MEASURE DEFINED BY ABSTRACT L_p SPACES

Hugh Gordon
MEASURES DEFINED BY ABSTRACT \(L_p\) SPACES

Hugh Gordon

Let a linear space \(L\) of real-valued functions on a set \(E\) and a semi-norm on \(L\) be given. We shall consider when there exists a countably additive measure on \(E\) such that \(L\) is \(L_p\) with respect to this measure. We shall prove that certain conditions are sufficient for the measure to exist; it is obvious that these conditions are necessary. (We consider only the case where the constant function \(1 \in L\).)

We need not assume that the elements of \(L\) are functions on a set. If we do not make this assumption, we use a theorem of Kakutani ([3], p. 998) to construct a representation for \(L\) as a space of continuous functions on a compact Hausdorff space. If, however, the elements of \(L\) are given as functions, we leave this preestablished representation unchanged, even when it is not the one given by Kakutani’s theorem.

The case where \(p = 1\) and the elements of \(L\) are not given as functions was treated by Kakutani [2]. The case \(p = 2\) will receive special attention at the end of the present paper. In this latter case, one may replace some of the hypotheses of the general case by the hypothesis that the semi-norm on \(L\) arises from a positive semi-definite bilinear form.

Let \(L\) be a Riesz space whose elements are functions on a set \(E\). That is, let \(L\) be a set of real-valued functions on \(E\) which contains with \(f, g:\n\begin{align*}
(a) & \quad f + g \text{ defined by } (f + g)(x) = f(x) + g(x), \\
(b) & \quad \alpha f \text{ defined by } (\alpha f)(x) = \alpha [f(x)], \text{ for each real number } \alpha, \\
(c) & \quad f \wedge g \text{ defined by } (f \wedge g)(x) = \min (f(x), g(x)), \\
\text{and (d) } & \quad f \vee g \text{ defined by } (f \vee g)(x) = \max (f(x), g(x)).
\end{align*}
\) We denote \(f \vee 0\) by \(f^+\) and \((-f) \vee 0\) by \(f^-\). (The case where \(L\) is an abstract Banach lattice will be considered shortly.)

Let \(p\) be a fixed real number \(\geq 1\). Throughout the paper, \(p\) will always stand for this fixed number. We suppose there is a semi-norm, which we denote by \(||||\), defined on \(L\). We further suppose:

1. \(L\) is complete. That is, if \(f, f_\iota, \ldots \in L\) are such that \(||f_n - f_m||\) is small for large \(n, m\); then there is a \(g \in L\) such that \(||g - f_n||\to 0.\)

2. For each \(f \in L\), \(||f|| = ||f||.\)

3. If \(f, g\) are positive, \(||f + g||^p \geq ||f||^p + ||g||^p.\)

4. If \(f, g\) are positive and \(f \wedge g = 0\), \(||f + g||^p \leq ||f||^p + ||g||^p.\)

Received April 27, 1959. The material of this paper was presented to the American Mathematical Society in August, 1957. It consists of part of the author’s doctoral dissertation, which was prepared at Columbia University under the direction of Professor E. R. Lorch. Part of the work was done under National Science Foundation grant NSF G 1981.
(5) \(1 \in L \) and \(\| 1 \| = 1 \). (Here \(1 \) denotes the constant function \(1 \).)

We note that if \(f, g \in L \) and \(0 \leq f \leq g \), then \(\| f \| \leq \| g \| \); since
\[\| f \|^p \leq \| f \|^p + \| g - f \|^p \leq \| f + g - f \|^p = \| g \|^p \] by (3) above. We
also note that, for each \(f \in L \), \(\| f^+ \| \leq \| f \| \); since \(\| f^+ \| \leq \| f^+ + f^- \| = \| f^+ \| \) using (2) and the preceding remark.

We now briefly consider abstract \(L_p \) spaces. Let \(L \) be a Riesz space
(i. e. a vector lattice), whose elements need not be functions. Suppose
there is a norm on \(L \). (If a semi-norm is given instead of a norm, we
use, in place of \(L \), the quotient space of \(L \) modulo the elements of norm
0. This quotient space will be a normed Riesz space provided the semi-
norm satisfies (2) and (3) above.) Suppose, for some \(p \geq 1 \), that \(L \) has
properties (1)-(4) above. Instead of (5), we suppose that \(L \) has a weak
unit, i. e.:

(5') There is a positive \(e \in L \) such that \(f \wedge e = 0 \), \(f \in L \) imply \(f = 0 \).
(We suppose \(L \) is normalized so that \(\| e \| = 1 \).)

Under these conditions we may call \(L \) an abstract \(L_p \) space. (In the
case \(p = 1 \), an abstract \(L_2 \) space is thus an abstract \((L)\)-space in the
sense of Kakutani [2].)

We seek to represent abstract \(L_p \) spaces as function spaces. We
recall from [1], p. 248, that a norm on a Banach lattice is called uniformly
monotone when, given \(\varepsilon > 0 \), one can find \(\delta > 0 \) so small that if \(f \geq 0 \),
\(g \geq 0 \), \(\| f \| = 1 \) and \(\| f + g \| - 1 \leq \delta \), then \(\| g \| \leq \varepsilon \). It follows at
once from (3) that the norm on \(L \) is uniformly monotone. Thus, since
\(L \) is complete, it is completely reticulated ([1], p. 249); i. e. every
non-empty subset of \(L \) bounded from above has a least upper bound.
Hence, by a theorem of Kakutani ([3], p. 998) in the form given by
Stone ([4], p. 85), \(L \) is isomorphic as a Riesz space to a space of
continuous functions on a compact Hausdorff space, if we entirely
ignore nowhere dense sets. If we do not ignore these sets, we obtain
a space of functions with a semi-norm, defined by the norm on \(L \), which
satisfies the hypotheses given at the beginning of this section. Thus
we may now return to these hypotheses without loss of generality.

We now define a collection \(N \) of functions, which we call null func-
tions, by \(f \in N \) if there are \(f_1, f_2, \ldots \in L \) such that:

(a) \(f_n \geq |f| \) for all \(n \)
and (b) \(\| f_n \| \to 0 \).
Clearly if \(f \in N \cap L \), \(\| f \| = 0 \). It is also clear that \(N \) is a lattice ideal
in the set of all functions on \(E \); i. e. \(N \) is a linear subspace of this
set with the property that \(|f| \leq |g| \) and \(g \in N \) imply \(f \in N \).

We define \(L' \supset L \) by \(f \in L' \) if there are \(g \in L, h \in N \) such that \(f = g + h \).
Clearly \(L' \) is a linear space. Suppose \(f = g_1 + h_1 = g_2 + h_2 \) with \(g_i \in L, \)
\(h_i \in N \) (\(i = 1, 2 \)). Then \(h_1 - h_2 = g_2 - g_1 \in L \cap N \). Thus \(\| g_2 - g_1 \| = 0 \).
Hence \(\| g_2 \| = \| g_1 + g_2 - g_1 \| \leq \| g_1 \| + \| g_2 - g_1 \| = \| g_2 \| \). Similarly
\(\| g_1 \| \leq \| g_2 \| \). Hence \(\| g_1 \| = \| g_2 \| \). It follows that we may define a
MEASURES DEFINED BY ABSTRACT L_p SPACES 559

semi-norm on L' by defining $\| g + h \|$ to be $\| g \|$, where $g \in L$ and $h \in N$.

We next show that L' is a lattice; i.e. that $f_1 \wedge f_2 \in L'$ whenever $f_1, f_2 \in L'$. Let $f_1 = g_1 + h_1$, $f_2 = g_2 + h_2$ with $g_i \in L$, $h_i \in N$. Then $g_1 \wedge g_2 \in L$. We have $f_1 \wedge f_2 = (g_1 + h_1) \wedge (g_2 + h_2) \leq (g_1 \wedge g_2) + h_1 \wedge h_2$. Thus $f_1 \wedge f_2 - g_1 \wedge h_2 \leq h_1 \wedge h_2$. Similarly, $f_1 \wedge f_2 - g_1 \wedge h_2 \leq -h_1 \wedge h_2$. Since N is a lattice ideal, $f_1 \wedge f_2 - g_1 \wedge g_2 \in N$. Hence $f_1 \wedge f_2 \in L'$.

It is easy to check that L' satisfies all the hypotheses imposed above on L. In addition, L' has the following property:

If $f_1, f_2, \cdots \in L'$ are positive, $f_n \uparrow f$ pointwise and $\| f_n \| \leq \alpha$ for all n, then $f \in L'$ and $\| f - f_n \| \to 0$. To see this we note that $\{\| f_n \|\}$ is an increasing sequence of real numbers bounded from above by α; hence it is a Cauchy sequence. Thus $\{\| f_n \|^p\}$ is also a Cauchy sequence. Whenever $n \geq m$ we have $\| f_n - f_m \|^p \leq \| f_n - f_m + f_m \|^p - \| f_m \|^p = \| f_n \|^p - \| f_m \|^p$ by (3) above. Thus there is an $f' \in L'$ such that $\| f' - f_n \| \to 0$ by (1) above. Since $f_n \leq f$ for all n, $f' - f_n \geq f' - f$ for all n. Since $f' - f_n \in L'$, $f' - f_n = g_n + h_n$ with $g_n \in L$, $h_n \in N$. By the definition of N, we can find, for each n, a $g'_n \in L$ such that $g'_n \geq g_n$ and $\| g'_n \| \leq 1/n$. Let $f'_n = g_n + g'_n$. Then $f'_n \geq g_n + h_n = f' - f_n \geq f' - f$. Also $\| f'_n \| \leq \| g_n \| + \| g'_n \| \leq \| f' - f_n \| + 1/n \to 0$. By the definition of N, $f' - f \in N$. Thus $f \in L'$. Also $\| f - f_n \| \leq \| f - f' \| + \| f' - f_n \| \to 0$.

At this point, we replace L by L'; i.e. we write L for L'.

Lemma. Let $f \in L$ be positive. Let g be the characteristic function of the set on which f differs from 0. Then $g \in L$.

Proof. Clearly $nf \wedge 1 \uparrow g$ pointwise. Since $\| nf \wedge 1 \| \leq 1 \| = 1$ for all n, $g \in L$ by what has just been proved.

Lemma. Let $f \in L$ be positive. Then there are positive $f_1, f_2, \cdots \in L$ such that $f_n \uparrow f$ pointwise, $\| f - f_n \| \to 0$, and each f_n assumes only finitely many values.

Proof. For each positive integer n, let f_n be defined by: $f_n(x) = 2^{-n}[2^n(f \wedge n)(x)]$ for all $x \in E$. (By $[\alpha]$ we mean the largest integer $\leq \alpha$.) For each $x \in E$, $f_n(x) = 2^{-n}[2^n f(x)]$ for large n; thus clearly $f_n(x) \to f(x)$. Hence $f_n \uparrow f$ pointwise. We note

$$f_{n+1}(x) = \frac{1}{2^{n+1}}[2^{n+1}(f \wedge (n + 1))(x)] \geq \frac{1}{2^{n+1}}[2^{n+1}(f \wedge n)(x)]$$

$$\geq \frac{1}{2^n}[2^n(f \wedge n)(x)] = f_n(x)$$

for each $x \in E$. Hence $f_n \uparrow f$ pointwise. If we show $f_n \in L$ for all n, we shall know $\| f - f_n \| \to 0$ and the lemma will be proved.
Let \(n \) be fixed. Let \(g_1, g_2, \ldots \) be functions on \(E \) defined by:
\[
g_1(x) = 1 \text{ if } x \text{ is such that } 2^n(f \wedge n)(x) \geq i
\]
\[
g_2(x) = 0 \text{ if } x \text{ is such that } 2^n(f \wedge n)(x) < i.
\]
We note that \(g_1 = 2^{-n} \sum_{i=1}^{2^n} g_i(x) \). Since \(2^n(f \wedge n)(x) \leq 2^n n \), \(g_1(x) = 0 \) for all \(x \) when \(i \geq 2^n n \). Thus \(f_n(x) = 2^{-n} \sum_{i=1}^{2^n} g_i(x) \). Clearly each \(1-g_i \) is the characteristic function of the set on which \((2^n(f \wedge n) - i) \) differs from 0. Since \((2^n(f \wedge n) - i) \in L \), \(1-g_i \in L \) by the previous lemma; hence \(g_1 \in L \). We note \(f_n = 2^{-n} \sum_{i=1}^{2^n} g_i \) which shows \(f_n \in L \) and completes the proof.

We now define a measure \(\mu \) on the set \(E \). Let \(A \) be a subset of \(E \). If \(f_A \), the characteristic function of \(A \), is in \(L \), we call \(A \) measurable and put \(\mu(A) = \|f_A\|^p \). The verification that \(\mu \) is a countably additive measure is trivial, making use of conditions (3) and (4) of our hypothesis, except for the following: Let \(A_1, A_2, \ldots \subset E \) be pairwise disjoint and measurable. Let \(f_n \) be the characteristic function of \(A_1 \cup \cdots \cup A_n \) \((n = 1, 2, \cdots)\). Then \(f_n \uparrow f \) pointwise, where \(f \) is the characteristic function of \(\bigcup_{n=1}^{\infty} A_n \). By what has been shown above, \(f \in L \) and \(\|f - f_n\| \to 0 \). Thus \(\mu(A_1) + \cdots + \mu(A_n) = \|f_n\|^p \to \|f\|^p = \mu(\bigcup_{n=1}^{\infty} A_n) \).

Next we consider the space \(L_p \) defined by \(\mu \). The functions in \(L \) which assume only finitely many values are precisely the measurable functions which assume only finitely many values. Clearly the given semi-norm on \(L \) coincides with the \(L_p \) norm for such functions. It follows, by considering pointwise limits of increasing sequences of such functions, that the functions in \(L_p \) are precisely those in \(L \) and that the norms agree. Remembering that we modified the original \(L \) by introducing null functions, we have the following theorem:

Theorem. Let \(L \) be a Riesz space of functions on a set \(E \). Suppose there is a semi-norm on \(L \) which satisfies conditions (1)-(5) above. Then there is a countably additive measure \(\mu \) on \(E \) such that \(L \) is essentially \(L_p \) with respect to \(\mu \); i.e. such that:

(a) For every \(f \in L \), \(\|f\|^p = \int \|f\|^p \, d\mu \).

and (b) If \(f \geq 0 \) and \(\int \|f\|^p \, d\mu < \infty \), then there is a \(g \in L \) such that \(f(x) = g(x) \) for almost all \(x \in E \).

In the case \(p = 2 \), we can modify the hypotheses above. We suppose that \(H \) is a Riesz space of functions. We also suppose that there is a positive semi-definite bilinear form defined on \(H \) and that \(H \) is complete in the semi-norm determined by this form. We also assume that \(\|f\| \leq \|g\| \) whenever \(f, g \in H \) and \(0 \leq f \leq g \). Next suppose that \(\|f^+\| \leq \|f\| \) for all \(f \in H \). Finally we suppose \(1 \in H \) and \(\|1\| = 1 \). We
prove the following lemmas to show that \(H \) satisfies, with \(p = 2 \), the hypotheses given at the beginning of the paper.

Lemma. If \(f, g \in H \) are positive, then \((f, g) \geq 0\).

Proof. We note \(f + \alpha g \geq f \geq 0 \) for all \(\alpha > 0 \). Thus \(\|f + \alpha g\| \geq \|f\| \). Hence we have \(0 \leq \|f + \alpha g\|^2 - \|f\|^2 = 2\alpha(f, g) + \alpha^2 \|g\|^2 \). It follows that \(2(f, g) \geq - \alpha \|g\|^2 \) for all \(\alpha > 0 \). Hence \((f, g) \geq 0\).

Lemma. If \(f, g \in H \) are positive and \(f \wedge g = 0 \), then \((f, g) = 0\).

Proof. We note \(f \wedge (\alpha g) = 0 \) for all \(\alpha > 0 \). Hence \((f - \alpha g)^+ = f\). Thus we have \(\|f\|^2 = \|(f - \alpha g)^+\|^2 \leq \|f - \alpha g\|^2 = \|f\|^2 - 2\alpha(f, g) + \alpha^2 \|g\|^2 \). Hence \(\alpha \|g\|^2 \geq 2(f, g) \) for all \(\alpha > 0 \). Thus \((f, g) \leq 0\). By the previous lemma, \((f, g) \geq 0\). Therefore \((f, g) = 0\).

Lemma. \(\|f\| = \|\|f\|\| \) for all \(f \in H \).

Proof. We have \(\|f\|^2 = \|f^+ - f^-\|^2 = \|f^+\|^2 - 2(f^+, f^-) + \|f^-\|^2 = \|f^+\|^2 + \|f^-\|^2 - 4(f^+, f^-) = \|f\|^2 - 4(f^+, f^-) \). But \((f^+, f^-) = 0\) by the previous lemma.

Lemma. \(\|f + g\|^2 \geq \|f\|^2 + \|g\|^2 \) whenever \(f, g \in H \) are positive.

Proof. \(\|f + g\|^2 = \|f\|^2 + 2(f, g) + \|g\|^2 \geq \|f\|^2 + \|g\|^2 \) since \((f, g) \geq 0\).

Lemma. If \(f, g \in H \) are positive and \(f \wedge g = 0 \), then \(\|f + g\|^2 = \|f\|^2 + \|g\|^2 \).

Proof. We have \(\|f + g\|^2 = \|f\|^2 + 2(f, g) + \|g\|^2 = \|f\|^2 + \|g\|^2 \). Thus we have verified that \(H \) satisfies the hypotheses for \(L \) with \(p = 2 \). On this basis we prove:

Theorem. Let \(H \) be as described above. Then there is a countably additive measure \(\mu \) on \(E \) such that \(H \) is essentially \(L_2 \) with respect to \(\mu \); i.e. such that:

(a) For every \(f, g \in H \), \((f, g) = \int fg \, d\mu \).

and (b) If \(f \geq 0 \) and \(\int f^2 \, d\mu < \infty \), then there is a \(g \in H \) such that \(f(x) = g(x) \) for almost all \(x \in E \).

Proof. In addition to what has been proved above, it is enough to
note that the inner product may be expressed in terms of the norm in
the usual way.

BIBLIOGRAPHY

994-1024.

HARVARD UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG
Stanford University
Stanford, California

A. L. WHITEMAN
University of Southern California
Los Angeles 7, California

F. H. BROWNELL
University of Washington
Seattle 5, Washington

L. J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
E. HEWITT
M. OHTSUKA
E. SPANIER
T. M. CHERRY
A. HORN
H. L. ROYDEN
E. G. STRAUS
D. DERRY
L. NACHBIN
M. M. SCHIFFER
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE COLLEGE
UNIVERSITY OF SOUTHERN CALIFORNIA
UNIVERSITY OF WASHINGTON

OREGON STATE COLLEGE
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY
HUGHES AIRCRAFT COMPANY
UNIVERSITY OF SOUTHERN CALIFORNIA
SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maynard G. Arsove</td>
<td>The Paley-Wiener theorem in metric linear spaces</td>
<td>365</td>
</tr>
<tr>
<td>Robert (Yisrael) Aumann</td>
<td>Acceptable points in games of perfect information</td>
<td>381</td>
</tr>
<tr>
<td>A. V. Balakrishnan</td>
<td>Fractional powers of closed operators and the semigroups generated by them</td>
<td>419</td>
</tr>
<tr>
<td>Dallas O. Banks</td>
<td>Bounds for the eigenvalues of some vibrating systems</td>
<td>439</td>
</tr>
<tr>
<td>Billy Joe Boyer</td>
<td>On the summability of derived Fourier series</td>
<td>475</td>
</tr>
<tr>
<td>Robert Breusch</td>
<td>An elementary proof of the prime number theorem with remainder term</td>
<td>487</td>
</tr>
<tr>
<td>Edward David Callender, Jr.</td>
<td>Hölder continuity of n-dimensional quasi-conformal mappings</td>
<td>499</td>
</tr>
<tr>
<td>L. Carlitz</td>
<td>Note on Alder’s polynomials</td>
<td>517</td>
</tr>
<tr>
<td>P. H. Doyle, III</td>
<td>Unions of cell pairs in E^3</td>
<td>521</td>
</tr>
<tr>
<td>James Eells, Jr.</td>
<td>A class of smooth bundles over a manifold</td>
<td>525</td>
</tr>
<tr>
<td>Shaul Foguel</td>
<td>Computations of the multiplicity function</td>
<td>539</td>
</tr>
<tr>
<td>James G. Glimm and Richard Vincent Kadison</td>
<td>Unitary operators in $C^$-algebras*</td>
<td>547</td>
</tr>
<tr>
<td>Hugh Gordon</td>
<td>Measure defined by abstract L_p spaces</td>
<td>557</td>
</tr>
<tr>
<td>Robert Elliott James</td>
<td>Separable conjugate spaces</td>
<td>563</td>
</tr>
<tr>
<td>William Elliott Jenner</td>
<td>On non-associative algebras associated with bilinear forms</td>
<td>573</td>
</tr>
<tr>
<td>Harold H. Johnson</td>
<td>Terminating prolongation procedures</td>
<td>577</td>
</tr>
<tr>
<td>John W. Milnor and Edwin Spanier</td>
<td>Two remarks on fiber homotopy type</td>
<td>585</td>
</tr>
<tr>
<td>Donald Alan Norton</td>
<td>A note on associativity</td>
<td>591</td>
</tr>
<tr>
<td>Ronald John Nunke</td>
<td>On the extensions of a torsion module</td>
<td>597</td>
</tr>
<tr>
<td>Joseph J. Rotman</td>
<td>Mixed modules over valuations rings</td>
<td>607</td>
</tr>
<tr>
<td>A. Sade</td>
<td>Théorie des systèmes demosiens de groupoï des</td>
<td>625</td>
</tr>
<tr>
<td>Wolfgang M. Schmidt</td>
<td>On normal numbers</td>
<td>661</td>
</tr>
<tr>
<td>Berthold Schweizer, Abe Sklar and Edward Oakley Thorp</td>
<td>The metrization of statistical metric spaces</td>
<td>673</td>
</tr>
<tr>
<td>John P. Shanahan</td>
<td>On uniqueness questions for hyperbolic differential equations</td>
<td>677</td>
</tr>
<tr>
<td>A. H. Stone</td>
<td>Sequences of coverings</td>
<td>689</td>
</tr>
<tr>
<td>Edward Oakley Thorp</td>
<td>Projections onto the subspace of compact operators</td>
<td>693</td>
</tr>
<tr>
<td>L. Bruce Treybig</td>
<td>Concerning certain locally peripherally separable spaces</td>
<td>697</td>
</tr>
<tr>
<td>Milo Wesley Weaver</td>
<td>On the commutativity of a correspondence and a permutation</td>
<td>705</td>
</tr>
<tr>
<td>David Van Vranken Wend</td>
<td>On the zeros of solutions of some linear complex differential equations</td>
<td>713</td>
</tr>
<tr>
<td>Fred Boyer Wright, Jr.</td>
<td>Polarity and duality</td>
<td>723</td>
</tr>
</tbody>
</table>