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1. Introduction. Bosanquet (|1] and {2]) has shown that the
(C,a + 7),a > 0, summability of the rth derived Fourier series of a
Lebesgue integrable function f(x) is equivalent to the (C, a) summability
at t = 0 of the Fourier series of another function w(t) (see (4), §2) in-
tegrable in the Cesaro-Lebesgue (CL) sense. This result suggests the
following question: Is there a class of functions, integrable in a sense
more general than that of Lebesgue, which permits such a characteriza-
tion for the summability of rth derived Fourier series and which is
large enough to contain w(t) also?

In this paper it will be shown that such a characterization is pos-
sible within the class of Cesaro-Perron (CP) integrable functions for a
summability scale more general than the Cesaro scale (Theorems 1 and
2, §4). Theorem 3 provides sufficient conditions for the summability of
the Fourier series of w(f) in terms of the Cesaro behavior of w(t) at
t=0.

Integrals are to be taken in the CP sense and of integral order,
the order depending on the integrand.® It will be convenient to define
the C_,P integral as the Lebesgue integral.

2. Definitions. A series Ju, is said to be summable (a, B) to S if
. @ T 1 _
lim BS (1 — v/n)* log 5(-——)%-8
n—oo VN 1-— U/n

for C sufficiently large, where B = log? C and C > 1. (It is sufficient

to say for every C > 1.%)
The function A, g(x) is defined by the equation:

(1) N (@) 4 Do () = %S:(l — ) log—" (1___%>emdu_
(2) P(t) = o(t, r,x) = [ f(x + ) + (=1) f(x — )] .
3 Pt) = P(t,r) = S __Gr-gigron
( ) (): (’T)—igomt .
(4) w(t) = t7[e) — P(t)],

! Many properties of CP integration have been given by Burkill ([4], [5] and [6]) and
by Sargent [7]. Other properties used in this paper can easily be verified by induction.
Received July 6, 1959.
2 Bosanquet and Linfoot [3]. They have also shown the consistency of this scale for
o' >a or a/ =a, B > B.
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for —7 <t <7 and is of period 27.

The rth derived Fourier series of f(f) at t = z will be denoted by
D.FSf(x), and the nth mean of order (a, 8) of D.FSf(x) by S, s(f, x, n).
The kth iterated integral of f(x) will be written F.(t) or [F(t)]s.

3. Lemmas. The following result is due to Bosanquet and Linfoot

[3]:
LEMMA 1. For r>0and a=0,8>10r a>0,8=>0,
MYa,p(®) = O(l2 |~ " log=# [®]) + |2 | 77%) as |¢| — o .
LEMMA 2. For ¢ > 0,8 >0 and r >0,
FNaor @) = 3 B0 Assasrespe (@),

where the Bi(a, B) are independent from x and have the properties:
(i) B, 0)=0 for j > 1;
(i) Bif(a, B) # 0.

Proof. Let us put visap(®) = Muap(®) + theap(@). For 7 =0 we
take By(a, 8) =1. For r > 1 an integration by parts and the identity

U = —u""'(1 — u) + u* yield the following recursion:
YR (@) = —(@ + 2P0 p(8) — B, (@)
(5) log C

+ (@ + Pyl e(2) + 105 Cm“v{i;?r—x.sﬂ(w) .

The lemma follows easily from successive applications of equation (5).
LEMMA 3. For n >0and a=0,8>10r a>0,8>0,

G+ 2= 2w Sod

n

_ nmki Ny gln(t + 2kw)]

= w00

Jor r=20,1,2, ..,

Proof. Smith ([8], Lemma, 3.1) has shown that for every even
periodic, Lebesgue integrable function Z(t),

(6) ZnS:Z(t)wa,B(nt)dt B ARY
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Using Lemma 1 and the properties of Z(t), one can show in a
straightforward manner that

‘0 S: Z(Ossap(nE)dE = S:Z(t) 3 Mvapln(t + 2k)Idt .
1 for |t| <a

0forx<|t|<T
that for every z,0 <z < «,

Let us define Z(t) = { } Equations (6) and (7) imply

0 k=—oo 0) 27 T v=n

. log"f’< ¢ )cos vt}dt .
)

n

(8) rn i Msapln(t + 2km)]dE = r{—}— + B > <1 - %)a

Since the integrands in (8) are continuous, even and periodic, the lemma
is proven for k = 0.

To prove the lemma for £ > 1, we need only to observe that the
derived series are uniformly convergent in every closed interval by
Lemma 1.

LEMMA 4. Let f(x) e CP[—=x, ] and be of period 2z. Then for
n>0and a=0,8>1or a>0,8>0,

Sualf @ m) = 2=1yw | 9(0) N2 sln(t + 2er)ldt .

Proof. This result can be verified by direct calculation using Lemma
3 and the properties of CP integration.

When f(x) is Lebesgue integrable, Lemma 4 is equivalent to a
slightly different representation given by Smith [8].

LEMMA 5. Let f(x)e C.P[—rx, ] and be of period 2. Let & 0 <

E< pn+ 1, be an tnteger for which @¢(t) e L[0, =]. Then, for r > 0 and
a=EB>1lora>§B82>0,

S;H',B(f’ v, %) —a, = 2(—1)an+lgk[q)(t) - P(t)])"§?w+rﬁi(nt)dt + 0(1) .
0
Proof. From Lemmas 1 and 4 we see that
Sz, o(P, 0, ) = z(—1)rnr+1§"P(t) S AR sllt + 2em)]dt
0 k=—~oo

- 2(—1)w+1§"P(t)xgrzw+r,ﬂ(nt)dt +o(l) as n— oo .
0
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Since (d/dt)"P(t) = a,, then Si.,s(P, 0, ) —a, for a=0, 8>1or
a>0,8>02
It remains to be shown that

(9) St (F, %, 1) = 2(—1)rnf+1S"<p(t)mw+,,s(nt)dt +o(l) .
0
Successive integrations by parts give
T o E..
10)  w[9(®) S Mowwrslnlt + Zeldt = 5 (~1)w++10,.,(x)
1] k=00 =0

- SN, Sln(@h + )] + (—1)%”“&5"@@) S
k=—oo 0 k=—oo
N, St + 2k)]d

By Lemma 1 each of the integrated terms on the right side of (10)
is o(1) as n — o, and

e SIS, J[n(t + 2k7)] = of1)

Ko =00

uniformly in ¢,0 <t < 7. Since @¢(t) is Lebesgue integrable, it follows
that the left side of (10) is o(1). This result and Lemma 4 prove (9)
and complete the proof of the lemma.

It can be shown that Lemma 5 holds ifs

T

3
is replaced by S ,6>0.
0

0
Thus, for the values of « and B under consideration, the summability

of D.FSf(x) is a local property of f(x).
Having found an expression for S; 4(f, %, n), let us estimate the in-
teger £ in the preceding lemma.

LEMMA 6. If h(t)eC.P[0, a] and t"h(t) € C, P[0, a], then
H,.¢(t) e L0, a], where & = min [¢, max (A, 7)] .
Proof. The case ¢ = —1 is trivial by definition of C_,P. Therefore,
let us assume ¢ > 0. We may also assume, by the consistency of CP

integration, that » > ».
It will be convenient to use the ‘‘integration by parts’’ formula:

(11) [Eh(D)], = ,jsi:,ocj(k, P Hy (2), k=12 -+,

where the C,(k, r) do not depend on £ or the function A.
By the Cesaro continuity and consistency of CP integration, there
exists an integer £ > )\ 4+ 1 such that for 7 > 0,

(12) Hk+1+j(t) - 0(tk+]—7’) as t_’ 0 .
3 Smith [8], Theorem 3.1.
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Since k >\ + 1, equations (11) and (12) imply
[ER(D)]x = o(t*™") = T H(¢) + Xt o(¢*77177) 5
J=1

hence, H(t) = o(t**-"). This result and (12) yield
(13) H,. (t) =0+ as t—0 for 7 >0.

Since (13) is merely (12) with k replaced by k& — 1, this inductive
process terminates with H,.,(t) = o(t*~"). Therefore, H,.,(t) = o(1l) as
t—0if A >r.

But for » > 0, i(t) e C,P[n, a]. Therefore, H,.¢(t)e L[0, a].

Lemmas 5 and 6 may be combined to give the following:

LEMMA 7. Let f(x)eC\P[—m,w] and be of period 2rx. If
w(t)e C,P|0, ], then for a =1+ & B >1ora>1+E& 8>0,

Sesl@, 0, 1) = 20] O(ONvas0t)dt + o(1), where ¢
0
= min (g, max (A, 7)] .
This section is concluded with two results of Tauberian nature.

LEMMA 8. If a>0,8>0, {b;}f, and {a .}, are sequences of real
numbers with b, =+ 0, and if
k v \* C
ﬁuw=zm20——)m%mt——yﬁwm%nam,
=0 v<n n 1 _ _l)_
n
then D=0ty = o(a, B).
The proof of this result is too long to be given here. In general,
however, this method is similar to one employed by Bosanquet and

Linfoot.*

LEMMA 9. Let S, g(u,n) denote the nth mean of order («,f) of
the series 2u.. For a,Bandr >0andi,5=0,1, ---, v, let us assume
that

(i) The constants Ci(a, B, r) have properties (i) and (ii) of the
Bija, 8) in Lemma 2;

(ii) “ZTOCU(IC + a, 18! T)Sk+w+r—1,5+j(uy 'ﬂ/) - 0(1)7 k = 0: 19 27 ey

(iii) io u, = 0(C).

¢ Bosanquet and Linfoot [3], Theorem 3.1.
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Then er;o Uy = O(a’ B)'

Proof. Let us consider the case 8> 0. By (iii) of the lemma and
the consistency of («, 8) summability, there exists an integer K > 1
such that S, cs.4+,(%, #) = 0o(1) as » — o for 4,5 = 0,1, 2, --.. Putting
k=K —1 in (ii) above, we see that

jz; Cof(K — 1+ @, B, 7)Sx-1s0.pe (2 1) + 0(1) = 0(1) .

Therefore, from (i) above and Lemma 8, Sg_,., (%, n) = 0(1). That is,
for K> 1, >5,u, = o(a + K, B) implies 3=, u, =ola + K —1,8). It
follows immediately that 3., u, = o(a, B).

The case 8 = 0, in which we deal with linear combinations of Riesz
means, is proved similarly.

4. Theorems.

THEOREM 1. Let f(x)e C\P[—m, 7] and be of period 2r. If there
extst constants a,_,, 1 = 0,1, <+, [7/2], such that

(i) w(t)eC.P]0, ] for some integer p;

(i) FSw0)=0(,B) for a=14+E&B8>1 or a>1+§& B0,
where & = min [¢, max (A, )],
then D.FSf(x) = a x + 7, B).

THEOREM 2. Let f(x)eC,P[—mn, ] and be of period 2r. If
D,FSf(x)=aa+ 7, B) fora=14+NB8>1or a>1+4+ N8>0, then
there exist constants a,_y, 1 = 0,1, <+, [7/2], such that

(i) w(t)eC.P|0, &r] for some integer ;

(i) FSw(0) = o(a’, B'), where

{a’=1+§,3’>1if1+>»ga<1+§or a=1+§pB<1

d
ad=a,B=Bifa=14+EB>1ora>1+§B82>0 }an

& = min [, max (A, 7)].

Before proving these theorems, let us observe that the existence
of the a,_, in the theorems implies their uniqueness from the definition
of w(t). In fact, somewhat more is true. Observe that (t)=
o(t, r) e CP[0, w] implies w(t, r — 2i) = o(1)(C) as t — 0. Therefore, if
w(t, r) e CP[0, 7] and FSw(0) = 0(C), then assuming the truth of Theo-
rems 1 and 2, it is clear that the a,_, are given by the formula:

D, FSf(x) = a,-(C), 1 =0,1, «++ [7/2]

Proof of Theorem 1. Lemma 7 and the consistency of (a, 8) sum-

o Compare Bosanquet [2], eqn. 5.2, for f(x)€ L[, =].
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mability give the relations:
20 OO varrmie WAL = Serrcpes@, 0,1) + 0(1) = (1) ,
for 2,7 =0,1,2, ---, . Therefore,
20 0(t) 3B Bearrmcpe )it = o))
which by Lemma 2 becomes
(14) ZnT“S:w(t)t’xi?ww,g(nt)dt = o(l) .

Since t'w(t) = @(t) — P(t), relation (14) and Lemma 5 imply that
St 6(fs 2, n) — a, = o), ie., D,FSf(x) =a fax + 7, B).

Proof of Theorem 2. Let us first prove part (i). Putting P(t)=0
in Lemma 5, we obtain

15) 2= | PO aME)E = Serrlf, 5, 1) + 1)

If the left side of (15) is integrated by parts A 4+ 1 times, the integrated
part is o(1) as n — o by Lemma 1, and (15) becomes

16) 2=y O (ORI = Szur o, 7, 1) + o)

Let us define @,.,(f) for —7 <t <0 to be an odd (even) function
if 4+ X+ 1 is odd (even). Then (16) may be written

;-:);T.Bl(¢)\+1, O! n) = S;+1',B(f7 x; n) + 0(1) .

It follows that D,.,..F'S®,.,(0) = a,(C).

Since @,.,(t) € L|—=, 7], a theorem of Bosanquet establishes the fol-
lowing result.® There exist constants a™**+1-%, = 0,1, -+, [(r+1+1)/2],
with a™+**' = a,, such that

A7) 9(@) = {@r4:(t) — P.(})}t-"***Y e CL[0, x] and FSy(0) = 0(C) ,

Where P*(t) — ZE(:OH\H)MJ [ar+)\+1—-zi/(/’. + )\‘ + 1 _ zi)!]tr+)~+1—2i'

For »= —1, put a"*=a,, in (17). Then (17) states that
w(t) e CP[0, 7] and FSw(0) = 0(C).

Let us consider the case A > 0, and define i(u, m + 1) = {@,,,,(u) —
Pe=™(u)tu~-"+m+ m = —1,0,1, .-+, A. Then for 0 <9 <t < x, an in-
tegration by parts yields

¢ Bosanquet [2], Theorem 2. The superscript notation has been used here to distinguish
these constants from those whose existence is to be proven.
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(18) S:h(u, m)du = wh(u, m + 1)82 Fr+ m)S:h(u, m + 1)du .

Let us assume for the moment that for some integer m, 0 < m < ),
19) h(w, m + 1)e C,P[0, t], k. >\ + 1.

From (19) and a result due to Sargent’, it follows that
S’h(u, m + 1)du e C.P[0, t] and (C, k + 1) lim S”h(u, m + 1)du
n n—0 n
= Szh(u, m + 1)du .
0

Since 7h(n, m + 1)e C,P[0,t] and is o(1)(C,k + 1) as 7— 0, the
right side of (18) has a limit (C,k 4+ 1) as n»— 0. Sargent’s result
(ibid.) and equation (18) imply

(20) h(u, m) e Cp., P[0, ] .

We infer from the recursive behavior of (19) and (20) that whenever
(19) is true, then A(u, 0) e CP[0, t]. But (19) is true for m = ) by (17).
Therefore,

(21) h(t, 0) = {p(t) — P2*"(t)}t~"e C,P[0, 7] for some .

In the course of the argument above, it has also been shown that
by taking C-limits of (18) we obtain
22) Szh(u, m)du = th(t, m + 1) + (r + m)S”h(u, m + 1)du

0 0

for m =0,1, ---, \.

If we now define a,_, =a™**'% 4=0,1, ..., [7/2], it is easily
verified that P3*V(t) = P(t) and h(¢, 0) = w(t). Part (i) of the theorem
follows immediately from (21).

Next it will be shown that FSw(0) = 0(C) for A >0, the case
A = —1 having been settled already.

From equations (11) and (22), it is seen that

(23) [t M)]esr = ER(E, m 4+ D] + (r + m — E)[A(E, m 4 1)) .
If for some integer m, 0 < m < A, the statement
(24) h(u, m + 1) = o(1)(C, k) for some integer k

is true, then (24) is also true when m + 1 and k are replaced by m
and k& + 1, respectively, by (23). In this manner we arrive at the con-
clusion that k(t, 0) = w(t) = o(1)(C) as t— 0, which ensures that FSw(0)=

7 Sargent [7], Lemma 1.
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0(C). However, h(u, » + 1) = v(t) and FSvy(0) = 0(C) from (17). There-
fore, ¥(t) = o(1)(C)% so that (24) is true for m = A.

It remains only to prove the order relations in part (ii).

Having determined the polynomial P(t), we may state, with the aid
of Lemmas 2 and 5, that

@) Sualfiom) —a, = (=17 3 B, £)
{2l OO ner o )it} + o)

Ifx+1<a<l+éora=1+E&B<1,thenfor B*>1 and k =
0,1,2, +++, Sliisgar p(f> 2, n) — a, = o(1). Equation (25) then implies

@) BB+ £+ kB2 0ONrserrresp ()it} = o)

i 0

Similarly, for a =14 §8>1or a > 14 £ 8 >0, it can be shown
that

@7 i%ﬂB:,(a + ,8){2%5:w(t)xlwﬂm_i,m,(nt)dt} =o(1).

With the definition of (o, 8’) and by means of Lemma 7, both (26)
and (27) may be combined into the single equation:

(28) th:IOBgJ(a, + k! 6,)Sml+lc+r—i,ﬁf+j(w! 0, n’) = O(I)y k = O’ 1! 2) .

Since FSw(0) = 0(C), Lemma 9 and (28) yield part (ii) of the theorem
at once.

These two theorems may be combined in several ways to give gen-
eralizations to known results. In what follows it is assumed that
f(x)e C,P|—r, x] and is of period 27, § = min (g, {] and ¢ = max (7, \).

COROLLARY 1. If w(t)eC,P[0, ], then for a=14+§&B8>1 or
a>1+§&B8>0,DFSf(x) =ala+7r,B) if and only if FSw(0) =
0, B).°

COROLLARY 2. Fora=1+4+¢,8>1or a>1+¢,8>0,D.FSf(x)=
ala + r, B) if and only if w(t)e CP[0, 7} and FSw(0) = 0(a, B).

From Corollary 2 it follows that D.FSf(x) = a(C) if and only if
w(t) e CP[0, ] and FSw(0) = 0(C). Along with a result by Sargent"

8 That F'Sg(0) = 0(C) if and only if g(¢) = o(1)(C) as ¢t — 0 has been shown by Sargent
[7], Theorem 6.

9 For p= —1 compare Wang [9].
0 For « =7 + 1 and 4= —1 compare Bosanquet [2].
1t Sargent {7], Theorem 6.
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this gives a solution, in the sense of Hardy and Littlewood, to the
Cesaro summability problem for D,FSf(x) within the class of CP in-
tegrable functions.

The last theorem of this section sharpens a well known sufficient
condition for the summability of FSw(0) without, however, destroying
the CP integrablity of w(t).

THEOREM 3. Let w(t)e C P[—x, ] and be an even function of
period 2r. For k > p, sufficitent conditions that FSw(0) = 0(1 + k, B),
B>1, are

(i) o(t) = 0(1)(C, k + 1) and
() o) = o(1)(C, k + 2).

Proof. The proof of this theorem is similar to the proof of the
analogous theorem for Riesz summability when w(t) is Lebesgue inte-
grable. Starting with Lemma 7 and k + 1 integrations by parts, one
obtains

S,un p(@, 0, 1) = (— 1)k+12n'c+2§ Qe (ONED M) + o(1) .

K/n

T 8 T N
Writing S = S + S + SS, it can be shown by straightforward ecal-
0 0 K/n

culations that for arbitrary ¢ > 0 and K > e,
| Sper.s(@, 0, n)| < M(K) - & + Mzr(X'1 log? X + X*)dX + o(1), where
K

M, is independent from ¢, K and n. The theorem follows from the last
inequality by letting n — o,e¢— 0 and K — o in that order.

The theorems of this section can be illustrated by means of the
following CP integrable functions:
t-™sin ¢! and t~™ cos t‘l =0,1,2, -+-. For example, from Theorems
1 and 3, FS[t'sint'];-, = 0(1, B) and D, FS[sin t'],., = 0(2, B) for B>1.
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