UNIONS OF CELL PAIRS IN E^3

P. H. Doyle, III
UNIONS OF CELL PAIRS IN E^3

P. H. Doyle

In [4] it is shown that there are pairs of cells of all dimensions possible in euclidean 3-space, E^3, which are tame separately, but which have a wild set as their union. Such pairs can be constructed when the individual cells intersect in a single point. The present paper gives conditions that unions of some such pairs be tame sets as well as a number of other results.

Lemma 1. Let D_1 be a disk which is polyhedral and which lies on the boundary, ∂T, of a tetrahedron T in E^3. If D_2 is a disk in E^3 which has a polygonal boundary and is locally polyhedral mod ∂D_2 while $D_2 \cap T = D_2 \cap D_1 = \partial D_2 \cap \partial D_1 = J$, an arc, then $D_1 \cup D_2$ is a tame disk.

Proof. Let P_1 and P_2 be polyhedral disks in ∂T, $P_1 \cap P_2 = \square$ and $(P_1 \cup P_2) \cap D_1 = \square$. Then $\partial T \setminus (P_1 \cup P_2)$ is a polyhedral annulus, A_1. If Q is a polyhedral disk in $D_1 \setminus \partial D_1$, then $\overline{D_1 \setminus Q}$ is an annulus A_2 which is locally polyhedral mod ∂D_2. By applying Lemma 5.1 of [8] to A_1 and A_2 one obtains a space homeomorphism h carrying E^3 onto E^3 while $h(D_1 \cup D_2)$ is a polyhedral set. This completes the proof of Lemma 1.

Lemma 2. Let D_1 be the disk of Lemma 1 while D_2 is a tame disk in E^3 such that $D_2 \cap T = D_2 \cap D_1 = \partial D_2 \cap \partial D_1 = J$, an arc. Then $\partial T \cup \partial D_2$ is tame.

Proof. By Theorem 2 of [3] $\partial D_1 \cup \partial D_2$ is locally tame and hence tame by [1] or [8]. Let a be a point of ∂J and J' be an interval of ∂D_1 having a as an end point and $J' \cap \partial D_2 = a$. We choose a polygonal disk M on ∂T with $(J' \cap J')$ in its interior while $\partial D_1 \cap M = J'$. By a swelling of M toward the component of $E^3 \setminus \partial T$ which meets ∂D_2 we obtain a disk M' which is locally polyhedral mod ∂M and $M' \cap \partial T = \partial M = \partial M'$. The sphere $S = M' \cup (\partial T \setminus M)$ is tame by [8] and S is pierced at a by a tame arc lying on $\partial (D_1 \cup D_2)$. Hence by [7] $\partial D_1 \cup S$ is locally tame at a. We select an arc P in $(S \setminus M') \cup a$ which is locally polyhedral except at the point a. There is an arc A on ∂D_2 which lies in the exterior of S except for its end point a. The arc $A \cup P$ is tame since $S \cup \partial D_2$ is tame. Let the arc P be swollen into a 3-cell C^3 with P in its interior such that C^3 is locally polyhedral mod a, $C^3 \cap S$ is a disk while $C^3 \cap M = a$. Then ∂C^3 is pierced at a by $A \cup P$ and so $A \cup P \cup \partial C^3$ is tame by [7]. Evidently there is an arc P' on ∂C^3 so

Received April 27, 1959. The work on part of this paper was supported by the National Science Foundation Grant G-2793.

521
Theorem 1. Let \(D_1 \) and \(D_2 \) be two tame disks in \(E^3 \) such that \(D_1 \cap D_2 = \partial D_1 \cap \partial D_2 = \gamma \), an arc. Then \(D_1 \cup D_2 \) is a tame disk.

Proof. Since \(D_1 \) is tame there is a homeomorphism \(h_1 \) of \(E^3 \) onto \(E^3 \) such that \(h_1(D_1) \) is a plane triangle. The disk \(h_1(D_1) \) is to be swollen so that a 3-cell \(e^3 \) is formed such that

1. \(h_1(D_1) \subset \partial e^3 \),
2. \(e^3 \) is tame,
3. \(e^3 \cap h_1(D_1) = h_1(\gamma) \).

That such a cell \(e^3 \) exists follows from Lemma 5.1 of [5] and Theorem 9.3 of [8].

There is a homeomorphism \(h_2 \) of \(E^3 \) onto \(E^3 \) which carries \(\partial e^3 \) and \(h_1(D_1) \) onto the boundary of a tetrahedron and a polyhedral disk, respectively. By Lemma 2 \(h_2(e^3) \cup h_2h_1(\partial D_1) \) is a tame set. By Theorem 2 of [6] we can insist that \(h_2h_1(\partial D_1) \) be locally polyhedral mod \(h_2h_1(\partial D_1) \), while \(h_2h_1(\partial D_1) \) is polygonal. Hence by Lemma 1 \(h_2h_1(D_1 \cup D_2) \) is tame and so \(D_1 \cup D_2 \) is tame.

The following result gives a characterization of tame 1-dimensional complexes in \(E^3 \). By a 1\(_{v} \)-star we mean a homeomorphic image of a 1-dimensional simplicial complex \(K \) with a vertex \(x \) whose star is \(K \) and \(x \) is the common end point of the \(n \) segments meeting only in \(x \).

Theorem 2. If \(N \) is a 1\(_{v} \)-star in \(E^3 \) such that \((n - 1) \) of the branches of \(N \) lie on a disk \(D \) which meets the remaining branch \(J \) at \(x \) only and if each arc in \(N \) is tame, then \(N \) is tame.

Proof. By [2] we may assume that \(D \) is locally polyhedral mod \(N \). An application of the method in Theorem 1 of [3] makes it possible to select a subset \(D' \) of \(D \) which is a disk consisting of \((n - 1) \) tame disks which contain arcs with \(x \) as an end point of all branches of \(N \) except \(J \). An argument almost identical with that of Theorem 2 of [3] suffices to show that \(J \cup D' \) is tame and hence \(N \) is tame by [1] or [8].

Corollary 1. Let \(G \) be a graph in \(E^3 \) such that the star of each vertex of \(G \) meets the conditions of Theorem 2, then \(G \) is tame. The conditions are evidently necessary as well.

Corollary 2. Let \(D \) be a tame disk and \(J \) a tame arc in \(E^3 \). If \(D \cap J = \partial D \cap J = \gamma \), an end point of \(J \), and if \(\partial D \cup J \) is tame, then \(D \cup J \) is tame.

Proof. Since \(D \) is tame there is a space homeomorphism \(h \) which
UNIONS OF CELL PAIRS IN E^3

carries D onto a face of a tetrahedron T, $[h(J) \setminus h(p)] \subset E^n \setminus T$. Let P be a segment on $h(\partial D)$ with $h(p)$ as an end point. We enclose P in a polyhedral disk M in ∂T such that P spans M and $h(\partial D) \cap M = P$. We swell M as in Lemma 2 to obtain a tame disk M' such that $\partial M' = \partial M$, and $M' \setminus \partial M' \subset E^n \setminus T$. Then $h(J) \cup h(\partial D)$ contains a tame arc which pierces the tame sphere $[8] S = M' \cup (\partial T \setminus M) \setminus h(p)$ and so $S \cup h(J)$ is tame by [7]. The construction of an arc P' as in Lemma 2 completes the proof.

In Example 1.4 of [4] an arc A which is the union of two tame arcs is shown. Although A has an open 3-cell complement in compactified E^n, it is nevertheless wild. A similar example can be obtained from Example 1.4 of two tame disks which meet at a point on the boundary of each and which have a wild union. In this connection we give the following result.

Theorem 3. Let D_1 and D_2 be disks in E^3 such that each arc in D_1 and D_2 is tame and $D_1 \cap D_2 = \partial D_1 \cap \partial D_2 = J$, an arc. Then $D_1 \cup D_2$ is a disk such that each arc in $D_1 \cup D_2$ is tame.

Proof. Let J' be an arc in $D_1 \cup D_2$. If $\partial J'$ does not lie in $\partial D_1 \cup \partial D_2$ we extend J' so that this is the case, obtaining $J'' \supset J'$, $\partial J'' \subset \partial D_1 \cup \partial D_2$ and $J'' \subset D_1 \cup D_2$. By [2] there is a disk D such that $\partial D = \partial (D_1 \cup D_2)$, $J \cup J'' \subset D$ and D is locally polyhedral mod $J \cup J'' \cup \partial D$. The arc J in D is the intersection of two disks in D, D'_1 and D'_2, such that $D'_1 \cup D'_2 = D$. Consider any point x of J'' in $D'_1 \setminus \partial D'_1$. In [3] a method is given for enclosing x in the interior of a tame subdisk of D'_1. Hence D'_1 is locally tame at each of its interior points and $\partial D'_1$ is tame. By [8] D'_1 is tame. A similar argument can be applied to D'_2. Hence $D'_1 \cup D'_2$ is a tame disk by Theorem 2. Then J'' is tame and so J' is tame. Since J' was arbitrarily chosen $D_1 \cup D_2$ is a disk in which each arc is tame.

Corollary 1. Let L_1 and L_2 be tame disks which intersect in a single point on the boundary of each. If $L_1 \cup L_2$ lies on a disk in which each arc is tame, then $L_1 \cup L_2$ is tame.

Proof. Let $L_1 \cup L_2$ lie on a disk D such that each arc in D is tame. By Theorem 2 $\partial L_1 \cup \partial L_2$ is tame. There is a disk D' in D with a tame boundary such that $D' \cap (L_1 \cup L_2) \subset \partial L_1 \cup \partial L_2$ while $D' \cup L_1 \cup L_2$ is a disk. Then by [2] there is a disk D'' such that $\partial D'' = \partial D'$, D'' is locally polyhedral mod $\partial D''$ and $\partial D'' \cap (L_1 \cup L_2) = \partial D' \cap (L_1 \cup L_2)$. Now D'' is tame by [8] and so $D'' \cup L_1 \cup L_2$ is tame by Theorem 2. It follows that $L_1 \cup L_2$ is tame.

References

7. ———, *Affine structures in 3-manifolds, VII. Disk which are pierced by intervals*, Ann. of Math. *58* (1953), 403-408.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.