COMPUTATIONS OF THE MULTIPLICITY FUNCTION

SHAUL FOGUEL
1. Introduction. Let H be a separable Hilbert space. The following two problems will be studied:

1. Given a bounded normal operator A, of multiplicity m, what are the conditions, on the bounded measurable function f, so that the multiplicity of $S = f(A)$ is n, $n < \infty$?

2. How to compute the multiplicity of a normal operator that commutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity n, $n < \infty$. There exist a Borel measure μ and n Borel sets in the complex plane $e_1 \supset e_2 \supset \cdots \supset e_n$, such that, up to unitary equivalence,

$$H = \sum_{i=1}^{n} L_2(\mu, e_i)$$

This is the Multiplicity Theorem. (See Theorem X. 5.10) of [1]. The operator S has uniform multiplicity if $e_1 = e_2 = \cdots = e_n$.

The resolution of the identity, of a normal operator A, will be denoted by $E(A; \alpha)$. The Boolean algebra of projections, generated by $E(A; \alpha)$ will be denoted by \mathcal{E}_A. Let $E(\alpha)$ stand for $E(S; \alpha)$ and \mathcal{E} for \mathcal{E}_S. Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:

Let S be a normal operator of multiplicity n, and B a normal operator that commutes with S. Let H and S be represented by 1.1.

Theorem A. There exist k Borel measurable bounded complex functions $y_1(\lambda)$, \cdots, $y_k(\lambda)$ and k matrices of Borel measurable bounded complex functions $\varepsilon_1(\lambda)$, \cdots, $\varepsilon_k(\lambda)$ such that:

For a fixed λ the matrices $\varepsilon(\lambda)$ are disjoint self adjoint projections whose sum is the identity and

$$B \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix} = \left(\sum_{i=1}^{k} y_i \varepsilon_i(\lambda) \right) \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix}.$$
Equivalently, if the self-adjoint projections E_i, are defined by

$$E_i (\begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix}) = \varepsilon_i(\lambda) (\begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix})$$

then

$$\begin{cases} B = \sum_{i=1}^{k} y_i(S) E_i \\ E(B; \alpha) = \sum_{i=1}^{k} E(y_i^{-1}(\alpha)) E_i . \end{cases} \tag{1.3}$$

REMARK. In the above decomposition the numbers $y_i(\lambda)$ for a fixed λ are different eigenvalues of a certain matrix. Thus for each λ there is an integer $k' \leq k$ such that

$$y_i(\lambda) \neq y_j(\lambda) \quad i \neq j \quad i, j \leq k', \quad \varepsilon_i(\lambda) \neq 0 \quad i \leq k',$$

and

$$y_{k'+1}(\lambda) = \cdots = y_k(\lambda) = 0 ,$$

$$\varepsilon_{k+1}(\lambda) = \cdots = \varepsilon_{k+1}(\lambda) = 0 .$$

This is essential for the proof of Lemma 2.1. Also the matrices $\varepsilon_i(\lambda)$ are $n \times n$ matrices.

Theorem B. The number n is the largest integer such that there exists a nilpotent operator, commuting with S, of order n. See [2] Theorem 3.1 and its corollary.

2. The multiplicity of a function of an operator. The main result in this section is:

Theorem 2.1. Let A be a normal operator of multiplicity m, $m < \infty$, and f a bounded measurable function. The operator $S = f(A)$ has finite multiplicity, if and only if, there exist k disjoint Borel sets β_1, \cdots, β_k and k bounded measurable functions $z_i(\lambda), \cdots, z_k(\lambda)$ such that:

a. $\sigma(A) = \bigcup_{i=1}^{k} \beta_i$.

b. if $\lambda \in \beta_i$, then $z_i(f(\lambda)) = \lambda$ almost everywhere, with respect to $E(A; \alpha)$.

Proof of sufficiency of conditions a and b. Let S_i and A_i be the restrictions of S and A to $E(A; \beta_i)H$. Then
\[S_i = \int_{\beta_i} f(\lambda)E(A; d\lambda) \]

hence

\[z_i(S_i) = A_i. \]

Now, it follows from Theorem B that

\[\mu(A_i) \geq \mu(S_i) \quad (\mu(T) = \text{multiplicity of } T) \]

But the multiplicity function is subadditive:

\[\mu(S) \leq \sum_{i=1}^{k} \mu(S_i). \]

To see this we have to observe that \(\mu(S) \) is the smallest number \(n \) such that there exists a set of \(n \) elements, \(\{x_1, \cdots, x_n\}, x_i \in H \) and span \(\{E(\alpha)x_i, \alpha \in \text{Borel set}\} = H. \) (\(n \) generating elements.)

Thus

\[\mu(A) \leq \sum_{i=1}^{k} \mu(S_i) \leq \sum_{i=1}^{k} \mu(A_i) \leq mk < \infty . \]

In order to prove necessity we need the following:

Lemma 2.1. Let \(S = f(A) \) have finite multiplicity \(n \) and let

\[A = \sum_{i=1}^{k} z_i(S)E_i \]

be the representation 1.3 then \(E_i \in \Phi_A. \)

Proof. For every Borel set \(\alpha \) \(E(\alpha) \in \Phi_A \) because \(S = f(A) \). Let \(E(\alpha) \) be maximal with respect to the property that \(E(\alpha)E_i \in \Phi_A \). Such a maximal projection exists by Zorn’s Lemma. Now if \(E(\sigma(S) - \alpha) \neq 0 \) there exists, by the proof of 3.2 in [2] a set \(\beta \) such that:

\[\beta \subseteq \sigma(S) - \alpha \quad E(\beta) \neq 0 \]

and for some Borel set \(\gamma \)

\[E(\beta)E_i = E(\beta)E(A; \gamma) \in \Phi_A. \]

This contradicts the maximality of \(\alpha \), hence \(E(\alpha) = I. \)

Proof of necessity of conditions a and b. Let \(S \) have finite multiplicity \(n. \) By Lemma 2.1 there exist \(n \) sets \(\beta_i \) such that \(E(A; \beta_i) = E_i. \) Thus
\[E(A; \beta_i)E(A; \beta_j) = 0 \text{ if } i \neq j \]

and

\[\sum_{i=1}^{k} E(A; \beta_i) = I. \]

Therefore the sets \(\beta_i \) can be chosen to be disjoint and satisfy condition a. Also

\[
A = \sum_{i=1}^{k} z_i(S)E_i = \sum_{i=1}^{k} z_i(f(A))E(A; \beta_i) = \sum_{i=1}^{k} \int_{\beta} z_i(f(\lambda))E(A; d\lambda).
\]

Hence, if \(\beta \subset \beta_i \) then

\[
E(A; \beta)A = \int_{\beta} \lambda E(A; d\lambda) = \int_{\beta} z_i(f(\lambda))E(A; d\lambda)
\]
or: on the set \(\beta_i\lambda = z_i(f(\lambda)) \) almost everywhere with respect to the measure \(E(A; \alpha) \).

DEFINITION. The function \(f \) will be said to have \(k \) repetitions, with respect to the measure \(E(A; \alpha) \), if conditions a and b of Theorem 2.1 are satisfied.

In the rest of this section we compute \(m\mu S \). It is enough to consider the case where the operator \(A \) has uniform multiplicity \(m \): otherwise \(A \) can be written as direct sum of operators of uniform multiplicity and one has to study each component of \(A \) separately.

The following Theorem is needed:

THEOREM 2.2 Let \(H \) be the direct sum of the orthogonal subspaces \(H_1, \ldots, H_k \). Let \(S_i \) be a normal operator, on \(H_i \), of uniform multiplicity \(m_i \) and \(S \) be the direct sum of \(S_i \).

If

\[
E(S; \alpha) = 0 \text{ whenever } E(S_i; \alpha) = 0 \text{ for some } i
\]

then

\[
m\mu S = \sum_{i=1}^{k} m_i.
\]

Proof. It is enough to prove that \(m\mu S \geq \sum_{i=1}^{k} m_i \). Let \(\sigma = \sigma(S_i) = \cdots = \sigma(S_k) = \sigma(S) \). By the Spectral Multiplicity Theorem each operator \(S_i \) can be described as follows: There exists a measure \(\mu_i \) on \(\sigma \) and \(H_i \) is the direct sum of \(m_i \) spaces \(L_2(\mu_i) \). The operator \(S_i \) is given by

\[
S_i \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_{m_i}(\lambda) \end{pmatrix} = \begin{pmatrix} \lambda f_1(\lambda) \\ \vdots \\ \lambda f_{m_i}(\lambda) \end{pmatrix}.
\]
Now, the measures μ_i are equivalent, by the condition of the Theorem. Thus there exist functions $\varphi_i, \varphi_i \in L(\mu_{i+1}) \ 1 \leq i \leq k - 1$ such that

$$\mu_i(e) = \int_e \varphi_i(\lambda) d\mu_{i+1}$$

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let us define an operator on H:

If $x \in H_i$,

$$x = \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_{m_i-1}(\lambda) \\ 0 \end{pmatrix}$$

then

$$Mx \in H_i, \quad Mx = \begin{pmatrix} 0 \\ f_1(\lambda) \\ \vdots \\ f_{m_i-1}(\lambda) \end{pmatrix}.$$

If $x \in H_i$,

$$x = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f_{m_i}(\lambda) \end{pmatrix}$$

then

$$Mx \in H_{i+1}, \quad Mx = \begin{pmatrix} \sqrt{\varphi_i(\lambda)} f_{m_i}(\lambda) \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Where H_{k+1} is the zero space.

It is easy to see that M is a bounded operator and

$$\sum_{i=1}^k m_i = 0$$

but

$$\sum_{i=1}^k m_{i-1} \neq 0.$$
Also \(MS = SM \), hence \(\mu S \geq \sum_{i=1}^{k} m_i \).

Remark. It was proved in Theorem 2.1 that if a function \(f \) has \(k \) repetitions then

\[
\mu_f(A) \leq kmu A.
\]

However the number of repetitions of a function is not uniquely defined. In order to compute \(\mu_f(A) \) we have to find the minimal number of repetitions. This is what the next Theorem does.

Theorem 2.3. Let \(A \) be a normal operator of uniform multiplicity \(m \). Let \(f \) be a bounded measurable function which has \(k \) repetitions with respect to the measure \(E(A; \alpha) \). A necessary and sufficient condition that \(\mu S = mk \), where \(S = f(A) \), is:

There exists a Borel set \(\alpha_0 \)

\[
(2.1) \quad E(A; f^{-1}(\alpha_0)) \neq 0
\]

and

\[
E(A; f^{-1}(\alpha)) = 0 \quad \text{whenever} \quad E(A; f^{-1}(\alpha) \cap \beta_i) = 0 \quad \text{for some} \quad i \quad \text{and} \quad \alpha \subseteq \alpha_0.
\]

Proof. Assume condition 2.1. We may restrict \(A \) and \(S \) to \(E(A; f^{-1}(\alpha_0))H \). Let

\[
H_i = E(A; f^{-1}(\alpha_0) \cap \beta_i)H,
\]

and \(A_i, S_i \) the restriction of \(A, S \) to \(H_i \). Now

\[
f(A_i) = S_i \quad z_i(S_i) = A_i
\]

(See Theorem 2.1.). Thus the operators \(S_i \) have uniform multiplicity \(m \) because the operators \(A_i \) do. It follows from Theorem 2.2 that the multiplicity of \(S \) restricted to \(E(A; f^{-1}(\alpha_0))H \) is \(mk \). But \(\mu S \leq mk \), hence \(\mu S = mk \).

(Note that on \(\alpha_0 \) the operator \(S \) has uniform multiplicity \(mk \)). Conversely, let us assume that for each Borel set \(\alpha_0 \) with \(E(A; f^{-1}(\alpha_0)) \neq 0 \), there exists a subset \(\alpha \) such that \(E(A; f^{-1}(\alpha)) \neq 0 \) but \(E(A; f^{-1}(\alpha) \cap \beta_i) = 0 \) for some \(i \). Let \(E(A; f^{-1}(\alpha_i)) \) be maximal with respect to the property

\[
E(A; f^{-1}(\alpha_i))E(A; \beta_i) = 0
\]

Let \(E(A; f^{-1}(\alpha_i)) \) be maximal, with respect to the property

\[
\alpha_2 \cap \alpha_1 = \varnothing \quad \text{and} \quad E(A; f^{-1}(\alpha_2))E(A; \beta_2) = 0
\]

and choose inductively \(\alpha_3 \cdots \alpha_n, \alpha_i \cap \alpha_j = \varnothing \)
There exist such maximal projections by Zorn's Lemma. Now if $E(A ; \bigcup_{i=1}^{k} f^{-1}(\alpha_i)) \neq I$ there will be a set α and an integer j such that

$$\alpha \cap \left(\bigcup_{i=1}^{k} \alpha_i \right) = 0; \quad E(A ; f^{-1}(\alpha) \cap \beta_j) = 0$$

Thus α_j will not be maximal. Let

$$\tilde{\beta}_j = \beta_j \cup (f^{-1}(\alpha_j) \cap \beta_j), \quad j \geq 2.$$

Then $\bigcup_{j=2}^{m} \tilde{\beta}_j = \sigma(A)$ and on $\tilde{\beta}_j$ the function f possesses a bounded measurable inverse. Thus f has $k - 1$ repetitions and $\mu S \leq m(k - 1)$.

3. The multiplicity of a matrix of functions. Let S be a normal operator of uniform multiplicity n. Let B be a normal operator and $BS = SB$. The operator B is represented as the matrix of functions $\sum_{i=1}^{k} y_i(\lambda) \varepsilon_i(\lambda)$ and also $B = \sum_{i=1}^{k} y_i(S)E_i$ (Equation 1.2 and 1.3). Let us denote by B_i and S_i the restrictions of B and S, respectively, to $E_i H = H_i$.

Theorem 3.1. The operator B has finite multiplicity, if and only if, the functions y_i have $j_i (j_i < \infty)$ repetitions with respect to the spectral measure of S_i.

Also

$$\max_i \mu B_i \leq \sum_{i=1}^{k} \mu B_i \leq \sum_{i=1}^{k} j_i \mu S_i.$$

Proof. From the definition of multiplicity, as the smallest number of generating elements, it follows that

$$\max_i \mu B_i \leq \mu B \leq \sum_{i=1}^{k} \mu B_i.$$

Now, $B_i = y_i(S_i)$, hence the rest of the Theorem follows from Theorem 2.1. The problem of this section is reduced to the following

$$H = \sum_{i=1}^{k} E_i H \text{ where } E_i E_j = 0 \text{ if } i \neq j$$

and $B_i =$ restriction B to $E_i H$, where the multiplicity of B_i is known. Now by decomposing each operator B_i into sum of operators of uniform multiplicity we will have $H = \sum_{i=1}^{k} H_i$, where the spaces H_i are mutually orthogonal, and $C_i =$ restriction of B to H_i is an operator of uniform multiplicity. We shall show how to compute μB from μC_i by reducing this case to the one studied in Theorem 2.2.
Denote the projection on H_i by F_i. Let $E(B; \alpha_i)$ be the maximal projection such that

$$E(C_i; \alpha_i) = E(B; \alpha_i)F_i = 0.$$

Such a projection exists by Zorn's Lemma. Finally let $\beta_i = \sigma(B) - \alpha_i$. On β_i the spectral measure of C_i can vanish only when the spectral measure of B vanishes. Now $E(B; \bigcup_{i=1}^m \beta_i) = I$ because $\sum_{i=1}^m F_i = I$.

The set $\sigma(B)$ can be decomposed into disjoint sets γ_j such that

a. Each γ_j is a subset of one of the sets β_{j_0}.

b. If $\gamma_j \cap \beta_i \neq \emptyset$ then $\gamma_j \subseteq \beta_i$.

Assuming, for a moment, that this decomposition is given then

$$muB = \max_j mu(B \text{ restricted to } E(B; \gamma_j)H).$$

But the multiplicity of B restricted to $E(B; \gamma_j)H$ is

$$\sum_{i \mid \gamma_j \subseteq \beta_i} mu(C_i \text{ restricted to } E(B; \gamma_j)H_i)$$

by Theorem 2.2.

We shall show how to choose the sets γ_i by an induction argument on the number m. Let $\gamma_1 = \beta_1 - \bigcup_{i \geq 2} \beta_i \beta_1$. This set (which might be void) satisfies conditions a and b. The rest of $\sigma(B)$ is

$$\left(\bigcup_{i \geq 2} \beta_i \beta_1\right) \cup \left(\bigcup_{i \geq 2} (\beta_i - \beta_i)\right)$$

In both sets there are only $m - 1$ subsets and by induction there exists a decomposition.

BIBLIOGRAPHY

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maynard G. Arsove</td>
<td>The Paley-Wiener theorem in metric linear spaces</td>
<td>365</td>
</tr>
<tr>
<td>Robert (Yisrael) Aumann</td>
<td>Acceptable points in games of perfect information</td>
<td>381</td>
</tr>
<tr>
<td>A. V. Balakrishnan</td>
<td>Fractional powers of closed operators and the semigroups generated by them</td>
<td>419</td>
</tr>
<tr>
<td>Dallas O. Banks</td>
<td>Bounds for the eigenvalues of some vibrating systems</td>
<td>439</td>
</tr>
<tr>
<td>Billy Joe Boyer</td>
<td>On the summability of derived Fourier series</td>
<td>475</td>
</tr>
<tr>
<td>Robert Breusch</td>
<td>An elementary proof of the prime number theorem with remainder term</td>
<td>487</td>
</tr>
<tr>
<td>Edward David Callender, Jr.</td>
<td>Hölder continuity of n-dimensional quasi-conformal mappings</td>
<td>499</td>
</tr>
<tr>
<td>L. Carlitz</td>
<td>Note on Alder’s polynomials</td>
<td>517</td>
</tr>
<tr>
<td>P. H. Doyle, III</td>
<td>Unions of cell pairs in E³</td>
<td>521</td>
</tr>
<tr>
<td>James Eells, Jr.</td>
<td>A class of smooth bundles over a manifold</td>
<td>525</td>
</tr>
<tr>
<td>Shaul Foguel</td>
<td>Computation of the multiplicity function</td>
<td>539</td>
</tr>
<tr>
<td>James G. Glimm and Richard Vincent Kadison</td>
<td>Unitary operators in C-algebras*</td>
<td>547</td>
</tr>
<tr>
<td>Hugh Gordon</td>
<td>Measure defined by abstract L_p spaces</td>
<td>557</td>
</tr>
<tr>
<td>Robert Clarke James</td>
<td>Separable conjugate spaces</td>
<td>563</td>
</tr>
<tr>
<td>William Elliott Jenner</td>
<td>On non-associative algebras associated with bilinear forms</td>
<td>573</td>
</tr>
<tr>
<td>Harold H. Johnson</td>
<td>Terminating prolongation procedures</td>
<td>577</td>
</tr>
<tr>
<td>John W. Milnor and Edwin Spanier</td>
<td>Two remarks on fiber homotopy type</td>
<td>585</td>
</tr>
<tr>
<td>Donald Alan Norton</td>
<td>A note on associativity</td>
<td>591</td>
</tr>
<tr>
<td>Ronald John Nunke</td>
<td>On the extensions of a torsion module</td>
<td>597</td>
</tr>
<tr>
<td>Joseph J. Rotman</td>
<td>Mixed modules over valuations rings</td>
<td>607</td>
</tr>
<tr>
<td>A. Sade</td>
<td>Théorie des systèmes demosiens de groupeï des</td>
<td>625</td>
</tr>
<tr>
<td>Wolfgang M. Schmidt</td>
<td>On normal numbers</td>
<td>661</td>
</tr>
<tr>
<td>Berthold Schweizer, Abe Sklar and Edward Oakley Thorp</td>
<td>The metrization of statistical metric spaces</td>
<td>673</td>
</tr>
<tr>
<td>John P. Shanahan</td>
<td>On uniqueness questions for hyperbolic differential equations</td>
<td>677</td>
</tr>
<tr>
<td>A. H. Stone</td>
<td>Sequences of coverings</td>
<td>689</td>
</tr>
<tr>
<td>Edward Oakley Thorp</td>
<td>Projections onto the subspace of compact operators</td>
<td>693</td>
</tr>
<tr>
<td>L. Bruce Treybig</td>
<td>Concerning certain locally peripherally separable spaces</td>
<td>697</td>
</tr>
<tr>
<td>Milo Wesley Weaver</td>
<td>On the commutativity of a correspondence and a permutation</td>
<td>705</td>
</tr>
<tr>
<td>David Van Vranken Wend</td>
<td>On the zeros of solutions of some linear complex differential equations</td>
<td>713</td>
</tr>
<tr>
<td>Fred Boyer Wright, Jr.</td>
<td>Polarity and duality</td>
<td>723</td>
</tr>
</tbody>
</table>