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If %3, is a vector space over a field k, then with any non-degenerate
bilinear form f, on ¥, x B, is associated the group & of linear trans-
formations of ¥, which keep f, invariant. In this paper a procedure
is given for associating with such a bilinear form an algebra 2, non-
associative in general, whose automorphism group is isomorphic to &
and which is right and left simple provided B, has dimension at least
2. In case k is the field of real numbers, then & is a Lie group
and its Lie algebra is the Lie algebra of derivations of . In case
the form f, is degenerate, and either symmetric or alternating, then
the analogue of the Wedderburn Principal Theorem holds for 2. The
results obtained apply, in particular, to the orthogonal and symplectic
groups.

Let B, be a vector space of dimension n over a field & with basis
Uy, =, Uy 1t is assumed that v = o) for all v € ¥yand A € k. Sup-
pose f, is a bilinear form on L, x B,. Define A to be the algebra
over k with basis ¢, e, -+, ¢, and multiplication table e = ¢;, e;+¢, = e;*
e; = ¢e;, ¢-¢, = f(e;e))e, for ¢, j=1,2, -.-,n, where fle,;, ;) = fo(us, ;).
Let ¥ be the subspace of A spanned be ¢, -++,¢,. Then f is a
bilinear form on L x B.

THEOREM 1. Suppose that f is non-degenerate and that n = 2.
Then 2 s right and left simple.

Proof. Let U be a non-zero left ideal of U and let u be a non-zero
element of . Suppose first that 4 € V. Then there exists an element
v € V such that f(v,u) + 0. Then v-u = f(v, u)e,. Therefore ¢, ¢ U
and so I = A. Next suppose u = ae, + v where a« #0 inkand v e V.
Then one can assume a = 1. Since n =2 it follows that e¢,«u =e, + \e,
and e,»u = ¢, + Mg, where M\, N, € k. If N, =0 then ¢ € U and the
first part of the proof applies; similarly if A, = 0. Consequently one
can suppose M\, = 0. Then \eu — Meu = Mg — e, iS a non-zero ele-
ment in W N B. Thus the first part of the proof again applies and so
U = 2. Therefore A is left simple; similarly A is right simple.

If A is any (non-associative) algebra over k then left (right) multi-
plication by an element a € U determines a linear transformation L,(R,)
of the underlying vector space of U by a-u = Lau(u-a = Ru), w € 2.
The set of linear transformations L, (R,) for a € 2 generate an associa-
tive algebra L() (R()) over k. The algebras L() and R() together
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generate the transformation algebra T'().

THEOREM 2. If f is non-degenerate and n = 2 then L) = R) =

Proof. The proof of Theorem 1 shows that for any u #= 0 in «A
there is an element of L() mapping « into any arbitrarily assigned
element of 2. Therefore L(A) = [k],.,; similarly for R(), and so also
for T'().

Albert has introduced in [1] the concept of isotopy of non-asso-
ciative algebras. Suppose 2 is an algebra with left multiplications L,
defined by a-u = L,u. Then an isotope of 2 is an algebra A° with the
same underlying vector space and multiplication defined by aou = PL,,Su
where P, @, S are invertible linear transformations of the underlying
vector space of 2. An algebra 2 is said to be isotopically left (right)
simple if every isotope of U is left (right) simple.

THEOREM 3. Suppose f is mon-degenerate and that n =2. Then
A 1s isotopically left and right simple.

Proof. Suppose U is a subspace of 2 such that PL,,SU < U for all
x € A. Now choose x € A such that L,, = L, = I, the identity trans-
formation. Then PSU < U. Therefore PSU =1 and Sl =P-'1 since
P and S are invertible. Then for any u € %, LSl < P~'1 = SU and
so SU is a left ideal of A. Therefore either U = (0) or A. Consequen-
tly U is isotopically left simple; similarly it is isotopically right simple.

REMARK. Bruck has shown in [2] that left and right isotopic sim-
plicity follow from left and right simplicity if the algebra has a unit
element. The proof has been given here for sake of completeness.

THEOREM 4. Suppose that f is non-degenerate and that n>2. Let
S be the group of linear transformations of B which keep f invariant.
Then the group of automorphisms of U is isomorphic to &. In case
k is the field of real numbers the Lie group & has for tits Lie algebra
the Lie algebra of derivations of .

Proof. Let @ be an automorphism of . It is understood that ¢ is a
k-automorphism so that ¢ keeps scalar multiples of ¢, fixed. Suppose
pe, = N\, + v, where )\, e k,v, ¢ ¥ and ©=1,2, ---,n. Then each
product e, - pe; = 14,6, + Nv;, +N\v;, iy €k, must be a scalar multiple
of ¢, Therefore \v,+\,v; = 0 and so P(\,e;+Ne; — 2\\ ) = 0, which
implies that \; = X, = 0 if 7 % j. Therefore ¥ < V. Then pe;-pe; =
f(pe,, pej)e, = Plei-e;) = pfe, ey)e, = fley, ej)e, fori,j =1, --+, n. There-
fore f(pe,, pe,) = fle;, ;) for 1,5 =1, .-+, n. Therefore the restriction
of @ to ¥ is an element of ®. Conversely any element of & can be
extended uniquely to an automorphism of 2. Thus ® is isomorphic to
the group of automorphisms of 2. Note that if these two groups are
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realized as groups of matrices with respect to the given basis, then
the isomorphism is trivially birational and biregular in the sense of al-
gebraic geometry, so that the groups are isomorphiec as algebraic groups.
The last statement of the theorem follows from a classical result in
the theory of Lie groups (cf. [3] p. 137).

THEOREM 5 (Wedderburn Principal Theorem). Suppose that f is
degenerate and either symmetric or alternating. Then U has a semisim-
ple subalgebra A, and a nilpotent ideal N such that A = U, + N (vee-
tor space direct sum).

Proof. If f is identically zero take ¢t = B and 2, to be the sub-
algebra spanned by e, Otherwise let %, be the set of elements u € L
such that f(u,v) =0 for all v € B. Choose a basis e, +++, €y, +++, €,
for L such that e,., -+-, ¢, span RN,. Suppose first that r = 2. Then
€5, €1, *+, ¢, span a subalgebra 2, which is isotopically left and right
simple by Theorem 8. Taking N =N, it follows that A = A, + N
with % a nilpotent ideal of index two. Now suppose r = 1. Then
e? = neg, where » # 0 in k. If the subalgebra spanned by e, and e, is
semisimple, then A, and N may be taken as before. Otherwise, suppose
that e, + Be,, 8 # 0 in k, spans the one-dimensional radical of this sub-
algebra. Then take 9 to be the ideal of A spannned by ¢, + Be., e,
«+-, ¢, and A, to be the subalgebra spanned by e,.

REMARK. The use of the terms ‘‘semisimple’” and ‘‘nilpotent ideal’”’
does not seem yet to be standardized in the literature on non-associative
algebras. Although in the present case all of the customary interpre-
tations of these terms are equivalent, nevertheless it desirable to give
explicit definitions. An algebra is said to be semisimple if it is a direct
sum of simple algebras, none of which is the zero algebra of dimension
1. An ideal is said to be wmilpotent if there is an integer m > 0 such
that every product of m elements of the ideal, irrespective of the
manner of bracketing, is zero.
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