y. The retraction constant r(X) of a metric
space X is the greatest lower bound of numbers μ with the property:
For any metrix space Y which contains X any only one point not in
X, there exists a retraction of Y onto X with norm less than or equal
to μ. If r(X) = min μ, the retraction constant r(X) is called exact.

Obviously r(X) = co if X is not complete, and it is easily shown
that for complete spaces r(X) < 2.

Since metrically convex spaces have special properties with respect
to retractions, we recall their definition (essentially that of Menger [9]):

A metric space X is called metrically convex if for any pair of
points %', x" e X and any λ, 0 < λ < 1, there exists a point y e X such
that d(x', y) = Xd(x', x") and d(x", y) = (1 - X)d(x', x").

In analogy to Theorem 1 we have:

THEOREM 2. (i) For any metric space X, E(X) < r(X).
(ii) For any metrically convex metric space X, E{X) = r{X)\ more-

over, if one of the constants is exact, so is the other.

Proof, (i) Since for uncomplete spaces both constants are infinite,
we will assume that X is complete. Let {S(#Λ ρa) a e A} be any family
of mutually intersecting cells in X. We shall define a space Y —
^ U {y0} (with distance function D) such that for any retraction r of
Y onto X we have

(3.1) nS(xΛ;\\r\\ p Λ ) Φ φ .
oύEA

This will prove part (i) of the Theorem. Now, if inf pa — 0 the rea-
soning used in the proof of Theorem 1 shows that any metrization of
Y is appropriate. Thus there remains the case inf ρ<* > 0. Then, let
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D(x', x") = d(x', x") for all x', x" e X, and let D(x, y0) be the greatest
lower bound of those numbers μ for which S(x μ) contains S(xΛ pa) for
some a e A. (This metric on Y was used also in [2]). Since D(x, y0) >
0 follows obviously from inf pΛ > 0, in order to establish that D is indeed
a distance function on Y we have only to prove the triangle inequality
for triples of points containing yOf i.e. the relations

(3.2) D(xf, x") < D(xf, y0) + D(yQ, x")

and

(3.3) D(x', y0) < D(x', x") + D(x", y0)

for all x', x" e X. To that effect let ε > 0 be given then S(x'
D(xf, y0) + ε) z> S(xa; pΛ,) and S(x"; D{x", y0) + ε) 3 S(xΛ.,; pΛ>,) for suita-
ble α', a" e A. Since any two of the cells S(xΛ; pΛ) have common points,
there exists a z e X such that d(x'f z) < D(x\ y0) + ε and d(x", z) <
D(x", y0) + ε. Then D(x', x") = d{x', x") < d{x', z) + d{x", z) < D(x', y0) +
D(x", yQ) + 2ε. Since ε was arbitrary, (3.2) results. On the other hand,
since S(x' d(x', x") + D{x", y0) + ε) D S(X" D(x", y0) + ε) ZD S(XΛ,, ρΛ.,)f

we have D(x', y0) < d(xr, x") + D(x", y0) + ε for any ε > 0, which es-
tablishes (3.3).

Now, let r be a retraction of Y onto X, and let x0 = r(y0). Then,
for any a e A we have d(#α, a?0) < || r || D(xa, yQ) < \\ r \\ pa, which is
equivalent to xQ e Π « e ^ S ( ^ ; \\r\\ρa). Thus (3.1) holds, and the proof
of ( i ) is complete.

The proof of (ii) is now easy. Let Y ~ X [j {y0} and let D be the
distance function of Y. We consider the family of cells in X defined
by {S(x D(x, y0)) x e X}. The triangle inequality which is satisfied by
D, and the metric convexity of X imply that these cells are mutually
intersecting. Let μ be a number such that Γ\xeχS(x; μD(x, yQ)) Φ φ,
and let x0 be any point of this intersection. Then the retraction r of
Y onto X defined by r(y0) = xQ obviously satisfies \\r\\ < μ. This com-
pletes the proof of Theorem 2.

REMARKS, ( i ) If Xis not metrically convex, E(X) < r(X) is possi-
ble. The simplest example to this effect is that of a space X consisting
of precisely two points. Then E(X) = 1 and r{X) = 2.

(ii) Let X, Y and Z — Y Ό {zQ} be any metric spaces, and / a uni-
formly continuous transformation from Y to X, with subadditive modulus
of continuity δ(ε) (see, e.g., [2]). It is easily established that there
exists a metric space X* = I U {x*}, whose distance function coincides
on X with the distance function of X, such that there exists an ex-
tension F of /, with domain Z and range in X*, which is uniformly
continuous with the modulus δ(ε). Therefore, using transfinϊte induction
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or Zorn's lemma, we obtain the following corollary of Theorem 2, which
is equivalent to Theorem 2, §3 of [2]:

For any metrically convex metric space X the following properties
are equivalent:

(a) r(X) = 1 and is exact;
(b) For any metric spaces Y and Z, with Z D Y, and any uni-

formly continuous transformation f from Y to X with subadditive
modulus of continuity δ(ε), there exists a uniformly continuous trans-
formation F from Z to X, coinciding with f on Y and having 8(e) as
modulus of continuity.

4. Some properties of expansion constants E(X) for finite dimen-
sional Banach spaces Xhave been established in [5]. As a consequence of
Theorem 1 of the present paper, these results yield the following in-
formation on the projection constants p(X):

(i) If X is an ^-dimensional Minkowski space then 1 < p(X) <
2nl(n + 1). (This was first established by Bohnenblust [3].)

(ii) If En denotes the n-dimensional Euclidean space then p(En) =
λ/2n\(n + 1).

The characterization of those ^-dimensional Minkowski spaces X for
which E(X) = 2n/(n + 1), given in Theorem 2 of [5], yields immediately
a characterization of spaces X for which the upper bound is attained
in (i).

As observed by Bohnenblust [3], p(X) < 2 for any Banach space X.
By Theorem 1 this is a corollary of the following more general propo-
sition :

E(X) < 2 for any complete metric space X.

Proof. Let {S(xΛ ρa); a e A} be any family of mutually intersect-
ing cells in X The reasoning used in the proof of Theorem 1 shows
that if inf pa — 0 then C\aeA S(xa pa) ψ φ. Thus we may assume inf pΛ =
p0 > 0. Given any ε > 0 let β e A be such that pβ < (1 + ε)pQ. Since
thend(xa, xβ)<ρ<* + pβ<pΛ + (1 + e)p0<(2 + ε)pΛ, we have a;β€Π«ZAS{XΛ

(2 + e)ρa), which proves our assertion.
The notion of expansion constants gives us a convenient method of

obtaining information on the exactness of projection and retraction
constants.

DEFINITION 3. A metric space X is said to have the finite inter-
section property if each family of cells {S(xa ρa) a e A} of X satisfies
the condition: Whenever every finite subfamily has a non-void inter-
section, then Γ[«eAS(%« , pΛ) Φ φ.

Obviously, compact spaces and spaces with compact cells have the
finite intersection property. As a consequence of the w*-compactness
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of the unit cell of any adjoint Banach space ([1], [4]), adjoint Banach
spaces (and thus especially reflexive, unitary, or finite dimensional Banach
spaces) also have the finite intersection property.

For spaces with the finite intersection property we have:

THEOREM 3. If X has the finite intersection property then E(X),
and therefore r(X) {and p(X) if X is a Banach space), are exact.

Proof. Let {S(xa p«) a e A} be any family of mutually intersect-
ing cells in X. By the definition of the expansion constant, any finite
subfamily of the family {S*,e = S(xa; (E(X) + ε)ρΰi);a e A, ε > 0} has
a non-void intersection. Since X has the finite intersection property
this implies that n«e,i,ε>oSU Φ Φ- But S(xa; E(X) pΛ) = f\2>0SΛiS for
each a e A and therefore dΛeAS(xΛ; E(X)ρΛ) ψ ψ as claimed.

REMARK. We know of no Banach space which has the finite inter-
section property but is not an adjoint space; indeed, it seems reasona-
ble to conjecture that only adjoint spaces have this property. On the
other hand, a wider class of Banach spaces has exact projection and
expansion constants. E.g., it is well known (Sobczyk [12]) that p(c0) =
2 and is exact (it is not difficult to show directly that E(cQ) = 2 and is
exact) but it is easily seen that c0 does not have the finite intersection
property (not even for families of cells having the same radius).

Another question, raised by Bohnenblust [3], is whether there exists
a projection of norm < 2 from any Banach space onto each of its maximal
closed subspaces. A negative answer to Bohnenblust's problem follows
immediately from the following example.

EXAMPLE. Let X be the subspace of I defined by

= (x19x2, •••) e I; Σ — ! ± — χ n = o
n-i n + 1

Then E(X) = 2 but E(X) is not exact.
For reasons of convenience we shall, instead of X, consider its trans-

late H — {x; Σ»-i^/(w + l)χn = 1} c ϊ Since X and H are isometric
metric spaces, this is permissible. Now let {en; n = 1, 2, •} denote
the usual basis of I, and S its unit cell S == {x e I || x || = 2 JΓ-i I %n I <
1}. Obviously n + ll(n)en e H f or n = 1, 2, , but SftH—φ although
dist(S, H) = 0. (This last property was Klee's reason for introducing
H in [8].) We consider in I the family of cells

n = SI—-!— en;—!—) = \x e I; \\x
V n n ) I n

< \;n — 1,4, ••• Λ .

n ) )
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Then S* = Sn n H is a family of cells in iJ which are mutually inter-
secting since

^ y (β.

n(k + 1) + k(n + 1)

We shall show that

w 2

which will obviously prove our assertion. Let K =

2(w + l)/w) then, since H Π S = φ, it is sufficient to prove t h a t K a S.

Assuming t h a t there exists an x e K such t h a t | |cc | | = l + ε > l , we

have by the definition of K:

0 < | L
n

n+ 1 + Σ I χt I < 2

for each n. Now, if for some n we have xn > 0, it follows that either
%n > (n + 1)M > 1 or — xn + Σ^» I χι I ̂  (^ + 1)M Both cases are possi-
ble only for a finite number of indices n; in the first case this is obvious,
while in the second it follows from the fact that it implies 11 x \ \ — (n + 1)1% <
2xn, i.e. ε < (Ijn) + 2xn. On the other hand, for those n for which xn <
0 we have

n

or

n n

which is again possible only for a finite number of indices n. Thus
K c S, which completes the proof.

REMARKS, (i) Since adjoint Banach spaces have exact expansion
constants, the space X of the above example is not an adjoint space,
although it is a maximal closed subspace of an adjoint space. It would
be interesting to know whether every non-reflexive Banach space has
a closed maximal subspace which is not an adjoint space.

(ii) Jung's constant J(X) has been defined [5] in the same way as
E(X), with the additional condition that all the radii pΛ be equal. The
space X of the last example shows that it is possible to have J(X) = E(X)
with J(X) exact and E(X) not exact.

(iii) Theorem 4 of § 3 of [2] implies:
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If X is a bounded, metrically convex metric space and E(X) = 1, then
E(X) is exact.

Although the condition of boundedness is perhaps redundant, the
following example shows that it is impossible to drop the condition that
X be metrically convex.

EXAMPLE. Let X = {xn n — 1, 2, •} with d(xn, xx) — 1 + \\n + 1/fc
for n Φ k. Then E(X) = 1 but E{X) is not exact.

Indeed, it is easily verified that E(X) = 1. On the other hand, the
cells Sn = S(xnf 1 + 2In) = {α?Λ k > n} for n = 1, 2, , are not only
mutually intersecting, but we even have SΛ 3 Sw for k < n. But obvi-
ously Πn«i£w = Φ (Complete metric spaces containing descending
sequences of cells with empty intersections have been considered by
Sierpiήski [11]; see also Harrop-Weston [7].)
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ERROR BOUNDS FOR AN APPROXIMATE SOLUTION
TO THE VOLTERRA INTEGRAL EQUATION

JOHN HILZMAN

In 1945 Michal [2] obtained several results which he asserted were
useful for approximating the solution to the Volterra integral equation.
These results were concerned with certain equations in Frechet differenti-
als having as their unique solutions the resolvent kernel and the exact
solution to the Volterra integral equation of the second kind. Michal
treated the resolvent kernel S[K\x,t] and the solution y[K\x] as func-
tions1 of the given kernel K(x, t), the setting being the Banach spaces

T — {G(x, t) I G(x, t) is real and continuous on a < t < x < 6}

and

I = {g(x) I g(x) is real and continuous on a < x < b}

with the norms

• jx ||G(α, t) || = max I G(a?,t) I (α < t < x <b) ,

I) g(x) || Ξ= max | g(x) | (a < x b)

respectively. In another work [3, pp. 16-17] Michal showed that the
solution y[K\x] can be expressed by a Taylor-type expansion in Frechet
differentials of y[K\ x] about an arbitrary K0(x, t) from T. In this paper
we shall use MichaΓs results to obtain approximations to the solution of
the Volterra integral equation with error bounds.

I wish to thank Professor A. T. Lonseth for suggesting this course
of investgation and the Referee for recommendations which have im-
proved this paper.

Consider the integral equation

(2) y(x)+ \XK(x,t)y(t)dt=f(x)

where K(x> t) is in T and f(x) is in /. It is known that the exact solu-
tion to (2) is given by

(3) y(χ)=f(χ)+\xS(x,t)f(t)dt
Ja

Received January 15, 1959, and in revised form March 30, 1959. This work was par-
tially supported by the Office"of Ordnance Research, U.S. Army, under contract with Oregon
State College.

1 The symbols S[K \ x, t] and y[K \ x] were used to indicate the functional dependence
of S(x, t) and y(x) on K(x, t).
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where the resolvent kernel S(x, t) is in T. Let KQ(x, t) from T be ano-
ther kernel such that SQ(x, ί), the resolvent of K0(x, ί), is known and
that ||&(&, ί ) | | = \\K(x,t) - K0(x,t)\\ is small in the sense of (1). Then
by (3) the solution to (2) with kernel K0(x91) is

( 4 ) yo(x) = f{x) + [X Six, t)f{t)dt .
Jα

Now treat y(x) as a function of the kernel K{x, t). The first Frechet
differential dy(x) of y(x) with increment h(x, t) (applied to K{x, t)) is

dy(x) = - ( T * ( α , t) + Γ s ( # , z)ft(z, t)dz\y(t)dt

[2, p. 253], In particular, the Frechet differential of y(x) evaluated at
K0(x, t) with increment h(x, t) — K(x, t) — K0(x, t) will be

( 5 ) dyo(x) = - Γ Wx> *)

Furthermore, by Theorem 2 of [2] the differential system

idyo(x) - -

[Vo(x) = f(x) (K0(x, t) = 0)

has a unique solution which is given by (4). Thus a first order approxi-
mation to the solution y(x) of (2) will be

yo(x) + dyo(x) .

The exact solution to (2) is given by the Taylor expansion [3; 1.
p. 112]

( 6 )

where, in terms of composition powers2,

( 7 ) d%(x) = ( - i y j ! [h + SQh]j * Vo .

Thus knowledge of the higher order differentials will allow closer approxi-
mations to y(x).

We now take up the problem of establishing error bounds for any
order of approximation to y(x) from (6). If Aj(j = 1,2, •••,%) is in T
and g is in /, and

(x, z)W(z, t)dz, W* = Γ W(x, z)W(z, t)dzy W
n = I W(x, z)Wn'\zt t)dz, and

Wn * g = I Wn{x, t)g{t)dt
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A = A±A2 An = ] j ] 1 J^~2 Λ(α, ^i)A(^ z*)

4,(3,,-!, ίjrf^.x dzλ,

it is seen that

I h — n \n-1 n

( 8 ) H A H < '* α ' n i l 4 i i

(w — 1)! j-i

and

(9) l l A » g | | £ l l g " ' 6 - g Γ π | | Λ J | l .

Let P«-<.i[λ(Sofe)] denote the sum of terms obtained from the com-
position h^iSJi)1 by a permutation on the n places occupied by

hh h{SQh)(Soh) (Spfe) - hn^(SQhY .
re-ί i

For example, by setting

and

P.AHSM = ft(S0/t)2 + (Soh)h(SJι)

we can write with brevity

[Λ + SM = h + PMSJi)] + P

Now let

e = \ \ h { x , t ) \ l m = \\yjix)\\, B = \\S^x,t)\\, a n d M = | 6 - α | .

Then from (7), (8), (9), and the mechanics of composition we obtain

|| (n l)-Wyo(x) || = || (-1) [Λ + S.Λ]" * y01|
*y0 + (Soh)n*v,\

\\h«*y91| + | |P^ 1 Λ [h(SM *y, \\ + + || (S0/ι)M *y 0 1 |
mc"un , (n\ mcnuni7lB ^ (n \ mcnu2n

(2»)!

(n
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Thus transposing the desired nth order approximation to y{x) from
the right side of (6) to the left side and applying (10) we get

\\y(x) - yo(x) - Σ 4 τ d%(x)\\ = 11 Σ 4r

(11) < Σ m(jl)-ψ

where θ = cu[l + uB], For small values of θ we readily discern the
asymptotic relation

(12) \\y(x) - yo(x) - Σ^d^oWll = 0(0*) .
II J = I ^ ! II

A simple numerical example will be given next.
Consider the Volterra equation

(13) y(x) + — xt[3 + x3 - t3]y(t)dt = x exp
3 Jo

where K{x, t) = l/3a?ί[3 + x3 - t3] is in T, f(x) = x exp [l/3#3] is in I and
a = 0, b = 1. Take ϋΓ0(α, ί) = α?ί exp [l/3(α;3 - ί3)]. The resolvent kernel
for K0(x, t) is S0(x, t) — —xt. By (4) the solution to (13) with kernel
KQ(x, t) is

(14) yQ(x) = a? exp [l/3#3] + \ — α?ί2 exp [l/3ί3]dί = x .
Jo

By virtue of (5), the Frechet difFerential of y(x) evaluated at K0(x, t)
with increment

h(x, t) = K(x, t) - K0(x, t) = — a;ί[3 + OJ3 - ί3] - a ί exp
3

is

dyo(x) = — I i — xt(3 + xd — £3 — 3) exp [l/3(α;3 — t3)]
Jo I 3

(15) + \X - xz(~zt(3 + z% - tz - 3) exp [l/3(z3 - ts)l W«Udί
J t \ 3

162

Thus a first order approximation to y(x) will be



ERROR BOUNDS FOR AN APPROXIMATE SOLUTION 207

(16) y(χ)^X + j£L

It is easily established that

|| h(x, t) || < 0.04, || S0(x, t) || = 1, || yQ(x) || = 1 .

Hence, with θ = 0.08, it follows from (11) that

(17) || y(x) - yo(x) - dyo(x) \\ < 0.0033 .
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THE FRATTINI SUBGROUP OF A p-GROUP

CHARLES HOBBY

The Frattini subgroup Φ(G) of a group G is defined as the inter-
section of all maximal subgroups of G. It is well known that some
groups cannot be the Frattini subgroup of any group. Gaschϋtz [3, Satz
11] has given a necessary condition for a group H to be the Frattini
subgroup of a group G in terms of the automorphism group of H. We
shall show that two theorems of Burnside [2] limiting the groups which
can be the derived group of a p-group have analogues that limit the
groups which can be Frattini subgroups of p-groups.

We first state the two theorems of Burnside.

THEOREM A. A non-abelian group whose center is cyclic cannot be
the derived group of a p-group.

THEOREM B. A non-abelian group, the index of whose derived group
is p2, cannot be the derived group of a p-group.

We shall prove the following analogues of the theorems of Burnside.

THEOREM 1. If H is a non-abelian group whose center is cyclic,
then H cannot be the Frattini subgroup Φ(G) of any p-group G.

THEOREM 2. A non-abelian group H, the index of whose derived
group is p2, cannot be the Frattini subgroup Φ(G) of any p-group G.

We shall require four lemmas, the first two of which are due to
Blackburn and Gaschϋtz, respectively.

LEMMA 1. [1, Lemma 1] IfNisa normal subgroup of the p-group
G such that the order of N is p2, then the centralizer of N in G has
index at most p in G.

LEMMA 2. [3, Satz 2] If H = Φ(G) for a p-group G and N is a sub-
group of H that is normal in G, then Φ{GjN) = Φ{G)jN.

LEMMA 3. IfN= {a} x {b} is a subgroup of order p3 normal in
the p-group G such that N is contained in Φ(G), and if {a} is a group
of order p2 in the center of Φ(G), then N is in the center of Φ(G).

Proof. N normal in G implies that N contains a group C of order
p which is in the center of G. If C is not contained in {a} the proof

Received March 18, 1959.
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is trivial, hence we may assume C = {ap}. Since an element of order
p in a p-group cannot be conjugate to a power of itself the possible
conjugates of 6 under G are

b,bap, ---,ba(p-υp .

The index of the centralizer of b in G is equal to the number of con-
jugates of b under G, hence is at most p. Thus b is in the center of
Φ(G), and the lemma follows.

LEMMA 4. If H is a non-abelian group of order p3 then there is
no p-group G such that Φ(G) = H.

Proof. If H = Φ(G) for a p-group G, then i ϊ is normal in G and
must contain a group JV of index p which is also normal in G. Then N
is a group of order p2, hence (Lemma 1) the centralizer C of JV in G has
index at most p in G. Therefore C contains H, and ΛΓ is in the center
of H. Since the center of H has order p this is a contradiction, and
the lemma follows.

We can now prove Theorems 1 and 2.

Proof of Theorem 1. We proceed by induction on the order of H.
The theorem is true if H has order p3 (Lemma 4). Suppose H is group
of minimal order for which the theorem is false, and let C of a subgroup
of H of order p which is contained in the center of G. Then (Lemma 2)

Φ(G/C) = Φ{G)IC = H/C .

Thus the induction hypothesis implies that H/C cannot be a non-abelian
group with cyclic center. We consider two cases: H/C is abelian; or,
the center of H/C is non-cyclic.

Case 1. Suppose H/C is abelian. Since H is not abelian, and C has
order p, we conclude that C is the derived group of H. Thus JT/C,
which coincides with its center, is not cyclic, and we are in Case 2.

Case 2. Suppose that the center Z of H/C is non-cyclic. The ele-
ments of order p in Z form a characteristic subgroup P of Z. Since Z
is not cyclic, P is also not cyclic and hence has order at least p\ Thus
we can find subgroups M and N of P which are normal in G/C and have
orders p and p2, respectively, where M is contained in N. Let M and JV
be the subgroups of G which map on M and N. Then M and ΛΓ are
subgroups of H which contain C and are normal in G; M and N have
orders p2 and p3, respectively, and M is contained in iV.

We see from Lemma 1 that the centralizer of M in G has index at
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most p in G, hence M is in the center of H, which is cyclic. Also, N
is abelian since N is contained in H and the index of M in JV is p.
Now N is contained in P, hence is not cyclic. Therefore JV is a non-
cyclic group which (Lemma 3) is in the center of H. Since the center
of H is cyclic this is a contradiction, and the proof is complete.

Proof of Theorem 2. We denote the derived group of a group K
by Kr. Suppose G is a p-group such that Φ(G) = H where Hr Φ {1}
and (H: H') = p2. Let JV be a normal subgroup of G which has index
p in Hf. Then G/N is a p-group such that (Lemma 2)

But (HINY = fΓ'/JV* {1}, and the order of H/N is

(H: N) = ( # : # ' ) ( # ' : N) = p3 .

Thus H/N is a non-abelian group of order p3 which is the Frattini sub-
group of the p-group G/N. This is impossible (Lemma 4) and the theorem
follows.

REMARK 1. The only properties of the Frattini subgroup used in
the proof of Theorems 1 and 2 are the following: Φ(G) is a characteristic
subgroup of G which is contained in every subgroup of index p in G;
and, Φ(G/N) — Φ(G)jN whenever N is normal in G and contained in Φ(G).
Thus if we have a rule ψ which assigns a unique subgroup ψ(G) to
every p-group G, then Theorems 1 and 2 will hold after replacing "the
Frattini subgroup Φ(G)" by "the subgroup ψ(G)" if ψ(G) satisfies the
following conditions.

(1) ψ(G) is a characteristic subgroup of G.
(2) ψ(G) is contained in Φ(G).
(3) ψ(G/N) = ψ(G)IN if iV is normal in G and iV is contained in

ψ(G).
In particular, if ψ(G) — G', the derived group of G, we have the theorems
of Burnside. The proofs are unchanged.

REMARK 2. Blackburn [1] has used Theorem A to characterize the
groups having two generators which are the derived group of a p-group.
Using Theorem 1 it is easy to see that Blackburn's proof establishes the
following

THEOREM 3. IfH= Φ(G) for a p-group G and if H has at most
two generators, then H contains a cyclic normal subgroup N such that
HjN is cyclic.
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VON NEUMANN DIFFERENCE APPROXIMATION
TO HYPERBOLIC EQUATIONS

MILTON LEES

l Introduction,

Consider the finite difference equation

(l 1) va = vxx + άk?vxaϊ

devised by von Neumann for the numerical solution of the wave equation

d2u d2n
(1.2)

dt2 dx2

An essential property of any finite difference approximation to a dif-
ferential equation is the convergence of solutions of the difference equa-
tion to the solution of the corresponding differential equation as h,k—>0.
It turns out that a sufficient condition for a difference approximation
to be convergent is that it be consistent and stable (cf. Lax and Richt-
myer [3]). Roughly speaking, a difference approximation to a differen-
tial equation is consistent when the difference equation converges to
the differential equation, and it is stable when the solutions of the dif-
ference equation can be estimated (in a suitable norm) in terms of the
prescribed data. A finite difference approximation to a hyperbolic dif-
ferential equation is said to be unconditionally stable when it is stable
for all positive values of the mesh ratio R = k/h; it is said to be con-
ditionally stable when it is stable for some values of R, but not uncon-
ditionally stable.

O'Brien, Hyman and Kaplan [5] determined completely the stability
properties of the difference equation (1.1). They showed that (1.1) is
unconditionally stable when a > 1/4, and conditionally stable when
a < 1/4 (the mesh ratio limitation being R < (1 — 4α)~i). This reduces
to a classical result of Courant, Friedrichs and Lewy [1] when a = 0.

It is well known that the implicit backward difference approxima-
tion

(1-3) Vΰ = vxx

to the wave equation (1.2) is unconditionally stable (cf. [5]). However,
the unconditionally stable approximation (1.3) involves an error of ap-
proximation which is of order k + k2, while the conditionally stable ap-
proximation

Received October 20, 1958, and in revised form March 18, 1959. Work on this paper
was supported by National Science Foundation Grant G-5863.

1 See section 2 for notation.
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(1.4) Vft = vz-x

leads to an error of order k2 + h2. The error incurred when the wave
equation (1.2) is approximated by the von Neumann difference equation
(1.1) is of order k2 + h2 for all values of the parameter a.

The difference approximation (1.4) was extended to a difference
analogue of the hyperbolic differential equation

(1.5) | J = φ, ί)Jϊ + b{x, ί A + c(x, ί A + d(x, t)n + e(x, t)
ut OX OX Ot

by Courant, Friedrichs and Lewy, and shown to be conditionally stable,
the mesh ratio limitation being 1 — aR2 > 0. The implicit backward
difference approximation (1.3) has been extended to difference analogues
of equations of the form (1.5) by Lees [4], and shown to be uncondi-
tionally stable. Both extensions preserve the order of magnitude of the
error of approximation.

There are two natural extensions of the von Neumann difference
equation (1.1) to a difference analogue of the hyperbolic differential
equation (1.5). We consider both of these extensions of (1.1), and give
sufficient conditions that they be unconditionally stable. Both of these
extensions lead to an error of approximation of order k2 + h2 for all
values of the parameter a. Unfortunately, our method of proving sta-
bility gives no information about the conditional stability of the von
Neumann difference approximations to (1.5).

We establish the stability theorems by showing that the solutions
of the von Neumann difference approximations to (1.5) satisfy an energy
inequality similar to the classical energy inequality of Friedrichs and
Lewy [2]. It is the energy inequality which allows us to handle differ-
ential equations with variable coefficients the case of constant coefficients
can be treated by Fourier analysis (cf. [3]).

2 Preliminary remarks. Let Ωh be a rectangular lattice with
mesh widths h and k = Rh fitted to the region

β: 0 < a? < 1,0 < ί < T .

More precisely, Ωh is the set of all points of intersection of the coordi-
nate lines

x = nh, n = 0,1, , N,

t = mk, m = 0,1, , M ,

where Nh = 1 and Mk = T. The quantity R is called the mesh ratio
of the lattice.
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Let

J*(m, I) = {{xy t)eΩh\x — ih and mk <t<lk)

and put

Ωh=
N\JΔ\k,M-k).

S = l

Denote by T±nh and T±mJc the translation operators defined as follows:

T±nnV(x, t) = ?;(# ± wft, ί) ,

T±mjcV(x, t) = v(x, t ± mk) .

For the first order partial difference quotients of functions v(x, t) we
employ the following notation:

Difference quotients of order higher than the first are fo
peated application of the above formulas, for example,

tfώ - 1 ( 2 \ - 2 + T-h)v .

We shall use von Neumann's finite difference method to approximate
the sufficiently smooth solutions of the following mixed initial-boundary
value problem

(2.1) | ί£ = a(x, i ) f i + b(x, t)^ + c(x, t)^ + d(x, t)u + e(x, t),
(JO OX OX Ou

(0 < x < 1, 0 < t < T) ,

u(x, 0) = f(x)

^-{x, 0) = g{x)

(2.2) M

u(0, t) = ft^ί)

Mil, t) = hx{t).

We assume that the functions b, c, d and e are continuous in Ω, and
that there exist constants ct, (ί = 0,1, 2, 3) such that

(2.3) 0 < c0 < α(», ί) < Cj in β ,
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(2.4) I a(x, t) ~ a(x, Ί)\ < c2\ x — x | + c3\ t — ~t | .

We also assume that the functions g, h0 and hλ are continuous and that
/ is twice continuously differentiate.

The first finite difference approximation of (2.1) is

(2.5) vt-t = a(x, t)vx~ + ak2vx*ft + b(x, t)vx + c(xf t)vt + d(x, t)v + e{x, t) ,

where a is a parameter to be specified later.
The initial and boundary conditions (2.2) are approximated as fol-

lows :

v{x, 0) = f{x)

v(x, k)=f(x) + kg(x) + £.[a(x, 0)f"(x) + b(x, 0)f'(x)

Δ
( 2 * 6 ) + c(x, 0)g(x) + d(x, 0)f(x) + e(x, 0)]2

v(0, t) = hit)

v(l91) = hλ(t) .

As a second approximation to (2.1), we take

(2.7) Vft = a(x, t)vxx + a(x, t)ak2vxxt~t + b(x, t)vx

+ c(x, t)vi + d(x, t)v + e(x, t) .

Both of these difference equations are of the implicit type when
a > 0, i.e., their solution, subject to the auxilliary conditions (2.6), re-
quires the inversion of a linear system of (N — 1) algebraic equations
in the same number of unknowns at each time step.

3 Energy inequalities• In this section, we derive sufficient con-
ditions for the solutions of the difference equations (2.5) and (2.7) to
satisfy an energy inequality. As a corollary of the energy inequalities,
we prove the existence of a unique solution to the systems (2.5), (2.6),
and (2.7), (2.6).

Before giving the energy inequalities, we prove several preliminary
results.

LEMMA 1. The function E(t) = (1 + βk)-tllc, (β > 0) satisfies the
following conditions:

(i) EΊ

(ii) TkE = (1 + βk)-Έ < E ,

(iii) E~\t) < eβt .
2 This approximation is taken to insure that the approximation error is of uniform

order of magnitude over the region ΏA,



VON NEUMANN DIFFERENCE APPROXIMATION 217

Proof. Properties (i) and (ii) are readily verified, and property (iii)
follows by exponentiating the inequality

t\k log (1 + βk) < βt .

The next three lemmas give finite difference analogues of certain
differential identities employed in the proof of the classical energy in-
equality of Friedrichs and Lewy.

LEMMA 2. If E(t) = (1 + βk)~tllc, (β > 0), and v(x, t) is any func-

tion defined on Ωh, then the following identity holds:

(3.1) Eviv* = ϊ[(TkE)vl]-t +

Proof. We have that

MYt = vtva + (T^vt)vt-t = 2vtvft - (vt - T^vt)vt~t = 2vtvt~t - k(vtϊf .

Similarly,

[v2

tγt = 2inυa + HvΰY .

Hence,

viva = i[v2

tγt .

Therefore

Evtυa = il(TkE)vl\ - i(T,Eytvl

which reduces to (3.1) in view of property (i) of Lemma 1.

LEMMA 3. Let E(t) = (1 + βk)~tl1c, and let v(x, t) be any function

defined on Ωh. Then the following identity holds:

(3.2) Evtavxx = (

Proof. We have

Evtavx- = (vtEavxγx - (vtEa)xvx

= (vtEavx)x - Eavxv-t - (Γ_

= (vtEavx)x — (T-hvt)v~Eax -

+ -5- (Ea)tv£ H S α ^ .
z 2
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Combining this identity with a similar representation for Ev-tavx-x we
obtain (3.2).

LEMMA 4. Let E(t) = (1 + βk)~tlk, and let v(x, t) be any function

defined on Ωh. Then the following identity holds:

(3.3) Ev-tavzxft = (Evtavxti)z - Eax(T-hvϊ)vxa - i[(TkEa)vlt]-t + i(Ea)tvlt .

The proof of this lemma is similar to the proof of Lemma 3, and will
be omitted.

In order to present the energy inequalities in a convenient form,

we introduce several norms. If v(x, t) is defined on Ωhf then

\\v\\l,t = hΣiv
t(nhf t)
171 = 1

J V - 1

For functions defined on Ω we introduce the maximum norm

MQ = max\v(x, ί)| .
Ω

THEOREM 1. (Energy Inequality) Let v(x, t) be a solution of the
difference equation (2.5) in Ωh. Assume that v(x, t) vanishes z/°(0, M)
and dN(0, M). If the quantity

(3.5) 4α - a(x, t)

is bounded away from zero in Ω, then there exists a constant c depend-
ing only on a, T, cif (i = 0,1, 2, 3) and the coefficients of (2.1) such that
for all sufficiently small k

(3.6) \\v\\lt<c[\\v\\lk J

Proof.'6 We have

hkΣ Evi[vtj — avxx — ak2vxxa — bvx — cvt — dv — e] = 0 .

Let Δh = Ωh{JdN(k, M — k). Since v vanishes on JN(0, M), we can write
the preceding equation in the form

(3.7) hkΣ Evϊ[vt-t - avxx - ak2vx-xtϊ] = iB(v) ,

where
3 The basic idea in the proof is made more transparent by taking b = c = d = e = 0.
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(3.8) B(v) = 2Λ&Σ Evί[bvi + cv\ + dv + β] .

Using the identities of Lemmas 2, 3 and 44, we can write (3.7) as

(3.9) hkΣ [(TkE)vl]ι + h{(T-*Ea)v~}t + iKT.Ea)^

- m(T«Ea)vl] + aV[{TkEa)v\t]-t = Λ(t;) + B(v) ,

where

(3.10) R(v) - Σ {

In deriving (3.9), we have used the fact that

= ^ Σ (T.kE(T)a(x, T)vl{%, T) - hΣ Φ, ΰ)vl{x, k)
x^h x-h

which follows from our assumption that v(x, t) vanishes on J°(0, M) and
Δ^(0, M).

Summation with respect to t yields the following formulas.

(3.11)

(3.12)

(3.13)

(3.14)

= feΣ #(2>(a; f Γ)[«3(a?, Γ) - 2t^», T)vx{x, T - k) + i;2

;(a;, Γ - fc)]

Nh

- hΣ> E(k)a(x, k)[v\(x, k) - 2v-x(x, k)v-x(x, 0) + vl(x, 0)]
x = h

(3.15) hKΣι<xfc[(T*E)v\&

Nh

| ; , Γ) - 2v;(x, Γ ) φ , T - k) + v\{x, T - k)]

= ΛΣ E(T)a{x, T)v\(x, T- k)-hΣ, E(k)a(x, k)v\(x, 0)
Ί h

(*, fc) - 2v-x(x, k)v-x(x, 0) + irx(x, 0)] .

It follows now from (3.9), (3.11)-(3.15) that

* In Lemma 4, we take a = 1.
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E(T)\\v-t\\l.τ + A g [2aE(T)irx{x, T - k)
2 x = h

+ {2aE(T) - k(E(T)a(x, T))-t}vl(x, T)

+ {2E(T)a(x, T) - AaE(T)}v-x(x, T)vx(x, T - k)]

(3.16) = \\vt\\lΛ + 4 Σ [2<xE(k)a(x, k)vl(x, 0)

+ {2aE(k) - k(E(k)a(x, k))Ί}vl{x, k)

+ {2E(k)a(x, k) - ±aE{k)}v~x{x, k)v~x{x, 0)] + R(v) + B(v) .

Consider the real quadratic form

(3.17) Q(ξ, U) = 2aEξ2 + (2Ea - AaE)ξη + (2aE - k{Ea)i)η* .

Now,

(Eayt = Et(T^a) + Ea~t = E{-β{T^a) + αj)

by property (i) of Lemma 1. Therefore

(3.18) 2aE - k(Ea)t > E2a

if βa > aι .

It follows from (3.17) and (3.18) that by choosing β large enough

(3.19) Q(ξ, ΎJ) > E(2aξ> + 2{a - 2a}ξη + 2arf) .

In view of our assumption concerning the expression (3.5), we see that
the right side of (3.19) is a positive definite quadratic form, and

(3.20) Q(|, η) > Eμo(ξ> + η*) ,

where

μ0 = min [4a — α, α] .

Also, there is a constant μλ such that

(3.21) Q{ξ, rj) < Eμλ(? + η*) .

Hence, combining (3.16), (3.20) and (3.21) we fined that

(3.22) E{T)\\vΊ\\lτ + E(T)μoi{\\v~x\\lτ + | | ^ | | 0 V J

, + B(v) .

If we shown that there is a constant B such that

(3.23) R(v) + B(v) < kB\\vι\\lk + kΣ*\\e\\

for all sufficiently small k, then (3.6) will follow.
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It is readily verified that

B(v) < hk%E(\b\z + \c\-Q + \d\Έ + l)v]
Ω

Since

fcΣ
r-fc

and

vτ + E(k)vl(x, k)

it follows that there are constants Bx and B2 such that

(3.24) B(v)

Using (3.10), it is not difficult to show that

(3.25) R(v) <
1 + /Sfc I to

da
dx

at-

for a suitable constant J53. It follows now from (3.24) and (3.25) that
we can choose β such that for all sufficiently small k (3.23) holds. This
completes the proof of Theorem 1.

Restating Theorem 1, we have

COROLLARY 1. If ka — a is bounded away from zero in Ω, then
the von Neumann difference equation (2.5) is unconditionally stable for
all sufficiently small k.

THEOREM 2. If Aa — a is bounded away from zero in Ω, then for
all sufficiently small k, the finite difference equation (2.5) with the
auxiliary conditions (2.6) possesses a unique solution.

Proof. At the end of §2, we remarked that the system (2.5), (2.6)
is equivalent to a system of (N — 1)(M — 2) linear equations in the
same number of unknowns. It is sufficient to prove that the associated
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homogeneous system of equations has only the trivial solution. The
homogeneous system is obtained by putting β, v(x, 0), v(x, k), v(0, t) and
v(l,t) equal to zero. From Theorem 1 we conclude that | |i; | | l t ί = 0,
which implies that v — 0 in Ωh. Hence, the associated homogeneous
system has only the trivial solution.

We now state without proof the following approximation theorem.

THEOREM 3. Let u{x, t) be of class C4 in Ω and satisfy the mixed
initial boundary value problem (2.1), (2.2). Let 4a — a be bounded away

from zero in Ω and let v(x, t) denote the solution of the von Neumann
approximation (2.5), (2.6). Then for all sufficiently small k there ex-
ists a constant B4 independent of h and k such that

max \u(x, t) - v(x, t)\ < B4(h2 + k2) .

We now consider the finite difference equation (2.7). The preceding
theorems can all be extended to this difference equation provided that
we modify the range of the parameter a.

THEOREM 4. (Energy Inequality) Let v(x, t) be a solution of the
difference equation (2.7) in Ωh. Assume that v(x, t) vanishes on J°(0, M)
and JN(0, M). If

(3.26) 4α - 1 > 0 ,

then there exists a constant c independent of h and k such that

(3.27) |M| ,t <

The proof of Theorem 4 is quite similar to the proof of Theorem 1.
Only slight changes in the proof are required due to the fact that we
must use the full form of Lemma 4.
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AXIOM SCHEMATA OF STRONG INFINITY IN
AXIOMATIC SET THEORY

AZRIEL LEVY

l Introduction. There are, in general, two main approaches to
the introduction of strong infinity assertions to the Zermelo-Fraenkel
set theory. The arithmetical approach starts with the regular ordinal
numbers, continues with the weakly inaccessible numbers and goes on
to the ^-numbers of Mahlo [4], etc. The model-theoretic approach, with
which we shall be concerned, introduces the strongly inaccessible numbers
and leads to Tarski's axioms of [14] and [15]. As we shall see, even
in the model-theoretic approach we can use methods for expressing strong
assertions of infinity which are mainly arithmetical. Therefore we shall
introduce strong axiom schemata of infinity by following Mahlo [4,5,6,].
Using the ideas of Montague in [7] we shall give those axiom schemata
a purely model-theoretic form. Also the axiom schemata of replacement
in conjunction with the axiom of infinity will be given a similar form,
and thus the new axiom schemata will be seen to be natural continuations
of the axiom schema of replacement and infinity.

A provisional notion of a standard model, introduced in § 2, will be
basic for our discussion. However, in § 5 it is shown that this definition
cannot serve as a general definition for the notion of a standard model.

2. Standard models of set theories. For the forthcoming discussion
we need the notion of a standard model of a set theory. A general
principle which distinguishes between standard and non-standard models
of set theory is not yet known. Nevertheless, a notion of a standard
model for various set theories will be given here, but this will serve
only as an ad-hoc principle and we shall see later that its general
application is not justified.

The Zermelo-Fraenkel set theory is generally formalized in the
simple applied first-order functional calculus, since this is the most
natural language for a set theory. In that formulation the Zermelo-
Fraenkel set theory has an infinite number of axioms. From that formu-
lation one passes directly to a formulation of the Zermelo-Fraenkel
set theory by a finite number of axioms in the non-simple applied
first-order functional calculus (we shall denote functional variables with
PfPifPn )* The axioms of extensionality, pairing, sum-set, power-
set and infinity are as in [2]. The changed axioms are

The axiom of subsets (x) (3 y) (z) (z e y= : z e x . p(z))

Received February 20, 1959. This paper was written while the author was a Sloan
Fellow of the School for Advanced Study at M.I.T.
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The axiom of replacement
) (3 y) (z) (z e y=(3 u) (u e x . p(u, z))).

The axiom of foundation (3 a;) p(x) z) (3 a;) (p(x). (y) (y ex Z)^p(y))).
If we regard as mathematical theorems of a theory Q formulated

in the non-simple applied first order functional calulus only those theorems
of Q which do not contain functional variables then it can be shown,
by the method of Ruckverlegung der Einsetzungen (compare [3],
pp. 248-249) that the set of all the mathematical theorems of Q coin-
cides with the set of all the theorems of the corresponding theory Qr

formulated in the simple applied first order functional calculus (whose
axioms are the axioms and the axiom schemata corresponding to the
axioms of Q). Therefore Q and Q' could be regarded, from the mathe-
matical point of view as the same theory. Nevertheless, we shall see
that Q' is not obtained uniquely from Q if we disregard the actual
axiomatic representation of Q.

We are interested in passing to set theories based on a finite set of
axioms in the non-simple applied first-order functional calculus, since
in this case we can define the notion of standard models for these
theories in the sense of Henkin. A standard model of such a theory Q
will be a model where the functional variables range over all the
subsets of the universe set of the model. The statement that the
universe u and the membership relation e (which are both taken to be
sets) determine a standard model of Q can be easily formulated in set
theory. This is done as follows : We take the conjunction of the axioms
of Q and effect the following replacements1

(x) ( by (x) (x 6 u ZD (3 x) ( by (3 x) (x e u.

x e y by <xy> e e p^x,, , xn.) by < xλ, , xn, > e /,

and

then we close the resulting formula with respect to the variables /*
by the prefix {fλ, , f3) (fx c u . . f5 c u : 3 . Thus we obtain a
formula which we shall denote with SmQ(u, e).

Standard models for set theories for which (xyyee^iyeu.
x e y and yeu.xeyiiDxeu are called standard complete models:
ScmQ(u)= : (y)(yeuz)y^u).(e)((xyyee= :y e u.x e y : . S m Q ( u , e)).

We denote by S the set theory which consists of the axioms of ex-
tensionality, pairing, sum-set, power-set, subsets and foundation. SF wτill
denote the theory obtained from S by adding to it the axiom of
replacement. Z (resp. ZF) will denote the theory obtained from S (resp.
SF) by the addition of the axiom of infinity (axiom VII* of [2]). We
shall assume that these theories are formulated in the simple first-order

1 Alphabetic change of bound variables may also be needed.
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functional calculus unless we are dealing with standard models of these
theories, in which case we shall assume that we have passed to corre-
sponding formalizations in the non-simple first-order functional calculus.

By the methods of Shepherdson [12] 1.5 and Mostowski [9] it is
easy to prove (in SF) that each standard model of a set theory Q which
includes the axioms of extensionality and foundation is isomorphic to
some standard complete model of Q.

The function R(a) is defined by R(a) == Σβ«* Φ(R(β)) (Φ(&) i s t h e

power-set of x). The rank of an element x of R(a) is defined to be the
first β such that x e R(β). We shall assume in the following that
the properties of these functions are known.2

We can prove, in the same way as Shepherdson [12] 3.14 and 3.3 3

that if Q contains the axioms and the axiom schemata oί SF then each
standard complete model of Q is of the form R{a)y where a is some
limit number. Thus we can conclude that each standard model of a
theory Q which contains the axioms and axiom schemata of SF is
isomorphic to some standard complete model of Q of the form R(a). If
we regard as assertions of infinity those statements which assert the
existence of standard models for strong set theories, we see now why
all assertions of infinity reduce to statements about the existence of
ordinal numbers with appropriate properties.

The (strongly) inaccessible numbers a are usually defined as regular
initial numbers greater than ω which satisfy (λ) (λ < a z> 2 k<a). This
definition leads to the expected consequence only if the axiom of choice
is assumed, since, for example, if the cardinal of the continum is not
an aleph then according to this definition no ordinal is inaccesible.
Shepherdson [12] established the close connection between the inaccessi-
ble numbers and what we call the standard complete models of ZF.
These results of Shepherdson can serve to give a new definition of
inaccessible numbers which will have a satisfactory meaning even if
the axiom of choice is not assumed.

DEFINITION 1. a is called inaccessible if R(a) is a standard com-
plete model of ZF.

In(a) Ξ= ScmZF(R{a))
Shepherdson [12] proves, in effect, that this definition is equivalent

to the usual definition if the axiom of choice is assumed. Without using
the axiom of choice it can be proved that a is inaccessible if and only if

(1) a > ω

(2) a is regular

(3) (z)(z 6 R(a) ID ~ z > α ) 4

2 See, for example, Shepherdson [12] 3.2- he denotes the function R by G.
3 Shepherdson's super-complete models are our standard complete models of ZF.
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We shall widely use in the following the fact that every inaccessible
number is regular (this is proved by Shepherdson [12] 3.42).

Definition 1 shows clearly why such a number is called inaccessible,
i.e., unobtainable from the smaller ordinal numbers by means of the
set theory ZF. Following Specker [13] we can generalize this definition
as follows:

DEFINITION 2. Let Q be a set theory formulated by a finite number
of axioms in the non-simple applied first-order functional calculus. An
ordinal number a is called inaccessible with respect to Q if R{a) is a
standard complete model of Q.

InQ(a) == ScmQ(R(a)).

3 A strong axiom schema of infinity. The numbers inaccessible
with respect to ZF are the inaccessible numbers. The numbers inacces-
sible with respect to the theory obtained from ZF by addition of the
axiom (3 σ) In(σ) are all the inaccessible numbers except the first one.
Thus we can go on and observe numbers inaccessible with respect to
systems which require the existence of more and more inaccessible num-
bers. We can also observe the numbers inaccessible with respect to the
extension of ZF which is obtained by adding (μ) (3 σ) (σ > μ . In(σ))
to its axioms, etc. But if we want to have a really fast trip into the
realm of infinity we shall use the means provided by the arithmetical
approach to assertions of infinity.

Mahlo [4] defined a function πUtβ such that πΛt0 counts the regular
ordinal numbers, πaΛ counts the weakly inaccessible number and for
increasing β πΛiβ, regarded as a function of a, counts ordinals which
satisfy higher and higher requirements of weak inaccessibility. The
whole hierarchy of Mahlo [4] is based on the class5 of the regular
numbers —the range of πΛt0. If we replace πa>0 by a function πi i0 whose
range is a subclass of the class of the regular numbers we can define
analogously functions π'ΛtΎI and π'ΛtV£ and prove theorems corresponding
to Mahlo's theorems in [4,5,6,]. We shall take for the range of π'Λt0

the class of the inaccessible numbers.

Our exposition will differ from Mahlo's also in a technical point:
Whereas Mahlo uses any strictly increasing functions to count the
members of given classes of ordinal numbers we shall use for this pur-
pose normal functions (Normalfunktionen)6 which are much easier to
handle. A normal function at limit-number arguments may take values

4 Since we do not assume that the cardinal numbers are formally defined — z ^ a is
an abbreviation of a statement about equivalence of sets.

5 We shall use the word 'class' instead of the word ' property \ e.g., instead of 'the
property of being a regular number1 we shall say 'the class of the regular numbers'.
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outside the class whose members it counts, since the normal function
counts the members of the closure (in the order topology) of the given
class.

DEFINITION 3. The functions PΎt{oc)7 are defined by transfinite induc-
tion as follows: P0(0) is the first inaccessible number PQ(β + 1) is the
first inaccessible number greater than P0(β) for limit-number a PQ(a) =
limβ<Λ P0(β). Pv(β + 1) (resp. Pv(0)) is the first inaccessible number σ
greater than Pv(β) (resp. the first inaccessible number) such that for
each rf < η σ = Pr/(j) for some limit number γ.

The functions Pv(a) are not assumed to be defined for evey η and a.

DEFINITION 4. Q(β + 1) (resp. Q(0)) is the first inaccessible number
a greater than Q{β) (resp. the first inaccessible number) such that
Pα(0) = a. For a limit-number a Q(a) = limβ<QJ Q(β).

We can also define functions Qη(a) such that Q0(a) = Q(a), Qβ+1 is
related to Qβ as Qo is related to Po and for limit-ordinal η Qη counts
the inaccessible numbers which are in the intersection of the ranges of
all the functions QΨ, rf < η. The numbers a for which QΛ{ϋ) = a we
call Q*-numbers.

We shall now consider the following axiom schema
M Every normal function defined for all ordinals {d.f.a.o.) has at

least one inaccessible number in its range8

THEOREM 1. M is equivalent to each of the following schemata

Mr Every normal function d.f.a.o. has at least one fixed point which

is inaccessible

M" Every normal function d.f.a.o. has arbitrarily great fixed points
which are inaccessible.

Proof. Obviously M" implies Mr and Mf implies M. We shall
prove that M implies M".

Let F b e a normal function d.f.a.o. Let G be the derivative of F, i.e.,
the normal function which counts the fixed points of F. Since F is
d.f.a.o. then by [1] § 8 G is also d.f.a.o. For any given γ let Hy(ξ) =

6 A function F(a) on the ordinal numbers into the ordinal numbers is called normal if :
(1) It is strictly increasing: a < β 3 F(a) <F(β)
(2) It is continous: For limit-number a F(a) = \imβ<aF(β).
7 These are the functions analogous to the functions %a,-η of Mohlo [4].
8 This schema is written formally as

(a,β,γ) (φ(a,β) . φ(a,γ) : D β = γ) . (a) ( 3 β) φ (a,β) . (a,β,γ,δ) (« < ΐ - <p(«,β) . φ(γ>d) - => #<#) («,
β) (— (3 a) (<r + 1 = a) . a * 0 . φ(a,β) : C (r) (γ < β D (3 δ,η) (δ < a. <P (δ,v) V > ΐ))) : =>
(3 a,β) (φ(a,β). ln(β)) where φ is a formula of set theory such that there is no confusion of
variables in the corresponding instance of the schema.
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G(y+ξ). Hy is a normal function d.f.a.o. and hence by M there is an
ordinal ξ such that β = Hy(ξ) is inaccessible. Since β = G(y + ξ), F{β)
= β. By a well-known theorem the value of a normal function is not
less than the argument and hence β > γ + ξ > γ.

In order to see how near M is to a purely arithmetical assertion
it is interesting to note that M is equivalent to the conjunction of

(1) There exist arbitrarily great inaccessible numbers
(2) Every normal function df.a.o. has at least one regular number

in its range
The proof of this makes use of the fact that every regular ordinal which
is the limit of a set of inaccessible numbers is inaccessible (since an ordinal
is inaccessible if and only if it is regular, greater than ω and (z) (z e
R(a) ZD ~z> a)). Let F be any normal function df.a.o. If there
exist arbitrarily great inaccessible numbers then the function PQ(a)) is
d.f.a.o. and also the normal function F(P0(a)) is df.a.o. By (2), using
the same reasoning as in Theorem 1, there is a regular ordinal β such
that F(P0(β)) = β, i.e., P0(β) = β and F(β) = β. Since β is a limit
number and Pύ{β)—β, β is the limit of a sequence of inaccessible numbers
and since β is regular it is inaccessible.

ZM will denote the set theory obtained from ZF by the ad-
dition of M.

We shall now introduce a principle of reflection over ZF. This
will be an axiom schema which will assert the existence of standard
complete models of ZF which reflect in some sense the situation of the
universe.

Let φ be a formula of set theory. We denote by Rel (u, φ) the
formula obtained from φ by relativizing all the quantifiers in it to u,
i.e., by replacing each occurrence (z) χ or(g z) χ by (z) (z e u ZD χ) or (3 z)
(z e u . χ), respectively.9

The principle of complete reflection over ZF

N (3 u) (ScmZF (u) . {xx , , xn) {xx, xn e u 3 . φ = Rel (u, φ)))
where φ is any formula which has no free variables except xx , xn.

As seen from the formulation of N, it is closely connected with the
notion of an arithmetical extension of Tarski and Vaught [17]. In the
proofs of Theorems 2,3,5 and 6 we shall use the methods used by
Montague and Vaught [8] for arithmetical extensions.

We shall see now that another principle of reflection, which seems
at first sight to be stronger than N is equivalent to N.

THEOREM 2. N is equivalent in S to the following schema

9 If φ contains u bounded then u is replaced in φ before the relativization by the
first variable, in alphabetic order, which does not occur in φ.
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N' (3u)(z G u . ScmZF (u). (xx, , xn) (x±, , xn € u ID :
9>! ΞΞ Rel {u,φύ. . ψm = Rel (u, φm)))
where m is any natural number and φif 1 < i < m, is a formula
which has no free variables except xx, , xn.

Proof. Obviously N' implies N. Now we assume N and we shall
prove first the schema N" which is like N', only that it does not con-
tain the part z e u. Let 0 be the formula VΓ=i£ = i . <Pi- Since the
natural numbers 1,2, •••, m are absolute with respect to standard
complete models (see, e.g., [12] 2.320) we have Scm(u) D : . Rel(w, 0 ) Ξ=:
Viί-i t = i . Rel(%, ̂ i) We use now N with respect to 0 and we obtain
the existence of a set u such that ScmZF (u) and

(ί) (a?i, , a?n) (ί, Xι, ,xn e u ID .*. VΓ=i ί = i . Ψ%

From ScmZF (u) we can prove easily by induction that ω c w, and
therefore, substituting j for ί in the above formula, 1 < j < m, we get
#!, , xn e u Z) . ^ Ξ Rel (^, ^ ) , and thus we have proved N". Now
we shall prove N' from N".

Given φx, >φm we denote

e u . ScmZF (u) . (xx, , xn) (xx, , xn e u Z) .

We use now N" for 9>!, ,<pm+2 Thus we have the existence of u
such that ScmZF (u) and

(3) &!, , xn e u 3 . φt = Rel (%, 9>4) 1 <i <m
(4) z e u ID . φm+1 = Rel (w, ̂ >m+1)

(5) ^TO+2 = Rel (u, φm+2).

By ScmZF (u) and (3) we have (z) (z e u ID <pm+1), and hence, by (4),
also (z) (z e uz) Rel (u, φm+1)) but the latter formula is Rel (u, φm+2) and
hence, by (5), we have φm+2> which is the instance of N' corresponding
to φ19 •••, φm.

We note that Theorem 2 will remain valid if ZF is replaced in
both N and N' by S or by any extension of S.

THEOREM 3. In ZF the schema M is equivalent to the schema N
and to the following schema
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N"r (3 a) (In(a) . (x19 . . . , xn) (x19 . . . , xn e R(a) ID . φ = Rel (β(α), ?>)))

wfeere φ is any formula which has no free variables except

xί9 ---,%n.

Proof. As we have already mentioned in § 2 all the standard
complete models of ZF are of the form R{ά). Hence, by Definition 1,
N and N"' are equivalent.

We shall now prove M from N'". Let φ(x, y x19 , xn) be any
formula. Let χ(x19 •••,#„) be the formula asserting that if φ(ξ9 rj: χ19

•••»#«) gives a function η — F(ξ) which is normal and d.f.a.o. then
F(ξ) has at least one inaccessible number in its range. From Nnt we
shall pass, as in Theorem 2, to a schema which is like N"' only that
φ == Rel (R(a), φ) is replaced by Λl=i Ψ% = Rel (•#(#)> <pt). We shall take

ψ l ==φ, <p2 = (ξ) ( 3 η) φ (£, η), <p3 = χ, ^ 4 = (χlf ••-,»„)%. By the cor-
responding instance of that schema there exists an inaccessible number
a such that

(6) x19 , xn9 x, y e R (a) ID . φ == Rel (jB(α), ̂ )
(7) a?,, , a?Λ e R (a) Z) . {ξ) (3 rj) φ (ξ, rj) ̂  Rel (R(ά), (ξ) (3 η) φ {ξ, rj))
(8) x, -, xn e R(a) ID . χ = Rel (Λ(α), χ)
(9) fo, , xn) χ = Rel (R(ά), (x19 , a?»)χ).

We shall now assume that for certain x19 * ,xn e R(a) φ(ξ,rj) gives a
function rj = F{ξ) which is normal and d.f.a.o. The relativization of
an ordinal-number-variable μ to the set R(a) is μ < a (see Shepherdson
[12] 2.316) and thus, since we assume the left-hand side of (7), we get

(ξ) (ξ<a^^η){7]<a. Rel (R(a), ψ(ξ ,η))))

and by (6) we have (ξ) (ξ < a ID (3 η) (rj < a . ψ (ξ9 η))). Since F is
normal and a is a limit number we have F(a) = a, thus proving
x19 , xn e i?(a) 3 χ (a?i, , α?n). By (8) we have x1* ,xn e R{a) D
Rel (-R(α), χ(a?!, , »„)) which is Rel (R(ά)f(x19 , xn) χ) and hence, by
(9), we have (x19 •• ,xn)Xt thus proving M.

Now we shall prove N from M. In this we shall make use of
ideas of Montague in [7]. Let φ be any formula of set theory. We
write φ in prenex normal form. Let φ be of the form (y) (3 z) (u) (3 t) φ*
where φ* does not contain any quantifiers, and let φ have the two free
variables xlf x2. For formulae φ of any other structure the treatment
is analogous to the treatment of this case.

Given any x19 x2, y let Fτ{x1} x2, y) be the set of all the sets z which
satisfy (u) (3 t)φ* and which are of minimal rank among the sets satisfy-
ing this requirement. If there are z'& satisfying (u) (3 ί) φ% then by the
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axiom of foundation they have certain ranks and hence Ft(xl9 x2, y) Φ 0,
otherwise Fτ(xu x2, y) = 0. Fλ{xlf x2, y) is a set since it is the subset
of some set R(a) or it is the void set. Given any xlf x2, y, z, u we denote
by F2(x19 x2, y, z, u) the set of all the sets t which satisfy φ* and which
are of the least rank among the sets t satisfying φ*. ~ φ = (g y) (z)
(3 ^) (t) ~ Ψ* We define for this formula corresponding functions
F2(xly x2) and FA(x19 x21 y, z).

H(x) = x + Σ Fx(xlf x2, y) + Σ F&i* v*> 2/, *> *0
χι, χz> y β x a?i, ^2 y, z, u 6 x

+ Σ Ήfai, »2) + Σ ^4(^1, a?a,!/,«)
Xi, cc2 6 a? xi, X2> y, z 6 x

Let I be the rank of the set x, then x c i?( | — 1) ( | cannot be a
limit-number). Let us define

J(x) = Λ( | - 1), ΛΓ(aj) = J(H(x)), P(x) =

It follows immediately from the definition of P(x) that

x19 x2, y,zyue P(x) z> : Fx(x19 x2, y) c P(a?). ί 7 ^ , x2, y, z, u) c P(χ)
. F3(xlf x2) e P(χ) . J P 4 ( ^ , fl.a, y > 2) c P(a?) .

Denote
0(8) = (Xu %2, V, z> u) (Xif x2,V,z,u e S 3 : Fτ{xlf x2, y) c s

. 2^(0?!, a?2,2/, «, u) c s . 1^(0?!, a?2) c s . F 4(χ x, χ2, y, z) c s).

Assume 0(s). We shall see that x19 x2 e s ID . φ = Rel(s, 90). We have

Rel (s, φ) = (y)(y e siD (3 z)(z e s . (w) (% 6 s ID (3 ί) (ί e s . φ*))))

and by definition of Fλ — F4

(10) (x19 x 2 , y , z , u 9 1 ) (x19 x 2 f y e s . z e Fx(x19 x 2 , y ) . u e s

. t e F 2 ( x l y x2y y , z , u ) : 3 φ*)

(11) (x29 x2, y9 z, u91) (x19 x2 e s .y e F3 (x19 x2) . z e s
. u e F 4(^i, x2,y,z).tes:z)~ φ*)

If )̂ holds for x19 x2 e s then -FΊ(a?i, xi9 y) Φ 0 and i * ^ , a?a, ?/, «, w) Φ 0
for 2/ € 8, z e F^Xu x2, y) and u e s and hence by (10) Rel (s, ?>) holds
for x19 x2. If ~ φ holds for α?x, x2 then we have by (11), in the same
way, that Rel (s9 ^ φ) holds, i.e., ~ Rel (s, φ) holds.

Since we have always Σv<μ R(<**) = Λ(supv < μ αv) and by the definition
of the function K Kn(x) is of the form R(β) also P(x) = Σ « e ω ^ w ( ^ ) is
equal to iϋ(#) for some α. Since 0(P(»)) we have 0(R(α)). If we
want α to be greater than μ it is enough to take x = {//} and by
a? Q P(«) we have μ e P(a?) = R(α), i.e., μ < α. Now let F be the



232 AZRIEL LEVY

normal function counting, in the order of their magnitude, the ordinals
a which satisfy 0(R(a)). Since we have arbitrarily great ordinals a
satisfying 0(R(ά)) F is d.f.a.o. For ξ which is not a limit-number we
have 0(R(F(ξ))). Let η be a limit-number, and let x19 x29 y,z,u e
R(F{Ύ])). Let γ be the maximum of the ranks of x19 x2, y, z, u. Since η is
a limit-number F(rj) is also a limit-number and therefore γ < F(η). Since

= lime<r? F{ξ) there is an ordinal ξ, ξ + 1 < η, such that γ < F(ξ + 1)
), and hence xlf x2, y, z,u e R(F(ξ + 1)). But, as we have already

mentioned, 0(R(F(ξ + 1))) holds and therefore Fx{x19 x2, y) c R(F(ξ + 1))
c R{F(rj)) and the same holds for F2 — JP4. Thus we have proved
0(R(F(η))) also for limit-number η, hence 0?) 0 (R{F(η))).

By Λf the function F(ή) has in its range an inaccessible number a.
Therefore we have 0(R(a)) and hence

(x19 x2) (x19 x2 6 R(a) Z) . ^ = Rel (R(a), φ)).

N follows from Definition 1.

THEOREM 4. In ZM it is provable that all the functions Pv are
d.f.a.o. as well as the function Q.

Proof. Let η be the least ordinal such that Pv is not d.f.a.o. and
let a be the least ordinal for which Pv (a) is not defined, a cannot be
a limit-number, since in that case Pv (a) = limβ<Λ Pv(β). Let us "define"
Pv(a) to be the class of all the ordinal numbers. By exactly the same
arguments as those in the proof of Theorem 2 of Mahlo [4] (for the
case a = π^μ, v < a) we can define a normal function " converging to
Pη(aY' which does not have inaccessible values at limit-number arguments,
i.e., we have a normal function d.f.a.o. which does not satisfy M'.
Now that we proved that for each η Pv is d.f.a.o. Let Q(0) be unde-
fined. As in the former case we "define" Q(0) to be the class of all
ordinals and use the arguments in the proof of Theorem 2 of Mahlo [4]
(for the case of the least ξ such that ξ = 7Γα) to construct a normal
function df.a.o. which does not satisfy Mr. In the same way we prove,
by transfinite induction, the existence of Q(a) for each a.

Arguments which are very similar to those of Theorem 4 can be
used in order to prove in ZM that all the functions Qη are d.f.a.o. as
well as the normal function counting the Q*-numbers, and so on.

4. An hierarchy of set theories* In analogy with Mahlo [4] we can
give axioms of infinity stronger than M.

DEFINITION 5. a is call a hyper-inaccessible number of type 1 if
it is inaccessible with respect to ZM, i.e., if it is inaccessible and each
normal function whose domain is a and whose range is included in a
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has at least one inaccessible number in its range, a is hyper-inaccessible
of type μ + 1 if it is inaccessible and each normal function whose
domain is a and whose range is included in a has at least one hyper-
inaccessible number of type μ in its range. For a limit-number μ a is
hyper-inaccessible of type μ if it is hyper-inaccessible of type λ for
every λ < μ.10

It follows immediately from Definition 5 that if a is hyper-
inaccessible of type μ it is also hyper-inaccessible of type λ for every
\<μ.

Let A be a definite ordinal number. To avoid going into details
we assume that existence and uniqueness of A are provable in ZF and
also that it is provable in ZF that the definition of A is absolute with
respect to standard complete models of ZF. Observe the following
axiom schema:
MΛ (for A > 2) Every normal function d.f.a.o. has for every μ < A at

least one hyper-inaccessible number of type μ in its range.
Obviously we have that if ZF \- A < M then MM implies MΛ. Let ZMΛ

denote the theory obtained from ZF by addition of MΛ. By Definition
5 a is a hyper-inaccessible number of type A if and only if R(a) is a
standard complete model of MΛ (here we use the absoluteness of A with
respect to standard complete models of ZF).

In complete analogy to Theorem 3 we have:

THEOREM 5. MΛ is equivalent in ZF to the schemata
N'A" (μ) (μ < A D (3 a) (a is hyper-inaccessible of type μ . (xu •••,#»)

(x19 -, xn e R(a) ID . φ = Rel (R(a), φ))))
where φ is any formula which has no free variables except

and

NΛ (μ)(μ <A-D &u){ScmZM»{u) .

(xu , xn)(%i, * , %n β UZD # φ ΞΞΞ Rel (u, φ)))) where φ is any formula
which has no free variables except xlf * ,xn.

By ScmZMμ(u) we mean that u is a standard complete model of an
axiom system like ZMΛ only that in ZMμ μ is taken as a parameter.
Thus ScmZMv(u) is a formula with the two free variables μ and u.

By replacing A by A + 1 in Theorem 5 we obtain easily that MΛ+1

is equivalent to the schemata

(3 a) {a is hyper-inaccessible of type A .

(x19 •••,&«) (xlf - *,xn e R(a) ID . ψ ΞΞ Rel(α),

1 0 The hyper-inaccessible numbers of type 1 correspond to the βo-numbers of Mahlo
[4]. The hyper-inaccessible numbers of type λ correspond to the members of the range of
πΛ)o,λ of Mahlo [4].
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a n d

( 3 u) (ScmZMΛ(u) . (x19 •••,&„) (x19 -- ,xn e uz) . φ = Re\(R(a), φ))).

Now we shall see that the same relation which holds between ZF
and ZM, and between ZMΛ and ZMΛ+1 holds also between S and ZF.

THEOREM 6. In S the axiom schema of replacement in conjunction
with the axiom of infinity is equivalent to the schema

NQ (3 u) (Scms (u) . (x19 , a?n) (xlf •••,&„ e u z> .φ = Re\(u, φ)))

where φ is a formula which does not contain free variables

except xlf •••, xn.

Proof. That No is provable in ZF is Montague's theorem proved
in [7] and it is proved by the same method as the corresponding part
of Theorem 3.

Now we assume No and prove the axioms of infinity and replace-
ment. ByJV0, taking any φ, we obtain (3%) Scms(u). This u obviously
satisfies the requirements of the axiom of infinity. Now, given φ(v, w)
with the only free variables v, w,x19 , xn let χ denote the formula

(r, s, t) (φ(r, s) . <p(r, t): Z) s = ί) 3 (3 y) (w) (w e y =
(JV)(V 6 X . φ (v, W)))

By iVo we have, as in Theorem 2, that there exists a set u such that
Scms(u) and

(12) X19 , Xn, V, W 6 U ZD . φ = Rel (u, φ)

(13) Xlf , Xn9 V 6 U Z) . (jw)φ = Rel (%, (3 w) φ)

(14) a?χ, , xn, x e u D . χ = Rel (u9 χ)

(15) (a?!, , xn) (x) χ = Rel (u9 (x19 •••,»„) (a?) χ)

Since Rel (^,(3 w) 9>) is (3 w) (w e u . Rel (w, ^)) we have by (12) and
(13) x19 , xn9 v e u Z) . (3w)(w e u . φ) = ( 3 w) φ h e n c e if ( r , s9 t9)

(φ(r9 s) . φ(r, t): Z) s = ί) then for a? e w, since Scms(u) implies that
then x cz ^, the function represented by ^(^, w) maps the members of
x on members of u9 and therefore, by the axiom of subsets, that
function maps x on some set y. Thus we have x19 , xn9 x e u ZD χ and
by (14) x19 •••, xnfx 6 u Z) Rel(w, χ); but the closure of the latter
formula is Rel(u,(x19 , &n) (&)z) a n ( i hence, by (15), we have χ.

By Theorem 6 we can view the axiom schemata M and MΛ as
natural continuations of the axioms of infinity and replacement. There-
fore, although the consistency of ZF does not imply, even in ZM (if ZM
is consistent), the consistency of ZM, it seems likely that if in the
sequence S, ZF9 ZM, ZM2J no inconsistency is introduced in the
first step, from S to ZF, also no inconsistency is introduced in the
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further steps.
In the following definitions and statements we essentially follow

Montague in [7].
Let the theory Q be an extension of the theory P. Let φ be any

sentence of Q. P + {ψ} denotes the theory obtained from P by adding
to it φ as a new axiom. Con (P + {φ}) is the arithmetic sentence which
asserts the consistency of P + {φ}. Q is called essentially reflexive
over P if for every sentence φ of Q ψ ZD Con (P + {φ}) is a theorem of
Q. Q is called an essentially infinite extension of P if no consistent
extension of Q without new symbols is obtained from P by adding to
it a finite number of axioms. If Q is essentially reflexive over P then
Q is an essentially infinite extension of P. By the same argument as
that of Montague in [7] each of the theories S. ZF, ZM, is essenti-
ally reflexive over the preceding ones.

L e t E R ( a ) = {<xy} xey . x , y e R ( a ) } , A Λ = ζ R ( a ) , E E ( Λ ) > . M o n t a g u e
and Vaught proved in [8] that if β < a and R(a) is an arithmetical
extension of R(β) (i.e., for any formula φ with no free variables except
xu •••,#„

(x19 . . , xn) (x19 , an e R(β) D . Rel (β(α), Ψ) = Rel (R(β), Ψ)))

then both AΛ and Aβ are models of ZF (in the sense of models of the
type S4 of Tarski [16]). n

THEOREM 7. If AΛ and Aβ are as mentioned above and β is
inaccessible then both AΛ and AB are models of ZM. If β is hyper-
inaccessible of type A then both AΛ and Aβ are models of ZMΛ+1.

The proof that Aa is a model as required is exactly like the second
part of the proof of Theorem 3. Aβ is also a model as required since
if ψ holds in Aa it holds in Aβ.

Another aspect of the phenomena discovered by Montague and
Vaught in [7] and [8] is the following theorem:

THEOREM 8. Let Sb be a theory with the same language and axioms
as S with the additional set-constant b and the additional axioms

(16) Scms(b)
(17) (xlf •••, xn)(x19 •••, xn 6 ί ) D . φ ΞΞΞ Rel (6, φ)) where ψ is any

formula of S without free variables except x19 •••, xn.
The theorems of Sb which do not contain the constant b are exactly the

1 1 This and the following Theorem 7 can be read in two different ways. Either we
take the theorems and proofs informally, in which case all the notions retain their verbal
meaning; or that the theorems are taken to be formal theorems of S and then the notions
of model and arithmetical extension are formal notions defined by means of the formal
notion of satisfaction, which is given,, for example, in Mostowski [11].
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theorems of ZF the theorems of Sb + {ScmZF(b)} which do not contain
b are exactly the theorems of ZM and the theorems of Sb + {(μ){μ <
A D ScmZMμ-(b))} which do not contain b are exactly the theorems of
ZMΛ {the theorems of Sb + {ScmZMΛ (&)} which do not contain b are
exactly the theorems of ZMA+1).

Proof. Every theorem of ZF is provable in Sb since Sb contains
the axioms of S and all the instances of No are obviously provable in
Sb. Now let the sentence χ be a theorem of Sb which dees not contain
b. Let 0(6) be the conjunction of all the instances of (16) and (17) used
in the proof of χ. By the deduction theorem 0(6) ID χ is provable from
the axioms of S, hence (3 u) 0 (u) z> χ is provable in S. But Montague's
theorem (Theorem 6) (3 u) 0 (u) is a theorem of ZF, hence χ is provable
in ZF.

The other statements of Theorem 8 follow in the same way from
Theorems 3 and 5.

We see, by Theorem 8, that even though in the sequence ZF, ZM,
ZM2, each theory is an essentially infinite extension of all the
preceding ones we can get a corresponding sequence Sb, Sb + {ScmZF

(6)}, Sb + {ScmZM (b)}, in which the theories which are ' ' almost the
same" as the respective theories in the former sequence, and in which
all the theories are obtained from the first one by the addition of
respective single axioms.

5. Peculiar behavior of models* We shall now see examples illus-
trating the inadequacy for general use of the notion of standard model
introduced in § 2. In our examples we shall use a formal satisfaction
definition. The idea of using the formalized notion of satisfaction in
these problems and the special way in which that notion is given here
are due to Mostowski.12 Our notations will be those of Mostowski [10].

Our first example will be an axiomatic representation ZF* of ZF
which has no standard model.

Let Φn be the wth formula in a given Gόdelization of ZF. Given
the functional variable p(i,f) we shall construct a formula Ψ(p) which
asserts that p(i,f) is a satisfaction definition.

p(i,f) is a satisfaction definition if the following holds for every
finite number i and every finite sequence of sets / :

(a) If Φt is the formula xk = x3 or xk e x3 then p{i,f) if and only
if D(f) = {k, j} and f(k) =f(j) or f(k) e f(j), respectively.

(b) If Φi=ΦJ\ Φh then
p{i,f) = : D(f) = 8t.~ P(j,flsj) V - P(h,flsh).

(c) If Φt = (3 xJΦj and xm is free in Φ5 then p(i,f) = : D(f) = st

.(3β)3>(ί»/+ {<™α>}) I f %™ is not free in Φ5 then p(i,/) = p(j,f).

I2 By oral communication,
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This inductive definition can be replaced by an explicit one in the
usual method and thus we get the required formula Ψ(p) which asserts
that p is a definition of satisfaction.

Now substitute for p in Ψ(p) any formula φ of ZF. Assume Ψ{φ),
then by the usual methods, e,g., those of Mostowski [10] pp. 114-115,
we obtain a truth definition for ZF in ZF and we arrive at the Tarski
contradiction. Thus we have proved in ZF ~ Ψ{φ) for any φ of ZF.
Therefore we can add the axiom schema

~ Ψ(φ) for any φ

to ZF without changing the theory and we call the new array of
axioms ZF*. The sets u and e form a standard model of ZF* if
SmZF (u,e) and there exists no subset v of u of ordered pairs <i/> such
that the formula obtained from the relativization of Ψ{p) to the model
by substituting <i/> ε v for p(i,f) holds. But form SmZF (u, e) it is
easy to prove (in S) the existence of such a subset v of u, e.g., by
the methods of Mostowski [11]. Hence ZF* has no standard model.
In other words, ~ Ψ(p) is a true statement of set theory if p varies
over the relations expressible in the set theory itself, but ~ Ψ(p) is not
a true statement if p varies over all the relations.

We shall now sketch briefly a second example. This will be a theory
T which contains all the theorems of ZF, but has more standard com-
plete models than ZF.

Mostowski defines in [10] when a class F of ordered pairs <i/> is
called an S-sequence for the formula Φ5. This definition can be formulated
without class variables, except F. Therefore, using the analogy between
classes and functional variables, we can define, using only set variables
beside py when the functional variable p{ί,f) is an S-sequence for Φj.
Let Stf(u,i,f) be a formula which asserts that the finite sequence of
sets / satisfies Φ% in the complete model u (for the existence of such a
formula cf. Mostowski [11]). We consider the following formula Ω(p)
p is an S-sequence for Φ% ID (3 u) (Scms (u) # (/) (/ is a finite sequence
of sets whose range is in u 3 # p(i,f) = Stf(u, i,f))). If we add to S
the schema Ω(φ) where φ is any formula of S then we get a theory
T which is an extension of ZF since all the instance of No are provable
in T (to prove the instance of No corresponding to the formula φ with
Gόdel-number % we write down an S-sequence χ for Φt — this can be done
by Mostowski [10] Σ4 — and Ω(χ) implies xlf , xn e WD .<p = Rel (u, <p)).
We shall now see that every standard complete model of ZF is a stand-
ard complete model of T but there are standard complete models of T
with universes of smaller cardinality than that of and standard complete
model of ZF. That every standard complete model of ZF is a standard
complete model of T is the formal counterpart of Montague's theorem
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(that the axioms of infinity and replacement imply No). Now let τ be
the first inaccessible number. By Montague and Vaught [8] there exists
an ordinal number a < τ such that R(a) is the union of the sets defin-
able in the model AT and in conseqence Aτ is an arithmetical extension
of Aa. In exactly the same way we can prove that there exists an
ordinal β a < β < τ such that R(β) is the union of all the sets definable
in the model AT by means of the new constant a, and in consequence
Aτ is also an arithmetical extension of Aβ. Hence, by Theorem 1.8 of
[17], Aβ is an arithmetical extension of AΛ. It is easily seen that Aβ

is a standard model of T, where u required in the schema Ω{φ) is
always taken to be R(a).
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ON CERTAIN SINGULAR INTEGRALS

BENJAMIN MUCKENHOUPT

1. Introduction. The purpose of this paper is to consider a modi-
fication of the Hubert transform and the singular integrals treated by
Calderon and Zygmund in [1] and [3], and to use the results to gener-
alize some standard results on fractional integration. In the one dimen-
sional case the Hubert transform of a function f(x) is essentially the

integral \
J-o

~' dt. In the one dimensional case the transform to
t 1 . . 1

be considered will be a convolution with . l l+. • instead of with —.
\t\ Ύ t

Throughout this paper γ will denote a real number not zero. As in the
Hubert transform case there is trouble with the definition; for the
Hubert transform this is solved by taking a Cauchy value at the origin.
The obvious extension of this method was used by Thorin [6] when he
considered a transform of the type

Here and subsequently ε will always be greater than 0 and the limits
in ε will be one sided. In this case, however, obtaining cancellation by
taking a Cauchy value is unnecessary; the kernel already has sufficient

ίL——Ldt will not,
ε t γ

in general, exist, but by using some suitable summation procedure, it
may be given meaning. Starting with two such methods, it is shown
that this transform has the usual singular integral properties. Specifi-
cally, for functions in a Lebesgue Lp class 1 < p < oo, it is shown
that the summation procedure converges in Lp and that the resulting
transformation is bounded in ZΛ For p = 1 substitute results are ob-
tained. Furthermore, for functions in Lp, 1 < p < ™, the summation
procedure is shown to converge point wise almost everywhere.

Carried along simultaneously with the preceding is the n dimension-
al extension of the sort considered by Calderon and Zygmund for the
Hubert transform. In Euclidean n space, En, let x = (xlf x2 xn),
x I = (χ\ + . . . χiyl and dx = dxx dxn. The transforms to be con-

sidered are of the form

B» \t\U*
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where Ω(t) = Ω(JTT) is integrable on the unit sphere, and the integral

in the neighborhood of the origin is again defined by a suitable summa-
tion method. In this case, unlike the Calderόn and Zygmund results,
the integral of Ω(t) on the unit sphere need not be zero. Again for
functions in Lp, 1 < p < oo, the summation procedure converges in Lp,
point wise almost everywhere, and the resulting transformation is bounded
in ZΛ Substitute results for L1 including pointwise convergence are
also proved although for some it must be assumed that Ω(t) satisfies a
continuity condition. The method used to obtain all these results is
first to reduce the summation definition to one more closely resembling
the Cauchy value definition of ordinary singular integrals. After this,
lemmas similar to some lemmas in [1] make the methods of [1] and [3]
applicable to these transformations.

In the last section the preceding results and an interpolation theo-
rem of Stein [4] are used to prove the following theorem.

Let p, q, and λ be positive numbers such that 1 < p < q < co and

— = h λ. Let f(x) be in Lp in En and let Ω(t) = ΩI-ΓΓJ) be in Ls,

p q V I £ I /

s = —, on the unit sphere. Then the integral

exists for almost all x and | |D λ (/) | | β < A| |/ | |p where A is independent
off.

For Ω(t) = 1 this is a well known theorem on fractional integrals.
See for example [5]. Substitute results are also obtained for p = 1 and
q =: oo using the proof for the weaker results in [8].

2, Summation. A summation method for the integral lim I f(x) dx
ε-*o Jε

of the form lim I φz{a)da\ f(x) dx is a regular method if
ε-0 Jo Jα

lim I \φz{a)\da = 0 for a > 0, lim \ φz(a) da = 1 and I \φε(a)\da < B .
ε-*o ja ε->o Jo Jo

LEMMA 1. If lim I f(x)dx exists, then any regular method of sum-
ε->0 Jε

mation will give the same limit.
This is a standard fact about these summation methods.

LEMMA 2. If I f{x, y) dy converges in Lp norm to g(x) as e —• 0
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and has a uniformly bounded Lp norm, then any regular summation
method will also converge to g(x) in Lp norm.

\φJa)\da and C a bound for I f(x,y)dy\\ .
o IJJε UP

Then given rj > 0, choose β so that

6B

f or δ < β and 7 so that

and

- 1
3C

provided that ε < 7. The existence of β and 7 follows from the hypo-
theses of the lemma.

II f1 f1 II
If ε < 7, then \\g{x) - \ φ,(a)da\ f(x, y)dy\\

II Jo jcύ UP

51 / ri \

φs(a)( g(x) — I f{xJy)dy)da
β \ ) * J

+ Γ!?>.(«)l|U*) - [f(x,y)dy\\ da
Jβ II J * UP

by use of Minkowski's inequality and Minkowski's integral inequality.

Observing that | |#O)IIP is also less than or equal to C, this last ex-

pression is clearly less than or equal to

η was arbitrary, the lemma follows.

+ j ^ + ~£j2C = r]. Since

* Definitions of the transform* To give meaning to the integral

it may be written as
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where the first integral must be obtained by using a suitable method
of summation. For this purpose logarithmic Abel summation defined by

()
J o ε-*o J o

or logarithmic Cesaro summation defined by

(S)[g(t)dt = lim ί W
Jo ε-»o Jε logε

may be used. Both are regular methods for they may be written as

lim \ φζ(a)da\ g(t)dt
3-K) Jo J Λ

where φs(a) — εa2'1 in the case of logarithmic Abel summation and

f——!— ε < a < 1

' 0 0 < a<ε

for logarithmic Cesaro summation. That these satisfy the necessary
conditions is clear from their forms.

In either case f(x) may be written as

-dtdt
t1+ty

^VfW fW [-/(* - *) dt.t1^ iy Ji t1+iy

By the first lemma the existence of this expression can be shown by
proving the existence of

Therefore, showing the convergence almost everywhere of the expression

Γ V(χ - t) d t

Ji t1 + ίy
o J t • ίj

( 3 Λ )

t1+iy ίy

will imply convergence almost everywhere for the original definition of

f(x). Furthermore, by Lemma 2 the convergence in Lp norm of (3.1)

will imply the convergence in Lp norm of the original definition of
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Convergence in L2 norπu Define

, and let

elsewhere

Λ,β(s) = Γ
J-°

Then the transform of f(x) defined before, f(x) = limlim/yt8(α0 if this
ε—o N-*o°

last limit exists. Now if f(x)εL2, it is possible to take Fourier transforms
and obtain

%y

where g(x) denotes the Fourier transform of g(x).
A 1

LEMMA 3. The expression KN Λx) —:—^- is in absolute value less
tyeιy

than c(y) = C-- ', ,—i- where C is an absolute constant. As M—+co

m
the expression converges to a function Kz(x) except for x = 0. Fur-

thermore, as e—>0,Kζ(x) converges to a function K(x) except for x = 0.
A 1

From its definition KN2(x) -.—Ty is equal to
%ys

N\x\ piίsgnx β-iy

dt — .
t1+ίy iyεiy J ε i x i

Now

(4. i ) Γ'6 $ilTY

g dt = β U s g n ^ 1 + , y Γ + 1 + %Ί Γ-

and

Cb pit sgnx pit sgnx b QQ TΊ γC^

(4.z) \ at :==- -\~ \ •
)a t1+iy —iytiy a y )a

If necessary, split the integral

fJV|»| pit

dt

into two parts, the first with limits less than or equal to one, and the
second with limits greater than or equal to one. Then applying (4.2)
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to the first part and (4.1) to the second part, it is clear that the whole

integral is in absolute value less than C ^ γ ' + * for some absolute con-

stant C.

Using (4.1), it is clear that

A 1 / f l s,it sgnx

lim KN 2(x) - ~J— = I x H i dt + lim

+ lim l

1+ίy sgn x

N\x\

isgnα Ji t2+iy

and the two limits certainly exist. From this and (4.2) it follows that

A Γ / eUs%ΏX λ f1

lim Kζ(x) — lim | x \ίy( — : — - + 1
ε-+o ε^o L \ —iytιy εla l J ε |

pU sgn x

ί sgn x

l

The limit of the integral clearly exists. The lower limit on the first
integrated part and the last term combined give

n i i i \JU\ y — — 7 ^ — j — — — 7 ^ — i n n — — \ v — L) — \) .

It follows that

Λ A / ^gίsgnx Λrtίsgnx Γl

K{x) = l i m Ks(x) = I x \ίy( 1 h I -
β-o V y S g n ί C Jô v

+ l +

pU8gnx

sgnx

COROLLARY 1. If f(x) belongs to L\ then the transformation

2. As ε-0,

fs(x) converges in L2 norm to a function f(x) which also satisfies

/ Λ 1 \ Λ A

The expression lKN>ζ(x)—-.—^)f(x) converges in L2 norm to Kζ(x)f(x)
because the first part of the product converges boundedly. Con-
sequently, taking Fourier transforms, fNt2{x) converges in L2 norm to
fζ(x). Similarly, since Ks(x) f(x) converges in U norm, the Fourier
transform, fz(x), converges in L2 norm to a function f(x). The state-
ments concerning the norms follow immediately from the estimate in
Lemma 3.

For later proofs there is a more convenient form for K{x). Adding
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the identity

0 = - 1^1" +

 l'rAirί'-iseΏX 1

iy

f1

Jo

to (4.3) gives

A
(4.4) ^γ L Jo

ie ίsgn:B sgn x + ±±J1A 1 dt .
i sgn^Ji t2+ιΫ J

Now for |γ | < 1 the expression in brackets is uniformly bounded. This
is obvious for the last two terms. Furthermore,

t~iΊ - 57

0

t'iudn
|logί|

so that the first integral is also uniformly bounded. This leads to the
following.

COROLLARY 2. The transform = lim-M
|t |>3 \t\

\<γ\ < 1, satisfies ||jPy(aj)||2 < A||/(α?)||2 where A is independent of γ and
f. As γ —> 0, Fy(x) converges in L2 to the ordinary Hilbert transform
of f{x).

Fy(x) may be written in the form

lim
t1+ίy

iyε
iy

f(x)

Now observing that

it is clear that

5 -8 βixt CN

-dt ~ \
fii(-x)t

dt,

= -(^W - K(-x))f\x) .
TV \ J

From (4.4) it is clear that Kix) — Ki — x) is bounded uniformly in y
since the unbounded terms cancel. Letting y —»0 in (4.4) then gives

]im(k(x)-K(-x))
γ-»o

cos^= -2 ί sgn #Γlog * cos tdt + 2ί sgn x cos 1 + —f°°_co
Jo ίsgna Ji t

dt
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/ f ̂  sin t \= 2i sgn xί lim I dt ) = πi sgn x .

Therefore,

lim Fy(x) = i/(aj) sgn a? .

The Fourier transform of the Hubert transform of f(x) may be
written as

JLlim lim (I - dt)f(x) = if(x) sgn x .

Thus, the two transforms are the same.

5* The JV dimensional case. Most of the important results for
the n dimensional case can be obtained from one dimensional results
quite simply by the method of rotation which is treated in §8. Rota-
tion methods, however, fail in certain cases, and for these a direct ap-
proach must be used. This will be similar to the one dimensional
methods and is actually just a generalization of them.

In n dimensions the transforms will be of the form

\t\
f(x) = [ fi^jmidt where Ω(t) -

is a function only of angle and is integrable on the unit sphere, Σ.
The part of the integral for which 0 < 11 \ < 1 is obtained by using the
same summation methods as before. The same reasoning shows that
the existence of

(5.1) lim JK*-«w> dt^JΛ±>_\ Ω(t)dσ

where dσ is the element of " a r e a " of the unit sphere, implies the ex-
istence of the original definition. The convergence in norm implies the
convergence in norm of the original definition.

In n dimensions define
rΛ/j.\

e<\t\<N

elsewhere .

LEMMA 4. The expression KNt2(x) — —=— -̂i Ω{t)dσ is in absolute

vvlue less than c(γ) = C '̂ ^ .—M \Ω(t)\dσ where C is an absolute
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constant. As ΛΓ—• <χ> the expression converges to a function Kz{x) except
for x = 0. Furthermore, as ε —+ 0, Ks(x) converges to a function K{x)
except for x — 0.

Let θ be the angle between x and t. Then using polar coordinates

(5.2)
v ' Γ /{N oir\x\ cos0

= iΩvdσ(ίJh^-dr-
The inner expression is the same at the one dimensional Fourier trans-
form except that x has been replaced by |x|cos0. Hence by Lemma

3 it is in absolute value less than C^^\ ,— -̂. The convergence as
MY

N-+00, and ε—>0 follow from this. Applying Holder's inequality then
shows these conclusions hold for the whole expression.

COROLLARY 3. If f(x) belongs to L2, the transform

f{x - t)Ω(t)
>* \t\n+iy

satisfies ||/8(a?)||2 < c(γ)||/(a?)||2. As ε-^>0,fs(x) converges in L2 norm to
a function f(x) which also satisfies ||/(a?)||2 < c(<γ)\\f(x)\\2.

The existence almost everywhere of fz(x) follows from the reason-
ing of [3] p. 292. The result then follows from Lemma 4 in the same
way that Corollary 1 followed from Lemma 3.

COROLLARY 4. If I Ω(t)dσ = 0 and Ω(t) belongs to L log + L on Σ,

then the transform Fy(x) = lim I m»+«? dt for \ γ | < 1 satisfies
^ ε->o J |t|^β I M

||ULγ(αj)||2 < i4.||/(ί»)||2 where A is independent of γ and f. As γ—* 0,
F(x) converges in L2 to the ordinary Calderon and Zygmund singular
integral lim ί /(a - *)fl(<) Λt%

Using the one dimensional formula (4.4) in (5.2) shows that

(5.3) K{x) = \ Ω(t)(~~\χco*θ\iy)dσ + [ Ω(t)H(\x\ cos θ, γ) da

where ΈH\x\ COS61, γ) is uniformly bounded in both arguments. The
first term may be written as

I Ω(t)dσ = 0.since I Ω(t)da = 0. Now
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log I cos θI 1 i\cosθ\iudu
Jo < log

I c o s 6> I

and since Ω(t) belongs to L log+ L on Σ, an application of Young's in-
equality1 shows that the first part of (5.3) is also uniformly bounded.
Convergence follows from the pointwise convergence of the expressions
in the integral signs and the bounded convergence theorem. The first
part converges to 0 and the second part as in Corollary 2 converges to

i πi sgn (cos θ)Ω{t) dσ. That the Fourier transform in the case of the

ordinary singular integral converges to the same value follows by ex-
pressing the transform in polar coordinates and again applying the re-
asoning of Corollary 2.

6, Convergence in norm. Let βf(y) = sup | S | where all sets S

such that I f(x)dx > \S\y are considered. Further, given a function
JS

Ω(x) of the type considered in the last section, let ω(r) be its modulus
of continuity; that is ω(r) = sup | Ω(x) — Ω(y) | where x and y both lie
on the unit sphere and \x — y\ < r.

LEMMA 5. Let f(x) be non negative and belong to Lp, 1 < p < 2,

in En. Let Ω(t) = Ωi-r—r) be such that its modulus of continuity satis-
\ 11\ J

fies I ω(r' dr < oo. Let Ey be the set where

(6Λ) ^ = L w ^ f i x -t)dt - i^lm dσ

exceeds y in absolute value. Then \Ey\ < ^p-\ n[f(x)]2

ydx + c(<γ)βf(y),

y J E

where [f(x)]y = min(f(x), y) and c(y) = —'' y y"— -̂ where C depends

only on Ω.

Note. The primary use of this lemma will be for the one dimen-
sional case where the continuity condition is automatically satisfied and
the constant C is an absolute constant.

This lemma is the same as Lemma 2, Chapter I of [1] except that
the transform

has been replaced by (6.1) and λ by 1/ε. The proof is almost identical,
and therefore will not be repeated. The few minor differences will be

See [7] Vol. I, p.'HΘ.
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mentioned.
When f(x) is split into the two parts g(x) and h(x), the proof for

the one in L2, h(x), is a consequence of Corollary 3. The proof that

satisfies

«•> = L ^ * ' " t ) Λ

[\k(x)\dx<c\ \g(x)\dx

is the same except where the expression for the difference of the
kernels is obtained. The principal difference there is that the expression

arises instead of

mn ι**ι-
However, using the fact that

the same inequality can be obtained. Now

so that

\_,19*{x) \dx = L, I k(x) \dx < c\ I g(x) \ dx .
jDr

y jD'y jDy

From this point the proofs are again identical. Following the details
closely also shows that the constants are of the desired form.

From this result Theorems 1 through 7 of Chapter I of [1] follow
immediately, either with the same proofs or with minor modifications.
In some cases where only norms are concerned it is more convenient to
carry through the proof for

and then to add in the other term for which the theorems are obviously
true. Lemma 5 is also obviously valid for just this term of the
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transform. Thus, for example, the following are true.

THEOREM 1. Let fix) belong to Lp, 1 < p < oo, in En. Then with
the continuity condition on Ω of Lemma 5, the function fζ{%) of (6.1)
also belongs to ZΛ Furthermore, ||/8(ίc)||, < c(γ, p)\\f(x)\\p where c(γ, p) =

C i L —^~r and C depends only on Ω.
\Ύ\(P - 1)

The form of c(γ, p) can be obtained by using the reasoning of the
remark on page 99 of [1], following the constants through the proof,
and using the fact that for

THEOREM 2. Let f(x) be a function such that

Then with the continuity condition of Ω of Lemma 5 /ε(#) is integrable
over any set S of finite measure and

\Mx)\dx < c(ry)\ Jf(x)\dx
S jEn

(X) log

where c(γ) = C"^', ,—^ and C depends only on Ω.
m

THEOREM 3. Let f be integrable in En and Ω satisfy the continuity
condition of Lemma 5. Then if S is a set of finite measure,

\ lΛ(aOΓ-"cto<^|S|*(ί n\f(x)\dxTa

Js a \jEn /

where c is a constant independent of a, S, e and /.

THEOREM 4. Let μ(x) be a mass-distribution, that is a completely
additive function of Borel set in En, and suppose that the total varia-
tion V of μ in En is finite. Let μ\x) denote the derivative of μ(x)
which exists almost everywhere. Then if Ω satisfies the continuity
condition of Lemma band if

dμ(x - t) - 4MS Ω(t) da ,

over every set S of finite measure
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a

THEOREM 5. Let f(x) belong to Lp, 1 < p < co, and let Ω satisfy
the continuity condition of Lemma 5. Then fs(x) converges in the
mean of order p as ε —»0 to a function f(x).

From this last theorem it follows by use of Lemma 2 that the
original summation definition of f(x) also converges in Lp norm if / is
in Lp and 1 < p < oo.

7 Pointwise convergence*

THEOREM 6. If f{x) belongs to Lp, 1 < p < co, then fξ(x) converges
almost everywhere to a function f(x) as ε —»0. Moreover, the function
sup \f,(x)\ belongs to Lp and ||sup |/έ(x)|||p < c 11/(35)11,, c being a constant

ε ε

which depends on p, γ, and Ω only.
The proof is similar to that of Theorem 1, Chapter II of [1], Define

1^7 ι ι * .
0 \x\ < ε .

Let H(x) be non negative, zero outside the unit sphere, have continu-

ous first derivatives, and have \ H(x)dx = 1. Denote by f(x) the limit
JEn

in norm of fs(x) and define

By the lemmas in Chapter II of [1], fs(x) converges almost everywhere
to/(x) and ||sup/.(a?)||, < c| |/(α)| |, < c\\f(x)\\p. As in [1] every con-

ε

stant not depending on / will be denoted by c simply.
Using the fact that fs(x) converges in norm to f(x),

l(x) = lim \ LH(^L=±)\\ f(t - v)Kλ{v) dv

Ω(w)dw\dt .J

This may be considered as the difference of two integrals and written
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Making the substitutions t—x—u+v in the first integral and t—x~u
in the second gives

f(x-u{\ J^±H oij h JJ

= lim ί f(x - u)
λo j w

\ Jψ-H
LJi^i^ε ε

— Ω
du .

Since !?(#) is diίferentiable, the limit may be taken inside the integral
signs to give

= ί j(χ - u) \
jEn LJ

\v\<e Sn

where K(v) = KQ(v).
Now it is also true that

ϊ(x)=\ f(x-uf\ J^H

since the integral I H(x)dx = 1. For |%| > 3ε it is clear that
jEn

If . K ^ f f / u = v \ d υ _ Γ ^ M i ϊ
| j £ ? w ε w \ e / J B W ε w

\u\»

As before ω is the modulus of continuity of Ω and c is independent of
ε. The last inequality for | Kε(v) — Ks(u) \ is the one used in the proof
of Lemma 5 it is valid here because | u — v \ < ε when the integrand
is not zero.

For \u\ < 3ε it is clear that both

if Z&
\ ) E

n ξ,n a n d
If *&LH
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are less than or equal to

253

μ
Here %(0,5) is the characteristic function of the interval (0, 5).

Similarly

<c\\ E^
UnKβ εn

Combining all of these results

cω\ cε

ΰ
\u\n

n

du

^γ L εnjEn \ ε •

From this the lemmas of the second chapter of [1] give

Then since lim fs(x) = f(x) almost everywhere and
^ ε-»Ό ε

and /s—>/ in mean of order p> the theorem follows

THEOREM 7. Let μ(x) be a mass distribution, that is, a completely
additive function of Borel set in En and suppose that the total varia-
tion V of μ(x) in En is finite. Then the expression

fε(x) = f
J

-t)- Mf
; lye*)

Q ,

where μ\x) is the derivative of μ(x) where this exists, has a limit f
almost everywhere as ε tends to zero, and over every set S of finite

measure \ \f(x)\ι-«dx K^-IS^V1-".
J s CX

This corresponds to Theorem 2, Chapter II of [2]. The proof is the
same except that Theorem 6 is used to obtain the convergence of the
integral involving g(x).

Other theorems. With this basis all the basic theorems in [2]
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and [3] can easily be shown to have their analogues for transforms of
the type considered here. The periodic and discrete cases can be done
simply; in the discrete case the subtracted term even disappears.

The rotation method as presented in [3] can also be applied in this
case but the proof is much simpler. The method that applies only to
odd kernels in the ordinary case applies to all kernels in this case. To
illustrate this the following important theorem is given.

THEOREM 8. Let f(x) belong to Lp,l < p < oo, in En. Let Ω(t) =

be merely integrable on the unit sphere Σ. Then if

f9(x) = ( JWLf(x _ t)dt - I@L[ Q(t)dσ ,

it satisfies

where C depends only on Ω. As ε —* 0, fs(x) converges in Lv norm to

a function f(x). Furthermore, ||sup |/β(a?)|||p < C||/(OJ)||P where c is in-

dependent of f, and fζ(x) converges almost everywhere to f(x) as e -^ 0.

That fs(x) exists almost everywhere is shown on page 292 of [3].
Let the norm symbol || \\p apply to the variable x. To write the

integrals in polar coordinates let t = rV, V on the unit sphere. Then

/(3 - t)dt -
^γε^

Using Minkowski's integral inequality this is less than or equal to

Using the one dimensional version of theorem 6 on the inner integral
by first integrating x parallel to V and then over the space of such
lines gives

||sup l/toHl, <

The inequality for ||/ε(#)IU follows using the same method and the one
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dimensional version of Theorem 1. The rest of the proof is the same

as that of Theorem 3 of [3] once convergence for continuously differ-

entiable / vanishing outside a bounded set is shown. Writing fs{x) as

f(χ-t)-f(χ)Ω{t)dt

|ί|"*

+ . J^-t)o{t)dt_m_[Ω
d t

\t\n+iy iη

shows clearly that it converges point wise in this case.

9 Transforms of fractional integral type.2

DEFINITION. Tz{f) = c^ns(t)[^jf(x - t)dt for 0 < R(z) < 1,

f /θ(t)V f
T2{f) ^ cz lim s(t)(ίm f(x - t)dt - — T ^

ε - > o j ι t ι ^ ε \ \ t \ n J (nz — ri)εnz~n

for R(z) = 1 and z Φ 1, and Tt{f) = —-f(x)\ s(t)θ(t)dσ, where c2 =
n j 2

-β- sxr> o° is taken as 0, θ(t) = ̂ (TTΓ ) > 0 is integrable on the unit

v̂  ~~ Δ) \ IίI /

sphere 21, s(ί) = si-jrj j has absolute value one, and R(z) denotes the

real part of z.

To obtain the principal theorem of this section a theorem of Stein
[4] p. 483 will be used. For this purpose it will be necessary to show
that the operators Tz as defined above satisfy the conditions of this
theorem. Using the terminology of [4], the following lemma may be
proved.

LEMMA 6. Consider the set Tz as a family of operators from
functions in En that are zero off the sphere \x\ < D to functions in
En. The set Tz is then an analytic family of operators of admissible
growth in the strip 0 < R(z) < 1. For a simple function φ in the

given set, the inequalities \\T1+iyφ\\p < - C p \\φ\\p for 1 < p < <», and

II TiyφWn < IIφ\\x hold where C depends only on θ(t) and not on D.
Throughout the proof φ and ψ will be simple non negative functions

and M the maximum of φ. Since any simple function can be written
as the difference of two such functions, it will be sufficient to prove
the assertions for these. The lemma will be proved in parts as indicated.

a. Simple functions in the given set are transformed into measurable
functions for 0 < R(x) < 1. For R(z) = 1 this follows from the preced-

2 The method of this section was suggested by A. P. Calderon.
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ing sections. To consider the case 0 < R(z) < 1, let r = \t| and ί' = ί/|t|.
Then changing to polar coordinates

(9.1) T,(φ) = c^it'mt'Wdσ^f^-Jp dr .

Using this,

I TZ(Ψ)\ <

where A is the greater of \x\ — D and 0 and B = |x\ + D. Both in-
tegrals are obviously finite so that Tzφ exists. The measurability follows
from the Fubini theorem.

b. If R(z) = 1 and 1 > ε > l/3w, then \Ta-B(g>)\ is bounded by a
constant that is independent of z and ε. For ε = 1

\Tz^(φ)\< \ Jφ(x-t)\dt

and is obviously bounded. For 1 > ε >

by use of Holder's inequality. The second integral is certainly bounded.
Writing the first integral in polar coordinates shows that it is in abso-
lute value less than

>Mdr

so that it too is bounded. Since the exponents are between 0 and 1
the whole expression is bounded.

c. If R(z) = 1 and l/3n > ε > \I(z)\, where I(z) denotes the im-
aginary part of z, then | Tz-Z{φ) \ is bounded by a constant that is in-
dependent of z and ε. Using polar coordinates,

< 2e\

n

nε

θ(t'))dσ .
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d. If R{z) = 1, ε < \I(z)\ and ε < Ij2n, then the integral

is uniformly bounded. For z φ 1 it converges to 0 as ε approaches 0.

The integral of (9.2) is clearly dominated by ( 2(1 + e(t)) φ(x _t)dt

ht\>ι | £ | w - i

which is finite. Since cz-s is bounded, the expression (9.2) is bounded;
convergence follows from the dominated convergence theorem.

e. If R(z) = 1, ε < \I(z)\ and ε < Ij2n, then the integral

(9.3) czSnea^da\ *(*X W ^ * ~ *) dt .
J J \t\nz

has uniformly bounded L2 norm. For 2 Φ 1 it converges in L2 to Ts(<p)
as ε approaches 0.

As before, let the norm symbol || ||2 apply to the variable x. Then
changing to polar coordinates the L2 norm of (9.3) is

^ ||

Then applying Minkowski's integral inequality twice shows that this is
less than or equal to

Using Corollary 1 and performing the integration of x first over lines
parallel to V and then over the space of such lines shows that the whole
expression is bounded by

C ( 1 + | ^ | g ) | a ) ^ 1 + θ(t'))dσ .i + g ( O ) ^ | ^ |

To prove the convergence consider the expression

(9.4)

This converges in U norm to Tz(φ) by Corollary 3 and Lemma 2 since
its limit is the Abel summation definition of Tz(φ) written in polar co-
ordinates. The reasoning used above to show that (9.3) had bounded
U norm can be applied to the difference of (9.3) and (9.4). This shows
that the L2 norm of the difference is less than or equal to
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and this converges to 0 as ε approaches 0. Consequently, (9.3) converges
tθ T9(φ).

f. F(z) = [ψTz(φ)dx is analytic in 0 < R(z) < 1. For 1 - R(z) >

\I(z)\ or 1 — R(z) > 1/3% this follows immediately from the majorizing
expressions for Tz{φ) in parts b and c. Since Tz(φ) is a uniformly con-
vergent integral of an analytic function in these cases, Tz(φ) and hence
F(z) are analytic. For 1 — R(z) < \I(z)\ and 1 — R(z) < Iβn observe
that Tz{φ) is the sum of (9.2) and (9.3). By the same reasoning as in
the other case, the integral of the product of ψ with either (9.2) or
(9.3) is analytic. Therefore, the sum of these parts, F(z), is analytic.

g. F(z) = \ψTz(φ)dx is continuous on R(z) = 1. By its definition

Tz(φ) is the product of cz and the transformation of the previous sec-
tions where s(t)(θ(t))z has replaced Ω(t) and (nz — n)li has replaced γ.
Using Fourier transforms then gives fz(φ) = czKzφ where Kz is the
function K of Lemma 4 with γ = (nz—n)\i, provided that z Φ 1. Using
the expression (4.4) in (5.2) gives an expression for czKz. Its form shows
that czKz is uniformly bounded in x and z. Furthermore, for 0 < a <
x < b < oo, it is also clear that czKz is continuous in z, uniformly in x.

I f Λ

Both statements remain valid if ——I s(t)θ(t)dσ is used for c ^ . Using
A A n J2

this, it is also clear that T1{φ)—c1K1φ-
Now let z be a complex number with R(z) = 1, and let ε > 0 be

arbitrary. Choose real numbers a and b so that if S consists of points
in En whose distance from the origin lies between a and 6, and Sf is
the complement of iS in £?w, then

<

Let w be another complex number with R(w) — 1. Then

t fwφ\\2\F(z) -F(w)\<
<
s l l f l l

£11*11

H 11*11

II T
211 J-

•(L
•(L

zΨ

φ* dx Y sup

ixψ sup |
/ xes

czKz - cwίtu

The first part is less than ε/2 and the second part approaches O a s w
approaches z. This shows the desired continuity.

h. F(z) is continuous and bounded on 0 < R(z) < 1. From parts
b through e it is clear that F(z) is uniformly bounded in 0 < R(z) < 1
and \im F(z — ε) = F(z) for R{z) = 1 and zφl. These facts, together

with the analyticity and continuity on R(z) = 1, give the desired con-
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tinuity and boundedness.

x and \\T1+iyφ\\p < A-V-—\\<p\\p,l< p < ™ ,
p — 1

where y is real and A depends only on θ(t) and not on D or φ. The first
is trivial. The second follows from Theorem 8 since (1 + l2/|a)|c1+iy|/|2/| is
bounded.

This completes the proof of the lemma.

THEOREM 9. Let p, q, and X be positive numbers such that

1 < P < q < co and — = — - λ. Let f be in Lp on En and Ω(t) =
q p

J-J) be in L s, s = ^ —, on the unit sphere. Then the integral

exists for almost all x and

where C depends only on Ω.
Applying the theorem of Stein [4] p. 483 to the Tz with px = 1,

Qi = °°, Ί>2 = Q2 = ^(1 — λ), JS; = 1 — λ gives for simple £>,

Now let ^(ί) = |β(t) | i- λ , and s(t) = sgnβ(ί). Then dividing the above
inequality by cx_λ gives

Now if Ω > 0 all the integrands are positive. Given an arbitrary posi-
tive function / in Lp, take a sequence of simple functions φn that
vanish off bounded sets and converge in Lp norm to /. Then taking
the limit in the inequality above gives

p —
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From this Dλ{f) exists almost everywhere. In the case where / and Ω
are not positive the integrand of Dλ(f) is majorized by a positive func-
tion that does satisfy the desired inequality. This completes the proof.

It is known that the usual fractional integration theorem and, as a
result, Theorem 9 fail for the cases p = 1 and q = oo. Zygmund [8]
p. 605-6 proved substitute results for the usual fractional integral case,
and these results can be extended to the present case. The proof of
Theorem 10 is an adaptation of the corresponding proof in [8].

THEOREM 10. Let p = 1/λ be a positive number greater than 1.
Let f be in Lp on En, vanish off a bounded set R and \\f\\v < 1. Let

Ω(t) = Ω(TTT) be in L% s = ^ -- on the unit sphere. Then the ex-
pression Dλ{f) exists for almost all x. Furthermore, if Φ(x) =
eχS — xs — 1, there exist constants a and A, independent of f and R,
such that

En
Φ{a\Dk{f)\) < A\R\ .

n

Using Theorem 9

n\

yJL
\n/ nn \ns
) ( — ) \\f\\ns

— λ) 2 / V λ / n2 n! V (n — 1)(1 — λ) 2 / V λ

where pn = -, ™ , N . Now using t h e fact t h a t ( - r ^ Λ \f\vr ί n "
l — λ + Xn \ \ KI j R J

creases with p shows that the preceding sum is less than or equal to
Σ (<aSD^n \R\\\f\\n

p

s where D is a constant independent of n,f, and R.
2 n l

Then using the fact that | | / | | p < 1 and Stirling's formula shows that
for as = l/(2βD) the series converges to a constant A.

THEOREM 11. Let q = 1/(1 — λ) be a positive number, 1 < q < oo.
Let Ψ{x) = (1 + x)[log (1 + x)f~λ and f be a function in En such that

[ Ψ(\f\) is finite. Let Ω(t) = Ωf^λ be in Ls, s = 1/(1 - λ) on the unit
jEn \ I ί I /

sphere. Then the expression Dλ(f) exists for almost all x, and over
any set R oj finite measure

^ < A(\R\ + \R¥(\f\))

where A is independent of f and R.
By differentiating it is clear that Ψ{x) is greater than the function
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conjugate to Φ(x) = eχS — xs — 1 in the sense of Young.3 Consequently,
for real positive numbers b and d, bd < Φ(b) + Ψ(d) by Young's inequ-
ality. Now consider a function g in Lp, p = 1/λ, vanishing outside R
and with \\g\\p < 1. Then using Theorem 10

If nDλ(g)f < - [ a\Dλ(g)\\f\<±(\ nΦ(a\Dk(g)\))+ \ Ψ{\f\)

<λfA\R\ + \ J(\f\)).

However, by interchanging the order of integration

IL^I = I W>
Since g is an arbitrary function in Lp on R, the least upper bound for

l-Dλ(/)lβ) by the converse of Holder's inequality.
R /

Therefore §\D>tf)\ψ < -^- +
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ON THE STABILITY OF BOUNDARY COMPONENTS

KOTARO OlKAWA

I. PRESENTATION OF THE PROBLEM

l Definitions

1Φ A boundary component of a plane region Z > c ( | ^ | ^ o o ) i s a
component of the boundary ΘD of D, i.e., a connected subset of dD
which is not a proper subset of any connected subset of dD.

There is an alternate definition. Let {Ωn}n=i be a sequence of
subregions of D such that

( i ) Ωx D Ω2 Z) ,

( i i) the relative boundary dΩn Π D consists of one closed analytic
curve in D,

(iii) fln=i ®n = Φ Two sequences {Ωn} and {Ω'n} are said to be
equivalent if, for any n, there exists m such that Ωm c Ω'n and Ω'm c Ωn.
A boundary component of Z> is an equivalence class of {Ωn}.

These two definitions are equivalent in the following sense:

( i ) Given a sequence {£?„}, the set Γ\n=iΩn is a component of dD
and, for two sequences, these sets coincide if and only if the sequences
are equivalent.

(ii) Given a component Γ of 3D, there exists a sequence such that

Γ = n~=l ®n-
For a boundary component Γ, the sequence { β j such that Γ = f\"alΩn

is called a defining sequence of Γ.

Let w — /(#) be a topological mapping of D onto a plane region D'.
Then we can immediately see from the second definition that / gives a
one-to-one correspondence between the boundary components of D and
D'. We shall speak of the image of a boundary component Γ under f
in this sense and denote it by f(Γ).

2. Let Dc denote the complement of D with respect to the extended
plane | z | <£ oo. For a boundary component Γ, there exists a uniquely
determined component of Dc whose boundary coincides with Γ. We call
it the component of Dc corresponding to Γ and denote it by /**.

If D does not contain the point 3 = 0 0 , the boundary component Γ

Received January 7, 1959. The present paper is a part of the author's doctoral dis-
sertation submitted to the University of California, Los Angeles. The author wishes to
express his heartiest gratitude to Professor Leo Sario for his guidance and encouragement
during the preparation of this paper.
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such that oo e Γ* is called the outer boundary of D.

3. We call a region D a circular (or radial) slit disk if 0 e ΰ ,
D c (\z\ < R <oo), the outer boundary is | 2 | — i?, and every other
boundary component is either a point or an arc on | z | = const, (or a
line segment on arg z = const.).

2 The stability problem of boundary components*

4. Let Z) be a plane region and let Γ be a boundary component.
Sario [16, 17] gave the following classification:

(a) If f(Γ) is a point for every univalent function w = f(z) on D,
then Γ is said to be weak.

(b) If /(Γ) is a continuum, i.e., a connected closed set containing
more than one point, for every /, then Γ is said to be strong.

(c) If Γ is neither weak nor strong, it is said to be unstable.
Weak boundary components were first investigated by Grotzsch in

connection with the so-called "Kreisnormierungsproblem" (Grotzsch
[7] see also Denneberg [5] and Strebel [21]). He called them vollkom-
men punktformig. Regions of class OSB = OSD introduced by Ahlfors and
Beurling [2] coincide with those possessing merely weak boundary com-
ponents. Sario [16] has generalized the concept weak boundary com-
ponents for open Riemann surfaces. It has been discussed also by Savage
[19] and Jurchescu [10].

We are now lead to the following natural problems:

PROBLEM A. Given a boundary component consisting of a single
point, determine whether it is weak or unstable.

PROBLEM B. Given a boundary component consisting of a continuum,
determine whether it is strong or unstable.

We shall attempt to obtain concrete tests with practical applicability.

3. Related extremal problems*

5. Let D be a region containing the point z = 0. Let S3 be the
family consisting of all functions w = φ(z) which are regular and
univalent in D — {0}, and have the expansion \\z + cz + near z = 0.

Consider, with Grotzsch [6], the diameter of the image φ(Γ) of the
boundary component Γ. It is quite easy to see that Γ is weak if and
only if sup̂ gςg diam φ(Γ) = 0, and Γ is strong if inf^e^diam φ{Γ) > 0.

6. Let gr be the family consisting of functions w — f(z) such that
( i ) regular and univalent in D,
(ii) /(0) = 0 and/'(0) = l,
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(iii) f(Γ) is the outer boundary of f(D).
Rengel [14] introduced the following functionals on g Γ :

M(f) = max [ w | = sup \f(z) | ,
wef(r) zeD

m(f) = min
Jϋ6/(D

and considered the quantities

and

-~r(Γ: D) = mϊ

From the definition we have immediately the basic

THEOREM 1. Γ is strong if R(Γ) <oo. Γ is weak if and only if
r(Γ) =00.

These criteria are equivalent to those in No. 5, since

R{Γ) = 2/inf diam φ(Γ) ,
<peS8

r(Γ) — 4/sup diam φ(Γ) .
<pe<>8

In fact, for an arbitrary function f(z) a %Γ, the functions

and

ψf(z) =

belong to 93, and

^ 2/diam

^ 4/diam φf(Γ) .

On the other hand, for φ(z) e 93, let F(^) be the function which maps
(ψ(ΓY)c conformally onto the exterior of a disk with the center at the
origin. Assume further that F(w) — w + c + c'\w + near w=oo.
Then fφ(z) = IIF o φ(z) e %Γ and

2/diam φ(Γ) ^ M(fφ) = m(/y) ^ 4/diam
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The proof of the above equalities is hereby complete.

7. Whether or not R(Γ) <oo is necessary for strength is still an
open problem. We shall discuss this problem in No. 24.

We shall see in No. 17 that lir(Γ) equals the "capacity" of the
boundary component Γ introduced by Sario [16] (it is not necessarily
equal to the logarithmic capacity of the closed set Γ), and, therefore,
that the latter half of Theorem 1 is equivalent to Sario's result ([17],
Theorem 6). Jurchescu [10] showed that the "capacity" coincides with
the "perimeter" introduced by Ahlfors and Beurling [2],

It will be shown in No. 22 that R(Γ) coincides with the quantity
which Strebel [22] called "extremal Durchmesser''. Finally, Theorem 4
in No. 21 shows that the first half of the above theorem coincides with
Sario's result ([17], Theorem 4).

II. PRELIMINARIES

In this chapter, we collect a number of known results which will
be needed later.

4 Extremal length,

8, A curve γ considered here is either a closed rectifiable curve or
a curve of the form z = z(t) (0 < t < 1) every subarc of which is
rectifiable. If limt^oz(t) or lim^zOO exists, it is called an end point.

Let D be a reginon and let {7} be a family of curves γ c f l , Let
{p} be the collection of functions p which are ^ 0 and lower semi-con-
tinuous in D. With the understanding that 0/0 = 00/00 = 0, take

(mί\
λ{7}-sup V y

11 p2dxdy

It is called the extremal length of {7} (Ahlfors and Beurling [2], Ahlfors
and Sario [3]).

9. The following properties (I)-(V) are well known; for the proofs
the reader is referred to, e.g., Hersch [8]1:

( I ) λ{7} is independent of the choice of D.
(II) λ{7} is conformally invariant.
(III) λ{7'} ^ λ{7} if every 7 contains a 7'.
(IV) For {7i} and {72}, assume the existence of disjoint regions Dλ

and D2 such that 7V c Dv (v = 1, 2). If, for any 7 of the third family
1 His definition is different from ours, but his proofs remain valid.
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{7}, there exist rγ1 and γ2 such that ^ U 72 c 7, then

λ{7i} + λ{γ2} ^

(V) Let {Yi} and {γ2} be the same as above. If {γj U {72} c {7},
then

λ{72} λ{7}

(VI) (Hersch [8]1). For three families with {7} = {7i} U {72},

λ{7} λ{7χ} λ{72}

(VIII) Let {7i} be the subfamily of {7} consisting of 7 having both
end points and such that z(t) (0 ^ t ^ 1) is rectifiable. Then λ{7} = λ{7j.

In fact, since the extremal length of {72} = {7} — {7i} is infinite,
(VI) shows that λ{7i} ^ λ{7}, and λ{7} ^ λ{7j by (III).

(VIII) For a curve 7 : z = z(t) (0 < t < 1), let 7 be the curve
z = z(t) (0 < t < 1). If 2(0) = limc^0 z(£) exists and is real, put 7 =
7 U 7 U {#(0)}. Let {70} be a family of curves which are contained in
the upper half-plane and have the end points 2(0) on the real axis. Let
{7} be a family which contains all 70 and 7. Furthermore it is assumed
that, for any 7, there exist 70 and 7S in {70} such that y0 U 7o c 7.
Then

λ{7} = 2λ{70} .

In fact, to define λ{7}, we may restrict {p} to the subfamily con-

sisting of functions symmetric about the real axis. Since 2 infy I 0 ds =

infγ\ pds for such p, we conclude that λ{7} = 2λ{70}

(IX) Let A be the annulus 1 < | z \ < q or a region obtained by
deleting a finite number of circular slits from this annulus. Let {7} be
the family of all closed rectifiable curves in A separating | z \ = 1 from
1 2 I = ?. Then λ{7} = 2πj\og q. This is true even if each 7 is restricted
to a concentric circle in A.

The proof is found, e.g., in Hersch [8]1.

10. Let D be a region, and let Eo and Ex be compact sets such
that E; Π D Φ φ (v = 0, 1). Let {7} be the family consisting of 7:

2 = 2(ί) (0 < t < 1) such that 7 c A Πε>o{^); 0 < ί < ε} c J£o, and
Πε>oMO; 1 — ε < ί < 1} c Ex. Then λ{7} is called the extremal distance
δD(E0, EJ between Eo and Ex with respect to D.

By (VII), 8D(E0, Ex) coincides with the extremal length of the family
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of rectifiable curves in D whose end points are on EQ and E1 respectively.
Under a certain restriction of the configuration, it is also equal to that
of a subfamily consisting of analytic curves (Wolontis [25]).

From this consideration, we get
(X) If no point of Eλ is accessible from D by a rectifiable curve,

then δD{EQ, Eλ) = oo.

(XI) (Pfluger [12]1). If cap Eλ = 0, then δD(E0, E1) = <χ>. For
D = (I z I - 1), Eo = (\z I - ε < 1), and Ex c (| z | = 1), δ ^ , ^ ) = oo
if and only if cap Eλ = 0.

Combining (VI), (X), and (XI), we get
(X') If no point on Elf except for a set of capacity zero, is acces-

sible from D by a rectifiable curve, then 8D(E09 EJ = oo.

(XII) Let D, Eo, and E1 be contained in the closed upper half-plane.

Let ί) be the region which is the union of D, the reflection of D across

the real axis, and the part of ΘD on the real axis. Let EQ and Eι have

analogous meanings. If δ£>(E0, Eλ) is expressed in terms of the extremal

length of a family consisting of analytic curves2, then

Proof. Let 8&(E0, Eλ) = λ{7} where 7 is an analytic curve and let
8D(E0, £Ί) = λ{7'}. Using the notation in (VII), we see immediately
that {7'} and {7'} are contained in {7}. Since λ{7'} =λ{7'}, we find,
on applying (V), that λ{7} S λ{7'}/2.

In order to prove the inequality in the opposite direction, we first
remark that, to define λ{7}, we may restrict p to a function symmetric
about the real axis. For a curve 7 : z = z(t) (0 < t < 1), let 7* be

_ ί«(«) if 3*(t) ̂  0

^W) if %z(t) ^ 0 .

Evidently \ pds = I # ds for a symmetric p.
)y J y

Since it is assumed that 7 is an analytic curve, 7* intersects the
real axis at only a finite number of points zlf z2, , zk. Let Δv be the
punctured disk 0 < | z - z, | < r (v = 1, 2, . . . , fc), where r is taken so
small that the Δv are mutually disjoint. The extremal length of the
family of curves in Δy separating zv from | z — zv \ = r is, by (IX), equal
to infinite. Therefore, for arbitrary ε > 0 and p, there exists a closed

curve 7v c J v encircling sv and such that I pds < e/A?. On replacing a

part of 7* Π 4., by a part of yv(v = 1, 2, •••, &), we obtain from 7* a
2 This restriction is satisfied in our subsequent applications. It is perhaps superfluous.

However, the author has not succeeded in furnishing the proof without it.
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curve 7' belonging to the family {7'} and such that 1 pds — ε < I pds.
Jr JY

Since 7 and ε are arbitrary, we get infγ, I p ds fg infγ \ /> ds for every

symmetric />. Since 11A/?2 cted?/ = 2 \ \ P2 dxdy, we conclude that λ{γ'} <̂

}2λ{γ}.
(XIII) Let A be the annulus 1 < | z | < q or a region obtained by

deleting a finite number of radial slits from this annulus. Let Eo =
(I z I = 1) and Eλ = (| 3 | = g). Then S ^ , £Ί) - (log g)/2ττ, and it is also
equal to the extremal length of the family of all radials from Eo to Eλ

in A.
For the proof, the reader is referred to, e.g., Strebel [20].

5* Teichtnϋller's extremal region*

11. Let D be a doubly connected region and let {7} be the family
of all closed rectifiable curves in D separating the boundary components.
The quantity 2π/λ{7} is called the modulus of D and is denoted by mod D.
As is well known, D can be mapped conformally onto an annulus
1 < I z I < q where log q = mod D.

For P > 0, the doubly connected region

DP = {[-1, 0] U [P, co]}'

where the brackets express a closed interval on the real axis, is called
Teichmύller's extremal region. It has the following extremal property
(Teichmϋller [23]): Let D be a doubly connected region such that one
component of Dc contains the point z = 0 as well as a point on | z \ — 1
and the other contains the point z = CXD as well as a point on | z | = P.
Then mod D <; mod DP and the equality holds if and only if D is a
region obtained by rotating DP about the origin.

12. It was proved by Teichmiiller [23] that Ψ(P) = exp (mod DP) is
a continuous function of P such that

(1) i ^

It is easy to see that

( 2) log ψ(-) = — £ .

VP/ \og¥(P)
On combining (1) and (2), we have

(3) logξp (P) ^ — f o r P — 0
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13 The following result will be used later:

LEMMA 1. Let

A = (l<\z\<q),

and

EΘ = {z; \z\ = q, \sirgz\ ^ θ} .

Then

8A(Γ, tf,)~i-logl for 0 - 0 .

Proof. δA(Γ, E) is equal to the extremal length λ{γ} where {γ}
is the family of all analytic curves in A connecting Γ with Eθ (cf.
Wolontis [25]). By (VIII) and (XIII), it is equal to 8Q(E'θ9 E'θ')j4: where

Q = (1/? < I s | < g) Π ( 3 * > 0) ,

and

Ei'= {z; \z\ = q, 0 ^ arg * ^ θ} .

Map Q onto the upper half-plane in such a way that llq and q correspond
to 0 and 1, respectively. Let — a and 1 + β {a, β > 0) be the images
of eίθ\q and qe*\ respectively. It is not difficult to see that

ϊ for θ — 0

[β ~ ĉ 6>2

where c and cf are constants independent of θ. The region obtained by
deleting the intervals [— oo, — α], [0,1], and [1 + β, oo] from the
extended plane is conformally equivalent to Teichmuller's extremal region
with

p = <*β
l

c (Θ0) .
a + β

Therefore, on applying (VIII) again, we get SΛ(Γ, Eθ) = ττ/(4 log Ψ{P))
and, by (3),

δΛ(Γ, Eθ) - - ^ - I o g 4 ^ — log-ί for 0 - 0 .
47Γ P π θ



ON THE STABILITY OF BOUNDARY COMPONENTS 271

6* Koebe's distortion theorem*

14* The following is a slight modification of the original form of
Koebe's well-known distortion theorem, which will be used frequently:

Let φ(z) be a function which is univalent and regular in \ z | < ε0

with φ(0) = 0 and φ'(0) = 1. Then there are numbers a(e) and b(e)
which are independent of ψ and have the properties that

a(e) ^ I φ(z) I ̂  b(ε) on \ z | = ε <ε 0

and

«ί! l = Mm .*(!). = 1 .
ε-»o £ ε-»0 S

In fact, we may take α(ε) = εεg/(ε + ε0)
2 and b(ε) = εεg/(ε — ε0)

2.

7 Quasi'conformal mappings*

15 In Chapters IV and V, we shall make use of quasi-conformal
mappings to illustrate our results by examples. As in the type problem
of Riemann surfaces, they are utilized to replace a given region by a
simpler one.

A sense-preserving topological mapping w = T(z) of a region D onto
another is said to be quasi-conformal if there exists a finite number K
such that mod T(Q) ^ K mod Q for any quadrilateral Q c D (Ahlfors
[1]). Here, mod Q of a quadrilateral Q means the extremal distance
between two opposite sides of Q. The minimum value of K is called
the maximal dilatation of T.

For the proofs of the following properties (I)—(III), the reader is
referred to Ahlfors [1]:

( I ) If T is quasi-conformal of maximal dilatation K, then
mod T(A) ^ K mod A for any doubly connected region A a D.

(II) Let E be a set which is contained in a finite number of ana-
lytic arcs. Let D be a region containing E, and let T be a topological
mapping of D which is quasi-conformal in D — E. Then it is quasi-
conformal in D with the same maximal dilatation.

(III) If T is a topological mapping of class C\ then the maximal
dilatation is given by K = sup,e2) (| Tz\ + | Tz |)/(| Γ, | - | Γs |) where Γ,
and 2> are complex derivatives.

(IV) Let {γ} be a family of curves in D. Let Γ be a quasi-
conformal mapping of class C1 with the maximal dilatation K. Then

λ{Γ(γ)} S

The proof is found in Hersch [9]1.



272 KOTARO OIKAWA

REMARK. Even if T is not of class C1 throughout D, this inequality
holds under, e.g., the following restriction: T is of C1 in D except for
a countable number of analytic arcs clustering nowhere in D, i.e., every
point of D has a neighborhood intersecting at most a finite number of
the arcs, and every γ is the union of a countable number of analytic
arcs clustering nowhere in D. This generalization will be needed in
No. 35.

III. CIRCULAR AND RADIAL SLIT DISKS

8 Circular slit disks*

16 Let D be a plane region containing the point z = 0, and let Γ
be a boundary component. The problem of minimizing M(f) in %F for
a region of finite connectivity has been discussed by Rengel [14]. To
consider it for a region of arbitrary connectivity, in particular to show
the uniqueness of the minimizing function, Sario [16] introduced the
functional

=( log|/|.darg/
JdD

Here the line integral means lim^oo \ log | /1 d arg / for an exhaus-

tion Dn ] D\ the limiting value exists and is independent of the exhaus-
tion. He proved the existence of a function g0 such that

M(g0) =

and

2π log M(g0) = J(f) - D(\og \ f \ - log | g01)

for all /eg/-, where the second term means the Dirichlet integral over
D. Evidently g0 is the unique function which minimizes J(f).

From these relations we can derive the following facts (Sario [16]):
( I ) There exists a function g0 e %F such that M(go)=mmfe%Γ Λf(/) =

r(Γ). If r(Γ) < cx5, the minimizing function is determined uniquely.
It maps D onto a circular slit disk \ w \ < r(Γ), where the area of
slits, i.e., gQ(dD — Γ)*, vanishes,

(II) Let QeDn } D be an exhaustion and let Γn be the component
of dDn separating Dn from Γ. Then

r(Γ) = Km r(Γn).
n-*oo

If r{Γ) < co, the sequence {gn} of the minimizing functions on Dn

converges to g0 uniformly on each compact set in D.
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17 By making use of this result, we can express r(Γ) in terms of
extremal length. Let ε0 be a small number such that | z | ^ ε0 is con-
tained in D. For 0 < ε < ε0, the numbers α(ε) and b(e) were defined in
No. 14. The following theorem has been proved, in essence, by Jurchescu
[10]:

THEOREM 2. Let {γ}ε be the family of all closed curves in Dε =
D — (I z I ̂  ε) which separate Γ from the point z = 0. Then

l o g

b(ε)

ami, therefore,
log r(Γ) - lim (log s +

o V
im (log s + ^

The result remains valid if the γ are restricted to analytic curves.

Proof. Consider the metric given by p = | g[ | /1 g01. Since the area

of the circular slits is zero, li p2 dxdy ^ 2π log (r(F)/α(ε)). Therefore,

λ {7} ε ^ (2π)2/2τr log (r(Γ)/α(ε)) .

To prove the left inequality, take an exhaustion Dn ] D and consider
the family {γj ε of all closed curves yn in Dn — (| z \ ̂  ε) separating Γw

from z — 0. Since Z>w is of finite connectivity, the proposition (IX),
No. 9, shows that 2τr/λ{γJε ^ log (r(Γn)/δ(ε)). When we take the limit
for n —> 00, we have by virtue of the relation λ {γ} ε <̂  λ {yn} ε that

18 The following criterion for weakness due to Grotzsch [7] will
be useful in the next chapter:

THEOREM 3. In order that Γ be weak, it is necessary and sufficient
that, for an arbitrary positive number I, there exist a finite number
of doubly connected regions Alf A29 Ak in D — (| z \ ̂  ε) satisfying
the following conditions:

(i ) The Av are mutually disjoint,
(ii) A, separates Γ from (| z | ^ ε) (v — 1, 2, , k) and separates

Λ,-! from A,+1 (v = 2, 3, , k - 1),
(iii)



274 KOTARO OIKAWA

Proof. Sufficiency: By (V), No. 9, and by Theorem 2, l^
Σϊ^mod A, ^ 2ττ/λ{γ}ε ^ log (r(Γ)/(ε)). Therefore, r(Γ) = oo and, by
Theorem 1, Γ is weak.

Necessity: Take an exhaustion (| z | <̂  ε) c Dx c D2 c a Dn a
• I D and consider the extremal function gw on Dw. By Koebe's distor-
tion theorem, No. 14, the image of | z | = ε is contained in α(ε)^ 1w | ^δ(ε),
so that the set &(ε) < | w | < r(Γw) minus the circular slits is contained
in the image of Dn — (| z | ^ ε). From the annulus δ(ε) < | w \ < r(Γn),
delete all the concentric circles containing the circular slits. Then we
get a finite number of concentric annuli A[, A2, , AJ. such that
Σ?=imod A[ = log (r(ΓJ/6(ε)). Since r(Γ) = limn_*«, r(Γw) = ω, we can
take n so large that the right hand side is greater than the given I.
The inverse images Alf A2, , Ak of A[f A2, , Â  are what we
desired.

REMARK. We see from this theorem that the weakness of Γ depends
merely on the configuration of dD near I. Furthermore, by (I), No. 15,
the weakness is invariant under quasi-conformal mappings.

9 Radial slit disks for special regions •

19 Unlike the case of the functional M(f), the function maximiz-
ing m(f) does not exist in general; by slightly modifying the example
given by Strebel [20], we get a region on which m(f) < R(Γ) = sup / eg r

m(f) for a l l / e g Γ .
Under a restriction, however, we get a result analogous to that of

No. 15. Let G be a region containing the point z = 0 and such that a
component Γ of dG consists of a closed analytic curve which is isolated,
i.e., dG — Γ Π Γ = φ. Let §IΓ be the subfamily of g r consisting of all
functions with M(f) = m(/). On this family Sario [17, 18] introduced
the functional

l(f) - 2π log m(f) - \ log | /1 . d arg/
JΐlD-Γ

and proved the existence of a function f0 e ?ίΓ such that

( 4 ) 2π log m(/0) - /(/) + D(\og \ f \ - log | f01)

for all /eSI^. Evidently f0 is the unique maximizing function of /(/)
in Sir.

We can derive from this relation the following facts (Sario [18]),
which have been obtained by Rengel [14] for a region G of finite con-
nectivity :
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( I ) R{Γ) is finite. f0 is the unique function maximizing m(f) in
2I7.. It maps G onto a radial slit disc \w\< R(Γ), where the area of
slits, i.e., /0 (dG — Γ)*, vanishes.

(II) Let {Gn} be a sequence of regions such that 0 e Gn } G and dGn

consists of Γ and a finite number of closed analytic curves. Then

R(Γ; G) = \imR(Γn; Gn)

and the sequence {fn} of the maximizing functions on Gn converges to
/0 uniformly on each compact set in G U /τ.

20 Let {γ}ε be the family of rectiίiable curves which connect
I z I = ε with Z1 in G — (| z | ^ ε). In a method similar to the proof of
Theorem 2 we can obtain the following relations:

g b(ε) J
(5) R(Γ} ^

α(ε)

(6 ) log R(Γ) = lim (log ε + 2π\ {j} ε) .

Here {γ}ε can be replaced by the subfamily of analytic curves.

lO Characterizations of R(Γ).

21. Let D be an arbitrary region containing the point z = 0. Let
{βn}n-i be a defining sequence of Γ such that 0^ Ωn (n = 1, 2, •).
Then Gw = D — Ωn is a region and its boundary component Γn — dGn Π dΩn

satisfies the condition of No. 19.

THEOREM 4. {R(Γn, Gn)}ζ=1 is an increasing sequence and R{Γ) =
Gn).

Proof. {R(Γn; Gn)} is an increasing sequence by (6).
For an arbitrary ε > 0, there exists an f(z) e g r such that m(f) >

R(Γ) — εl2. Then there exists an nQ such that the m of this f(z) on Gn

(we denote it by mn(f)) has the property that mn(f) > m(f) — ε/2
whenever n>,n0. Therefore, R(Γn; Gn) ̂  mn(f) > R(Γ) — ε and

Next, let An be the doubly connected region bounded by Γn and Γ.
Then .Γ is an isolated boundary component of the region Gn — Gn[jAn\jΓn.
Γ is not necessarily a closed analytic curve, but from the result of
No. 19 we can see the existence of the function fn(z) in g r of Gn such
that m(/J = R(Γ; Gn). Evidently fn(z) belongs to g Γ of D. By (6),
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R(Γn; Gn)£R(Γ; Gn). Consequently, R(Γn; Gn) £ R(Γ; Gn) = m(fn) £
R{Γ) and limw_i2(Γ; Gn) k R(Γ).

This reasoning remains valid for the case where R(Γ) = oo.

REMARK. Combining Theorem 4 with Theorem 1, we see that
l i m ^ R(Γn Gn) < CΌ implies the strength of Γ. This fact was proved
by Sario [17].

22. Let {γ}ε be the family of curves γ : z — z(t) (0 < t < 1) in

D - (1 z 1 ^ ε) such that Πβ>o {*(«); 0 < £ < ε} c (| z | = ε) and Γlε>o

1 — ε < ί < 1} a Γ. Let {γj ε be the corresponding family in Gn,
Strebel [22] has proved the relation λ{γ}3 = lim^oo λ{γj ε. On combin-
ing this with (5), (6), and Theorem 4, we have

THEOREM 5.

log
α(ε)

log R(Γ) = lim (log ε + 2τrλ{γ}ε) .

Here γ can be restricted to the curve which is the union of a countable
number of analytic arcs which cluster nowhere in D (cf. No. 15,
Remark).

REMARK. The exponential of the right hand side of the second
relation was called "extremal Durchmesser" by Strebel [22]. On combin-
ing Theorem 5 with Theorem 1, or directly from (XI), No. 10, we see
that X{y}s < °° implies the strength of Γ. This result was generalized
for open Riemann surfaces by Constantinescu [4].

23* For an exhaustion Dn \ D in the ordinary sense, it has not been
proved whether \\mn^R{Γn\ Dn) exists or not. We obtain merely the
following

THEOREM 6. Let Δ be a region such that Oe Δ, ΔcD, and bounded
by a finite number of closed analytic curves. Denote by ΓΔ the com-
ponent of dΔ which separates Δ from Γ. Then

R(Γ) = lπnR(Γd; Δ) ,
Δ-*D

where the right hand side is a directed limit.

Proof. For ε > 0, there exists by Theorem 4 an ti such that
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R(Γ)-ε<R(Γn; Gn). By Theorem 5 R(Γn; Gn) ^ R(Γ,; A) for any
J D Γ . U {0}. Therefore, R(Γ) ^ l i n w R(ΓΔ; A). On the other hand,
for ε > 0 and a compact set K a D, take an n0 such that K c GnQ.
There exists, by (II), No. 19, a A c Gno such that i2(Γ^; Λ) c #(ΓWo; GWo) + ε,
and, therefore, R(ΓA;A) < R{Γ) + ε. Consequently limΔ^i2(Γ4; A)£

REMARK. On combining Theorem 6 with Theorem 1 we see that
KmΔ̂ D R{ΓΔ A) < co implies the strength of /\ Sario [18] has shown
that Γ is strong if lunΔ_DR{ΓΔ A) < co.

l l Unsolved problems.

24* As we pointed out in No. 7, the following problem has not
been solved:

(1) Is R(Γ) < oo necessary for the strength of Γ ?
Since the maximizing function of m(f) in %F, or equivalently the

minimizing function of diam φ(Γ) in S3, does not exist in general, the
case is different from that of a weak boundary component. The example
of Strebel [20] stated in No. 19 is for R(Γ) > oo, and it does not answer
this question.

Let {Gn}n=i be the sequence introduced in No. 21 and let fn(z) be
the extremal function on Gn. Since {/„}"„i is a normal family, we may
assume that/ n converges to a univalent function f(z). One can imagine
that, if R(Γ) = oo, then f(Γ) would be a point. However, we can only
prove that f(Γ) consists of the point w = oo and possibly of radial
segments emanating from it whose arguments form a set of measure
zero (Strebel [22]). Such line segments appear in our Example 10, Nos.
39, 40. Nevertheless the boundary component of this example is unstable,
because we can map it onto a region such that f(Γ) is a point and
f(ΘD — Γ) consists of circles (No. 39).

We have several other unsolved problems as follows:
(2) Is strength a boundary property?
(3) Is 1S^R(Γ Δ ; A) equal to l i m . ^ ^ Λ ; z/)?
(4) Is strength preserved under quasi-conformal mappings?

IV. CRITERIA FOR WEAKNESS AND INSTABILITY

In this chapter we consider Problem A presented in No. 4. Several
sufficient conditions for weakness have been obtained by Savage [19].
Here we shall consider some special regions and attempt to get more
concrete necessary or sufficient conditions.
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12 Boundary on the positive real axis*

25. Let {αw}~=1 and {δw}^=0 be sequences of positive numbers such
that

1 <K-1^an<bn (w = l , 2, . . . ) ,

l i m an = CXD .
n-*oo

Denote by [α, 6] the closed interval on the real axis. Then

is a region and Γ — {oo} is its boundary component. The present sec-
tion is devoted to discussing the following problem: When is Γ weak
and when is it unstable*!

26. THEOREM 7. (i) / /

( 7 )

then Γ is weak.

(ϋ) //

(8) lim h. = l

(MUZ

(9) Σ ^ <oo
""'log i

ίfce^ Γ is unstable.

Proof, (i) Consider the annuli An = (an < j z \ < bn) (n = 1, 2, .).

Since Σ m o ( i ^ . w = Σl°£(δn/#n) = °°> Theorem 3 shows that Γ is weak.
(ii) Let A19 A2, •••, Afc be doubly connected regions satisfying the

conditions (i) and (ii) of Theorem 3. For any AV9 there exists an n such
that Av passes through the open interval (an9 bn) and a component of
Av contains 0 as well as an. The region

D(n) = {[0, an] U [bn, α,]}c

is conformally equivalent to Teichmϋller's extremal region with P =
{bnlan) — 1. By the extremal property of D(n), No. 11, the sum of the

3 If \imn->oo bn/an > 1, then Γ is weak by (i), Theorem 7
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moduli of all such Av does not exceed mod D(n) = log Ψ((bjan) — 1).

(10) Σ m o d Av ^ Σ log ψβ± - ί) .
v-i n-1 \an J

By (3), No. 12,

π2

log jpY** -

log-

Therefore, the right hand side of (10) converges and, by Theorem 3, Γ
is unstable.

EXAMPLE 1. an = 2n+ 1, bn = 2n + 2. Evidently (7) diverges so
that Γ is weak.

EXAMPLE 2. an = n*, bn = nk + 1 (k > 1). Since (7) converges and
(9) diverges, we cannot decide by Theorem 7 (see also No. 27).

EXAMPLE 3. an — en, bn — en + 1. Similarly, we cannot decide (see
also No. 27).

EXAMPLE 4. an = en<*, bn — en<* + 1 (a > 1). JΠ is unstable by (ii).

27* We derive another criterion applicable to Examples 2 and 3.
To this end, we first prove

LEMMA 2. For the doubly connected region

Ah = ( 1 < I z \< q) - [1 + h, q)

where h > 0 and q is fixed,

mod Ah ~ for h-»0 .

2 1 o g |
h

Proof. By (VIII), No. 9, mod Ah = 4π/λ{γ} where {γ} is the family
of rectifiable curves in Q = Ah Π (ί$z > 0) joining [— q, — 1] with
[1, 1 + h]. Map Q conformally onto the upper half-plane in such a
manner that —q, — 1 , 1 correspond to — oo, — 1 , 0, respectively. The
image P of 1 + h has the property that

P~ch2 for h->0

where c is a constant independent of h. From (VIII), No. 9, we con-
clude that
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mod Ah = log Ψ{P) ^ — — (h -> 0) .

k>,± 21ogi-

THEOREM 8. Suppose that linv^ bjan = 1. If an+1lan is bounded
away from 1, then Γ is weak if and only if

Σ
l log-

Proof. If the series converges, Γ is unstable by (ii) of Theorem 7.
Conversely, suppose that the series diverges. The doubly connected

region An — (an<\z\< an+1) — [bn, αn+1) is conformally equivalent to
the region A'n = (1 <\z\ < an+1jan) — [6n/αn, an+1lan). By the assumption
1 < 1 + δ < αw+1/αw and, therefore, AH = (1< |«| < 1 + δ) — [6Λ/αn, l + δ)cA^
so that mod ̂ ' ^ mod An. By Lemma 2

mod A'n
f ^ (n —> oo) .

2 log-

Consequently, the assumption implies that Σ mod An = oo, and we infer
from Theorem 3 that .Γ is weak.

EXAMPLE 3 (No. 26). an = en, bn = en + 1. By Theorem 8, Γ is
weak.

EXAMPLE 2 (No. 26). an = nfc, bn = n* + 1 (ft > 1). Since αw+1/αw =
(w + l)fc/^fc is not bounded away from 1, the above theorem is not
applicable. However, we can see as follows that Γ is weak. For
simplicity, we consider the case ft = 2 the general case can be treated
in a similar fashion. Consider the region An = (a2n < | z \ < α2w+i) —
[6an, αan+i), which is conformally equivalent to (1 < | « | < 4) — [1 + 2~2w, 4).
By Lemma 2, mod An ~ π2/(4^ log 2) for w <— oo and X m°d -An = °° I*
follows from Theorem 3 that Γ is weak.

More generally, this result can be stated as follows:

THEOREM 8'. Suppose that lim^*, bjan = 1 and that there exists a
subsequence {%J c {n} such that an + \an, is bounded away from 1 and

(12) Σ
ϊ = l log-

Then Γ is weak.
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28* When an+1jan is not bounded away from 1, we may also apply
the following criterion:

THEOREM 9. Suppose lim^oo bnlan = 1 and lim^*, an+1/an = 1. If

(13) lim l0«(l>nM

n->~ \og(an+1lan)

exists, then

f; log (an+1lan) = ^(14)
1 log

n \ 1 / l o g ( α n + l / α » )' βn \ 1 / g ( n + l / » ) _ - .

\αn/

implies that Γ is weak.

Proof. Consider the doubly connected region A'n = (1 < | £ | < qn) —
[1 + fcn, qn) (n = 1, 2, .), where 0 < Λw < gw — 1 and l inv^ ^w = 1.
Map the annulus 1 < | z \ < qn onto 1 < | w \ < e by the quasi-conf ormal
mapping

w = Γ n(2) = rlll0*qneiθ (z = rβu) .

Its dilatation equals I/log qn provided n is so large that qn < e. The
image of A'n is Aϊ = ( 1 < | w \ < e) - [(1 + λn)

1/loββ», β). From (I), No.
15, we have

(15) log qn mod A!£ ^ mod A'n .

Now suppose that lim^oo (log (1 + ^))/log qn exists. If

then mod A'J and log {1/[(1 + hn)
llloeqn — 1]} are bounded and bounded

away from zero. Hence the divergence of

(16) l oi

log
( l + hny

ιlosqn - 1

implies that Σn-i 1°& Qn * mod A" — oo and, by (14), that Σn-i m °d Άή = °°
If lim^oo (1 + hny

llog qn = 1 we obtain by Lemma 2

log A;' ^ ( w - o o ) .
2 log

Therefore, the divergence of (16) again implies that of Σw=iΠiod A'n.
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In the given region, consider An = (an < | z \ < an+1) — [bn, an+1). It
is conformally equivalent to the above A'n for 1 + hn — bjan and qn =
an+1/an. Therefore, ΣSLiinod-A,, = oo and .Γ is weak.

This criterion is applicable to Example 2.

EXAMPLE 5. an = n, bn = n + e~n. In this case (7) converges and
(9) diverges, so that we cannot decide by Theorem 7. Since an+1/an is
not bounded away from zero, we cannot apply Theorem 8.4 For every
subsequence such that l i m ^ α ^ ^ / α ^ > 1, (12) converges, and we cannot
use Theorem 8'. (14) also converges and, therefore 9 is inapplicable.
We have not been able to decide whether Γ is weak or unstable. In
general, for an = n, bn~n + e~n<* (a > 0), Γ is unstable for a > 1 but
it is unknown if it remains true for 0 < a ^ 1.

13* A generalization*

29 • Consider the case where the intervals are distributed on the
whole real axis. We treat again the simplest case.

PROBLEM. Let {αw}^=1 and {bn}ζ=Q be the sequence of positive numbers
such that

0 < bn-λ ^an<bn (n = 1, 2, •••)

l i m an = oo .
n—»o

Consider the region

Z> = ( | z | < c o ) - ύ [δn_ lf an] - U [-a,, — 6»_J .
W = l W = l

Under what condition is Γ = {oo} a weak boundary component of 5 ?
This problem can be reduced to the case which we discussed in the

previous section. More precisely, let Γ = {oo} be a boundary component
of

D = (\z\< c o ) - U [&»-i> α»] i

then we have

THEOREM 10. Γ is weak if and only if Γ weak.

Proof. If Γ is unstable, then, since D c D, Γ is unstable by the
definition.

4 The author is indebted to Professor R. Redheffer for the argument that follows in
this example.
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Suppose that Γ is unstable. Since weakness is a boundary property

(No. 18), we may assume without loss of generality that b0 > 1. By

Theorem 2, λ{γ} > 0 where {γ} is the family of curves in D — (\z\^l)

separating Γ from | z | = 1. Let {<yj be the family consisting of curves

in the upper half of D — (| z | ^ 1) connecting (1, oo) — Un-i [δ»-i> αΛ]

with ( —oo, —1) — u ~ β l [ —αn, —6n-i]. Let {γί} be its subfamily con-

sisting of curves whose end points are symmetric with respect to the

origin. Then, by (VIII), No. 9,

λ{γί} ^ λ ( 7 j = λ { γ } / 2 > 0 .

Consider the region Δ = (| ξ | < oo) — JJn-i [&S-i> 4 ] a n d its boundary
component (f = oo). Let {γ*} be the family of curves in Δ — (| ζ | 2g 1)
separating oo from | ξ | ^ 1. By making use of the mapping ζ = a;2, we
can immediately see that λ{γ*} = λ{γj} and, therefore, (ξ = oo) is an
unstable boundary component of J .

The mapping

ζ = Γ(^) = rV θ (« = re ί a)

is quasi-conformal and maps D onto Δ, z = oo onto f = oo. Since weakness
is preserved under quasi-conformal mappings (No. 18), Γ is unstable.

REMARK. Using the same method, we can also prove Theorem 10
when the intervals are distributed on k half-lines reί27ίV/fc (0 <g r < oo),
v = 0, 1, •••, k.

14. Criteria for arbitrary regions*

3O Let D be a plane region such that Γ = {oo} is a boundary
component. If D is contained in another region discussed in preceding
sections and {oo} is its unstable boundary component, then, by the
definition of instability, Γ is an unstable boundary component of D.

If such a condition is not satisfied, the following criterion may be
applicable. It is a simple generalization of (ii) of Theorem 7, and we
omit the proof.

THEOREM 11. Let D be a region such that OeD and Γ = {00} is
a boundary component. Γ is unstable if there exists a sequence {Cw}^=1

of components of ΘD — Γ satisfying the following conditions:
( i ) For a doubly connected region A c D separating 0 from 00,

there exists a number n such that A separates Cn from Cn+1.
(ii) For every n, there exist points aneCn and bneCn+1 such that

an — h I = dist (Cn, C n + 1),
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and

Σ
71 = 1

\Φnlan) - 1

31 This criterion is not a necessary condition for instability. This
is apparent from the following

EXAMPLE 6. Consider the closed sets

En = {z n2 + 1 <:\z\ <:(n + I)2, | a rgz | ^ π — ε J ,

0 < εM < 7Γ , w = 1, 2, .

If εn(w = 1, 2, •••) are taken sufficiently small, then Γ — {°o} is an
unstable boundary component of D — (\z\ < oo) — (J~==1 £7W. It does not
satisfy the assumption of Theorem 11.

Proof. For an arbitrary subsequence {Cw}~=1 of {En}n-i and every
choice of an and bn,

^i 1 ^ 1 A 1
w = i i 2 ra-i

- 1

Therefore, the assumption of Theorem 11 is not satisfied.
In order to show the instability of Γ, consider the following cross

cuts of D:

an: mz = 0, (n + I)2 ^ $z ^ (n + I)2 + 1 ,

βn' ]z\ = (n + I ) 2 , I a r g z | ^ π - εn ,

β'n . I z I = (w + I)2 + 1, I arg z \ ̂  TΓ - εn+1 ,

(w = l, 2, . . . ) .

Let 8n be the extremal distance between an and /5W U βf

n with respect
to the region (n + I)2 < | z \ < (n + I)2 + 1. It is possible to take εw and
en+1 so small that δn > w2 (w = 1, 2, « •). Let {γ}w be the family con-
sisting of closed curves in D — (\z\ <; 1) separating Γ from | z \ ̂  1 and
passing through an. Let {7i}w c {γ}w be the subfamily of curves contained
m(n + iγ<\z\<(n + iγ + l and put {γ2}, = {y}n - fa},. By (VI),
No. 9,
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λ{γ2}M

Since n2 < Sn ^ λ{γ2}ra and 2τr/λ{γ1}M = log(l + l/(w + I)2), we get

λ{γ}n ~ ~2τr" °gV + (n + I) 2 / + »?

if w is sufficiently large, and, therefore, Σ«-1l/λ{γ}M converges.
To apply Theorem 3, take Alf A2, , Afc. Then evidently

Σ mod A, ^ Σ l/λ{7}« < °°
V = l n - 1

and we conclude that Γ is unstable.

32* Finally, for the sake of completeness, we shall present a well-
known sufficient condition for weakness. For a bounded doubly connected
region A, we have that mod A ^ log (1 + (πditt)). Here d is the distance
between the components of dA and I is the infimum of the lengths of
closed curves which separate the components of dA and whose distance
from dA is ^ d/2 (Sario [15], Meschkowsky [11]). Therefore we get
immediately from Theorem 3 the following result (Meschkowsky [11],
Savage [19]):

THEOREM 12. Let D be a plane region containing the point z = 0
and suck that Γ = {oo} is a boundary component. Suppose there exists
a sequence of doubly connected regions An c D — (| z \ ̂  ε) (n = 1, 2, •)
wΐίfc ίfce following properties:

( i ) T%e 4̂W are mutually disjoint^
(ii) Aw separates Γ from \ z \ ̂  ε (n = 1, 2, •) cmd αiso separates

A*-! /rom Λn+1 (w = 2, 3, . •),
(iii)

Γ is a weak boundary component of D.
On applying this theorem, we obtain

EXAMPLE 7 (Denneberg [5]). Let D be a region such that Γ={oo}
is the only accumulating boundary component. If there exist numbers
a > 0 and β < oo such that the distance between every pair components
of 3D — Γ is ^ a and the diameter of every component of dD — Γ is
^ /9, then Γ is weak.

EXAMPLE 8 (Cf. Wagner [24]). Let @ be the group of transforma-
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tions z' = z + mω + nω' (m, n = 0, ± 1, ± 2, •) and let £Ό be a closed
set contained in the interior of the fundamental parallelogram of ©.
Then Γ = {oo} is a weak boundary component of the region Z) =

V. CRITERIA FOR STRENGTH AND INSTABILITY

In this chapter we shall discuss Problem B, No. 4. For simplicity
we mean by a boundary continuum a boundary component of a region
which is a continuum containing more than one point.

15 Strong boundary components*

33 If Γ is an isolated boundary continuum of D, i.e., if there
exists an open set U such that Γ c U and U n (djD — Γ) — φy then Γ
is evidently strong. More generally,

THEOREM 13. A boundary continuum Γ of a region D is strong if
there exists a disk U such that U Π Γ φ φ and U Π (dD — Γ) — φ.

This theorem is also almost trivial. To prove it rigorously, we shall
use the following

LEMMA 3. Let Δ be a simply connected region which is a proper
subset of (I ξ I < 1). Map Δ conformally onto the upper half-plane.
Then the image E of dΔ Π (| ζ \ < 1) is a set which does not belong to
the class ND.δ)

The proof is easy and we omit it. It may appear plausible that E
contains an interval. That this is however not so has been remarked
by Koebe (see Radό [13], p. 2, Bemerkung). We can even see that the
condition of Lemma 3 is necessary and sufficient.

Proof of Theorem 13. Map a component Δ of Uf]D onto the upper
half-plane by ψ and let E be the image of Γ Π Δ. By Lemma 3 Eφ ND

and, therefore, E is of positive measure (Ahlfors and Beurling [2]). If
Γ is unstable, a univalent function f(z) transforms Γ to a point. There-
fore, the univalent function / o φ on the upper half-plane takes a con-
stant boundary value on E, contrary to the well-known theorem of F.
and M. Riesz.

REMARK 1. In this case, R(Γ) < oo and we can also use Theorem
1 to conclude that Γ is strong. To prove the finiteness of R(Γ), we
apply Theorem 5. Take a component V of U Π D. It is easy to find

5 A compact set E is said to belong to the class ND if E° does not admit a function
with a finite Dirichlet integral.
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a simply connected region A such that A c D, V c A and (| z \ S ε)cz/.
Since the set E$ND is of positive capacity (Ahlfors and Beurling [2]),
λ{γ}ε < oo by Lemma 3 and (XI), No. 10.

REMARK 2. Because of this theorem, we may consider from now
on only the case where every point of Γ is an accumulation point of
dΏ-Γ.

?A. We shall now give two other kinds of examples of strong
boundary components which do not satisfy the condition of Theorem 13.

EXAMPLE 7. Let D be a radial slit disc | z | < a in the sense of
No. 3 and let Γ = (| z \ = a). If the arguments of the slits form a set
of measure μ less than 2π, then R{Γ) < oo and, consequently, Γ is
strong.

In fact, we can easily obtain the estimate

λ{γ}ε ^ {log(α/ε)}/(2ττ - μ)< oo .

35 EXAMPLE 8. Let {cn}£=1 be a sequence of numbers such that
0 < cn ^ τr/2w+1. Put r n = 1 - II{n + 1) and let

cn ^ arg z s,I z I rn, + cn ^ arg z s,

(fc = l, 2, . . . , 2W+1; n = l, 2, . . . ) •

Z7 = (12 I = 1) is a boundary continuum of the circular slit disc D =
(I s | < 1) - U».*sS. If Hm^oo cn2

n > 0, then iί(Γ) < oo and therefore, Γ
is strong.

Proof. Clearly it is sufficient to give the proof for cn2
n = 8 > 0.

For simplicity, we choose δ = τr/4, i.e., cn = π/2n+2. In order to show
the finiteness of R{Γ), we map D quasi-conformally onto the radial slit
disc Δ = (I w I < 1) — U n . * ^ where

; rne"V2 ^ | w | ^ rneV2 , arg w =

(& = l , 2 f •• ,2»*1;Λ = l f 2 f •••)•

Consider the doubly connected regions

A, = {«; - 1 <3ϊ2 < 1, - ί < 3z < i}

and

Aro = {w; - 1 < Mw < 1, - i < ^w <

- {w; mw = 0, - I ^ %w ^
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It is not difficult to map A, quasi-conformally onto Aw by a function
which is of class C1 in Az and is the identity mapping on the outer
periphery of Az.

In our region D, consider the quadrilaterals

„ p~c ^ I „ I / r .cM 7r(fc — 1) . . πfc
rMe n <^\z\ <^ rne n, — <, arg z <. - —

£t Δi

(Λ = l, 2, . . . , 2W+1; w = l, 2, . . . ) .

They are mutually disjoint and all Q* — s\ and Q* — σ\ are conformally
equivalent to Az and Aw, respectively. Therefore, we can contruct the
mapping w — T*(z) of Ql — si onto Q£ — a* which is the identity mapping
on dQl and whose maximal dilatation K depends neither on k nor on n.
Then

w = T(z) - \ n { Z ) i n Q5 - *5 (fc = 1, 2, , 2»+1; n = 1, 2, .)

is a qussi-conformal mapping of D onto z/ such that T(T) = (\w\ = ϊ) = Γr.
Since J belongs to the case of Example 7, R(Γ'\ Δ) < oo, and, by

Theorem 5, λ{γ'}5 < oo. Here γ' is a rectifiable curve in Δ — {\w\^έ)
connecting | w \ = ε with Γ'. It is furthermore assumed that γ' is a
union of a countable number of analytic arcs clustering nowhere in Δ
(cf. Remark, No. 15). On D, we have the corresponding family {γ}:

and, by (IV), No. 15, λ{γ}ε g K\{y'}e < oo. Therefore, by Theorem 5,
R(Γ) < oo and Γ is strong.

35 We continue to consider Example 8. If cn decreases sufficiently
fast, then R(Γ) = oo. In fact, let {γn}8 be the subfamily of {γ}ε which
consists of curves passing through the arc {z; z = rn, | arg « | ^ cn}. By
(VI), No. 9, λ{γ}ε ^λ{γj ε /2 w + 1 and, By Lemma 1, No. 13,

M % J s ~ - ^ - l o g — (n—oo) .
2π cn

For this reason R(Γ) = co if, for instance, cw = exp ( — 22W). However,
it is unknown in this case whether Γ is strong or unstable.

16» Unstable boundary continua

37 As in No. 21, let {£?w}w=i be a defining sequence of Γ and let
0 eGn = D — Ωn I Zλ Consider the function w = /n(^) maximizing the
functional m(/) in %Fn on Gw (No. 19). We may assume that {fn(z)}ζ=1

converges to a univalent function w = /(«).
In the following case, R(Γ) = oo implies that /(Γ) = {oo}:
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THEOREM 14. Let D be a region containing z = 0 and let Γ be a
boundary continum. Suppose that

( i ) D is symmetric with respect to the lines

Zv: reVic'2ίc ( -00 < γ <oo), v = 1, 2, . , 2fc

/or some integer k |Ξ> 0,
(ii) e^erτ/ component of dD — Γ intersects at least one lv.
Then Γ is strong if and only if R(Γ) < 00 .

Proof. We may assume that each Gn is symmetric with respect to
all the lv. By the uniqueness of fn(z) (No. 19), we can immediately see
that fn(z) and, a fortiori, f(D) are symmetric about these lines. As has
been shown by Strebel [22], f(dD — Γ) consists of radial segments. By
the assumption f(dD — Γ) is contained in Uϊ*i^-.

Now assume that/(Γ) Φ {00}. If /(Γ)c Ui-ikU {<»}, then/(Γ)nίv
is a line segment which does not meet ~f{dD — Γ), so that R(Γ)< 00 by
Remark 1, No. 33. If /(Γ) ς£ Uί-i^v U {^} there exists a sector S
bounded by two neighboring Zv's such that S (Ί /(Z7) does not intersect
f(ΘD — Γ) and we have R(Γ) < 00. Consequently, the strength of Γ
implies that R(Γ) < 00.

38. We can find many examples of unstable boundary continua
belonging to this category, e.g., as follows:

EXAMPLE 9. Consider the region

D - (|s I ̂  cx>) - r - U (sί U 8i U A U ~k) ,

where

Γ = {z -l^ίΆz^l, ^ = 0},

; 1 ^ 9te ^ 1, 3ίs
A;

Since every point on Γ, except ± 1 , is inaccessible, R(Γ) = co by
No. 10. From this and from Theorem 14, we infer that Γ is an unstable
boundary continuum of D.

39* Meschkowsky [11] has proved that a region satisfying certain
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metric conditions can be mapped conformally onto a region bounded by
circles or points in such a way that the image of a preassigned boundary
continuum is a point. This case is also an example of an unstable
boundary continuum.

40. The following example belongs to this category but does not
necessarily satisfy Meschkowsky's conditions. Moreover, the fuijction
f(z) = lim^oo/n(z) of No. 37 does not transform Γ to a point.

EXAMPLE 10. Let 1 = {z; - 1 ^ 3te ^ 1, $z = 0} and let

Γ = {z; Viz^O, - 1 SLSZ^ 1}

Choose a sequence {cfc; ά = ± 1, ± 2, •} such that

C-JC = — Cfc, Cx > C2 > I 0 ,

and let

fc ™ I & n> I 1 | 1/ • . - / ^ _L I ,

Sfc Z —— v β * V"̂  / *^ * ^ * * ^ -LI ,

s-*/»: J3 = re«°t-*ι» (l/l & I! ^ r ^ 1) ,

where k = ± 1, ± 2, •••. Then Γ = / U /' is an unstable boundary
continuum of the region

D = (I 2 I g ex)) - r - U (β* U s ί / 2 U ί U s,"^2) .

In fact, Z> can be mapped onto a region such that /(Γ) is a point

and every component of f(dD — Γ) is a circle. For the proof, map the

region

2 I; ^ °°J — U \sfc U 8j u oA u bjc )

conformally onto a region bounded by 8n circles;* we may require that
the mapping function w = f(n)(z) has the expansion z + bnlz + near
# = oo (^ = 1, 2, •••). The existence and the uniquess of such a map-
ping are well known. A suitable subsequence of {/(w)(2)}T~i converges
to a univalent function w = /(«). We can easily prove that every
component of f(dD — Γ) is a circle (see, e.g., Meschkowsky [11]). In
what follows we shall show that f{Γ) = {0}.

First we remark that R(Γ) = co, because every point on Γ, except
0, ± 1, ± i, is inaccessible (cf. (Xf), No. 10). Second, D and, therefore,
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f(D) are symmetric with respect to the following four lines: l0 = (real
axis), lκU — (9te = $z), lπ,2 = (imaginary axis), and Z_π/4 = (fRz = — $2).

The component /(Γ)* of /(D)c corresponding to /(Γ) is a compact
connected set which contains the point w = 0 and is symmetric about
these four lines.

The component /(eg)* of D c (/3 = 0, ±7r/2, ττ; k = ± 1, ± 2, •) is
a disk, which we denote by

The radius ρk does not depend on β because of the symmetry. Fur-
thermore,

(17) lim ft = 0;

in fact, all the Δ% cluster to /(Γ)*, so that the sum 8π Σ ϊ - i P* of their
areas converges.

Consider a quadrilateral

*~^~ ^A

which connects si with sΐϊ (fc = 1, 2, •)• The extremal distance between
si and stf

k with respect to D does not exceed

log A;

Let Lfc be the infimum of lengths of curves in f(D) connecting Δ\ with
z/%2. Then

(18) L | ^ (7Γ/2) - 2cfc _ Q (fc—co)
//Z7 logfc

where ^Ϊ7 expresses the area of a bounded open set U containing /(Γ)*.
For this reason and by virtue of (17) and (18), we have

lim I al - a% \ ̂  lim (Lfc + 2ρk) = 0 .

It follows, by symmetry, that {a\}k^1 and {αl^}^.! cluster to lπU in the
first quadrant. From this and again from the symmetry, we see that
the set H of all accumulation points of al (β = 0, ± π/2, π; k = ± 1 ,
± 2 , •••) is contained in lnU U i-^4. Evidently it is symmetric about l0

and lx!l, and Hczf(Γ)*.
Next we shall show that i ϊ = {0}. Suppose that H contains a point

w0 = pβί7r/4 (p > 0). Then there must exist a point qeiicμeH (0 <; g < p).
For otherwise if would consist of four points: H= {peiθ θ— ±τr/4, ±3ττ/4}.
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Then all but a finite number of components of f(dD — Γ) in the first
quadrant would be contained in | w — pei7ί/41 < p/4. Since w0 and 0 are
contained in /(Γ)* and /(Γ)* is a continuum, f{Γ) would have a "free"
subset as in Theorem 13. But the reasoning of Remark 1, No. 33,
shows that this property of f(Γ) contradicts the fact that R(Γ) = oo
and, therefore, qeί7ClieH exists. Take a subsequence {kό} c {k} such
that

Then

Lkj + 2pkιj ^ £^L > 0

for sufficiently great j , contrary to (17) and (18). Consequently, wQ does
not exist and H= {0}.

Finally, if /(Γ)* ^ H, then f(Γ) would again have a "free" subset,
contrary to the fact that R(Γ) = oo. We conclude that /(Γ)* = {0}.

41 Transform the region Z) by ξ" = \\z and, for simplicity, denote
the image again by D. For the sequence Gn ] D of No. 37, we take

Gn = (\z\<n\ + cn+1) n 2)

U L . i « < i ? i Λ^ ^
Λ = l ( 2

n = 1, 2, •••, and consider the extremal function /„(«). We shall show:
// Cj; = — c_ft decreases sufficiently fast (e.g., cft = e" ί !), ί/iew

limn_,»/n(2) = 2 uniformly on every compact set in D.
In order to prove this, we estimate the Dirichlet integral of

log I/«(«)/« I over Δ = (| z \ S 1/2):

„(«) I - log \z I) <£ Z>ffκ(log I /,(2) I - log h I)

| d a r g / » - l o g | 2 | - d a r g / , ,

— log I /» I ^ arff 2 + log I 2; I d arg 2)

= ( (log \fn I d*rgfn - 21og I/. | tfargz

+ log I z I eZ arg z)

= 2π log i2(Γn Gn)-2 log #(ΓW GJ [ d arg 2

+ ( log I z I dargz ^ 2τr{logw! - logi2(Γn; GB)} .
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To estimate the last term, we shall use the relation log R(Γn Gn) =
lim8_»0 (log e + 27τλ{γ}^})» where the sequence is increasing (No. 22). Here
{γ}£w) is the family of curves in Gn — (| z | <̂  ε) connecting Γn with
I z I = ε. We take the closed disks

Δh

n : \z - eiiίhl21 ^ cn ,

h = 0, 1, 2, 3; w = 1, 2, . . Let {γ1}^) c {7}?} be the family of curves
connecting | z \ = ε with UΛ.»^ί U ^«ft and put {γ2}

(

ε

w) = {7}(

8

n) -
By (VI), No. 9,

or

It is evident that

2π — 8cn e 2π e

Therefore,

log R(Γn Gn) ^ log ε + 2τrλ{γ}^ ^ log n! - 2:

whence

If cw is taken sufficiently small, then linv+oo λl/λχ = 0. For instance, if
cn = β"w!, we have λ ! ^ ( 8 n!)/π (?ι-^oo) by Lemma 1, No. 13, and
λϋ/λi —> 0. In such a case, l i n v ^ i)^ (log |/n(«) | — log | z |) = 0 and we
conclude that lim^*, fn(z) = « uniformly on each compact set in D.

Consequently R(Γ) = oo for our region, but lim,^*, fn(z) does not
transform Γ to a point.
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LOOPS WITH THE WEAK INVERSE PROPERTY

J. MARSHALL OSBORN

Let the left and right inverses of an element x of a loop G be de-
noted by xλ and xp respectively, then G is said to have the inverse
property if the two identities xλ(xy) = y and (yx)xp = y are satisfied by
all elements x, y of G. Perhaps the two most basic properties of inverse
property loops are that (i) the left, middle and right nuclei coincide, and
that (ii) if every loop isotopic to G has the inverse property, then G
is a Moufang loop1. More recently, R. Artzy has defined cross inverse
property loops (G has the cross inverse property if any two elements x
and y of G satisfy either of the two equivalent identities xλ(yx)—y and
(xy)xp = y), and has shown that the same two properties hold for these
loops2. In the present paper, we shall consider (i) and (ii) for a class
of loops which includes both of the classes already mentioned. In § 1
we introduce the weak inverse property and prove (i) for loops with this
property. In § 2 and § 3 we discuss loops all of whose isotopes have the
weak inverse property, and show that those loops are not necessarily
Moufang loops but come very close (see Theorems 2 and 3). An interest-
ing by-product of this investigation is the construction in § 3 of a class
of loops, each of which is isomorphic to all its isotopes. The only pre-
viously known examples of such loops have been Moufang loops3.

In dealing with isotopy and cross inverse property loops, Artzy does
not discuss the question of whether a cross inverse property loop can
arise as an isotope of an inverse property loop. In § 4 we answer this
question in the negative.

l Let G be a loop with identity element 1, then G will be said to
satisfy the weak inverse property* if whenever three elements x, y, z
of G satisfy the relation xy z = 1, they also satisfy the relation x yz=l.
Using the right inverse operator p, we may transform this definition into
more usable form by observing that the relation xy z = 1 is equivalent
to z = (xy)p, and by substituting this into x yz = 1 to yield

(1)

Received April 6, 1959.
1. These concepts will all be defined in the body of the paper. A proof of these prop-

erties and those used in §4 for inverse property loops and Moufang loops will be found
in [3]. Note that Bruck uses the term "associator" instead of "nucleus" in his earlier
papers.

2. See [1].
3. See [5].
4. Loops with this property have previously been considered in connection with nets.

For a brief discussion of this and references, see [2].
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Iterating this relation, we readily obtain

(2) (xy)p-xp2 = yp ,

and iterating again gives xp2>yp2 = {xyΫ, showing that p2 is an automor-
phism of G. Since X is the inverse of the operator p, X2 is also an
automorphism, and applying it to (2) gives

(3) (xy)λ-x = yλ ,

which is the dual of (1). From (3) it is easy to see that x yz = 1 im-
plies xy z = 1, so that we could have equivalently defined G to have the
weak inverse property if xy z = 1 whenever x yz~l. It might also be
remarked that if p is an anti-automorphism or automophism in a weak
inverse property loop G, then equations (1) and (3) tell us that G has the
inverse property or the cross inverse property respectively. Conversely,
either of the latter two properties imply the weak inverse property.

Letting R(y) and L(y) denote right and left multiplication by the
element y, we may rewrite (1) in the form R(y)pL(y) = p, which yields
the two useful relations

(4) R~\y) = pL(y)X , and L~\y) = XR(y)p .

To develop the properties of weak inverse property loops further,
we shall need to introduce the concepts of isotopism and autotopism.
Let Go be a loop consisting of the elements of G under a new binary
operation " o " (the old operation shall be denoted by "•") , and let Z7,
V, W be three permutations on the elements of G satisfying the relation
xΐl yV =• (χoy)W for all x, y of G. Then we shall say that Go is isotopίc
to G (or, equivalently, that it is an isotope of G) by means of the iso-
topism (Z7, V, W). In case " o " is just the original binary operation
"•", we shall call (Z7, V, W) an autotopism. Observe that if T is an
automorphism of G, then it gives rise to the autotopism (T, T, T), and
conversely. It is well known5 that the set of isotopisms of G form a
group under the operation (Ulf V19 W1)(Ulf V2, W2) =(U, U2, V1V2, W1W2)f

and that the autotopisms form a subgroup.

LEMMA 1. If (U, V, W) is an autotopism of a weak inverse property
loop, then so are (V,\Wρ,XUp) and (pWX, U,pVX).

Using (1) on the relation xU yV= (xy)W, we obtain y V [(xy)W]p =
[xU]p. And making the substitution x = (yz)λ in this equation yields
yV-[(zλ)W]P = [(yz)λUγ, which tells us that (F, XWp, XUp) is an auto-
topism. The other autotopism of the lemma arises in the same way
using (3).

Next, we define the left nucleus of G to be the set of all elements

5. See [3], for example.
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a of G satisfying the relation ax y = a xy for every pair of elements
x, y of G. We may equivalently characterize the left nucleus as the set
of all a such that (L(a), 1, L(a)) is an autotopism of G. Similarly the
dual concept of right nucleus may be characterized as the set of all a
such that (1, R(a), R(a)) is an autotopism. If we now assume that a is
in the right nucleus, then Lemma 1 tells us that (R(a), XR(a)p, 1) and
(pR(a)X, 1, pR(a)X) are autotopisms. From the latter it is clear that
(λ2, λ2, X2)(pR(a)X, 1, ρR(a)X)-ι(ρ\ ρ\ p2) = (L(a), 1, L(a)) is an autotopism,
so that a is in the left nucleus of G. On the other hand, from the
former we get the equation xa*[(zλ)a]p = xz, or xa zL'1 = xz for all x, z
of G. Setting z — ay gives xα τ/ = # CM/ for all x, y of G, which is the
definition of the element a being in the middle nucleus. Since all these
steps are reversible, we have proved:

THEOREM 1. The left, middle, and right nuclei of a weak inverse
property loop coincide.

2. We now turn to the question of when an isotope of G also has
the weak inverse property. First of all, if Go is an isotope of an arbitrary
loop G, then it is well known5 that, up to isomorphism, " o " is given in
terms of "•" by the relation χoy = xR~ι(g) yL~Qf), for some fixed pair
of elements / and g of G. If p0 is the right inverse operator of Go,
then the weak inverse property in Go is equivalent to the identity
yo(χoyγo = χ?o, or yR'^gΠxR^ig^yL^^YoL'^f) = xpo. Setting x = ug
and y =fv, this becomes (fv)R~1(g) (uvYoL'1(f) = (ugYo, and using the
weak inverse property in G yields

Since fg is the unit of Go (as may be verified from its definition), the
mapping p0 is defined by the relation fg = #o#po = xR~\g) (xpo)L~\f).
Using (3), we may put this in the form [(α;po)L-1(/)]λ = {fg)λ-xR-\g),
which leads to the formula p0 = R~\g)L((fg)λ)pL(f). But (5) says pre-
cisely that (R(g)p0X, L{f)R~\g), ρ0L~\f)X) is an autotopism, which may
now be rewritten as

( 6 ) {L{[fgγ)R~\f), L{f)R-\g), R-\g)L{[fgγ))

after substituting for p0 and using the first relation of (4).
Next, if (U, V, W) is an autotopism of G, and if / and g are the

images of the identity under U and V respectively, then we may obtain
the relations UR(g) = W, VL(f) = W and fg = 1W as special cases of
the relation xU*yV= (xy)W. Our autotopism may then be written in
the form (WR~\g)9 WL'\f)9 W). But then the isotope Go given by
χoy = χR-1(g) yL~1(f) = [xW~1 yW~1]W is isomorphic to G, and hence has
the weak inverse property. Conversely, if Go is isomorphic to G by the
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mapping W~\ then {WR~\g), WL~\f), W) will be an autotopism. We
have shown:

LEMMA 2: If f and g are two elements of a weak inverse property
loop G, then the isotope Go given by x o y = xR-\g)-yL-\f) has the
weak inverse property if and only if the expression in (6) is an auto-
topism. Furthermore, Go is isomorphic to G if and only if f and g
are the images of the identity under the first two permutations of some
autotopism.

Consider now the special case of Lemma 2 with 0 = 1. The auto-
topism (6) is then (L(fλ)R-\f), L(f), L(/λ)), which may be transformed
into (L(/), XL(nP, XL(nR-\f)p) = (L(/), R~\p)R-\Γ)L(f)) using
Lemma 1. Applying this autotopism to the pair x, 1 gives the relation
L(f)R(f)—R-\f9)L(f), which allows us to write our autotopism in the
form

( 7 ) (L(/), R-\f>), L(f)R(f)) .

We shall also need to use this in the following equivalent form:

( 8 ) L(fx) = R(Γ)L(x)L(f)R(f) = R(Γ)L(x)R~\P)L(f) .

From (7) and (8), it is clear that / is a weakened type of Moufang ele-
ment of G6. Similar to the case of inverse and cross inverse property
loops, one may say something about the structure of the set of
elements which give isotopes with the weak inverse property, or which
are the images of the identity under a permutation from some autoto-
pism. However, since neither of these sets need form a subloop, this
structure does not seem sufficiently interesting to be discussed except in
the case where all isotopes have the weak inverse property, to which we
turn next.

If all isotopes of G have the weak inverse property, then we may
use (6), (7) and (8) for any elements /, g, x of G. In particular, if we
take the inverse of (6) and set / = 1, we get {L~\gλ)y R(g), L(gλ)R(g)).
Applying this to 1, x gives R(g)L(g) = L(gx)R{g)f allowing us to write
(L-\gx)f R(g), R(g)L(g)), which is the dual of (7). Replacing/ by g in (7)
and multiplying by the inverse of its dual, we get (L(βf)L(^λ),i?-1(0p)i2-1(g),
L(g)R(g)L"\g)R-1(g)). But each of these three permutations preserves
the identity element of G, and hence, by an easy argument, they are all
equal. Defining θg by

( 9 ) θg = L(g)L(gx) = R~\g<>)R-\g) = L{g)R{g)L-\g)R~\g) ,

we have shown that θg is an automorphism. From (9) we get the re-
lation R~\g?) = θgR(g), which allows us to put (7) in the form (L(g),
ΘgR(g), L(g)R(g)), which says that

6. In case the isotope Go defined by this element / is isomorphic to G, then / is a
''companion" in the terminology of [4],
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(10) gx-(zθg g) = (g xz) g , f o r a l l g , x , z of G .

But if θg were the identity automorphism for all g, then (10) would
be just one of the Moufang identities. For example, if G has the inverse
property, then L(gλ) = L~\g), and θg is the identity. Similarly, if G has
the cross inverse property, then L(gλ)=R~1(g), and (9) yields L(g)R"1(g) =
L(g)R(g)L"1(g)R'1(g), or L(g) = R(g). Hence G is commutative and θg is
again the identity. We have proved:

THEOREM 2. If G is an inverse property, cross inverse property
or commutative loop such that every isotope of G has the weak inverse
property, then G is a Moufang loop.

Now let a be the autotopism (6), and let β and γ be the special
cases of this with g = 1 and/ = 1 respectively, then /9γα~1 = (L(/λ)JR"1(/),
L(f), L{n).{L{g% R~\g), R'\g)L(g")). (R(f)L

L~\[fg]λ)R{g)). Applying this autotopism to the pair x, g gives
L(Γ)R-\f)L(gλ)R(f) = R{g)L{fκ)R-\g)L{g^). But from (8) this is just
L(gλfλ), so that the first permutation of βya'1 is L(gλfλ)L-\[fg]λ).
Denoting this permutation by U, we thus have an autotopism of the
form (17,1, W), or xU y = (#?/) ΫF for all x, y of G. But setting y = l in
this equation gives Ϊ7 = TΓ, and setting x = 1 shows that £/ = L(w)
where u is the image of the identity under U. Hence u—{gλfλ)L~\[fg]λ)
is in the nucleus of G. Furthermore, in case u = 1 for all / and g of
G, then we may conclude that [fg]λ = # λ / λ for all /, # of G, so that G
has the inverse property. Since the nucleus of G is normal by a theorem
of Bruck7, we have proved:

THEOREM 3: Let G be a loop all of whose isotopes have the weak
inverse property, and let N be its nucleus. Then N is normal, and
GIN is a Moufang loop.

We turn next to a closer examination of the automorphism θg. First
of all, if x is an arbitrary element of G and if b is an element of the
nucleus, then xθb = bλ>bx = bλb x = x, bθx=xλ*xb = xλx>b = b, and (te) λ =
[(δflĉ  δl δ-1 = xλb~\ Also, θbx = θx, since ^ & x = (δx)λ (δ& i/) = α^δ-1-
(b xy) = χλ.χy z= yθx for any element /̂ of G. Again, setting x = βfp in
(10) gives the relation 0, = L(gp)L(g), or 0, = 0Λ for ft = gp using (9).
Using the iterates of this relation, we compute xλiθx=xλiL(xλi+1)L(xλi+2) =
xλί+2. As a special case of this we have xθx == χλ.χχ =: χχ2, which may

7. See Theorem 4.1 of [4]. Although the statement of Bruck's theorem assumes that
G is a Moufang loop, it is clear from the proof (and his Lemma 2.1) that he only uses the
fact that every permutation of the form L(x) or R(χ) occurs as the first permutation in
some autotopism of G. This is true in our situation from (7), and from the special case
g=fp of (6).
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be transformed using the weak inverse property into xλ**xλ = (xx)x, or
xχ.χp =z (χχ)p. Similarly, xθ'1 = xx xp = xp2 leads to xλ xp = (a%c)λ. Hence
(xx)λ = (xx)p, and so squares have unique inverses in G.

We now define a by the equation xa = cc0x, and observe that a will
be in the nucleus. Since 1 = xχ2 xλ = xα xλ = x αxλ, or αxλ = xp, we
have xλxk = (xλxλ)p2 = xpxp — xp αxλ = xpα x\ and hence xpa = xλ. But
then xpα = xp#x, and we can conclude from the properties developed in
the last paragraph that xχί-a = xχl+2 and a*xχi = xλί~2. If if is the sub-
loop of G generated by x, and A the cyclic subgroup generated by α,
then A is contained in the nucleus of K and xA = Ax from the relations
just derived. But then A is normal, K\A is cyclic, and every element
of K can be expressed in the form x*aj for some pair of integers i, j
(note that x* may be defined to be any element of K that maps into the
ith power of the image of x in KjA). It is possible to determine how
the elements of K multiply, and hence the structure of K, by an inductive
argument. However, this can be avoided by exhibiting a loop, and proving
that it is the free loop on one generator with the property that every
isotope has the weak inverse property. These one-generator loops are
of interest to us, on the one hand as proof that the class of loops we
are studying is strictly larger than the class of Moufang loops, and on
the other hand as examples of loops which are isomorphic to all their
isotopes.

3. Let H be the set of all ordered pairs of integers [ί, k] under the
binary operation defined by the following four equations

[2ΐ, k] [2j\ m] = [2ΐ + 2ί, k + m]

[2i + 1, k] [2j, m] = [2ί + 2j + 1, k + m + j]

[2i, k] [2j + 1, m] = [2ί + 2j + 1, m - k]

[2i + 1, k] [2j + 1, m] = [2ί + 2j + 2, m - & - j] ,

where i, j,k,m are arbitrary integers. It is easy to verify that each
product is uniquely defined by these equations and that H is a loop. As
suggested by (11) it will be convenient hereafter to call an element of
H odd or even if its first component is odd or even respectively. By
checking each of the eight possible cases, the following result may easily
be verified:

LEMMA 3. A triple of elements u, v, iv of H associate if and only
if at least one of them is even. If all three are odd, thenu vw = (uv'w)a,
where a = [0,1].

COROLLARY 1. The nucleus of H is the set of all even elements.
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Since three elements whose product is the identity cannot all be odd,
we also have:

COROLLARY 2. H has the weak inverse property.
The fact that all isotopes of H also have the weak inverse property

will follow from the following stronger result:

THEOREM 4. Every isotope of H is isomorphic to it.

Let Ho be the isotope of Hdefined by yoz = yR-\g)-zL,-\f), and let
u and v be defined as follows: u = [0, 0] if / is even, u = [—1, 0] if /
is odd, v = [0, 0] if g is even, and v = [1, 0] if g is odd. Then defining
s and t by the relations f — us and sg = vt, we observe that s and t are
even, and hence in the nucleus. Thus,

L~\f) = L~\us) =

and

R-\g)R-\8) = [R

= [JBtyXBίί)]-1 = R-\t)R-\v)

Using these relations we have

= yR-\g).zL-\u)L-\s) = yR-\g)'S^'zL

= yR-\g)R-ι{s)*zL-\u) = yR'^R-^-

= yβ -̂ tJΛ -̂ i;) zR-\t)L-\u)R{t)

= [yR-\t)R-\v)-zR-\t)L-\u)]R(t) .

But then, defining the isotope y(g>z = [yR(t)ozR(t)]R-1(t)=yR-1(v)-zR-1(u),
we see that, up to isomorphism, we need only consider the four cases
where f = u and g = v.

Now, if 7/o£ = yR-\v)'Z where v = [1, 0], define Gx by y x z =
[yR^ zRiv^R'^v) = [τ/ ̂ i2(t;)]iί"*1(^), and up to isomorphism we may
consider the isotope Gx instead of Go. From Lemma 3, we observe that
y x £ = yz if either /̂ or 2 is even, and y x & = yz a"1 if both are odd.
Similarly, if yoz—y-zL-\u) where % = [ — 1, 0] , we define G® by y(&z=-
[yL{u)ozL{u)]L~\u) = [2/L(M) 3]L" 1(%), and computing 7/0 2; from Lemma
3, we find that y(&z = y x z. Finally, if yoz =yR-1(v) zL~1(u) where
u = [ — 1, 0] and i; = [1, 0], we would like to show that yoz = yxz.
But this is equivalent to yR~ι{v) zL"\u) = [y 2;JK(/y)]i2"1('?;), or pq>v =
pv'(uq v), where we have right-multiplied by v and set y—pv and z=uq.
Using Lemma 3, this identity may be easily checked for all four cases
of p and q odd and even.

It now only remains to show that the isotope G x is isomorphic to G.
Letting T be the permutation sending [i, k] into [—i, — k], we shall
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verify that y x z = (yT-zT)T'1. If either y or z is even, it is easy to
check visually from (11) that yT-zT = (2/2)Γ. And if both are odd, then
we have

([2i + 1, k]T [2j + 1, mJT)?7-1 - ( [ - 2 i - l , -A;][-2j-l, -m])Γ

= [-2* - 2i - 2 , -m + k + j + 1]Γ

= [2i + 2i + 2, m - k - j - 1] = [2ΐ + 1, fc] [2i + 1, mj α-1 ,

to complete the proof.
Now let K be the free loop on one generator with the property

that every isotope has the weak inverse property. Then we may induce
a homomorphism φ of K onto H by sending the generator x of K onto
the element [1,0], which generates H. Under this homomorphism, the
element α, defined at the end of § 3, can be seen to go onto [0,1] (by
mapping the relation xpa = xλ, for example). If A is the cyclic subgroup
of K generated by α, then no element of A is in the kernel of φ since
[0,1] has infinite order in H. But KIA —> Hjφ(A) also has no kernel,
since both are infinite cyclic, and hence, φ is an isomorphism.

THEOREM 5. The loop H defined by the relations (11) is the free
loop on one generator with the property that every isotope has the weak
inverse property.

It might be pointed out that every homomorph of H also has the
property that it is isomorphic to all its isotopes. By imposing the re-
lations x4m = an = 1 for integers m > 1 and n > 2, we get a loop of order
Amn with this property, which is not a group.

4. In this section we shall prove that a cross inverse property loop
can only be isotopic to an inverse property loop if it is commutative
(and hence already satisfies the inverse property itself). In addition to
clarifying the relation between two well known classes of weak inverse
property loops, this result is of interest to us here because the method
of proof is identical with those used in the rest of the paper.

Let G be an inverse property loop and let Go be the isotope given
by αo6=αgf~1 /~16. If Go has the cross inverse property, then (αoδ)oαpo=6,
or (αflf"1-/"^)^"1-/"1^0 = 6, where pois the right inverse operator in Go.
Setting a = x~λg and b — y1 gives

or

and taking the inverse of both sides yields g(yf-x) = [/"'(x^gYtfy. Us-
ing the special case obtained by setting y = 1, we may rewrite this
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equation as g(yf x) = (g fx)y. Finally, replacing y by yf'1 gives (g fx)- •
yf'lz=z ΰ(y%). We are motivated by this relation to define an anti-auto-
topism [U, V, W] to be an ordered triple of permutations on G satisfying
xU-yV= (yx)W for all pairs of elements x and y of G. We may then
express our last relation by saying that

(12) [L{f)L{g), R~\f), L(g)]

is an anti-autotopism. By adapting Lemma 1 to the case of anti-auto-
topisms and of loops with the inverse property, it is easy to verify that
if [17, V, W] is an anti-autotopism, then so is [W, pVp, U], Hence (12)
may also be put in the form

(13) [L(g), L(f), L(f)L(g)] .

But if [Uu VΊ, Wt] and [ί72, F2, W2] are anti-autotopisms, then
(xy) W,W2 - {yU^xVJWt = xVJJ^yU^ so that (VJJ* U,V2f WXW2) is
an autotopism. Hence the anti-autotopism [U, V, W] has an inverse anti-
autotopism given by [F~\ U'1, W~1]. Using this information, we may
combine (12) and (13) to get the autotopism

, L{f), L(f)L(g)] [L(f)L(g),

= [L(ff), L(/), L(f)L(g)] [R(f), L'\g)L'\f\ L"\g)]

= (Uf)R(f), L-\f),

Then the analogue of Lemma 1 for inverse property loops allows us to
conclude that (L(/), R(f), L{f)R(f)) is also an autotopism, which shows
that / is in the Moufang nucleus of G. Since the inverse property and
cross inverse property are both symmetric, we may conclude by duality
that g is also in the Moufang nucleus. But then the isotope Go given
by χoy = xg~x*f"λy will also have the inverse property, as was to be
proved.

It might be remarked that a non-commutative cross inverse property
loop may not be obtained from an inverse property loop even by allowing
anti-isotopisms. This is because every anti-isotopism is the product of
an ordinary isotopism and the canonical anti-isotopism given by χoy =
y x, which clearly preserves both the inverse property and the cross
inverse property.
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UN THEOREME DE REALISATION DE

GROUPES RETICULES

P . RlBENBOIM

En 1939, Lorenzen [4] a demontre que tout groupe reticule est iso-
morphe a un sous-groupe sous-reticule d'un produit direct de groupes
totalement ordonnes. Pour le faire, il a utilise la theorie des systemes
d'ideaux, introduite auparavant par Krull [2] dans Γarithmetique des an-
neaux d'integrite commutatifs.

Dans cette note, nous demontrons ce meme theoreme par une me-
thode distincte, qui utilise la notion de filet de Jaffard [1]. Notre
demonstration semble plus transparente et met en relief certains aspects
d'interet qui ne sont pas du tout apparents dans le travail de Lorenzen: (1)
la realisation qui nous obtenons est completement reguliere, de Hausdorff
et fidele (ces termes sont definis ci-dessous); (2) il y a une relation entre
les ultraίiltres de Γ ensemble des filets du groupe donne et les pre-ordres
totaux plus fins, laquelle est utile pour exprimer Γordre donne comme
la conjonction d'ordres totaux plus fins (cf. Krull [3], Ribenboim [5, 6]).

1. Rappelons d'abord les definitions et resultats qui seront utilises.
Soit G un groupe (abelien additif) reticule (selon Γordre <S) et notons
P Γensemble des elements positifs de G; G est un reticule distributif.
Si feP soit E(f) == {geP\g Λf-0} Γensemble des elements de P
etrangers a /. Posons f=g si et seulement si E(f) = E(g). La classe
d'equivalence / contenant Γelement fe P s'appelle le filet de /. Soit
Γensemble des filets du groupe G, determines par les elements feP.
est ordonne en posant / ^ g si et seulement si E(f) Ώ. E(g); ^ pos-
sede un premier element 0 = {0} si /, g e P, / ^ g alors f^g; ^ est
un reticule distributif:

on a/ Λ g = 0 si et seulement si /Λ g = 0; ^ est disjonctif: si/, g e

f ne suit pas g dans ^~, il existe h e ̂  tel que 0 Φh ^g,h Λ 7=0.

Si /eG(mais non necessairement feP) posons par definition: f —

f~ V/-, donc/=T71, ou | / | = / + . + /-eP.
Soit (GL)ίei une famille de groupes totalement ordonnes, ILez Gt leur

produit direct ordonne; un isomorphisme θ d'un groupe ordonne G dans
ILeiGt s'appelle une realisation lorsque prLθ(G) = Gt quelque soit ce I.
Par un theoreme de Lorenzen-Dieudonne, un groupe ordonne G admet
une realisation si et seulement s'il verifie la condition suivante: si feG
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et nf }t 0, oύ n est un entier strictement positif, alors / ^ 0. En parti-
culier, tout groupe reticule satisfait cette condition et admet alors une
realisation.

La realisation θ : G—>Θ(G) c γ[ιei GL est dite concordante (ou propre)
lorsque Θ(G) est un sous-reticule de ILez GL (la realisation obtenue dans
la demonstration du theoreme de Lorenzen-Dieudonne n'est pas concor-
dante).

Si feG notons σ(f)= {cel\ prβ{f)Φθ}. Alors σ(fVg) = σ(f) Uσ(g),
σ(f Λ g) = o(f) Π o(g) lorsque θ est une realisation concordante.

La realisation Θ:G—>Θ(G) c; J[ιeiGt est dite completement reguliere
lorsque : si c e I, fe P, c φ σ(f) alors il existe g e P tel que c e σ{g), σ(f) Π
σ(g) = φ.

La realisation 0: G—>Θ(G) c Π t e z ^ est dite de Hausdorff lorsque:
si c,ιceI,cΦic, il existe f, geP tels que f 6σ(/), Λ:e<τ(flf), σ(f)Πσ(g)—φ.

La realisation indiquee dans le theoreme de Lorenzen-Dieudonne
n'est pas completement reguliere, ni de Hausdorff.

LEMME 1. Si θ est une realisation concordante et completement
reguliere alors θ est fidele, c'est-ά-dire: si f,geP alors f—'g si et
seulement si σ(f) = σ{g) ainsi a definit un isomorphisme du reticule
^ des filets de G sur un sous-reticule de celui de parties de Vensemble
7, en posant σ(f) = σ(f).

En effet, soit / = g et ceσ(g), cφσ(f); alors il existe heP tel que
c e σ(h), σ(h) Π σ(f) = φ; done σ(h A f) = Φ et h A f = 0; or, ^ etant
concordante, f e σ(fe) n (̂έ/) = o{h A g) done h A g Φ 0 et alors f Φg,
absurde! Ainsi, on a bien σ(/) = σ(g).

Reciproquement, si σ(f) = α(flf), si fe 6 P est tel que fe Λ / = 0, alors

Φ = (̂fe Λ /) = tf(fe) Π <x(/) = tf(fe) Π σ(flf) = σ(fe Λ g)

done fe Λ g = 0, et vice-versa, done / = g.
Par consequent, si on pose σ(/) = </(/) alors 5(δ) = φ, σ(f V ff) =

^(7) U S(̂ )» ^(/Λ ^) = 5(/) Π σ(g)(oϋ.f,geP) et σ est bien un isomor-
phisme du reticule ^~ des filets de G dans celui des parties de /.

2* Theoreme de realisation* Tout groupe reticule admet une realisa-
tion concordante et completement reguliere.

Demonstration.
1°. Soit G le groupe reticule dohne, ^ le reticule des filets de G,

Ω Γensemble des ultrafiltres de ^ . Pour tout UeΩ soit Pσ = {feG\
il existe a e U tel que / . Λ α = 0}. Alors P^ + P ^ c P ^ , En effet, si
/, # 6 G et /3, 7 e U sont tels que 7- Λ β = 0, </_ Λ 7 = 0 alors

(/ + 0)- Λ (β A 7) ^ /- + flr- Λ G8 Λ 7) = (/- V ^1) Λ (/3 Λ 7)

= ( / Γ Λ /8 Λ 7) V (ffl Λ /5 Λ 7) = 0
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avec β A Ύ e U, done/ + g e Pσ. De meme, Pσ Π (—Pu) = {/β G | il existe
a e U tel que / Λ « = 0}, En effet, si f Aa = 0 alors de / = /+ V/-
vient 0 = / Λ a = (f+ V /-) Λ a = (/+ Λ α) V (/I Λα) done /_ Λ α=0,
(-/)_ Λ α = / + Λ α = 0; reciproquement. Enίin, G = P,, U {-Pu). En
efFet, si fφPπ alors /_ Λ tf Φ 0 quelque soit aeU, done /+ 0 Ϊ7 (car
/_ Λ /+ = 0) et alors il existe /3 e U tel que 0 = /+ Λ β = ( - / ) - Λ ft
e'est-a-dire —fePπ.

2°. Nous venons de voir que Pυ defίnit un pre-ordre total compatible
sur G. Soit G'v = GI(Pσ Π(-Pu)) et considerons Pt

u^Pϋl(Pϋ r\(-Pσ)) done
Pσ definit un ordre total compatible sur Gπ. Pour tout/eG soit f'σ son
image canonique en G'π. Si / 6 G posons θ(f) = (/'σ)σ€α e IltreiG^ et
montrons que θ est un isomorphisme de G dans le produit direct ordonne
Π^ΘΩ G'u. D^abord θ(f + g) = θ(f) + θ(g) car (/ +_(/){, = f'σ +j'σ quel-
que soit £7GJ2. Si / ^ 0 il existe Z7eβ tel que fe U done / Λ α ^ 0
quelque soit α e Uetf $ Pπ n (~P^), e'est-a-dire /[, ^ 0 et alors θ(f)Φθ.
Si feP alors /_ = 0 done/eP^ quelque soit UeΩ et alors 6>(/) = (/^)ί76Ω
est positif dans Π^GΩG^. Reciproquement, s i / 0 P alors /_ =£ 0 done il
existe U e Ω tel que /_ e Ϊ7 et alors fφPπ car /_ Λ # ^ 0 quelque soit
α e Ϊ7, done 0(/) n'est pas positif, car f'π 0 P'π .

3°. ^ est une realisation, car prπθ(G) — Gπ quelque soit UeΩ; en
efFet, si f'σ e G'σ avec fe G alors Wu&(f)—fu- L'isomorphisme θ est con-
cordant, e'est-a-dire, θ(fAg)= ud{θ(f), %)}, θ(f V flr) = sup {^(/), %)}
(inf et sup pris dans ΓLGΩ G'σ); pour cela, on doit montrer que prσθ(fAg) =
inf {prσθ(f), prσθ(g)} (inf pris dans G^) pour tout Ϊ7 e β (analoguement
pour le sup). Puisque Gπ est totalement ordonne, alors par exemple
f'u ^ g'u dans g'u — f'u =- {g — f)'u £P'u et alors g — fePUy done il existe
β e U tel que (# — /)_ Λ β = 0 or, alors / Λ g et / sont quasi-egaux
selon le pre-ordre defini par Pσ, e'est-a-dire, / Λ ^ — /eP^nί—P σ ) ; en
effet, f Ag -f A β = 0 A (g - f) A β = - (flf - / ) - Λ /3 = 0. Done

Λ flf) = (/ Λ flr)^ = A = Λ Λ flk - inf {pr^f), prπθ{g)}.

4°. Montrons maintenant que la realisation est completement reguliere.
Soit UeΩ,feP tel que ί/0 σ(f)= {Ve Ω\prvθ(f) Φ 0}, done prσθ(f) = 0
et alors fePσΠ (Pu) ainsi, il existe g eP,g eU, tel que f Ag = 0, done

= 0 et par consequent σ(/) Π ̂ (^) = Φ; enfin pr^g) Φ 0, e'est-a-dire
Π (—iV), sinon il existe /8 e Ϊ7 tel que g Λ β = 0, absurde!

REMARQUE. On a σ(/) = {UeΩ\feU} quelque soit feG, et θ est
une realisation de HausdorfF. En efFet, &ifeG,feU, alors prσθ(f)Φθ,
car sinon / e Pυ Π (— P^) et il existe a e U tel que / Λ α = 0, absurde !



308 P. RIBENBOIM

Reciproquement, si fφ U il existe β e U tel que fAβ=0 done f e Pv Π
{-Pu) et alors prvθ(f)=0. II resulte que si U, VeΩ, Uφ V, il existe
f,gePte\ que feUjφ V, g e V,fΛg = 0, done gφ U et alors Ueσ(f),
V e <7(flr), / Λ flf = 0, done σ(/) n <τ(ff) = Φ
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AN INVERSION THEOREM FOR LAPLACE-STIELTJES

TRANSFORMS

DANIEL SALTZ

E. Phragmen [2; p. 360] showed that under certain assumptions of
boundedness for F(x),

lim (V(τ)[l - exp ( - e"-^8)] dτ = Γ F{τ)dτ .
S-> + ooJθ JO

If we write 1 - e x p ( - es{t~τ)) = Σ Γ ( - l)w + 1 cnx{t^\n\ in the above for-
mula, and interchange sum and integral, we formally obtain

lim = Γ F(τ)dτ .
Jonl

G. Doetsch [1; pp. 286-288] showed that for reals s, if f(s) = ί°°e~sτF(τ)dτ
Jo

converges absolutely in some half-plane, then

(' F(τ)dτ = lim ΣΓ ^~ ^^ f(ns)enst for t > 0 .
Jθ S->+oo W !

This paper will generalize this result to Laplace-Stieltjes transforms

(I) f(s)

and will eliminate the assumption of absolute convergence. Unless
specifically written otherwise, all integrals will be evaluated from 0
to + oo and all summations from 1 to oo, We shall need the following
two propositions [3; pp 39,41]:

LEMMA 1. If the integral

/(so) = je-'o dα(t)

converges with Rs0 > 0, then

f(s0) = sQ jβ-'o« a(t)dt - α(0)

and \e~SQt a(t)dt converges absolutely if sQ is replaced by any number

with larger real part.
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Lemma I remains valid for Rs0 < 0 if we insist that α(oo) = 0. In
this paper we shall make the following

Assumption. In (I), s is real and positive, and a(t) is of bounded
variation in (0, R), for every R > 0.

LEMMA 2. If the integral

e~^ da(τ)

converges for s = s0 and if the real part <y of s0 is positive, then

a(τ) = 0(e7τ) as τ —• oo.

We shall now prove some useful lemmas.

LEMMA 3. 1/(1) converges in some half plane Γ, then

(a) Km I (" [1 - exp ( -
s^ool Jσ

(b) Mm I Γ [1 - exp ( -
σ->oo I J σ

= 0 for fixed a > 0 ,

= 0 for fixed s > 0 .

Proof. Since 1 - exp ( - e~Sτ) = O(e^) for s,τ > 0, a standard
argument involving integration by parts shows that

[1 - exp ( - e~"*)]da(τ) = O{e-' [ \a(σ)\ + s]}

for s e Γ and σ > 0. The desired result now follows from Lemmas 1
and 2.

LEMMA 4. // (I) converges in some half-plane Γ, then for s e Γ'
where Γf is a half-plane properly contained in Γ,

y = fd α ( Γ ) 2 ( " " J | ) W + 1 βws(ί - r) .

Proof. Upon integration by parts, application of Lemma 2, and

some algebra, the desired equality takes the form

1 {% - 1)! Γ α ( T ) d T ~ ) ̂  (» - 1)! ( } '

To verify this latter equality, it suffices to show that

Σβ" (n - 1)1 leMS(ί~τ) | a ( T ) | d T < °° '

but this follows from Lemma 1.

LEMMA 5. If (I) converges in some half-plane Γ, then
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a(t) - α(0) = Km Σ (~ I)"*1 f(ns)enst

s-*+oo nl

for all non-negative t which are points of continuity of a(t).

Proof. We have

(_ iy*+l p / 1\w +

Σ ( γ /(nβ)β»" - Jdα(r) Σ ( γ

= f[l - exp(- es(t~^)]da(τ) ,

the interchange in the order of summation and integration being jus-
tified by Lemma 4. For t = 0 (ί > 0) and a point of continuity of α(ί),
write the integral on the right as

5δ p~/ pt-δ ft-δ foo \

+ (or, for t > 0, + + ) ,
o Jδ \ Jo Jc-δ Jt+δ/

with 0 < δ < t chosen that the total variation of a on [0, δ] (respectively.
(resp.,\ ).

δ\ J t + δ /

S δ / Γί+δ\

(resp., \ ) is less than ε for all s > 0. (For t > 0,
0 V Jί-δ/

= α(ί - δ) - α(0) - I " exp [- es(ί~τ)]dα(τ), and this clearly tends
o Jo

to a(t - δ) - α(0) as s -» oo. Thus the integral f°° is a(t) - α(0) + o(l)
Jo

as s—> oo).

We can now prove our main result.

THEOREM If a(t) — \a(t+) + α(ί")]/2 /or t > 0 αmϋ (I) converges
for some s > 0,

l ί m y ( - D , ( ) , ί W ° ) « ( ° ) 1 a * ) » - * =

Proof. Define

a(τ) - [a(0+) - «(0)] sign τ, τ > 0

* < r ) = W 0 )

for t — 0, and

„, , ί«(τ) - [α(ί+) - «(«-)] sign (r - t), τ > 0

(a(t) , τ = 0

for ί > 0, /3 is then continuous at t, and
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\f(s) - [a(t+) - a(t-)]e~s\ t > 0 .

Now apply Lemma 5 with β and F substituted for a and /, respec-
tively.
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STATISTICAL METRIC SPACES

B. SCHWEIZER AND A. SKLAR

Introduction* The concept of an abstract metric space, introduced
by M. Frechet in 1906 [2], furnishes the common idealization of a large
number of mathematical, physical and other scientific constructs in which
the notion of a " distance" appears. The objects under consideration
may be most varied. They may be points, functions, sets, and even
the subjective experiences of sensations. What matters is the possibility
of associating a non-negative real number with each ordered pair of
elements of a certain set, and that the numbers associated with pairs and
triples of such elements satisfy certain conditions. However, in numerous
instances in which the theory of metric spaces is applied, this very
association of a single number with a pair of elements is, realistically
speaking, an over-idealization. This is so even in the measurement of
an ordinary length, where the number given as the distance between
two points is often not the result of a single measurement, but the
average of a series of measurements. Indeed, in this and many similar
situations, it is appropriate to look upon the distance concept as a
statistical rather than a determinate one. More precisely, instead of
associating a number—the distance d(p, q)—with every pair of elements
p, q, one should associate a distribution function Fm and, for any positive
number x, interpret Fpq(x) as the probability that the distance from p
to q be less than x. When this is done one obtains a generalization of
the concept of a metric space—a generalization which was first introduced
by K. Menger in 1942 [5] and, following him, is called a statistical
metric space.

The history of statistical metric spaces is brief. In the original
paper, Menger gave postulates for the distribution functions Fpq. These
included a generalized triangle inequality. In addition, he constructed
a theory of betweeness and indicated possible fields of application.

In 1943, shortly after the appearance of Menger's paper, A. Wald
published a paper [14] in which he criticized Menger's generalized triangle
inequality and proposed an alternative one. On the basis of this new
inequality Wald constructed a theory of betweeness having certain
advantages over Menger's theory [15].

In 1951 Menger continued his study of statistical metric spaces in
a paper [7] devoted to a resume of the earlier work, the construction
of several specific examples and further considerations of the possible
applications of the theory. In this paper Menger adopted Wald's version
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of the triangle inequality.1

Statistical metric spaces are also considered by Menger in the last
chapter of his book Geometrie Generate [9] and references to these
spaces are scattered throughout his other works, e.g., [6], [8].2

In the present paper we continue the study of statistical metric
spaces. Our paper is divided into three parts, each devoted to one
main topic. They are :

( I ) The axiomatics of statistical metric spaces, with particular
emphasis on the triangle inequality

(II) The construction and study of particular spaces
(III) A consideration of topological notions in statistical metric

spaces and a study of the continuity properties of the distance function.3

In concluding this introduction, we wish to express our thanks to
Professor K. Menger for his never-failing interest and encouragement,
and to our colleagues, Professors T. Erber and M. McKiernan, for their
many valuable comments and suggestions.

I. DEFINITIONS AND PRELIMINARIES

1. Statistical metric spaces. As is customary, we call a real-valued
function defined on the entire real line a distribution function if it is
non-decreasing, left-continuous and has inf 0 and sup 1. We shall use
various symbols for distribution functions. However, in the sequel, H
will always denote the specific distribution function defined by

x > 0 .

We shall also, for convenience, adhere to the convention that, for any
distribution function F, and any x > 0, F(xjO) = 1, while F(0/0) = 0.

For purposes of reference and comparison, we list here the postulates,
due originally to Frechet, for an ordinary metric space. A metric space
(briefly, an M-space) is an ordered pair (S, d), where S is an abstract
set and d a mapping ofSxS into the real numbers—i.e., d associates

1 However, as Prof. Menger informs us, even before the paper was written, both he
and Wald, in a number of conversations, had come to feel that the Wald inequality was
in some respects too stringent a requirement to impose on all statistical metric spaces.
Some support for this is furnished in the present paper (Theorems 5.4 and 6.4).

2 In addition, in a note on Menger's paper [7], A. Spacek [13] has considered the
question of determining the probability that a random function defined on every pair of
points in a set is an ordinary metric on that set. In particular, he has established necessary
and sufficient conditions for such a random function to be a metric with probability one.
The connection between the concepts of Spacek and that of a statistical metric is considered
in [10].

3 Some of the results of this paper have been presented in [12].
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a real number d(p, q) with every pair (p, q) of elements of S. The
mapping d is assumed to satisfy the following conditions :

(i ) d(P, Q) = 0 if, and only if, p = g . (Identity)

(ii) d(p,?) ^ 0 . (Positivity)

(iii) d(p, g) = c%, p) . (Symmetry)

(iv) d(p, r) <£ eZ(p, g) + d(q, r) . (Triangle Inequality)

DEFINITION 1.1. A statistical metric space (briefly, an SM-space)
is an ordered pair (S, ̂ ) where S is an abstract set (whose elements
will be called points) and j^~ is a mapping oΐ S x S into the set of
distribution functions—i.e., ^ associates a distribution function ^{p, q)
with every pair (p, q) of points in S. We shall denote the distribution
function ^ (p, q) by Fpq, whence the symbol Fpq(x) will denote the value
of Fpq for the real argument x. The functions Fpq are assumed to satisfy
the following conditions :

I. Fpq(x) = 1 for all x > 0 if, and only if, p = q.

II. 1^(0) = 0.

III. Fpq = i^^.

IV. If FM(a0 = 1 and Fqr(y) - 1, then Fpr(a? + y) = 1.

In view of Condition II, which evidently implies that Fpq(x) = 0 for
all a? ̂  0, Condition I is equivalent to the statement: p = q if, and only

Every Λf-space may be regarded as an Sikf-space of a special kind.
One has only to set Fpq(x) = J3(α5 — d(p, q)) for every pair of points (p, q)
in the ikf-space. Furthermore, with the interpretation of Fpq{x) as the
probability that the distance from p to q is less than x, one sees that
Conditions I, II, and III are straightforward generalizations of the cor-
responding conditions i, ii, iii. Condition IV is a ' minimal' generalization
of the triangle inequality iv which may be interpreted as follows : If
it is certain that the distance of p and q is less than x, and likewise
certain that the distance of q and r is less than y, then it is certain
that the distance of p and r is less than x + y.

Condition IV is always satisfied in If-spaces, where it reduces to
the ordinary triangle inequality. However, in those &M"-spaces in which
the equality Fpq(x) = 1 does not hold (for pφ q) for any finite x, IV will
be satisfied only vacuously. It is therefore of interest to have 'stronger'
versions of the generalized triangle inequality. We shall consider two
such versions in detail. Before doing so, it is convenient to make the
following:

DEFINITION 1.2. A triangle inequality will be said to hold universally
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in an SM-space if and only if it holds for all triples of points, distinct
or not, in that space.

2 Menger spaces. In his original formulation [5], Menger gave as
a generalized triangle inequality the following:

IVm. Fpr(x + y)^ T(Fpq(x), Fqr(y)) for all x, y ^ 0 ,

where T is a 2-place function on the unit square satisfying:

(a) 0 ^ T(a, b) ^ 1 ,

(b) T{c, d) ^ Γ(α, 6) for c ^ α, d ^ b ,

(c) T(α, 6) = Γ(6, α) ,

(d) Γ(l, 1) - 1 ,

(e) Γ(α, 1) > 0 for a > 0 .

In view of condition (d), it follows that IVm contains IV as a
special case. Because of the rather general nature of the function Γ,
about the most that can be given as an interpretation of IVm is a
statement such as: Our knowledge of the third side of a triangle
depends in a symmetric manner on our knowledge of the other two
sides and increases, or at least does not decrease, as our knowledge of
these other two sides increases. The interpretation can, however, be
made precise by choosing T to be a specific function. There are numerous
possible choices for T. We list here six of the simplest:

T(α, 6) = Max(α + b - 1, 0), i.e., Γ = Max(Sum-l, 0);

T(a,b) = ab, ,, Γ = Product;

T(a, b) = Min (α, 6), ,, T = Min

T(α, 6) = Max (α, 6), „ T = Max;

T(a, b) = a + b - ab, ,, T= Sum-Product;

T(a, b) = Min (a + b, 1), ,, T = Min (Sum, 1).

The six functions are listed in order of increasing 'strength', where T"
is said to be stronger than V (and T weaker than ϊ7") if T"(α, 6) ^
T"(α, 6) for all (α, 6) on the unit square with strict inequality for at
least one pair (α, 6). Evidently, if IVm.holds for any given T, it will
hold a fortiori for all weaker T's. For T = Product, IVm may be inter-
preted as follows: The probability that the distance of p and r is less
than x + y is not less than the joint probability that, independently,
the distance of p and q is less than a?, and the distance of q and r is
less than y. For Γ = Min (Max), the interpretation is: The probability
that the distance of p and r is less than x + y is not less than the
smaller (larger) of the probabilities that the distance of p and q is less
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than x and the distance of q and r is less than y. Similar interpreta-
tions may be given to the other choices of T. However as the following
lemmas indicate, the three functions Γ4, T5, Td are actually too strong
for most purposes.

LEMMA 2.1. If an SM-space contains two distinct points, then IVm
cannot hold universally in the space under the choice T = Max.

Proof. Let p and q be two distinct points of the space and let x
and y satisfy 0 < y < x. Suppose IVm holds universally with T = Max.
Then,

Fpq(x) ^ Max (Fpq(x - y), Fqq(y)) = 1 .

But x can be any positive number, which by Condition I means p = q
and contradicts the assumption p Ψ q.

LEMMA 2.2. If an SM-space is not an M-space, and if IVm holds
universally in the space for some choice of T satisfying (a)—(e), then
the function T has the property that there exists a number a, 0 < a < 1,
such that T{a, 1) ̂  α.

Proof. If an SM-space is not an Λf-space, then there is at least
one pair p, q of (necessarily distinct) points for which Fm assumes values
other than 0 or 1. By the left-continuity and monotonicity of F9q, this
means that there is, not merely one point, but an open interval (x, y)
on which we have 0 < Fm < 1. Now assume that T(a, 1) = a + φ(a),
where φ(a) > 0 for 0 < a < 1. Let z be any point in (x, y) and take
t > 0. Then

Fpq(z + t) ^ T(Fpq(z), FJjt))

= T(Fpq(z), 1)

= Fm{z) + φ(Fpq(z)) .

Letting ί —• 0 + , we have:

Fpq(z+) s Fpq(z) + φ(Fpq(z)) > Fpq(z) .

Thus Fpq is discontinuous at z, and therefore at every point of (x, y).
But this is a contradiction, since a non-decreasing function can be dis-
continuous at only denumerably many points.

LEMMA 2.3. // IVm holds universally in an SM-space and if T
is continuous, then, for any x > 0, T(Fpq(x), 1) ̂  Fpq(x).

Proof. Let p, q and x > 0 be given and choose y such that 0 < y < x.
Then,
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Fm(x) ^ T(Fm(x - y), Fqq{y)) = T(Fpq(x - y\ 1) .

Letting y —> 0 + , we obtain

Fpq(x) ^ limy^+T(Fm(x - y), 1) .

But, by the assumed continuity of T,

\imy_>Q+T{Fpq(x - y), 1) = T{\rniy^Fpq{x - y), 1) ,

while, by the left-continuity of Fpqf

pq(x -y) = Fm(x) .

This completes the proof.
Motivated by these lemmas, and noticing that the three weaker

functions in our list of T's satisfy T(α, 1) = α, we are led to replace
conditions (a), (d) and (e) by the condition,

(a') T(a, 1) = α , Γ(0, 0) = 0 .

This new condition implies that T ^ Min, for we have the inequalities

T(a, b) ^ Γ(α, 1) = a ,

T(a9 b) = Γ(δ, α) ^ Γ(6,1) = δ ,

whence Γ(α, b) <J Min(α, 6). Thus, under (a'), Min becomes the strongest
possible universal T. Similarly, the weakest possible T satisfying (a'),
(b) and (c) is the function, henceforth denoted by Tw, which is given by,

, y) = |
^ , otherwise.

It must not be construed, however, that functions stronger than Min
or weaker than Tw thereby lose all interest; in fact, on numerous
occasions, we shall find it of value to determine under what conditions
—i.e., for which points p, q, r and for which numbers x, y—IVm holds for
a function stronger than Min or weaker than Tw.

To the conditions on T considered thus far we also add the associa-
tivity condition,

(d') T[T(a, 6), c] - T[a, T(b, c)] ,

which permits the extension of IVm to a polygonal inequality. Accord-
ingly, we make the following:

DEFINITION 2.1. A Menger space is an Silί-space in which IVm
holds universally for some choice of T satisfying conditions (a'), (b), (c)
and (d')
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The following lemma shows that, in determining whether or not an
STkf-space is a Menger space, only triples of distinct points need be
considered.

LEMMA 2.4. If the points p, q, r are not all distinct, then IVm
holds for the triple p, q, r under any choice of T satisfying (a'), (b), (c)
and (d')

Proof. We need only consider the choice T — Min. If p = r, then
Fpr"= i ϊand the conclusion is immediate. If p = q Φ r, then for x9 y ^ 0,

Min (FJpi), Fqr(y)) = Min(H(x),

3 Wald spaces* The other generalized triangle inequality that we
consider is the one due to A. Wald [14, 15]. It is:

IVw. Fpr(x) ^ [Fpq * Fqr](x) , for all x ^ 0 ,

where * denotes convolution, i.e.,

[Fm * Fqr](x) = Γ FJx - y)dFqr(y) .

Since Fm(x — y) = 0 for y ^ x, and Fqr(y) = 0 for y ̂  0, we may evidently
write

[FM * Fqr](x) = f
Jo

Since the convolution of the distribution functions of two inde-
pendent random variables gives the distribution function of their sum,
the interpretation of IVw is: The probability that the distance of p
and r is less than x is not less than the probability that the sum of the
distance of p and q and the distance of q and r (regarded as independent)
is less than x.

DEFINITION 3.1. A Wald space is an SM-space in which IVw holds
universally.

THEOREM 3.1. A Wald space is a Menger space under the choice
T == Product.

Proof. In a Wald space, for any x, y >̂ 0, we have

Fw{x + y)^ \X+VFpq(x + y - z)dFqr(z)
Jo

ί
x+yΓ Cx+y-z "1

[Jo dFpq(t)\dFgr(z)
= Jj dFJt)dFJz).

t+z^x+y
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Now,

JJ dFpq(t)dFqr(z) ^ JJ dFpq(t)dFqr{z)
t+z^x+y O^z^y

since the rectangle {(t, z) 0 ^ t ^ x, 0 ^ z ̂  T/} is contained in the triangle
{(t, z) t, z ^ 0, t + z ^ x + y] and the F's are non-decreasing. But,

JJ dFpq(t)dFqr(z) = ^dFpq(t)dFqr(z)

= \XdFpq(t)\VdFqr(z) = Fm(x)Fqr(y) .
Jo Jo

Combining the various inequalities we obtain

( 1 ) Fpr(x + y ) ^ Fpq(x)Fqr(y)

which is IVm with T = Product, and completes the proof of the theorem.

COROLLARY. If the Wald inequality holds, then so does the in-
equality IV.

Proof. By (1), if Fpq{x) = 1 and Fqr(y) = 1 then Fpr(x + y) = 1.

The following lemma is a counterpart to Lemma 2.4:

LEMMA 3.1. If the points p, q, r are not all distinct, then IVw
holds for the triple p, q, r.

Proof. If p — r, this is immediate, since in this case, Fpr = H.

Otherwise, if p = q Φ r, then, for x ^ 0,

i^r(a0 - Fqr(x) = \XdFqr(y) = f V(a? - y)dFqr(y)
Jo Jo

= f VM(ίc - y)dFqr(y)
Jo

The case p Φ q — r follows on interchanging r and p.

THEOREM 3.2. // in an SM-space, IVm holds under T = Max /or
αίί triples of distinct points, then the space is a Wald space.

Proof. Let p, q, r be distinct. Then for any x ^ 0,

Fpr{x) ^ Max (FJP), Fqr(x)) = Fαr(x) =

^(α? - ^/)d^r(i/) ,

since 0 ^ i^β(a? — y) ^ 1. Therefore IVw holds for all triples of distinct
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points in the space. But, by the preceding lemma, IVw holds automa-
tically for triples of non-distinct points. Consequently, IVw holds for
all triples of points in the space.

This theorem is, in a sense, a partial converse to Theorem 3.1. As
will be seen later, T = Max in the theorem cannot be weakened to
T = Min, let alone T = Product. Thus the true converse of Theorem 3.1
is false.

II. PARTICULAR SPACES

4* Equilateral spaces. The simplest metric spaces are the equilateral
spaces in which

0 , if p = q ,

where a is positive.
Accordingly, we call an SM-space equilateral if, for some distribu-

tion function G satisfying G(0) = 0,

( 1 ) m() \
[H(x) , if p = q ,

where H is the distribution function defined in § 1. From (1) it follows
that the Conditions I-IV defining an SM-space are satisfied.

THEOREM 4.1. The means, medians, etc., of the statistical distances
in an equilateral SM-space form an equilateral M-space.

Proof. Any one of these quantities is zero when p — q and a fixed
positive number for any p, q when p φ q.

THEOREM 4.2. In an equilateral SM-space, the Menger triangle
inequality IVm holds for any triple of distinct points under T — Max,
and universally under T = Min.

Proof. Since G is non-decreasing,

G(x + y)^ Max (G(x), G(y)) ^ Min (G(x), G(y)) ,

and G(x + y) ^ Min (G(x), 1) .

COROLLARY. An equilateral SM-space is a Wald space.

Proof. This is a direct consequence of Theorem 3.2.
There are also equilateral SM-spaces in which IVm holds under a

stronger choice of T.
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E X A M P L E 1.

(0, x ^ 0 ,

G(x) =\x, 0 ^ x ^ 1 ,

l l , l^x.

For any triple of distinct points in this space, IVm holds under
T = Min (Sum, 1),since in all cases we have G(x + y) ^ Min (G(x) + G(y), 1).

EXAMPLE 2.

G(x) = ,
- e~x , a; ^ 0 .

For any triple of distinct points in this space, IVm holds under
T = Sum—Product. This follows from the fact that e~xe~y = e~(x+y\

However, even through, as Examples 1 and 2 show, there are
equilateral SM-spaces in which the generalized triangle inequality IVm
holds under a stronger T than Max, the result of Theorem 4.2 is the
best possible. This is shown by:

EXAMPLE 3.

G(x) =

0 , x^O,

a , 0 < x ^ k ,

, tί> \ «Λ/ ^ ^ ΰ/v

1 QZr / m*

w h e r e 0 < a ^ b < 1 and k is any positive n u m b e r . Then for 0 < x ^ k,
k < y ^ 2ky we have G(x + y) — b — Max (α, 6), whence IVm cannot hold
u n d e r any choice of T which is s t r o n g e r t h a n Max .

5. Simple spaces. A class of SM-spaces, more i n t e r e s t i n g t h a n t h e
equilateral , m a y be obtained as follows:

L e t (S, d) be a n M-space and G a dis tr ibut ion function, different
from H, satisfying G(0) = 0. For every pair of points p, q in S, define
t h e dis tr ibut ion function Fm as follows:

(2) M
(H(x) ,

D E F I N I T I O N 5.1. An SM-space (S, ̂ ~) is said to be a simple space
if and only if t h e r e exis ts a metr ic d on S and a dis tr ibut ion function
G satisfying G(0) = 0, such t h a t , for every pair of points p, q in

, q) = Fpq is given by (2). F u r t h e r m o r e , we say t h a t (S, ̂ ) is
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the simple space generated by the Af-space (S, d) and the distribution
function G.

THEOREM 5.1. A simple space is a Menger space under any choice
of T satisfying (a'), (b), (c) and (<Γ).

Proof. It is sufficient to show that IVm holds universally under
T = Min, since this is the strongest choice of T possible. Thus, in view
of Lemma 2.4, we have only to show that for p, q, r distinct,

M i n [G

Now, since d is an ordinary metric,

d(p, r) ^ d(p, q) + d(q9 r) .

Thus,

( 4 ) x + y ^ χ + y

d{p, r) ~ d{p, q) + d(q, r) '

Furthermore, since d{p, q) and d(q, r) are positive,

( 5 ) Max [χld(p, q), y\d{q, r)] ̂  x + y

d(p, q) + d(q, r)
^ Min [xjd(p, q), y\d{q, r)]

with equality on either side if and only if x/d(p, q) — yjd(q, r). Con-
sequently, on combining (4) and the right-hand inequality in (5) we have,

p Min [xldfa q), y\d{q, r)] ,
d(p, r)

which, since G is non-decreasing, implies (3) and completes the proof.

COROLLARY 1. An equilateral M-space generates an equilateral
SM-space.

COROLLARY 2. If G(x) = H(x — 1), the generated SM-space reduces
to the generating M-space.

Proof.

Fm(x) = H{-^~—r ~ l ) = H{x - d(p, q)) .

In most simple spaces T = Max will be too strong since the left-
hand inequality in (5) shows that, for a triple of distinct points p, q< r
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such that d(p, r) = d(p, q) + d(q, r), IVm under T = Max fails. Indeed,
in simple spaces having sufficient structure the choice T = Min implicit
in Theorem 5.1 is the best possible.

THEOREM 5.2. If {S, d) is a finite-dimensional Euclidean space, G
a continuous distribution function such that G{0) = 0 and 0 < G{x) < 1
for all x > 0, then Min is the strongest T under which IVm holds for
all triples of distinct points.

Proof. Suppose T is stronger than Min. Then there exists at least
one pair of numbers, a, 6(0 < α, b < 1), such that T(a, b) > Min {a, δ).
We distinguish two cases:

(i) If a = δ, choose x — y such that G(x) = α, and choose d(p, g) =
d{q, r) = 1, d(p, r) = 2. Then, since equality is attained in (3), we cannot
have T{a, a) > Min (a, a) = α.

(ii) If α ̂  6, we may suppose that a < δ. Let ε = Γ(α, 6) — Min (a, b)
and choose u, v so that a = G(^) and δ = G(v). Such numbers w, v clearly
exist since G is a continuous distribution function; moreover u < v.
Also, since G is continuous, there exists an h > 0 such that

G(u + h)< G(u) + e = α + ε .

Now let d(g, r) = t be fixed and choose

d(V> Q) = s such that <
s + ί i; — w

, r) = d(p, q) + d(g, r) = s + ί ,

x = ĉZ(p, g) and 2/ = w%, r) .

Then,

Min [G(xld(p, q)), G(yld(q, r))] = Min [G(u), G(v)] = Min (α, δ) = a .

Furthermore,

) G φ
, r)/ W + ί / V s + ί

which contradicts the hypothesis

G(X + V) ^ T(α, δ) = Min (α, δ) + ε = a + e .
\d{p,r)J

THEOREM 5.3. In a simple space, the means {if they exist), medians,
modes {if unique) each form an Mspace homothetic" to the original
M-space.

4 Two ilf-spaces, Mi and M2, with distance functions d\ and d2, respectively are said to
be homothetic if there exists a number a > 0 and a one-to-one mapping, /, from Mi to ikf2

such that, for every p, qβMi, dι(p, q) = ad2(f(p),f(q)).
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Proof. Let E[G] = [°°xdG(x) = μ.
Jo

If p = q, then

Jo

If p Φ g, then

#[^W1 = [°°xdG{xld{p, q))
Jo

which on substituting t = xjd(p, q) becomes

E[Fpq] = cZ(p, g)l tdG(t) = μcf(p, g) .
Jo

The other cases are similar.
In Theorem 3.1 it was shown that every Wald space is a Menger

space under T = Product and in the corollary to Theorem 4.2 that every
equilateral space is a Wald space. However, as the following examples
show, there exist simple spaces which are not Wald spaces. Thus the
converse of Theorem 3.1 is false. For, if in a Menger space IVm holds
under T = Min, it holds a fortiori under T = Product.

THEOREM 5.4. There exist simple spaces which are not Wald spaces.

Proof. We give two counter-examples:

EXAMPLE 4.

Fpq(x) = 1 - e-
χld(p q) .

With d(p9 q) = R, d(q, r) = S and d(p, r) = Γ, one obtains (taking
into account the fact that the lower limit of the convolution integral is
0 and the upper limit is x)9

1 (Re-χlR - Se~xls) , R Φ S ,

( 6 )
HL\e-*ι* ,
RJ

R — o

RJ

In order that the Wald inequality IVw be satisfied, we must have

( 7) Fpr(x) ^ [Fm * Fqr](x) , for every x ^ 0 ,

Suppose R Φ S, say R > S. Then, keeping x fixed and applying the
mean value theorem to the second term on the upper right-hand side
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of (6), we have

( 8 ) [Fpq * Fqr](x) = 1 - ( l + ψje-*» , where S < t < R .

Furthermore, if R = S, we observe, on comparing (8) with (6), that (8)
holds with t = R. Thus, in both cases, in order that (7) hold, it is
necessary that

( + iLV*/* ^ e-*lτ , for all x ^ 0

that is,

1 + JL ^ eχ(m-nτ) f f o r aii a ^ o .

This will be true if and only if (1/ί - 1/T) ^ 0, i.e., T ^ ί. In particular,
therefore, it is necessary that T ^ R. But this means that the side of
the triangle pqr whose length is T certainly cannot be the longest side
of that triangle. Thus we conclude : If d(p, r) 2> Max (d(p, q), d{q, r)),
then the Wald inequality will fail for sufficiently large x.

EXAMPLE 5.

x ^ 0 ,

0 ^ x

x ^

In this simple space, one can construct an example in which IVw
holds for x sufficiently small and again for x sufficiently large, but fails
in an intermediate range. For instance, if, d{p, q) = 1, d(q, r) — 3, and
d(p, r) = 3.75, then for 2.50 < x < 3.68, we have [Fpq * Fqr](x) > Fpr(x).

6. Normal spaces. Statistical metric spaces also arise very naturally
in the following manner: Let p, q, , be random variables on a common
ikf-space E with distance function d. Then d(p, q) is a random variable
on the Cartesian product E x E. Let Fm be the distribution function
of d(p, q). Then the ordered pair (S, ̂ ~), where Sis the set {p, q, •}
and j^~ the class of ordered pairs {(p, g), Fpq} is an SM-space.

Particularly interesting SikΓ-spaces of this type result when S is
taken to be a set of mutually independent spherically-symmetric
Gaussian random variables on an ^-dimensional Euclidean space. We
have investigated these at some length. However, reproducing the details
here would take us too far afield • We shall therefore restrict ourselves
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to a brief presentation, without proof, of the main results.5

Let S* be the set of all mutually independent, spherically-symmetric,
^-dimensional Gaussian random variables, py g, « , e t c , on a Euclidean
w-space En. Let the ^-dimensional mean of p (which is a point in En)
be mp and the common standard deviation of the one-dimensional marginal
distributions of p be σp; and let the corresponding objects for q be mq

and σq, respectively. Then, upon setting

r = r(p, q) = d(mP9 mq) ,

where d is the metric in En, and

a = σ(p, q) = (σj + </p)1/2 ,

the distribution function, Fpqf of d(p,q) is given by:

/0 , x ^ 0 ,

a? ^ 0 ,

if (j > 0, where 7V is the modified Bessel function of order v; and by

if σ = 0. The distribution function Rn has been found in different
contexts, first by Bose [I]6, and more recently, by K. S. Miller,
R. I. Bernstein and L. E. Blumenson [11].

An SM-space (Sn, J^) will be called an (w-dimensional) normal space
if: (a) Sn is a subset of S* having the property that, for every point
m in En, there is at least one p in Sn whose expectation is m (b) For
p, q in Sn, ^~(p, q) = Fpq is given by (9). A normal space is called
homogeneous if σp = σq for all p, q in Sn; otherwise, ίnhomogeneous.

Normal spaces have the following properties:
1. For all n, the means7 of the Fpq& form a metric space. This metric

space is ' asymptotic in the large' to En in the following sense: If the
distance between the means of p and q is r, then (for σ fixed) the
mean of Fpq as a function of r is asymptotic to r for large r. In the
'small', the metric is definitely non-Euclidean. Furthermore, for σ > 0,
there is a positive minimum distance between distinct points. That is
to say, if p Φ q, and r = d(mp, mq) > 0, then the mean of Fpq} which
is the expected value of the random variable d{p, q), is greater than
\/2~σ[Γ(nl2 + l/2)/Γ(n/2)]. When r = 0 equality is attained.

δ The detailed discussion will be the subject of another paper.
6 See also Mahalanobis [3].
7 These always exist; indeed, the Fm's in a normal space have moments of all orders.
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2 All normal spaces are Menger spaces under the choice T — Tw.

3 A homogeneous normal space is a Menger space under the choice
T = Max (Sum—1, 0). For some triples of points, plf p2, p3, and for some
numbers, x, y—-subject to certain restrictions—IVm will hold under a
stronger choice of T. However, other than Tw and Max (Sum — 1, 0),
none of the 7"s listed in § 2 will hold universally. In particular, there
are triples of points for which IVm does not hold for all x,y under
T = Product. Consequently,

4. No normal space is a Wald space.
Whether IVm will hold in a normal space under a T that is weaker

than Product, yet stronger than Max (Sum—1, 0) is not known.

III. TOPOLOGY, CONVERGENCE, CONTINUITY

7 In the theory of metric spaces, the concept of a neighborhood
can be introduced and defined with the aid of the distance function.
A similar procedure applies in the theory of statistical metric spaces.
In fact, neighborhoods in SM-spaces may be defined in several non-
equivalent ways. Here we shall consider only one of these—the one
which seems to be the strongest, in that its consequences most nearly
resemble the classical results on M-spaces.

DEFINITION 7.1. Let p be a point in the SM-space (S, Jr). By an
ε, λ-neighborhood o f p , ε > 0 , λ > 0 , we mean the set of all points q in
S for which Fpq(ε) > 1 - λ. We write:

iVp(6,λ)= {q;Fpq(ε)>l-X} .

The interpretation is: Np(ε, λ) is the set of all points q in S for
which the probability of the distance from p to q being less than ε is greater
than 1 — λ. Observe that this neighborhood of a point in an SM-space
depends on two parameters.

THEOREM 7.1. In a simple space, Np(e, λ) is an ordinary spherical
neighborhood of p in the generating M-space.

Proof. For any p, q, we have

FPq(ε) = G(ε!d(p, q)) ,

which will be greater than 1 — λ provided only that d{p, q) is sufficiently
small.

LEMMA 7.1. If ex ^ ε2 and X1 g λ2, then Np(elf λx) c Np(ε2, λ2).
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Proof. Suppose qeNp(εlf λ j so that i^7

p α(ε1)>l-λ1. Then, Fpq(ε2) ^
FpaiSi) > 1 — λx ^ 1 — λ2, whence, by definition, q e Np{ε2, λ2).

THEOREM 7.2. If (S, ̂ ~) is a Menger space and T is continuous
then (S, JF~) is a Hausdorff space in the topology induced by the family
of ε, X-neighborhoods {Np}.

Proof. We have to show that the following four properties are
satisfied:

(A) For every p in S, there exists at least one neighborhood, Np,
of p; every neighborhood of p contains p.

(B) If Np and N2

P are neighborhoods of p, then there exists a
neighborhood of p, N3

P, such that N3

P a NpnN2

p.
(C) If Np is a neighborhood of p, and q e Np9 then there exists a

neighborhood of qf Nq9 such that Nq c JVP.
(D) If p Φ q, then there exist disjoint neighborhoods, Np and Nq,

such that peNp and q eNQ.

Proof of (A). For every ε > 0 and every λ > 0, peNp(ε, λ) since
Fpp(e) = 1 for any ε > 0.

Proof of (B). Let

# i ( 6 i , ^ ) = {g;F P Q ( £ l )> 1 - λ J

and

iV2

p(ε2, λ2) - {q; Fpq(ε2) > 1 - λ2}

be the given neighborhoods of p, and consider

Nl = {g; ^p g(Min (εlf ε2)) > 1 - Min (λlf λ2)} .

Clearly p e N3

P; and since Min (ε19 ε2) ̂  εx and Min (Xlf λ2) ̂  λ^ by
Lemma 7.1, ΛΓ3,, c N1,. Similarly, N*p c iSΓJ, whence ΛΓ̂ , c ΛΓ1, Π 2NΓJ.

Proo/ o/ (C). Let Np = {r; F p r ( O > 1 - λ j be the given neigh-
borhood of p. Since g e Npf

FJeJ > 1 - λx .

Now, Fpq is left-continuous at eλ. Hence, there exists an ε0 < ε1

and a λ0 < λ l f such that

Fpq(ε0) > l - λ o > l - λ 1 .

Let Nq= {r; Fqr(ε2) > 1 — λ2}, where 0 < ε2 < εx — ε0, and λ2 is chosen
such that
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Γ(l - λ0, 1 - λ2) > 1 - \ .

Such a λ2 exists since, by hypothesis, T is continuous, T(a, 1) = α, and
1 — λ0 > 1 — λi. Now suppose s e Nq, so that

Fqs(ε2) > 1 - λ2 .

Then

FM ^ T(Fpq(ε0), FJe, ~ ε0)) ^ T(Fm(e0), Fqs(e2))

λo, 1 - λ2) > 1 - λx .

But this means se Np, whence Nq c Np.

Proof of (D). Let p Φ q. Then there exists an x > 0 and an α,
0 g; α < 1, such that, .Fpβ(ίc) = α. Let

iSΓ, = {r; i^,(tf/2) > 6} and ΛΓβ = {r; JPβr(α?/2) > b} ,

where 6 is chosen so that 0 < b < 1 and T(b, b) > a. Such a number
b exists, since T is continuous and T(l, 1) = 1. Now suppose there is
a point s in Npn Nq, so that FP8(xl2) > b and Fqs(x\2) > b. Then

α = ^,e(a?) ^ T(Fps(xl2), Fqs{xl2)) ^ T{b, b) > a ,

which is a contradiction. Thus Np and Nq are disjoint.
It should be noted that the function T appeared only in the proofs

of (C) and (D). Also, the ε, λ-neighborhoods defined at various stages
in the proof may consist of only a single point. The situation here is
analogous to the one that arises in connection with isolated points in
ilf-spaces.

8 As is well known, in an M-space the notion of convergence of
a sequence of points {pn} to a point p may be introduced with the aid
of the neighborhood concept. There is also a well known theorem which
states that the distance function d is continuous on S: that is to say,
if pn-^p and qn —> q, then d(pn, qn) —• d(p, q). The proof of this theorem
depends strongly on the triangle inequality.8 Having defined neighbor-
hoods in SM-spaces, it is natural to consider the above questions in this
more general setting. In so doing, a significant difference arises, for
there are now two distinct types of questions regarding convergence and
continuity that must be considered: (a) Those relating to the distance
function, J^, considered as a function on S x S—either for a fixed
value of x, or for a range of values (b) Those relating to the individual
distribution functions Fpq—either for a fixed pair of points (p, q) or for

8 In fact, as Menger has shown [4, pp. 142-145], the triangle inequality is, in a certain
sense, the simplest condition implying continuity that can be imposed on a semi-metric.
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a set of pairs of points. As is to be expected, these questions are not
independent.

DEFINITION 8.1. A sequence of points {pn} in an SM-space is said
to converge to a point p in S (and we write pn —> p) if and only if,
for every ε > 0 and every λ > 0, there exists an integer Λf8|λ, such that
pneNp(e, λ), i.e., FPPn(ε) > 1 — λ, whenever n > M2>λ.

LEMMA 8.1. If pn-*p, then FPPn—>Fpp = H, i.e., for every x,
Fppn(%) —> Fpp(x) = H(x), and conversely.

Proof, (a) If x > 0, then for every λ > 0, there exists an integer
Mx>λ such that Fpp (x) > 1 — λ whenever n > MXtλ. But this means
that \imn^FPPn{x) = 1 = Fpp(x).

(b) If x =n0, then for every n, FPPγι(0) = 0 and hence l i m ^ i ^ (0) =
0 = Fpp(0).

The converse is immediate.

COROLLARY. The convergence is uniform on any closed interval
[a, b] such that a > 0, i.e., MXιλ is independent of x for a ̂  x 5g b.

Proof. For any x, a ̂  x ^ 6 , Fpp (x) ^ Fpp (a).

THEOREM 8.1. If (S, J?~) is a Menger space and T is continuous,
then the statistical distance function, ^ , is a lower semi-continuous
function of points, i.e., for every fixed x, if qn—*q and pn—*p, then,

lim mίn^Fp^x) = Fpq(x) .

Proof. If x = 0, this is immediate, since for every n, Fp q (0) =
0 = Fpq(0). Suppose then that x > 0, and let ε > 0 be given. Since Fpq

is left-continuous at x, there is an h, 0 < 2h < x, such that

Fpq(x) - Fpq(x - 2h) < ε/3 .

Set Fpq(x — 2h) = a. Since Γ is continuous, and Γ(α, 1) = a, there is a
number ί, 0 < ί < 1, such that

Γ(α, ί) > a - ε/3

and

T(a - ε/3, t) > a - 2ε/3 .

Since qn—>q and pn-*p, by Lemma 8.1 there exists an integer Mhιt

such that FqQ (fc) > t and F p p (fc)>ί whenever n > Λfftit. Now,
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FVn(x) > T(FPnq(x - h), FJ

and

FpJx -h)^ T(Fpq(x - 2h), FPPn(h)) .

Thus, on combining the various inequalities, we obtain

FvJx - h ) ^ T(a, t)>a- ε/3 ,

whence

FPn%{x) ^ T(a - ε/3, ί) > a - 2ε/3 > Fpq(x) - e .

COROLLARY 1. Let p be a fixed point and suppose qn—>q. Then

lim mίn^Fpqn(x) = Fpq(x) .

COROLLARY 2. If (S, ̂ ~) is a Wald space, then ^ is a lower
semi-continuous function of points.

Proof. By Theorem 3.1, in a Wald space, the Menger inequality
holds under T = Product, which is continuous.

THEOREM 8.2. Let (S, j^~) be a Menger space. Suppose that T is
continuous* and at least as strong as Max (Sum—1, 0). Suppose further
that pn —> p, qn—> q, and that Fpq is continuous at x. Then Fp q (x) —>
Fpq(x), i.e., the distance function ^ is a continuous function of points
at (p, q, x) or, expressed in another way, the sequence of functions
{Fp q } converges weakly to Fpq.

Proof. In view of Theorem 8.1, it suffices to prove upper semi-
continuity, i.e., that for ε > 0 and n sufficiently large,

( 1 ) FPnqn(x)< Fpq(x) + ε .

Suppose then that ε > 0 is given. Since Fpq is continuous, and in
particular therefore right-continuous at x, there exists an h > 0, such
that

( 2 ) Fpq(x + 2h) - Fpq(x)< ε/3 .

By Lemma 8.1, there is an integer M such that the conditions,

( 3 ) FPP||(Λ) > 1 - ε/3 f

(4) FqqJh) > 1 - eft ,

are simultaneously satisfied for all n> M. And from IVm, we have

9 Here, as well as in Theorems 7.2 and 8.1, the continuity of T may be replaced by the
weaker condition, lima.-y;LT(<x, x) = a.
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( 5 ) FJx + 2h) ^ T(Fpgn(x + h), Fq%(h))

and

( 6 ) Fmn(x + h)^ T(FVn(x), FPPn(h)) .

Now, by hypothesis, T is at least as strong as Max (Sum —1,0), so
that on combining (3) and (6) we obtain

( 7 ) FPQn(x + h)^ FPnqn(x) + FPPn(h) - 1 > FPnq{x) - e/3

and, on combining (7) with (4) and (5), we obtain

FJx + 2/0 ^ Fp%(x + h) + Fqqn(h) - 1 > FPnqJtx) - 2ε/3 .

Finally, combining (8) with (2) yields (1) and completes the proof.

COROLLARY 1. Under the hypotheses of Theorem 8.2, if qn-+ q,
then Fjnjx) ~* Fpq(x).

COROLLARY 2. // the functions Fpq are each continuous functions
for all p, q in S, then J?~ is a continuous function of points.

COROLLARY 3. // (S, J?~) is a Wald space and if the functions Fpq

are each continuous, then ^ is a continuous function of points.
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ON DERIVATIONS IN DIVISION RINGS

MORRIS WEISFELD

We are concerned with studying division rings in which Lie rings
of derivations are acting. The results include the determination of
dimension over the constant subring, an outer Galois theory, and mis-
cellaneous results on inner automorphisms and powers of derivations.

Let A be a ring with an identity 1 and B be a subring of A con-
taining 1.

1. The mappings Rx: y -+yx, Lx: y —> xy, Ix: y —> χ-τyx, x e A are
called right multiplications, left multiplications and inner automorphisms
respectively. For any subset N of A, RN = {Rx \xe N}, LN = {Lx \ x e N},
Ix = { j x I x 6 N}. D is a derivation of B into A if and only if (x + y)D =
$D + 2/D and (#τ/)Z) = xDy + #?/.D for all x,y e A. The set of all such
mappings is denoted by Der(i?, A). If B = A, Z) is called a derivation
in A and the set of these denoted by Όer(A). If D19 •••,Ds e Όer(A),
we have for all x e A

( l ) RXD\I . . . / ? ; . =

For all D, Df e Der (A), [DDf] = DD'-D'D e Όer (A) and, if A has prime
characteristic p, Dp e Der (A), {x \ xy — yx = 0 for all y e B; x e A} is
called the centralizer of β in i . If c belongs to the centralizer of B
in A, DRC e Der (B, A). The centralizer of A in A is called the center
of A. Let C be the center of A. & is a Lie ring (Lie ring over C)
of derivations in A if and only if ^ c Der (A) and for all D, D' e Sfy

D - D' e ^ [DD'] e & (DRC e &). If A has prime characteristic
p, & is restricted if, in addition, Dp e £&.

For x 6 Af. the mapping Ix:y -+yx — xy is a derivation called an
inner derivation. For N^ A, I'N = {Ix\x e N}. The elements of Der (A)
not in I A are called outer derivations. Lie ideals are defined in the
usual way for Lie rings, restricted or not, over C or not. The inner
derivations in &r form a Lie ideal in St.

Let T be a subset of Der (B, A). The set of x e B such that xD = 0
for all D e T is a subring of B which we call the subring of Γ-constants
and which we denote by B(T). If x e B(T) and x has a multiplicative
inverse x*1 in i?, then x*1 e B(T). The set of derivations D in A such

Received April 15, 1959. This is a revised version of part of a dissertation submitted
in candidacy for a Ph. D. degree to Yale University. The author wishes to thank Professor
N. Jacobson for his advice and encouragement. An abstract was presented to the Ameri-
can Mathematical Society (Bull. A. M. S., Vol. 60, 1954, p. 142).
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that B c A(D) is a (restricted) Lie subring over C of Der (.A) which we
denote by ^(B).

If Tλ c T2 c Der (A), then A(7\) 3 A(Γ2); and, if J^ and 5 2 are
subrings of A containing 1, and Bλ c ί?2, then ^(JBO 3 £gr(B2). We
have the following relations:

( 2 )

for all (restricted) Lie subrings over C of Der (A)

(3) BςiA(&{B))

(for all subrings J5 of A containing 1. These give

(4) A(&') = A(&(A(&'))

for all (restricted) Lie subrings over C, &', of Der (A)

( 5 )

for all subrings of A containing 1. Thus, B = A(^(B)) if and only if
J5 = A(£^r) for some (restricted) Lie subring over C of Der (A), and ^ ' =
£ίf(A(£2r9)) if and only if ^ ' = ^ ( β ) for some subring ΰ of i con-
taining 1.

Let & be a (restricted) Lie subring over C of Der (A). Define

Regard the ring A as a (restricted) Lie algebra over C under the com-
positions {x, y)—+xy — yx (x -^ xp if A has prime characteristic p). Σ(^f)
is then a (restricted) Lie subalgebra of A. Σ(^) is invariant under
&r; that is xD e Σ(^) for x e £ ( ^ ) and ί ) e ^ , If &r = ^(J5)
where JB is a subring of A containing 1, then Σ(&) is closed with re-
spect to ordinary multiplication and taking multiplicative inverses. This
leads us to make the following definition: We say ^ is a (restricted)
iV-Lie subring over C or Der (A) if and only if Σ(£2f). is a subring of
A closed with respect to taking multiplicative inverses and invariant
under 3ί% In this case Σ(£2f) over C is called the associated algebra
of £^. If A is a division ring, Σ(&) is a division algebra over C.

Let Δ be a division ring, Φ be its center and E a division subring
of Δ. The additive group of homomorphisms of (E, +) into (J, +),
Hom(E, + ; / / , + ) is an (RE, iϋj)-space; that is, Hom(E, + Δ; +) is a
vector space over 2?E and a right vector space over RΔ such that

(7) (RxT)Ry = Rx(TRy)

for all & e E, y e zί and Γ e Hom(E, + Δ, +) . (RE, i2j)-subspaces are
defined in the usual way. If E = Δ, we write End(J, +) . If S is a set
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of endomorphisms of Δ, End {S} is the ring of endomorphisms generat-
ed by S.

Let Γ be a division subring of Δ. LΓ(Έ, Δ) denotes the subgroup
of Hom(E, + ; Δ, + ) of homomorphisms of the vector space E over Γ
into the vector space Δ over Γ. If E = Δ, we write LΓ(Δ).

Topologize Hom(E, + Δ, + ) as follows: The sets

{g\xg = xf; 9 e Hom(E, + Δ, +)}

where x e E is a subbase of neighborhoods of / e Hom(E, +;Δ, + ) .
One verifies that LΓ(Δ) is a closed subring containing RΔ. That the
foregoing properties characterize LΓ(Δ) is a consequence of the Jacobson-
Bourbaki theorem: if we associate with a closed subring B of End(J, + )
which contains RΔ, the set Γ of x e Δ such that Lx commutes with the
elements of B, then B — LΓ{Δ), and, in fact, the mapping Γ —> LΓ(4)
is a lattice anti-isomorphism of the set of division subrings of Δ onto
the set of closed subrings of End(J, + ) containing RΔ.

If A is a vector space and right vector space over P, [A : P]L denotes
its dimension and [A: P]B its right a dimensional over p. We note the
following [E : Γ]L is finite if and only if [LΓ(E, Δ): RΔ]R is finite and
when both are finite, they are equal. If B is a subring of End(j , + )
containing RΔ and [B: RΔ]R is finite, then B is a closed subring.

Again Δ is a division ring, Φ is its center, E is a division subring
and M is the centralizer of E in Δ. If T e End(4, + ) , then Γ* denotes
the restriction of T to E. If D19 •••, Ds are elements of Lr(Έf Δ) not
in the algebra generated by LΔ and RΔ and σ, μ are not zero, the de-
gree of the endomorphism

( 8 ) Dϊi...Dk

s*LσRM kj>0, D°j = Ilf i = 1, •••,*,

is A?! + + &β. The weight of a sum of endomorphisms of the form
(8) is the largest degree for which a term with that degree appears
non-trivially. If all the terms appearing non-trivially have equal degree
h, we say the endomorphism is homogeneous (of weight h). Any endomor-
phism is a sum of homogeneous endomorphisms. Suppose Dlf , Ds e LΓ(Δ)
and are derivations of E into Δ and a e Δ. Ό\\ ••• Ώ^Lσ is called an
admissible endomorphism if and only if (1), restricted to E and mul-
tiplied by Z/σ, holds, any term appearing in (1) is admissible, and, if Δ
has prime characteristic p, kj < p.

LEMMA 1. Let 9JΪ be an (RE,RΔ)-subspace of Hom(E, + ;Δ,+),σ19 ,σt

be elements of Δ, and Dly •••, Ds be derivations of E into Δ belonging
LΓ(Δ). Suppose no right linear combination of L*, , L*c with coef-
ficients in RM is zero, and no right linear combination of L* , , L*
with coefficients in RM belongs to 9Ji. Suppose D*, •••,!)* are right
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linearly independent over Rά modulo Jj* and no linear combination of
.D*+i, , Df with coefficients RM + LσiRM + + Lσ RM belongs to
L* + 3Jί. Then the set of non-zero admissible endomorphisms by Dly , Ds

and σlf , σt such that some k3 with j > r is not zero or Lσ appears
with j > u is right linearly independent over RΔ modulo 3JΪ.

Proof. Suppose we had a non-trivial linear relation. Let F be

a linear relation of lowest weight q and shortest length in q. Suppose

q = 0. Then F = L*Λ μ i + + U.R»n e 2», j l f • , j n > u, μ, e Δ,

μx = 1, n > 1. For all x e E

J?XF — FRX = Lί R{xμ^μ,λX) + + L* i2(xμ - μ ,) .

This gives a shorter non-trivial relation, or μu , μn e M, contradict-
ing our hypothesis. Note that for μ19 , μn e M

L*3RH + + L*sRμ% = Γ + +

Suppose g > 1. Write ί 7 = F α + Fq-X + + 1^ where the F} are homo-
geneous. Let sx be the largest element among 1, , s such that a term
in Fq has fcSl > 0. Make its coefficient Rμ equal to 1. Form

301 9 RXF - FRX - Gq(x) + G ^ α ) + + GQ(x) .

This will have lower weight or shorter length in q. The coefficients of
terms in Gq(x) have the form Rxιx-μx. If these coefficients are zero, then the
μ belong to M. Since we have shorter length in q, the coefficients in Gq(x)
must be 0. The coefficients in GaΛx) have the form RxD R +...+xD R +xl',
where the p/s belong to M. These coefficients being zero for all xeE
would contradict our hypothesis. If q > 1, a term in Fq has the factor
DjDSl and so Gq-λ has a term with factor DSl and, if x is chosen to make
its coefficient non-zero, we would contradict the choice of F. Hence the
only possibility left is q = 1. Hence F has the form

Forming i? x F — F i ^ would yield non-trivial relations unless all right
multiplications appearing belong to RM and j l f j k < u. Hence F could
be written as a linear combination of Z)*+1, •••,£)* with coefficients in
RM + RML^ + + RMLO-U plus an element of LJ + 93t and this con-
tradicts our hypothesis. Hence our assertion is true.

Suppose Δ has characteristic 0 and D is an outer derivation in Δ.
Then the powers Dk, k > 1 of D are right linearly independent over RΔ
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as just shown. If Γ = Δ{D), [LΓ(Δ) : RΔ] = c« and hence [Δ : Γ]L = oo.
Thus if Δ has an outer derivation D and [J : Γ]L < co where Γ = Λ(D),
then z/ must have prime characteristic p.

Suppose Δ has prime characteristic p and Γ1 is a division subring
such that &' — £2f{Γ). &' is a restricted ΛΓ-Lie ring over 0 of de-
rivations in Δ. Suppose £&' is infinite dimensional over Φ. Note that
Γσι, , Vσ are right linearly independent over RΦ if and only if 1, σ19 ,σt

are linearly independent over Φ. For if Σφiσi + φ0 = 0, then ΣΓσIiφi =

/ V * ^ o = ° I f ^ Λ * == ° > t h e n ° = ^ β ' < ~ L*JR*i= - ^ ~ ΣL*ιR*i-
Applying Lemma 1 yields the result. Thus &' has either infinitely
many outer derivations right linearly independent over Φ modulo ΓΔ or
[Σ(^r'):Φ] = oo. In either case [LΓ(Δ):RA]R will, by Lemma 1, be in-
finite dimensional and so will [Δ: Γ]L.

THEOREM 1. Let Δ be a division ring having prime characteristic
p, Φ be its center, & be a finite dimensional restricted N-Lie ring
over Φ of derivations in Δ and Γ — Δ(£gr). Then if Dlf •• ,Dm is
a complete set of representatives of a basis for the right vector space

over Φ, and σ19 •••, σq is a basis for Σ{&) over Φ, then

( 9 ) {D\i D*<»Lσj I K - 0, 1, , p - 1, A0 -

is a basis for the right vector space End {&,RΔ} over RΔ. Moreover,
End {^, RΔ} = LΓ(Δ), [LΓ(Δ): RΔ]R = pmq = [Δ : Γ]L and &

Proof. Consider the set A of right linear combinations of elements
of (9) with coefficients in RΔ. Then clearly End {£&, RΔ) Ώ. A. Because
1 = ΣύjXj, Xj e Φ, Jj = Lσ.Rλ. e A and, hence, AΏ. Rj Since any inner
derivation belonging to & can be written as Σ(Rσj(βj — LσjRφj), where
Ψj e Φ, A 3 I{(9y Since any D e Sf can be written as ΣDiRλι + 7̂ ,
where XL e Φ and σ e Σ{&), A^ &r. We have RxDt = DtRx + i2xZ). for
x e Δ, Df = 2Ά-Rλ. + /σ with λ, e Φ and σ e Σ(&), DiDj = D3D%

%+ D
with fle^, and LσZ?4 = ΌJJV + LσD., for σ e Σ(j^r) and, hence,
σDt e 2T(^ r). Also LσL τ = Lστ e A, for σ, τ e Σ(^) and, hence στ e I ' ί ^ ) .
Thus A is a ring and so A — E n d { ^ , i2j}. The elements of (9) gene-
rate A and are right linearly independent by Lemma 1 and so they
constitute a basis for A over RΔ. Thus [ E n d { ^ , RΔ} :RΔ]R = pmg and
so is a closed subring of End(J, + ) containing RΔ. By the Jacobson-
Bourbaki theorem we have End {&, RΔ} =LΓ(Δ) and [Δ: Γ]L = [LΓ(Δ): RΔ]R~
pmq. Suppose D e &(Γ). Then D e LΓ{Δ). Hence, by Lemma 1, D =
A9^i + + A ^ + /;, <plf---,<pme0. It = RT-LTe &{Γ) and so

another application of Lemma 1 yields τ = σ ^ + + tfQλg, λlf , Xq e Φ,
so that ΰ e ^ .
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We remark that because of the symmetry in the above situation,
we also have [Δ : Γ]R = [Δ : Γ]L.

LEMMA 2. Let & be a (restricted if Δ has prime characteristic p)
Lie ring over Φ of derivations in Δ and Γ = Δ(&). Suppose 2$ con-
tains all inner derivations belonging to £&(Γ). Let E be a division
subring of Δ containing Γ and [E : Γ]L < oo. Let M be the centralizer
of E in Δ. If D* is a derivation of E into Δ and Γ c J(D*), then
D* can be extended to a derivation in the centralizer of M.

Proof. D* e LΓ(E, Δ); hence D* can be extended to an element of
LΓ(Δ). The proof of Theorem 1 shows that LΓ(Δ) is the closure of
E n d { ^ , RΔ} in End(J, +). Since [E:Γ]L < oo, there is an Fe End {^,RΔ}
such that D* = F*, the asterick denoting restriction to E. We have

where Dlf , Ds, Lσχ, , Lσt satisfy the hypotheses of Lemma 1 with

<m= {0}. Hence

D* = Dffi^ + + DJkR,k + /;*, ̂ , , μk e M

I? leaves the elements of Γ fixed so that the right hand side is a deri-
vation in the centralizer of M and belongs to &.

In particular, if the centralizer of Γ is Φ; that is, every non-zero
derivation in 3?(Γ) is outer, then every derivation of E into Δ can be
extended to a derivation in Δ.

Henceforth, we restrict ourselves to Δ having prime characteristic p.

LEMMA 3. Let £& be a finite-dimensional restricted N-Lie ring
over Φ of derivations in Δ and Γ = Δ(&). If B is a subring of LΓ{Δ)
containing RΔ and £$' = B n Sf', then £$' is a restricted N-Lie sub-
ring over Φ of &. If £& consists only of outer derivations, then

Proof. Clearly *&' is a finite-dimensional restricted Lie ring over
Φ of derivations in Δ. Now Σ(^r') is contained in Σ{&) and [Σ(&r): Φ] <
co. Hence [Σ{&'):Φ] < oo. Since 1 e Φ ̂  Σ(^f') and Σ(^r') has no
zero divisors, it is a division ring provided that it is a ring. Let
σlf σ2 e Σ(&'); that is, Γσi, Γσ% e &'. Since B contains RA and J^, it
contains Lσχm Since B contains RΔ and I^2, it contains J ^ = I^R^ + LσI!rt.
Hence, #1<ra e ^ ' = ^ n 5 which implies σxσ2 e Σ(&'). If σ e ^ f

and De 3ίf,[Γσ, D] = ΓσD e ^ r and Σ(^f') is invariant under &'.
Now let Dlf •••, Ds be a basis for £ ^ over 0 such t h a t A t •"> A is

a basis for ^ ' over Φ,r < s. By Theorem 1, B Ώ. End { ^ , i?^} and we

can write
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Since we have assumed Σ(£gr) = Φ. Applying Lemma 1 with B = 9Jί,
we note that no Dj with j > r can appear in this expression. Hence,
B c End {&\ jβj}. Clearly, End {^f, BJ c J5 and these facts give the
desired conclusion.

THEOREM 2. Let 2$ be a finite dimensional restricted Lie ring
over Φ of outer derivations in Δ, Γ~Δ(££f), and & = 3f{Γ). To each re-
stricted Lie subring over Φ, &', of Qf assign the division ring Δ(£gff).
To each division subring E of j containing Γ assign the restricted Lie
ring i^(E) over Φ of derivations in Δ. Then the correspondences
£&' —> Δ{£grf) and E—> £^(E) are inverses of each other] that is, 3f' —
&{Δ{Sr')) and E = J(^(E)) . Moreover, £&' is a Lie ideal over Φ of
3f if and only if E = Δ(^f') is invariant under 3ί, and, in this
case, the restricted Lie ring over Φ of derivations in E leaving the
elements of Γ fixed is isomorphic to

Proof. Let ^ ' be a restricted Lie subring over Φ of &. 2$f

satisfies the conditions of Theorem 1, for, in this case, Σ(^ft) = Φ, and
thus &(Δ(&')) = &\ Next let E be a division subring of Δ contain-
ing Γ and B = LE(Δ). Then B is a subring of LΓ(Δ) containing RΔ. By
Lemma 3, B = End {&', RΔ] where &' = Bf] &r. Clearly &' = ^ ( E ) .
On the other hand, since B = End {&\ RΔ} = LE(Δ), E = Δ(&'). Thus,
E - Δ(^r)Έ)).

If E is invariant under ^ , then ^ ( E ) is a Lie ideal over Φ in £^.
For if fle ^ and D' e &r(E), then a φZ)' - D'D) = (ccD)D' - (a?D')J5 = 0
for all x e E. Conversely, if ^ ' is a Lie ideal over Φ in ^ , then
E = Δ(^r') is invariant under ^ . For if D e ^ , (xΰ)ί)' = (^ΰ')^ = 0
for all x e E and D' e &'. Hence xD e z/(^') = E for all x e E.
Consider the mapping D-+ D* the restriction of DtoD*. This is clearly
a homomorphism of 3f into the Lie ring over Φ of derivations in E leav-
ing the elements of fixed. Using Lemma 2, one finds that the mapping
is onto. Its kernel is £&' =

THEOREM 3. Let ̂  be a (restricted if Δ has prime characteristic p)
Lie ring over Φ of derivations in Δ and Γ = Δ{sgr). Suppose & con-
tains all inner derivations belonging to £gr(Γ). Let E be a division
subring of Δ containing Γ and [E : Γ]L < c°. If a* is an isomorphism
of E into Δ leaving the elements of Γ fixed, then α* can be extended
to an inner automorphism in Δ.

Proof, α* belongs to LΓ(E, Δ) hence α* can be extended to a e LΓ(Δ).
LΓ(Δ) is the closure of End{^,RΔ} in End{z/, +). Since [Έ:Γ]L < oo,
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there is an F e Έnd{^,Rj} such that α* = ί7*, where the asterick
denotes restriction to E. We can write

where Dlf , Ds, σlf , σt, etc. are as in Lemma 1 with sJJί = {0}. Since
Rχ(l* _ a*Rza* = 0 for all x e E and s* = F*, we have

Σ(D*i Dk

ssL R ( x β t ) )* + terms = 0

By Lemma 1, we obtain from a term of highest weight

xX — λ(ccα*) = 0 for all x e E and for some 0 Φ λ e Δ .

Clearly s* can be extended to the inner automorphism determined by λ.
The following theorem is a special case of one due to Amitsur:

Let Δ be a division ring, D a derivation in Δ and Γ = ^(JD). Let S be
the set of x e Δ such that

x(DnR,n + D^R,n_λ + + i^0) - 0

where μnφ0yμn-u •• , μ o e J. Then S is a vector space over Γ of
dimension < n. This result is applied in the following theorem.

THEOREM 4. Let Δ be a division ring and D an outer derivation
in Δ. Let k be the least integer greater than 1 such that Dk is a deri-
vation. Then Δ has prime characteristic k. If k doesn't exist, then
Δ has characteristic zero.

Proof. By hypothesis and Leibniz's rule

0 = RxD
k

Choose x so that RxD Φ 0: If Δ has characteristic 0, ί ^ j = k φ 0. If k

exists by Lemma 1 and the Jacobson-Bourbaki Theorem, [Δ: Γ~\L~co>k,
and by Amitsur's Theorem, [Δ : Γ]£ < k — 1 < k. Hence, in this case,
fc, can't exist. If Δ has prime characteristic p, then since Dp is a deriva-

ίk\tion, k < p. Assume in this case k < p. Then, ( j j = k Φ 0. Applying

Amitsur's Theorem yields the fact that [Δ : Γ]L < k — 1 < p. By Lemma
1 and the Jacobson-Bourbaki Theorem, [Δ : Γ]L > p. This is a contradic-
tion. Hence, if some power k > 1 of an outer derivation in Δ is a deri-
vation, then Δ must have prime characteristic p and the least power
of D greater than 1 which is a derivation is Dp.
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FAITHFUL*-REPRESENTATIONS OF

NORMED ALGEBRAS

BERTRAM YOOD

1. Introduction. Let B be a complex Banach algebra with an involu-
tion x —> x* in which, for some k > 0, || xx* || ^ k \\ x \\ \\ x* || for all x
in B. Kaplansky [8, p. 403] explicitly made note of the conjecture that
all such B are symmetric. An equivalent formulation is the conjecture that
all such B are J3*-algebras in an equivalent norm. In 1947 an affirmative
answer had already been provided by Arens [1] for the commutative case.
We consider in § 2 the general (non-commutative) case. It is shown that
the answer is affirmative if k exceeds the sole real root of the equation
4ί8 - 2t2 + t - 1 = 0. This root lies between .676 and .677. In any case
these algebras are characterized spectrally as those Banach algebras with
involution for which self-adjoint elements have real spectrum and there
exists c > 0 such that p(h) ̂  c\\h\\,h self-ad joint (where p(h) is the
spectral radius of h).

A basic question concerning a given complex Banach algebra B with an
involution is whether or not it has a faithful*-representation as operators
on a Hubert space. In § 3 we give a necessary and sufficient condition
entirely in terms of algebraic and linear space notions in B. This is that
p(h) = 0 implies h — 0 f or h self-ad joint and that R Π ( — R) — (0). Here
R is the set of all self-ad joint elements linearly accessible [11, p. 448] from
the set of all finite sums of elements of the form x*x. This is related to a
previous criterion of Kelley and Vaught [10] which however involves topo-
logical notions (in particular, the assumption that the involution is continu-
ous).

If B is semi-simple with minimal one-sided ideals a simpler discussion
of ^-representations ( § 5) is possible even if B is incomplete. For example
if B is primitive then B has a faithf ul*-representation if and only if xx^ — 0
implies x*x — 0. The incomplete case has features not present in the
Banach algebra case. In the former case, unlike the latter, (^-representa-
tion may be discontinuous. A class of examples is provided in § 5.

2. Arens*'algebras Let B be a complex normed algebra with an in-
volution x —> x*. An involution is a conjugate linear anti-automorphism
of period two. Elements for which x = x* are called self-adjoint (s. a.)
and the set of s. a. elements is denoted by H. Let § be a Hubert space and

Received May 4, 1959. This research was supported by the National Science Founda-
tion, research grant NSF G 5865, and by the United States Air Force through the Office of
Scientific Research of the Air Research and Development Command under Contract No.
SAR/AF - 49(636) - 153.
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be the algebra of all bounded linear operators on £>. By a*-represen-
tation of B we mean a homomorphism x —• Tx of B into some ©(£)) where
Tx* is the adjoint of Tx. ^-representation which is one-to-one is called
faithful.

We shall be mainly, but not exclusively, interested in the case where
B is complete (a Banach algebra). In § 2 we shall assume throughout that
B is a Banach algebra with an involution x —> x*.

As in [5, p. 8] we set χoy =. x + y — xy and say that x is quasi-regular
with quasi-inverse y if χoy = ?/oχ = 0. The quasi-inverse of α? is unique,
if it exists, and is denoted by xf. As, for example, in [16, p. 617] we define
the spectrum of x, sp(x), to be the set consisting of all complex numbers
X Φ 0 such that λ"1^ is not quasi-regular, plus λ = 0 provided there does
not exist a subalgebra of B with an identity element and containing x as an
invertible element. (The treatment of zero as a spectral value plays no
role below.) The spectral radius p(x) if x is defined to be s u p | λ | for
λ 6 sp(x).

We say that B is an Arens*-algebra [1] if there exists k > 0 such that
|| x*x || ^ fc || a? || || x% ||, xe B. As usual, we say that B is a B*-algebra if

2.1. L E M M A . Let B an Ar ens*-algebra with \\ xx* \\^k\\x\\ | | x* \\,

xe B. Then for each s. a. element h, ρ(h) >,k\\h\\ and sp(h) is real.

That the spectrum of a s. a. element h is real is shown in [1, p. 273].
By use of the inequality || hf || ^ k || h?~Ύ ||2 as in [16, p. 626] it follows that
P(h) ΞΞ> k || h ||. We shall show (Theorem 2.4) that the spectral conditions
of Lemma 2.1 imply that B is an Arens*-algebra.

2.2. LEMMA. Suppose that for each s. a. element h, p(h)^tc \\h\\ and
sp(h) is real, where c > 0. Let h be s. a., sp(h) c [—α, 6] where a >̂ 0,
6 :> 0 and Ze£ r > 0. Tfcew

( 1 ) || (-ί-1/*)' | | < r i / 1 > ( 1 - cr)blcr and t > (1 + cr)a/cr,
( 2 ) || {t-λh)f \\<rift>(l- cr)alcr and t > (1 + cr)6/cr.

Note that (2) follows from (1) as applied to the element-^. By [18,
Theorem 3.4] the involution is continuous on B. Therefore h generates a
closed*-subalgebra J50. Let 2JΪ be the space of regular maximal ideals of
BQ. For t > a set u = {—t~ιhy. By [8, Theorem 4.2], u e Bo. It is readily
seen that u is s. a. Since —t~xh + u + t~λhu = 0 we have, for each Λf e 2W,
w(Λf) = Λ(M)/(ί + h(M)). By, [8, p. 402] the spectrum of h is the same
whether computed in B or in BQ so that — a <£ Λ(Λf) <£ &. Since λ/(ί + λ)
is an increasing function of λ we see that —al(t — a) ^ %(Λf) ^ 6/(ί + 6).
Now p(u) = sup I ^(ikί) I, Jkf 6 3Jί. Therefore, since u is s.a.,

(2.1) c || w || ^ ]0(^) ^ max [α/(ί - α), δ/(ί + 6)] .
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From formula (2.1), \\u\\ < r if α/(ί — a) < cr and 6/(ί + 6)<cr. This
yields (1).

Note that, under the given hypotheses, c ^ 1.

2.3. LEMMA. Let x and y be quasi-regular. Then x + y is quasi-
regular if and only if x'y' is quasi-regular.

The formulas χΌ(χ + y)oy' = x'y' and x + y — χo(χ'y')oy yield the de-
sired result. Let r > 0. If | |OJ'| | < r and || y' \\ < r"1 it follows from
Lemma 2.3 and [12, p. 66] that (x + 2/)' exists.

Consider the situation of Lemma 2.2 and let hk be s. a., k = 1, 2 where
JV = max00(^0, i W ) . By Lemma 2.2, || («-%))' || < 1 and || (-«-%)' | | < 1
if ί > ( 1 + c)ΛΓ/c. Then, by Lemma 2.3,

(2.2) sp{hx + h2) c [-(1 + 0)2 /̂0, (1 + c)Nlc\ .

Suppose next that sp(hk) c [0, oo), k = 1, 2. Then || (£"%)'11 < 1 if
ί > ( 1 + c)iV/c and || (-t-'hj | | < 1 if t > (1 - c)iSΓ/c. Then by Lemma
2.3,

(2.3) spih + h2) c [-(1 - c)Nlc, (1 + c)Nlc] .

2.4. THEOREM. Suppose that for each s. a. element h, p(h) ^ c\\h\\
and sp(h) is real, where c > 0 . Then B is an Arens*-algebra with ||a%e*||J>
k || x || || x* ||, x e Bf where k can be chosen to be c5/(l + c)(l + 2c2).

Let x — u + iv where u and v are s. a. Then #*# = u2+v2+i(uv — vu),
xx* = u2 + 'y2 + i(vu-uv) and $#* + α?*α? = 2^2 + 2^2. We next compare
p(u2) = [^(u)]2 and p^2) with jθ(χ^*). For this purpose we may suppose
that p(u) ^ p{v) for otherwise we can replace x by ix = — v + iu. If
X Φθ then λespOα?*) if and only if Xesp(x*x). Thus />(xx*) = p(x*x).
By (2.2), sp(cc^* + x*x) c [-(1 + c)ρ(xx*)lc, (1 + c)ρ(xx*)lc]. Now 2^2 =
xx* + ίc*α; - 2i;2. Let r > 0, ί > 0. By Lemma 2.2,

(2.4) || [t~\xx* + x*x)γ | | < r , ί > ( l + cr)(l + c)p(xx*)lc2r .

Since sp( — 2v2) c ( — oo, 0] and jθ(2^2), ^ p(2u2), by Lemma 2.2 we have, for
t > 0 ,

(2.5) || [ί-1(-2^2)]' || < r~\ t > ( r - φ ( 2 O / c .

we select c < r < 2c. For such r, Lemma 2.3 and formulas (2.4) and (2.5)
show that [t-\2u2)]' exists if t >max{(l+cr)(l+φ(α?a?*)/cV, (r-c)ρ(2u*)lc}.
Now (r — c)/c < 1 and sp(2u2) c [0, oo). Therefore, letting r—>2c, we have

(2.6) ρ(2u2) ^ (1 + 2c2)(1 + φ(ra*)/(2c3) .

O n t h e o t h e r h a n d \\x\\ ^ \\u\\ + \\v \\ ^ [ρ(u)+ ρ{v)]lc ^ 2ρ(u)\c a n d
|| a?* || ^ 2ρ(u)\c. Therefore, by (2.6),
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(2.7) || x || || x* || ^ 4iφe2)/c2 ^ (1 + 2c) (1 + c)p(xx*)lc5 .

But p(xx*) ίg || xx* ||. This together with (2.7) completes the proof.

2.5. COROLLARY. Under the hypotheses of Theorem 2.4, the norm of
the involution as an operator on B does not exceed (1 + c)(l + 2c2)/c5.

In (2.7) we may replace 11 x | | 11 x* \| by 11 x* | |2 and p(xx*) by \\x\\ \\x*\\.

This gives || x* || ^ (1 + c)(l + 2c2) || x | |/c5.

We denote by P(N) the set of x e B such t h a t sp(x*x) c [0, oo) (sp(x*x) c

(--,0]).

2.6. LEMMA. For an Arens*-algebra B the following are equivalent.
( a ) B is a B*-algebra in an equivalent norm.
( b ) N=(0).
(c) P=B.
Suppose that N = (0). Let y e B. Since the involution on 5 is con-

tinuous, the element y*y generates a closed*-subalgebra BQ. Let 9Jϊ be the
space of regular maximal ideals of Bo. By [1, p. 279] the commutative al-
gebra Bo is *-isomorphic to C(Wl). Also sp(y*y) is real. Hence there exist
u,ve BQ such that u(M) = sxιp(y*y(M)9 0) and 'y(M) = — mi(y*y(M), 0),
ikf e 9Jϊ. Then w and Ί; are s. a., #*τ/ = u — v and wy = 0. As in [14, p. 281],
(yv)*(yv) = —v3 so that ?/̂  = 0 by hypothesis. Then v = 0 and sp(y*y) c
[0, co).

A theorem of Gelfand and Neumark [13] asserts that if B is semi-sim-
ple, has a continuous involution, is symmetric (B = P) and has an identity
then there exists a f aithf ul*-representation x —> Tx of 5 . This theorem is
also valid when B has no identity [4, Theorem 2.16]. In our situation, B
is semi-simple [18, Lemma 3.5] and the involution is continuous. Thus a
faithful*-representation exists. This representation is bi-continuous by
[18, Corollary 4.4].

That (a) implies (b) follows from the well-known fact that any i?*-al-
gebra is symmetric [14, p. 207 and p. 281].

The equation At3 — 2t2 + t ~ 1 — 0 has exactly one real root a. This
root a lies between".676 and .677.

2.7. THEOREM. Suppose that for each s. a. element h, p(h) }> c\\h\\
and sp(h) is real, where c > 0. Then there is an equivalent norm for B
in which B is a B*-algebra if c > a.

Suppose that sp{x*x)a{ — oo, 0]. By Lemma 2.6 it is sufficient to show
that x = 0. Suppose that x Φ 0. By Theorem 2.4 it is clear that x*x ψ 0
and p(x*x) Φ 0. Set x = u + iv where u and v are s. a. As in the proof
of Theorem 2.4, xx* + x*x = 2u2+2v2 and we may assume that ρ(u)^p(v).
Since sp(u2) c [0, oo), sp(v2) c [0, oo) formula 2.3 shows that s^(2^2+2^2) c
[-(1 - c)io(2u2)/c, (1 + c)p(2u2)jc]. Let r > 0, t > 0. From Lemma 2.2,
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[~t~\2u2 + 2v2)]' | | < r if t > (1 - cr)(l + c)p(2u2)l(c2r) and t > ( 1 + cr)

We write x*x = 2u 2 +2v 2 +(-xx*) . By Lemma 2.2, )| [—ί-^—a?a?5|c)]'||<
r" 1 if £ > 0 and £ > ( r — c)p(x*x)jc since sp( —ίc^*)c[0, /?(#*#)]. By Lemma
2.3, (- ί-VαO' exists if £>max { ( l+cr)( l-φ(2^ 2 )/c 2 r , (l-cr)(l + c)p(2u2)l
c2r, (r — c)p{x*%)jc}. Since s#(x*£) c (-co, 0], />(#*x) cannot exceed this
maximum. Now select r, 1 g r < 2c which is possible since c > α. Then
(r - c)/c < 1 and (1 + cr)(l - c) ^ (1 - cr)(l + c). Therefore ρ(x*x) ^
(1 + cr)(l — c)p(2u2)lc2r. Letting r —* 2c we obtain

(2.8) p(x*x) ^ (1 + 2c2)(l - c) ρ{2u2)l2c3 .

Next we express — 2u2 = 2v2 + (— xx* — x*x). By formula (2.3),
sp(-xx* - x*x) c [-(1 - φ(B*α)/c,(l + c)ρ(x*x)lc]. Recall that |θ(2v2)^
jθ(2t62). Repeating the above reasoning we see that for r > 0, t > 0,
( - £-χ( - 2u2))f exists for ί > max {1 - cr) (1 + c)p(x*x)lc V, (1 + cr) (1 - c)p{x*x)\
c2r, (r ~ c)ρ(2u2)/c}. But sp(—2^2) c ( — oo, 0]. Then by the argument
above we obtain

(2.9) p(2u2) ^ (1 + 2c2)(l - c)p{x*x)\2& .

From formulas (2.8) and (2.9) we see that (1 + 2c2) (1 - c) ^ 2c8 or
4c3 — 2c2 + c — 1 <; 0. This gives c <J a which is impossible by hypothesis.

Thus if c > a we have N=(0). We subsequently show (Corollary 2.11)
that, in any case, JV and P are closed in an Arens*-algebra B.

Following Rickart [16, p. 625] we say that B is an A*-algebra if there
exists in B an auxiliary normed-algebra norm | x \ (B need not be complete
it this norm) such that, for some c > 0, | x*x \ ̂ c | x |2. He raises the ques-
tion of whether every A*-algebra has a faithful*-representation.

2.8. COROLLARY. An A*-algebra B where \ x*x \ ̂ > c\x\2, xe B, in
the auxiliary norm has a faithfuls-representation if c > a.

Observe that | x* \\ x \ ̂  c | x |2 so that | x* \ ̂  c"11 x ], x e B. Thus the
involution on £> is continuous in the topology provided by the norm \x\.
Let Bo be the completion of B in the norm \x\. We extend the function
] x ] from B to Bo by continuity. Likewise the involution x —> x* can be ex-
tended by continuity to provide a continuous involution y —> y* on BQ. We
then have | y*y \ ̂  c\y |2, y e Bo. As in [16, p. 626] we obtain ρ(h) ^c\h
for h s. a. in Bo where />(/?,) is the spectral radius computed for h as an ele-
ment of the Banach algebra BQ, p(h) = lim | hn \lln. Also | y*y \ ^c2\y*\\y\,
y e Bo, so that Bo is an Arens*-algebra. Hence, by Lemma 2.1, the spect-
rum of each s. a. element of Bo is real. By Theorem 2.7, Bo is a J3*-algebra
in an equivalent norm. Therefore B has the desired faithful*-representa-
tion.

We have no information on the truth or falsity of Theorem 2.7 for c ^
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To prove Theorem 2.7 without restriction on the size of c one can assume
without loss of generality that B has an identity. For suppose that B has
no identity, || x*x \\^k\\x*\\\\x\\,xeB. Adjoin an identity e to B to
form the algebra Bx with the norm defined in Bλ by the rule

|| λe + x || = sup || Xy + xy\\ .
llί/ll-i

veB

Then Bλ is a Banach algebra with the involution (Xe + x)* = Xe + #*[1, p.
275]. By changing in minor ways arguments in [14, p. 207] we see that B±

is an Arens*-algebra. There is a constant K such that || x* || ^ K \\ x ||,
xe B. Choose 0 < r < 1. Given λe + α? e Bλ there existsy e B, \\y || = 1,
such that

r 2 1 | λe + α? | |2 <\\Xy + xy | |2 ^ JBΓ || (Xy + xy)* \\ \\ Xy + xy \\

+ x)*(Xe + x)y \\

x)*{Xe + x)\\.

Then

l| (λe + x)*(Xe + x) || ^ k K~2 \\ Xe + x ||2 ^ (fcif-2)21| λe + x || || (λe + a?)*||.

We use this fact later.
Some results on spectral theory in Arens*-algebras were obtained by

Newburgh [15]. In a J3*-algebra p(x) is a continuous function on the set
H of s.a. elements since ρ(h) = \\h\\,he H. This property holds for all
Arens*-algebras.

2.9. THEOREM. In any Arens*-algebra, ρ(x) is a continuous function
on H.

We assume that p(h) Ξ> c \\ h \\ and sp(h) is real, heH. We shall use
the following principle [12, p. 67]. If yf exists and || z \\ < (1 + || yf \\)-χ

then (y + z)f exists.
Let heH, h Φ 0. Select t > p(h) and set u = (t~λh)f. We proceed as

in the proof of Lemma 2.2. Let Bo be the closed*-subalgebra generated by
h and let 2ft be its space of regular maximal ideals. Then ue BQ. Since
t~1hou = 0 we obtain, for each Meyjl,u(M) = h(M)!(h(M)-t). Since
λ/(λ — £) is a decreasing function of λ, sup | u(M) | can be majorized by
ρ(h)l(t-p(h)). Ύhen(l + \\u\\)~1^(l + c-1p(u))-1^c(t-p(h))!(ct + (l-
α(ί), say.

Therefore ί"1^ + t~% is quasi-regular if || t'% \\ < α(ί) or if

(2.10) ct2 - c[p(h) + || hλ ||lί - (1 - φ(Λ) || ^ || > 0 .

We apply this to fex 6 ϋ", || fex || < ρ(h). The larger zero d of the left hand

side of (2.10) is given by
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(2.11) 2d = p(h) + || K || + [(p(h) - || K | |)2 + 4c"Y#) || h, \\γ>* .

The radical term of (2.11) is majorized by ρ(h)-\\h1\\+2(c-1ρ(h)\\h1\\)1i2. Hence
d ^ ρ(h) + (c-'pih) | | /y) 1 / 2 . Thus t<βsp(h + hλ) if t > /tW + ίe'TWPill) 1 ' 8 .
Likewise ί 0 sp(—h — /^) under the same condition. This shows that

(2.12) p(h + hλ) ^ p(h) \l/2

provided h±e Hand || hτ \\ < p(h).
Note that p(h + hλ) ^ c\\h + ^ || ^ c (|| Λ || - |l ^ ||) ^ c(^(fe) - || Λx | |).

Therefore if || h, \\ < c(p(h) - | | ^ ||) or equivalently if || ^ || <cp(h)l(l + c)
we have || hx \\ < ρ(h + h^. We may then apply the above analysis to the
pair of s. a. elements (h + h^, —hlf to obtain (if || hx \\ < cp{h)\{l + c))

(2.13) p(h) ^ pih + h2) + (c-*p(h + h) || hλ \\^ .

From (2.12), p(h + h^ ^ [c~1/2 + l]p(h). Inserting this estimate in the
radical term of (2.13) we obtain

(2.14) p(h) ^ p(h + hx) + (c-1 + c-*ι

Combining (2.12) and (2.14) we obtain

I p(h + h) - p(h) I ̂  [(c-1 + c

provided \\h\\ < cρ{h)j{l + c).
This show that ρ(x) is continuous on H at x = h. Clearly we have con-

tinuity on H at x = 0.
For x s.a. in an Arens*-algebra let [α(#), b(%)] be the smallest closed

interval containing sp(x).

2.10. COROLLARY. For an Arens*-algebra B, a(x) and b(x) are con-
tinuous functions of x on H.

As remarks above indicate, there is no loss of generality in supposing
that B has an identity e. Let h be s.a. Choose λ > 0 such that sp(Xe+h)<z.
[1, OD). Let hn —»h, where each hn is s.a., and choose 0 < ε < 1. We have
ρ(Xe + h) = b(Xe -{- h) = X + b(h). By the ' 'spectral continuity theorem"
(see e.g. [15, Theorem 1]) for all n sufficiently large sp(Xe + hn) c
(1—ε, b(Xe+h) + e). Also for all n sufficiently large \ρ(Xe+hn)—ρ(Xe + h)\<ε
by Theorem 2.9. Since, for such n, sp(Xe + hn) c (0, oo), then λ + b(hn) =
ρ(Xe + h j -> λ + δ(Λ). Therefore 6(^w) —> b(h). A similar argument shows
that a(hn) —• α(/ι).

2.11. COROLLARY. For cm Arens*-algebra B, N and P are closed
sets.

This follows directly from the continuity of the involution on B and
Corollary 2.10. Likewise the set H+ of all s.a. elements whose spectrum is
non-negative is closed.



352 BERTRAM YOOD

3 Faithful*τeρresentations Let B be a Banach algebra with an in-
volution x —> x*. Our aim here is to give necessary and sufficient conditions
for B to possess a faithful*-representation. Our criterion (Theorem 3.4) is
in terms of algebraic and linear space properties of B. A criterion of Kel-
ley and Vaught [10] is largely topological in nature. To discuss this we
first prove a simple lemma. We adopt the following notation. Let Ro be
the collection of all finite sums of elements of B of the form x*x. Let R =
{x e HI there exists y e RQ such that ty + (1 — t)x e Ro, 0 < t ^ 1}. In the
notation of Klee [11, p. 448], R = lin Ro (computed in the real linear space
H, the union in if of Ro and the points of H linearly accessible from Ro).
Let P be the closure in B of Ro. If B has an identity e and the involution
is continuous then H is closed, e is an interior point of Ro [10] and R = P
[11, p. 448]. If B has no identity or if the involution is not assumed conti-
nuous we see no relation, in general, between R and P other than R c P.

3.1. LEMMA. Suppose that B has a continuous involution x —* x*
and an identity e. Then there is an equivalent Banach algebra norm
|| x ||i where || x* ]Ĵ  = || x \\u x e B, and || e \\x = 1.

We first introduce an equivalent norm || x ||0 in which | | # * | | 0 = || x ||0,
a? 6 JB, by setting || x ||0 = max (|| a? ||, || x* | |). Let LX(RX) be the operator on
JS defined by left (right) multiplicaton by x Lx(y) = xy and Rx(y) = yx. Let
|| Lx || be the norm of Lx as an operator on B where the norm \\y\\0 is used
for B. || Rx || is defined in the same way. We set || x ||x = max (|| Lx ||,
|| Rx | |). Then || x + y \\λ ̂  || x ||x + || y W, and || ajy |k ^ || x ||x || y || lβ Clearly
l| x ||i ^ || x ||0. Moreover || Lx \\ ̂  \\x ||0/|| e ||0 and the norms || x ||0 and
|| x ||i are equivalent. Trivially || e ||χ = 1. Also

|| Lx* || = sup || x*y ||0 = sup || y%x ||0 = || i2x || .

Then || x* ||, = max(| | Lx* ||, || βx* ||) = max(| | Lx ||, [| Rx ||) - || x ||x.
In view of Lemma 3.1 the result [10, p. 51] of Kelley and Vaught in

question may be expressed as follows.

3.2. THEOREM. Let B be a Banach algebra with an identity and an
involution x —> cc*. Then B has a faithful*-representation if and only if*
is continuous and P Π (—P) = (0).

As it stands this criterion breaks down if B has no identity. For let
B = C([0,1]) with the usual involution x —> x* and norm. Let Bo be the
algebra obtained from B by keeping the norm and involution but defining
all products to be zero. Then* is still continuous and PΠ(-P) = (0). But
Bo has no faithful*-representation, for otherwise Bo would be semi-simple
[16, p. 626].

As in [4] we call the involution x-^x* in B regular if, for h s.a., p(h) = O
implies h = 0. By [4, Lemma 2.15]. * is regular if and only if every
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maximal commutative *-subalgebra of B is semi-simple. Also every maxi-
mal commutative*-subalgebra of B is closed [4, Lemma 2.13].

By a positive linear functional f on B we mean a linear functional
such that f(x*x) ^ 0, x e B. The functional / is not assumed to be conti-
nuous. If B has an identity then [13, p. 115], f(h) is real for h s.a. and
/(a?*) = /(#*). Trivial examples show this to be false, in general. However,
from the positivity of /, f(x*y) and f(y*x) are complex conjugates which is
the fact really needed for the introduction of the inner product in Theorem
3.4.

3.3 LEMMA. Let the involution on B be regular. Then
(1) a positive linear f satisfies the inequalities

(3.1) f(v*hy) £ f(y*y) \\h\\,yeB,heH,

(3.2) f(y*x*xy) ^ f(y*y) \\x*x\\,x,yeB ,

( 2) if B has an identity e, any h e H, \\ e— h \\ S 1 has a s.a. square
root and, moreover, any positive linear functional is continuous on H.

Suppose first that B has an identity e, || e — h \\ ^ 1, h s.a. In the
course of the proof of [4, Theorem 2.16] it was shown that h has a s.a. square
root. Next do not assume that B has an identity. Let Bx be the Banach
algebra obtained by adjoining an identity e to B. Consider the power
series (1 - tf12 = 1 - ί/2 - ί2/8 . Let he B, h s.a. and || h \\ ̂  1. Then
the expansion — hj2 — h2j8— converges to an element ze B. Let Bo be
a maximal abelian*-subalgebra of B containing h. As noted above, Bo is a
semi-simple Banach algebra. The involution is continuous on Bo ([16, Corol-
lary 6.3]). Therefore z is s.a. Also (e + zf = e — h. Let yeB and set
k = y + zy. Then k*k = (y* + y%z)(y + zy) = y*(e + zfy = y*y - y%hy.
For any positive linear functional / o n B,f{k*k) ^ 0 which yields (3.1).
Formula (3.2) is a special case.

Suppose that B has an identity e. If we set y = e in (3.1) we obtain
\f(h) I ̂  /(e) || h || which shows that / is continuous on H.

3.4. THEOREM. B has a faithful*-representation if and only if * is
regular and R Π (-R) = (0).

Suppose that i? has a faithf ul*-representation $ —> Tx as operators on
a Hubert space ξ>. Let fc be s.a. and p(h) = 0. Then |θ(7\) = 0. As Th is
a s.a. operator on a Hubert space, Th — 0 and therefore /̂  = 0. Thus the
involution is regular. Let x e R Π (—R) and let / be a positive linear func-
tional on B. Then clearly f(y) ^ 0, y e Ro. From the definition of R there
exists yeRQ such that tf(y) + (1 - ί)/(a?) ^ 0, 0 < t ^ 1. It follows that
f(x) > 0 and hence f(x) = 0. Let ξe§ and set /(a?) = (Tzξ, ξ). Then
(Γxl, ξ) = 0 for all § e ξ>. Since Γx is a s.a. operator we see that Tx — Q and
x = 0.
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Suppose now that* is regular and 22 Π (—22) = (0). We show first that
the regularity of the involution makes available a general representation
procedure of Gelfand and Neumark [13].

Let / be a positive linear functional on B. Let If = {x\f(x*x) = 0}. If

is a left ideal of B. Let π be the natural homomorphism of B onto B\IS.
Since f(x*y) = f(y*x)f tQ'f=BIIf is a pre-Hilbert space if we define (π(x),
π(y)) == f(y*x). As in [13, p. 120] we associate with p £ a n operator A{
on φj> defined by A{ [π(x)] = π(2/ίc). Formula (3.2) yields

(3.3) || A { [ π ( 3 ) ] ||2 = f(x*y*yx) ^\\y*y\\\\ π(x) ||2 .

Thus A{ is a bounded operator with norm not exceeding || y*y ||1/2. It may
then be extended to Tf

y, a bounded operator on the completion $f of £>/.
The mapping x —> T{ is a ^-representation of 2? with kernel {yeB\yxeIf,
for all ίU6jB}=£ Note that JΓ* = K.

Now take the direct sum ξ> of the Hubert spaces ξ>r as / ranges over
all positive linear functionals on B ([13, p. 95]). Since || Tζ || ^ || y*y ||1/2

by (3.3) and this estimate is independent of/, the direct sum ([13, p. 113])
x —> Tx of the representations x —> Tζ yields a*-representation of B as
bounded operators on ξ> with kernel {y e B | yx e Π //, for all x e B}. If 2?
has an identity, the kernel is the reducing ideal of B ([13, p. 130]), namely

nif.
Supppose first that B has an identity e. The set Ro has the property

that x, y e Ro, λ, μ ^ 0 imply Xx + μy e Ro. By Lemma 3.3, i?0 =>
{xeH\ \\e — x\\ <^1}. Thus β is an interior point of Ro. By the theory
of convex sets in normed linear spaces, R is the closure in H of Ro and
R is a closed cone in i/([ll, p. 448]).

Let / be a positive linear functional on B. By Lemma 3.2, / is con-
tinuous on H. Also f(w) ^>0,weR. Let H' be the conjugate space of H
and G = {0 e ΐ P | #(w) ^ 0, w 6 R}. It is easy to see ([10, p. 48]) that G,
the dual cone of R, is the set of linear functionals on H which are the
restrictions to H of positive linear functional on B. There is no loss
generality in assuming that | | e | | = 1. Let xeH. By [10, Lemma 1.3],
d i s t (— x , R)=sup {g(x) \geG, g(e) ^ 1 } .

We show that R Π (-22) = fl" Π (Π //). Let y e H, y e Π//. For any
fixed f,Tf

y = 0 and (Tζξ, ξ) = O,ξe$f. Then (π(yx), π{x)) = 0 for all x e B
in the notation used above. Therefore f(x*yx) = 0, x e B. Setting x = e
we see that/(^/) = 0. Then by the distance formula, —yeR. Likewise
ye 22. Suppose conversely that ye R Π (—22). It is easy to see that for
each ze B, z*RozaRQ. Therefore z*RzaR. Hence z*yze RΠ(-22), zeB.
From the distance formula, sup {f(z*yz) | / positive, f(e) ^1} = 0 =
sup {/(—z*yz) | / positive, f(e) <: 1}. Hence f(z*yz) = 0 for each positive
linear functional. Then (Tf

yπ(z), π{z)) = 0 for all z whence Ύ{ = 0. There-
fore Ty = 0 and 2/ e ί ί Π (Π //).
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This proves the theorem in case B has an identity. Suppose that B
has no identity. Let Bλ be the algebra obtained by adjoining an identity e
to B. We extend the involution to Bx by setting (Xe + #)* = Xe + x*. The
involution on Bx is regular [4, Lemma 2.14]. Let 22$ and 22' be the sςts
22O and R respectively computed for the algebra 2?2. By the above it is suf-
ficient to show that R Π (~R) = (0) implies Rf Π (-22') = (0). Suppose
that 22 Π (-22) = (0).

Let x,yeB. Then y*(Xe + x)*(Xe + x)y = (Xy + xy)*{Xy + a?y). This
shows that y*R'oy c Ro which implies y*Rfy c 22. Note also that 2? is semi-
simple [18, Lemma 3.5] which implies that zB = (0), or Bz = (0), ze B, can
hold only for z = 0.

Suppose that λe + # e 22' Π (—22') where xe B and λ is a scalar. We
derive a contradiction from λ Φ 0. For every ί/eΰ, 2/*(λe+#)2/e 22Π(—22).
Setting u= —xjX we have y*(e—u)y = 0 or 2/*?/ = 2/*w|/ for all y e JS. Then

(3.4) h2 = tefe, Λ s.a.

Let fei and h2 be s.a. Then (fex + h2f = (Λx + h^n^ + h2). From (3.4) we
obtain

(3.5) / ^ + h2hx = ^ ^ 2 +

Also (Λ2 — ih2){hx + ih2) — (hλ — ih^u^ + ih2) From (3.4) we get

(3.6) h2hx — hjι2 = h2uhλ — ^ Λ 2

From (3.5) and (3.6) we see that hjι2 — hλuh2. Consequently for hk s.a., fc =
1, 2, 3, 4, we see that (hλ + ih2)(h3 + i/&4) = (/̂  + ίh2)u(h3 + ih^). In other
words

(3.7) zw = 2ww, z, weB .

From (3.7) (2 — 2%)w = 0 for all w e B so that z — zu for each z. Hence u
is a right identity for B. Likewise from z(w — uw) =0 for all ze B we see
that u is an identity for B. But this is impossible since we are considering
the case where B has no identity.

We now have x e R' Π (-22'). Then y*xy = 0 for all | / ε ΰ . Therefore
hxh — 0,h s.a. Also for hk s.a., fc = 1, 2, (fex + h2)x{hγ + h2) = 0 so that
/̂ x/ki + /^x/^ = 0. Also (hλ — ih^x^ + ίh2) = 0 so that /̂ cc/̂  — ^x^! = 0.
Therefore hxxh2 = 0. It follows that zxw = 0 for all z, we B. This implies
that x = 0 and completes the proof.

4 Preliminary ring theory. Let 22 be a semi-simple ring with mini-
mal one-sided ideals. For a subset A of 22 let 8(̂ L) = {x e R \ xA = (0)} and
3ϊ(A) = {x e 22 I Ax = (0)}. Consider a two-sided 2 of 22. If x e R(I), yeR,
ze I then zy e 2, 2(7/χ) = 0 so that 3Ϊ(2) is a two-sided ideal of 22. Therefore
9ΐ(2)2is an ideal. But [3ΐ(2)2]2 = (0). Thus, by semi-simplicity, m(I)I =(0)
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and 3ΐ(7) c 2(1). Likewise we have 2(1) c 3K(J) and thus 31(7) = S(J).
Let S be the socle [5, p. 64] of 72. This is the algebraic sum of the minimal
left (right) ideals of 72. S is a two-sided ideal. Therefore 2(S) = 3t(S).
This set we denote by S x . Note that S Π S1 = (0).

We call an idempotent e of R a minimal idempotent if e 72 is a minimal
right ideal.

4.1. LEMMA. (a) Let I be a left (right) ideal of 72, I Φ (0). Then
I contains no minimal left (right) ideal of R if and only if I a S1.

(b) 72/S± is semi-simple. If So is the socle of RjS1 then £ x = (0).
Let / Φ (0) be a left ideal of R. Suppose that 7 c S1. Then I cannot

contain a minamal left ideal J of R for any such J would be contained in
S f] S1. Next suppose that I ς£ S1. We must show that 7 contains a
minimal left ideal of R. There exists a minimal idempotent e such that e
I Φ (0). Choose ue I such that eu φ 0. By semi-simplicity and the mini-
mality of eR, eR = euR. Thus there exists z e R such that euz = e. Since
(euzf = β, we have j Φ 0 where j" = zew. Note that j2 — j . As ue I we
have i y c 7. To see that 7y is the desired minimal ideal it is sufficient to
see that jRj is a division ring [5, p. 65].

Note that jz — zeuz = ze Φ 0. Then Rze = Re so that there exists
v e 72 where vze = β. Then ΐλ? = wzew = e% and vjz = e.

We assert that ./ay = yce-J if and only if euxλze — eux2ze. - For if jxj^
jx2j, multiply on the left by v and on the right by z and use the relations
vj = eu and jz = ze. If ewa ̂ e = eux2ze multiply on the left by z and on
the right by u and use zeu = j .

Therefore the mapping τ: τ(jxj) = βiicca e is a well-defined one-to-one
mapping of /Kj into eRe. The mapping is onto. For let ewe e β72e. Then
ewe = euzwvze — τ(jzwvj). τ is clearly additive. But also τ[(jxj)(jyj)] =
τ(j%jyj) = euxjyze = (euxze)(euyze) = τ(jxj)τ(jyj). Therefore r is a ring
isomorphism of jRj onto eJ?β. Since eRe is a division ring so is jRj.

Let J be the radical of RjS λ and π be the natural homomorphism of R
onto JB/S1. Suppose that J =£ 0. Then π ' V ) => S1- and π ' V ) ^ S 1 . By
(a), π~ι(J) contains a minimal idempotent e of 72. We then have π(e) e J,
π(e) 9̂  0. This is impossible since the radical of a ring contains no non-zero
idempotents.

Let So be the socle of RjS1- and e be a minimal idempotent of 72.
Clearly π(e) =£ 0 and π is one-to-one on eRe. Then 7r(e)7r(72)τr(e) is a division
ring so that, since R jS1 is semi-simple, π(e)eS0. Let π(x)e S^-. Then
π(ea) = 0 so that exeS1 Π S = (0). Hence x e S 1 and π(x) = 0.

The following result is due to Rickart [17, Lemma 2.1.]:

4.2. LEMMA. Let A be any ring. Let x -* x* be a mapping of A onto
A such that #** = x, (xy)* — y*x* and xx* = 0 implies x = 0. Then any
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minimal right (left) ideal I of A can be written in the form I=eA(I=Ae)
where e2 — e Φ 0, e* = e.

We improve this result by relaxing the conditions on x —> x* but at the
expense of assuming the ring to be semi-simple.

4.3. LEMMA. Let R be semi-simple with minimal one-sided ideals.
Let x—>x*bea mapping of R onto R satisfying x** = x and (xy)*—y*x*.
Then the following statements are equivalent.

(1) Every minimal right ideal is generated by a s.a. idempotent.
( 2 ) Every minimal left ideal is generated by a s.a. idempotent.
( 3 ) jj* φ 0 for each minimal idempotent j of R.
(4) xx* = 0 implies x e SL

We say that the idempotent e is s.a. if e* = e. Note that x —* x* is
one-to-one and 0*=0. As a preliminary we show that j * is a minimal idem-
potent if j * is a minimal idempotent. The ideal I = jR is a minimal
right ideal. Then I* = Rj* is a left ideal Φ (0). Suppose J* z> K Φ (0),
J* Φ K where if is a left ideal of R. By semi-simplicity there exists
xeKsuch that x2 Φ 0. Then I* ID Rx Φ (0), J* Φ Rx. This implies that
/ ID x*R Φ (0), / Φ x*R. This is impossible. Therefore /* is a minimal
left ideal and j * is a minimal idempotent. It is clear from this argument
that (1) and (2) imply each other.

Assume (1). Let j be a minimal idempotent, I — Rj a minimal left
ideal. We can write I — Re where e is a s.a. idempotent. Then for some
v e R, vj = e. But e = ee* = vjj*v. Therefore jj* Φ 0. Thus (1) implies
(3).

Assume (3). Suppose that xx* = 0, x Φ 0. Let J = Rx. Then /^(0).
Suppose that / contains a minimal left ideal Rj of ϋ? where j is a mini-
mal idempotent. We can write j = i/#, yeR. Then 0 =£ jj'* = yxx*y*~§.
This shows that / contains no minimal left ideal of R. By Lemma 4.1,
I a S1. Then for any minimal idempotent e, 0 = e(ex) and x e S 1 . Thus
(3) implies (4).

Assume (4). If j is a minimal idempotent and jj* = 0 then j eS1-.
But j e S and S Π S1 = (0). This shows that (4) implies (3).

Assume (3). Let j be a minimal idempotent, I — jR. Since jj* Φ 0,
jj*i? = /. There exists u e R, jj*u = j . As noted above j * is a minimal
idempotent. By (3), 0 Φ j*j. Then 0 Φ (u*jj*)(jj*u) = u*(jj*)2u. There-
fore (jj*)2 Φ 0. Set h = j j*. Since J is minimal, / = ft/. As in the proof
of [17, Lemma 2.1] there exists u e I such that h — hu. Set e = uu*. As
in that proof, e is a s.a. idempotent and it remains only to check that eΦO
to obtain (2) from (3). If e = 0 then 0 — uu* — huu*h = h2 which is impos-
sible.

5 Normed algebras with minimal ideals. We are concerned here
with*-representations of semi-simple normed algebras B with an involution



358 BERTRAM YOOD

where B has minimal one-sided ideals. B may be incomplete.

5.1. LEMMA. Let B be a complex semi-simple normed algebra with
minimal one-sided ideals. Let e19 e2 be minimal idempotents of B. Then
the following statements are equivalent.

( 1 ) eiBeΛΦ(0).
( 2 ) eiBe1Φ(0)9

( 3) eJBe2 is one-dimensional.
( 4 ) e2Beλ is one-dimensional.
Suppose (1). There exists ue B, eλue2 Φ 0. Since exue2B — e±Bf there

exists v e B where eλue2v — eλ. Then e2ve1 Φ 0 and (1) implies (2). Let E—
{Xe2ve1 I λ complex}. Clearly e2Bex ID E. Let e2xex e eJBeλ. Then e2xe1 —
e2x(exue2ve^) — (e2xeλue2)e2ve2, a scalar multiple of e2 by the Gelfand-Mazur
Theorem. Thus (1) implies (4). The remainder of the argument is trivial.

For the remainder of § 5, B denotes a semi-simple complex normed al-
gebra with an involution and with minimal one-sided ideals.

5.2. THEOREM. The following statements concerning B are equiva-
lent.

( 1 ) Every minimal one-sided ideal is generated by a s.a. idempotent.
( 2 ) There exists a*-representation with kernel S-1.
(3) There exists a*representation with kernel contained in SL.
(4 ) j — i* is quasi-regular for every minimal idempotent j.
( 5) jBj* Φ (0) for every minimal idempotent j and xx* — 0 implies

x^xeS1-, xeB.
Suppose that (1) holds. Let Q be the set of all s.a. minimal idempotents of
B and let j e Q. By the Gelfand-Mazur Theorem, jBj = {Xj \ λ complex}.
Suppose jx*xj = Xj. Taking adjoints, λ = λ so λ is real. We show that
jx*xj = — j is impossible. For suppose jx*xj = —j. Now jxj = aj for
some scalar a = a + bi, where α, b are real. Set c = a + (a2 + 1)1/2. By
the use of jx*xj = — j one obtains (jx* — cj)(jx* — cj)* = 0. From Lem-
ma 4.3 we have jx* — cj = 0. Then (a — bi)j = jx*j = cj. It follows that
c = a and 6 = 0. This is impossible.

For j e Q we define the functional /,(#) on B by the rule fj(x)j = jay.
By the above, /,(&*&) ^ 0, a? e B, x e B and //a?*) =7Jx). The functional
/j is a positive linear functional on i? and is continuous on B.

The following inequality of Kaplansky [9, p. 55] is then available.

(5.1) fΛ(y*χ*χy) ^ v ( χ * χ ) f s ( y * v ) , χ , y e B ,

where v(x*x) = lim || (^*ίtj)w ||1/w. Let ̂  = {a? |/Xa?*a?) = 0}. Let TΓ be the
natural homomorphism of B onto B/Ij. The definition (̂ (a?), π(y)) = fj(y*x)
makes B/Jj a pre-Hilbert space. Let ξ)j be its completion. See the discus-
sion of the Gelfand-Neumark procedure in § 3. To each yeBwe correspond
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the operator A3

y defined by A5

y[π(x)] = π(yx). Then

II Ai[π(x)] ||2 = fj(x*y*yx) £ v{y*y) \\ π(x) ||2

by (5.1). Thus Aj

y can be extended to a bounded linear operator Tj

y on § J f

and the mapping y —> Tj

y is a*-representation of B.
Since || Ty || ^ v(y*y)1/2 and the estimate is independent of j eQ we can

take the direct sum § of the Hubert spaces fej,J€Q and the direct sum #—>
Γx of the representations x —> T£. This gives a*-representation of B with
kernel iΓ where

K = {α e J3 I ay e f| Jj, for all yeB} .

We show that if = S 1 .
It is clear that S* = S and therefore (S1)* = SL. Using this and

Lemma 4.3 we obtain the following chain of equivalences: xef] Ij^jx*xj =
0, alii eQ<-^jx* e SL, alii 6 Q+^jx* = 0, alii e Q-+x* e S1 ~x eS1-.
Therefore n Ij = S 1 . Thus JBΓ = {x | ay e S S all y e B}. If x e K then
xj e S"- Π S = (0) for all i e Q and aj e S x . Clearly S-1- c K. Therefore
K = S x . Hence (1) implies (2). Clearly (2) implies (3).

Assume (3) and let φ be a*-representation whose kernel c S 1 , Let j
be a minimal idempotent of B. Let A be the subalgebra of B generated by
i and i*. By the Gelfand-Mazur Theorem, jj*j = λi for some scalar λ.
Thus A is the linear space spanned by j , j * , jj* and j^j. A is finite-dimen-
sional and A a S. Since S Π S 1 = (0), ^ is one-to-one on A. Note that
A = A*. Let i<7 be the i?*-algebra obtained by taking the closure in the
operator algebra on the appropriate Hubert space of φ(B). Clearly φ(A) is
a closed*-subalgebra of E. The element <p(j — i*) is a skew element of E
and therefore quasi-regular in E. By [8, Theorem 4.2] its quasi-inverse in
E already lies in ψ{A). As φ is one-to-one on A, j — i* has a quasi-inverse
in A. Thus (3) implies (4).

Assume (4). Let j be a minimal idempotent of B. There exists % e δ
such that i — i* + u — (j — j*)u = 0. If ϋ * = 0 then left multiplication
by i gives j = 0 which is impossible. Therefore ϋ * =£ 0. By Lemma 4.3,
we see that (4) implies (1). Clearly (1) implies (5) by Lemma 4.3. Assume
(5). Let j be a minimal idempotent of B. If j*j = 0 then 0 = x*j*jx =
(jx)*(jx). Also i^cc*i* e S 1 n S = (0) for all x e B. Since iJ?i* ^ (0), jBj*
is one-dimensional by Lemma 5.1. Hence there exists u Φ 0 in B and a
linear functional /(#) on B such that i#i* = f(x)u. Then f(xx*) = 0 for
all x e S . Expanding 0 = /[(a? + 2/)(a? + y)*} = /[(a? + Ϊ2/)(a> + ij/)*] we see
that f(xy*) = 0 for all x,yeB. Hence / vanishes on JS2. Take any 2 6 B.
We have f(jz)=0 or i^i*=0. Thus jBj*=(0) which is impossible. There-
fore yy ^ 0. By Lemma 4.3, (5) implies (1).

Algebras to which Theorem 5.2 can be applied most easily are those for
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which S1 = (0). Examples are semi-simple annihilator algebras studied by
Bonsall and Goldie [3] and primitive algebras (Corollary 5.4).

5.3. COROLLARY. If B is an Arens*-algebra with non-zero socle then
NaS1.

Let xQ e N, sp (xox*) c ( — oo, 0]. Then we can write xox* = — h2 where
h is s.a. The ideal S1 is closed and self-ad joint. Let π be the natural
homomorphism of B onto B/S1. An involution can be defined in B/S1 by
the rule [π(x)]* = π(x*). Since B is semi-simple, BjS1 has non-zero socle.
Let π(x) be a minimal idempotent of BIS1. Then [π(x)]* — π(x) = π(x* — x)
is quasi-regular in B/S1 since x* — x is quasi-regular in B. By Theorem
5.2 and Lemma 4.1, B/S1 has a faithful*-representation. Then, by Theo-
rem 3.4, π(xox*) = 0 = π(/&2). Therefore v ί e S 1 and (jxo)(jxo)* = 0 for
each minimal idempotent i of 5. Therefore jx0=0 for all such i and ^ θ i S 1 .

We call the involution x —> x* proper if xx* = 0 implies x = 0. We call
the involution quasi-proper if $#* = 0 implies x*x — 0. Not every involu-
tion is quasi-proper. For example let B be all 2 x 2 matrices with the in-
volution defined by

la b\* I a —c\

\c d) \-b dj

To see that this is not quasi-proper choose x as

1 i
0 0

Every proper involution is quasi-proper but the converse is false. Con-
sider, for example B = C([0,1]) and set x*(t) = x(l — t).

5.4. COROLLARY. Let B be primitive with non-zero socle. Then the
following statements are equivalent.

(1) The involution* is proper.
( 2 ) The involution* is quasi-proper.
( 3 ) There exists a faithful*-representation of B.
Suppose that S1 Φ (0). Then by [5, p. 75], S c S1. Since SnS1^^)

this is impossible. Therefore S1 = (0). Assume (2). Let j be a minimal
idempotent of B. Then jBj* Φ (0) (see the prooof of [16, Theorem 4.4])
and, consequently (5) of Theorem 5.2 is satisfied. Then by Theorem 5.2,
(2) implies (3); the remainder of the proof is obvious.

The equivalence of (1) and (3) was noted by Rickart [17, Theorem 3.5].
By Lemma 4.3 and Theorem 5.2 this equivalence of (1) and (3) holds for any
B for which S1 = (0).

If B is complete the following statements hold. (1) Any ̂ representa-
tion of B is continuous [16, Theorem 6.2]. (2) If B has a faithfuls-repre-
sentation then the involution is continuous [16, Lemma 5.3]. We show that
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both these statements can be false for B incomplete. Our discussion is
based on work of Kakutani and Mackey [6, p. 56] (see also [7] for the com-
plex case). Let X be an infinite-dimensional complex Hubert space, (x, #) 1 / 2=
|| x ||. Let HI x | | | be any other norm on X such that | | | # | | | ^ \\x ||, xeX. Let
Xi = {ye 36|(α?, y) is continuous on X in the norm |||a?|||} and endow Xx with
the norm ||| x | | |. Then [6, p. 56] a linear functional f(x) on Xx has the form
f{x)—{x, y). Moreover Xx is dense in X in both norms. If there exists e > 0
such that || x \\ <: c \\\ x | | |, xe Xx then X = 3^ and 3^ is complete.

Let ©(X^ be the normed algebra of all bounded linear operators on Xx.
As shown in [6, p. 56], Gf(Xi) has an involution T —• T * where (ΪXαO, 2/) =
(#, T *{y)), x,ye Xx. In these terms we show the following.

5.5. THEOREM. The following statements are equivalent.
( 1 ) 3Ej is complete.
( 2 ) The involution in ©(Xx) is continuous.
( 3) ϊ%e faithfuls-representation of Theorem 5.2 for ©(Xj) is conti-

nuous.
As already noted (1) implies (2) and (3). Assume (2) and let M be the

norm of the involution. By [2] any minimal idempotent of Gf(Xi) is one-
dimensional and the operator J defined by the rule J(x) = {x, u)u where
(u, u) = 1 is a minimal idempotent. Since (J{x), y)— (xf u){u, y)=(x, J(y))
we have J=J*. The functional / defined by /(U)J = JUJ is a continuous
positive linear functional on ©(X^. For z e Xx define the operator W0 by the
rule Wz{x) = (α?, %)«. Then we can write the norm of W, as C || | z | | | where
C is independent of «. A simple computation gives JWf WZJ = (2, 2)J. By
formula (5.1), where || Z7|| denotes the norm in @(Xi),

II z ||2 = (z, z) ^ v(W*W.) ^ II TΓ*TΓf || ^ C'ilf || | 2 | | | 2 .

This shows that X2 is complete.
Assume (3) and let N be the norm of the faithful*-representation. Let

If = {Ue ©(XO |/(C7*Z7)=0}, π be the natural homomorphism of @(X0 onto
©(Xi)/// and (1,3y)r be the inner product for the pre-Hilbert space ©(ϊx)///.
Let F—> Γf be the partial*-representation induced by/. Its norm cannot
exceed JV. Now (π(J), π{J))f = 1 and

N2 II C/||2 ^ II Tί[π{J)} ||2 = (D/, UJ)f = f{JU*UJ) = f{U*U) .

Applying this formula to U = TF2 we obtain i\Γ2C2 | | | 2 || |2 ^ (2, 2) and again
Xx is complete.

A specific example is suggested in [6, p. 57]. Let X = I2, \\\ {xn} | | | =
sup I xn \. An easy computation gives Xx = I2 Π i1 in the sup norm. Here
the involution and*-representation are therefore not continuous.

6. Involutions on @(ξ>). Let ξ> be a Hubert space and @(£>) the 5*-
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algebra of all bounded linear operators on ξ>. We determine in Theorem 6.2
all the involutions on Gf (£>) for which there are faithful adjoint-preserving
representations.

6.1. LEMMA. Lβί* be any involution on (£(£>). Then there exists an
invertible s.a. element U in (£(ξ>) such that Γ* = U-χT*Ufor all Te&(&).
Conversely any such mapping is an involution.

The mapping Γ-> T**, Te (£(£), is an automorphism of ©(£). Thus
there exists F e ©(£>) where T** = VTV~\ Te (£(£>). Set U = F*. Then
Γ* = U-Ύ+U. Since T** = Γ, Γ = (U^T^Uf = C7"1ί7*T(i7*)-1?7. Thus
U*1!!* lies in the center of ®(ξ>). Consequently Ϊ7 = λ?7* for some scalar
λ. Since *7* Ϊ7 = | λ |2 C7* [/ we see that | λ | = 1. Set λ = exp (iθ) and W=
exp(-i0/2)I7. Then TF* = TFand T* = T P - ^ I F , Te ©(£>). The remain-
ing statement is easily verified.

6.2. THEOREM. An involution T -*T% on @(ξ)) is proper if and only
if it can be expressed in the form T* = U"1T*Uf Ue G?(φ) where U is s.a.
and sp(U) c (0, oo).

If T —• T# is a proper involution then (see [7]) an inner product can be
defined in ξ> in terms of which T* is the adjoint of T. Hence the proper
involutions are those for which there is an adjoint preserving faithful re-
presentation.

Let W be a one-dimensional operator, W(x) = {x, z)w with wΦO,
Then W*(x) = (x, w)z. By Lemma 6.1 we can write T*= U^T^U, Te
where £7 is s.a. Then 0 Φ W*W= U^W+UW. Hence 0 Φ W*UW. But
W*UW(x) = (x, z)W*U{w) = (α?f z)(U(w), w)z. Therefore (t/(w), w) Φ 0
for an arbitrary non-zero weξ). Hence {U(w), w)Φθ for an arbitrary non-
zero weH. Hence (U(w),w) has a constant sign and, by changing to
— U if necessary, we may suppose that (U, w), w) ^ 0, we ξ>. Then we
can write U = F 2 where Fis s.a. in ®(ξ>).

Suppose conversely that T* = v~2T*V\ Te ®(φ) where Fis s.a. Then
TΓ* = (ΓF-^ίΓF-^^F 2 . Thus TT* = 0 implies that T F " 1 = 0 and that
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