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1. Introduction. In this paper we illustrate certain constructions
of importance in the geometry of smooth manifolds. First of all we
prove that a homogeneous space B of a connected Lie group G can
always be represented as a homogeneous space of a contractible Lie
group E, necessarily of infinite dimension in general. In particular, that
representation shows that the loop space of B can be replaced effectively
by a Lie group of infinite dimension. The construction is a special case
of a general theory of differentiable structures in function spaces [4].
Secondly, we examine relations between the Lie algebra of G and that
of E (this latter being a Banach-Lie algebra), in case G is compact and
semi-simple.

As an application we consider certain differentiable fibre bundles
over a smooth (i.e., infinitely differentiable) manifold X having infinite
dimensional Lie structure groups. Particular attention is given to the
bundles associated with maps of X into a sphere; these bundles are im-
portant because they are in natural (Poincare dual) correspondence with
certain equivalence classes of normally framed submanifolds of X. Using
a theory of smooth differential forms in function spaces, we give ex-
plicit integral representation formulas for the characteristic classes of
these bundles. These formulas provide examples of a residue theory of
differential forms with singularities [1]—and express those forms with
singularities as forms without singularities in differentiable bundles over
X.

2. The homogeneous spaces. (A) Let G be a connected Lie group
(of finite dimension!), and let L(G) denote its Lie algebra, considered as
the tangent space to G at its neutral element e. If K is a closed sub-
group of G, we let B denote the homogeneous space G/K of left cosets
of K. The coset map π :G —> B is an analytic fibre bundle map [9, § 7].

We now construct an acyclic fibre bundle over J5; our construction
is a variant of Serre's space of paths over B based at a point [8, Ch.
IV]. For this purpose we have chosen a special class of paths on G
suitable for our applications in § 5. (These path spaces are also of im-
portance in the calculus of variations.)

(B) Let G be given a left invariant Riemann structure, deter-
mined by an inner product on L(G). If Jfiβ) denotes the tangent
vector bundle of G with projection map q : ^~(G) —> G, then ^~(G) has
induced Riemann structure. If u, v are tangent vectors at a point
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m e G, we let (u9 v)m denote their inner product, and | v \m denote the
length of v.

DEFINITION. If I is the unit interval {t e 1: 0 < t < 1}, we say
that a map x : / —> G is an admissible path on G if it satisfies the
following conditions:

( 1 ) x(0) = e, the neutral element of G;
( 2 ) x is absolutely continuous in the metric of G; then its tangent

vector x\t) exists for almost all t e /, and we require that
( 3 ) the tangent map x'\I—>^~(G) is square integrable; i.e., the

Lebesgue integral

is finite. We observe that x(t) = q o χ'(t) for each t e I for which x'(t)
exists.

Let E{G) denote the totality of admissible paths on G. Using point-
wise multiplication and metric defined analogously to (1), it is easily
seen that E{G) is a topological (metrizable) group. As in the case of
continuous path spaces [8, p. 481], E{G) is a contractible group with
contraction h : E(G) x I—> E(G) given by h(x, t)s = x(ts).

Let p : E(G) —+ G be defined by p(#) = se(l). Then p is a continuous
epimorphism whose kernel is the subgroup Ω(G) = {# e ^ ( G ) : #(1) = β}
of admissible loops on G; thus we have an exact sequence

( 2 ) 0 > Ω(G) > E(G) - ί U G > 0

of topological groups. If E(G, K) = {x e E(G): x(l) e K), then E(G, K)
is a closed subgroup of ί7(G), and the composition λ = π © p : ΐ7(G) —>
G —> B is a representation of £ as a homogeneous space of E(G), with

, K) as fibre over 60 - ττ(if) 6 £ .

PROPOSITION, λ : ^(G) —>B is a principal E(G, K)-bundle.
To prove that it remains (by [9, p. 30]) to show that there is a

local section of E(G) defined in a neighborhood of δo; because π is a
bundle map it suffices to find a neighborhood V of e in G and a section
/ of £r(G) over V. We use the Riemann structure of G to obtain a
neighborhood F of e such that for any point m e V there is a unique
geodesic segment xm : /—> F such that #w(0) = β and #^(1) = m; then xm

is clearly an admissible path, and /(m) — xm is a continuous map of F
into ^(G) such that p o/(m) = m for all m e F .

(C) The following result is an application of a general theory of
function space manifolds [4].

THEOREM. Let G be a connected Lie group, and E(G) the space of
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its admissible paths. Then E(G) is an infinite dimensional Lie group
modeled on a separable Hilbert space. The map p : E(G) —> G is an
analytic bundle epimorphism.

We recall the principal ideas of that construction. Given x e E =
E(G), the tangent space to E at x is the separable Hilbert space E(x)
of maps u: I—> J^~(G) such that

( 1 ) go u(t) = x(t) for all t e I,
( 2 ) u(0) = 0 (the zero in L{G)), and
( 3 ) the map u is absolutely continuous with square integrable

tangent vector field, and the norm | u \x induced from the inner product
(3) below is finite. Thus E(x) is considered as the space of admissible
variations of the path x. The algebraic operations in E(x) are defined
pointwise; i.e., if u, v e E(x) and a,b e R, then (au + bv)t = au(t) + bv{t)y

where the right member is computed in the tangent space G(x(t)). A
symmetric, bilinear form in E(x) is defined by

( 3 ) (u,v)x=\\u'(t),v'(t))xwdt;
JO

this is an inner product, for if (u, u)x = 0, then | u\t) \x(t) = 0 for almost
all t e /, and the condition that u is admissible then implies u(t) = 0 for
all t e I. We emphasize that each E(x) is complete (by standard L2

theory), a property that is used in the theory of differentiation in in-
finite dimensional linear spaces.

Using the natural correspondence (defined locally) between geodesic
segments on G emanating from a point m and tangent vectors in G(m),
we can find a neighborhood Ux (called a coordinate patch) of x in E(G)
which is mapped homeomorphically (by a map φx called a coordinate
system) onto a neighborhood of 0 in E(x) [4, §3]. In overlapping co-
ordinate patches Ux, Uy we have a map

Φ*v: Φ*(UX Π Uy) > φy(Ux Π Uy)

defined by φxy(u) = φy o φ~\u), and this map is analytic in its domain of
definition. (If φ is a map of an open subset U of a Hilbert space E
into a Hilbert space F, then φ is analytic in U if every x e U has
a neighborhood in which φ can be expressed by the convergent power
series

φ(x + v) = φ(x) + Σ fφ(^ ?>)/&! »
fc-l

where P$(x, v) denotes the kth iterated directional derivative of φ at x
in the direction v.) Easy modifications of standard Lie group theory
show that the group operation in E(G) is analytic and that p: E(G) —>
G is an analytic homomorphism.
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COROLLARY. The fibratίon λ : E(G) —> B is an analytic bundle map.

(D) REMARK. The inner product (3) is easily seen to provide an
analytic Riemann structure on E(G). We note, however, that it is not
left invariant on E(G).

Suppose we let G act on E(G) by Tg(x)t = gx{t)g-λ for alH e I and
x e E{G). If G is compact and semi-simple and if the inner product
(3) is computed using the bi-invariant Riemann metric on G (see our
§ 3A), then the Riemann structure on E(G) is G-invariant.

3 The Lie algebra of certain path groups. (A) Suppose that G is
connected, compact, and semi-simple. Then its Killing form [7, §§6,11]
defines a bi-invariant Riemann structure on G (essentially unique);
furthermore, the inner product and the bracket in L(G) are related by

(1) ([χ,v],z) = (χ,[v,z])

for all x, y e L(G). By taking a suitable real multiple of the Killing
form we can suppose that the norm induced from the inner product
and the bracket in L(G) are related by

(2) \[χ,y]\<\χ\\y\

for all x,y e L(G).
(B) If e also denotes the neutral element of E(G) (so that e{t) — e

for all t e /), then the tangent space E(e) consists of those admissible
paths on L(G) starting at 0; we introduce the bracket of u and v in
E(e) by

( 3) [u, v]t = [u{t), v(t)] for all t e I.

We will call E(e) the Lie algebra of E{G), and henceforth will denote
it by L(E(G)) , note that L(E(G) = E(L(G)). Of course the exponential
map exp: L(E(G)) —> E(G) is defined by (exp u)t — exp (u(t)) for all t e I.

If I u |2 = (u, u)e in the notation of § 2 (3), then the following result
shows that the bracket (3) on L(E(G)) is continuous.

L E M M A . For any u,ve L(E(G) we have

( 4 ) \[u,v]\e<2\u\e\v\e.

Proof. First of all, we note that if mu = max {| u(t) \ : t e /}, then
mu < \u\e. Namely, for any t e I we apply the Schwarz inequality to
obtain

I 2u(t) - u(l) |2 = 1 Γsgn (t - s)u'(s)ds ' < Γsgn (t - sfds Γ| u'(s) \2ds .
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Thus

mu < max {| 2u(t) - :t e <\u\e .

By (2) and the Schwarz inequality in L(G) we find that | [u, v] |2 is
bounded by

| u'(t) |21 v(t) |a + 2 I u\t) 11 v(t) 11 u(t) \ \ v\t)

tι'(ί) \2dt + 2mumυ[\ u'(t)
Jo

u(t) |21 v\t) \*}dt

| dt + ml[| v'(ί)
J

ml

< 4

The inequality (4) follows.

REMARK. Unlike the finite dimensional Hilbert-Lie algebra L(G),
L(E(G)) does not satisfy a relation of the form (1). Thus the bracket
in L(E(G)) respects its Banach space structure—i.e., L(E(G) is a Banach-
Lie algebra—rather than its structure as a Hubert space.

(C) Let p* : L{E(G)) -> L(G) be defined by pju) = u(l)\ clearly p*
is a Lie algebra epimorphism, and the inequality

u(t2) — <\tλ — ί2 for any ^, t2 e

shows that | p*(u) \ < \ u \e for all u e L{E(G)).
Our next result establishes an infinitesimal analogue of the analytic

bundle over G given by Theorem 2C.

THEOREM. // G is a connected, compact, semi-simple Lie group,
then p* is a continuous Lie epimorphism with kernel L(Ω(G)) — Ω(L(G))f

the closed ideal of admissible loops on L(G); i.e.,

( 5 ) 0 > L(Ω(G)) > L(E(G)) - ^ U L{G) > 0

is an exact sequence of Banach-Lie algebras. Furthermore, as Hilbert
spaces (but not as Lie algebras), p% induces an orthogonal direct de-
composition L(E(G)) τ& L(Ω(G)) φ My where M is a vector space iso~
morphic to L(G).

Proof. The first statement follows from the algebraic properties
of p* and the fact that p* is bounded, and therefore continuous. To
prove the second, we define a map j : L(G) —• L(E(G)) by letting j(x) be
the linear path j(x)t = tx for each x e L(G); then j is a linear map of
L(G) onto a subspace M of L(E(G)), and p^ o j is the identity; moreover,
i is an isometry, because for any x, y e L(G),

= \
Jo

= (x, y).
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Note, however, that M is not a subalgebra of L(E(G)).
The subspaces L(Ω{G)) and M are orthogonal complements in L(E(G)),

for if a? e L(G) and v e L(Ω(G)), then

U(x), v)β = \\x, v'(t))dt = (a?, v(l)) - (a?, v(0)) = 0 .
Jo

COROLLARY. The group Ω(G) of admissible loops on G forms a
subgroup of E(G) whose codίmension (as a submanifold of E(G)) equals
the dimension of G.

REMARK. If K is a closed subgroup of G and if we set λ* =
π* o p^: L(E(G)) —* L(G) —* L(G)jL(K), then we have an exact sequence
of vector spaces

0 > L(E(G, K)) > L(E(G)) - ^ L{G)jL{K) > 0 .

(D) PROBLEM. Consider L(E(G)) as a Hubert space, and form its
topological exterior algebra C*(L(E(G))), using the natural inner product
on its pth exterior power. The inequality (4) implies that we can con-
struct the Lie algebra cochain complex as in [7, §3] and that the
differential operator in C*(L(E(G))) is continuous. The elements ω e
CP(L(E(G))) determine left invariant differential p-forms on E(G)—an
important property because a version of de Rham's Theorem is valid
for E(G) (see § 5A). What are the relations between the derived
cohomology algebras H*{L(E(G)))y H*(L(Ω(G))), and H*(L(G))^H*(G; iί)?

As a first step, because L(Ω(G)) is a closed ideal in L(E(G)) we can
appeal to our Theorem 3C and Theorem 4 of Cohomology of Lie algebras,
G. Hochschild and J-P. Serre, Annals of Math. 57 (1953), 591-603, to
obtain the

PROPOSITION. The filtration of C*(L(E(G))) by the ideal L(Ω(G))
determines a spectral sequence such that

Eξ>* - H*(L(G); H«(L{Ω{G))) ,

and whose terminal algebra E^ is the graded algebra associated with
H*(L(E(G))), suitably filtered.

4* The bundles over a manifold (A) Let B = G\K be the homo-
geneous space of § 2A. Since E(G) is contractible, the fibre bundle
λ : E(G) —> B can be interpreted as a universal bundle [9, § 19] for the
infinite dimensional Lie group E(G, K). In particular, by the Classifi-
cation Theorem for principal bundles we have the

PROPOSITION. If X is a paracompact smooth manifold of finite
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dimension, then the isomorphism classes of smooth principal E(G, K)-
bundles over X are in natural one-to-one correspondence with the smooth
homotopy classes of maps of X into B.

In that statement we have made use of the fact that for maps of
X into B their classification by homotopy equivalence coincides with
classfication by smooth homotopy equivalence.

REMARK. There is a certain uniqueness theorem for universal bundles
over 5, which implies that for any other contractible bundle over B
with group Γ, the homotopy groups of Γ are isomorphic to those of
E(G, K)', see [6, p. 284]. Of course, it follows directly from the homotopy
sequence of a bundle and the 5-lemma that the homotopy groups of
E(G, K) are isomorphic to those of the loop space of B.

(B) Suppose that B is (n — l)-connected and that the nth homotopy
group πn(B) is infinite cyclic (n > 1); then the group E(G, K) is (n — 2)-
connected, and the connecting homomorphism of the homotopy sequence
of the universal bundle of B is an isomorphism of πn(B) onto πn-i(E(G, K))m

Let μ:W—>X be an E(G, iΓ)-bundle over X. Its characteristic
class [9, p. 178] is the primary obstruction to the construction of a
section of the bundle. The condition n > 1 insures that its structural
group is O-connected, whence the bundle & of local coefficients (used
in defining characteristic classes in general) is simple [9, p. 153]. To
orient the bundle is to choose one of the two isomorphism of & onto
the product bundle X x Z. Thus the characteristic class of an oriented
E(G, K)-bundle over X is a cohomology class w e Hn(X, Z).

It is well known that such a characteristic class can be represented
by a transgressive pair of cochains (an, cn~λ). (A transgressive pair in
a bundle consists of a cochain of some sort c on If whose restriction
to a fibre is a cocycle of E(G, K), and such that its coboundary dc =
μ*a for some cocycle a of X.) Furthermore, the restriction of cn~ι to
a fibre defines the generator of Hn~\E(G, K); Z) & Z which is the
negative of that determined by the orientation of the bundle.

Let wQ be the characteristic class of the universal oriented bundle
X: E(G)—> B. Suppose that μ: W—>X is induced by the smooth map
f\X—>B, and let g: W-^E{G) be a smooth bundle map covering/
[9, § 19]. If (α0, c0) is a transgressive pair representing w0, then a =/*α 0 ,
c = (7*Co is known to be a transgressive pair representing the characteristic
class w of μ : W"-> X [2, § 18].

5* Representations of the characteristic classes* (A) Let Y be any
paracompact smooth manifold modeled on a Hubert space E. A dif-
ferential r-form η on Y assigns to each point y e Y an alternating
r-linear functional (with real values) on the tangent space Y(y), which is
continuous simultaneously in the r variables, using the Hubert space
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topology in Y(y). In terms of the differentiable structure on Y we can
define the exterior algebra r^*(Y) of smooth differential forms on Y
and its derived cohomoly algebra H*{C^*(Y)). It is known (an extension
of de Rham's Theorem [4, § 4]) that there is a canonical isomorphism
of H*(C^*(Y)) onto H*(Y; R), the singular real cohomology algebra of Y.

We remark that this result uses the local Hubert space structure
of Y in two ways:

(1) the square of the norm in E is an analytic function on J57,
which implies that there are sufficiently many smooth functions on Y;

(2) there is a natural Hubert space structure on the rth exterior
power of E; its completeness is used essentially in the differentiability
of differential forms.

We will now give examples of such forms which are transgressive
pairs on E(G, iΓ)-bundles over X.

(B) We have seen in Theorem 2C that the group E(G) of admis-
sible paths on a connected Lie group G is itself a Lie group modeled
on a Hubert space. Since E(G) is contractible, the general existence
theorem quoted in (A) insures that any smooth closed r-form ω on E(G)
is the exterior differential of a smooth (r — l)-form ξ (for r > 0). The
following result uses a standard homotopy construction to give an ex-
plicit formula for ξ in case ω is the p*-image of a form on G.

PROPOSITION. Given any smooth closed r-form ω on G (r > 0),
consider the (r — l)-form on E(G) defined as follows: For any x e E(G)
and r — 1 vectors u19 , ur-x in the tangent space at x, set

(1) ξ(x) uλ V V ur.λ = Γ {ω(x(t)) x\t) V nλ{t) V V ur^(t)}dt ,
Jo

where x'(t) denotes the tangent vector to x at x(t), and the bracket in
the right member {involving the exterior product V) is computed in the
tangent space G{x{t)), Then ξ is a smooth (r — l)-form on E(G) and
dξ = p*ω.

Proof. The contraction h : I x E(G) —> E{G) given by h(t, x)s = x(ts)
is simultaneously continuous in the arguments (£, x), and is a smooth
function of x for each t e I. Furthermore, for each x e E(G) the dif-
ferential h*(t, x) is a square integrable function of t; in particular, if ex

denotes the unit vector of I, then {hjt, x) e^s = sx'(ts) for almost all
x e /.

Because the homomorphism p is analytic, the induced form ω* = p*ω
is a smooth closed r-form on E(G) for which

( 2 ) ξ(x) ~ (kω*)x = [Vω*(t, x) Λ eλdt
Jo
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exists (as a Lebesgue integral, where the integrand in the right member
involves the interior product with eλ). The explicit formula (3) for ξ(x)
below shows that ξ(x) is actually an (r — l)-covector and that ξ is
smooth. Standard reasoning about homotopy operators for differential
forms leads to the identity α>* = dkω* + hdω*, and because dω = 0, we
have dξ = α>*.

Consider the composite map q = p o h : I x E(G) —> B. It is easily
checked that q^(t9 x)eλ = x\t) for almost all t e I, and for any u in the
tangent space at x (interpreted as the vector 0 0 u in the tangent space
of / x E(G) at (ί, x)) we have qjt, x)u = u(t). If we take vectors u19

• , Ur-! as in the hypotheses,

ξ(x) uγ V V Ήy-i = I fc* o p*ω(t, x) βi V ^i V V ^- id i
Jo

( 3 ) = Γ {α>(a5(ί» «*(«, a&te V ?*(«, x K V V ?*(ί,
Jo

= I' {ω(a?(ί)) »'(ί) V ^ (t) V V ur^(t)}dt .
Joo

COROLLARY. Lei λ : E(G) —> B be the universal E(G, K)-bundle of
§ 2B. Then for any smooth closed r-form ωQ on B, the formula (1) with
ω replaced by π*ω0 defines a smooth (r — \)-form ξQ on E(G) such that
dξ0 = λ*ω0.

If i : E(G, K) —> E(G) is the inclusion homomorphismr then we re-
mark that τ]0 = i*ξQ is the suspension of ω0 in the sense of [8, p. 453].
Applying [8, Cor. 2, p. 469], we obtain the

COROLLARY. If B is (n — l)-connected and πn(B) is infinite cyclic
(n > 1) and if ω0 is a closed n-form representing a generator v of
Hn(B; Z), then (ω0, ξ0) is a transgressive pair representing v.

REMARK. Suppose that & is connected, compact, and semi-simple.
Then the bi-invariant Riemann structure on G induces an analytic
G-invariant Riemann structure on B. In the preceding corollary a generat-
or v is then represented by a unique harmonic w-form ωQ; furthermore,
ω0 is G-invariant, and π*ω0 can be expressed as an exterior polynomial
in (left invariant) Maurer-Cartan forms on G. Thus the generator v
is uniquely represented by a transgressive pair (ω0, ξ0) where ω0 is
harmonic and where ξ0 is defined by (1); see § 6A.

(C) We return to the oriented universal bundle λ : E(G) —> B, where
B is (n — l)-connected and πn(B) is infinite cyclic (n > 1). (These as-
sumptions can be relaxed at the expense of simplicity of exposition.)

Let X be a smooth manifold of finite dimension, and let μ: W—>X
be a smooth oriented E(G, K)-bundle over X with characteristic class w.
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Suppose that bundle is induced by a smooth map / of X into B, and let
g be a smooth bundle map covering / :

W >E(G)

μ \λ\>

χ-rB

If (ω09 ξ0) is a transgressive pair of forms representing the characteristic
class w0 of λ : E(G)—>B as in (B), then ω = /*α>0, £ = flr*|0 is a trans-
gressive pair representing w (§ 4B).

DEFINITION. An admissible partial section of the bundle μ : PF —•
X is a smooth section φ defined over X — e(φ), where e(φ) is a smooth
polyhedral subset of X with dim e(φ) < dim X — n. Admissible partial
sections exist because E{G, K) is (n — 2)-connected. (For example, we
can take a smooth locally finite simplicial subdivision L of X and let L*
be a dual subdivision; then standard obstruction theory provides a smooth
section over a neighborhood of the (n — l)-skeleton L{n~ι) of L which
can be smoothly extended over X — U*~n), where m = dimX.)

The following result is an example of the general representation
theorem of [1, §41; note that the present pair (ω,φ*ξ) satisfies the
conditions of Corollary 5B of [1]. We will use freely the concepts and
results of that paper. As usual in constructing integral formulas for
characteristic classes, our method of proof follows that of the Gauss-
Bonnet Theorem as given by Chern [3, § 2]: We first obtain a trans-
gressive pair of forms representing the class; we then appeal to Stokes'
Formula to localize and interpret the residue (i.e., the right member of
(4) below.

THEOREM. In the above notation, the characteristic class w of the
oriented bundle μ: W —> X is represented by

( 4 ) w c = \ ω — \
Jc J9c

φ*b

for any admissible partial section φ, where c is any smooth integral
n-chain on X whose boundary does not intersect e(φ).

Proof. First of all, (ω, φ*ξ) is an (R, %)-pair on X because φ is
admissible, and in X — e(φ) we have d(φ*|) = φ*dξ = (μ o φ)*ω = ω.
Secondary, to verify (4) it suffices to do so for the n-simplexes of a
simplical subdivision L of X (by Corollary 5A of [1]), provided that e(φ)
lies on the (m — w)-skeleton of the dual L*. Furthermore, in consider-
ing its obstruction cocycle we will suppose that φ is defined only on
L ί w" υ, and then make below a (piecewise smooth) extension to L{n) — e,
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where e is a discrete set of points; such an alteration will not change
the obstruction class.

Let bσ be the barycenter of the oriented ^-simplex a, and let σt be
that simplex radially contracted toward bσ by the ratio 1 : (1 — t), using
an admissible coordinate system on X containing a. Let h be a smooth
covering homotopy of that contraction. For any t < 1 and x in dσt let
r(x) be the radial projection x on dβ; setting ψ(x) = h(t,φ(r(x))) defines
an extension of φ over σ — bσ.

Applying Stokes' Formula to the chain τt = a — σt we obtain

( 5 ) - ( φ*ξ=\ ω-\ φ*ξ.
J9σ. Jr. J 9 σ

As t —> 1 the right member approaches the right member of (4) with
c = σ, because ω is defined on all σ. To complete the proof of the
theorem we will show that as t —> 1 the left member determines the
obstruction cocycle.

Since — ξ defines the generator of μ~ι{bσ) by § 4B, we see that
(writing w for the obstruction cocycle)

w σ = — \ φ*ξ

On the other hand, the homotopy h satisfies a Lipschitz condition locally
on μ~λ{o) (relative to any metric on W), whence there is a number M
independent of t such that t < 1 implies

Jφ(9σ) Jφ(9σfc)
< M 1 - ί l .

Using the transformation of integral formula, we find that

M\l - t\ .w-σ+\ φ*ξ = I \ φ*ξ-\ φ*ξ
J9σ f IJθσ J9σέ

This shows that as t —> 1 the left member of (5) approaches w o, and
formula (4) follows.

6 Spherical maps of a manifold* (A) As an example of the pro-
ceding constructions let G — SO(n + 1), the rotation group in its usual
matrix representation in numerical space Rn+1. Let K = SO{ri), con-
sidered as the subgroup of G which acts trivially on the (n + l)th axis
of Rn+i The unit sphere Sn in Rn+1 is then naturally identified with
the homogeneous space GjK, and the coset map π : SO(n + 1) —* Sn re-
presents SO(n + 1) as the principal SO(w)-bundle of orthonormal ^-frames
on Sn ]9, § 7]. We will suppose that Sn has its usual Riemann structure
and is oriented by the coordinate axes in Rn+1. Henceforth we denote
the infinite dimensional Lie group E(SO(n + 1), SO(n)) by An.
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Let Wij (1 < i < j < n + 1) be a base of Maurer-Cartan forms for
the conjugate space of L(SO(n + 1)); if we let k(n) denote the reciprocal
of the volume of Sn, then the exterior polynomial (the Kronecker Index
form) on SO(n + 1) given by

(1) ωt = k(n)ω1<n+1 V V ωn>n+1

is known to be £w-basic (i.e., there is a unique SO(n + l)-invariant
n-ΐorm ω0 on Sn such that 7r*α>0 = ω*), and thereby represents the har-
monic generator of Hn(Sn; Z).

Suppose n is even; then a crucial step in the derivation of the
Gauss-Bonnet Theorem [3] for Sn establishes that ω0 is part of a trans-
gressive pair in the principal frame bundle of Sn. If n is odd, then ω0

does not generally have that property. However, for all n > 1 Pro-
position 5B gives an explicit transgressive pair in the oriented uni-
versal bundle of Sn, determined entirely by the Kronecker Index form.

(B) If X is a compact, oriented, smooth Riemann manifold of
dimension n + m, then the isomorphism classes of smooth principal Λn-
bundles over X play an important role in its geometry, primarily because
of the following construction: Let V be a closed, oriented, m-dimensional
regularly imbedded submanifold of X; suppose that V admits a smooth
normal w-frame in X, and let φ be such a frame field; we will call the
pair (V,φ) a normally framed submanifold of X. These have been
studied by Kervaire [5, § 1] and Thorn [10, Ch. II, 4]. It is known that
certain equivalence classes of normally framed m-submanifolds of X are
in natural one-to-one correspondence with the homotopy classes of maps
of X into Sn [5, § 1], Combining with the Classification Theorem for
Jw-bundles, we have the

PROPOSITION. If X is a compact, oriented, smooth Riemann
(n + my manifold, then there is a natural one-to-one correspondence
between equivalence classes of normally framed m-submanifolds of X
and isomorphism classes of smooth Λn-bundles over X.

Let (V,φ) be a normally framed m-submanifold, and let ί: V-+X
be the inclusion map; then since V is closed and oriented (the orientation
on X and the frame field φ determine an orientation of V) we have a
distinguished generator v0 e Hm{V, Z), which determines a definite ho-
mology class i*(v0) = v e Hm(X, Z); Furthermore, v depends only on the
equivalence class of (V,φ). On the other hand, applying a theorem of
Thorn [10, Theoreme II.2], we obtain the

PROPOSITION. In the correspondence of the above proposition, the
homology class of a normally framed submanifold is the Poincare dual
of the characteristic class of the oriented Λn-bundle associated with it.
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(C) Let X be a smooth manifold of finite dimension. In the study
of differential forms with singularities [1] it is important (e.g., in work-
ing with exterior products of such forms) to know when a closed
(Z, r)-pair is cohomologous to a pair defined in terms of a transgressive
pair (as in Theorem 5C). For example, it is well known that the iso-
morphism classes of SO(2)-bundles over X are (by their characteristic
classes) in natural one-to-one correspondence with the elements of
H\X\ Z). An easy construction shows that every 2-dimensional integral
cohomology class of X can be represented by a transgressive pair in a
canonically defined SO(2)-bundle over X.

A cohomology class u e Hn(X; Z) is said to be spherical if there is
a map f:X->Sn such that u = /*(s) for some s e Hn(Sn; Z). The re-
presentation theorem [1, § 4] of cohomology classes by forms with
singularities together with our Theorem 5C gives a transgressive integral
representation formula for every spherical class of X in a Λn-bundle.
That bundle is uniquely defined by the homotopy class of / : X —> Sn,
but is not generally determined by u.

EXAMPLE. Suppose that X has dimension n. The Hopf Classifi-
cation Theorem then implies that the isomorphism classes of smooth
//^-bundles over X are in natural one-to-one correspondence with the
elements of Hn(X; Z), the correspondence assigning to each isomorphism
class its characteristic class. Theorem 5C gives a transgressive integral
representation formula for each element v of Hn(X) Z) in a bundle
canonically associated with v. Of course that fact is significant only
for compact manifolds, because Hn(X; Z) = 0 if X is open. On the
other hand, it is particularly useful for non-orientable compact mani-
folds, because then Hn(X; Z) has torsion, in which case the singularity
of a (Z, %)-pair representing v plays an essential role.

If X is orientable and if its Euler characteristic χ(X) Φ 0, then
the Gauss-Bonnet Theorem provides a transgressive integral formula
for the elements of Hn(X; Z) in a finite dimensional bundle over X.
In general (and for lower dimensional spherical classes) it appears neces-
sary to use infinite dimensional smooth bundles to obtain such a formula.
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