NOTE ON ALDER’S POLYNOMIALS

L. CARLITZ
NOTE ON ALDER'S POLYNOMIALS

L. CARLITZ

1. Alder's polynomial $G_{M,t}(x)$ may be defined by means of

\[1 + \sum_{s=1}^{\infty} (-1)^s k^s x^{\frac{1}{2} s \binom{2M+1}{s-1}} (1 - k x^{2s}) (kx)^{s-1} (x)^s = \prod_{n=1}^{\infty} \left(1 - k x^n \right) \sum_{t=0}^{\infty} k^t G_{M,t}(x) (x)_t, \]

where M is a fixed integer ≥ 2 and

\[(a)_t = (1 - a)(1 - ax) \cdots (1 - ax^{t-1}), \quad (a)_0 = 1.\]

Alder [1] obtained the identities

\[\prod_{n=1}^{\infty} \frac{(1 - x^{(2M+1)n-M})(1 - x^{(2M+1)n-M-1})(1 - x^{(2M+1)n})}{1 - x^n} = \sum_{t=1}^{\infty} \frac{G_{M,t}(x)}{(x)_t}, \]

\[\prod_{n=1}^{\infty} \frac{(1 - x^{(2M+1)n-1})(1 - x^{(2M+1)n-2M})(1 - x^{(2M+1)n})}{1 - x^n} = \sum_{t=0}^{\infty} x^t \frac{G_{M,t}(x)}{(x)_t}, \]

thus generalizing the well-known Rogers-Ramanujan identities. Singh [2, 3] has further generalized (2), (3); he showed that

\[\prod_{n=1}^{\infty} \frac{(1 - x^{(2M+1)n-s})(1 - x^{(2M+1)n-2M-1+s})(1 - x^{(2M+1)n})}{1 - x^n} = \sum_{t=0}^{\infty} A_s(x, t) G_{M,t}(x) (x)_t, \]

where the $A_s(x, t)$ are polynomials in x.

In a recent paper [4] Singh has proved that

\[G_{M,t}(x) = x^t \quad \quad (t \leq M - 1). \]

In the present note we give another proof of (4) and indeed obtain the explicit formula

\[G_{M,t}(x) = \sum_{s \leq t, s \geq 0} (-1)^s \frac{(x)_t}{(x)_s (x)_{t-M s}} x^{\frac{1}{2} s(s-1) + st}(1 - x^s + x^{t-M s+s}) \]

valid for all t.

2. Since

\[(1 - k x^{2s})(kx)^{s-1} = (kx)_s + k x^s (1 - x^s)(kx)_{s-1},\]

the left member of (1) is equal to

Received June 26, 1959.
\[
1 + \sum_{s=1}^{\infty} (-1)^s k^{M+s} x^{\frac{1}{2} s \left(\frac{2M+1}{2} s - 1\right)} \left\{ \frac{(kx)^s}{(x)^s} + kx^s \frac{(kx)^{s-1}}{(x)^{s-1}} \right\} \\
= \sum_{s=0}^{\infty} (-1)^s k^{M+s} x^{\frac{1}{2} s \left(\frac{2M+1}{2} s - 1\right)} \left(\frac{kx}{x}\right)^s \\
- \sum_{s=0}^{\infty} (-1)^s k^{M+(s+1)} x^{\frac{1}{2} s \left(\frac{2M+1}{2} (s+1) + (s+1) + (s+1) - 1\right)} \left(\frac{kx}{x}\right)^s \\
= \sum_{s=0}^{\infty} (-1)^s k^{M+s} x^{\frac{1}{2} s \left(\frac{2M+1}{2} s - 1\right)} \left(\frac{kx}{x}\right)^s \{1 - k^{M+(s+1)} x^{(s+1) (2s+1)}\}.
\]

Thus (1) becomes

\[
\sum_{t=0}^{\infty} \frac{k^t G_{M,t}(x)}{(x)_t} = \sum_{s=0}^{\infty} (-1)^s k^{M+s} x^{\frac{1}{2} s \left(\frac{2M+1}{2} s - 1\right)} \cdot \frac{1 - k^{M+1} x^{(M+1) (2s+1)}}{(x)_s} \prod_{j=1}^{\infty} (1 - k x^{s+j})^{-1}
\]

\[
(6)
\]

\[
= \sum_{s=0}^{\infty} (-1)^s k^{M+s} x^{\frac{1}{2} s \left(\frac{2M+1}{2} s - 1\right)} \cdot \frac{1 - k^{M+1} x^{(M+1) (2s+1)}}{(x)_s} \sum_{j=0}^{\infty} \left(\frac{k^j x^{s+j}}{(x)_j}\right).
\]

For \(t < M\), it is clear that the coefficient of \(k^t\) on the right is simply \(x^t/(x)_t\). This proves Singh's result (4).

For \(t = M\) we get

\[
\frac{G_{M,M}(x)}{(x)_M} = - \frac{x^M}{1 - x} + \frac{x^M}{(x)_M},
\]

so that

\[
G_{M,M}(x) = x^M - x^M \frac{(x)_M}{1 - x},
\]

which also was found by Singh.

For \(t = M + 1\), similarly, we have

\[
\frac{G_{M,M+1}(x)}{(x)_{M+1}} = \frac{x^{M+1}}{(x)_{M+1}} - x^{M+1} - \frac{x^{M+2}}{(1 - x)^2},
\]

so that

\[
G_{M,M+1}(x) = x^{M+1} \left\{1 - (x)_{M+1} - x \frac{(x)_{M+1}}{(1 - x)^2}\right\}
\]

\[
= x^{M+1} \left\{1 - (1 + x^3)(x^3)_{M-1}\right\}.
\]

also due to Singh.

3. For arbitrary \(t \geq M + 1\), it follows from (6) that

\[
G_{M,t}(x) = \sum_{M \leq s \leq t} (-1)^s \frac{(x)_s}{(x)_s (x)_{t-M-s}} x^{\frac{1}{2} s \left(\frac{2M+1}{2} (s+1) - 1\right)}
\]

\[
- \sum_{M(s+1) \leq t} (-1)^s \frac{(x)_t}{(x)_s (x)_{t-M(s+1)-1}} x^{s},
\]

...
where
\[e_s = \frac{1}{2}s \{(2M + 1)s - 1\} + (s + 1)\{t - M(s + 1) - 1\}(M + 1)(2s + 1). \]

This simplifies to
\[
G_{M,t}(x) = x^t \sum_{M s \leq t} \frac{(-1)^s}{(x)_l(x)_{t-M s}} x^{\frac{1}{2}s(s-1) + s(t-M)} + \sum_{0 < M s < t} (-1)^s \frac{(x)_l}{(x)_{l-1}(x)_{t-M s-1}} x^{\frac{1}{2}s(s-1) + st},
\]
or if we prefer
\[
G_{M,t}(x) = \sum_{M s \leq t \geq 0} (-1)^s \frac{(x)_l}{(x)_{t-M s}} x^{\frac{1}{2}s(s-1) + st}(1 - x^s + x^{t-M s + s}).
\]

For example (9) reduces to
\[
G_{M,t}(x) = x^t\left\{1 - \frac{(x)_l}{(x)_{t-M}}(1 - x + x^{t-M+1})\right\}
\]
for \(M + 1 \leq t \leq 2M - 1\). When \(t = M + 1\), it is easily verified that (9) reduces to (7). Singh [4] conjectured the truth of (10) for \(t \leq 2(M - 1)\).

References

Duke University
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsu-sha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert (Yisrael) John Aumann, Acceptable points in games of perfect information</td>
<td>381</td>
</tr>
<tr>
<td>A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them</td>
<td>419</td>
</tr>
<tr>
<td>Dallas O. Banks, Bounds for the eigenvalues of some vibrating systems</td>
<td>439</td>
</tr>
<tr>
<td>Billy Joe Boyer, On the summability of derived Fourier series</td>
<td>475</td>
</tr>
<tr>
<td>Robert Breusch, An elementary proof of the prime number theorem with remainder term</td>
<td>487</td>
</tr>
<tr>
<td>Edward David Callender, Jr., Hölder continuity of n-dimensional quasi-conformal mappings</td>
<td>499</td>
</tr>
<tr>
<td>L. Carlitz, Note on Alder’s polynomials</td>
<td>517</td>
</tr>
<tr>
<td>P. H. Doyle, III, Unions of cell pairs in E^3</td>
<td>521</td>
</tr>
<tr>
<td>James Eells, Jr., A class of smooth bundles over a manifold</td>
<td>525</td>
</tr>
<tr>
<td>Shaul Foguel, Computations of the multiplicity function</td>
<td>539</td>
</tr>
<tr>
<td>James G. Glimm and Richard Vincent Kadison, Unitary operators in $C^$-algebras*</td>
<td>547</td>
</tr>
<tr>
<td>Hugh Gordon, Measure defined by abstract L_p spaces</td>
<td>557</td>
</tr>
<tr>
<td>Robert Clarke James, Separable conjugate spaces</td>
<td>563</td>
</tr>
<tr>
<td>William Elliott Jenner, On non-associative algebras associated with bilinear forms</td>
<td>573</td>
</tr>
<tr>
<td>Harold H. Johnson, Terminating prolongation procedures</td>
<td>577</td>
</tr>
<tr>
<td>John W. Milnor and Edwin Spanier, Two remarks on fiber homotopy type</td>
<td>585</td>
</tr>
<tr>
<td>Donald Alan Norton, A note on associativity</td>
<td>591</td>
</tr>
<tr>
<td>Ronald John Nunke, On the extensions of a torsion module</td>
<td>597</td>
</tr>
<tr>
<td>Joseph J. Rotman, Mixed modules over valuations rings</td>
<td>607</td>
</tr>
<tr>
<td>A. Sade, Théorie des systèmes demonsiens de groupoï des</td>
<td>625</td>
</tr>
<tr>
<td>Wolfgang M. Schmidt, On normal numbers</td>
<td>661</td>
</tr>
<tr>
<td>Berthold Schweizer, Abe Sklar and Edward Oakley Thorp, The metrization of statistical metric spaces</td>
<td>673</td>
</tr>
<tr>
<td>John P. Shanahan, On uniqueness questions for hyperbolic differential equations</td>
<td>677</td>
</tr>
<tr>
<td>A. H. Stone, Sequences of coverings</td>
<td>689</td>
</tr>
<tr>
<td>Edward Oakley Thorp, Projections onto the subspace of compact operators</td>
<td>693</td>
</tr>
<tr>
<td>L. Bruce Treybig, Concerning certain locally peripherally separable spaces</td>
<td>697</td>
</tr>
<tr>
<td>Milo Wesley Weaver, On the commutativity of a correspondence and a permutation</td>
<td>705</td>
</tr>
<tr>
<td>David Van Vranken Wend, On the zeros of solutions of some linear complex differential equations</td>
<td>713</td>
</tr>
<tr>
<td>Fred Boyer Wright, Jr., Polarity and duality</td>
<td>723</td>
</tr>
</tbody>
</table>