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THE PALEY-WIENER THEOREM IN

METRIC LINEAR SPACES

MAYNARD G. ARSOVE

l Introduction. By a basis in a topological linear space ^~ we
mean a sequence {xn} of points of ^Γ such that to every x in j?~ there
corresponds a unique sequence {αj of scalars for which

Σ

Denoting the coefficient functional here by φn, we can rewrite this as

(1.1) X = Σt<Pn(Φn
= 1

If it happens that all φn are continuous on jf, the basis will be refer-
red to as a Schauder basis. Every basis in a Frechet space [14, pp.
59, 110] is known to be a Schauder basis (see Newns [21], pp. 431-432),
and it will be shown here that the same holds for bases in an arbitrary
complete metric linear space over the real or complex field.

The classical Paley-Wiener theorem asserts that for J7~ a Banach
space, all sequences which sufficiently closely approximate bases must
themselves be bases. A more precise statement of the theorem is ob-
tained by replacing ^ in Theorem 1 by a Banach space &.

The bibliography at the end of the present paper includes a chro-
nological listing of articles on the Paley-Wiener theorem, and we give
now a brief resume of its history. As originally presented in 1934 by
Paley and Wiener [1, p. 100], the theorem was derived specifically for
the Hubert space ZΛ Then, in applying the theorem to the Pincherle
basis problem [2, p. 469], Boas observed in 1940 that the proof of Paley
and Wiener remains valid for Banach spaces. Boas also succeeded in
simplifying a portion of the proof. However, the first really elementary
proof of the theorem was published in 1949 by Schafke [8], to whom
conclusion (3) is due. The remaining articles on the Paley-Wiener theo-
rem deal mainly with various generalizations of condition (2.1) for Hubert
spaces.

From the viewpoint of modern functional analysis, the key to theo-
rems of Paley-Wiener type lies in the inversion of an operator / + T by
means of a geometric series in T. This crucial observation was made
by Buck [15, p. 410] in 1953.1

Received July 28, 1958, and in revised form June 22, 1959. The research reported upon
here was supported in part by the National Science Foundation.

1 The same technique was used also in [9], the author having been unaware of the
earlier remarks of Buck. A further application (to generalized bases) appears in [12].
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366 MAYNARD G. ARSOVE

Our purpose in the present note is to utilize the operator technique
in deriving a number of variants of the Paley-Wiener theorem. For
reference, we begin by sketching a proof of the theorem itself for com-
plete metric linear spaces. The ensuing variants then have in common
the hypothesis that {xn} be a Schauder basis and {yn} a sequence tri-
angular with respect to {xn}. This is evidently motivated by the case
of Pincherle bases in spaces of analytic functions (see, for example, [9]),
and we conclude, in fact, with a generalization to arbitrary Frechet
spaces of the theorem of Boas [2, p. 447, Theorem 4.1] on Pincherle
bases.

The author is indebted to Professor Robert C. James for reading
the manuscript and suggesting a number of important simplifications.
In particular, Theorem 2 replaces a weaker theorem of the original
manuscript.

2. The proof for metric linear spaces* In what follows, we shall
denote by ^ a complete metric linear space over the real or complex
field and employ the notation of Banach:

II a? || =p(x,0) (xe ^ ) ,

where p is the metric on ^zf. It will be assumed further that p is
translation invariant.2

With these conventions the Paley-Wiener theorem can be formulated
as

THEOREM 1. Let {xn} and {yn} be sequences in ^/f, and let λ be
a real number (0 < λ < 1) such that

(2.1) Σ

holds for all finite sequences a19 a2, , am of scalars. Then
( 1 ) if {xn} is total in ^//, so is {yn};
(2) if {xn} is a basis in ^f, so is {yn}, and the coefficients in

any expansion ^bnyn satisfy

(2.2) \\Σibn
1 — λ, IIr»—l

(3) if {xn} is a basis in ^/?, there exists an automorphism3 A
on ^£ such that yn — Axn (n = 1, 2, •).

2 A translation-invariant metric yielding the original topology always exists (see, for
example, [19, p. 34]).

3 The term automorphism is used to designate any linear homeomorphic mapping of
the space onto itself. By the open mapping theorem [13, p. 41, Theorem 5] every one-
to-one continuous linear mapping of ^ onto itself is an automorphism on .#.
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Proof. For convenience we consider first the case in which {xn} is
a basis. Condition (2.1) then allows us to define a continuous linear
operator T on ^// as

(2.3) Tx = Σ φn(x) (yn - xn)

and yields the inequality

By comparison with the corresponding geometric series in λ we infer
convergence of the operator series

(2.4) U= Σ ( - Γ ) n

71=0

and obtain the inequality

(2.5) || Uχ\\ < (l - λ)-1!!^!! .

Hence, the linear operator U is continuous on ^/S.
For any x in ^// the element 7/ of ^/S defined by y — Ux has the

evident property that x = (/ + ϊ1)?/, where / is the identity operator.
From 2/ = Σ &Λ it therefore follows that x = Σ &»#«» and this proves
that {#„} spans ^/^ in the infinite-series sense. That {yn} is linearly
independent in the infinite-series sense can then be seen by rewriting
(2.5) in the form (2.2). Assertions (2) and (3) are thereby established,
the latter with A taken as / + Tί—U'1).

No essential change in the above argument is required to prove (1),
We can clearly presume the xn to be finitely linearly independent and
replace the infinite series in (2.3) by corresponding finite sums. Thus
defined on a dense subset of ^/S, T is then extended to all of ^/S in
the usual fashion.

It should perhaps be mentioned that the automorphism A in (3) is
uniquely determined by the way it correlates the basis elements xn and
yn. In fact,

(2.6) AX = J j Φn{%)Vn

3* Coefficient functional and coordinate subspaces. We recall that
a Frechet space is defined [14, pp. 59, 110] as a metrizable, complete,
locally convex topological linear space over the real or complex field.
Generalizing a theorem of Banach, Newns has shown [21, pp. 431-432]
that for bases in Frechet spaces the coefficient functionals φn are always
continuous. This can, however, be carried one step farther by discard-
ing the hypothesis of local convexity.
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Such is the content of

THEOREM 2. Every basis in ^? is a Schauder basis.

Proof. As observed in footnote 2, there is no loss of generality in
taking the metric p on ^f to be translation invariant. Having done
this, we can conveniently make use of the functional | | $ | | = p(x, 0).

Let {xn} be a basis in ^f, so that for each x in ^f we have the
expansion (1.1), or equivalently

If m | |

Km \\X — Σ Ψrl^n = 0

Since this yields boundedness in m (for fixed x) of

the quantity

(3.1) || x II' - s u p
m>l

is always finite. Thus, ρ'(x, y) = || x — y ||' defines a translation-invariant
metric p9 on ^£ with the property that ρ(x, y) < ρ\x, y for all x, y in

It is immediate from (3.1) that

and the corollary to Proposition 2, pp. 25-26, of Bourbaki [14] then
ensures that each φn is continuous in the metric pr. The proof will be
completed by showing that p and ρf define the same topology on ^y£.

We establish, first of all, that ^£ is complete in the metric p'.
To this end, let {zk} be a Cauchy sequence in the metric pf. From
(3.2) and the result of Bourbaki just cited it follows that, for each n,
{Ψn{z>ic)}k-ι is a Cauchy sequence of scalars and therefore converges to
some scalar cn. Now, given ε > 0, there exists a positive integer N
such that || zό — zk ||' < ε for j , k > N. For arbitrary positive integers
m and m' < m we thus have

ίί m ίi

(3.3) I ΣΛ<Pn(z}) - Ψn(zk)]xn || < 2ε (j, k > N),

which yields in the limit as j —• oo

The ^-convergence of Σ^»(^)^w (for fixed k) gives rise to a Cauchy
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condition on its partial sums and thereby on the partial sums of Σ C Λ
Hence, Σ C A converges (p) to some point z of ^f. Taking mf = 1 in
(3.3) and passing to the limit on j, we arrive at

- z*IΓ = sup Σ <2ε(k>N)

That is, {zk} converges to z in the metric p'.
The remainder of the proof involves simply a routine application of

a corollary of the open mapping theorem [13, p. 41, Theorem 6] to con-
clude that p and p' define the same topology on ty^'.

Relative to a given basis {xn}, a coordinate subspace of y/ is de-
fined as a subspace of the form {x: φn{x) = 0 for n e K}y where K is
some set of positive integers. The coordinate subspaces arising when K
consists of the first k — 1 positive integers are of special interest in the
sequel, and we denote them by ^/ίk. That is, for each positive integer
k, ^/ίk is the set of all elements of ^ f expressible as infinite linear
combinations of the basis elements xk, xk+1, •••. For convenience, ,y/k

will be referred to as a terminal coordinate subspace (or, more precisely,
as the kth. terminal coordinate subspace) of ^y/ relative to {xn}.

Since coordinate subspaces relative to Schauder bases are necessarily
closed, we have

COROLLARY 2.1. All coordinate subspaces of <y/ are closed.

4 Some variants of the Paley-Wϊener theorem. A sequence {yn}
in ^ will be called triangular with respect to a basis {xn} provided
that each yn has the representation

oo

(4.1) yn = xn + Σ <Pι(yn)Xι .
ί = n+l

In the present section we shall be concerned with the problem of de-
termining conditions under which {yn} will itself be a basis in ^f. This
arises as a natural analogue of the Pincherle basis problem, and our
methods here have much in common with those of [9].

We take advantage of the following special properties of triangular
sequences.

LEMMA 1. Let {xn} be a basis in ^f} and let ^fk be a terminal
coordinate subspace of ^ relative to {xn}. If {yn} is a sequence in
^yf/ triangular with respect to {xn}, then

(1) {Vn} is linearly independent in the infinite-series sense, and
(2) for {yn}n=k to be a basis in ^fk it is necessary and sufficient

that {y^n-i be a basis in
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Proof. To show that {yn} is linearly independent in the infinite-
series sense, we suppose that

Σ KVn = 0 .

Then, from (4.1) and the fact that ^€2 is closed, it is immediate that
&!#! + 22 = 0, where z2 is some point in ^//2. Hence bλ — 0, and an obvious
inductive argument establishes bn = 0 (n = 1, 2, •)•

The second assertion is dealt with similarly. Let {yn}£.k be a basis
in ^fk, and let y be any element of ^/ί. It is evident that, for a sui-
tably chosen scalar b19 the point y — b1y1 will lie in ^/f2. Proceeding
inductively, we then see that there exist scalars b19 b2, •••, bk_1 yielding

TC-I

Σ
7 1 = 1

- Σ &Λ

Consequently, {yn}n=i spans ^// in the infinite-series sense and is there-
fore a basis in ^//. The converse in (2) is trivial.

This leads to our first variant of Theorem 1.

THEOREM 3. Let {xn} be a basis in ^fέ and {yn} a sequence tri-
angular with respect to {xn}. // there exist a positive number λ < 1
and a positive integer k such that

(4.2) Σ anxn\

holds for all finite sequences ak, ak+1, , am of scalars, then
( 1 ) {yn} is a basis in ^f, and
( 2 ) there exists an automorphism A on ^// such that yn = Axn

Proof. For conclusion (1) we apply Theorem 1 to infer that {yn}n=k
is a basis in ^fk, and then invoke (2) of Lemma 1. Theorem 1 shows
also that the mapping

Akx = Σ φn(x)yn

is an automorphism on ,^fk. We can obviously extend Ak to a mapping
A of ^f into itself by setting

oo

AX = Σ Φn{%)Vn f

and from the fact that {yn} is a basis in ^ f it is then clear that A
maps ^ onto itself in one-to-one fashion. There remains simply to
observe that the continuity of Ak implies continuity of A, so that A is
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an automorphism on ^ .
A further variant of the main theorem is at hand when {xn} is an

absolutely p-convergent basis in ^f, that is, when {xn} is a basis for
which all x e ^// satisfy

ΣII<p»(ίΦ«ll < + T O 4

71 = 1

THEOREM 4. Let {xn} be an absolutely p-convergent basis in t.Y/
and {yn} a sequence triangular with respect to {xn}. //

Σ W i d W )
(4.3) lim sup supi^i < 1 (α, scalar),

»-oo [aψo \\axn\\ j

then
( 1 ) {yn} is an absolutely p-convergent basis in ^f, and
(2) there exists an automorphism A on ,Y/ such that yn — Axn

Proof. We first remetrize ^// by setting p'(x, y) = || x — y ||', where

(4.4) II«II' = ΣII^»(^KII
W = l

for all x in ^ f . Obviously pf is translat ion invariant, and \\x\\ < \\x\\f.
Condition (4.3) can now be restated as follows: there exist a posi-

tive number λ < 1 and a positive integer k such t h a t

(4.5) \\a{yn- xn)\\F <X \\ axn\\'

holds for n > k and all scalars a. This, together with (4.4), yields the
inequality (4.2) in the metric pr. Hence, {yn} is a basis in ^f, and
there exists an automorphism A on ^// such that yn = Axn (n = 1, 2,
•••). It follows that, for arbitrary scalar sequences {bn}, convergence
of the series Σ bnyn implies convergence (and thereby absolute ^-con-
vergence) of the series Σ bnxn. Since (4.5) results in

\\bnVn\\ < ( l + λ ) | | δ A | |

for n > k, we see that {yn} is, in fact, an absolutely ^-convergent basis
in ^-/f. This completes the proof.

As noted in the derivation, there is no real loss of generality in
requiring that

4 In metric linear spaces the notion of absolute p-convergence coincides with that of
absolute convergence as defined by Day [16, pp. 11, 59] in terms of the Minkowski functional.
Here, absolutely convergent bases are defined only for Frechet spaces (see § 5).
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for all x in ^f. Whenever the metric p and the basis {xn} are inter-
related in this fashion, condition (4.3) assumes the simpler form

(4.30 Km sup (sup 11 α ( ^ " a?n) 11) < x ( α > s c a i a r ) .

5 The case of Frechet spaces. Proposition 6, p. 97, of [14] ensures
that the topology on a Frechet space j ^ ~ can be described by a sequence
{|| IIJ of continuous semi-norms, and with no loss of generality this
sequence will be taken as monotone increasing (a condition automatically
fulfilled in spaces of analytic functions). Thus, \\x\\p < \\x\\q for q> p
and all x e J^, and convergence in j ^ " is equivalent to convergence
with respect to each of the semi-norms || ||Q. The topology on j ^ i s
then that of the translation-invariant metric

As we proceed to show, the Paley-Wiener theorem and its variants
can be generalized in the case of Frechet spaces by replacing the in-
equalities on the metric by corresponding inequalities on the semi-norms.

THEOREM 5. Let {xn} and {yn} be sequences in a Frechet space ^
and let {λj be a sequence of real numbers (0 < λq < 1) such that

II Σ an(yn - xn) || < λ j | Σ anxn II (q - 1, 2, •)
Me

holds for all finite sequences a19 a2, , am of scalars. Then
( 1 ) if {xn} is total in j ^ ~ , so is {yn};
( 2 ) if {xn} is a basis in ^ , so is {yn}, and the coefficients in

any expansion Σ bnyn satisfy

(9 = 1,2,..-);

( 3 ) if {xn} is a basis in ^ f there exists an automorphism A on
such that yn = Axn (n = 1, 2, •)•

THEOREM 6. Let {xn} be a basis in a Frechet space j ^ and {yn}
a sequence triangular with respect to {xn}. If there exist positive
integers kq and positive numbers Xq < 1 such that

(5.2) || Σ*an(yn-xn) <\

holds for all finite sequences α f c, ak +1, , am of scalars, then
( 1 ) {yn} is a basis in ^ , and
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( 2 ) there exists an automorphism A on J^ such that yn ~ Axn

(w = l ,2, •••)•
The proof of Theorem 5 duplicates that of Theorem 1. The proof

of Theorem 6 would likewise duplicate that of Theorem 3 if we knew
that {kq} were bounded (so that in effect we could replace it by a single
number k). Failing this, we use the following argument, based directly
on the properties of the transformation T of (2.3).

Convergence of the series

oo

TX = Σ <Pn(%)(Vn - %n)
71 = 1

is ensured by condition (5.2). In fact, if x lies in the kqth terminal
coordinate subspace ^ , we have

(5.3) \\Tx\\q<Xq\\x\\q (q = 1, 2, . . . ) .

Since the complementary subspace corresponding to each t j ^ is finite
dimensional, it follows that T is continuous on J ^ . 5

Now, taking account of the fact that J?ζ is closed, we verify at
once that x in J^Lj implies Tx in ^Γ. Hence, for arbitrary x in J^,
the point T*"1^ must lie in ά\ (k = 1, 2, •••)• This result, combined
with (5.3), leads to the inequality

II Tnτ II <r (\ λn-kπ II TkqΎ II (a — Λ 9 A
\\ I X \\q S s \λ>q) 9 II J- X \\q \H — ±> &i )

for n > kq and all x in j ^ ~ . As in the proof of Theorem 1, it follows
that the operator series

u= Σ(-τ)n

W = 0

converges and that U = (I + T)~\ From this we conclude that A —
I + T is an automorphism on J^ carrying xn into yn (n = 1, 2, •), and
that {2/J is a basis in ^ " \

To frame an analogue of Theorem 4, we first define an absolutely
convergent basis in the Frechet space j ^ ~ as a basis {xn} such that

for all a; in

5 Any % m & can be expressed as ίc=ίcr + α?/r, where x! is the projection of x on the
complementary subspace to 5 ^ and #' r is the projection of x on &k. . By continuity of the
coefficient functionals, x -> 0 implies #' -> 0 and thereby x" -> 0. Then Tx' -> 0 and Tx" -» 0,
so that To; -> 0.

6 It is evident from [14, p. 101] that this definition is independent of the choice of
semi-norm sequence from among those defining the topology on &,



374 MAYNARD G. ARSOVE

THEOREM 7. Let ^ be a Frechet space, {xn} an absolutely con-

vergent basis in ^ , and {yn} a sequence triangular with respect to

{*.}. If

Σ \\<pι(v»)χt\\q

(5.4) lim sup ±^±- < 1 (q = 1, 2, . . ) ,

l l ^ l l α
then

(1) {Vn\ is an absolutely convergent basis in Ĵ ~\ and
(2) there exists an automorphism A on j ^ " " such that yn — Axn

Proof. Setting

(5.5) \\x\\'q = Σ\\<Pn(x)Xn\\q fa = 1 , 2 , •••)

for all x in J7r, we observe that {|| ||£} is an increasing sequence of
semi-norms on j ^ ~ . It thus defines a metric p' on j ^ * according to
(5.1), and there is no difficulty in showing that pf yields the same
topology as p.7 Then, to each index q there correspond a positive
number λα < 1 and a positive integer kq such that

\\yn - ff»llί < λβ | | ίcn | | ί

holds for n > kq. The additivity property (5.5) assures us also that (5.2)
holds for the primed semi-norms, and the proof is completed just as in
the case of Theorem 4.

Again we note that the semi-norms on ^ can be required to have
the additivity property

II Σ <Pn(x)Xn || = Σ || <Pn(Φn II, fa = 1, 2, •)
llg

relative to the absolutely convergent basis {xn}. In terms of a "natural"
sequence of semi-norms of this sort, condition (5.4) reduces to

(5.4') lim sup lly»-~^«llg < 1 (g = 1, 2, •).
l ignite

It is readily seen that the coefficients for an element in a given
basis are finite linear combinations of the coefficients in a basis triangular
with respect to the given one. We have, in fact,

LEMMA 2. Let {xn} be a basis in ^/f and {yn} a basis triangular
with respect to {xn}. If x is an element of ^f having expansions in

This argument appears also in the proof of Lemma 4 of [11].
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the two bases as

x = Σ α A and x = Σ bnyn ,

then

a, = δx αraZ αn = bn + Σ bn-kφn(yn-k) (n > 2).

Proof. The expansion of # in the basis {yn} appears as

x = ftja?! + φ2(yt)x2 + φMxs + ]

Since ^ is closed, it follows from the linear independence of {xn} that
ax = δi. The fact that , ̂  is closed then results in a2 — 62 + <p2(2/i)> a n ( i
the general formula is obtained by induction. (Note that the proof in
no way depends on rearrangement of the series.)

Using this lemma, we show how certain inequalities on the co-
efficients an give rise to corresponding inequalities on the coefficients bn.
The underlying space will be taken as a Frechet space ^ , and {yn}
will again be assumed to be a basis triangular with respect to the basis
{xn}.

Thus, let x be an element of ^ having the expansion

00

n = i

and for each q let Mq be a constant such that

\an

Constants of this sort always exist if the basis {xn} is absolutely con-
vergent, since we can, for example, put Mq = Σ l l ^ ^ l l α ( I n spaces of
analytic functions, where we have access to the Cauchy inequalities,
the maximum modulus of course yields a better choice for Mq.) In
similar fashion HQ(yn) will be taken as any constant for which

(5.6) I φ iyn) I < Hq(yn) i j * J k ( )
\%l\\q

Absolute convergence of {xn} again suffices to ensure the existence of
such a constant, for example



376 MAYNARD G. ARSOVE

ΣΣ \
Hq(Vn) = " W + 1

and our remark on the case of analytic function spaces carries over.
Combined with the identities on the coefficients given in Lemma 2,

the above inequalities provide the estimates

\bn\-\\xn\\q < Mq + Σfiβ(l/»-*)|6n-*| ||ίκ»-*llα (n ^ 2 )

We apply now a procedure based on the techniques (due to Narumi
[20]) used in proving Theorem 5 of [10]. With {Bn} defined inductively
according to the equations

Bn\\ a;, ||β = Mq + Σ BΛ.tHt(yn.t) || »„_, ||, (» > 2)

it is readily verified that

Bn\\xn\\q- Bn^ || x n ^ \\q = Bn

Thus, for w > 2

so that

B1\\x1\\q = Mq,

Bn\\ xn \\q - Mα Π [1 + ίζdfc)] (n > 2).

There follows

THEOREM 8. Let ^ he a Frechet space, x an element of
a basis in J^~, and {yn} a basis triangular with respect to {xn}- Let
us suppose further that there exist constants Mq such that the coefficients
in the expansion

= ΣX = Σ

satisfy

for each index q, and that there exist constants Hq(yn) for which (5.6)
holds. Then the coefficients in the expansion
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x = Σ'
n = l

satisfy the inequalities

// m addition there exist constants Jq such that

(5.7) lim supH t(yn) < Jq (g = 1, 2, ).

then there also exist constants Kq such that

for all q, and the constants Kq are independent of q whenever the same
is true of Mq, Hq(yn), and Jq. In particular, condition (5.4) implies

6 Concluding remarks. We begin by making explicit the speciali-
zation of Theorem 7 to spaces of analytic functions.

Thus, let Ω be a non-empty plane region, and fix {Ωq} as any
sequence of non-empty subregions of Ω such that Ωq is a compact subset
of Ωq+1 (q = 1, 2, •) and Ω = U Ωq. The family of all functions / ana-
lytic on Ω, topologized by the sequence of semi-norms

Ωq

is a Frechet space which we shall denote by Sy/(Ω).
Applied to J^(Ω), Theorem 7 yields the following variant of Theorem

2, p. 117, of Evgrafov [17].8

THEOREM 9. Let {an} be an absolutely convergent basis in J>/{Ω)y

and let {βn} be the triangular sequence defined by

βn(z) = an{z) + Σ An}can+}c(z) ,

where the Ank are any complex numbers for which the indicated series
converge. If

8 Evgrafov's theorem, stated in terms of total systems, is given only for Ω simply
connected and all an bounded on n. Also, our condition of absolute convergence is replaced
in the hypotheses of Evgrafov by the existence of a rather special sort of biorthogonal
system.
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(6.1) lim sup Σ I Ank \ ̂ ^ ψ < 1 (g = 1, 2, •),

ίfcew {βn} is an absolutely convergent basis in S/(Ω), and there exists
an automorphism on S/(Ω) carrying an into βn for each n.

A further specialization results in the theorem of Boas (cited in § 1)
on Pincherle bases in spaces of functions analytic on the discs NR(0) —
{z: I z I < R] (0 < R < +°°). It is convenient here to let the index n
start with 0 and to put Sn(z) = zn (n = 0,1, •).

COROLLARY 9.1. (Boas). Let

an(z) = zn(l + Σ Ankzή (n = 0 , 1 , •.),

where the Anlc are complex numbers, define a sequence in

If

(6.2) lim sup Σ I Ank \rk < 1

for each r < R, then {an} is an absolutely convergent basis in
and there exists an automorphism A on J^(NR(0)) such that an = ASn

Returning to the case of general Frechet spaces, we observe that
the results of § 5 remain valid if we assume only that the conditions
on the semi-norms are satisfied for infinitely many indices q. In fact,
the topology on j^~ obviously is not affected if we replace the initial
sequence of semi-norms by any subsequence of it.

Finally, we remark that when the underlying space is a Banach
space, Theorems 4 and 7 coalesce. The common theorem is, however,
somewhat restricted in scope, since every Banach space admitting an
absolutely convergent basis is isomorphic to the space I1 of absolutely
summable sequences (see Karlin [18, p. 974]).
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ACCEPTABLE POINTS IN GAMES OF
PERFECT INFORMATION

ROBERT J. AUMANN

Summary. This is the second of a series of papers on the theory of
acceptable points in ^-person games. The first was [1]; in it the notion
of acceptable points was defined for cooperative games, and a fundamental
theorem was proved relating the acceptable expected payoffs for a single
play of a game to probable average payoffs for ' 'strong equilibrium points"
in its supergame.1

The chief result of the current paper, Theorem 5.4, is a generali-
zation of von Neumann's classical Theorem on two-person zero-sum games
of perfect information (see [11]). Roughly, it states that strong equi-
librium points in the supergame of a stable game of perfect information
can be achieved in pure supergame strategies. An example shows that
not all games possess this property; and in fact, it is conjectured that
the property is characteristic of game structures of perfect information.

The theorem stated above holds whether G is interpreted as a co-
operative or as a non-cooperative game. To lend meaning to this state-
ment, we will have to extend the theory introduced in [1] to non-coopera-
tive games. We plan to do this in full in a subsequent paper. Here
just enough definitions and theorems will be used to enable us to state
and prove the chief result for non-cooperative games of perfect infor-
mation.

The paper is divided into two parts, the first centering around the
proof of the chief result for cooperative games, the second dealing with
the extension to non-cooperative games. Section 1, the introduction,
serves mainly to supply background from [1] and from the literature.
In § 2, we show that the naive approach to generalizing von Neumann's
theorem on games of perfect information fails; that is, we bring an ex-
ample of a stable game of perfect information that has no acceptable
point in pure strategies. It is then shown intuitively that an appro-
priate generalization of the von Neumann Theorem should involve the
supergame. Sections 3 and 4 are devoted to the proof of preliminary
theorems, dealing with supergame pure strategies and supergames of
perfect information, respectively. In § 5 we establish the chief result.
Section 6, which completes the first part of the paper, is devoted to
the example and conjecture mentioned in connection with the chief
result.

Received September 4, 1958.
1 Readers not familiar with fl] should read the introduction (section 1) before continuing

with this summary.
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The second part begins with § 7, a summary of the additional nota-
tion needed for the non-cooperative case. In §8 the concept of accep-
tability is defined for non-cooperative games. In §9, we show that in
a game G of perfect information, it makes no difference, insofar as the
theory of acceptable points is concerned, whether G is to be considered
as a non-cooperative or as a cooperative game. More precisely, it is
shown that the set of acceptable payoffs in the non-cooperative sense,
coincides with the set of acceptable payoffs in the cooperative sense.
This is a consequence of the lemma, interesting in its own right, that
in a game of perfect information, the set of payoff vectors to correlated
strategy vectors coincides with the set of payoff vectors to mixed strategy
vectors. Again, this lemma seems to be characteristic of game struc-
tures of perfect information. In § 10, we define supergame strategies
for non-cooperative games and prove some preliminary results. Section
11 is devoted to the statement and proof of the chief result for non-
cooperative games of perfect information.

As in [1], the games under consideration contain no chance moves.
We will make unrestricted use of the notations, ideas, definitions,

theorems and proofs of [1]. We will not in general repeat explanations
and proofs that are similar to those given there. Especially heavy use
will be made of §6 of [1].

l Introduction and background* Up to the present, the starting
point for all work on games of perfect information has been the theorem
of von Neumann that every two-person zero-sum game of perfect infor-
mation with finitely many moves has a solution in pure strategies.
Subsequent work has dealt with extensions to ^-person games and the
concomitant generalizations of the solution notion, with various converses
to the von Neumann theorem, with extensions to games containing in-
finitely many moves (i. e., positions), and with various combinations of
these. We mention also the notion of stochastic games of perfect in-
formation with infinitely many moves.

In the first of these areas, Kuhn [9] showed that the von Neumann
theorem could be extended to w-person games if the "equilibrium point''
notion of Nash [12] was substituted for the classical solution notion.
Dalkey [4] proved a converse of this theorem, which reduces to a con-
verse of the von Neumann theorem in the two-person, zero-sum case.
Gale and Stewart [6] were the first to treat games of perfect informa-
tion with infinitely many moves; they showed that certain such (two-
person zero-sum) games possess no pure strategy solutions, and derived
sufficient conditions for the existence of a pure strategy solution. Wolfe
[14] extended their results. By adopting a definition of payoff that is
somewhat more restricted than that of Gale and Stewart, Berge [2] was
able to extend von Neumann's theorem to some games with infinitely
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many moves. He was also able to show [2, 3] that under very general
conditions on the structure of the game, Kuhn's theorem on the ex-
istence of a pure strategy equilibrium point in a game of perfect in-
formation holds true. The work of Shapley [13] and Gillette [7] on
Stochastic Games of perfect information will be discussed in detail below.

The current paper deals with an extension of the von Neumann
theorem to n-person games. The solution notion that we use is that of
"acceptable" points, introduced in [1]. The notion of acceptability is
a generalization of the "core" introduced by Gillies [8] for the coopera-
tive game with side payments. More precisely, an w-tuple x of strategies
is called acceptable if the players of any given coalition can be prevented
by the players not in that coalition from each obtaining a higher payoff
than when x is played (Definition 4.1 of [1]). Intuitively, it would seem
that in a long sequence of plays of a game, a "steady state" would
have to represent an acceptable point, because the players would cer-
tainly tend to move away from any point that is not acceptable.

In order to obtain a precise statement and proof of this intuitive
idea, we introduced (in §6 of [1]) the formal notion of the "supergame"
of a given game G. The super game of G is a game each play of which
consists of an infinite sequence of plays of G. The payoff to a super-
play (i.e., a play of the supergame) is given by the average (i.e., first
cesaro limit, if it exists) of the payoffs to the individual plays of G that
constitute the superplay. Many of the notions that apply to ordinary
games can also be applied to supergames. In particular, it is possible
to define the notion of strategy in the supergame, and also the notion
of a strategy equilibrium point in the sense of Nash. A much stronger
form of the Nash equilibrium notion may be defined as follows: An
%-tuple x of strategies is called a "strong equilibrium point" if for no
coalition B can all the members of B increase their payoff by adopting
strategies different from those at x while the remaining players (those
in N — B) play as they did at x. The notion of strong equilibrium
applied to the supergame provides a formalization of the "steady state"
idea (§7 of [1]).

The basic result of [1] (§ 10) may be stated as follows: The payoffs
for the acceptable points in a game G are the same as the payoffs for
the strong equilibrium points in its supergame. Since the notion of
acceptability depends only on the payoff, this means that the acceptable
points in G correspond precisely to the steady state points in the super-
game of G. For two-person zero-sum games, a point is acceptable if
and only if its payoff is the game value, whereas it is a strong equili-
brium point if and only if it is a'solution (§5 of [1]).

The object of this paper is to apply the theory of acceptable points
to games of perfect information, with a view to obtaining an appropriate
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w-person generalization of the von Neumann theorem. In other words,
we want to accomplish for acceptable points in games of perfect in-
formation what Kuhn did in [9] for equilibrium points in games of
perfect information. The first conjecture in this direction might be that
every game of perfect information has an acceptable point in pure
strategies. This is unreasonable, because according to an example given
in [1] (§11), not every game of perfect information need have an ac-
ceptable point at all, let alone one in pure strategies. However, it turns
out that not even all stable games (games that do have acceptable points)
of perfect information have pure strategy acceptable points. The reasons
for this are discussed in § 2, and it is also shown there that a more
appropriate place to look for a generalization of the von Neumann theorem
is in the supergame. We would like to show that if G is a game of
perfect information, then each player can restrict himself to pure
strategies in each play of an infinite sequence of plays of G. In fact,
we prove (Theorem 5.4) that every acceptable point (and hence every
strong equilibrium point) in a game of perfect information can be "achiev-
ed" in pure supergame strategies, in the sense that there is a pure
strategy strong equilibrium point with the same payoff. In particular,
if the supergame of a game of perfect information has a strong equili-
brium point at all, then it already has one in pure strategies.

Formally, the supergame defined in [1] bears some resemblance to
the stochastic games treated by Gillette in [7]. The two concepts are
similar in that both involve games consisting of an infinite sequence of
plays of finite games, and the payoffs in both cases are given by a form
of the average of the payoffs to the individual plays. The main dif-
ferences are that Gillette considers a set of M games, any one of which
may be the game played at a given stage, whereas we are concerned
with repeated plays of one game only; and that Gillette considers two-
person zero-sum games, while we deal with ^-person games. The "in-
tersection" of the two theories is an infinite sequence of plays of the
same two-person zero-sum game of perfect information, a trivial situation
once von Neumann's theorem is known (obviously both players play their
optimal pure strategies on each play). The two theories provide totally
"disjoint" generalizations of the von Neumann theorem.

All of Gillette's positive results involve "stationary" strategies, i.e.,
supergame strategies that are obtained by repeating the same strategy
on each play of the infinite sequence of plays that constitutes a super-
play. In a somewhat similar situation, Everett [5] gives a formal defini-
tion of some strategies that are not stationary, and obtains positive
results with them; but the strategies he defines are still "almost"
stationary in the sense that the choice of a player at a given game of
the supergame can depend only on which game he is at, not on the
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choices of the other players on previous occasions.
It is of interest to ask whether these restricted notions of strategy

are sufficient for our theory. The answer is no. The existence of a
strong equilibrium point in stationary pure strategies would imply the
existence of an acceptable point in pure strategies; and the example in
§ 2 shows that even in stable games of perfect information such an ac-
ceptable point in pure strategies need not always exist. The same ex-
ample shows that there is no strong equilibrium point in "almost"
stationary pure strategies.

Finally, we mention that in the supergames of games of perfect
information (even unstable ones), there is always a Nash equilibrium
point (as opposed to a strong equilibrium point) in stationary pure
strategies. This is a consequence of Kuhn's theorem.

2 Failure of the naive approach* We saw in [1] (§5) that the con-
cept of acceptability constitutes a generalization of the concept of solution
in two-person, zero-sum games. As a generalization of Von Neumann's
Theorem on two-person zero-sum games of perfect information, we might
hope that every game of perfect information that has any acceptable
points also has acceptable points in pure strategies. An example shows
that this is false.

The game G is a two-person, non-zero-sum game of perfect infor-
mation. In the game tree, given in Figure 1, the moves are labelled
with the names of the players and the terminals with the payoff vectors.

1

Figure 1

(6,0) (0,6) (2,1)

Each player has two strategies, the left and the right strategies. Nota-
tion in the following payoff matrix is obvious.

u
R2

V
(6,0)
(0,6)

R1

(2,1)
(2,1)

Player 1 cannot be prevented from obtaining at least 2 (he can play R1);
player 2 cannot be prevented from obtaining at least 1 (he can play R2).
This shows that (L1, U) and (L1, R2) are not acceptable. The other two
pure strategy pairs are not acceptable because the coalition (1,2) cannot
be prevented from obtaining (3,3)—by playing (L1, 1/2L2 + 1/2J?2)—and
(3,3) is strictly larger than the payoff vector at both (JB1, U) and (R\ R2).
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Hence G has no acceptable point in pure strategies. (Note that (3,3) is
an acceptable payoff vector, so that G does have some acceptable points.)

The intuitive feeling that a game of perfect information should have
a "good" point in pure strategies can be traced to the traditional pur-
pose of mixed strategies—namely, to hide one's intensions from one's
opponent by the use of a random device. In a game of perfect infor-
mation, we somehow feel that it is unnessary to hide one's intensions,
that it is in the nature of the game that everything may just as well
be open and above-board. The conclusion is that mixed strategies are
unnecessary in such a game, and that therefore we may just as well
confine ourselves to the consideration of pure strategies.

The counter example points up the fallacy in this intuitive argu-
ment. It is quite true that the hiding of one's intentions, and the con-
commitant use of a random device should be unnecessary in a game of
perfect information. This does not mean, though, that one can achieve
one's desires by means of pure strategies. Indeed, if there were some
means of mixing one's strategies other than by the use of a random
device, this would be perfectly satisfactory in Example 3. For example,
the pair (L\ 1/2L2 + l/2i?2) happens to be acceptable. If, instead of
tossing a coin before each play of a sequence of plays, 2 were to an-
nounce beforehand that he will alternate L2 and R\ this would in no
way affect the actions of 1. Contrary to the situation in, say, penny
matching, the purpose of playing 1/2L1 + 1/2R1 here is simply to achieve
a payoff not provided in the matrix, not to avoid "discovery" by the
opponent.

This discussion shows that though we cannot expect pure-strategy
acceptable points in a game G of perfect information, we should be able
to expect that the players may, without loss, restrict themselves to pure
strategies in each of the plays that constitute a superplay of G. This
is in fact the case, as we shall see in the sequel.

3 Supergame pure strategies* A supergame pure strategy vector
(or p-strategy vector) is a c-strategy vector in which there are no coali-
tions and the players choose pure strategies on each play. Here the
second condition is the essential one; the first condition is adopted only
for convenience. If the first condition were eliminated, the resulting
supergame strategy vectors would be essentially equivalent to those ob-
tained under our definition.

The formal definition is as follows:

DEFINITION 3.1. A supergame c-strategy fι is said to be "pure" if

A(y) e P<

for each k > 0 and y e J\x x J\.



ACCEPTABLE POINTS IN GAMES OF PERFECT INFORMATION 387

We also say that fι is a supergame p-strategy.
The following are lemmas that will be needed later.

LEMMA 3.2. If f is a supergame p-strategy vector and B is a
(possibly empty) subset of N, then for each k > 0 and yeJ1X"'Xjk,
we have

fϊ~B(y) I RN~B = d»-B .

Furthermore, for each k>l, we have

Proof. The first statement follows at once from 3.1. The second
statement follows by induction from 6.3, 6.4, and 6.5 of [1], and from
3.1.

LEMMA 3.3. Let f be a supergame p-strategy vector, and let g be
a supergame c-strategy vector for which

QN-B __ fN-B

Let v — (vlf , vkJ •) e Jλ x x Jfc x occur with positive prob-
ability when g is played (see definition 10.22 of [1]). Then for all
k > 1, we have

vk I RN~B = d?-B

and for all k > 0, we have

fΐ-B(vlf , vk) = fξ-B((vλ I U19 de\ , (vk I Uk, de)) .

Proof. The first statement is an immediate consequence of the
previous lemma. As for the second statement, it follows from the first
statement that

fΐ-*(vlf , O = fξ'B((vB, v»-B), , (vξ, vrB))
= /rB((vB, (vrB i U?-B, df-η),..., (vs, (vξ-B i UΓB, drB))).

But by Definition 6.1 of [1], f*~B is independent of (v?, --,vB

k). The
result follows at once.

For a supergame c-strategy vector /, define Sk(f) (= Sk) by

(3.4) Sk(f) = λ±Hj(f).
k j-i

Parallel to the definition of strong equilibrium c-point, we may make
the following definition:



388 ROBERT J. AUMANN

DEFINITION 3.5. A strong equilibrium p-point f is a summable
supergame p-strategy vector for which there is no B c N for which
there is a supergame p-strategy vector g satisfying

(3.6) gN-B^fN-B

and

(3.7) lim sup min(Si(flf) - H\f)) > 0 .
fc->oo tee

The set of all strong equilibrium ^-points is denoted by Sp. The
Condition 3.7 may also be replaced by the following condition:

(3.8) l i m i n f ( S ^ ) - # * ( / ) ) > 0 .

We denote by Sp the set of supergame p-strategy vectors that satisfy
a condition that differs from 3.5 only in that 3.7 is replaced by 3.8.

The essential difference between a strong equilibrium p-point and
a pure strong equilibrium c-point is that in the former, N — B need only
be prepared to defend against all supergame pure strategy 5-vectors,
whereas in the latter, N — B must be prepared to defend against all
supergame correlated strategy B-vectors. We will show in 3.11 that the
two conditions are nevertheless equivalent. As for 3.7 and 3.8, they
are merely translations of 7.2 and 7.3 of [1] to the case of pure strategies,
where the consideration of probabilities becomes superfluous.

THEOREM 3.9. If f is a supergame p-strategy vector, then zk(f),
#*(/)> cmd Ek(f) are "pure" for each k > 0; that is, they are discrete
probability distributions in which one of the events occurs with prob-
ability 1, all others with probability 0.

Proof. This is a trivial consequence of (6.2), (6.3), (6.4), (6.5) and
(6.6) of [1], and of 3.1.

Theorem 3.9 enables us to replace probability statements involving
the random variable Sk(v) by statements involving the constants Sk(f)
only. More precisely, we have

COROLLARY 3.10. Let F(xlf x2f •••) be a predicate depending on a
sequence of B-vectors xu x2, . Let A be the proposition a function that
assigns the number 1 to true propositions and the number 0 to false
propositions. Suppose f is a supergame p-strategy vector for the game
G. Then

Prob, F(S°(v), Sξ(v), . . .) = A(F(S?(f), Sξ(f) ))

Similar results hold for zk(f), xk(f) and Ek(f).
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THEOREM 3.11. Every strong equilibrium p-point is a strong equili-
brium c-point. Conversely, every pure strong equilibrium c-point is
a strong equilibrium p-point. In symbols

Fp Π Sc = Sp ,

where Fp is the set of supergame p-strategy vectors.

Proof. We consider first the converse, the easier of the two state-
ments. Let / be a pure strong equilibrium c-point. It is sufficient to
prove that there is no pure g satisfying 3.6 and 3.7. Suppose there is
such a g. Then g must satisfy 7.1 of [1], which is identical with 3.6.
Furthermore, from 3.7 we deduce the existence of an ε > 0 such that
for infinitely many k, we have

min(SKg)-#*(/))> ε .
iβB

It follows that for infinitely many fc, we have

S*k(g) > HB(f) + ε° ,

where eB is a 5-vector defined by

βϊ • g

for all i e B. Hence it follows that for all k, we have

SB(g) > HB(f) + εB for some r > k .

Applying 3.10, we obtain

Prob, (SB(v) > HB(f) + εn for some r > k) = 1

for all k. Hence it follows that

lim prob, (SB(v) > HB(f) + εB for some r > k) = 1 > 0 .
fc->oo

But this is exactly Condition 7.2 of [1]. We have established that g
satisfies 7.1 and 7.2 of [1], whence / cannot be a strong equilibrium
c-point. This contradicts the hypothesis, and we must conclude that g
satisfies 3.6 and 3.7. This completes the proof of the converse.

Now assume that / is a strong equilibrium p-point, but not a strong
equilibrium c-point. Then there is a supergame c-strategy vector g
satisfying 7.1 and 7.2 of [1]. From 7.1 of [lj we obtain

From 7.2 of [1], we obtain that there is a B-vector εB > 0 for which

( 2 ) lim Probg (S*(v) > HB(f) + εB for some r > k) > 0 .
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Now the expression inside the limit on the left side of (2) is monotone
decreasing with k; hence (2) implies the existence of a

(3) δ > 0

such that

( 4 ) Prob, (S?(v) > HB(f) + eB for some r > k) > δ, for all k > 1 .

From (4) we obtain

( 5) Probg (For all k > 1, SB(v) > HB(f) + εB for some r > k) > δ ,

which is the same as

( 6 ) Probα (SB(v) > HB(f) + eB for infinitely many r) > δ .

That (5) follows from (4) is an immediate consequence of the fact that
the measure of the intersection of a monotone decreasing sequence of
measurable sets is the limit (or g.l.b.) of the measures of the sets.

From (3) and (6) it follows that there is a sequence

v = (vlf , vk9 •) e Jx x x Jfc x ,

occurring with positive probability when g is played, for which

( 7) SB(v) > HB(f) + eB for infinitely many r .

Since v occurs with positive probability we deduce from 6.4 and 6.2
of [1], and from the definitions in §2 of [1] that for each k,

0 < s(0*-i(Vi, , t>*-i))C2>*) < u(c

= Σ c(gk^(v19 , vk

It follows that for each fc, there is a pk satisfying

( 8 ) vk\Uk = u{pk)

and

(9 ) c(gk^(v19 , vk^))(pk) > 0 .

Now as a consequence of 2.7 of [1], Lemmas 3.2 and 3.3, and (1), we
have that for each k > 0,

(10) c«-*(gk(vlf , vk)) = gζ-*(v19 , vk) .

From (9) it follows that

Applying (10), we deduce that



ACCEPTABLE POINTS IN GAMES OF PERFECT INFORMATION 391

gϊ-"(vlf •• ,*,)(p£i J i )>θ f

and it then follows from (1) that

(11) fΓ"{v» •• ,v,)(p^1

B)>0.

Since fξ~B must be a pure strategy (N — J3)-vector, it follows from (11)
that

(12) /^(Vx, •• ,v*) = Pf«1>.

We now define a supergame p-strategy vector q by

(13) q"-B = / * - *

(14) ίi_i = ί>i , ΐ e B, fc > 1 .

Next, we prove that for k > 1,

(15) z*(«) = ( K I E/,, d.), , (vk I £/,, dβ)) .

That

(16) «*(?)!Si x ••• xR* = (de, . . . , d . )

follows at once from (13), (14) and the fact that / is a supergame
p-strategy vector. The remainder of (15) is proved by induction on k.
For k = 1, we have by 6.2 and 6.3 of [1],

, - u(c(q0))

= Φ(p?,frB)) (by (13) and (14))

(17) - u(c(Pl)) (by (12))

= u(Pl) (by 2.7 of [1])

= v1\U1.

Now let us assume that we have established

(18) zΆ(q) I U, x x Ut = (υ, \ Uu - , v, \ Ut) .

Then by 6.2 and 6.4 of [1],

W ? ) I ϋ i x t / » * i = Σ * zk(q)(y)(y \ U , x ••- x U,, u(c(q,(y)))) .

By (16) and (18), all the coefficients zk(q)(y) in this sum vanish, unless

V = ( t o I ?Λ, dβ), , (vk I Uk, de)) .

Hence

(19) zk+1(q) I Di x x Uk+1 = ( V l I CΓlf , vh \ Ut, u(c(qk(z,(q)))))

Now by (14),
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(20)

and by (10),

= fΐ-"((v1 I Ult de), ..',(vt\ Ut, dt)) (by (16) and (18))

(21) = fξ-"(vlt , vk) by (Lemma 3.3)

= Pΐ+r (by (12)) .

Combining (20) and (21), we obtain qk(zk{q)) = pk+1 .

Hence

c{q*{zk(q))) = P*+i ,

and it follows from this and (8) that

(22) u(c(q*(Zt;(q)))) = n(pκ+1) = vk+1 \ Uk+1 .

Combining (19) and (22), we obtain

z*+M \U,x •" x Uχ+1 = (v, I Ulf - , vk+11 Uk+1) ,

which completes the inductive step and the proof of (15). Hence (22)
holds for all k, and therefore

Ht+1(q) - H(c(q,(zM))) (by 6.6 and 6.7 of 11])

= (ψ°u)(c(qic(zk(q)))) (by §6 of [1])

- ψ(n(c(q,(zk(q)))))

- ψ(Vlc+11 Uk+1) (by (22))

= Hk+1(v)Q}j 6.10 of [1]) .

It then follows from 6.11 of [1] and from 3.4 that

SM = SJv) .

Applying (7), we obtain that

Sξ(q) > HB{f) + εB for infinitely many k.

In particular,

mm(Sl(q) - H\f)) > minε*

for infinitely many k, and it follows that

(23) lim sup min (S{(q) - Hι{f)) > min ε* > 0 .
fc-*oo iEB iSB

Now by (13) and (14), q is a supergame p-strategy vector. By (1) it
satisfies 3.6 and by (23) it satisfies 3.7. Hence by 3.5, / cannot be
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a strong equilibrium p-point, a contradiction. This completes the proof
of 3.11.

THEOREM 3.12. Fp n Sc = Sp .

Proof. The proof is similar to that of 3.11. It will be omitted.
The following formulae follow easily from the indicated definitions

and theorems.

(3.13) H(SP) c H(SC) (by 3.11) .

(3.14) H(SP) c H(SC) (by 3.12) .

(3.15) SP c Sp (by 3.5) .

(3.16) H(SP) c H(SP) (by 3.15) .

Finally, we mention the following theorem, which will be needed in the
sequel.

THEOREM 3.17. A super game p-strategy vector f is summable if
and only if it is summable in the mean.

Proof. The necessity follows at once from 6.9 of [1], For sufficiency,
we must show that if / is summable in the mean, then a sequence of
random variables distributed according to Ek(f) obeys the strong law
of large numbers. But this follows at once from 3.9.

4* Supergame pure strategies in. games of perfect information• In
a game G of perfect information, the information that a player i has
about the outcome of each previous play2 may be described as follows,
(4.1) He knows which terminal was reached.
(4.2) He knows which pure strategy he himself played.

Formally, let W be the set of terminals in G, and let

λ:P-> W

be the function that associates with each pure strategy vector p the
terminal λ(p) that results when p is played (in the notation of [9], if
π e P , λ(π) is the unique weW for which pπ(w) = 1). Then for each
i e B and p e P,

(4.3) u\p) - (λ(p), p') .

If he wishes, the reader may regard 4.3 as the definition of uι for games
of perfect information.

Actually, each player may with impunity discard the additional in-
formation obtained from 4.2 as long as he restricts himself to the use
of supergame p-strategies. Formally, we may say that in a game of
perfect information, each supergame p-strategy /* is equivalent to one

2 We are discussing that information that is characterized by the information function u'1.
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in which fk depends only on the λ(p), not on the p%. To lend meaning
to this statement, we must give a suitable definition of equivalence.

DEFINITION 4.4. Two supergame p-strategies fι and gι are said to
be equivalent (fι ~ gι) if for each supergame p-strategy (N — i)-vector
ΘN~\ we have

Hk(f\ θ»~*) = Hk(g\ θ»-*) , k > 1 .

COROLLARY 4.5. Let B c N. If two supergame p-strategy vectors
f and g are equivalent, then for each supergame p-strategy (N — B)-
υector ΘN~B, we have

Hk(fB, Θ»~B) = Hk(gB, θN-») , k > l .

Proof. Let

B= {ί19 •• , i j .

Then since fl~gl for each i it follows that for each k > 1,

Hk(fB, θN-») = Hk{g\ (f*-\ ΘN~B))

= Hk{g\ g\ (/Λ-«i-«», θ»-*))

= Hk{(g\ .•.,^)^^" β )

= Hk(gB, θ"-*) .

This completes the proof.

DEFINITION 4.6. Let G be a game of perfect information. A super-
game p*-strategy fι is a supergame p-strategy for which for each k > 1>
and pair (plf , pk) and (qlf •••,<?*) of sequences of pure strategy vectors,
we have

X(p}) = X(q}) , 1 < j < k ,

Φ fί(((HPi), P'd, de)f , ((λ(pfc), pi), de))

For convenience, we will sometimes make use of the following con-
ventions:

CONVENTION 4.7. When fι is a supergame p*-strategy, write

instead of ), pi), dβ)) .

CONVENTION 4.8. When fι is a supergame p-strategy, write

instead of
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The use of these conventions is justified by Definition 4.6 and Lemma
3.3 respectively

THEOREM 4.9. In a game G of perfect information, every super-
game p-strategy is equivalent to a supergame p*-strategy.

Proof. Let fι be a supergame p-strategy in G. For any sequence
of terminals (a19 •• ,αA.) we may define gl(a19 •••,#*) by means of the
following recursion:

/n πi _ ft

( 2) g](aly , aj)=fi

j((a1, g*)9 (α2, gifa)), , (aj9 gi-^a,, , a^))), j<k.

Let θN~ι be an arbitrary supergame p-strategy (N — i)-vector. We
prove by induction on k that

( 3 ) zk{f\ θ»-*) = zk(g\ θ»-!) , k > 1 .

For & = 1, (3) follows at once from (1) and 6.3 of [1], Suppose (3) has
been proved for k < j . Set

( 4 ) ζ = (/S 0^"*) , ξ" = (̂ % ̂ " ^

Then by the induction hypothesis,

( 5 ) Zfc(l) = ^&(?) > k < j .

Hence

( 6) flf}(^(|))=(7X^(1), x%(ξ), , a?,(f)) (by 3.2)

= gι&m ITΓ, α?a(f) IW, . , *,(£) ITF) (by 4.7)

= /S((»i(f) I ^ 9l), (^(ξ) ITΓ, flfK^f))), , (xj(ξ) I ^ , flfi-i(^-i(f)))) (by (2))

= /ί(0*i(f) I ^ ί/ί), fed) I ^ 9\(zi(S))), , («j(l) I ^ flf}-i(^-i(?)))) (by (5)).

Now by 6.2 and 6.5 of [1], we have

But by 2.7 of [1] and by 3.2,

cίfa-^-i

Applying this to (7), we obtain

(by 4.3)

(by (4))
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Hence

Applying this to (6), we obtain

= /Jίfod) IW, xm I P«), , (x,(ξ) ITΓ, aj (f) i n) (by (5))
- /}(&lf (I) I C7j, . . . , a?,(f) I Ui) (by 4.3)

(by 4.8)

Applying (4), we obtain

(8) ?^(?)) = r^( i ) ) .
Hence

xj+1(ζ)\Uj+ι

(by 6.5 of [11)

(by (5))

- u(u*,m (by (8))

= xj+1(ξ)\UJ+1 .

Hence by 3.2,

( 9 ) zJ+1(ξ) \UX x . . . x Uj+1 - ^ + 1 ( | ) I Uλ x . . . x C/j+1 ,

and since

z j + 1(f) \R1x . . . x i ? j + 1 = de x . . . x de = zf+1(ξ) \R,x x Rj+1 ,

we conclude from (9) t h a t

This completes the induction and the proof of (3). Applying 6.6 and
6.7 of [11 to (3), we obtain

Hk(f\ θN->) = Hk(g\ ΘN-1) , k>l.

Hence by 4.4,

But gι is by its definition a supergame p*-strategy, and thus our proof
is completed.

Parallel to Definition 3.5, we may make the following definition:

DEFINITION 4.10. A strong equilibrium p*-point f is a summable
supergame p*-strategy vector for which there is no B a N and super-
game p*-strategy vector g satisfying 3.6 and 3.7.
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The set of all strong equilibrium p*-points is denoted by Sp+. If

3.7 is replaced by 3.8, the resulting set of points is denoted by Sp*.
If we can succeed in restricting our considerations to supergame

p*-strategies then we will have considerably simplified our problem,
because then the information available about previous plays is the same
for all players (so that the information function may be regarded as
1-dimensional rather than ^-dimensional). That we may without loss of
generality restrict ourselves in this way is the content of the next
theorem.

THEOREM 4.11. In a game C of perfect information, a summable
supergame p-strategy vector f is a strong equilibrium p-point if there
is a strong equilibrium p*-point /* equivalent to f.

Proof. Suppose

fφS,.

Then there is a B c N and a supergame p-strategy vector g satisfying
3.6 and 3.7. In accordance with 4.9, there is a supergame p*-strategy
i?-vector g% for which

( 1 ) 9% - 9B .

Define

( 2 ) g%-B=f%-B .

By hypothesis we have

( 3 ) fξ~B ~fN-» .

Combining (1), (2), (3), and 3.6, we obtain

( 4 ) </*-</.

From (4), 3.4 and 4.5 it follows that

( 5 ) St(g) = SM

for each k. By hypothesis,

( 6 ) / ^ / * .

Applying 6.8 of [1] and 4.5 to (6), we obtain

(7) H(f) = H(fJ.

From 3.7, (5), and (7) it follows that

( 8 ) lim sup min (Sί(g^) - #'(/*)) > 0 .

From (2), (8), and 4.10 it follows that /* 0 Sp+, which contradicts the
hypothesis. This completes the proof.

COROLLARY 4.12. H(SP*) c H(SP).
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Proof. Follows from 6.8 of [1], 4.5, and 4.11.
The following theorems (4.13 through 4.16) will not be used in the

sequel; they are included for the sake of completeness. The proofs use
the same ideas as those already, given, and will be omitted.

THEOREM 4.13. Conversely to 4.11, a summable supergame p-strategy
vector f is a strong equilibrium p-point only if there is a strong equili-
brium p*-point f* equivalent to f.

COROLLARY 4.14. H(SP) = H(SP.).

THEOREM 4.15. Sp* c Sp*.

THEOREM 4.16. H(SP) = H(S9*).
Theorems analogous to 4.11 and 4.13 for Sp* may also be proved.
For supergame p*-strategy vectors /, formulas 6.3 through 6.7 of

[1] may be rewritten as follows:

(4.17) z, = λ(/0)

(4.18) zk = (zk-lf O

(4.19) xk

(4.20) Ek

(4.21) Hk = H(Ek) .

Here we are making use of the notation introduced in convention 4.7.

5* The main theorem* We make use of two lemmas. The first
tells us that at an acceptable point in a game of perfect information,
N — B can always retaliate for a defection by B by means of a single
pure strategy. The second tells us that any payoff that can be obtained
by a c-strategy vector in G can also be obtained by a supergame
p-strategy vector (or even by a supergame p*-strategy vector).

LEMMA 5.1. Let G be a game of perfect information. Let B c N,
and let h be a vector. If there is a cN~B e CN~B such that for all
cB 6 CB, there is an i e B for which

(1) H\cB, cN~B) < hι ,

then there is a pN~B e PN~B such that for all cB e CB, there is an i e B
for which
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( 2 ) H\cB, VN~B) £ hι .

Proof. HB(CB

9c
N~B) is easily seen to be a convex subset of the

euclidean B-space RB. By the hypothesis of the lemma, HB(CB,cN-B)
cannot intersect the open ' 'corner" or ' Octant" in RB given by the
inequalities

(3) x* > h* , i € B .

This ' "corner" is also convex. Applying the separation theorem for con-
vex sets3, we obtain a hyperplane

(4 ) Σ

which passes through hB, and which separates HB(CB, cN~B) from the
'"corner" given by (3). In other words, we have

(5) Σaihi = kt

tee

and we may assume without loss of generality that

(6) Σ a'H^c*, cN~B) < k for cB e CB

ίβB

and

(7) Σ α'α* > k for xB satisfying (3) .
ιeB

(if the inequalities (6) and (7) are reversed, then we may obtain them
in the given form by multiplying both sides of (4) by —1). From (3)
and (7) it follows that

(8) α * > 0 .

Since (4) defines a hyperplane, there must also be an i e B for which

(9) α* Φ 0 .

Define a two-person, zero-sum game G* as follows: There are two
players, 1 and 2. The game tree of G* is the same as that of G, and
G* is also a game of perfect information. Player 1 has all the moves
that members of B have in C, and player 2 has all the moves that
members of N — B have in G. Thus the mixed strategy space of player
1 is CB, and the mixed strategy space of player 2 is CN~B (we will also
use the notation M1 and M2 for these mixed strategy spaces). The pay-
off in G* will be denoted by H*\ it is defined by

(10) H\W, VN~B) = Σ α«ff«(p*, pN~B)
ίB

3 See for instance [10], pp. 29 and 81.
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(11) H% = -H\ .

From (10) it follows that

(12) Hl{cB

y cN-B) = Σ a'H'ic*, cN~B)
ίβB

for all cB e CB. Combining (12) with (6) and the hypothesis of the lemma,
we obtain the existence of a cN~B e CN~B such that for all cB e CB, we
have

771 (OB ON-B\ ^ λ.

Restated in terms of mixed strategies in C*, we have the existence of
a mixed strategy m% e M% (namely cN~B), such that for all m\ e M1*,
we have

(13) H\(m\, m%) < k .

By (11), G* is zero-sum as well as two person. (13) merely tells us
that

(14) v(G*) < k ,

where v(G*) denotes the value of G*. By the theorem of von Neumann
on two-person zero-sum games of perfect information, we have the ex-
istence of an optimal pure strategy for player 2 in G r Hence there
is a pi e pi (i.e. a pN~B e PN~B) such that for all m1* e ikP* (i.e. for all
cB e CB), we have

(i.e., by (10),

(15) Sfl'Wn^«.
ιeB

Combining (5), (14), and (15), we obtain

(16) Σ aϊH^c*, pN'B) < Σ α'λ*

for all cβ 6 CB.

From (16) it follows that

fp
N-B)-hi) < 0

for all cB e CB. Combining this with (8) and (9), we obtain for each
cB e CB, the existence of at least one i e B for which

H\cB, pN~B) - hι < 0

This completes the proof of the lemma.
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The next lemma tells us that the non-negative integers can be
partitioned into disjoint subsets whose asymptotic densities will yield
an arbitrary finite set of non-negative real numbers adding up to 1.

LEMMA 5.2. Let Z be a finite set, and let y e C(Z). For any map-
ping π from the set K of all non-negative integers into Z, and for
any k e K and z e Z, let pπ(k; z) denote the number of jeK for which

j <k

and

π(j) = z .

Then there is a π for which

^ f c l =y(z)
k +

for all z e Z.
π(j) will also be denoted by π(j; y), and pπ(k> z) by p(k; z\ y)
The proof is not difficult. It will be omitted.

THEOREM 5.3. In a game G of perfect information,

H(AC) c

Proof. In its main outlines, the proof is analogous to that of
Theorem 3 of [1], which states that H(AC) c H(SC). The details, how-
ever, differ considerably in the two cases. Both proofs are divided into
three parts: Given an acceptable payoff vector h, we must first find
a sequence of strategy vectors which will yield a payoff of h in the
supergame (under the assumption that the players are all "loyal"). Next,
we must find a way to determine which players, if any, are disloyal;
and finally, we must find a way to punish the disloyal players. All these
elements must be incorporated into a supergame strategy vector. In
Theorem 3 of [1], the first of these tasks was accomplished by having
the players play the same c-strategy vector on each play, namely the
one that yields an expected payoff of h. Here this cannot be done,
because the players must restrict themselves to pure strategies on each
play. They must therefore play different pure strategy vectors on dif-
ferent plays in such a way so that the limiting payoff is h; to show
that this can be done, use must be made of Lemma 5.2. As for the
second task, this was accomplished in Theorem 3 of [1] by simply noting
the make-up of the coalitions; here this cannot be done, because in
supergame p*-strategy vectors, there are no coalitions. Instead, use
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must be made of the perfect information that each player has. Finally,
a group B of disloyal players could be punished in Theorem 3 of [1] by
use of the c-strategy (N — J5)-vector cN~B provided in the definition of
acceptability; here only pure strategy (N — B)-vectors may be used, so
that recourse must be had to Lemma 5.1. For a more detailed intuitive
statement of the proof, see § 10 of [1],

We now give the detailed proof of 5.3.
Let h e H(AC), and suppose yN e Ac is such that

( 1 ) H{r) = h .

Then by 4.3 of [1], for each B a N there is a cN~B e CN~B

y such that
for each cB e CB, there is an i e B for which

H\cB, cN'B) < hι .

Applying Lemma 5.1, we obtain for each B c JV a pure strategy (N — B)-
vector ryN~B

f such that for each cB e CB, there is an i e B for which

( 2) H*(cB

f yN~B) < hι .

For each j > 1, let Wό be a copy of W. W3 represents the set of
possible outcomes of the jth. play. Let

Qk = Wx x x Wk

Qk represents the set of possible outcomes for the first k plays, and as
such is the domain of the function f{.

Let g be any supergame p*-strategy vector in G. We define a com-
pliance function a(vlf , vk; g) for all (v19 « , ^ ) € Qfc as follows:

DEFINITION (3). a(v19 •••, vk; g) is the maximal subset A oί N for
which

Vj e \{gj-λ{vly , Vj-J x PN~A) for j = 1, , k .

For each member of Qfc, a tells which subset of iVhas been "loyal"
to, or has complied with, the supergame ^-strategy vector g.

It is not difficult to see that for each g, we have

( 4 ) a(z*(g); g) = N ΐork>l.

To show (4), it is sufficient to show that N is the maximal set satisfy-
ing (3), i.e. that we have

Xj(g) = X(gU(zUg)) x PN~") > i = 1, , fc

But this follows at once from 4.19.
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Moreover, it follows from (3) that

( 5) a = N when k = 0 .

We are now ready to define a strong equilibrium p*-point whose
payoff is h.

For k > 0 and <?fc e Qfc, define

' Λ(ί*) = π(&; yN) , if α(gfc; f) = N

( 6 ) /2 ( α* ; / )(? f c) = 7" ( β * ; / ) )
f otherwise .

fξ-°{q»r)(qk) = arbitrary j

Definition (6) is a recursive definition; α(gfc; / ) depends only on /0, , fk-ly

not on /fc.
Set zk = «fc(/) for fc > 1. We first prove

( 7 ) Λ(Sfc) = π(ft; 7^) for fc > 0 .

For k > 0, (7) follows from (6) and (4); for k = 0, it follows from (6)
and (5).

Combining (7) with 4.20 and 4.21, we obtain

( 8 ) Hk+1(f) = H(π(k; yN)) for k

Hence

= Σ H(π(r; yN)) (by (8))

r=0

= Σ P(k; y; ΊN)H{y) (by 5.2).
yep

Hence

l i m i Σ f l r ( / ) = l i m - ^ fc+1

Σ P(k; y, r)H(y)fT Σ

^ ρ(k; y;
*->- fc + 1

= ΣΊN{y)H{y) (by 5.2)
2/ep

= Λ (by (1)).

Applying 6,8 of [1], we obtain
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(9) H(f) = h.

By 3.17, / is also summable.
It remains to prove that / is a strong equilibrium p*-point. Suppose

not. Then there is a B c N and a supergame p*-strategy vector g satisfy-
ing 3.6 and 3.7. We must then have

LEMMA (10). a(zk(g); f) is monotone decreasing with k.

Proof. By 4.18,

The result now follows from (3).
From 4.19 we obtain

x

= Hfΐ-iB(*j-i(9)) x ί") (by 3.6)

= HfJ-iB(Xι(9), , ̂ -i(ί/)) x PΛ) (by 4.18) .

It now follows from (3) that

(11) N-Bd a(zk(g); f) for k > 1 .

Combining (11) with (5), we obtain

(12) N- Be a(zk(g); f) for k > 0 .

From (10) we obtain the existence of a set B(g) c iV and a non-negative
integer &0 such that

(13) ct(z*(g); f) = N- B(g) for k > kQ\

Combining (12) and (13), we obtain

(14) B(g) c B .

If B(g) = φ, then from (13) we obtain

OL(zk(g); f) = N for k > k0 ,

whence, using (10), we deduce that

(15) a(zk(g);f) = N for fc>0.

Using (3) and 4.18, we deduce from (15) that

(16) x»(g) =; MΛ-ife-ito))) for k > 1 .
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From (16) and 4.17 we deduce

χi(g) = λ(/0) = %Af),

and a simple inductive argument based on (16), 4.18 and 4.19 leads to
the conclusion that

s*(ff) - **(/) for fc > 1 .

Applying 4.20 and 4.21, we obtain

(17) Ht(g) - Hk(f) for k > 1 .

From 6.8 of [1], 3.4, and (17) it follows that

which contradicts 3.6. Thus the assumption B(g) = φ has led to a con-
tradiction, and we may conclude that

(18) B(g) Φ φ .

Combining (6), (13), and (18), we obtain

(19) fΐ'B{g){zk{g)) = ΎN-BW for k > k0 .

Let μ be the payoff function defined on W, so that

(20) H = μ o λ .

Our μ is what is called h in [3]; it may also be defined by

μ = ψ\ W ,

where ψ is as in §6 of [1]. We then have

HM = H(EM) (by 4.21)

= ff(flrϊ-1(z,_1(flr))) (by 4.20)

(21) = KH9*-i(**-i(9)))) (by (20))

= μ(x*(9)) (by 4.19) .

Now by (3), (13), and 4.19, we have

(22) xk(g) =

where p?lg) is some member of Pmg).
Hence for k > k0, we have

Hk(g) = μ(xk(g)) (by (21))

= (μ ° λ X / f ^ ' " ^ . ^ ) ) , pt

fl"») (by (22))

= H(jN-ms), vll9)) (by (20) and (19)) .
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Hence for k > k0, we have by the linearity of H that

1 Σ ±
(23) k — k0 r = fco+l k — k

Σ*
fc

Applying (2), we obtain the existence of an i e B(g) such that

(24) H^y"-*1*, Σ* ~ ^ p^A - λ« < 0 .
V r-fc0 k — k0 /

Combining (23) and (24), we deduce that

m i n ( ( τ J l l Γ Σ Hίfo)) - A') <Ξ 0

from this and (14) it follows what

(25)

Now it follows easily from the boundedness of H that as

J * W = i Σ ffί(ff) +Σ
k — κ0 r-ft

= Si(flr) + o(l) (by 3.4) .

Applying this to (25), we obtain that as fc —• co ,

min (St(g) - h*) < o(l) ,

ieB

whence

(26) lim sup min {Si(g) - hι) < 0 .

Applying (9), we see that (26) contradicts 3.7. This completes the proof

of 5.3.
THEOREM 5.4. In a game G of perfect information,

H(AC) - H(SP) = H(SP) .

In particular, h is a c-acceptable payoff vector in G, if and only ij
there is a strong equilibrium c-point f in supergame pure strategies
for which

H(f) = h .
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Proof. We have

H(Ae) c H(SJ (by 5.3)

c H(SP) (by 4.12)

c H(Sβ) (by 3.13)

= H(AC) (by Corollary 4 of [1])

Hence equality must hold throughout, and in particular,

(1) H(AC) = H(SP) .

Next, we have

H{St) c H(SP) (by 3.16)

c H(SC) (by 3.12)
= H(Ae) (by Corollary 4 of [1])

= H(S,) (by (1)) .

Hence equality must hold throughout, and we deduce

(2)

(1) and (2) yield the first part of 5.4. The second part follows at once
from 3.11 and the first part.

COROLLARY 5.5. Every stable* game of perfect information has
strong equilibrium c-points in super game pure strategies.

6. The converse of the main theorem. For two-person zero-sum
games not involving chance, Von Neumann's theorem is known to "char-
acterize" games of perfect information (see [4]). More precisely, if
Γ is a game structure of the above type which has the property that
every game that can be obtained from Γ (by adjunction of a payoff
function μ) has optimal pure strategies, then Γ must be equivalent to
a game structure of perfect information. What can be said in this
regard for the theory presented in the previous sections?

For one thing, it is of interest to know that there are some games
that do not satisfy our main theorem (Theorem 5.4). Indeed, "matching
pennies" is such a game.
This game is given by

JSΓ = (1,2)

P1 = (pi PΪ)

P2 = (Pi Pi)
4 That is, every game that has any c-acceptable points (or, equivalently, any strong

equilibrium c-points). See § 11 of [1].
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1 if i = j
H\V\, p?) =

( — 1 if ^

H\p) = -tf ' ίp)

w(p) = P

It is a two-person zero-sum game with value 0; hence by Theorem 1 of
[1], we have

H(AC) = (0, 0) .

If 5.4 holds for this game, then it follows that

H(SP) = (0, 0) ,

and in particular, there is a summable strong equilibrium p-point / such
that

(1) H(f) == (0, 0) .

Define a supergame p-strategy vector g by

(2) <72=/2

and

9l(vί9 , vk) = p\, for fe > 0, (vlf , O e JΊ X x Jk ,

where i is such that

fl(vif * , vk) = pi .

It is then easily seen that

#i(ff) = 1 for k > 0 ,

whence it follows that

S\(g) = 1 for k > 0 .

Combining this with (1), we see that g satisfies 3.7 for B = (1). By (2),
<7 satisfies 3.6 for B = (1). Hence / cannot be a strong equilibrium p-
point.

The above example constitutes a formalization of the familiar argu-
ment that states that no "scheme" for playing a long sequence of penny-
matchings that involves only pure strategies can be optimal.

The general statement of the converse would be as follows:

CONJECTURE. Let Γ be a game structure and suppose that every
stable game that is obtained from Γ by adjunction of a payoff function
μ has a strong equilibrium p-point. Then Γ is essentially equivalent
(in the sense of [4]) to a game structure of perfect information.
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There is little doubt in my mind that this conjecture is true, if
not in the given form, then at least in some other closely allied form.

7. Notation for non-cooperative games We will make use of the
notion of mixed strategies. Formally, the space Mι of mixed strategies
of player i is defined to be identical with C\ If B is a subset of N,
then we define

(7.1) MB = UMl )
ten

the cartesian product is meant. It follows that

MBaCB;

the opposite inequality is generally false. The prefix m- is an abbre-
viation for "mixed". The definitions relating to payoff remain unchanged.

8* Acceptable points for non-cooperative games The non-coopera-
tive game differs from the cooperative game chiefly in that the use of
correlated strategy vectors that are not also mixed strategy vectors is
forbidden. The definition of acceptability for non-cooperative games will
therefore be the same as that for cooperative games (see [1], section 4),
except that correlated strategy vectors must be replaced throughout by
mixed strategy vectors. The intuitive reasoning behind the definition
remains unchanged. It might be objected that the "concerted action"
that is necessary to prevent a set of players B from obtaining a payoff
that is higher than at an acceptable point, is forbidden under non-co-
operative rules. In fact, such concerted action will probably arise any-
way as part of a "silent gentlemen's agreement" among the players of
N — B. The only restriction is that though the players may "cooperate"
in this sense (indeed, they cannot be prevented from so doing), they
may not correlate their mixed strategies before a play.

Further intuitive discussion of the notion of m-acceptability will be
found in a subsequent paper, devoted exclusively to acceptable points
in non-cooperative games.

The formal definitions are as follows:

DEFINITION 8.1. Let m0 e M. m0 is said to be m-acceptable if there
is no B c N such that for each mN~B e MN~B, there is an mB e MB for
which

HB{mB, mN'B) > HB(mQ) .

The set of all m-acceptable m-strategy vectors is denoted by Am.
Like c-acceptability m-acceptability is a "global" notion (see [1], §4).
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DEFINITION 8.2. A payoff vector h is said to be m-acceptable, if
for some m e Am, we have

H(m) = h .

The following is a trivial restatement of 8.2:

THEOREM 8.3. A payoff vector h is m-acceptable if and only if for
each B c N, there is an mN~B e MN~B, such that for all mB c MB, there
is an i e B for which

H\mB, mN~B) < hι .

We remark that as in the cooperative case, all two-person games
have m-acceptable points. When we go beyond two-person games we
find games that have no m-acceptable points. The example given in
§ 11 of [1] holds for the non-cooperative case as well, as does the intui-
tive discussion following the example.

We remark also that even in the two-person case, there are games
of perfect information that have no m-acceptable points in pure stra-
tegies. See § 2 of this paper, which applies unchanged in its entirety
to the non-cooperative case.

9 Equivalence of Λf-acceptability and C-acceptabiUty in games of
perfect information.

THEOREM 9.1. In a game G of perfect information,

H{M) = H(C)

Proof. H(M) c H(C) follows at once from M c C. It remains to
prove

H{C) c H(M) .

Instead of proving this, we will prove a more general version that we
will need later. What we need for 9.1 follows from 9.2 if we set
B = N.

LEMMA 9.2. Let G be a game of perfect information. Then with
each cB e Cβ, we may associate an mB e MB, such that for all cN"B e CN~B we
have

H(cB, cN~B) = H(mB, cN~B) .

Proof. Fix cB. Because of the linearity of £Γ, it is sufficient to
prove that there is an mB such that for all pN~B e PN~B we have

( 1 ) H(c\ pN~B) = H{mB, pN~B) .
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Let b be the cardinality of B. With each i e B, we may associate
an % — 6 + 1 person game Gt as follows: The players are 0 and the
members of N — B. (Intuitively, 0 represents the coalition of all the
members of B.) The set of pure strategies of 0 is PB, while the set
of pure strategies for a member j of N — B is Pj. The payoff to 0 is
given by Έ\ to members j of N — B by Ej. To avoid confusion, we
will denote the payoff in Gt by Eif the expected payoff by Ht. Ei and
Ht are ((0) (J N- B)-vectors.

From the definition of Gi9 we see that for all pN'B e PN~B, we have

( 2 j (H"-B(cB, pN-B) = iff "*(c*, p*-β)

In Gif cB is a mixed strategy of player 0. Let /?* be its behavior
(see [9], §5, which will be called (*) in the sequel; Definition 16). Since
Gi depends on i only because of its payoff, and since the behavior of
a mixed strategy has nothing to do with the payoff, β* is independent
of ί. Since G is of perfect information, so is Gi9 and hence in particular,
Gt is of perfect recall. Noting that every pure strategy is also a be-
havior strategy, and in fact its own behavior, and applying Theorem 4
of (•), we obtain that for all pN~B e PN~B,

( 3 ) Ht(cB,p"-*) = Ht(β*,p"-B).

Returning to the game G, define behavior strategies βι for each i e B

by

where ^ ι is the set of information sets for player ί.
Then from Definitions 14 and 15 of (*) it follows that for all dN~B e PN~B,

r f ~%β*, pN~B) = HN~B(βB, pN~B) .

Combining (2), (3), and (4), we obtain that for all pN~B e PN~B,

HN-B{eN-B, pN~B) = HN-B(βB, pN~B)

and for all i e B, H\cN-B, pN~B) = Hι(βB, pN-B); that is,

( 5 ) H(c"-B, p"-B) = H(βB, pN-B) .

If m* is the mixed strategy corresponding to /S4 in accordance with
Lemma 3 of (*), then it follows from Lemma 3 and Theorem 4 of (*) that
for all pN'B e P"-B,

( 6 ) H(βB, pN~B) = H(mB, pN~B) .

Combining (5) and (6), we obtain (1).
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The following theorem will not be used in the sequel. It is included
for the sake of completeness.

COROLLARY 9.3. In a game G of perfect information

E{M) = E(C) .

Proof. It is clear that E(M) c E(C). To prove E(C) c E(M), let
c e C. If μ is the payoff function on W, we have

and indeed

(1)

Hence if

then

e #(C) c H(M) (by 9.1) .

It follows that there is a mixed strategy vector m such that

(2) Σ c(p)μ(X(p)) = Σ Π m'ip*)
PEP pep\ιeN

Let us fix the coefficients c(p), and consider a game G' which is the
same as G except for its payoff, which is such that the μ(w) form a set
that is linearly independent over the field generated by the coefficients
c(p) over the rationals. For this game G', a mixed strategy vector m
may be formed that satisfies (2). Both sides of (2) can then be considered
as linear combinations of distinct terms of the form μ{w), and it follows
from the way we have chosen Gr that the coefficients of the same terms
on both sides of (2) must be equal, i.e.,

(3) Σ ( w ) c ( p ) - ^ Σ ^

Now (3) is seen to hold independent of the payoff; hence no matter how
μ is defined, we may write

(4) Σ*( Σ C(P)W)=Σ*( Σ

(note that the outer sum is to be considered a probability distribution
rather than an ordinary sum). From (4) we deduce



ACCEPTABLE POINTS IN GAMES OF PERFECT INFORMATION 413

/

Σ C ( P ) M M P ) ) = Σ ( Π m%

PEP PEP \iEN

whence, applying (1), we obtain

E(c) = Σ*( Π m'(p')W) = E(m) .
PEP \iejsr /

This completes the proof.

COROLLARY 9.4. In a game G of perfect information,

H(Am) c H(AC) .

Proof. Suppose hφ H(AC). Then there is a B c N, such that for all

CN-B e CN-B^ there is a cβ e Cβ such that

In particular, for all mN~B e MN~B, there is a cβ e C/J such that

( 9 \ TTB/ΛB ΛΛΛN — B\ v. Zj Λ

Z< ^ JΓZ ^ ( / , Alt' y ^ At/

If we let mB be the mixed strategy B-vector associated with cB in ac-
cordance with Lemma 9.2, then we have

( 3 ) H{mB, mN'B) = H(cB, mN~B) .

Combining (2) and (3), we obtain that for each mN~B, there is an mB e MB

for which

HB(mB, mN~B) > hB .

Hence h $ H(Am), and the corollary follows.

COROLLARY 9.5. In a game G of perfect information,

H(AC) c H(Am) .

Proof. Suppose h e H(AC). Then for all B c N, there is a cN~B e CN~B,
such that for all cB e CB, there is an i e B for which

( 1 ) H1^ cN~B) < Λ/

Let m^-* be the mixed strategy (N — B)-vector associated with cN~B in
accordance with Lemma 9.2. It then follows from 9.2 that for all cB e CB,

( 2 ) H(cB, mN~B) = i ϊ (c δ , cN~B) ,

and combining (1) and (2), we obtain that for all cB e CB, there is an
i e B for which
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( 3 ) H\cB, mN'B) < hι .

In particular, for all mB e MB, there is an i e B for which

H\mB, mN~B) < hι ,

and since this holds for all B a N, it follows that h e H(Am), q.e.d.

COROLLARY 9.6. In a game G of perfect information,

H(AC) = H(Am) .

COROLLARY 9.7. In a game G of perfect information,

Am = AcPι M.

Proof. If m e Am9 then certainly

(1) me M.

But from 9.5 it follows that H(m) e H(AC). Since among c-strategy
vectors, the property of c-acceptability is a global one, depending only
on the payoff, it follows that

(2) me Ac.

Combining (1) and (2), we obtain m e Ac Π M.
Next, let c e Ac f] M. Then c e M. We also have H(c) e H(Am),

and since among m-strategy vectors, the property of m-acceptability is
a global one, depending only on the payoff, it follows that

c e Am .

This completes the proof.
Because of 9.6 and 9.7, we are justified in dropping the qualifying

prefix from the word "acceptable" when discussing games of perfect
information.

1O Supergame strategies in the non-cooperative case* A supergame
strategy vector for a non-cooperative game is the same as a supergame
strategy vector for a cooperative game, except that coalitions are for-
bidden. Formally, we have

DEFINITION 10.1. A supergame m-strategy fι for player i is a super-
game c-strategy for which

e(fl(y)) = (i)

for all k > 0 and y e J\ x x Jl

k.
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The following theorem follows at once from 10.1:

THEOREM 10.2. For a supergame m-strategy vector f, we have

c(fk(y)) e M

for all k > 0 and y e Jxx x Jk.
Parallel to the definition of strong equilibrium c-point for cooperative

games (§ 7 of [1]), we may make the following definition for non-coopera-
tive games:

DEFINITION 10.3. Let f be a summable supergame m-strategy vector,
f is a strong equilibrium m-point if there is no B a N for which there
is a supergame m-strategy vector g satisfying 7.1 and 7.2 of [1].

The set of strong equilibrium m-points will be denoted by Sm. As
in [1], it is possible to replace 7.2 of [1] by 7.3 of [1], The set of points
thus obtained will be denoted by Sm.

LEMMA 10.4. Fp n Sc c Sm.

Proof. Let

( i ) / e FP n sc.

Since f e Fp, it follows in particular that / is a summable supergame
m-strategy vector. Suppose

( 2 ) fφSm.

Then there is a B c N and a supergame m-strategy vector g satisfying
7.1 and 7.2 of [1J. Since every supergame m-strategy vector is also
a supergame c-strategy vector, it follows that there is a supergame
c-strategy vector g satisfying 7.1 and 7.2 of [1]. Hence

contradicting (1). Hence (1) implies the falsity of (2), and our result is
proved.

LEMMA 10.5. Fp n Sm c Sp.

Proof. The proof is word for word the same as that of the second
part of Theorem 3.11 (the part beginning with the word ''conversely''
the proof is given before the proof of the first part), except that the
two occurrences of the prefix "c-" must be replaced by prefixes "ra-".
It is also necessary to remember that since g is pure, it is in particular
mixed.
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THEOREM 10.6. Fpn Sm=z Sp.

Proof. We have

SP = FPΠ Sc (by 3.11)

c Sm (by 10.4) .

Since

S a F

it follows that

spcF,nsm.

Combining this with 10.5, we obtain 10.6.

THEOREM 10.7. Fp n Sm = Sp.

Proof. The proof is similar to that of 10.6.

l l The main theorem for non-cooperative games*

THEOREM 11.1. In a game G of perfect information,

H(AJ = H(SP) = H(SP) .

In particular, h is an m-acceptable payoff vector in G, if and only if
there is a strong equilibrium m-point f in supergame pure strategies
for which

H(f) = h .

Proof. The first part follows from 5.3 and 9.6. The second part
follows from 10.6 and from the first part.

COROLLARY 11.2. Every stable game of perfect information has
strong equilibrium m-points in supergame pure strategies.

Finally, we remark that the discussion of § 6 applies unchanged to
the non-cooperative case.
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FRACTIONAL POWERS OF CLOSED OPERATORS AND
THE SEMIGROUPS GENERATED BY THEM

A. V. BALAKRISHNAN

Fractional powers of closed linear operators were first constructed
by Bochner [2] and subsequently Feller [3], for the Laplacian operator.
These constructions depend in an essential way on the fact that the
Laplacian generates a semigroup. Phillips [6] in fact showed that these
constructions (for positive indices less than one) were part of a more
general one based on the Kolmogoroff-Levy representation theorem for
infinitely divisible distributions. Finally, the present author constructed
an operational calculus [1] for infinitesimal generators affording in par-
ticular a systematic study of the representation and properties of these
operators.

In this paper we obtain a new construction for fractional powers in
which it is not required that the base operator generate a semigroup;
indeed its domain need not even be dense. Since the semigroup is not
available, the previous constructions, based as they are on the Riemann-
Liouville integrals, are not possible. However, we shall show, if the
resolvent exists for λ > 0, and is O(l/λ) for all λ, (a weaker condition
will suffice at the origin, see § 7), then fractional powers may still be
constructed, using an abstract version of the Stieltjes transform.

It is immediate that a closed operator A, for which ||λiZ(λ, A)\\ <
My does not necessarily generate a semigroup of any type. For a simple
example, let the Banach space be 12( — oo, oo) and let A correspond to
multiplying the nth coordinate by n(l + i) say. Then for λ > 0,
\\R(XJA)\\ < i/lΓ/λ, whereas A does not generate a semigroup, since
no right-half plane is free of the spectra of A. An example in which
A has no spectra in the right half plane and yet no semigroup is
generated is given by Phillips [4].

The main motivation for the construction of fractional powers is
the application to abstract Cauchy problems of the type:

(1) -^u(t) ± Au(t) = 0

for n > 2, and it turns out that for the solution of (1.1), A itself need
not be an infinitesimal generator. In this paper we study only the
case n = 2, and we expect to consider the general case later.

The properties of newly constructed fractional powers are identical
with those obtained in [1] for the case where A is a generator, with
one important difference; namely that — (—A)Λ generates semigroups in
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general only for a < 1/2. On the other hand, these are the only ex-
ponents that matter in the application to Cauchy problems of the type
(1.1).

1. Construction of fractional powers* Let A be a closed linear
operator with domain and range in a Banach space X. Let each λ > 0
belong to its resolvent set and let (Ho)

\\XR(X, A)\\ < M < oo , λ > 0.

We have already noted that these conditions do not imply that A generate
a semigroup of any kind. Let x e D(A), Then for 0 < a < 1, the
integral

[°XΛ-1R(XfA)AxdX
Jo

where X" is taken positive, is convergent in the Bochner or absolute
sense, since it can be expressed as

, A)x - x]dX + ί°V-\β(λ, A)AxdX

and both of these intergals are absolutely convergent in view of (iϊ0).
We define a linear operater JΛ such that:

(2.1) Jax = sιnπa[°Xa'1R(Xf A)(-A)xdX , 0 < SReα < 1.
π Jo

For 0 < 3ϊe a < 2, we define for each x e D{A2)

M J"x = πi -a)na) \>"ί^x A) - τh
+ sinττα:/2( — A)x .

For xeD{A*) definitions (2.1) and (2.2) coincide for overlapping ranges
of a. More generally, for a such that n — 1 < 3ΐe a < n, we define, for
x e D(An):

(2.3) J«x = J«-n+\-A)n~ιx .

For n - 1 < 3ΐeα < n, we define for x e D(An+1)

(2.4) J«x = Jre-n+1(-A)n-1a? .

These definitions are also evidently consistent. In (2.1), the principal
value of X" is taken so that λα is positive for a positive.

We shall now obtain some properties of these operators which will
qualify them to be recognized as fractional powers. First, if A does
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generate a semigroup, these coincide with the previous definitions in [1].
In particular, if we specialize —A to be denote multiplication by the
complex number s, non-negative, on the space of complex numbers, the
definitions yield s", principal determination.

LEMMA 2.1. The operators J* can be extended to be closed linear.

Proof. The operators J* being linear, it is enough to show that
for any sequence xn, xn e D{Ja), converging to zero, the sequence J"xn,
if convergent, has zero limit also. To be specific, let 0 < 3ϊe a < 1.
Consider

yn = R(\, A)J«xn ,

for fixed λ. Now R(λ, A)xn e D(A) = D(J") and it readily follow from
(2.1) that

(2.5) R(\, A)J"xn = J*R(\, A)xn .

Moreover, since AR(λ, A) is bounded linear, so is J*R(X, A). Hence if
limit J*xn = y, we have from (2.5) that i?(λ, A)y is zero, hence y is
zero also. The proof for other values of a is similar.

LEMMA 2.2. For x e D{An), JΛx is analytic in a for 0 < 9ieα < n.

Proof. This may be directly verified from the definitions. In par-
ticular, it may be noted that for x e D{Aco)y JΛx is analytic for 9ie a > 0.

For elements in certain domains larger than the ones in Lemma
2.2, we retain continuity. Thus

LEMMA 2.3. Let x e D(A) and Ax e D(A). Then for 0 < 3ΐe a < 1
and a tending to 1 in a fixed sector about 1, JΛx-^ —Ax.

Proof. We note that since Ax e D(A), λ#(λ, A)Ax —> Ax as λ —* oo.
Now

J*x - (~A)x = [X>smπaXa-1\R(\ A) - —-—~](-A)xdX ,
Jo π L λ + 1J+

and the integral can be split into two parts, one from 0 to L and the
other from L to infinity. For fixed L, the first part goes to zero since
it is 0(| sin πa\). The second part in absolute value is

<
sin π(l — a)

τr(l - σ)
sup| | [λΛ(λ,i l) - I](-A)x\\ + M L"~2 \\Ax\

\σ - 2 |
a = 3ΐe a.
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and hence goes to zero also.
We do not in general have convergence to the identity at the origin,

a = 0. For if for some x, Ax = 0, Jax is zero also. However, we can
state:

LEMMA 2.4. For any x e D(A) such that XR(X, A)x —• 0 as λ —* 0,
J°°x —>xasa-+0 + ina fixed sector about 0.

Proof. We have

JΛx - x = - s m πa [ΪR(\, A)AX
π J L

[ΪR(\, A)AX +
π Jo L λ +

_ __ sin πa \~^aR(X, A)(x + Ax) ^
π Jo λ + 1

and the result follows from the second integral as a simple estimation
shows.

LEMMA 2.5. Let x e D(A2). Then for 0 <9ϊe (a + β) < 1,

(2.6) J"+βx = J"Jβx .

Proo/. For x e D(A2), it is clear from (2.1) that Jβx e D(A) =
D(Ja). Moreover we have:

7Γ 7Γ J o j o

where the double integral is absolutely convergent, and can be rewritten
as

sirwra sinπ£ Γ ^ + ^ - i ^ f ^ ^ A)R(\,

Using the first resolvent equation, we have

R(\σ, A)R(Xf A)A2x = σ i g ( λ σ > A ) ~ ^ ( λ ^ A) (-A)x
1 — σ

so that we have finally, after a change of variable:

^ , A)(-A)aκZλ .
Jo

where the constant

sinπα sinπ/3 Γ1 (σβ-1 + σ"-1 — σ"^ — σ~β) -,
π π Jo (1 — σ)

evaluates to sin π{a + B)/π, thus verifying (2.6),
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The semigroup property is readily extended to all exponents for
x e D{A°°). For exponents less than some finite positive number this
domain can be enlarged. First, however, we define:

(2.7) {-AY = Smallest closed extension of J* .

We term this the principal value, even though we cannot, in general,
claim that any other determination will differ from it by only a factor
of expίπfc for integral k. For an example see [1]. On the other hand,
the principal determination still enjoys a uniqueness property similar to
the one obtained by Hille [4] for linear bounded operators. We state
this as a Lemma:

LEMMA 2.5. Let x e D(A°°). Then

(2.8) lim sup }og\\(rAy+tηχ}ϊ < π , 0 < a.

Moreover, it is not possible to find a determination of {—AY analytic
in a for x e D{A°°), interpolating integral powers, and preserving the
extremal property, other than the one given in (2.7).

Proof. A direct calculation yields (2.8). The uniqueness part follows
as in [4, p. 496], using a classical result of F. Carlson.

We note that all these fractional powers are uniquely determined by
their values on D{An) each for a large enough n. [Actually on D{A°°),
the latter domain being dense in D{A). See § 3, Lemma 3.1.] The semi-
group property (2.6) can be sharpened to read

(2.9) {-A)"*? - [{~AY{~Af]c ,

the right side being the smallest closure of ( — A)*{ —A)β. This follows
essentially from the fact that J* (and hence ( — ̂ 4.)*) commutes with
R{\, A), as in [1].

3. Spectral theory* We next examine the spectra of the operators
{ — A)a. For this purpose we denote the second commutant of the set
{R{X, A), λ > 0} by 33. Then 33 is a commutative Banach algebra with
unit, and is strongly closed. Moreover, using the Gelfand theory, the
linear multiplicative functionals over 33 split into two classes 9JΪ0 and 2Jϊlβ

For any m e 3Jίo>

m[R{\, A)] = 0

while for any m e 3Kj, there is an s e σ[A], such that

m[R{x, A)] = l/(λ - s)
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for every λ > 0.
For any function a of bounded variation on compact Borel sets of

the half-line [0, oo) such that

( " | | Λ ( λ , A ) α j | | d | α | < c o
Jo

it is clear that setting

θ(a)x — \ R(X, A)xda

θ(a) 6 33. We now collect some special functions we shall need in the
sequel. Let μ be a complex number such that μ + \ s \a exp ίaθ Φ 0, for
any | s | and — π < θ < π, and fixed α, 0 < 3ΐeα < 1. We can always
find such a number for | a | sufficiently small, and we shall assume this
is the case. Let

(3.1) f(X) - (l/τr)(l/2i)[(μ + λ-e-"*)-1 - (μ + λ̂

Next, for each t > 0, let

(3.2) flf(λ; t) = (1/τr) 3fm.[exp (-ίλ γ exp - i

for some fixed γ, 0 < γ < 1/2. Then

and

i; t)dX

both belong to 33, the integrals existing in the Bochner sense in the
uniform topology. Moreover, for m e 3Jt19 with corresponding — s e σ(A),
we have

(3.3) [μ + Γ
o λ + S

The integral on the right is of course the Stieltjes transform and exists
for any s not on the negative real axis. [For the properties of Stieltjes
transforms explicitly or implicitly used here see [7].] On the other
hand, we note that the spectrum of A may be empty. Similarly,

(3.4) m(S(t)) = ΓlίAL*) dx = exp -ί** .
Jo λ + S

[Here and throughout, s" = | s \* exp iaθ, —π<θ<π].

LEMMA 3.1. For every x e X, S(t)x e D(A°°) for every t > 0. For
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x e D(A), \\S(t)x - x || — 0 as t -> 0 + .

Proof. We note that for every positive integer n,

(3.5) [°Xn I g(X, t)\\\ R(X, A ) \ \ d X < ™
Jo

and

(3.6) ί°°λnflf(λ; t)dX = 0 , including π == 0.
Jo

For any x e X,

AR(X, A)x = XR(X9 A)x — x .

Hence

ί oo poo

R(X, A)g(X; t)dλ - x g(X; t)dX
o Jo

= \ R(X, A)Xg(λ; t)xdX
Jo

using (3.5) and (3.6). In a similar manner we can extend this to any
positive integer n.

(3.7) AnS(t)x = [°°XnR(X, A)xg(X; t)dX .
Jo

This shows that S(t)x e D{A°°). Next let xeD(A). Now

(3.8) S(t)x ~x=: [~g(X; t)ΪR(X, A) ~ —~\xdX

where we have used

Γ λ - ^ λ ; t)dX = 1 .
Jo

Since x e D{A), we can rewrite (3.8) as

S(t)x - x = f°°flf(λ, fyX-ΉiX, A)AxdX
Jo

and the integral on the right is seen to go to zero with t. To see that
the result is true for x e D(A), we have only to note that (using Ho)
\\S(t)\\<M.

Now, since ( — A)" is closed and S(t)x e D(A°°) for every x, ( — A)"S(t)
is linear bounded and e S3. Actually, more is true. Thus:

LEMMA 3.2.

(3.9) (-A)»S(t) = [~i2(λ, A)fc(λ, t)dX, 0 < 3ΐe a < 1,
Jo
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where

h(X, t) = - L - [e'iπaXa exp (-tXy exp -ΐπγ) - ei3r"λα exp (-ίλ γ exp +ΐτrγ)l .

Δ7ΓI

Proof. We note that for m e 3Jix,

mΓΓJ2(λ, A)Λ(λ, ί)dλl = Γ ^ λ ' * > dλ
LJo J Jo X + s

and the Stieltjes transform on the right evaluates to
(—tsΛ) .

While this is the same as m[( — A)"S(t)], this does not necessarily consti-
tute a proof of (3.9) since the radical of 35 may be non-empty. How-
ever, a direct proof is possible. Thus we have

and changing variable of integration and using

R(Xσ, A)(-A)R(X) = σBQ^A)
1 — σ

this can be written

[°°R(\, A)h(X, t)dX
Jo i

where

h(X, t) = 9(X, t)[ ^ ~ ^ dσ + [a- ^ ^ ~ 9 ^ da
Jo (1 — σ) Jo (1 — σ)

which is readily verified to be the function required in (3.9).

LEMMA 3.3.

(3.10) θ{f){-AγS{t) = [~R(\, A)q(X, t)dX
Jo

where

q(χ t) = 1 Γ \"e-iπ" exp ( - tXy exp - iπj) __ X»e'** exp ( - tλγ exp iπy) Ί
27ri L μ + λ* exp —i7rα μ + X* exp ΐπα J

Proof. The Stieltjes tranform of g(λ, ί) is readily verified to be

f" q(X, t)dt = g^exp -^sy

Jo λ + 8 μ + s*
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As in Lemma 3.2, this is not quite enough to prove (3.10). On the
other hand, a direct proof may be given by double integration using
the resolvent equation, and noting that

q(X, ί) = \\h(X, t)(f(Xσ) - σ-ifWσ)) +f(X)(h(Xσ, t) - σ^hi\lσ9t)))^- .
Jo a — 1

LEMMA 3.4.

(3.11) θ(f)S(t) == Γi2(λ, A)r(\, t)dX
Jo

where

(X t) — 1 Γ e χ P (~ tW e χ P ~ JπΎ) _ exp (— tXy exp iπγ) 1
2τri L μ + X" exp — iπa μ + X* exp iπa J "

Proof. The Stieltjes transform of r(λ, t) is

f-r(λ, t ) r f λ = exp -tsi
Jo λ + s μ + sα

As in Lemma 3.3, we can establish (3.11) by double integration, using
the resolvent equation.

LEMMA 3.5. Let x e D{A). Then with μ as in Lemma 3.1,

(3.12) [μ + (-AYW(f)x = x .

Proof. From the previous Lemmas it is immediate that

μθ(f)S(t) + (-A)«θ(f)S(t) =

for every t > 0. Let a? e D(A). Since

and by Lemma 3.2, S(t)x —>x as t —• 0, (3.12) follows by letting ί —»0,
and noting that (—A)a is closed.

We are now ready to prove the spectral mapping theorem.

THEOREM 3.1. Let D(A) be dense in X. Then

(3.13) σ[(-A)"] - [σ(-A)]", 3ϊe a > 0.

Proof. First let \a\ be so small that we can find a μ as in Lemma
3.1. By Lemma 3.5, for X e D(A), (3.12) holds, and D{A) being dense
in X, continues to hold for any x. Since for x e D{(—A)Λ), Θ{f)(—A)ax =
(-A)*θ(f)x, we see that 0(/) is a resolvent of -(-^)",0(/)=J?(w, -(-A)*).
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This is enough to prove that for these α, (3.13) holds. For, let δ be a
number different from + μ sμch that — 8 Φ [σ( — A)]a. Then consider
[ 7 + (δ - μ)R(μ, -(-AY)], This belongs to S3, and

m[I + (δ - μ)R(μ, -(-AY)] = 1 me SOI,

_ δ + s"

μ
m

Hence this element has an inverse in 33, and this is easily seen to be
R(δ, — (—AY). For other values of α, we note that for a such that
p[( — AY] is not empty, we have a sharper version of (2.9):

(-A)n<* = [(-AYY for every integer n.

Again, by the general spectral mapping theorem for closed operators
with a non-empty resolvent set [4], we see that (3.13) holds for na.
Finally, we note that for a — a + ib, and a2 + b2 < α, it is always pos-
sible to find a μ such μ + s" Φ 0 for all s not on the negative real axis.
Hence (3.13) follows for all α, 3ίe a > 0.

4 Some stability properties* We shall call a property of A stable,
if the same property holds for — ( — AY at least for 0 < a < 1. We now
state some stable properties of A.

4Λ. Let A be linear bounded. Then —( — AY is also bounded for
every α, 9ϊe a > 0.

4.2. Let A* be the adjoint of A. In view of hypothesis Ho we
can, following Phillips [4], define A® using his definition (Definition 14.3.1,
p. 424). For \a\ sufficiently small, we note that — { — AY also satisfies
hypothesis Ho, so that we can also define [( — A)*]®. We then have that

[(-AY]® - [(-A)®]* .

4.3. Let A be the infinitesimal generator of a positive contraction
semigroup. Then so is —( — AY, for 0 < a < 1.

4.4. Let X be a Hubert space. If A is dissipative, so is —( — AY
for 0 < a < 1.

4.5. Let A be compact. Then so is ( — AY for every a.

4.6. If for some x e ί , and s not on the negative real axis Ax =
— sa?, then (—A)*x — s*x also.

5. Generation of semigroups. We now come to what is perhaps
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the most important single property of these fractional powers (at least
as far as applications to differential equations are concerned) viz., gener-
ation of semigroups. We shall show that for 0 < a < 1/2, — ( — )" generate
strongly continuous semigroups, uniformly continuous away from the
origin. We shall also obtain a representation for these semigroups in
terms of R(X, A),, λ > 0.

THEOREM 5.1. Let D(A) be dense, and let A satisfy Ho. Then for
0 < a < 1/2, — (—A)σ as defined by 2.7, generates a semigroup SΛ(t)f

which is strongly continuous for t > 0, uniformly continuous for t > 0.

Proof. First let 0 < a < 1/2. Let

(5.1) Sβ(ί) - [°R(X, A)g(X, t; a)dX
Jo

where

g(X, t; a) = (1/π) sin (tX* sin πa) exp ( — tX* cos πa) .

Then (5.1) is a Bochner integral. The Stieltjes transform of g(X, t; a)
is, as we have noted before in § 3,

g(X, t; a)dX = exp — ίs α .

However, this alone does not necessarily suffice to verify the semigroup
property of S^t). A direct proof can be given, however, following the
lines of Lemma 3.3. We shall next show that the infinitesimal generator
of SΛ(t) is — (—A)*, by showing that the resolvent of the latter for
μ > 0, is the Laplace transform of SΛ(t). The Laplace transform can,
further, be taken in the uniform topology, since SJt) is readily seen to
be uniformly continuous for t > 0, by direct computation from (5.1).
Now,

\ ° Γ [°°e-^g{X9 t;)dtdX

, A)\ ~]
1 μ + X«e~ιπ« J

]dx

which as we have seen in Lemma 3.5, is the resolvent of —( — AY for
μ > 0. The strong continuity of SJt) has already been proved in Lemma
3.1.

Next let a = 1/2. Let

(5.2) S1/2(ί) = Γ~i2(λ, A) sin VTtdX ,
Jo

where the integral is to be taken at infinity in the Cauchy sense. The



430 A. V. BALAKRISHNAN

convergence in the Cauchy sense can be seen as follows. By an inte-
gration by parts, we have, for each L,

— Γi2(λ, A) sin V~XtdX = R(L, A)f(L, t) + Γ R(\ A)2f(X, t)dX ,
71 Jo Jo71 Jo

where

f(X, t) = M\mVVtdσ = JJ2βinτ/λ£ _ 2yTcoeVTn _
π Jo TΓL t2 t J

Now the first term goes to zero as L —> co , and the second term is a
convergent Bochner integral at infinity. Hence

(5.3) Sll2(t) = — ί°°#(λ, A) sin l/Yίdλ = ί°°i2(λ, Aff{\, t)d\ .
π Jo Jo

Next, S1ι2(t) is readily seen to be uniformly continuous for t > 0. A
simple computation using (5.3) also shows that ||S1/2(£)|| < Const. The
semigroup property can be verified directly as before. Again, the La-
place transform of S1/2(ί) is seen to be the resolvent of — ( — A)112. The
strong continuity at the origin may be seen from:

\Sll2(t)X-X\\=: — [Ti2(λ, A ) - — Ί^si
π Jo L X J

ίdλl

For fixed L and t sufficiently small, the first term is O(t). The second
term is

and hence goes to zero also. Since || S1/2(t) \\ is bounded, strong continuity
follows. This completes the proof of the theorem.

For values of a > 1/2, —{—AY does not necessarily generate a
semigroup of any type, as the following simple counter-example shows.
Let X = 12(— oo, oo), and let A correspond to multiplying the wth co-
ordinate by (1 + ί)n. For a > 1/2, no right half plane is free of spectra
of —{—AY, (as follows readily from Theorem 3.1) so that they cannot
be generators of any semigroup.

We note in passing that (5.1) leads to a simple rigorous proof of
Feller's expansion for the stable densities [3] for 0 < a < 1/2. For,
denoting the stable density by F(ξf t; α), we have

F(ξ, t a) = — [°e-ξλ gm [exp (~tX« exp -ίπa)]dX
π Jo

and expanding the second factor and interchanging integration and
summation, which is obviously permissible, we have
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F(ξ, t; a) — —— X ^ Lξ-n*-L sin πanΓ(l + na)
π 0 nl

which is Feller7s expansion.

6 Application to abstract Cauchy problems. We shall next consider
an application of the foregoing theory to a class of Cauchy problems.
Indeed, this was the application which largely motivated the theory.
This class may be considered a generalization of the abstract Cauchy
problem of the type

u(t) = Au(t)

and is related to (though different from) the class treated by Hille [4, 5].
Thus we shall examine abstract Cauchy problems of the type

(6.1) ^jψ- + (~l)nAu(t) = 0 , n > 2.

More precisely, we shall phrase the problem as follows:
Given a complex Banach space X, and a closed linear operator A

with domain dense in X and range in X, find a function u{t) such that
( i ) u(t) is n times continuously differentiate in [0, 00)
(ii) u(t) eD(A) for t > 0
(iii) u(t) satisfies (6.1) for t > 0, and the initial conditions

lim || u^it) — uk || = 0 for prescribed uk, k = 0,1, , r, r < n.

This is the reduced problem ('probleme reduit') in the terminology of
Hille [5, p. 42], n — r being the defect ('default'). In addition to the
existence of solutions [with some defect], we are of course interested
in the uniqueness of the solutions. Now, if the operator A satisfies Ho,
we are [by Theorem 5.1] assured of solutions for some suitable defect,
but the question of uniqueness remains. On the other hand, if we do
have unique solutions for some A, we would certainly like to know
whether this implies that A satisfy Ho, since this would then characterize
the solutions completely. In what follows we are concerned exclusively
with the case n = 2. Our main result may be stated as follows:

THEOREM 6.1. Let n = 2. Suppose A satisfies HQ. Then for each
u0 e D{A), the reduced problem with defect one has a solution such that

(6.2) sup I \u(t) \\< co .

Moreover, there is only one such solution, and it is given by

(6.3) u(t) - S1/a(tK
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where the semigroup S1/2(ί) is uniformly continuous for t > 0, and has
the representation (5.3). Further, for each t > 0, range of S1/2(t) c D(A)
and Slh(t) is analytic of class H(φ, —φ), φ > 0. Conversely, suppose
for each u0 e D(A), the reduced problem has a unique solution satis-
fying (6.2) for some A. Then setting u(t) = S(t)u0, yields S(t) as a
strongly continuous semigroup. Suppose range of S(t)a D(A), and S(t)
is analytic of class H(φ, —φ) for some φ > 0. Then A satisfies Ho, and
S(t) = S1/2(t) as given by (5.3).

We need some Lemmas.

LEMMA 6.1. Let A satisfy Ho. Then R(X, A) exists in the sector
—φ< arg λ < φ, where (Tan Φ)M = 1.

Proof. Let ε > 0, and γεΛf = 1 — ε. For any t, \ t | < γε, and
σ > 0 consider I + [(σ + itσ) — σ]R(σ, A). This element has an inverse
given by the series

Σ[-itσΛ(cr f A)]"
0

and is clearly convergent, being majorized by the geometric series

1
Σ11 \nMn <

1-7SM

Moreover this also shows that the inverse is bounded in norm by
(1 — γgikf)"1. Now, by the first resolvent equation, it follows that

R(σ + itσ, A) = [I - [(σ + itσ) - σ]R(σf A)Y1R{σi A)

and is in norm

\\R(σ + itσ,A)\\< M .
(1 - yεM)σ

The assertion of the lemma follows readily from this.

LEMMA 6.2. Suppose A satisfies hypothesis Ho. Then for each a,
0 < a < 1/2, λ e pl-i-A)"] for - ψ - π/2 < argλ < πβ + ψ for some

Proof. The proof is immediate from the spectral mapping theorem,
Theorem 3.1, and Lemma 6.1 above. We can take ψ = πβ — a(π — φ).

LEMMA 6.3. Let A satisfy Ho. Then for 0 < a < 1/2, the semigroup
Sa(t), defined by 5.1 and (5.3) is analytic, of class H(ψlf φ2) (Cf [4], p.
325, Definition 10.6.1), with φλ = — aφ, φ2 = aψ, ψ being defined in
Lemma 6.1.
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Proof. Let μ be such that 9ΐe μ > 0. Then for each a, 0 < a <
1/2, we know from Lemma 3.5 that μ e ρ[ — (—A)"] and

(6.4)

From this it readily follows that

/r* r\ ii τ>/.. / Λ \rϊ,\ I ^ •*•'•*•

where the constant M is the same as in Ho. Next let ε < 0 be given.
Then from Lemma 6.1 it follows that for —φ + ε < argλ < —φ — ε,
there is a constant Mε such that

(6.6) \\XR(X,A)\\ < M ε .

Let —φ + ε < ψ < +φ - ε. Let λ be >0. Then

R(\, e~ι*A) = e^R(Xe^f A) .

Further it follows from (6.6) that

\\XR(X,e-^A)\\<Mε,

so that (Aexp— iψ) satisfies Ho. Then we can define ( — e~l^A)a using
(2.7), and a simple contour integration shows that for 0 < a < 1,

Moreover, applying (6.5) we know that for SReμ > 0,

But

Hence we obtain that for X such that 3ΐe (λe"'^) > 0 ,

/ Λ\M\ II ^ M-p

But this implies that the conditions for Sa(t) to be of class H(φ, φ2) as
given by Hille ([4] p. 383, Theorem 12.8.1) are satisfied, thus proving
lemma.

Proof of Theorem. We begin with the first part. Thus let A satisfy
Ho. Setting u(t) = S1/2(t)u0, we get one solution satisfying (6.2). We
shall now show that this solution is unique. Let v(t) be a possibly
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different solution. By assumption v\t) is continuous at t = 0. Let vx

be v'(0). Let w0 = S(l)^, and w2 = S(ΐ)v19 where S(ί) is defined as in
Lemma 3.1. Let w(t) = S(l)v(t). Then w(t), w'(t) e D(A°°) and

(6.7)

Let

Then since

w"(t)

L(λ, w)

+ Aw(t) = 0 .

= [°e-χtw{t)dt ,
Jo

λ > 0.

we get that w'^exp — λί goes to zero at infinity, and hence by Laplace
transforming (6.7) we have:

[λ2 + A]L{X, w) — Xw0 + wx .

Since B2 = —A, where we have written B for —( — A)1'2, this can be
rewritten

[XI - JB]L(λ, w) == R(Xw0 + wλ) .

Since

R(X, B) =

this yields

w'(ί) + Bw(t) = Sll2(t)Bw0

Hence

so that

_ [S1/a(ί(w(ί)] S1/a(2ί)wi + Sll2(2s)Bw0at

Slt2(2t)w1dt + ΓS l l2(2t)Bw0dt
o Jo

- Sin(2t)w0 - -i-
2 Jo

Hence

Sll2(t)Bw(t) - S1/2(2ίK +

Now because of analyticity in a sector, zero does not belong to the point
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spectrum of S1/2(ί) for any t > 0. Writing Sφ(~t) for the inverse, and
using (6.2), we have that

(6.8) Sup || SllΛ(-t)(w1 - Bw0) || < ~ .

We shall now show that for any element z such that z e Π^>(̂ i/a( —*))

and Sup || S1}2(-t)z || < oo, Bz = 0. For this let

(6.9) F(λ) = (V'S^ί- ίJsdί , 3ΐe λ < 0 .
Jo

Then it is readily verified that

Now by Lemma 6.2, we know that R(X, B) exists for — ψ — π/2 <
argλ < ψ» + τr/2 and hence there is a common domain where —F(X) =
R(X,B)z. Hence for 5Reλ<0, — F(λ) is the analytic continuation of
i2(λ, B). Moreover, using the results of Lemma 6.3, it follows that
II λF(λ) || < const., in a sector and || λJB(λ, B)z \\ < const, in an intersect-
ing sector, their union being the entire plane. Hence it follows that
λjβ(λ, B)z = z, since XR(X, B)z —> z for λ > 0. Hence 1?2 = 0, as required.
Hence S1{2(t)z = 2, so that

S(t)w(t) = S(2£)w0 - ί(^! - Bw0) .

Hence using (6.2), ^ = BwQ. Since ^0 e ί)(A), using S(l/n) in place of
S(l) and taking limits, we readily obtain that

v'(0) = Bu0

and hence that v(ί) = S1/2(ί)%0. That range at S1/2(ί)c J5(A) follows from
the representation (5.3).

We now proceed to the second part of the theorem. That S(t) is a
semigroup, strongly continuous at the origin with | |£(ί) | | < const., fol-
lows by arguments similar to the one used in Lemma 23.9.4 p. 627 of
[4]. Let B be the infinitesimal generator of S(t). Then for x e D(A),
it is clear B2x = —Ax. For x e D(B2) on the other hand, we note that
since for t > 0, S(t)x e D(A), B2S(t)x = -AS(t)x, so that letting ί — 0,
it follows that B2x — —Ax also, since A is closed. Next we note that

λ2 ~ A = (iλ - J5)(iλ + S)

so that for λ > 0, λ e /o(A) since S(t) is analytic, and

JB(λ, A) = i 2 / T

Again since S(ί) is analytic, of class H(φ, — ψ), it readily follows that
|| \R(ίX,B) || < Const., for λ real, from which we obtain that || λJB(λ, A)|| <
Const., for λ > 0, Or, A satisfies hypothesis Ho. That S(t) = Sφ(t) is
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immediate from the first part of the theorem.
Additional properties of the solutions can of course be deduced from

the representation (5.3). For instance, we note a rate of growth prop-
erty: viz., for each x e X, \\ Slj2(t)x || —> 0 as t -* oo, if χR(x)x —> 0 as

7. Some extensions* In this section we shall indicate some possible
extensions of the foregoing theory.

The basic hypothesis Ho concerning the operator A can be weakened.
Thus suppose A satisfies Hx\

For each λ > 0, λ e p(A) and

(i) ||Λ(λ,A)|| = 0(l/λ) as

(ϋ) Γ
Jo

λσ II R(X, A) || dX < oo , for some σ, 0 < σ < 1.

Then it is possible to define (—A)* for 5Reα > σ, still using definition
(2.7). The hypothesis Hx is satisfied for instance if A generates a semi-
group T{ξ) such that it is strongly continuous for ξ > 0, and

(7.1) J j l T O I I f — t f f <co .

The latter condition was used in [1], whereas hypothesis Hx is similar
to the one stated by Hille [4] (although of course the Hille condition is
stronger since he considered only bounded operators). We shall show
that for infinitesimal generators, Ήλ and (7.1) are equivalent.

LEMMA 7.1. Suppose A is the infinitesimal generator of a strongly
continuous semigroup T(ξ). Then if (7.1) holds, A satisfies Hx. Con-
versely, if A satisfies H19 T{ξ) satisfies (7.1).

Proof. Suppose (7.1) holds. Then clearly

l i m < 0

so that R(X, A) exists for λ > 0 and is of order 1/λ for λ —> oo. Next

,A)\\dX< λ ' l e-λί\\T(ξ)\\dξdX
Jo Jo

< const + ΓII T(ξ) || dξ [Vλ έλσdλ
Ji Jo

f °°

< const I || T(ξ) || ξ~σ~1dξ < oo .
Ji

To prove the converse we shall use some results from [1]. Let S(ω) be
the B-algebra associated with T(ξ) as in [1] L(ώ) being the subspace of
functions (Borel measurable) such that
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\~\\T(ξ)\\\f(ξ)\dξ
Jo

<

Let Aw be the infinitesimal generator of the translation semigroup.
Defining (-Aw)

a using (2.7) it follows for fe D(AW), setting

that
(-λ)"φ(λ, /) = φ(λ, g) , 3ie λ < 0 ,

and hence that for any μ > 0,

μ — λ

is a multiplier defined over all of L(ώ). By the factor theorem (cf [1]),
it follows that there is a corresponding function in S(ώ) (actually in
L(ω)) and further an evaluation of this function shows that (7.1) is
satisfied.

While for 3ΐeα > σ, we can define ( — Ay, it is not possible to de-
fine, in general, (—Ay for 9ΐeλ < σ, at least not as a closed operator
whose domain includes the domain of A. This may be seen as in the
converse part of Lemma 7.1, using || T(ξ)\\ = (1 + ξ)σ.

For A satisfying Hλ with σ < 1/2, —(—Ay continues to generate
strongly continuous semigroups for a < 1/2, satisfying

We do not know at present whether the semigroups are necessarily
analytic of class H(Φi9 Φ2).
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BOUNDS FOR THE EIGENVALUES OF SOME

VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction, If a string with a non-negative integrable density
p{x), x 6 [α, δ], is fixed at the points x — a and x = 6 under unit tension,
then the natural frequencies of the string are determined by the eigen-
values of the boundary value problem

(1.1) y" + μρ(x)y = 0 , y(a) = y(b) = 0 .

Indicating their dependence on the function ρ(x), we denote these eigen-
values by

(1.2) μdp] <μΛp]< •••

We consider the set of all such strings which have the same total

S b

p(x)dx. It is well known [5] that the eigenvalues (1.2)
a

satisfy the inequality

^ y »=1,2, ,

with equality when a mass of amount M/n is concentrated at the mid-
point of each of n segments obtained by partitioning the string into n
equal parts. If we place some restriction on ρ(x) which prohibits such
an accumulation of mass, then we can expect to get a larger bound than
that of (1.3). M. G. Krein [8] has found that when 0 < ρ{x) < H<oo, the
eigenvalues (1.2) satisfy the inequalities

(1.4) M^χ( M_) < μ Λ p ] <

where X(t) is the least positive root of the equation

1 - t

The inequality (1.4) is sharp and as H—> oo, the lower bound approaches
that of (1.3).

In this paper, we investigate the nature of the density functions
for which the greatest lower bounds of the eigenvalues (1.2) are attained
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when other restrictions are placed on p(x). For convenience, we may
consider the eigenvalue problem

(1.5) u" + Xp(x)u = 0 , u(0) = u(l) = 0 ,

where p(x) = (b — a)p[(b — a)x + a], xe [0, 1], instead of (1.1). We note

that I p(x)dx = M. Denoting the eigenvalues of (1.5) by
Jo

\[P] < λ a[p] < ••• ,

we see t h a t

(1.6) KIP] = Φ - a)μn[p] .

We shall be concerned with determining bounds for the eigenvalues
of the differential system (1.5) under various types of restrictions on
p(x). The principal restrictions we shall consider are:

(a) p(x) is monotone in [0, 1],
(b) p(x) is convex, i.e., p(x) satisfies the inequality

/γ ____
2

where x1 and x2 are any two values such that 0 < xλ < x2 < 1.
(c) p(x) is concave, i.e., — p(x) is convex.

These properties are invariant under the linear transformation used to
obtain (1.5) from (1.1) so that p(x), xe [α, 6], will have the same proper-
ties as p{x). Hence, no loss of generality is involved in using the system
(1.5).

In § 2, 3 and 4, we obtain sharp lower bounds for \ [p] in these
three cases. For the higher eigenvalues we are able to obtain only
general information concerning the density distributions which give the
lower bounds. The ideas used also lead to results in the case of the
more general Sturm-Liouville system

( l β 7) [r(x)ur] + [λp(x) - q(x)]u = 0 ,

w'(O) - h0u{0) = u'(ΐ) + M ( l ) = 0 ,

where p(x) and q(x) are non-negative integrable functions, r(x) e C" is
positive and hQ > 0, hx > 0. In § 5, we obtain results under various as-
sumptions about p(x) and q(x).

In § 6, we consider the vibrating rod of variable density and with
clamped ends. The results we obtain are directly analogous to those
obtained by Erein and to those derived in § 2, 3 and 4 for the first eigen-
value of (1.5). In § 7, we obtain results for the first eigenvalue of a
membrane with fixed boundary in the case of bounded densities and in
the case of concave densities on a convex domain.
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The central idea used in finding lower bounds of λL [p] is the following.

LEMMA 1.1. If p(x) of (1.5) can be expressed as

(1.8) p(x) = \κ{x, t)g(t)df(t)
J

where
( i ) f(t) is a monotone increasing bounded function,
(ii) g(t) is non-negative and continuous,

(iii) K(x, t) is non-negative and \ K(x, t)dx = 1,
Jo

then

(1.9) \\p] > [[p{x)dxVg. 1. b. X^Kix, ί)J .
Do J teίo, i]

We use the fact that λj. [p] is the minimum of the Rayleigh quotient
[4]

[\u'(x)]2dx
_ Jo(1.10) J(p, u) f1

I p(x) [u(x)fdx
Jo

where u(x) ranges over all functions, with piecewise continuous first
derivatives in [0, 1], which satisfy the conditions u(0) = ^(1) = 0. In view
of (1.8), we have

m1K(xyt)g(t)df(t)~]u2dx
^ L /,j - xx,uΛ °- J .

I IΛJ iΛ/tλy

Jo

By the properties (i), (ii) and (iii) all terms are non-negative. Inter-
changing the order of integration, we find that

(l.ii) max
[κ(x, t)w
h_

[uf2c
Jo

'dx

2dx
L Jo

We note that

\ 1KXx t} u^dx

(1.12) λf1 [K(x, ί)l = max J ί —
u'2dx

Jo

Hence, (1.11) and (1.12) yield
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(1.13) λΓ1 [p] < [g(t)df(t) l.u.b. λ;1 [K(x, ί)] .
JO ί 6 C 0 , l ]

From (1.8) and (iii), we have

[p(x)dx = [g(t)df(t) .
Jo Jo

Hence (1.13) is equivalent to (1.9).

If the density p{x) is normalized so that \ p(x)dx = 1, then (1.13)
Jo

reduces to

\[P] >gΛ.b.\lK(x,t)].
te [o, i]

To obtain results for the higher eigenvalues of (1.5) we use another
approach.

LEMMA 1.2. Let p(x) and q(x) be non-negative integrable functions
defined for x e [a, b] and let f(x) be non-negative, continuous and mono-
tone increasing in [α, 6]. Let ce(a,b) be such that p{x) > q(x) for
x e [α, c) and p(x) < q(x) for x e (c, 6], Then

(1.14) \bp(x)dx = \bq(x)dx
Jα Jα

implies that

(1.15) \bp(x)f(x)dx < [\{x)f{x)dx .
Jα Jα

If f(x) is monotone decreasing, then the inequality is reversed.
By (1.14) we have

(1.16) \°[q(x) - p(x)]dx - \b[p(x) - q(x)]dx .

But [p(x) — q(x)] > 0 for x e [a, c) so that the generalized mean-value
theorem gives

(1.17) \\p(x) - q(x)]f(x)dx = Λx^Mx) - q(x)]dx
Jα Jα

for some xx e (a, c). Similarly, we have

(1.18) ^\q(x) - p(x)]f(x)dx - f(x^\q(x) - p(x)]dx

for some x2e (c, b). For a monotone increasing/(ίc), we have f(x^) </(ίc2)
so that (1.16), (1.17) and (1.18) imply

\°[p(x) - q(x)]f(x)dx < \\q(x) - p(x)]f(x)dx .
Jα Jc
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q(x)f(x)dx and l p{x)f(x)dx to both sides, we obtain the desired
α Jc

result. If f(x) is monotone decreasing, it is clear that the inequality
has to reversed.

M. G. Krein has proved the following result which we will find use-
ful. [8]

LEMMA 1.3. Consider a family of density functions p(x) on [0, 1]

such that 0 < p{x) < H < OD and \ p{x)dx = M. Let μ = g. 1. b. μ^pix)]
Jo

where the greatest lower bound is taken over this family. Then there
is a function pQ(x) in this family such that μ = λiLPol

K r e i n ' s proof a l so h o l d s for λ w [ p ] , n = 2, 3, •••, a n d for t h e s u m

2. Monotone densities* We first consider the system (1.5) when
p(x) is a monotone increasing function. We have the following result.

THEOREM 2.1. Let XL[p] be the lowest eigenvalue of a string of
unit length with fixed end points whose density is an increasing func-
tion p(x). Then

\[p]\ p(x)dx > λ0

Jo

where λ0 = 7.88 . The inequality is sharp and equality is attained
for a string whose density is the step function

(2.1) H(x, to) = I
ι ( l - ίo)-1, a? e [ί0> 1] ,

where t0 = 0.357 . .
Since p{x) is a positive, monotone increasing function, the Stieltjes

integral

P(x) ~ Pφ) = \Xdp{t)
Jo

exists for xe[0, 1] except when \iτnx_ylp(x) = + oo. Even in this case
the equality holds in a limiting sense. If we let

, 0 < t <x< 1 ,

then we have

p(x) == I h(x, t)dp(t)
Jo
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wherever p(x) is continuous. Here we have replaced the original value
of p(x) at x = 0 by p{0) = 0; evidently this does not change our result.
Since p(x) is monotone, the set of discontinuity points is of zero measure.
Hence, for purposes of integration, we may take the above equality to
be true everywhere. If we let H(x, t) = h(x, t)(l — ί)"1, we have

(2.2) p(x) = [H(x9 ί)(l - t)dp(t) .
Jo

By Lemma 1.1, we then have

te[o,i]

We find the values of t for which the greatest lower bound is at-
tained by solving for λjiί(x, £)] explicitly. If we solve (1.5) in the
interval [0,1] with p(x) replaced by H(x, t) we find that over the interval
[ί, 1], u(x) must satisfy the differential system

(2.3) u" + —^—u = 0, tu\t) = u(t), u(l) = 0 .
-L — u

The eigenvalues of (2.3) will be equal to Xn[H(x, t)], n — 1, 2, •••. The
eigenfunctions of (2.3) are

un(x) = sin znx + tan tan" 1 tZn — tZn [cos zw£ ,

n = 1, 2, , where zn — l / λ n ( l — £) is the wth positive roots of

(2.4) t a n ^ __. —t ^
2 1 — t

Hence, the eigenvalues are

(2.5) K[H(x, t)] - - ^ - , w = 1, 2, ,
1 — t

To find the value of t which minimizes Xn[H] = λn[£Γ(aj, ί)] we re-
place (2.4) by

(2.6) (1 - t) sin z + tz cos z = 0 .

This has the same positive zeros as (2.4). Since sin z and 2 cos z are
positive for 0 < z < τr/2, (2.6) has no positive zeros in this interval for
£e[0, 1]. Over the interval [ττ/2, π), sin 2 is positive while z cosz is
negative for se(τr/2, π]. Therefore, for ίe(0, 1), the left side of (2.6)
is positive at z = π/2 and negative at 2 = TΓ. Hence, (2.6) has its first
zero in the interval [τr/2, TΓ]. In fact, only the first one lies in this inter-
val. For if we denote the left side of (2.6) by F(t, z) then
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Fa{t, z) = cos z — tz sin z

is negative so that for a particular value of t e (0, 1), F(t, z) is monotone
decreasing and hence has only one zero for ze[π\2, π]. By (2.6)

(2.7) dZl - ~~Zι

dt 1 - t + t*z\

From (2.5), we have

/o Q\ CLAJ} ill J Z1 o Cf/Zι I Zγ

di l-ti'dΓ 1 - ίJ "

If we evaluate this at £ = 0, we find dλ 1 /dί | t s . 0 = — π2. Furthermore,
since s^ί) is finite, (2.4) implies that \[H] —> +°° as t —* 1, so that λ j i ϊ ]
has a minimum at some t0 e (0,1). Since we are considering only the
first zero, zL(t), we will drop the subscript and write z(t). At ί0 we must
have dλi/dί | e. ί Q = 0 so that (2.8) implies

_ 1 z{t0)

From (2.7) we find that z(t0) = s' must satisfy

-z* 1 z'

1 - ί0 + tfca 2 1 - t0

If we solve for —to(l — £0)~\ it follows from (2.4) that

3 r t a n s r = -ίo"1 .

Eliminating ί0 between this and (2.4) we find that z' must satisfy

(2.9) tan 2s' = 2s' .

The first zero of this equation is z' = 2.25. Hence, from (2.4) we find
t0 = .357- -Now (2.9) has only one zero for s e [ττ/2, π] so that Xχ[H] has
only one relative extremum for t e (0,1). But we know there is a minimum
so that t0 must be the value of t which minimizes λj f f] . From (2.5) we
find this minimum to be approximately 7.88.

It does not appear possible to obtain lower bounds for the higher
eigenvalues by the exclusive use of Lemma 1.1. We can, however, ob-
tain a bound for the sum Σ ϊ - i ί ^ * 1 ^ ] ) with the help of a theorem of
Courant [5], according to which

I p(x)vl
n Jo

ΣTΓ7
J

vt2rlr
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has the maximum ΣS-iί^ *1^]) if the vk, k = 1, 2, , n, range over all
systems of mutually orthogonal functions with piecewise continuous de-
rivatives in [0,1] such that vk(0) = vk(l) = 0.

THEOREM 2.2. Lei λΛ[p], k = 1, 2, , w, δe ίλβ yϊrsί w eigenvalues
of a string of unit length with fixed ends whose density is an increas-
ing function p(x). If Xk[H(x, t)]9 k = 1, 2, , n, are the first n eigen-
values of a string whose density is the step function defined by (2.1),
then

\\1p{x)dxΎ1 Σ λr t
LJo J fc-i

x, t0)]

where H(x, t0) is the step function (2.1) and t0 is a suitable value in
[0,1].

Evidently, the inequality is sharp.
By Courant's theorem, we have for the eigenvalues of the system

(1.5)

Σ λ;:1 = max
n \ p{x)v\dx
V Jo

vndx

for suitable vk. Using (2.2) and changing the order of integration we
have

Σ λfcx = max ~ t) Σ
fc

)v\dx

Ί
Jo

v'Mx

Since all the factors are positive we find

n [H(x,t)vl
V Jomax

v
Jo

Again by Courant's theorem, we get

Σ λ*"1 < Γ(l - ί)j Σ [UH(x, ί]-1 Up(t) ,
fc = i Jo I fc = i

so that, as in the proof of Lemma 1.1, we have

fc = i ί e [ o , i ] fc = i

We found in the proof of Theorem 2.1, that λx[iϊ(x, t)] becomes infinite
as t—>1. Hence, ΣLi[λfc[iϊ(^, ί)]]"1 approaches zero as ί—»1. Thus,
there is a number δ > 0 such that t > 1 — δ implies that
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l.u.b. Σ [λjtf]]" 1 > Σ [\[H(x, ί)]]-1 .

But for t e [0,1 — δ], H(x, t) is uniformly bounded. Hence, Lemma 1.3
implies the desired result.

While it seems to be difficult to obtain exact numerical bounds for
the higher eigenvalues of the system (1.5), when p(x) is monotone, it is
possible to give a geometric characterization of the function p(x) which
corresponds to the minimum value of λw[p].

THEOREM 2.3. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a monotone increasing function
p(x). Then there is a string with the same total mass whose density
is a monotone increasing step function q{x) with at most n jumps such
that

(2.10) λjp]>λjg],

where Xn[q] is the nth eigenvalue of the string with density q(x).

Let un(x) be the nth eigenfunction of (1.5) corresponding to Xn[p].
It is well known that un(x) has exactly (n + 1) zeros in the closed in-
terval [0,1]. We denote these zeros by

x0 = 0 < xλ < x2 < <xn-λ < xn = 1 .

In each open subinterval {xk, xk+1), un(x) has only one maximum or one
minimum so that u\{x) has a maximum there. We denote these n maxi-
mum points by xx < x2 < < xn.

We will show presently that it is possible to construct a function
q(x) in such a way that over each of the intervals (xk-lf xk), (xk, a?Λ), & =
1,2, •• ,n,q(x) and p(x) are related as indicated in Lemma 1.2. By
Lemma 1.2, we will then have

p(x)u2

n(x)dx < \ q(x)uA

n(x)dx , k — 1, 2, , n ,

and

_ p(x)ul{x) dx < \ q(x)ul(x)dx , k = 1, 2, , n .

Upon adding these inequalities, we get

S xk ΐxk

p(x)ul(x)dx < \ q(x)u2

n(x)dx , k — 1, 2, , n .
xk-l Jχk-1

If we fix the string at the nodal points xk, k = 0, 2, ,n, then it is
known [5] that
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I k p(x)u\dx

By (2.11), we have

ut2dx
k = 1, 2, , n

S xfc

X f c - 1

>2dx
> £_i > mm

q(x)u2

ndx ue0' \ k q(x)u2dx
i J χ

f c -i

where w(a?fc) = 0, k = 1, 2, , n. In particular, Xn must satisfy

w > max min
)u2dx

But the quantity on the right is greater than the nth. eigenvalue Xn[q\
of a string with density q{x) so (2.10) will hold (See [5]).

It remains to be shown that there exists a function q(x) of the de-
sired form.

We first consider the intervals (xkf xk], k = 1, 2, , n. Here we set

_ p(x)dx = ak , fe = 1, 2, , n .

xk

Since p(a ) is monotone increasing, the hypothesis of lemma (1.2) is ob-
viously satisfied. For the intervals (xk-19 xk), we choose a point tk e
[^-1, xk] such that

5 χk

p(x)dx - ak^(xk - x^)
X f c - 1

k = 1, 2, , w, where we take α0 = 0 and set

fc = 1, 2, , n. By the definition of the αfc's, p(x) > ak-lf x e [xk-lf tk)
and p(x) < ak for x e [ίfc, xfc) so that the hypothesis of Lemma 1.2 is
again satisfied. Thus, the function q(x), x e [0, 1] may be taken to be

q(x) = ak, x e (tk, tk+1) , k = 0,1, 2, ., n ,

where we let t0 = 0 and £n+1 = 1. This proves the theorem.

3 Convex densities* We now turn to the consideration of (1.5) in
the case where p(x) is convex. We have the following theorem.
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THEOREM 3.1. Let \[p\ be the first eigenvalue of a string of unit
length with fixed ends whose density is a continuous convex function
p(x). Then

λ f /yil 1 /γ\(/y\/Ί/y» ^> Λ

Jo

where λ0 = 9.397 . The inequality is sharp and equality is attained
for a string whose density is the piecewise linear function

0 , x 6 [0, ί0] ,

(3.1) G(α, «o)= 2

 x~ ** χe\t 1]
( l - tQy'

where tQ = 0.104 .
We first note that any positive convex density p(x) may be written

as the sum pλ(x) + p2(x) where p£x) is a positive monotone increasing
convex function and p2(x) is a positive monotone decreasing convex func-
tion. In particular, we may define pγ(x) such that p^O) = 0 and p2(x)
such that p2(ί) = 0. If ξe [0,1] is a minimum point of p(x), it is easily
confirmed that the functions

, , \v(ξ)χ , ^€[0,^1 ,

(p(x) ~ p(ξ)(ί - x) , a e [£, 1] ,

and

p2{x) ~ ]

(p(|)(l — a?) , xe[ξ,l] ,

have the required properties.
We may thus express p(x) as p(x) = αpx(x) + βp2(x)f where Mα —

^(ίcjdαj, Λf/9 = I p2(x)dx, px(x) — pL(x)lct and p2(x) = p2(x)lβ From the
.. o Jo

Rayleigh quotient we then have

(3.2) X^[p] = max

< max a[J(p19 u)]~λ + max /5[J(p2 u)]-1 .

Let λjfpj and λi[p2] be the first eigenvalues of strings with fixed end
points and densities pλ{x) and p2(x)(x e [0, 1]) respectively. Then, from
(3.2),

\[p] > minίλitpj, λjp]) .
( 1 , 2 )

Because of the symmetry of the boundary conditions u(0)==^(l)==0,
it is obvious that the bound for Xλ[p] in the case of monotone increasing
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p(x) is the same as that for monotone decreasing p(x). Hence, we need
only consider monotone increasing functions. Furthermore, as shown
above, we may assume that p(0) = 0.

Now set

0 , α e [ 0 , t ] ,

x — t , xe[t,l],

where ί e [0,1]. We first assume that the increasing function p(x) is
bounded and that the left-hand derivative pL{x) is bounded for xe[0f 1].
It then follows from integration by parts and the fact that

for such a function p(x)[13], that

p(x) = p>_(0)χ + [1g(χi t)dpL(t) .
Jo

If we set G(x, t) = (2/(1 - t)*)g(x, ί), we have

p(s) = [G(x,t)[ll2(l-tγ]dpL(t).
Jo

Here we have replaced the original value of p'_(x) at x = 0, by p'_(0) = 0;
evidently this does not change our result. By Lemma 1.1, we then have

(3.3) \[p] > g. 1. b. λJGfc, ί
βeco.1]

If p(x) or its left derivative is not bounded in [0, 1], we may consider
the system

(3.4) u" + Xp(x)u = 0, u(0) = u(l - ε) = 0

where ε > 0 is arbitrarily small. In the interval [0,1 — ε], p(x) and p'-(x)
are bounded, so transforming the system (3.4) to the unit interval we
find, by (3.3), that

(1 - ε)X1[pl\1~Sp(^)dx > g. 1. b. \[G(x, t)] ,
Jθ ί€[0,l]

where λx[p]ε is the first eigenvalue of (3.4). Since ε is arbitrary and the
eigenvalues are continuous functions of the length of the interval, it
follows that (3.3) holds for any increasing convex density p(x).

To find the values of t for which the greatest lower bound of Xλ[p]
is attained, we employ a procedure similar to that used in a correspond-
ing situation in the proof of Theorem 2.1. Our problem is then seen to
reduce to the computation of the lowest eigenvalue of the system
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9Λ
(3.5) u"(x) + —^—-{x - t)u{x) = 0, tv'it) = v{t), v(l) = 0 .

(1 t)

The eigenfnnctions of (3.5) are [7J

- ί

where J±(1/3)(ί/) are Bessel functions of order ±1/3 and zm=(2/3)l/2λ(l — ί)" 1

is the nth. positive root of

(3.6) (1 - O^Dd-)"1 '/,^) + ίr(|)(|)1/3J_1/3(2) = 0 .

Hence, the eigenvalues of (3.5) are

(3.7) λn[G(s, t)] = _ p — , n = 1, 2, • .

We denote the left side of (3.6) by F(t, z). To find the value ί0 which
minimizes λx[Gl, we must investigate some properties of this function.
The first positive zeros of J^z) and J"-1/3(2) are ξQ = 1.87 and ξx = 2.90,
respectively [9]. In (0, £0), F(0, z) and F ( l , 2) are positive. Hence, F(t, z)
has no zeros in this interval for t e (0,1). In [ξ0, ξx), F(0, z) is positive,
while F(l, z) is negative in (ξ09 £J. Accordingly, for t e (0,1), F(t, ξQ) is
negative while F(t, ξx) is positive. Hence, F(t, z) has its first zero in
(|0> | j). Furthermore, there is only one zero in this interval for a given
value of t, since

-F.(t, z) = (1 - ί)Γ(4/3)(^/2)-1/3J4/3(^ + ίΓ(2/3)(^/2)1/3

β72/3(^) ,

and it is known that each of the terms on the right side is positive for
s € (lo> £1). Thus, for a given t, F(t, z) is monotone decreasing over this
interval and thus has only one zero there.

Since we are considering only the first zero zλ(t), we will drop the
subscript and write z(t). We have

ί 3 8 ) dz_ =

dt (

and by (3.7),

(3 9) d\[G] = 9̂ ; Γgdg , g 1
dί 8(1-t) I dt 1 - ίJ "

If we evaluate this at i = 0, we find (dX^G^jdtl^ = -1.38. Further-
more, since g(ί) is finite for all ί e [ 0 , 1], (3.7) implies that for t—•> 1,
^i[G] - ^ + ω so that Xi[G] has a minimum at some value t0 e (0, 1). At an
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extremum V of λx[G] we must have {dX^(J\)\dt\v = 0, so that (3.9) implies

(3.10) ^ 7dt 2 1 - t '

If we substitute (3.8) into (3.10) and then eliminate V between this
result and (3.5), we get

where z' = z(t'). If we use the relations [7],

Jφ(x) = (1/3) (x/2)"1^^) -

i i * ( ) > ι > ( ) + Φ ( ) 2 l 5 ( )

and

l ) Γ ( l
we finally arrive at the equation

Γ ( l ) Γ ( l ) = π / s i n 7 r / 3 '

We show that this equation has only one zero in (ξ0, ξ^, i.e., that
\[G] has only one extremum for t e (0, 1). This will be the case if the
derivative of the expression on the left of (3.11) is of one sign for
z' e (ξ0, £i) The following statements relate to this interval.

( i ) [Γ(2/3)(«72)1/3J-.1/3(ί2')]» is negative and decreasing.
(ii) -(2/3)Γ(4/3)(2;72)-1/3/1/3(^), is negative so that the quantity in

the second bracket also is negative.
(iii) The second bracket is decreasing.
The last statement requires verification. The derivative of the

quantity in question is

(iii) will be verified if we show that

(3.12) J f f l g (z'l2ΓJ^(z') - Jφ(z') > 0 ,
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for z e (£<,, ξx). Since

A-(zl2f'*J2l5(z) = {zβψtJ^lz) < 0 ,
dz

we have

Furthermore maxξ ( )<,<ξ ι !/4 l^) < .52. Evaluation of (3.12) then gives the
desired result.

We thus conclude that the left-hand side of (3.11) is increasing and
hence, that XL[G] has only one extremum for te(0, 1). But we know
that there is at least one minimum so that it must be determined by
(3.11), i.e., t0 = V. From (3.11) we find by Newton's method that
zv(Q = 2.73 so that t0 = .104-••. Therefore, we find that

Xλ[G(x9 t)] > X^Gix, t0)] = 9.397-.. .

Corresponding to Theorem 2.2, we have the following.

THEOREM 3.2. Let Xk[p], k — 1, 2, « , n be the first n eigenvalues
of a string of unit length with fixed ends whose density is a continu-
ous convex function p(x). If Xk[G(x, t)}, k = 1, 2, , n are the first n
eigenvalues of a string whose density is the convex increasing function
G(x, t) defined in (3.1), then

ϋ p(x)dxΎ1 Σ \?[p] < v χ-ι[G(x, Q]

where t0 is a suitable value in [0, 1],
Evidently, the inequality is sharp. The proof has the same formal

relationship to that of Theorem 3.1 as the proof of Theorem 2.2 had tc
that of Theorem 2.1. Since no additional ideas are involved, we omϋ
the proof.

Theorem 3.1 can be used to obtain an explicit lower bound for the
second eigenvalue X2[p] of the system (1.5) when p(x) is convex.

THEOREM 3.3. Let X2[p] be the second eigenvalue of a string with
convex density. Then

X2[p]\ p(x)dx > 4λ0 ,
Jo

where λ0 is the value defined in Theorem 3.1. This inequality is shar%
and equality is attained for a string with density q(x) where

|G(1 - 2a?, ί0), x e [0, 1/21 ,

~Ί~lyt0)fxe [1/2,1] ,
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G(x, t) and t0 being defined as in Theorem 3.1.
Let u2(x) be the eigenfunction corresponding to X2[p]. Then u2(x)

has exactly one nodal point xx e (0,1). If we hold the string fixed at
this point, we get two independent strings, each of which has the lowest
eigenvalue X2[p]. By Theorem 3.1 and equation (1.6), the lowest eigen-
value of a string with a convex density satisfies the inequalities

(3.13) X2[p] > —-h = μ>
xλ p(x)dx

Jo

and

(3.14) X2[p] > ^ = μt*.
(1 — xM p(x)dx

We may take the density function for which the bound in (3.13) is
attained to be

p(x) = CXG(^^ , ίo\ x e [0, x,] ,

V xλ /

p(x)dx = I p(x)dx. For the second segment the
o Jo

bound is attained for the density function

p(x) - βθ(^-^ , ίo\ x 6 [χ19 1]

V 1 — x λ I

p(x)dx = \ p(x)dx .

xχ Jo

Now, consider a string whose density function is defined by piecing
together the above densities at xλ. This particular choice of p(x) then
gives us a convex function. The second eigenvalue λ2[p], of the result-
ing string satisfies the relationship X2[p] < max (//, //'). Hence, (3.13)
and (3.14) imply that

(3.15) X2[p] > X2[p] ,

where X2[p] is the second eigenvalue of

(3.16) u" + Xp(x)u = 0, u(0) = ^(1) = 0 .

We now consider this system with p(x) replaced by

q(x)

Xγ
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where a and β are now determined by the conditions \ q(x)dx = M, a>
. 0

0, β>0 and where x1 e [0, 1] is a free parameter. It is clear that g.l.b.(αί β x)

ί
χ i _ Γ1 _

q(x)dx so that I q(x)dx =
0 _ J?l

(1 — #)M. We now show that smallest possible value of X2[q] is attained
when xx = 1/2 and 6> = 1/2.

Let X2[q] = X2(x19 θ). We first show that MX2(x19 6>)>4λ0 if xγ e [0, 1/4)
or ^6(3/4,1]. Assume xι e [0, 1/4) and consider the case where x[, the
nodal point of the eigenfunction corresponding to X2(x19 θ)9 lies in the
interval [0,1/4). If we hold the string fixed at x[, the resulting segments
each have a lowest eigenvalue X2(xlf θ). In particular, X2(xlf θ) is the
lowest eigenvalue of the segment [0, x[]. By Theorem 3.1 and equation
(1.6), we have

x[\
x'q(x)dx X'M

JO

But x[ < 1/4 so that MX2{xl9 Θ) > 4λ0. It follows in the same way that
if #[€(3/4, 1] then \2(xl9 Θ) > λo(l — x[)~λ-M-1 and hence we again have
M\(x19 6>)>4λ0. Similarly if xλ e (3/4, 1] we conclude that MX2(xlf <9)>4λ0

so that this inequality holds unless xx e [1/4, 3/4].
Hence, we consider the system (3.16) with q(x) in place of p(x) where

#! e [1/4, 3/4]. With xx restricted in this manner, it follows that the
family of density functions q{x) is bounded uniformly. Hence, by Lem-
ma 1.3, there are value x\ and θ° such that X2(x°19 θ°) = min^eXata?!, θ] for
some density q°(x).

We first note that x\ must be a nodal point of the corresponding
eigenfunction, for otherwise we could hold the string fixed at the nodal
point and find another density which would give a lower second eigen-
value by the process which was used to obtain (3.15).

Thus, the lowest second eigenvalue is given by

Solving for θ\ we find θ° = l-x°ly so that X2[x°lf θ°] = λo/(^(l - x°)). This
is obviously smallest when x\ — 1/2, so that θ° = 1/2. By (1.15) we then
have the desired result.

We now consider the higher eigenvalues of the system (1.5) when
p(x) is convex. Unfortunately, we cannot use the technique just de-
scribed for X2[p]f since the resulting function will, in general, not be
convex. It is, however, possible to obtain a geometric characterization
of the extremal density.
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THEOREM 3.4. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a continuous convex function
p(x). Then there is a string with the same total mass whose density
is a pίecewise linear convex function q(x) with at most n + 1 distinct
linear segments such that

where Xn[q] is the nth eigenvalue of the string with density q(x).
Let un(x) be the nth eigenfunction of (1.5) when p(x) is convex.

As in the proof of Theorem 2.3, we use the fact that Xn = J(p, un),
where J(p, u) is the Rayleigh quotient (1.10). If we construct a func-
tion q{x) such that the inequality (2.11) is satisfied, then it follows as
in the proof of Theorem 2.3 that Xn[q] < Xn[p] Hence, it remains to be
shown that such a function q(x) exists.

We begin by carrying out a preliminary construction. As in Theorem
2.3, we denote the minimum points of u/n{x) by xk, k — 0, 1, , n, and
the maximum points by xk, k = 1, 2, , n. We consider each of the
intervals (xk-ιy xk)k = 1, 2, , n separately. Let a(x) be any linear func-
tion such that a(x) < p(x), x e [xk-lf xk]. Then r(x) — max[a(x), 0] satis-
fies the inequality 0 < r(x) < p(x).

We now consider one of the intervals, say (xk-lf xk), where l<k<n.
Let ck be any number such that ck > p(xk). Then there is a number ak

such that

(3.18) y [ak(x - xk) + ck]dx = y p(x)dx .

If ak(x — xk) + ck > r{x)y x e [xk-lf xk], then we define

9*fa, ck) = ak(x - xk) + ck, x e [xk-19 xk] .

If ak(x — xk) + ck < r(x) for some xe [xk-19 xk], we determine ak by the
condition

(3.19) \ k r(x)dx + \ k

f[ak(x - xk) + ck]dx = \ k p(x)dx ,
Jχk-1 ^xk JχJc-l

where xk is such that ak(xk — xk) + ck = r(xk). We then define

\r(x) , x e [xk.lf x'k] ,

[ak(x - xk) + ck, xe [x'k, xk] .

Likewise, we find bk such that

(3.20) \^[bk(x - xk) + ck]dx = \**p(x)dx .
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If bk(x — xk) + ck > r(x), x e [xk, xk\> we define

K(%, ck) = 6Λ(& - £fc) + ck, a; e L̂ fc, αΛ] .

If 6fc(cc — ά?fc) + cfc < r(as) for some xe[xk, xk], we determine bk by the
condition

(3.21) Γfc [6s(a? - άfc) + ck]dx

J xfc

where xk satisfies bh(x" — a?Λ) + ck = r(cCfc), and define

7 , , f&fc(̂  - »*) + cfc , a; e [xk, x'ζ\

We may consider alύ and 6/, to be functions of c/c, where clc > p(x,c).
In fact, they are continuous functions for any finite ck, since a small
change in c!ύ can cause only a small change in either ak or bk. We want
to show that there is a value of ck, say c'k, such that ak = bk, i.e., such
that ak — bk = 0 for cfc = c'k. If cfc = ί?(»Λ), the convexity of p(x) implies
that the corresponding value of ak — bk is non-positive. Furthermore,
for ck sufficiently large, the corresponding value of ak — bk is positive.
But ak — bk is a continuous function of ck so that the desired value ck

exist.
We now let

nfa, c'k) , xe\xk-ltxk] ,

From (3.18) or (3.19), whichever applies, we have

\ k qk(x)dx = I fc p(x)dx .

Hence, the convexity of p(x) and the form of qk(x) imply (by Lemma
1.2) that

(3.22) [k qk(x)ul(x)dx > \** p(x)K(x)dx .

Similarly, from (3.20) or (3.21) we have

(3.23) \X* qk(x)u2

n(x)dx > \Jp(x)u2

n(x)dx .

We are now able to construct the function q(x) by complete induc-
tion. To avoid excessive detail, we carry out the proof only up to n = 3.
In (x0, Xj), we set r(x) = 0, and form qx(x). In (xi9 x2) we also form q2(x)
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with r(x) — 0. Then, comparing qλ{xλ) and q2{xλ), we have the following
alternatives:

( i ) If q^) > q2(%i)> we form a new function q2(x) with r(x) =
max[gi(^), 0], x e [xlf x2],

(ii) If q^Xi) < ?2(#i)> we form a new function qλ(x) with r(#) =
max[0, q2(x)],xe[x0, x,].

(iii) If QΊ(#I) = #2(̂ i)> we leave qλ{x) and g2(#) as they are. Using
whichever alternative applies, we define

\q2(x) , xe[xlfx2] .

Now, form q3(x) with r(x) = 0 for x e [a?a, x3] and compare g(1)(as2) and
tf3(^2) We have the same alternatives as above, the only difference in
procedure being that if qω(x2) < qJipo2), we must redefine qω(x) with
r(x) = max[0, qs(x)] for a? e [x0, x2] .

It is clear that the induction can be carried out. Furthermore, the
resulting function q(x) will be convex, for by the above construction any
two adjacent linear segments of the graph of q(x) can only have a com-
mon point, such that the corresponding value of q(x) is less than or
equal to p(x). Because of this convexity, there is at most one subinter-
val over which q(x) — 0. Hence, for each of the points xte9 k = 1, , n,
there is at most one vertex of the graph of q{x), except for possibly the
one just mentioned. Thus, the graph of q(x) has at most n + 1 linear
segments. That q(x) satisfies the inequality (2.11) follows immediately
from (3.22) and (3.23). Hence, our theorem follows as in the proof of
Theorem 2.3.

4 Concave densities* In this section, we consider the system (1.5)
when p(x) is concave. We prove the following.

THEOREM 4.1. Let Xx[p] be the first eigenvalue of a string of unit
length with fixed ends whose density is a continuous concave function
p(x). Then

1

p(x)dx > λ0
o

where λo = 6.952 . The inequality is sharp, equality being attained
for a string whose density is the symmetric triangular function

ί4x , * e [0,1/2],

{4(1 - a;) , x e [1/2,1] .

We first assume that p(x) has finite left and right derivatives in the
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closed interval [0, 1]. We define/(ίc) = —p'_(ίc), x e [0, 1] where we have
set pL(0) = p'+(0). We then define

j a ; ( l - t ) f xe[0,t),
9{X' ' ( ( 1 - x)t , xe[t,l).

It follows from integration by parts and the fact that

[f(t)dt = p(0) - p(l)
JO

(p(t) is absolutely continuous) that

p(x) - p(0)(l -x) + p(l)x + [g(x, t)df(t) .
Jo

If we set G(x, t) = 2/ί(l - t) g(x, t), we get

Here, we have modified f(t) so that the integral includes the terms
p(0)(l ~ x) and p(l)x. By Lemma 1.1, we have

\[p]\ p(%)dx > mmX^Gix, t)\ .
Jo fe[o,i]

The minimum exists by Lemma 1.3.
If either the right or left derivative is not finite in [0, 1], we con-

sider the system

u" + \spu = 0 , u(e) = u(l — e) = 0 ,

where ε > 0 is small. The above considerations then hold for this system
and we have

(1 - 2ε)XL[p]X *p(x)dx > min λJGO, t)]
Jε ce[o,i]

Letting ε —> 0, we have the desired result.
To find the value of t for which Xj[G(xt t)] is a minimum, we con-

sider the system

(4.1) u" + \G(x, t)u = 0 , u(0) = u(l) = 0 .

It is convenient to translate the system to the interval f —1/2, 1/2].
Thus, we consider

(4.2) v" + TiG^x, t)v - 0 , v(-l/2) = v(l/2) - 0 ,

where
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U*h Π~ ± "I/O

Gl%, ί) = ' +

, 1 - 2 *
1

JL

- 1 / 2 < ί < « < 1/2

We show that Xλ[Gλ{x, t)] is a minimum when £ = 0.
Following Hardy, Littlewood and Polya [6], we define the rearrange-

ment of a non-negative integrable function g(x), x e [ —1/2, 1/2] into a
symmetrically decreasing function g(x), x e [—1/2,1/2]. To do this, con-
sider the set S = {x \ g(x) > y}, where y is some number in the range
of g(x). Let μ{S} be the measure of the set S. We define the function

™>(y) = / Φ Iff 0*0 ^1/}
and let

a? e [0,1/2] ,

α?e [-1/2,0] .

where m~ι denotes the inverse of m(y). In particular, since m{y)~l — yβ
for g = Glfye [0, 2], we find that this symmetrization transforms G ί̂c, t)
into GiO, 0). Thus

Gl(x, 0) = Gl(*, ί) = P
(2(1 +2a?) , a? 6 [-1/2,0].

By a result of Beesack and Schwarz [2], the first eigenvalue of (4.2)
is greater than the first eigenvalue of

v" + XG^x, t)v = 0, v(-l/2) = v(l/2) = 0 ,

i. e., λ^Gίa?, ί)] > \[G(x, 1/2)]. Hence, λ^p] > \[G(x, 1/2)] = \[T(x)].
If we solve (4.1) with t = 1/2 [7], we find the eigenvalues to be

λn[G(a?, 1/2)] - (9/2K ,

where zn is the ^th positive root of the equation

and J_2/3 is the Bessel function of order —2/3. Numerical calculation
gives the result

\[G(xfll2)] =6.952 . .

As in the case of monotone and convex densities, we have the fol-
lowing result for the first n eigenvalues of (1.5) when p(x) is concave.

THEOREM 4.2. Let Xk[p], k = 1, 2, , n be the first n eigenvalues
of a string of unit length with fixed ends whose density is a continuous
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concave function p(x). If Xk[G(x, t)], k = 1, 2, •••,%, are the first n
eigenvalues of a string whose density is the triangular function

, x e [0, t] ,

G(x, t) =

then

B l -l-l n n

p\X)ax 2-i *>κ LPJ 2-ι -^ ^*; L̂ V ^j ô J
0 J fc = l fc = l

/or suitable t0.
It is evident that the inequality is sharp. We omit the proof since

it contains no new ideas.
For the higher eigenvalues of (1.5), when p(x) is concave, we prove

the following.

THEOREM 4.3. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a continuous concave function
p(x). Then there is a string with the same total mass whose density
is a piecewise linear concave function q{x), where the graph of q(x) has
at most n + 1 linear segments and where q(0) = q(l) = 0, such that

where Xn[q] is the nth eigenvalue of the string with density q(x).
We use the same construction as in the proof of Theorem 3.4. This

is possible, for if p(x) is concave, — p(x) is convex.
Let un(x) be the nth eigenfunction of (1.5) when p(x) is concave.

As in § 2, we denote the nodal points of un(x) by xk9 k = 0, 1, 2, , n,
and the maximum points by xk, k = 1, , n. Then —u2

n(x) has the
maximum points xk, k = 0, 1, •••,#, and the minimum points xk, k = 1,
2, •••,%. Over each of the intervals (5?fc, 5fc+1), k = 1, , n — 1, we way
define — qk(x, ck) where now — p(xk) < cfc < 0, as in Theorem 3.4. As
before, there is a value of ck = c'k such that qk{x, c'k) is linear at x~xk.
For the intervals (0, xλ) and (xn9 1) we let c0 = 0 and and cn = 0 so as to
define —qo(x, c0) and — gw(x, cw). Now using the same induction argument
as in Theorem 3.4, we form the functions — qk(x, ck) and obtain a func-
tion — q(x) which is convex and satisfies the inequality

(4.4) \ p(x)u2

n(x)dx < \ q(x)Undx .
Jo Jo

Here, r(x) is always a linear function and is always negative. The
graph of — q(x) consists of at most n + 1 linear segments, one for every
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point xk, k = 0,1, , n, and q(x) is concave. By the argument used in
the proof of Theorem 2.3, it then follows that Xn[p] > λn[g].

5. The general Sturm*Liouville system. We now turn to the Sturm-
Liouville system

(5 χ ) [r(x)u'Y + [Xp(x) - q(x)]u = 0 ,

u'(0) - h0u(0) = u'(l) + h&Q) = 0 ,

where p(x) and q(x) are non-negative integrable functions, r(x) e C is
positive, and h0 > 0, hλ > 0. The lowest eigenvalue of this system is
given by

I [r(x)uf2 + q(x)u2]dx
(5.2) Xί[p] = πiin J^

ueo'

where the functions u(x) satisfy the appropriate bonndary conditions.
It is easy to see that the conclusion of Lemma 1.1 also applies to

this differential system, i. e., if p(x) can be expressed in the form (1.8),
then

\[p]\1p{x)dx > g.l.b. \[K(x, ί)] ,
Jo tε[o,i]

where Xλ[K(x9 t)] is the first eigenvalue of the system (5.1) with p{x)
replaced by K(x, t). Hence, it is possible to generalize Theorems 2.1,
3.1 and 4.1 to the system (5.1). We have

THEOREM 5.1. The densities p(x) minimizing the expression

Xi[p]\ p(x)dx, where Xx[p] is the lowest eigenvalue of the system (5.1)
Jo

under the assumptions
(a) p(x) is monotone,
(b) p(x) is convex,
(c) p(x) is concave,

are of the same character as those discussed in Theorems 2.1, 3.1 and
4.1, respectively.

The proof of the theorem presents no new features. It should, how-
ever, be noted that the symmetrization argument used in the proof of
Theorem 4.1, cannot be applied unless q(x) and r(x) have the symmetric
property q{x) = q(l — x) and r(x) = r(l — x). In the general case, all
that can be said is that the graph of the extremal density consists of
two linear segments passing through (0, 0) and (0,1), respectively. It
should also be noted that the lack of symmetry in the boundary condi-
tion of (5.1) makes it impossible to tell, in general, whether the g.l.b.
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Xiίp] for monotone convex p(x) is approached in the case of increasing
p(x) or decreasing p{x).

We now consider the system

(5.3) u" + [Xp(x) - q(x)]u = 0 , u(0) = u(l) = 0 .

We denote the first eigenvalue of (5.3) by XL[p, q]. We have the follow-
ing lemma.

LEMMA 5.1. Let q(x) be of the form

q(x) = [K(x, t)g(t)df{t)
Jo

where K(x> t), g(t) and f(t) are as defined in Lemma 1.1; then

\[P,Q] >g.lb.XdP,QK(x,t)],
ce[o,i]

where Xλ[p, QK(x, t)] is the lowest eigenvalue of

u" + [Xp(x) - QK(x, t)\u = 0 , u(0) = u(l) = 0

and Q = i q(x)dx.
Jo

By (5.2), we have

Γjic/2 +ΓΓx(a;, t)g(t)df(t)~\u2ldx
Xi [P, q] = ^ £ — f l — ' —

\ pu2dx
Jo

Hence,

\ [p, QΊ > mm \ g(t)
ueo' Jo \ p(x)u2dx

Jo

(VQ)\g(t)df(t) g. 1. b. λ, [p, QiΓ(x, ί)] .
Jθ ίg[0, 1]

But Q = I g(t)df(t), so that the conclusion of the lemma follows .
Jo

If (?(#) is concave, Lemma 5.1 yields the following result.

THEOREM 5.2. The lowest eigenvalue \[p, q] of (5.3) when q(x) is
concave satisfies the inequality

\[P, Q] > rain λjp, QG(x, t)]
teco.i]

where λx[p, QG(x, ί)] is the lowest eigenvalue of (5.3) with q(x) replaced
by QG(x, t), G(x, t) being defined by
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| , X β [0, t] ,

G(x, t) =
~ x)

We first assume that q'+(0) and qL(l) are finite. As in Theorem 4.1,
we may express q{x) as

q(x)=[G(x,t)[t(l-t)l2]df(t).
Jo

By Lemma 5.1, we have

(5.4) \ [p, q] > g. 1. b. \ [p, QG(x, t)] .
ίe[o,i]

If g'+(0) or q'-(l) are not finite, we consider the system (5.3) with x re-
stricted to the interval [ε, 1 — ε]. Transforming this system to the unit
interval, we see that (5.4) applies, so that letting ε —> 0, we find that
(5.4) holds in general for concave q(x).

Since λjp, QG(x, t)] is a continuous function of t e [0, 1], there must
be a value of t for which the greatest lower bound is attained.

The same procedure can be made to yield corresponding results in
the case of monotone and convex densities.

We close this section with some remarks about the system

(5.4) u" + Xp(x)u = 0 , i*'(0) = nil) = 0 ,

where \ pdx = 1 .
Jo

If p(x) is monotone increasing, then X19 the lowest eigenvalue of
(5.4), satisfies λ x > ττ2/4.

This follows immediately from Lemma 1.2 if we compare p(x) and
q(x) = 1.

Similarly, if we compare a concave density p(x) and q(x) = 2x, we
find that \[p] satisfies the inequality

λ x > λ 0

where λ0 = 6.95 /4 is the lowest eigenvalue of (5.4) with p(x) = 2x.

6. The vibrating rod The eigenvalue problem associated with a
rod with clamped ends at x = a and x = b is

(6.1) yiυ - μp(x)y = 0 , y(a) = y'(a) = y(b) = y\b) = 0 .

As in the case of the string, we may transform this system to the unit
interval. We have

(6.2) uiυ - \p(x)u = 0 , u(0) = M'(O) = u(l) = ̂ (1) = 0 ,
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where p(x) = (b — a)ρ[(b — a)x + a], we note that I p(x)dx = \ p(x)dx.
JO Ja

The eigenvalues μn[ρ], n = 1, 2, , of (6.1) are related to those of (6.2)
by the equation

K[P\ =Φ- aYμn[ρ] , n = 1, 2,

The first eigenvalue of (6.2) is equal to the minimum of the Rayleigh
quotient

[\u")2dx
(6.3) J(p, u) = -As

J

where u(x) ranges over all functions ueC2 such that u(0) = uf(0) = 0

and u(l) = w'(l) = 0.
The following results correspond to Theorems 2.1, 3.1 and 4.1 for

the string.

THEOREM 6.1. Let λjp] be the lowest eigenvalue of a rod of unit
length with clamped ends. From the assumptions that

(a) p(x) is monotone,
(b) p(x) is convex,
(c) p(x) is concave,

we have

1 Jo 1

where

(0 , x e [0, ί0] ,

(α') JΓ(a, t0) = 1 . -

0 , a? e [0, ί0] ,

(6') JBΓ(a;,ίo) = - t0) , x e (ί0,1] ,

, xe[0, ίo] ,

(c') ίΓ(a;,ίo) =
^ r , «e[ ί o , l ]

respectively', /or suitable values of t0.

There is nothing new involved in the proof over that of the corre-
sponding theorems for the string. In fact, we need only replace thq
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Rayleigh quotient of (1.5) by (6.3) and the respective proofs for the
corresponding string problem apply.

In the case of concave p(x), it can be shown that λx[p] takes its
smallest value for tQ = 1/2, i.e., we have the following result.

THEOREM 6.2. If \[p] is the lowest eigenvalue of a rod with
clamped ends whose density function is a positive concave function p(x),
then

\[p]\pdx > λjpo] ,
Jo

where

(4(1 — a?) , a? 6 [1/2,1] .

The proof will be based on the following result of Beesack [1].

THEOREM 6.3. Let p(x) be continuous and non-negative for x e
[ — 1/2, 1/2] and let p(x) be the rearrangement of p(x) into symmetrically
decreasing order. Then the first eigenvalues of the system

(6.4) uίυ - Xp(x) = 0, M( —1/2)=%'(—1/2) =

and

(6.5) viβ - μp(ίφ = 0, v(-l/2) = v'(-l/2) == v(l/2) = v'(l/2) = 0 .

satisfy the condition

(6.6) lh[v\ < \[P]

The rearrangement of p(x) into symmetrically decreasing order is
defined as above in Theorem 4.1.

The proof of Theorem 6.2 follows immediately from Theorems 6.1
and 6.3, since the symmetrization of

l*L , x e [0, ί] ,

K(x, t) =

_ M , X 6 [ί, 1] ,

is K(x, 1/2).
Theorem 6.3 also leads to a result corresponding to that of Krein

for a string with a bounded density function.

THEOREM 6.4. Let p(x) satisfy the condition 0<p(x)<H<™,
#e[0,1]. Then the lowest eigenvalue Xλ[p] of a rod with clamped ends
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and density p(x) satisfies the inequality

f1

λ2[ί)] p(x)dx > λ0 ,
Jo

where λ0 is the lowest eigenvalue of the rod with density

o ,

po(x) = •

and where M = I p(x)dx.
Jo

Let yλ(x) be the first eigenfunction of a rod with clamped ends and

density p(x), (the function resulting from symmetrization of p(x) about

x = 1/2). Then it is clear that po(x), p(x) and y\{x) satisfy the hypo-

thesis of Lemma 1.2 over the interval [0, 1/2] so that

p(ί%iO*O<^ :< \ pj^)y\{x)dx .

o Jo

By symmetry, we have

\ p(x)yl(x)dx < \ po(x)yl(x)dx .
Jl/2 J 1/2

Adding these two inequalities, we find

\\y['fdx \\y['Ydx

\[P] - f > f > λ0 .
p{x)y\dx \ po(x)yldx

Jo Jo

Hence, by Theorem 6.2 we have X^p] > λ0.
We close this section with the remark that corresponding versions

of Theorem 6.1 hold if we replace the boundary conditions (6.2) by anj
of the other boundary conditions used in the theory of the vibrating
rod.

7. The vibrating membrane* We consider a vibrating membrane

covering a simply connected domain D whose boundary is a Jordan curve

C. Let p{x, y) be the density of the membrane. We assume that p(x, y

is measurable and that

(7.1) 0 < p(x, y) < H < CXD , (x,y)eD f
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The eigenfunctions and the eigenvalues of this membrane, with the
boundary fixed at (x, y) e C, are determined by the integral equation [14]

u(x, y) = λj I G(x, y, ξ, rj)p{ξ, η)u(ξ, rj)dξdη ,

where G(x, y, ξ, η) is the Green's function of the domain D. We denote
the first eigenvalue by λjp].

We define M and R by the relations

(7.3) M= ίf p(x, y)dxdy , πR2 = if dxdy

and let Z)* be the circle x2 + y2 < R2. In this section, we prove the
following two theorems concerning λ^p].

THEOREM 7.1. The minimum of \[p], subject to the restrictions
(7.1) and (7.3), is given by a membrane covering D* with density

("> «••»> = If1 ".<*!!".<„.
(0 , ρ2 < x2 + y2 < R2

where p is defined by πp2H = M.
Let D be a convex domain. p(x, y) is concave in D if, for (α ,̂ yγ) e Z)

and (x2, y2) e D, we have

For a concave density function, we have the following result.

THEOREM 7.2. Let X2[p] be the lowest eigenvalue of a membrane,
with fixed edges, covering a convex domain D, whose density function
is concave. Then

cr

where λ0 = 3.26 . The inequality is sharp and equality is attained
for a circular membrane of radius R and density

(7.5) pQ(x, y) = plr) - M^{R - r) , 0 < r < R ,
7Γxt

where r2 — x2 -\- y2.

Krein [8] has conjectured the result of Theorem 7.1 for the case
where D = D*. The numerical value of the minimum is given by the
least positive root of
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J0(V XH p) - pJΌiV XH ρ)V XH In p/R = 0 .

To prove these theorems, we use the extremal characterization of
λjp], i.e., the first eigenvalue \[p] of (7.2) is given by

(7.6) \[p] = gΛ.
u

where J(p, u) is the Rayleigh quotient

11 I grad u(x, y) \2dxdy

(7.7) J(p, u) = -ψ
11 p(x, y)u*(x, y)dxdy

and where the greatest lower bound is taken over all continuous func-
tions with piecewise continuous first derivatives, such that u = 0 on C.

As the following lemma shows, the same result is obtained if u is
made subject to additional restrictions.

LEMMA 7.1. The first eigenvalue X^p] of (7.2) is given by

(7.8) \[p] = g.l.b.J(p,u)
u

where J(p, u), is the Rayleigh quotient (7.7) and where the greatest
lower bound is taken over all analytic functions u(x, y) with u = 0 on C.

Since p(x9 y) is a measurable function, Vp(x9 y) is measurable. Hence,
there is a polynomial, Q(x, y), such that for arbitrary numbers δ9η>09

we have

(7.9) \Vp(x,y)-Q(x,y)\<δ

except on a set of measure less than η. Furthermore, Q(x, y) may be
chosen such that q(x, y) = Q\x, y) is non-negative and is less than H.

We consider the membrane over the domain D with density q{xy y).
The eigenfunctions and eigenvalues will be determined by (7.2) with
p(x, y) replaced by q(x, y). In particular, we denote the first eigenvalue
by \[q]. Since q(x9y) is an analytic function in D, it is well known
that

(7.10) X1 [q] = min J(q, u)f

ueo°°

where the minimum is taken over all the indicated functions for which
u Ξ= 0 on C. It is also well known that the eigenvalues of (7.2) are
continuous functional of p(x, y). More precisely, for any ε > 0, there
is a δx > 0 such that

(7.11) jjjj/'fo V
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implies

(7.12)
λi [p]

<e .

It is easy to see that 8 and η may be chosen so that (7.9) implies (7.11)
and hence, also (7.12).

For any analytic function u(x, y) such that u — 0 on C, we now show
that there are values of 8 and rj such that (7.9) implies

(7.13) \[J{v,u)Y*-[J{q,u))-i\<ε

where ε > 0 is arbitrary and 8 and ΎJ are independent of u(x, y).
We have

A = \[J(p, u)]-1 - [J(q, O n < [J(\ p-q\, u)]-\

Now I p — q I = \Vp~ + Vq~ \ \ λ/p~ — Vq~\ < 2λ/TΪ8f except on a set S

of measure less than η. Hence,

max u(x, y)
A < 2]/HS[J(lf u)]-1 + Hη *

\ \ I grad u \2dxdy

By Rayleigh's theorem on the first eigenvalue of a homogeneous mem-
brane [11], J( l , u) > JljR2, where j 0 is the least positive zero of the
Bessel function J0(x) and R is defined by (7.3). Furthermore, if we let
um = max(Xιl/)6Z, u{x, y), then

u dxdy > Aπc ,

where c is the capacity of an infinite circular cylinder of radius R with
zero potential on the surface of the cylinder and potential one on the
axis of the cylinder [11]. Hence, we have

A < 2VΉ^σ +
Jo 47ΓC

so that (7.13) follows.
Let uλ{xyy) be the first eigenfunction corresponding to Xλ[q]. We

may choose δ and rj so that (7.12) and (7.13) hold simultaneously. Hence,
we have

(7.14) I λΓ1 [p] - [J(p, it,)] I < I λΓ1 [P] - λΓ1 [q] I

+ I [J(q, t t i )] - U(P, ih)] \<2ε,

for some function ux{x, y) which is analytic in D.
By (7.13) we have, for any analytic function u(x, y) that
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(7.15) [J(p, u)]-1 < [J(q, u)]-1 + ε .

(7.10) and (7.12) then give

[J(p, u)]-1 < XT'ίQ] + e < X^[p] 2ε .

Since ε is small, we finally conclude that Xλ[p] < J(p, u). This with (7.14)
gives (7.7).

We now introduce the symmetrization of p(x, y) with respect to a
line perpendicular to the (x, ^/)-plane, i.e., Schwarz symmetrization [11].
We may define it by considering the function

<*>(p) = μi(χ> v)> p(χ> v) > p}

where μ denotes the measure of the set indicated and where p is some
number between 0 and H. Then the symmetrization of p(x, y) is

p(x, V) = P(r) = a-\πr2) , r e [0, R] = D * ,

where r2 = x2 + y2.
We now prove the following.

LEMMA 7.2. The lowest eigenvalue Xλ[p] of (7.2) is bounded below
by the lowest eigenvalue Xλ[p] of the membrane with fixed boundary
over D* and density p(x, y).

B. Schwarz [15] has shown that when p(x, y) e C",

\[p] > g-l.b. J[p, u] ,
uec

where now the Rayleigh quotient is defined over D*. By Lemma 7.1,
it follows that Xλ[p] > Xι[p\. The proof of Lemma 7.2 differs only in
detail from the proof of the result of Schwarz.

By Lemma 7.1, there is an analytic function u(x, y) such that

(7.16) \[p] + e>J(p,u)

where ε > 0 is arbitrary. Let ϋ(x, y) = ΰ(r), r e ΰ * be the above sym-
metrization of u(x, y). Schwarz shows that such a symmetrization of
an analytic function gives a function with piecewise continuous first
derivatives and it is further known [11] that

\I I gradu \2dxdy >\\ I g r a d ύ \2rdrdθ .

We also known [6], [11] that

\ \ p(%9 y)u2(x, y)dxdy < \ \ p(r)ΰ\r)rdrdθ .

Hence, we have from (7.16) and Lemma 7.1 that
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\[p] + ε > J(p,ϋ) > Xdp] .

But ε is arbitrary so that Lemma 7.2 follows.
We now prove Theorem 7.1. By Lemma 7.1, there is a symmetric

and analytic function ϋ(x, y) = u(r), (x, y) e JD*, such that for arbitrary
ε > 0 ,

\ [p] + ε > J(p, S) .

ΐZ(r) may be chosen such that it is the first eigenfunction of a mem-
brane with a symmetric, analytic density q(x,y) = g(τ), (#> v) eD*. In
this, case, the integral equation which gives ΰ(r) is equivalent to the
partial differential equation of this membrane. It is easily seen that
ΰ(r) must have its only maximum at r — 0. We now compare the in-
tegrals

iί p(r)u(r)rdrdθ

and

PQ(r)u(r)rdrdθ ,\\j
where po(r) = po(#, 2/) is defined by (7.4). From the definition of p{r)
we have 0 < p(r) < H, 0 < r < R. Hence, ~p(r)r and po(r)r satisfy the
same relationship as p(x) and q(x) of Lemma 1.2. It then follows that

\[p] + ε > J(poΰ) .

By Lemma 7.1, we have λjp] > λjpo], since e is arbitrary. In view
of Lemma 7.2, this proves Theorem 7.1.

To prove Theorem 7.2, we again consider p{x, y) — p(r), (x, y)eD*.
This function is obtained by Schwarz symmetrization from p(x, y),(x,y)e D,
where D is a convex domain. We show that if p(x, y) is concave, then
so is p(x, y).

Consider the three dimensional set

S = {(x, y,z)\(x,y)eD , 0 < z < p(x, y)} .

This set is convex and Steiner symmetrization, i.e., symmetrization with
respect to a plane, preserves convexity [3]. Furthermore, p(x, y) may
be obtained by an infinite number of Steiner symmetrizations with re-
spect to planes through the origin which are perpendicular to (x, τ/)-plane
[3], [11]. This symmetrization of S gives

S = {(x, y,z)\(x,y)eD , 0 < z < p(x, y)} .

Clearly, p(x, y) will then be a concave function.
As in the proof of Theorem 7.1, there is an analytic function
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ύ(x, y) = ΰ(r) whose only extremal value is the maximum at r = 0 such
that Xdp] + e > J(p, ύ). Since ΰ(r) is concave, po(r) and p(r) satisfy
the relation pQ(r) > p(r) for r e (0, r0) where r0 e (0, R) and po(r) < p(r)
for r e (r0, i2). Hence, rpo(r) and rp(r) are related in the same way as
p(x) and q(x) in Lemma 1.2. As in Theorem 7.1, we have λjp] > λjpo].
By Lemma 7.2, Theorem 7.2 then follows.

Using well-known techniques for the computation of eigenvalues
[4], we find that the lowest eigenvalue Xλ[p\ of (7.2), where p(x, y) is
concave, satisfies the relation

p(x, y)dxdy X1[p] > (3.26 *)π .

Z. Nehari has shown [10] that if p{x,y) is super harmonic, then X^p]
satisfies

p(x, y)dxdyX1[p] < πj2

0

where j0 is the least positive zero of JQ(x), the Bessel function of order
zero. But a concave function is superharmonic [12] so that the bound
also applies in our problem. Thus, if p(x, y) is concave in a convex do-
main,

3.26τr < ίf p(x, y)dxdyX1[p] < πj\ .
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ON THE SUMMABILITY OF DERIVED FOURIER SERIES

B. J. BOYER

l . Introduction, Bosanquet ([1] and [2]) has shown that the
(C, a + r), a > 0, summability of the rth derived Fourier series of a
Lebesgue integrable function f(x) is equivalent to the (C, a) summability
at t = 0 of the Fourier series of another function ω(t) (see (4), §2) in-
tegrable in the Cesaro-Lebesgue (CL) sense. This result suggests the
following question: Is there a class of functions, integrable in a sense
more general than that of Lebesgue, which permits such a characteriza-
tion for the summability of rth derived Fourier series and which is
large enough to contain ω(t) also?

In this paper it will be shown that such a characterization is pos-
sible within the class of Cesaro-Perron (CP) integrable functions for a
summability scale more general than the Cesaro scale (Theorems 1 and
2, §4). Theorem 3 provides sufficient conditions for the summability of
the Fourier series of ω{t) in terms of the Cesaro behavior of ω{t) at
ί = 0.

Integrals are to be taken in the CP sense and of integral order,
the order depending on the integrand.1 It will be convenient to define
the C J P integral as the Lebesgue integral.

2. Definitions* A series Σuv is said to be summable (a, β) to S if

lim S Σ (1 - Φ)Λ 1<

for C sufficiently large, where B = \ogβ C and C > 1. (It is sufficient
to say for every C > I.2)

The function λΛ>β(^) is defined by the equation:

(1) λα β(x) + ίλa β(x) - —Γ(l - uY~ι log-'3

7Γ Jo
Γ(l uY log (

7Γ Jo VI —

2) φ(t) = φ(t, r, x) = i[f(x + t) + (-iYf(x - ί)] -

3 ) P(t) EE P(ί, r) - Σ ]

(4) ω(t) = t-[9>(ί) - P(ί)] ,
1 Many properties of CP integration have been given by Burkill ([4], L5] and [6]) and

by Sargent [7]. Other properties used in this paper can easily be verified by induction.
Received July 6, 1959.

2 Bosanquet and Linfoot [3]. They have also shown the consistency of this scale for
a1 > a or a' = a, βf > β.
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for — π < t < π and is of period 2π.
The r t h derived Fourier series of f(t) at t = x will be denoted by

DrFSf(x), and the nth mean of order (α, /3) of DrFSf(x) by SΛ>β(/, a;, w).
The &th iterated integral of f(x) will be written Fk(t) or [/(ί)]*

3 Lemmas* The following result is due to Bosanquet and Linfoot

[3]:

LEMMA 1. For r > 0 and a = 0, β > 1 or α > 0, /3 > 0,

^ίr

+

)«A%) = 0(\x\-1-«\og-ii\x\) + \x\~r-2) a s I a? I — o o .

LEMMA 2. .For α > 0, β > 0 α^d r > 0,

r

ί J 0
ίJ-0

where the Br

iό{af β) are independent from x and have the properties:

(i) BUa, 0) - 0 /or j > 1;
(ii) # 0 ( α , /3) ^ 0.

Proo/. Let us put γ1+cύιβ(x) = λ1+β>β(a?) + ΐλ1+α.β(a;). For r = 0 we
take B°Q()(a, β) = 1. For r > 1 an integration by parts and the identity
ur = — ̂ " ^ l — w) + t̂ 7*"1 yield the following recursion:

( 5 ) l o g

logo

The lemma follows easily from successive applications of equation (5).

LEMMA 3. For n > 0 and a = 0, β > 1 or α > 0, β > 0,

(

= nr+1 Σ \[rJa,β[n(t + 2kπ)] ,
fc=-oo

for r = 0,1,2, . . . .

Proof. Smith ([8], Lemma, 3.1) has shown that for every even
periodic, Lebesgue integrable function Z(t),

( 6 ) 2n\~Z{t)X1+a β(nt)dt = Saιβ(Z, 0, n) .
Jo
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Using Lemma 1 and the properties of Z{t), one can show in a
straightforward manner that

( 7) [°Z(t)X1+ΰύιβ(nt)dt = \*Z(t) Σ \+*.βMt + 2kπ)]dt .
JO Jo fc=-oo

Let us define Z(t) = ] π - . , [. Equations (6) and (7) imply

that for every x, 0 < x < π,

(8) \'n± X1+a,β[n(t + 2kπ)]dt = \'\-±- + *- Σ (l - - Y

• log~βί \ cos i

Since the integrands in (8) are continuous, even and periodic, the lemma
is proven for k = 0.

To prove the lemma for k > 1, we need only to observe that the
derived series are uniformly convergent in every closed interval by
Lemma 1.

LEMMA 4. Let f(x) e CP[ — π, π] and be of period 2π. Then for
n > 0 and a = 0, β > 1 or a > 0, β > 0,

Proof. This result can be verified by direct calculation using Lemma
3 and the properties of CP integration.

When f(x) is Lebesgue integrable, Lemma 4 is equivalent to a
slightly different representation given by Smith [8].

LEMMA 5. Let f(x)eCfίP[-πf π] and be of period 2π. Let ξ, 0 <
ξ < μ + 1, be an integer for which φξ(t) e L[0, π]. Then, for r > 0 and
a = ξ,β>lora>ξ,β>0,

Sr

Λ+r,β(f> v, n)-ar= 2(- l)V + 1 [φ(t) - P(t)]X[rL+r β(nt)dt -
Jo

Proof. From Lemmas 1 and 4 we see that

Sr

a+r>β(P, 0, n) = 2(-l)rnr+1\πp(t) Σ M?e+r β[w(ί + 2A;τr)]dί
Jθ fc=-oo

= 2(-l)rnr+1[πp(t)X[r^+rιβ(nt)dt + o(l) as w
Jo
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Since (dldt)rP(t) = ar, then S£+r>β(P, 0, n)-*ar for a = 0, /9 > 1 or
α > 0, /3 > 0.3

It remains to be shown that

( 9 ) Sr

a+r, (/, x, n) = 2(-l)rnr+1\*φ(t)X{rίoύ+r,β(nt)dt + o(l) .
Jo

Successive integrations by parts give

(10) nr+ί\πφ(t) Σ ' X[r:a+r,β[n(t + 2kπ)]dt = £(- l )V + 1 + ' 0 , + 1 ( ; r )
Jo k j0

Σ' ^r+Vl.β[^{2k + l)] + ( - D V ^fφKt) Σ'

2kπ)]dt

fc--oo

By Lemma 1 each of the integrated terms on the right side of (10)
is o(l) as n—*oo, and

uniformly in t,0 < t < π. Since 0ξ(£) is Lebesgue integrable, it follows
that the left side of (10) is o(l). This result and Lemma 4 prove (9)
and complete the proof of the lemma,

is replaced by 1 , δ > 0.
o Jo

Thus, for the values of a and β under consideration, the summability
of DrFSf(x) is a local property of f(x).

Having found an expression for S«,β(/, x, n)f let us estimate the in-
teger ξ in the preceding lemma.

LEMMA 6. // h(t) e CμP[0, a] and trh(t) e CλP[0, α], then

H1+ξ(t) e L[0, α], where ξ = min [μ, max (λ, r)] .

Proof. The case μ = — 1 is trivial by definition of C^P. Therefore,
let us assume μ>0. We may also assume, by the consistency of CP
integration, that λ > r.

It will be convenient to use the "integration by parts" formula:

(11) [ W ) ] * = Σ Cs(k9 r)V->Hk+j(t), fc = 1, 2, ,

where the Cj(kf r) do not depend on t or the function h.
By the Cesaro continuity and consistency of CP integration, there

exists an integer k > λ + 1 such that for j > 0,

(12) Hk+1+j(t) = o(ίfc+'-0 as t - > 0 .
3 Smith [8], Theorem 3.1.
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Since k > λ + 1, equations (11) and (12) imply

[trh(t)]te = o{t«~ι) = trHk(t) + Σ tr-jo(t«+^1"0

hence, Hk(t) = o(ί*-1"r). This result and (12) yield

(13) Hk+j(t) = 0 (ί*-1+^-r) as ί -> 0 for j > 0 .

Since (13) is merely (12) with k replaced by k — 1, this inductive
process terminates with Hλ+1(t) = o(£λ~r). Therefore, Hλ+1{t) = o(l) as
ί — 0 if λ > r.

But for 9 > 0, h(t) e CλP[η, a]. Therefore, H1+ξ(t) e W> <*].
Lemmas 5 and 6 may be combined to give the following:

LEMMA 7. Let f(x)eCλP[ — π,π] and be of period 2π. If
ω(t) e CμP[0, π], then for a = 1 + ξ, β > 1 or a > 1 + ξ, β > 0,

Sa β(ω9 0, n) = 2n\ ω(t)X1+ΰύ β(nt)dt + o(l), where ξ
Jo

= min [μ, max (λ, r)] .

This section is concluded with two results of Tauberian nature.

LEMMA 8. // a > 0, β > 0, {δj*.o ^ n ( i {& }Γ=o α^β sequences of real
numbers with b0 Φ 0,

ft / , . \OJ / C \

F..β(n) = Σ &i Σ ( l - — ) log"(β+i) / - — W = o(l) as n — oo ,
n I i _ Ji y

then ΣΓ=o^v = o(α, /3).
The proof of this result is too long to be given here. In general,

however, this method is similar to one employed by Bosanquet and
Linfoot.4

LEMMA 9. Let SΛtβ(u, n) denote the nt\ι mean of order (a, β) of
the series Σu.. For a, β and r > 0 and i,j = 0,l, , r, let us assume
that

(i) The constants Ci3{a, β, r) have properties (i) and (ii) of the
Blj(a, β) in Lemma 2

(ϋ) Σ CtJ(k + a, β, r)Sk+Λ+r-1>β+j(u, n) = o(l), k = 0, 1, 2, . .
iJ-0

(iii) Σ^v =

Bosanquet and Linfoot [3], Theorem 3.1.
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Then ΣΓ=o^v = 0(α, β).

Proof. Let us consider the case β > 0. By (iii) of the lemma and
the consistency of (α, β) summability, there exists an integer K > 1
such that Sa+κ+ί.β+j(u, n) = o(l) as w -> oo for i, i = 0,1, 2, . . . Putting
k = K — 1 in (ii) above, we see that

Σ Crj(K - l + a,β, r)Sκ-1+a>β+J(u, n) + o(l)
j = 0

Therefore, from (i) above and Lemma 8, Sκ-1+Oύtβ(u, n) = o(l). That is,
for K>1, ΣΓ=o ̂ v = o(α + K, β) implies ΣΓ-o uv = o(a + K - 1, /5). It
follows immediately that ΣΓ-o^v = o(α, β).

The case /5 = 0, in which we deal with linear combinations of Riesz
means, is proved similarly.

4. Theorems.

THEOREM 1. Let f(x)eCλP[-π, π] and be of period 2π. If there
exist constants αr_2i, i = 0,1, , [r/2], such that

(i) ω(£)eCμP]0, π] for some integer μ;
(ii) FSω(0) = 0(α, β) for a = l + ξ, β>l or a > 1 + ξ, β > 0,

where ξ = min [μ, max (λ, r)],
then DrFSf(x) = α r(α + r, £).

THEOREM 2. Leέ /(ίc) eCλP[ — π, π] and be of period 2π. If
DrFSf(x) = ar(a + r, β) for a = 1 + λ, β > 1 or a > 1 + λ, β > 0, then
there exist constants α r_ 2 i, i = 0, 1, •••, [r/2], s^cfc ίfeαέ

(i) ω ( ί ) e C μ P [ 0 , π] / o r some integer μ;

(ii) i^SojίO) = o(a', β'), where

' > l i f l + X<a<l + ξora = l + ξ,β<l\
fand

βifa = l + ξ,β>lora>l + ξ,βϊ>0 J

I = min [μf max (λ, r)].
Before proving these theorems, let us observe that the existence

of the αr_2i in the theorems implies their uniqueness from the definition
of ω(t). In fact, somewhat more is true. Observe that ω(t) =
ω(t, r) e CP[0, π] implies ω(t, r - 2i) = o(l)(C) as ί ~> 0. Therefore, if
ω(t, r)eCP[0, π] and FSω(0) = 0(C), then assuming the truth of Theo-
rems 1 and 2, it is clear that the ar-2i are given by the formula:

Dr-2iFSf(x) = αr_2i(C), i = 0,1, [r/2] .5

Proof of Theorem 1. Lemma 7 and the consistency of (α, /9) sum-

Compare Bosanquet [2], eqn. 5.2, for f(x)GL[π, π].



ON THE SUMMAB1LITY OF DERIVED FOURIER SERIES 481

inability give the relations:

S 7Γ

ω(t)\1+cύ+r.iιβ+j(nt)dt = SΛ+r.iιβ+j(ω, 0, n) + o(l) = o(l) ,
0

for i, j = 0,1, 2, , r. Therefore,

2w[*G)(t) ΣBϊjia, β)X1+a+r-ίtβ+j(nt)dt =
Jo ίj=o

which by Lemma 2 becomes

(14) 2 ^

Since trω(t) = #>(ί) — P(ί), relation (14) and Lemma 5 imply that

Sr

Λ+rΛf> x> n)-ar = o(l), i.e., DrFSf(x) = α r(α + r, £).

Proof of Theorem 2. Let us first prove part (i). Putting P(£) = 0

in Lemma 5, we obtain

(15) 2(-iγnr+1[πφ(t)X%«+r,β(nt)dt = Sβ+r.p(/, α?, n) + o(l) .
Jo

If the left side of (15) is integrated by parts λ + 1 times, the integrated
part is o(l) as n —> σo by Lemma 1, and (15) becomes

(16) 2(- l ) r + λ + V + λ + ϊ f Vλ+1(ί)λίrΛ+r!g(wί)rfί = S:+r>β(f, x, n) + o(l)
Jo

Let us define Φλ+1(t) for —π < t < 0 to be an odd (even) function
if r + λ + 1 is odd (even). Then (16) may be written

S?+

λ$(Φk+19 0, n) = S;+r./>CΛ », n) + o(l) .

It follows that Dr+λ+1FSΦλ+ι(0) = ar(C).
Since Φλ+1(t)eL[—π,π], a theorem of Bosanquet establishes the fol-

W i n g result.6 There exist constants α r + λ + 1 " 2 ί , i = 0, 1, , [(r+λ+l)/2],
with ar+λ+1 = α r, such that

(17) γ(ί) s {<Pλ+1(ί) - P+ifyt-^*" e CL[0, π] and FSΎ(0) = 0(C) ,

where P J ί ) = Σ& + λ + 1 ) / 2 ] [α r + λ + 1- 2 ί/(r + λ + 1 - 2i)!]t r + λ + 1-M.
For λ = - l , put α r- 2 ί = αr_2i in (17). Then (17) states that

ω(t)eCP[0, π] and FSω(0) = 0(C).
Let us consider the case λ > 0, and define h(u, m + 1) = {^w+1(%) —

P (* λ-m )M}^- ( r + m + 1 ), m = - 1 , 0,1, , λ. Then for 0 < η < t < π, an in-
tegration by parts yields

6 Bosanquet [2], Theorem 2. The superscript notation has been used here to distinguish
these constants from those whose existence is to be proven.
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(18) I h(u, m)du = uh(u, m + 1)1 + (r + m)\ h(u, m + l)du .

Let us assume for the moment that for some integer m, 0 < m < λ,
(19) h(u, m + 1) e CkP[0, ί], k > λ + 1.

From (19) and a result due to Sargent7, it follows that

[h(u, m + l)du e CfcP[0, t] and (C, A; + 1) lim f \{u, m + l)du

, m + ΐ)du .-ί
Since 5?fe(̂ , m + 1) e CfcP[0, t] and is o(l)(C, fc + 1) as ^ -> 0, the

right side of (18) has a limit (C, k + 1) as ^ —> 0. Sargent's result
(ibid.) and equation (18) imply

(20) h(u, m) 6 Cfc+1P[0, t] .

We infer from the recursive behavior of (19) and (20) that whenever
(19) is true, then h(u, 0) 6 CP[0, ί]. But (19) is true for m = λ by (17).
Therefore,

(21) h(t, 0) = {φ(t) - P£+1)(t)}t~r e CμP[0, π] for some μ .

In the course of the argument above, it has also been shown that
by taking C-limits of (18) we obtain

(22) I h(u, m)dn = th(t, m + 1) + (r + m)\ h(u, m + l)du
Jo Jo

for m = 0,1, •• , λ.
If we now define αr_2i = α r + λ + 1~ 2 i, i = 0, 1, , [r/2], it is easily

verified that Pc*λ+1)(ί) = P(t) and h(t, 0) = ω(t). Part (i) of the theorem
follows immediately from (21).

Next it will be shown that FSω(0) = 0(C) for λ > 0, the case
λ = — 1 having been settled already.

From equations (11) and (22), it is seen that

(23) [h(t, m)]fc+1 = t[h(t, m + l)]fc + (r + m - k)[h(t, m + l)] f c + 1 .

If for some integer m, 0 < m < λ, the statement

(24) h(u, m + 1) = o(l)(C, k) for some integer k

is true, then (24) is also true when m + 1 and k are replaced by m
and k + 1, respectively, by (23). In this manner we arrive at the con-
clusion that h(t, 0) — ω(t) = o(l)(C) as t—>0, which ensures that FSω(0) =

7 Sargent [7], Lemma 1.
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0(C). However, h(u, λ + 1) = 7(0 and FSy(0) = 0(C) from (17). There-
fore, 7(0 = o(l)(C)8, so that (24) is true for m = λ.

It remains only to prove the order relations in part (ii).
Having determined the polynomial P(t), we may state, with the aid

of Lemmas 2 and 5, that

(25) Sl+r,β(f, x, w ) - α r = ( - l ) r Σ B^α, β)
iJ-0

\ ω(t)X1+Λ+r-ίιβ+j(nt)dt\ + o(l) .

I f λ + l ^ α < l + f o r α = l + £ , / 9 ^ 1 , t h e n for β* > 1 and k =
0, 1, 2, , Sr

r+1+ξ+kιβ*(f, x, n) — ar = o(l). Equat ion (25) t h e n implies

(26) Σ *&(1 + I + k, βη\2n\πω(t)X2+ς+JC+r-ίtβ*+j{nt)dt\ = o(l)
ί j=o ( J o )

Similarly, for a — 1 + f, β > 1 or α > 1 + ξ, β > 0, it can be shown
that

(27) Σ 5ϊj(α + *f /

With the definition of (α;, β') and by means of Lemma 7, both (26)
and (27) may be combined into the single equation:

(28) Σ &i3{a' + k, β')Sa,+k+r-ίιβ,+j(ω, o, n) = o(l), k = 0,1, 2, . .
iJ-0

Since FSω(0) = 0(C), Lemma 9 and (28) yield part (ii) of the theorem
at once.

These two theorems may be combined in several ways to give gen-
eralizations to known results. In what follows it is assumed that
f(x) 6 CλP[ — π, π] and is of period 2ττ, ξ = min [μ, ζ] and ζ = max (r, λ).

COROLLARY 1. // ω(t)eCμ.P[0,π], then for a = l + ξ, β>l or
a > 1 + ξ, β > 0, DrFSf(x) = ar(a + r, β) if and only if FSω(0) =
0(α, β).9

COROLLARY 2. For a = I + ζ, β>l or a>l + ζ, β>0, DrFSf(x) =
ar(a + r, β) if and only if ω(t) e CP[0, π] and FSω(0) = 0(α, /5).10

From Corollary 2 it follows that DrFSf(x) = αr(C) if and only if
ω(ί) 6 CP[0, π] and FSω(0) = 0(C). Along with a result by Sargent11

8 That FSgφ) = 0(C) if and only if g(t) = o(l)(C) as ί -> 0 has been shown by Sargent
[7], Theorem 6.

9 For μ = — 1 compare Wang [9].
10 For « ^ r + l and λ = - 1 compare Bosanquet [2].
1 1 Sargent [7], Theorem 6.
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this gives a solution, in the sense of Hardy and Littlewood, to the
Cesaro summability problem for DrFSf(x) within the class of CP in-
tegrable functions.

The last theorem of this section sharpens a well known sufficient
condition for the summability of FSω(0) without, however, destroying
the CP integrablity of ω(t).

THEOREM 3. Let ω{t)eCμP[ — π,π] and be an even function of
period 2π. For k > μ, sufficient conditions that FSω(0) = 0(1 + k, β),
β > 1, are

(i) ω{t) = 0(l)(C, k + 1) and
(ii) ω(t) = o(l)(C, k + 2).

Proof. The proof of this theorem is similar to the proof of the
analogous theorem for Riesz summability when ω(t) is Lebesgue inte-
grable. Starting with Lemma 7 and k + 1 integrations by parts, one
obtains

S1+tetβ(ω, 0, n) = (-iy+12nk

= \ + \ + I , it can be shown by straightforward cal-

0 Jo JK/n Jδ

culations that for arbitrary ε > 0 and K > β,

IS1+k β(ω, 0,n)\<, Mt(K) ε + M^iX'1 log-*X + X~2)dX + o(l), where
J^r

M2 is independent from ε, K and n. The theorem follows from the last
inequality by letting n —> oo, ε —+ 0 and K —> oo in that order.

The theorems of this section can be illustrated by means of the
following CP integrable functions:
t~m sin t'1 and t~m cos t"1, m = 0,1, 2, . For example, from Theorems
1 and 3, FS[t'λ sin t"1]^ = 0(1, β) and A t t a i n ί^J^o = 0(2, ^) for ^ > 1 .
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AN ELEMENTARY PROOF OF THE PRIME NUMBER

THEOREM WITH REMAINDER TERM

ROBERT BREUSCH

Introduction. In this paper, the prime number theorem in the form
ψ(x) = ΣiP

mt*χlogP = β + o(x-\og~ll6+sx), for every ε > 0, is established
via a proof that in the well-known formula

(1) p(x) EE Σ - ^ r = l°Zχ + °W Ξ l°Zχ + a* >

α,, = — Ao + o(log~ll6+sx). (Ao is Euler's constant.)
Throughout the paper, p and q stand for prime numbers, k, m, n, t,

and others are positive integers, and x, y, and z are positive real
numbers.

Some well-known formulas, used in the proof, are

(2) Σ ! ^ = l _ . l o g - * + ^ + 0 ^ ) , forfc = O fl,

θ(±-\og«(zly)) ,( 2) Σ log(^/?/) log

?/<w^z w- k + 1

for /c = 0, 1,

( 3) Σ log^x/n) = O(x) , for fc = 1, 2,
( 4) Σ log p.log*(α;/pw) = O(x) , for fc = 0,1, •

( 5 ) Σ μ(n)ln = 0(1) (/i(n) is Moebius' function.)

Two other formulas, used prominently, are

6) σ(x) = Σ ^ ^ - l o g (x/pTO) = i - log2x - Λ log x + gx {gx = 0(1))
p-» P" 2

^ ^ ? ) m ) = — -log3* - Λ log2x
3£* Pm

With the help of (1), (2), and (4), (6) can be proved easily:

σ(x) = Σ ^ 2 - -( Σ 1/w - Λ + 0(p-/x)) , or, with k = n pm ,

Φ) = Σ -̂ - Σ log p - A0 log * + 0(1)

- A0\ogx + 0(1) = - ί log2x - Λlogx + 0(1) .
2

^ A0\ogx + 0(1)
k 2

Received December 31, 1958.
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Also, again with k = n pm,

— y * loε

_ v< logp
Pm^x V

^ logp

k

k pm/k

-li ( x

1

-)• Σ

r) + A

Σio

1
» w

,log(

- Σ
niZx/p'

xm

Σ

1(

1

ign I
n )

1 1 2

2

-1 /̂  x

71 \n-pΊ

I ιΛ// /L/ 1 * ^ - l

(by (2)

W

f+0(1)
and (4))

= i- φ ) + A0 σ(x) - A.-pix) + 0(1) .

(7) follows now by (1), (2), and (6).
The proof now proceeds in the following steps : in part I, certain

asymptotic formulas for an (see (1)) and gn (see (6)) are derived they
suggest that " o n the average," an is — Ao, and gn is A2

0 + 2AX. In
part II, formulas for an and gn are derived which are of the type of
Selberg's asymptotic formula for ψ(x) part III contains the final proof.

PART I

First, the following five formulas will be derived; Klf K2, •••, are
constants, independent of x.

(8) Σ — αn - - A0\ogx + gx + K2+
n

(10) Σ M α . = - Λlogx + g, + l α i + JΓ4 + θ ( M ^ )

(11) 2 — 0» = (AS + 2 Λ) log a? + 0(1)

(12) Σ — -9χin = (Aj + 2.AJ.log a? + if5 +
X

Proofs.

σ(x) = Σ log -(P(n) - />(̂  - 1)) = Σ P(n)Λog 2L

x )
\oκn
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(8) follows now from (6) and (2).
Also

y JL.α — Y—.( y logv _ i x \

— y _ y loo* Ύ) — y _i- loσ — (k — w. Ύ)m\
Jc^x k p

m/k n^x fi γi

= Σ ~ ^ - - Σ — log— . which proves (9) by (2).
k£x fθ n ̂ x 71 71

And

Σ ^ = Σ ^ ( Σ J3OL-log(p-))

+ 1 Σ M
2

1 Σ g Σ Σ g

Thus, by (1), (2) and (6),

Σ Jθ££.αfl» = i(log a; + αx)
2 + ϋΓ4 + θ ( M ^ ) _ l o g a,.(log x + ax)

™ix pm 2 \ x I

Λ log2x — Ao log x + gx , which proves (10).

In the next proof, use is made of the easily established fact that

p(n). log n + 1 = σ(n + 1) - σ(n) .
n

Φ) = Σ log2(-)(pW - p(n - 1))

- Σ/(^log2(^-) - log^-^-j j + 0(1)

= Σ Pin) log ̂ ± ^ log χ2 +0(1)

nύx 71 7l\7h + 1)

- Σ (Φι + 1) - σ(w)) log ^ + 0(1)
«sχ «(» + 1)

= Σ ΦO log ̂ ^ + 0(1) = Σ σ{n) -?- + 0(1)
w^x 71 — 1 n^χ 71

U
( b y ( 6 ) ) >

This proves (11), with the help of (2) and (7).
Finally

Σ i α,,- = Σ i ( Σ ^ i o g ^ i o g
n n^xn \pmύx/n pm n-pm 2

or, with k — n pm,
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Σ ^ flr,/.

ft^» k k pm/k 2 n^x n \n/ °n^xn n

Σ f l o g f l o g / b Σ l o g ( ) + Λ Σ l o g
JC^X k k 2 n^x n \n/ n^x n n

(12) now follows by (2).

Formulas (8) through (12) suggest setting

(13) bx = ax + Ao , hx = gx - (Al + 2AX) .

In terms of bx and ha, the five formulas read

(8') χL.b, = h, + K.
nύx 71

(9') Σ i . . 6 β Λ i = Jκτ +

n

(10') Σ

(12')

Next, it will be shown that

(14) Σ — 61 = Σ —

and

(15) Σ - K 6,/w = Σ ^ *,/,* + 0(1) .

For a proof of (14), we know, by (10'), that

and

1 .62 _ 2 v logp . h 2 , 2 «. o/logn\
n n p™<n pm n n \ n /

Σ
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Thus, by (3), (11') and (12'),

491

&, - Σ

2. Σ

2 Σ

Σ -ί- Σ i

Φ m ) + O(llpm) - log (α

= 0(1), by (10') and (4). This proves (14).
Also

U /n V U

tiίxln

= Σ

= Σ

= Σ

P

P

Σ -6» - Σ 4- Σ -K + 0(1), by (8')

Klpm + Kβ log x - Σ -r^« - ^ log x + 0(1)

(by (8'), (1) and (4))

*,/,- + 0 ( 1 ) , by (12').

From (14) and (15) it follows that

n^x γi

and therefore

- ^±2. Σ
n

0(1),

(16) logp
K ip71 + 0(1) .

PART II

In the following, we shall employ the inversion formula

G(x) = Σ g(—) for all α; > 0 =φ flr(a?) = Σ μ(n) G ^ ) ,
n ̂ x \n/ n^x \n/

as well as

(17) log^- = O(l) .
n

For a proof of (17), we make use of the fact that
x log x + Aox + 0(1) thus, by the inversion formula,
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kg + Λ - + 0(a;)

(17) follows now by (5).
If f(x) is defined for x > 0, then

i . tog £./(£)+*.. Σg / ( ) Σ

n n \nJ n p™Sx/n pm

= Σ- log- /(-) + Σf •/(•§-
p m / f c

Thus, if we set

then, by the inversion formula,

x log x ./(a?) + * Σ - ^ Z(^/Pm) = Σ μ(n)

In particular, if

then

Σ μ(n) F(^-) = K. Σ A£(̂ ) - log(-) + θ( Σ log f c(

by (17) and (3), and thus

(18) f{x) log x + Σ - ^ Z(ί»/2>ro) = 0(1) ,

n \n/ \ x

(Selberg's asymptotic formula for ψ(x) corresponds to f(x) = ψ(x)lx — 1.)
By (9') and (12'), f(x) = bx and f(x) = hx both satisfy the condition of
(18), and thus

(19) bx log x + Σ - ^ &,/,* = 0(1)

(20) hx \ogx+ Σ ^ψ Λ,/^ = 0(1)
2>

1 Compare K. Iseki and T. Tatuzawa, " On Selberg's elementary proof of the prime
number theorem." Proc. Jap. Acad. 27, 340-342 (1951).
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From (16) and (20) it follows that

(21) Σ — δ l ^ l Λ * ! - l o g s + 0(1).

If we add to (19)

(log x - Λ) log x + Σ ^ ψ (log (xlPm) - Ao) ,

which by (1) and (6) is equal to 3/2 log2 x — 3 Ao log x + 0(1), we obtain

p(x) log x + Σ - ^ - ^ P(xlPm) = — log2^ - 3 Λ log x + 0(1) .

If 0 < c < 1, and c x < y < x, then it follows from the last equa-
tion that

Q

p(x) log x — ρ(y) log y ^ — (log2^ — log2?/) + 0(1)

= — log — (log x + log ί/) + 0(1) ,
2 ΐ/

log x - (p(x) - ί>(?/)) + log *- ί>(ί/) ^ A log ^ (log x + log y) + 0(1) ,
2/ 2 y

or, since ,0(2/) = log y + 0(1),

log x (|0(a;) - /o(y)) ^ log — ( - | log x + \ • log y) + 0(1)
y \ Δ Δ /y V2

V
< 2 log — -loga;+ 0(1) .

Thus

p(x)~ p(y) <2 log—+
log x /

and, since p(x) = log a; — Ao + 6X, it follows that bΛ — by < log α /2/ +
O(l/log x). Also obviously bx — by ^ — log #/?/, because />(̂ ) is non-
decreasing. Thus we obtain

( 2 2 ) I b x - b y I g l o g -*- + θ ( - ± — ) if c - x < y < x , 0 < c < l .
y V log x /

PART III

Let ΰ ^ 1 be an upper bound of | bn \.
Since 6W — bn^ is either —log [nfcn — 1)], or log p/n -~ \og[nl(n — 1)],

it cannot happen that bn = 6 -̂i = 0.
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Let the integers r19 r2, , rt,
bn change signs. Precisely :

be the indices n for which the

(23)

>! = 1 n = rt if bn bn+1 ^ 0, and bn+1 φ 0

if rt < v ^ w < rt+1 then bυ 6W > 0 and

JδrJ < (log r t)/r t for ί > 1.

Let {sk} be a sequence of integers, determined as follows : every
rt is an sk if log (rt+jrt) < 7 B, and r c = sfc, then rt+1 = sfc+1 if
log(r ί+1/rβ) ^ 7 B, enough integers sk+υ are inserted between rt = sfc and
r ί + 1 = sfc+m such that 3 B ^ log (sk+υ+1lsk+v) < 7 i?, for v = 0,1, ,
m — 1. If there is a last r ί o = sfco, a sequence {sfco+ϋ} is formed such
that 3 B ?g log(sfco+ϋ+1/sfc+ϋ) < 7 J5. Thus the sfc form a sequence with
the following properties :

(24)

rs1 = 1 log(sfc+1/sfc) < 7 5 for & > 1, either

log(sfc+1/sfc) ^ 3 JB, or | 6βJ and |68 f t +J are both

less than g 8 f c 6β bw > 0 for sk < v ^ w < sk+1 .

Assume now that a (0 < a < 1/2) is such that

(25) not hx =

Then I Λx I-log* a? is unbounded. Let x be large, and such that
\hx\ log" x^\hy\ log* /̂ for all y ^x. Let c and d be positive integers
such that

(26) c-i < log x ^ sc , and sd ^ x < sd

It will be shown that

1. (1
Δ

log x rg 1-
ό

where

(27) S(x) = h.-h.

From this it will follow that a ^ 1/3.
Clearly

I hx I log x =

^ \' k Σ (I

log* x ί log1"* x - log1"* sd + Σ (log1-* sfc - log1"*
{ fc=2

log" sfc + IΛ.^ I log" 8,-J (log1"" s, - log 1-^,.,

^ -=r * Σ \h.-h,\- log" «»_, (log 1- sk - log 1 - s s .
2 Λ-C+l Λ fc 1
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If y < z, it is easily shown by the mean value theorem that

l/ ί s 1 - - yι-«) > ( 1 - «)•-£-•(* - ») > (l - a - *—£){z - y) .

z V z I
With y = log s ^ , 2 = log sk, and from the fact that sfc > log x,
log (Sfc/Sfc-j) < 7 JB, it follows by (27) that

(28) |Λ,| -log* > i (l - α -
2 V

( l α ) S(s) .
2 V log log x I

For the next estimate, we need the following lemma.

LEMMA. Let v and w be positive integers such that

(1) log^-O(l);
v

(2) bn > 0 for v ^n^w;

(3) b Ό < ^
v

Then

Σ I . * . <ς | . i o g ^ . Σ λb* ς | i o g Σ bn + o(ψ
U ό V υ^n^w % \ Jog V

Proof. If bn ^ 1/3 log w\v for every n in [v, w], the lemma is
obviously correct. Otherwise, let nλ be such that

δ W l ^ y l o g ^ , 6 n < l . l o g ^ for v £ n <nx .

If log (njv) > 1/3 log (w/v), let z (v ̂  z < nλ) be such that log (njz) =
1/3 log (w/v) otherwise, let 2 = v. Thus by (22), in every case,
log (njz) = 1/3 log (w/t;) + O(l/log v). Clearly δw - 2/3 . log w\v < 0 for
v -^ n ^z. Thus

Γs Σ - δ^--| log^. Σ - K

^ Σ — &2

W - — log — Σ — &n >

T^ Σ ^ ( \ - i log^Y- i.log («/»).log(«/«) +Of!5£ί!2/2l).

By (22),

bn- — log (

^ I log ( n » I + θ ( — ί — ) = I log (njz) - log (w/s) | +
\ log v /log

and thus
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1 i w

z 3 v

Thus

tί Σ A. (tog*.-!., to* »

= Σ i

logv

( n / * ) i o g Σ log + θ(
3 v *̂ »£w w # \ log v

= I- log3(tφ) - A log2 (wlv) i log2 (wlz) + θ(log(wlv)) ,
3 3 2 V logv /

by (2'), and thus T ^ O(log (w/v)llog v). This completes the proof of
the lemma.

COROLLARY 1. // condition (3) is replaced by bw < log wjw, the
conclusion still holds if bn < 0 in v ^ n ^ w, the conclusion holds if
bn is replaced by \bn\.

COROLLARY 2. // instead of (3) it is known that bυ < log vjv and
bw < log w\w then

Σ i δ^i- ioĝ . Σ i.|6.| + ).
log v /

α proof y we split [v, w] into two intervals by a division point at
(v wf12, and apply the lemma separately to each subinterval.

(29)

COROLLARY 3.

Σ ^ 4 log (s J8,_x)6
- I b n\ +
n logsfc

Proo/. If log (sjs^i) < 3 JB, this follows from (24) and Corollary
2 if log (sfc/sfc_j) >̂ 3£, it is obvious, since \bn\ <^ B.

By (26), Σ»*.β Vn 6̂  = O(log log x), and Σ.d<n^, 1M &1 = 0(1) also

It follows from (29) that

4" Σ
By (8') Σ

and (27),
1/Λ + ), and thus, by (21)
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(30) \hx I log x :£ - ί S(x) + O(hg log x) .
3

It follows from (28) and (30) that

( l - a - JLB—X\.S(x) }> O(\og\ogx) ,
2 V log log x /J

and since by (25) and (30) S(&) ^ iΓ log1/2ίc, this implies that a ^ 1/3.
Thus /&x = o(log~1/3+ε x), for every ε > 0, and therefore, by (8'),

(31) Σ - | 6 J = o(log-1'3+εs fc).
**-i< n g β* n

In order to find a bound for \bx\, we consider now a particular
interval Jfc = (sk-lf sk] let us assume that bn > 0 in /fc. Let n2elk be
such that δW2 ^ bn for every nelk. Let ^ (sfc_! ^ t < n2) be such that

Then

Σ - K > Σ — K > 4-
n-nj + 1

But by (22),

log {njnd ^ Kt - bni - θ(-L-) ^ i-1 ι Mogsft/ 2

Thus

It follows from (31) that 6Ja = o(log-1/3+ε n2), and thus

(32) bx = o(log"1/6+5 x) .

Finally,

ψ(χ) = Σ ^ * (i°(w) — jθ(n — 1)) = [ίc] jθ([aj]) — Σ P(n)

- x . (log x - A0 + bx)~ Σ (log w - Λ + 6») + O(log a?)

= a; log x — Ao x + 6X a? — x log a; + x + Λ x — Σ δw + O(log a?)

= x + o(x log"1/6+ε α;) + o(" Σ log~1/6+ε n^ , by (32).

The last sum is easily seen to be o(x log~1/6+ε x), and thus

(33) ψ(x) = x + o(x log"1/6+ε a;) .





HOLDER CONTINUITY OF iV-DIMENSIONAL
QUASI-CONFORMAL MAPPINGS

E. DAVID CALLENDER

1. Introduction and main results* This paper is an extension of
previous work on the Holder continuity of two-dimensional mappings.
We shall use the approach of Finn and Serrin1 and prove analogous
results in n dimensions. A two-dimensional quasi-conformal mapping is
one which carries infinitesimal circles into infinitesimal ellipses of bounded
eccentricity. An w-dimensional quasi-conformal mapping carries infini-
tesimal spheres into infinitesimal ellipsoids of bounded eccentricity. Finn
and Serrin gave an elementary proof that a quasi-conformal mapping is
uniformly Holder continuous in compact subdomains and obtained the
best possible Holder exponent. Their proof makes extensive use of the
Dirichlet integral. We obtain similar results in n dimensions using a
modified Dirichlet integral suggested by C. Loewner. It is not clear
whether the n-dimensional exponent is the best possible one.

Let u(x, y) and v(x, y) be continuously differentiate functions in a
domain D of the complex 2-plane. Then the function w(z) = u + iv
represents a quasi-conformal mapping if there exists a constant K such
that

(1) \Pw\2 = ul + u\ + vl + v\ < 2K(uxvy - uyvx) ,

for all points of the domain of definition of w. If K < 1, the mapping
functions are constant; if K = 1, they are conformal. The only case of
interest is K>1. Geometrically, (1) implies that infinitesimal circles
map into infinitesimal ellipses for which the ratio of minor to major axis

> K - Vκ2 - l.
Let / = (ulf , un) be an ^-dimensional mapping of a domain A of

En into En such that / is continuously differentiate, the Jacobian, J,
of the transformation is non-negative and

( 2 ) I Ff |2 = Σ u\ 3<> nKJ2ln , where u, , = dujdxj

and K is a constant holding for all points of the domain A of definition.
If K < 1, the mapping functions are constant, if i f = 1, the map-

pings are the conformal mappings of space. Geometrically the mapping
x-+f(x) is sense preserving and infinitesimal spheres map onto infini-
tesimal ellipsoids. In this paper the norm used is the usual one for En

Received June 1, 1959. This work was supported in part by the Office of Naval
Research.

1 "On the Holder Continuity of Quasi-Conformal and Elliptic Mappings." Transactions
of American Mathematical Society, Vol. 89, No. 1 (1958), pp. 1-15. See this paper for a
bibliography of previous work.
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and is denoted by \x\.
Finn and Serrin treat a class of mappings which they call elliptic

mappings. This generalization of the notion of quasi-conformal mapping
is due to L. Nirenberg. w(z) is an ellistic mapping if it satisfied the
conditions for a quasi-conformal mapping except that condition (1) is
replaced by

( 3 ) I Vw |2 < 2KJ + Kλ ,

where K and Kλ are constant, K > 1 and Kx > 0. A generalization of
two-dimensional elliptic mappings is obtained by replacing condition (2)
in the definition of ^-dimensional quasi-conformal mappings by

(4) \Vf\n<(nK)n'2J+K1,

where K and Kx are constants, K > 1, and Kλ > 0. Such mappings we
shall call near quasi-conformal mappings.

In two dimensions many important estimates are given in terms of
the Dirichlet integral

I Vw |2 dxdy ,

where Cr is a circle of radius r. We shall find that the appropriate
n-dimensional analog of this integral is

ί
( n )w/2

ΣiKΛ dV,
where Sr is an ^-dimensional hypersphere of radius r. This integral
was suggested by C. Loewner in a paper that will appear shortly in the
Journal of Mathematics and Mechanics.

The proofs of Finn and Serrin make use of Morrey's lemma, which
is based on the usual Dirichlet integral. By means of the modified
Dirichlet integral, an analogous lemma is proved in n dimensions.

For the ̂ -dimensional quasi-conformal mappings and the near quasi-
conformal mappings the following two theorems are proved.

THEOREM 1. Let f be a quasi-conformal mapping defined in a
domain A of En. Assume | / | < 1. Then in any compact subregion B
of A,

( 6 )

where d is the distance from B to the boundary of A; μ — μ(n, K) and
0 < μ < 1 and C = C(n, K), a constant depending only on the dimension
of the space and K. (See equation (12) for definition of μ.)
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THEOREM 2. Let f be a near quasi-conformal mapping defined on
a domain A of En. Let | / | < 1. Then in any compact subregion B
of A

(7) | / ( ^ ) - / f e ) l < ^ l ^ - ^ l %
where H is a constant depending on n, K, K1} and d (d is the distance
from B to boundary of A) and μ = μ(n, K), 0 < μ < 1. μ is the same
constant that appears in Theorem 1.

2 Preliminary lemmas* To generalize the proofs of Finn and
Serrin to n dimensions, several lemmas are needed. They are listed
below and the more difficult proofs are given.

LEMMA 1. The weak Maximum Principle holds for quasi-conformal
mappings, i.e., if f is quasi-conformal in a bounded region A and
continuous in A, then the maximum of the norm (and of the components)
is attained on the boundary A of A. The minimum of the components
is also attained on A. (The proof is the same as in two dimensions.)

LEMMA 2. Let u be a function defined in some domain A. If
u = 0 on Sr where Sr is the surface of a sphere of radius r in A and
n is the dimension of the space, then

(8) [ \u\ndA<Crn[ \ut\
ndA,

where ut is the tangential component of the gradient of u on Sr and C
is a constant depending only on the dimension of the space.

LEMMA 3. For all α, b > 0, λ > 0 and n>2,

(9) ? ί _ _ α ^ 6 J ϊ L < -5L. + xb ,
{n - 1 ) " λ

and the constant of this inequality cannot be improved.

LEMMA 4. Let u be a function defined in a domain A and let
ω ΞΞΞ ω(Sr) be the oscillation of u on the surface of sphere of radius r
in A where n is the dimension of the space. Then there exists a con-
stant C depending only on the dimension of the space such that

(10) ^Λ^ii < C\ \Ut \ndA m

r Jsr

LEMMA 5. Let (aυ) be an n x n matrix with real coefficients. Then
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(11) I det (atJ) I £ - ± - ( ± a],)'" .

The constant in the inequality cannot be approved. (This lemma follow
immediately from the proof of Hadamard's inequality.)

Morrey's lemma in n dimensions. Let B be a closed subregion of
D and let d — distance (J5, D). Suppose there exist constants L, μ, r0,
where 0 < μ and r0 < d, such that for all spheres Sr with center in B,
r < r0,

D(r) = [ \Vf\ndV <

Then / satisfies a Holder condition in B:

C = 1 ( nL \lln(2πC1(n~l)\^-
π^-An-lJ \ μ )

where

μ

and d = Cx(n).

Proof of Lemma 2. Let n > 3. Choose the coordinates such that
u = 0 at the north pole. For given ( 2̂, , ^w_i), let 7̂ m = um(θ2, , ^w_j)

be the maximum of \u\ for 0 < θλ < π. We have u = I ^dfl, which
Jo

implies that

S π ΓΓπ Ίl/nΓfff Jn Π n-1

\uθ\dθ<\\ \uθ \
nrn-' sin— θλdθγ ^ — ~

U o J LJo rsin^θj
by Holder's inequality. Let

J o sin*1-1 ^

C < co. Hence

^ ^ Γ^" 1 sinw"2 θ1dθ1

l ut \
nrn-λ

Now

f. \u\ndA=; r71-1^^ ••• [*\u\n sin"-2 θrfθrfω^
}sv Jo Jo Jo
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rf

Γ(nβ)

Combining the above results

f I un I dA < VTΓ{{n~ 1 ) / 2 } C"-V"(
Js,. P(%/2) JS

Proof of Morrey's lemma. Denote the points xx, x2 by P and 0,

respectively. Let \xλ — x2\ < r0 and let r — \xι — x2\. Let M be a

perpendicular bisector of PQ. Select a point S o n 1 such t h a t P S =

OS < P Q < rβ. Then

/(P)-/(Q)=( Λdr-f /^r

which implies

< ( \fr\dr+\ \fr\dr.
JPS JQS

Hence

S 2π Γπ (*π fπ/3

••• \f(P)-f(Q)\dθ1..-dθr.1
0 JO JO J

W-3

5 i2 Γ2π Γπ Γπ Γτr/3

• ••

o Jo Jo Jo J
So

π71

I Pf \nrn-ι-» sinw~2 ^ sin θ^drdθ, . . d
TΓ^-'LJ^

where

j = f r " 1 + - ^ τ sin-ί-S^)^ s in"^"^^ 2 s i n " " ^ θn-2drdθ1
J5.,

j ^-τr~rl ΊV — 1

where

C . . . gin ̂ ^ sin ι ^ ^ ; ( 9 2 sin ̂ θn^dθλ . d(9w_2 <o Jo
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nrn-ι-*dωn = r-*D(r) ,

n — 1

since by hypothesis

Combining

\f(P)-f(Q) I <

where

C = 3 / nL Y'n(2πC1(n-l)\^
2 πn~' \n~lJ V ^ /

Proof of Lemma 4.2 The surface of the w dimensional hypersphere
of radius r can be mapped onto a n — 1 dimensional hyperplane by a
stereographic mapping. Under such a transformation

= [ \Fu\n~ιdV,
iv

and

f (1 - cos 0J I ut \
ndS =

J^r

where the variables on the surface of the sphere are (θlf θ2, •• ,0n-i),
on the hyperplane are (p, θ2, •• ,^ ra-i), and domains of integration are
mapped onto one another. Hence

\Fu\ndV< [ \ut\
ndS .

v }sr

In the hyperplane

\Vn\n~1dV <\[\Vu\ndV

. I ut

where latter integration is taken over the whole surface of the n di-
mensional hypersphere and

2 The author is indebted to R. Finn for suggesting this proof which strengthens and
simplifies the author's original proof.
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c ? = Γ * *# Γ r ^ i ^ " 3 θ*sinW"4 Θ3 s i n °n-2 d θ , - . . d θ n ^ .
Jo Jo Jo

Hence by Morrey's lemma applied in the n -~ 1 dimensional hyperplane

ωn < Cp\, \ut\
ndS ,

where C is a constant depending only on n. It follows immediately that

\ut\
ndS.

3 Proof of Theorems 1 and 2. The proof of Theorem 2 will be
given before that of Theorem 1, and Theorem 1 will follow as an im-
mediate corollary of Theorem 2. Then an alternate method of proof for
Theorem 1 will be given. This second proof uses a modulus of continuity
instead of Morrey's lemma.

Proof of Theorem 2. It must be shown that it / is a near quasi-
conformal mapping, then D(r) < constant rwμ- for r sufficiently small.
Then the conclusion will follow by Morrey's n dimensional lemma. By
(4)

D(r) < (nK)nl2[ JdV 4- ωnr
nKL .

Jsr

I Jd V — \. uxdu2 dun = I (wA — uλ)du2 dun

•' sr J s.r J
Γ __ d(u2 un) 7
)sr ' l d(82---8n)

where ΰλ is the mean value of ux over Sr, ds2 = rdθ19 ds3 = s sin ^d^2,
ds4 = r sin 0X sin ^2d^3, , and dsn — r sin ΘL sin θn-2dθn-lm Hence by
Lemma 5, Lemma 3, and Lemma 2

JdF< L-^
- 1 ) —

x (. I u - ΰλ I [%llβa + + %ϊ>β + u\,H + . + < β

n-l n-Λ

n-l __ w-ΐ

n r r

where C = C(w) is the constant of Lemma 2. Hence
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f JdV<C'r[. \ft\
ndA,

where

»-l n-ί

c> = (^ - *> * * c ,
n

and finally

C r .

r dr

The Holder exponent μ is defined by the equation

(12) -L = Cnnl2Knl\n -

where C is the constant of Lemma 2.
Combining above results

(13) D{r) <
nμ dr

where ωn is the area of the unit sphere in n dimensions.

Let B be a closed subregion of A, and let d be the distance from

B to A. Let Sr be a sphere whose center is in B. For such a sphere

£(r) < X . - ^ - + αv-lζ , for 0 < r < d.
wμ dr

Hence

( r D ) <
dr

and integrating

(14) 2)(/t>) < {i?(ί) + K2}[^y , p<t<d

where

We now wish to estimate D{t). We know

D(t) < ( n K ) , . , . I Mx I [< f ί + + ul T^dA + r ^ Λ
( » - l ) " ^ J δ
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where

K3 =

We have also used the fact that | / | < 1. The immediately preceeding
result implies

(D(r) - < Kf^r^L ,
dr

for r < d and where K5 = dnωnK19

Now suppose ΰ( ί ) > iΓ5 for some t. Then i)(r) > Kb for all r > t.
Hence

< #(» - D

or

where

^ 6 - X?(w - 1)" .

So

This inequality also holds if D(r) < Kδ.
Now let t = cίe~v where y = 1/w//. Combining (14) and (15) we ob-

tain D(p) < Hρnμ- where H is a constant depending only on n, K, Kly

and d. We can now conclude that for xly x2 e D and | xx — x2 \ < de~v

that \f(xx) — f{x^\<H\xx —x2\
μ. Because of the bound on | / | , we

get a similar result when | xx — x2 \ > de~v.

Alternate proof of Theorem 1. Here we do not use Morrey's lemma,
instead a modulus of continuity on / is obtained in terms of D(r).
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Proof. For any point set T c A, let ω(t) = l.u.b. \f{xx) - f(x2) \
where xx x2 e T. Since / is quasi-conformal, it satisfies the weak maxi-
mum principle. Let Sr be a sphere of radius r such that its center is
at least a distance p from A. Then ω(Sr) = ω(Sr). By Lemma 4,

— — — < C for s < r.
r dr

Hence

ωn(Ss) log ϋ < CDί^) for s < p.
s

This implies

- L log (pis)

where C depends only on the dimension of the space.
D(p) can be estimated by the technique used in the proof of Theo-

rem 2.

D(p) < e(nμy-\nKγ»ωn(n

where e is the base of the natural logs, μ is defined as in proof of
Theorem 2 and p < d*e~v. This is valid for all spheres of radius p
whose centers are at least a distance cί* from A.

Let xλ and x2 be two points in B such that | xx — x2 \ = 2s < de~nv =
de~llιx. The midpoint of the line segment xjc~2 is at least a distance
c£* = d/2 from A. Consequently

for s < p < d*e~*.
Let

p = sβ v

Then

^ 1 2

On the other hand, if | xx — x21 < de"vμ, we again get a Holder estimate
since | / | < 1.

4 Additional results* Theorems 3 and 4 are on removable singu-
larities. The final theorem is concerned with one-to-one quasi-conformal
mappings.
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THEOREM 3. Let f(x) satisfy the hypothesis of Theorem 1 or 2 for
all points x in the domain A except on a set T of isolated points in
A. Then f can be defined at the points of T such that the resulting
function is continuous in A and satisfies the conclusion of Theorems
1 or 2.

Proof. To prove Theorem 3 it is sufficient to show that D(r) exists
and satisfies

D(r) < (nK)nl2\ uτdu2 . . dun + ωnr
nKλ ,

for all spheres whose surface contains no points of T. Then all the
previous statements are valid and hence / satisfies a Holder condition
in B — T. Finally / can be defined on T such that resulting function
is continuous in A and satisfies a Holder condition throughout A.

Let S be a sphere of radius r. Let Sr contain exactly one point x0

of T. Let Sσ be a sphere of radius a with center xQ.

Hence

when

D(σ,r)= \ \Pf\ndV.
JSr-8σ

D(σ, r) < -(nK)n/2[ u,dn2 dun

/ = (nK)n'2\. u,du2 -- du

Hence

(D(σ, r)-I)< KΪ-σ
L da J

which implies

(D(σ, r) - iyέr < κ a

dσ
Suppose D > / for some value of σ, say σ = σ2. Then D > I for all
a < σ2. There we may integrate from σx to σ2 and obtain

l o g ^ 2 < C(n, K)
σ* (D(σ2, r) - iyέr

Let σλ approach zero. A contradiction is then obtained. Therefore
D(σ, r) < I. Let σ approach zero, and we obtain D(r) < I.
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Since there at most a finite number of points of T in any compact
subset of A, the desired result can be obtained.

THEOREM 4. Let f be a continuously differentiable function defined
in the region 0 < \x\ < 1. Suppose that

\Vf\n <(nK)nl2J + K1\x\-nλ ,

where K, Kly and d are constants such that K > 1, Kλ > 0 and 0 < λ > 1.
Also assume uλ = o{\ x\~μ) as x —> 0 where μ = μ(n, if) as defined in
Theorems 1 and 2. T/^e^ w ccm be defined at x = 0 sucfc ίλ,αί ίfee
resulting function is continuous in 0 < | x \ < 1, cmd m αn /̂ closed
subregίon of \ x \ < 1, / satisfies a uniform Holder condition with ex-
ponent μ.

Proof. If Sr is any sphere in | x \ < 1 whose surface does not con-
tain the origin, the D(r) exists and satisfies

(16) D(r) < (nK)n'2[ uλdu, . . . dun +
}sr r

If Sr does contain the origin, then let Sσ denote a sphere of radius
σ and center x = 0.

Then as in proof of Lemma 3,

(17) D{σ, r) < - (nK)nlA u,du2 - - - dun + B ,

where B denotes the right hand side of (16).
By hypotheses

where

ε(|a?|)->0 as | a? | -> 0 .

Without loss of generality we may assume the ε(| x |) is monotonically
increasing.

n n2 Γ f "I n

{D(σ, r) — J)™-1 < (nK)*"-1*] \. uλdu2 dnn »-i

< - C(n, ^
Now suppose D > J for σ = σQ. Then D > J for all # < σ0. Hence
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Integrate from σx to σ2 where σλ < σ2 < σQ,

— [σT - aT] < C(n, K)ε(σ2)(D - J)"^ .
nμ

Let σλ approach zero. Hence

(18) (D - Bf^ < C(n, K)ε(σ)σ-n* .

As in the proof of Theorem 2, the inequality of the hypothesis implies

D - B < -—ML + J<Kl_σn-nX

~ nμ dσ n — nX

It follows that

- jL[cr-^(D(σ, r) - B(r)] < C(n, K, χ,)α-«λ-nμ+»-i #
dσ

Hence, for σλ < σ,

σ^(D(σlf r)~ B) < σ-n\D{σ, r) - B) + C(w, K, X)σn{1-»-λ) ,

and finally

D{σy r)~B> [D(σu r) - B - Cσ^-^σΓ]— .
σnμ.

Let σ < σ0. For fixed σ, σx may be chosen small enough such that

D(σlf r)-B- Cσn{1~^λ)σr > 0 .

For small enough σ this contradicts (16). Hence D(σ, r) < B which im-
plies D(r) < B.

Now proceed as in the proof of Theorem 2. Let B be an arbitrary
compact subregion of | x \ < 1 and let d = distance from B to | x | = 1.
For any sphere with center in B,

nμ dr

This implies

K1r'nμ"ml[ ρ~nλdV=ζ r D ) < K 1 r [ ρ d V
dr }sr n — nX

Integrating from p to d,

ρ-nfίD(ρ) < d~

.Note that D(p) is bounded by

JdV+κ\ p~nλdV
1 js1
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So D(ρ) < constant ρnιί.
By Morrey's n-dimensional lemma, / is uniformly Holder continuous

on B with exponent μ.

THEOREM 5. Let f(x) be a one-to-one quasi-conformal mapping of
I x I < 1 onto | /1 < 1 and such that /(0) = 0. The f can be extended to
a one-to-one continuous mapping of \ x \ < 1 onto | /1 < 1 satisfying
I /(&i) - / ( O \< Hlx,- x2\^ where H = H(n, K) and, μ = μ{n, K).
0 < μ < 1.

The proof of this theorem is an immediate generalization of the
proof of the 2-dimensional theorem of the Finn and Serrin paper. AH
new ideas have already been introduced. Hence the proof will not be
given.

5. Weakened difFerentiability requirements* The previous theorems
remain true if instead of / e C1 and \ /jf\2 < nKJ2ln, f satisfies
( i ) / e C in A, f = (uλ, u2J , un),
(ii) Ui is absolutely continuous in Xj for almost all values of the other

n — 1 v a r i a b l e s i,j = l, * ' , n ,
(iii) the derivatives uitj (which exist almost everywhere by (ii) should

be nth integrable,
(iv) IVf |2 < nKJ2ln almost everywhere or \Vf\n< (nK)nlV + Kλ almost

everywhere.
To prove the above theorems it suffices to show that the following

inequalities on the growth of the modified Dirichlet integral of / remain
valid under the weakened hypotheses

(19)

for p < t < d and K2 = μ K l ωnt
n.

1 — μ

< 2 0 )

for t < d and where

Kβ = ωn{nKf'2(n -

We shall prove (19) in the case where | Vf |2 < nKJ2ln. The other state-
ments are proved in a similar manner.

Let / be approximated in the wth integral norm of its derivative

by a sequence of functions f{h) e C\ Thus ( | F(f -f{h))\ndV and

sup \f — f{h) I approach zero as h approaches zero. For f{h\ (let Jm be

its Jacobian), Q{h) is defined to be \ J{h)dV.
JS
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d V

since | / | < 1. ε approaches zero as h approaches infinity, and

Dw{r) = [ \Γfw\*dV.

Hence

Let Λ approach infinity. Thus

λ) -

λ) - D(r)] ,

where

Q(p)=\ JdV.

We know | Ff |2 < nKJ2ln almost everywhere. Hence

Z>(r) < (nK)nl2Q(r) .

Therefore

X) -

Let

F(r) =

Then

which implies

So

U r + λ

=r < C(n, Kf^{r + λ)F'(r)
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which implies

d r <X^C(nK) d F

(r + λ )

Hence

_ C(n,K)

Let λ approach zero and we obtain the desired inequality.

6 Improvement on Holder exponent.

LEMMA 6. If

\Ff\2<nKJ*'n ,

then

\fXi\»£C»ι*\Γf\»,

where

c _ K(n - iγln - λ
(1 - \)»K(n - iγln '

for any such that 0 < λ < 1.

Proof.

n~\λ\ Σ uO

since

Because

α1/w6"^~" < λ"-^ + Xb for 0 < λ < 1 ,
(n - 1)~

I Ff I2 < nKJ*" < nK\ fXl \^(n -

<κ(n-iyi'ί[χn-1\fx\
1 + :

1 J-2
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Hence

\f I 2 < (K(n ~~ 1 ) 2 / W ~~ ̂ ) \[7f |2

'^ X l 1 " (1 -Xn)K(n- 1) 2 / J '

A simple calculation shows that there is exactly one value of λ
between 0 and 1 which will minimize C(λ). To find the value of λ,
solve the equation

(n - l)Xn - nK(n - lf^X"-1 + 1 = 0 .

The Holder exponent μ of Theorem 1 and Theorem 2 is not the
largest exponent that can be obtained. In the proofs of Theorem 1 and
Theorem 2 if Lemma 6 were used, the size of μ would be increased.

The constant of Lemma 2 also determines the size of μ. We con-
jecture that the best constant for this lemma is 1, i.e.,

(21) [ \u\ndA < rn\. \ut\
ndA if \.udA = 0.

Js

r Js

r JSr

This is true if n = 2 for then the inequality is Wirtinger's inequality.
If (21) is true, then μ could be defined by the equation

V ; μ L 1 - X n J V J

where λ is the root between 0 and 1 of the equation

(n - l)Xn - nK(n - l)2/wλw/1 + 1 = 0 .

We further conjecture that this value of μ will be the " b e s t " that can
be obtained for given K.

STANFORD UNIVERSITY





NOTE ON ALDER'S POLYNOMIALS

L. CARLITZ

U Alder's polynomial GMιt(x) may be defined by means of

( 1 ) 1 + Σ (-l)skMsx%s[{2M+1)s-1](l - kx*sikx^s-1

= Π (l - kxη Σ ¥GM^X) ,

where M is a fixed integer > 2 and

(α)t = (1 - α)(l - ax) (1 - ax*'1), (α)0 = 1 .

Alder [1] obtained the identities

<o\ π (1 - a? ( M f + 1 ) "-*)( l - a («+i)»-*-i)(i _ α ( M f + 1 ) n ) _ ^ G,,,(»)
^ j 11 ^ 2-» — T ^ T — >

»-i 1 — α;TO ί-i (α?)β

, Q v TT (1 - a ^ ^ ^ ^ X l - α ; ( 2 3 ί + 1 ) w - 2 Λ ί ) ( l - α<»*+«») __ ^ a 'Gjr β(a?)
v ό J 11 ^ 2-χ — γ - z

»-i 1 — Xn ί-o (χ)t

thus generalizing the well-known Rogers-Ramanujan identities. Singh
[2, 3] has further generalized (2), (3); he showed that

= ^A,(a?, t)Gm,t(x)

nk l-Xn ί-o (a;)t

where the Aβ(a?, ί) are polynomials in a?.
In a recent paper [4] Singh has proved that

( 4 ) GM>t(x) = x> (t<M-l).

In the present note we give another proof of (4) and indeed obtain the

explicit formula

( 5 ) GMιt(x) = Σ ( - l ) s — — &4β(β-1)+"(l - xs + a;ί-Jίβ+β)

valid for all ί.

2. Since

(1 - kx2s){kx)s.x = (feu

the left member of (1) is equal to

Received June 26, 1959.
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1 H
8 = 1 I (X)s (X)^

__ 2 J ( — l ) s f c sx*s 2M+ s~x s

s-0 (X)s

Thus (1) becomes

For t < Mf it is clear that the coefficient of kι on the right is simply
xtl(x)t. This proves Singh's result (4).

For t — M we get

(x)M 1 - x (x)M

so that

1 — x

which also was found by Singh.
For t = M + 1, similarly, we have

so that

( 7 ) ' i X '

- ^ + 1 {1 - (1 + ^Kαj'^-J .

also due to Singh.

3. For arbitrary t > M + 1, it follows from (6) that

M (%
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where

es = is{(2M + 1)8 - 1} + (s + l){ί - M(s + 1) - 1}(M + l)(2β + 1).

This simplifies to

GM t(x) = x£ Σ ( - l ) s — a.i t-iί+.d-if)

Σ (-l)
0<ifβ<t

or if we prefer

For example (9) reduces to

(10) GM.t(x) = » β | l -

for M + 1 < t < 2M - 1. When t = Af + 1, it is easily verified that (9)
reduces to (7). Singh [4] conjectured the truth of (10) for t < 2(M — 1).
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UNIONS OF CELL PAIRS IN E3

P. H. DOYLE

In [4] it is shown that there are pairs of cells of all dimensions
possible in euclidean 3-space, E3, which are tame separately, but which
have a wild set as their union. Such pairs can be constructed when
the individual cells intersect in a single point. The present paper gives
conditions that unions of some such pairs be tame sets as well as a
number of other results.

LEMMA 1. Let A be a disk which is polyhedral and which lies
on the boundary, dT, of a tetrahedron T in E3. If D2 is a disk in
E3 which has a polygonal boundary and is locally polyhedral mod
ΘD2 while D2 Π T = A Π A = dD2 Π 9 A = J, an arc, then A u A is
a tame disk.

Proof. Let Px and P2 be polyhedral disks in dT, Pλ Π P2 = D and

(Pi U P2) n A = D Then ΘT\(P1 U P2) is a polyhedral annulus, A,. If

Q is a polyhedral disk in D2\dD2, then D2\Q is an annulus A2 which is

locally polyhedral mod dD2. By applying Lemma 5.1 of [8] to Aλ and

A2 one obtains a space homeomorphism h carrying E3 onto E3 while

h(D1 U A) is a polyhedral set. This completes the proof of Lemma 1.

LEMMA 2. Let A be the disk of Lemma 1 while D2 is a tame disk

in E3 such that D2 f] Γ = ΰ 2 n A = 9 A Π dDλ = </, an arc. Then

dT U dA is ίαme.

Proof. By Theorem 2 of [3] dDλ U ^A is locally tame and hence
tame by [1] or [8]. Let a be a point of dJ and J' be an interval of
9A having a as an end point and J' Π dD2 = α. We choose a polygonal
disk M on ΘT with (J'/&/') in its interior while 3D, Π Λf = J ' . By a
swelling [5] of M toward the component of E\dT which meets ΘD2 we
obtain a disk M' which is locally polyhedral mod ΘM and Mr Π dT =
0M=dM'. The sphere S = ikP U (9Γ\M) is tame by [8] and S is pierced
at α by a tame arc lying on d(Dλ (j A ) Hence by [7] 9A U S is local-
ly tame at α. We select an arc P in (S\Mf) U α which is locally poly-
hedral except at the point a. There is an arc A on dD2 which lies in
the exterior of S except for its end point a. The arc A U P is tame
since S (j 9A is tame. Let the arc P be swollen into a 3-cell C3 with
P in its interior such that C3 is locally polyhedral mod α, C3 Π S is a
disk while C3 Π M = a. Then dC3 is pierced at a hy A \J P and so
A U P U 9C3 is tame by [7]. Evidently there is an arc P' on ΘC3 so

Received April 27, 1959. The work on part of this paper was supported by the National
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that A {J P' pierces dT at a. Again by [7] dD2 U OT is locally tame at
a. A similar argument applies to the other end point of dJ. Hence
9 A U 9Γ is tame. This proves Lemma 2.

THEOREM 1. Let A and A be two tame disks in E3 such that
Dλ Π A = dD1 Π dD2 = J, an arc. Then A \J D2 is a tame disk.

Proof. Since A is tame there is a homeomorphism hτ of E3 onto
E3 such that /^(A) is a plane triangle. The disk /^(A) is to be swollen
so that a 3-cell e3 is formed such that

( i )

(ii) β3 is tame,

(iii) and e3 Π

That such a cell e3 exists follows from Lemma 5.1 of [5] and
Theorem 9.3 of [8].

There is a homeomorphism h2 of E3 onto E3 which carries de3 and
fei(A) o n t o the boundary of a tetrahedron and a polyhedral disk, re-
spectively. By Lemma 2 h2(e3) u hJi^dD^ is a tame set. By Theorem
2 of [6] we can insist that h2hλ{D2) be locally polyhedral mod hJi^dD*),
while h2hλ{dD2) is polygonal. Hence by Lemma 1 h2h1(D1 U A) is tame
and so A U A is tame.

The following result gives a characterization of tame 1-dimensional
complexes in E3. By a lw-star we mean a homeomorphic image of a
1-dimensional simplicial complex K with a vertex cc whose star is K
and x is the common end point of the n segments meeting only in x.

THEOREM 2. If N is a ln-star in E3 such that (n — 1) of the bran-
ches of N lie on a disk D which meets the remaining branch J at x
only and if each arc in N is tame, then N is tame.

Proof. By [2] we may assume that D is locally polyhedral mod N.
An application of the method in Theorem 1 of [3] makes it possible
to select a subset Dr of D which is a disk consisting of (n — 1) tame
disks which contain arcs with x as an end point of all branches of JV
except J. An argument almost identical with that of Theorem 2 of [3]
suffices to show that J U D' is tame and hence N is tame by [1] or [8].

COROLLARY 1. Let G be a graph in E3 such that the star of each
vertex of G meets the conditions of Theorem 2, then G is tame. The
conditions are evidently necessary as well.

COROLLARY 2. Let D be a tame disk and J a tame arc in E3. If
D ΓΊ J = dD Π J = p, an end point of J, and if dD \j J is tame, then
D U J is tame.

Proof. Since D is tame there is a space homeomorphism h which
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carries D onto a face of a tetrahedron T, [h(J)\h(p)] c E3\T. Let P
be a segment on h(dD) with fc(p) as an end point. We enclose P in a
polyhedral disk ikf in dT such that P spans M and &(&D) Π M = P. We
swell Λf as in Lemma 2 to obtain a tame disk M' such that dikf' = dM,
and M'\dM' c 2£8\Γ. Then Λ(J) U Λ(^) contains a tame arc which
pierces the tame sphere [8] S = ΛP U (dT\M) at Λ(p) and so S U /&(</)
is tame by [7]. The construction of an arc P ' as in Lemma 2 comple-
tes the proof.

In Example 1.4 of [4] an arc A which is the union of two tame
arcs is shown. Although A has an open 3-cell complement in compacti-
fied E3, it is nevertheless wild. A similar example can be obtained
from Example 1.4 of two tame disks which meet at a point on the
boundary of each and which have a wild union. In this connection we
give the following result.

THEOREM 3. Let A and D2 be disks in E3 such that each arc in
A and D2 is tame and A Π A = dDx Π dD2 = J, an arc. Then A U A
is a disk such that each arc in D1 U A is tame.

Proof. Let Jf be an arc in A U A If dJ' does not lie in dDx U
dA we extend J' so that this is the case, obtaining J " Z) J 7, dJ" c dA
U 0A and J " c A U A By [2] there is a disk J9 such that 3D =
d(D1 U A), J u e/" c D and D is locally polyhedral mod J U J" U &D.
The arc J in D is the intersection of two disks in D, D[ and Df

t, such
that D[ U A' = D. Consider any point x of J" in A\9A In [3] a
method is given for enclosing x in the interior of a tame subdisk of
D[. Hence D[ is locally tame at each of its interior points and dD[ is
tame. By [8] D[ is tame. A similar argument can be applied to D!2.
Hence D[ (j A' i s a tame disk by Theorem 2. Then J " is tame and so
J ' is tame. Since J' was arbitrarily chosen A U A is a disk in which
each arc is tame.

COROLLARY 1. Let Lλ and L2 be tame disks which intersect in a
single point on the boundary of each. If Lλ U L2 lies on a disk in
which each arc is tame, then L1 (j L2 is tame.

Proof. Let Lλ U L2 lie on a disk D such that each arc in D is
tame. By Theorem 2 dLλ U ®L2 is tame. There is a disk D' in D with
a tame boundary such that D' Π (A U L2) c 9LX U dL2 while fl' U A U A
is a disk. Then by [2] there is a disk D" such that dD" = &D', Z>" is
locally polyhedral mod dD" and &D" Π (Lx (J I/2) = 0JD' ΓΊ (Lλ U A). Now
.D" is tame by [8] and so D" U Lλ U L2 is tame by Theorem 2. It follows
that A U L2 is tame.
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A CLASS OF SMOOTH BUNDLES OVER A MANIFOLD

JAMES EELLS, JR.

1. Introduction. In this paper we illustrate certain constructions
of importance in the geometry of smooth manifolds. First of all we
prove that a homogeneous space B of a connected Lie group G can
always be represented as a homogeneous space of a contractible Lie
group E, necessarily of infinite dimension in general. In particular, that
representation shows that the loop space of B can be replaced effectively
by a Lie group of infinite dimension. The construction is a special case
of a general theory of differentiable structures in function spaces [4].
Secondly, we examine relations between the Lie algebra of G and that
of E (this latter being a Banach-Lie algebra), in case G is compact and
semi-simple.

As an application we consider certain differentiable fibre bundles
over a smooth (i.e., infinitely differentiable) manifold X having infinite
dimensional Lie structure groups. Particular attention is given to the
bundles associated with maps of X into a sphere; these bundles are im-
portant because they are in natural (Poincare dual) correspondence with
certain equivalence classes of normally framed submanifolds of X. Using
a theory of smooth differential forms in function spaces, we give ex-
plicit integral representation formulas for the characteristic classes of
these bundles. These formulas provide examples of a residue theory of
differential forms with singularities [1]—and express those forms with
singularities as forms without singularities in differentiable bundles over
X.

2. The homogeneous spaces. (A) Let G be a connected Lie group
(of finite dimension!), and let L(G) denote its Lie algebra, considered as
the tangent space to G at its neutral element e. If K is a closed sub-
group of G, we let B denote the homogeneous space G/K of left cosets
of K. The coset map π :G —> B is an analytic fibre bundle map [9, § 7].

We now construct an acyclic fibre bundle over J5; our construction
is a variant of Serre's space of paths over B based at a point [8, Ch.
IV]. For this purpose we have chosen a special class of paths on G
suitable for our applications in § 5. (These path spaces are also of im-
portance in the calculus of variations.)

(B) Let G be given a left invariant Riemann structure, deter-
mined by an inner product on L(G). If Jfiβ) denotes the tangent
vector bundle of G with projection map q : ^~(G) —> G, then ^~(G) has
induced Riemann structure. If u, v are tangent vectors at a point

Received June 10, 1959. Research partially supported by the Office of Naval Research.
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m e G, we let (u9 v)m denote their inner product, and | v \m denote the
length of v.

DEFINITION. If I is the unit interval {t e 1: 0 < t < 1}, we say
that a map x : / —> G is an admissible path on G if it satisfies the
following conditions:

( 1 ) x(0) = e, the neutral element of G;
( 2 ) x is absolutely continuous in the metric of G; then its tangent

vector x\t) exists for almost all t e /, and we require that
( 3 ) the tangent map x'\I—>^~(G) is square integrable; i.e., the

Lebesgue integral

is finite. We observe that x(t) = q o χ'(t) for each t e I for which x'(t)
exists.

Let E{G) denote the totality of admissible paths on G. Using point-
wise multiplication and metric defined analogously to (1), it is easily
seen that E{G) is a topological (metrizable) group. As in the case of
continuous path spaces [8, p. 481], E{G) is a contractible group with
contraction h : E(G) x I—> E(G) given by h(x, t)s = x(ts).

Let p : E(G) —+ G be defined by p(#) = se(l). Then p is a continuous
epimorphism whose kernel is the subgroup Ω(G) = {# e ^ ( G ) : #(1) = β}
of admissible loops on G; thus we have an exact sequence

( 2 ) 0 > Ω(G) > E(G) - ί U G > 0

of topological groups. If E(G, K) = {x e E(G): x(l) e K), then E(G, K)
is a closed subgroup of ί7(G), and the composition λ = π © p : ΐ7(G) —>
G —> B is a representation of £ as a homogeneous space of E(G), with

, K) as fibre over 60 - ττ(if) 6 £ .

PROPOSITION, λ : ^(G) —>B is a principal E(G, K)-bundle.
To prove that it remains (by [9, p. 30]) to show that there is a

local section of E(G) defined in a neighborhood of δo; because π is a
bundle map it suffices to find a neighborhood V of e in G and a section
/ of £r(G) over V. We use the Riemann structure of G to obtain a
neighborhood F of e such that for any point m e V there is a unique
geodesic segment xm : /—> F such that #w(0) = β and #^(1) = m; then xm

is clearly an admissible path, and /(m) — xm is a continuous map of F
into ^(G) such that p o/(m) = m for all m e F .

(C) The following result is an application of a general theory of
function space manifolds [4].

THEOREM. Let G be a connected Lie group, and E(G) the space of
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its admissible paths. Then E(G) is an infinite dimensional Lie group
modeled on a separable Hilbert space. The map p : E(G) —> G is an
analytic bundle epimorphism.

We recall the principal ideas of that construction. Given x e E =
E(G), the tangent space to E at x is the separable Hilbert space E(x)
of maps u: I—> J^~(G) such that

( 1 ) go u(t) = x(t) for all t e I,
( 2 ) u(0) = 0 (the zero in L{G)), and
( 3 ) the map u is absolutely continuous with square integrable

tangent vector field, and the norm | u \x induced from the inner product
(3) below is finite. Thus E(x) is considered as the space of admissible
variations of the path x. The algebraic operations in E(x) are defined
pointwise; i.e., if u, v e E(x) and a,b e R, then (au + bv)t = au(t) + bv{t)y

where the right member is computed in the tangent space G(x(t)). A
symmetric, bilinear form in E(x) is defined by

( 3 ) (u,v)x=\\u'(t),v'(t))xwdt;
JO

this is an inner product, for if (u, u)x = 0, then | u\t) \x(t) = 0 for almost
all t e /, and the condition that u is admissible then implies u(t) = 0 for
all t e I. We emphasize that each E(x) is complete (by standard L2

theory), a property that is used in the theory of differentiation in in-
finite dimensional linear spaces.

Using the natural correspondence (defined locally) between geodesic
segments on G emanating from a point m and tangent vectors in G(m),
we can find a neighborhood Ux (called a coordinate patch) of x in E(G)
which is mapped homeomorphically (by a map φx called a coordinate
system) onto a neighborhood of 0 in E(x) [4, §3]. In overlapping co-
ordinate patches Ux, Uy we have a map

Φ*v: Φ*(UX Π Uy) > φy(Ux Π Uy)

defined by φxy(u) = φy o φ~\u), and this map is analytic in its domain of
definition. (If φ is a map of an open subset U of a Hilbert space E
into a Hilbert space F, then φ is analytic in U if every x e U has
a neighborhood in which φ can be expressed by the convergent power
series

φ(x + v) = φ(x) + Σ fφ(^ ?>)/&! »
fc-l

where P$(x, v) denotes the kth iterated directional derivative of φ at x
in the direction v.) Easy modifications of standard Lie group theory
show that the group operation in E(G) is analytic and that p: E(G) —>
G is an analytic homomorphism.
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COROLLARY. The fibratίon λ : E(G) —> B is an analytic bundle map.

(D) REMARK. The inner product (3) is easily seen to provide an
analytic Riemann structure on E(G). We note, however, that it is not
left invariant on E(G).

Suppose we let G act on E(G) by Tg(x)t = gx{t)g-λ for alH e I and
x e E{G). If G is compact and semi-simple and if the inner product
(3) is computed using the bi-invariant Riemann metric on G (see our
§ 3A), then the Riemann structure on E(G) is G-invariant.

3 The Lie algebra of certain path groups. (A) Suppose that G is
connected, compact, and semi-simple. Then its Killing form [7, §§6,11]
defines a bi-invariant Riemann structure on G (essentially unique);
furthermore, the inner product and the bracket in L(G) are related by

(1) ([χ,v],z) = (χ,[v,z])

for all x, y e L(G). By taking a suitable real multiple of the Killing
form we can suppose that the norm induced from the inner product
and the bracket in L(G) are related by

(2) \[χ,y]\<\χ\\y\

for all x,y e L(G).
(B) If e also denotes the neutral element of E(G) (so that e{t) — e

for all t e /), then the tangent space E(e) consists of those admissible
paths on L(G) starting at 0; we introduce the bracket of u and v in
E(e) by

( 3) [u, v]t = [u{t), v(t)] for all t e I.

We will call E(e) the Lie algebra of E{G), and henceforth will denote
it by L(E(G)) , note that L(E(G) = E(L(G)). Of course the exponential
map exp: L(E(G)) —> E(G) is defined by (exp u)t — exp (u(t)) for all t e I.

If I u |2 = (u, u)e in the notation of § 2 (3), then the following result
shows that the bracket (3) on L(E(G)) is continuous.

L E M M A . For any u,ve L(E(G) we have

( 4 ) \[u,v]\e<2\u\e\v\e.

Proof. First of all, we note that if mu = max {| u(t) \ : t e /}, then
mu < \u\e. Namely, for any t e I we apply the Schwarz inequality to
obtain

I 2u(t) - u(l) |2 = 1 Γsgn (t - s)u'(s)ds ' < Γsgn (t - sfds Γ| u'(s) \2ds .
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Thus

mu < max {| 2u(t) - :t e <\u\e .

By (2) and the Schwarz inequality in L(G) we find that | [u, v] |2 is
bounded by

| u'(t) |21 v(t) |a + 2 I u\t) 11 v(t) 11 u(t) \ \ v\t)

tι'(ί) \2dt + 2mumυ[\ u'(t)
Jo

u(t) |21 v\t) \*}dt

| dt + ml[| v'(ί)
J

ml

< 4

The inequality (4) follows.

REMARK. Unlike the finite dimensional Hilbert-Lie algebra L(G),
L(E(G)) does not satisfy a relation of the form (1). Thus the bracket
in L(E(G)) respects its Banach space structure—i.e., L(E(G) is a Banach-
Lie algebra—rather than its structure as a Hubert space.

(C) Let p* : L{E(G)) -> L(G) be defined by pju) = u(l)\ clearly p*
is a Lie algebra epimorphism, and the inequality

u(t2) — <\tλ — ί2 for any ^, t2 e

shows that | p*(u) \ < \ u \e for all u e L{E(G)).
Our next result establishes an infinitesimal analogue of the analytic

bundle over G given by Theorem 2C.

THEOREM. // G is a connected, compact, semi-simple Lie group,
then p* is a continuous Lie epimorphism with kernel L(Ω(G)) — Ω(L(G))f

the closed ideal of admissible loops on L(G); i.e.,

( 5 ) 0 > L(Ω(G)) > L(E(G)) - ^ U L{G) > 0

is an exact sequence of Banach-Lie algebras. Furthermore, as Hilbert
spaces (but not as Lie algebras), p% induces an orthogonal direct de-
composition L(E(G)) τ& L(Ω(G)) φ My where M is a vector space iso~
morphic to L(G).

Proof. The first statement follows from the algebraic properties
of p* and the fact that p* is bounded, and therefore continuous. To
prove the second, we define a map j : L(G) —• L(E(G)) by letting j(x) be
the linear path j(x)t = tx for each x e L(G); then j is a linear map of
L(G) onto a subspace M of L(E(G)), and p^ o j is the identity; moreover,
i is an isometry, because for any x, y e L(G),

= \
Jo

= (x, y).
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Note, however, that M is not a subalgebra of L(E(G)).
The subspaces L(Ω{G)) and M are orthogonal complements in L(E(G)),

for if a? e L(G) and v e L(Ω(G)), then

U(x), v)β = \\x, v'(t))dt = (a?, v(l)) - (a?, v(0)) = 0 .
Jo

COROLLARY. The group Ω(G) of admissible loops on G forms a
subgroup of E(G) whose codίmension (as a submanifold of E(G)) equals
the dimension of G.

REMARK. If K is a closed subgroup of G and if we set λ* =
π* o p^: L(E(G)) —* L(G) —* L(G)jL(K), then we have an exact sequence
of vector spaces

0 > L(E(G, K)) > L(E(G)) - ^ L{G)jL{K) > 0 .

(D) PROBLEM. Consider L(E(G)) as a Hubert space, and form its
topological exterior algebra C*(L(E(G))), using the natural inner product
on its pth exterior power. The inequality (4) implies that we can con-
struct the Lie algebra cochain complex as in [7, §3] and that the
differential operator in C*(L(E(G))) is continuous. The elements ω e
CP(L(E(G))) determine left invariant differential p-forms on E(G)—an
important property because a version of de Rham's Theorem is valid
for E(G) (see § 5A). What are the relations between the derived
cohomology algebras H*{L(E(G)))y H*(L(Ω(G))), and H*(L(G))^H*(G; iί)?

As a first step, because L(Ω(G)) is a closed ideal in L(E(G)) we can
appeal to our Theorem 3C and Theorem 4 of Cohomology of Lie algebras,
G. Hochschild and J-P. Serre, Annals of Math. 57 (1953), 591-603, to
obtain the

PROPOSITION. The filtration of C*(L(E(G))) by the ideal L(Ω(G))
determines a spectral sequence such that

Eξ>* - H*(L(G); H«(L{Ω{G))) ,

and whose terminal algebra E^ is the graded algebra associated with
H*(L(E(G))), suitably filtered.

4* The bundles over a manifold (A) Let B = G\K be the homo-
geneous space of § 2A. Since E(G) is contractible, the fibre bundle
λ : E(G) —> B can be interpreted as a universal bundle [9, § 19] for the
infinite dimensional Lie group E(G, K). In particular, by the Classifi-
cation Theorem for principal bundles we have the

PROPOSITION. If X is a paracompact smooth manifold of finite
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dimension, then the isomorphism classes of smooth principal E(G, K)-
bundles over X are in natural one-to-one correspondence with the smooth
homotopy classes of maps of X into B.

In that statement we have made use of the fact that for maps of
X into B their classification by homotopy equivalence coincides with
classfication by smooth homotopy equivalence.

REMARK. There is a certain uniqueness theorem for universal bundles
over 5, which implies that for any other contractible bundle over B
with group Γ, the homotopy groups of Γ are isomorphic to those of
E(G, K)', see [6, p. 284]. Of course, it follows directly from the homotopy
sequence of a bundle and the 5-lemma that the homotopy groups of
E(G, K) are isomorphic to those of the loop space of B.

(B) Suppose that B is (n — l)-connected and that the nth homotopy
group πn(B) is infinite cyclic (n > 1); then the group E(G, K) is (n — 2)-
connected, and the connecting homomorphism of the homotopy sequence
of the universal bundle of B is an isomorphism of πn(B) onto πn-i(E(G, K))m

Let μ:W—>X be an E(G, iΓ)-bundle over X. Its characteristic
class [9, p. 178] is the primary obstruction to the construction of a
section of the bundle. The condition n > 1 insures that its structural
group is O-connected, whence the bundle & of local coefficients (used
in defining characteristic classes in general) is simple [9, p. 153]. To
orient the bundle is to choose one of the two isomorphism of & onto
the product bundle X x Z. Thus the characteristic class of an oriented
E(G, K)-bundle over X is a cohomology class w e Hn(X, Z).

It is well known that such a characteristic class can be represented
by a transgressive pair of cochains (an, cn~λ). (A transgressive pair in
a bundle consists of a cochain of some sort c on If whose restriction
to a fibre is a cocycle of E(G, K), and such that its coboundary dc =
μ*a for some cocycle a of X.) Furthermore, the restriction of cn~ι to
a fibre defines the generator of Hn~\E(G, K); Z) & Z which is the
negative of that determined by the orientation of the bundle.

Let wQ be the characteristic class of the universal oriented bundle
X: E(G)—> B. Suppose that μ: W—>X is induced by the smooth map
f\X—>B, and let g: W-^E{G) be a smooth bundle map covering/
[9, § 19]. If (α0, c0) is a transgressive pair representing w0, then a =/*α 0 ,
c = (7*Co is known to be a transgressive pair representing the characteristic
class w of μ : W"-> X [2, § 18].

5* Representations of the characteristic classes* (A) Let Y be any
paracompact smooth manifold modeled on a Hubert space E. A dif-
ferential r-form η on Y assigns to each point y e Y an alternating
r-linear functional (with real values) on the tangent space Y(y), which is
continuous simultaneously in the r variables, using the Hubert space
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topology in Y(y). In terms of the differentiable structure on Y we can
define the exterior algebra r^*(Y) of smooth differential forms on Y
and its derived cohomoly algebra H*{C^*(Y)). It is known (an extension
of de Rham's Theorem [4, § 4]) that there is a canonical isomorphism
of H*(C^*(Y)) onto H*(Y; R), the singular real cohomology algebra of Y.

We remark that this result uses the local Hubert space structure
of Y in two ways:

(1) the square of the norm in E is an analytic function on J57,
which implies that there are sufficiently many smooth functions on Y;

(2) there is a natural Hubert space structure on the rth exterior
power of E; its completeness is used essentially in the differentiability
of differential forms.

We will now give examples of such forms which are transgressive
pairs on E(G, iΓ)-bundles over X.

(B) We have seen in Theorem 2C that the group E(G) of admis-
sible paths on a connected Lie group G is itself a Lie group modeled
on a Hubert space. Since E(G) is contractible, the general existence
theorem quoted in (A) insures that any smooth closed r-form ω on E(G)
is the exterior differential of a smooth (r — l)-form ξ (for r > 0). The
following result uses a standard homotopy construction to give an ex-
plicit formula for ξ in case ω is the p*-image of a form on G.

PROPOSITION. Given any smooth closed r-form ω on G (r > 0),
consider the (r — l)-form on E(G) defined as follows: For any x e E(G)
and r — 1 vectors u19 , ur-x in the tangent space at x, set

(1) ξ(x) uλ V V ur.λ = Γ {ω(x(t)) x\t) V nλ{t) V V ur^(t)}dt ,
Jo

where x'(t) denotes the tangent vector to x at x(t), and the bracket in
the right member {involving the exterior product V) is computed in the
tangent space G{x{t)), Then ξ is a smooth (r — l)-form on E(G) and
dξ = p*ω.

Proof. The contraction h : I x E(G) —> E{G) given by h(t, x)s = x(ts)
is simultaneously continuous in the arguments (£, x), and is a smooth
function of x for each t e I. Furthermore, for each x e E(G) the dif-
ferential h*(t, x) is a square integrable function of t; in particular, if ex

denotes the unit vector of I, then {hjt, x) e^s = sx'(ts) for almost all
x e /.

Because the homomorphism p is analytic, the induced form ω* = p*ω
is a smooth closed r-form on E(G) for which

( 2 ) ξ(x) ~ (kω*)x = [Vω*(t, x) Λ eλdt
Jo
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exists (as a Lebesgue integral, where the integrand in the right member
involves the interior product with eλ). The explicit formula (3) for ξ(x)
below shows that ξ(x) is actually an (r — l)-covector and that ξ is
smooth. Standard reasoning about homotopy operators for differential
forms leads to the identity α>* = dkω* + hdω*, and because dω = 0, we
have dξ = α>*.

Consider the composite map q = p o h : I x E(G) —> B. It is easily
checked that q^(t9 x)eλ = x\t) for almost all t e I, and for any u in the
tangent space at x (interpreted as the vector 0 0 u in the tangent space
of / x E(G) at (ί, x)) we have qjt, x)u = u(t). If we take vectors u19

• , Ur-! as in the hypotheses,

ξ(x) uγ V V Ήy-i = I fc* o p*ω(t, x) βi V ^i V V ^- id i
Jo

( 3 ) = Γ {α>(a5(ί» «*(«, a&te V ?*(«, x K V V ?*(ί,
Jo

= I' {ω(a?(ί)) »'(ί) V ^ (t) V V ur^(t)}dt .
Joo

COROLLARY. Lei λ : E(G) —> B be the universal E(G, K)-bundle of
§ 2B. Then for any smooth closed r-form ωQ on B, the formula (1) with
ω replaced by π*ω0 defines a smooth (r — \)-form ξQ on E(G) such that
dξ0 = λ*ω0.

If i : E(G, K) —> E(G) is the inclusion homomorphismr then we re-
mark that τ]0 = i*ξQ is the suspension of ω0 in the sense of [8, p. 453].
Applying [8, Cor. 2, p. 469], we obtain the

COROLLARY. If B is (n — l)-connected and πn(B) is infinite cyclic
(n > 1) and if ω0 is a closed n-form representing a generator v of
Hn(B; Z), then (ω0, ξ0) is a transgressive pair representing v.

REMARK. Suppose that & is connected, compact, and semi-simple.
Then the bi-invariant Riemann structure on G induces an analytic
G-invariant Riemann structure on B. In the preceding corollary a generat-
or v is then represented by a unique harmonic w-form ωQ; furthermore,
ω0 is G-invariant, and π*ω0 can be expressed as an exterior polynomial
in (left invariant) Maurer-Cartan forms on G. Thus the generator v
is uniquely represented by a transgressive pair (ω0, ξ0) where ω0 is
harmonic and where ξ0 is defined by (1); see § 6A.

(C) We return to the oriented universal bundle λ : E(G) —> B, where
B is (n — l)-connected and πn(B) is infinite cyclic (n > 1). (These as-
sumptions can be relaxed at the expense of simplicity of exposition.)

Let X be a smooth manifold of finite dimension, and let μ: W—>X
be a smooth oriented E(G, K)-bundle over X with characteristic class w.
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Suppose that bundle is induced by a smooth map / of X into B, and let
g be a smooth bundle map covering / :

W >E(G)

μ \λ\>

χ-rB

If (ω09 ξ0) is a transgressive pair of forms representing the characteristic
class w0 of λ : E(G)—>B as in (B), then ω = /*α>0, £ = flr*|0 is a trans-
gressive pair representing w (§ 4B).

DEFINITION. An admissible partial section of the bundle μ : PF —•
X is a smooth section φ defined over X — e(φ), where e(φ) is a smooth
polyhedral subset of X with dim e(φ) < dim X — n. Admissible partial
sections exist because E{G, K) is (n — 2)-connected. (For example, we
can take a smooth locally finite simplicial subdivision L of X and let L*
be a dual subdivision; then standard obstruction theory provides a smooth
section over a neighborhood of the (n — l)-skeleton L{n~ι) of L which
can be smoothly extended over X — U*~n), where m = dimX.)

The following result is an example of the general representation
theorem of [1, §41; note that the present pair (ω,φ*ξ) satisfies the
conditions of Corollary 5B of [1]. We will use freely the concepts and
results of that paper. As usual in constructing integral formulas for
characteristic classes, our method of proof follows that of the Gauss-
Bonnet Theorem as given by Chern [3, § 2]: We first obtain a trans-
gressive pair of forms representing the class; we then appeal to Stokes'
Formula to localize and interpret the residue (i.e., the right member of
(4) below.

THEOREM. In the above notation, the characteristic class w of the
oriented bundle μ: W —> X is represented by

( 4 ) w c = \ ω — \
Jc J9c

φ*b

for any admissible partial section φ, where c is any smooth integral
n-chain on X whose boundary does not intersect e(φ).

Proof. First of all, (ω, φ*ξ) is an (R, %)-pair on X because φ is
admissible, and in X — e(φ) we have d(φ*|) = φ*dξ = (μ o φ)*ω = ω.
Secondary, to verify (4) it suffices to do so for the n-simplexes of a
simplical subdivision L of X (by Corollary 5A of [1]), provided that e(φ)
lies on the (m — w)-skeleton of the dual L*. Furthermore, in consider-
ing its obstruction cocycle we will suppose that φ is defined only on
L ί w" υ, and then make below a (piecewise smooth) extension to L{n) — e,
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where e is a discrete set of points; such an alteration will not change
the obstruction class.

Let bσ be the barycenter of the oriented ^-simplex a, and let σt be
that simplex radially contracted toward bσ by the ratio 1 : (1 — t), using
an admissible coordinate system on X containing a. Let h be a smooth
covering homotopy of that contraction. For any t < 1 and x in dσt let
r(x) be the radial projection x on dβ; setting ψ(x) = h(t,φ(r(x))) defines
an extension of φ over σ — bσ.

Applying Stokes' Formula to the chain τt = a — σt we obtain

( 5 ) - ( φ*ξ=\ ω-\ φ*ξ.
J9σ. Jr. J 9 σ

As t —> 1 the right member approaches the right member of (4) with
c = σ, because ω is defined on all σ. To complete the proof of the
theorem we will show that as t —> 1 the left member determines the
obstruction cocycle.

Since — ξ defines the generator of μ~ι{bσ) by § 4B, we see that
(writing w for the obstruction cocycle)

w σ = — \ φ*ξ

On the other hand, the homotopy h satisfies a Lipschitz condition locally
on μ~λ{o) (relative to any metric on W), whence there is a number M
independent of t such that t < 1 implies

Jφ(9σ) Jφ(9σfc)
< M 1 - ί l .

Using the transformation of integral formula, we find that

M\l - t\ .w-σ+\ φ*ξ = I \ φ*ξ-\ φ*ξ
J9σ f IJθσ J9σέ

This shows that as t —> 1 the left member of (5) approaches w o, and
formula (4) follows.

6 Spherical maps of a manifold* (A) As an example of the pro-
ceding constructions let G — SO(n + 1), the rotation group in its usual
matrix representation in numerical space Rn+1. Let K = SO{ri), con-
sidered as the subgroup of G which acts trivially on the (n + l)th axis
of Rn+i The unit sphere Sn in Rn+1 is then naturally identified with
the homogeneous space GjK, and the coset map π : SO(n + 1) —* Sn re-
presents SO(n + 1) as the principal SO(w)-bundle of orthonormal ^-frames
on Sn ]9, § 7]. We will suppose that Sn has its usual Riemann structure
and is oriented by the coordinate axes in Rn+1. Henceforth we denote
the infinite dimensional Lie group E(SO(n + 1), SO(n)) by An.
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Let Wij (1 < i < j < n + 1) be a base of Maurer-Cartan forms for
the conjugate space of L(SO(n + 1)); if we let k(n) denote the reciprocal
of the volume of Sn, then the exterior polynomial (the Kronecker Index
form) on SO(n + 1) given by

(1) ωt = k(n)ω1<n+1 V V ωn>n+1

is known to be £w-basic (i.e., there is a unique SO(n + l)-invariant
n-ΐorm ω0 on Sn such that 7r*α>0 = ω*), and thereby represents the har-
monic generator of Hn(Sn; Z).

Suppose n is even; then a crucial step in the derivation of the
Gauss-Bonnet Theorem [3] for Sn establishes that ω0 is part of a trans-
gressive pair in the principal frame bundle of Sn. If n is odd, then ω0

does not generally have that property. However, for all n > 1 Pro-
position 5B gives an explicit transgressive pair in the oriented uni-
versal bundle of Sn, determined entirely by the Kronecker Index form.

(B) If X is a compact, oriented, smooth Riemann manifold of
dimension n + m, then the isomorphism classes of smooth principal Λn-
bundles over X play an important role in its geometry, primarily because
of the following construction: Let V be a closed, oriented, m-dimensional
regularly imbedded submanifold of X; suppose that V admits a smooth
normal w-frame in X, and let φ be such a frame field; we will call the
pair (V,φ) a normally framed submanifold of X. These have been
studied by Kervaire [5, § 1] and Thorn [10, Ch. II, 4]. It is known that
certain equivalence classes of normally framed m-submanifolds of X are
in natural one-to-one correspondence with the homotopy classes of maps
of X into Sn [5, § 1], Combining with the Classification Theorem for
Jw-bundles, we have the

PROPOSITION. If X is a compact, oriented, smooth Riemann
(n + my manifold, then there is a natural one-to-one correspondence
between equivalence classes of normally framed m-submanifolds of X
and isomorphism classes of smooth Λn-bundles over X.

Let (V,φ) be a normally framed m-submanifold, and let ί: V-+X
be the inclusion map; then since V is closed and oriented (the orientation
on X and the frame field φ determine an orientation of V) we have a
distinguished generator v0 e Hm{V, Z), which determines a definite ho-
mology class i*(v0) = v e Hm(X, Z); Furthermore, v depends only on the
equivalence class of (V,φ). On the other hand, applying a theorem of
Thorn [10, Theoreme II.2], we obtain the

PROPOSITION. In the correspondence of the above proposition, the
homology class of a normally framed submanifold is the Poincare dual
of the characteristic class of the oriented Λn-bundle associated with it.
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(C) Let X be a smooth manifold of finite dimension. In the study
of differential forms with singularities [1] it is important (e.g., in work-
ing with exterior products of such forms) to know when a closed
(Z, r)-pair is cohomologous to a pair defined in terms of a transgressive
pair (as in Theorem 5C). For example, it is well known that the iso-
morphism classes of SO(2)-bundles over X are (by their characteristic
classes) in natural one-to-one correspondence with the elements of
H\X\ Z). An easy construction shows that every 2-dimensional integral
cohomology class of X can be represented by a transgressive pair in a
canonically defined SO(2)-bundle over X.

A cohomology class u e Hn(X; Z) is said to be spherical if there is
a map f:X->Sn such that u = /*(s) for some s e Hn(Sn; Z). The re-
presentation theorem [1, § 4] of cohomology classes by forms with
singularities together with our Theorem 5C gives a transgressive integral
representation formula for every spherical class of X in a Λn-bundle.
That bundle is uniquely defined by the homotopy class of / : X —> Sn,
but is not generally determined by u.

EXAMPLE. Suppose that X has dimension n. The Hopf Classifi-
cation Theorem then implies that the isomorphism classes of smooth
//^-bundles over X are in natural one-to-one correspondence with the
elements of Hn(X; Z), the correspondence assigning to each isomorphism
class its characteristic class. Theorem 5C gives a transgressive integral
representation formula for each element v of Hn(X) Z) in a bundle
canonically associated with v. Of course that fact is significant only
for compact manifolds, because Hn(X; Z) = 0 if X is open. On the
other hand, it is particularly useful for non-orientable compact mani-
folds, because then Hn(X; Z) has torsion, in which case the singularity
of a (Z, %)-pair representing v plays an essential role.

If X is orientable and if its Euler characteristic χ(X) Φ 0, then
the Gauss-Bonnet Theorem provides a transgressive integral formula
for the elements of Hn(X; Z) in a finite dimensional bundle over X.
In general (and for lower dimensional spherical classes) it appears neces-
sary to use infinite dimensional smooth bundles to obtain such a formula.
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COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. FOGUEL

l Introduction* Let H be a separable Hubert space. The follow-
ing two problems will be studied:

1. Given a bounded normal operator A, of multiplicity m, what
are the conditions, on the bounded measurable function /, so that the
multiplicity of S —/(A) is n, n < oo?

2. How to compute the multiplicity of a normal operator that com-
mutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity n, n < oo.
There exist a Borel measure μ and n Borel sets in the complex plane
eιZDe2i) ••• 3 e w , such that, up to unitary equivalence,

(1.1) H=±L&,e<)

This is the Multiplicity Theorem. (See Theorem X. 5.10) of | l j .
The operator S has uniform multiplicity if ex — β2 = = en

The resolution of the identity, of a normal operator A, will be
denoted by E(A; a). The Boolean algebra of projections, generated by
E(A; a) will be denoted by &A. Let E(a) stand for E(S; a) and @ for
®s. Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:
Let S be a normal operator of multiplicity n, and B a normal

operator that commutes with S. Let H and S be represented by 1.1.

THEOREM A. There exist k Borel measurable bounded complex
functions y1(X)y •• ,2/Λ(λ) and k matrices of Borel measurable bounded
complex functions ε^λ), •• ,eΛ(λ) such that:

For a fixed λ the matrices ε^λ) are disjoint self adjoint projec-
tions whose sum is the identity and

(1.2)

V.(λ>
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Equivalently, if the self adjoint projections Eiy are defined by

EA

(1.3)

REMARK. In the above decomposition the numbers y^X) for a fixed
λ are different eigenvalues of a certain matrix. Thus for each λ there
is an integer k' < k such that

0i(λ) =£ ί/j(λ) i ^ j i,j < k', εt(λ) =^0 i < fc' ,

and

2/*'+i(λ) = = 2/fc(λ) = 0 ,

εfc+1(λ) = . . . = efc+1(λ) = 0 .

This is essential for the proof of Lemma 2.1. Also the matrices εέ(λ)
are n x n matrices.

THEOREM B. The number n is the largest integer such that there
exists a nilpotent operator, commuting with S, of order n. See [2]
Theorem 3.1 and its corollary.

2. The multiplicity of a function of an operator* The main re-
sult in this section is:

THEOREM 2.1. Let A be a normal operator of multiplicity m,
m < oo, and f a bounded measurable function. The operator S = f(A)
has finite multiplicity, if and only if, there exist k disjoint Borel
sets βlf •••,&; and k bounded measurable functions z^X), •• ,«fc(λ) such
that:

a. σ(A) = \Jβt.
ί = l

b. if X 6 βi then ^(/(λ)) = λ almost

everywhere, with respect to E(A; a).
Proof of sufficiency of conditions a and b. Let St and A% be the

restrictions of S and A to E(A β^H. Then
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= ( f(X)E(A;d\)
Jβi

hence

Now, it follows from Theorem B that

muAi > muSi (muT = multiplicity of T)

But the multiplicity function is subadditive:

muS <

To see this we have to observe that muS is the smallest number n
such that there exists a set of n elements, {x19 xn}, xi e H and span
{E{ά)xlJ a a Borel set} — H. (n generating elements.)

Thus

k k

ΎΠUA < Σ muSi < Σ wίuAi < mk < oo .
i=Ί ί=l

In order to prove necessity we need the following :

LEMMA 2.1. Let S = f(A) have finite multiplicity n and let

be the representation 1.3

Proof. For every Borel set α i?(α) e &A because S = /(^4). Let
£7(α) be maximal with respect to the property that E(a)E1 e QlA. Such
a maximal projection exists by Zorn's Lemma. Now if E(σ(S) — a) Φ 0
there exists, by the proof of 3.2 in [2] a set β such that:

β c σ(S) - α £7(/3) ̂  0

and for some Borel set γ

1 = E(β)E(A;y)e(£Λ.

This contradicts the maximality of a, hence E(a) = I.
Proof of necessity of conditions a and b. Let S hsve finite multi-

plicity n. By Lemma 2.1 there exist n sets βt such that E(A; βt) = Et.
Thus
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E(A;βi)E(A;βj) = 0 if i Φ j

and

±E(A;βt) = I.

Therefore the sets βt can be chosen to be disjoint and satisfy
condition a. Also

A = Σ US)Et = Σ *t(/(A))JE7(A; A) = Σ ( zί(f(X)E(A; dX) .
ί = i i = i i = i j β

Hence, if βczβi then

= ( XE(A; dX) = ( ^ ( / ( λ ) ) ^ ; dλ)
Jβ Jβ

or: on the set βtX — ̂ (/(λ)) almost everywhere with respect to the
measure E(A\a).

DEFINITION. The function / will be said to have k repetitions, with
respect to the measure E(A α), if conditions a and b of Theorem 2.1
are satisfied.

In the rest of this section we compute muS. It is enough to con-
sider the case where the operator A has uniform multiplicity m: other-
wise A can be written as direct sum of operators of uniform multiplicity
and one has to study each component of A separately.

The following Theorem is needed:

THEOREM 2.2 Let H be the direct sum of the orthogonal subspaces
Hlf •• ,Hk. Let Si be a normal operator, on Ήu of uniform, multi-
plicity mt and S be the direct sum of S,t.

if

E(S; a) = 0 whenever E(S,i] a) = 0 for some i

then

muS = Σ m% '
i = l

Proof. It is enough to prove that muS > ΣLi ^V Let σ = σ(S^) =
. . . = σ(Sk) = σ(S). By the Spectral Multiplicity Theorem each operator
Si can be described as follows: There exists a measure μ% on σ and
Hi is the direct sum of fmi spaces L2(μt). The operator Si is given by

γmι(
χy
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Now, the measures μt are equivalent, by the condition of the
Theorem. Thus there exist functions ^ , ^ 6 L(μi+1) 1 < i < k — 1 such
that

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let
us define an operator on H:

If x 6 Hif

then

If

then

X =

Mx e Ht, Mx =

/-4-x(λ)

0

0 \

x e Hίf x —

e ί/"ί+1, Λfa? =

0

Where Hk+1 is the zero space.
It is easy to see that Mis a bounded operator and

= 0
but

k

Σ
M1'1
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Also MS = SM, hence muS > Σ i - i ^ i

REMARK. It was proved in Theorem 2.1 that if a function / has k
repetitions then

muf(A) < kmuA .

However the number of repetitions of a function is not uniquely
defined. In order to compute muf(A) we have to find the minimal
number of repetitions. This is what the next Theorem does.

THEOREM 2.3. Let A be a normal operator of uniform multiplicity
m. Let f be a bounded measurable function which has k repetitions
with respect to the measure E(A a). A necessary and sufficient con-
dition that muS = mk, where S = f{A), is:

There exists a Borel set aQ

(2.1) E(A;f-\aQ))Φθ

and

E(A)f-\a)) = 0 whenever £(A;/- !(a)nA) = 0 for some i and
acza0.

Proof. Assume condition 2.1. We may restrict A and S to
E(A;f-\aQ))H. Let

and Aiy St the restriction of A, S to Ht. Now

f(At) = S, zt(St) - A,

(See Theorem 2.1.). Thus the operators St have uniform multiplicity
m because the operators At do. It follows from Theorem 2.2 that the
multiplicity of S restricted to E{A\f~1(aQ))H is mk. But muS <mk,
hence muS = mk.

(Note that on aQ the operator S has uniform multiplicity mk). Con-
versely, let us assume that for each Borel set a0 with E(A\f~1{a^)) Φ 0,
there exists a subset a such that E(A;f-\a))Φθ but E(A;f-1(a)nβi)=G
for some i. Let E(A\f"\a^) be maximal with respect to the property

Let E(A)f-\a,)) be maximal, with respect to the property

a.Πa^φ and E(A;f-\a2))E(A;β2) = 0

and choose inductively α3 an, α4 Π α^ = ^
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There exist such maximal projections by Zorn's Lemma. Now if
E{A\ Uf-i/"1^*)) ^ I there will be a set a and an integer j such that

α Π ( ύ «*) = 0; E(A;f-\a) Π /?,) - 0

Thus a} will not be maximal. Let

βj = βji) (/"W n A), i > 2 .

Then UJ=2/3J — tfOA) and on β3 the function / possesses a bounded
measurable inverse. Thus / has k — 1 repetitions and m^S < m(k — 1).

3 The multiplicity of a matrix of functions. Let S be a normal
operator of uniform multiplicity n. Let B be a normal operator and
BS = &B. The operator i? is represented as the matrix of functions
Σ?-i2/ί(λ)εi(λ) a n d also 5 = ^LiVi(S)Ei (Equation 1.2 and 1.3). Let us
denote by Bt and St the restrictions of JB and S, respectively, to

THEOREM 3.1. ΓΛe operator B has finite multiplicity, if and only
if, the functions y% have ji(ji < CΌ ) repetitions with respect to the spec-
tral measure of St.

Also

i = l

k fc

max muBh < ^ mu BL < X jίmuSί .
I i

Proof. From the definition of multiplicity, as the smallest number
of generating elements, it follows that

max muBi < muB < Σ nhuBt .
i 4 = 1

Now, Bi=yi(St)f hence the rest of the Theorem follows from Theorem 2.1.
The problem of this section is reduced to the following

H = Σ #*# where £ ^ = 0 if i ^ i
i = i

and Bt = restriction 5 to ϋ^ϋ", where the multiplicity of B% is known.
Now by decomposing each operator Bt into sum of operators of uniform
multiplicity we will have H = ΣΓ=i ί̂ «, where the spaces Ht are mutually
orthogonal, and Ĉ  == restriction of B to iϊ^ is an operator of uniform
multiplicity. We shall show how to compute muB from muC% by
reducing this case to the one studied in Theorem 2.2,
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Denote the projection on £Γ4 by F%. Let E(B\ai) be the maximal
projection such that

Such a projection exists by Zorn's Lemma. Finally let βt =
σ(B) — at. On βt the spectral measure of C% can vanish only when
the spectral measure of B vanishes. Now E(B\ \JΐlJ3t) = I because

The set σ(B) can be decomposed into disjoint sets jj such that
a. Each jj is a subset of one of the sets βJQ.
b. If y} Π βι Φ ψ then γ̂  c βt.
Assuming, for a moment, that this decomposition is given then

muB = max mu (B restricted to E(B 7j)H) .

But the multiplicity of B restricted to E(B; yj)H is

V mu(Ci restricted to J5(B; γ̂ JEZ,)Δ-X

by Theorem 2.2.
We shall show how to choose the sets γ4 by an induction argument

on the number m. Let γx = βx — \Ji^2fiifii- This set (which might be
void) satisfies conditions a and b. The rest of σ(B) is

U β&) u (u (βi - β

In both sets there are only m — 1 subsets and by induction there exists
a decomposition.
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UNITARY OPERATORS IN C*-ALGEBRAS

JAMES G. GLIMM AND RICHARD V. KADISON

1. Introduction. We present several results concerning unitary
operators in uniformly closed self-ad joint algebras of operators on a Hu-
bert space (C*-algebras). Section 2 contains these results the key one
of which (Theorem 1) asserts a form of transitivity for unitary operators
in an irreducible C*-algebra (an application of [2, Theorem 1]). Section
3 consists of some applications. The first (Corollary 8) is a clarification
of the relation between unitary equivalence of pure states of a C-*algebra
and of the representations they induce. The most desirable situation
prevails: two pure states of a C*-algebra are unitarily equivalent (i.e.
conjugate via a unitary operator in the algebra) if and only if the re-
presentations they induce are unitarily equivalent. The second application
(Corollary 9) provides a sufficient condition for two pure states p and τ
to be unitarily equivalent: viz. || p — τ || < 2. The final application
(Theorem 11) is to the affirmative solution of the conjecture that the
* operation is isometric in J5*-algebras [1],

We use the notation o(A) for the spectrum oί A; C for the set of
complex numbers of modulus 1; .5/ ~ for the strong closure of the set of
operators £f\ and ωx for the state, A —> (Ax, x)9 due to the unit vector
x. Our C*-algebras all contain the identity operator I.

2 Unitary operators* The theorem which follows establishes an
n-folά transitivity property for the unitary operators in an irreducible
C*-algebra. Its relation to [2, Theorem 1] is clear—it is, in fact, the
multiplicative version of the self-ad joint portion of that theorem.

THEOREM 1. If 21 is a C*-algebra acting irreducibly on 3ίf and V
is a unitary operator on Sff such that Vxk = yk, k = 1, , n, then there
is a unitary operator U m 21 such that Uxk = yk and σ( U) Φ C.

Proof. Passing to an orthonormal basis for the finite-dimensional
space generated by {x19 , xn}, we see that there is no loss in generality
if we assume that {xlf •••,#„}, and hence {y19 , yn}, are orthonormal
sets. Moreover, employing a unitary extension of the mapping carrying
Xj onto yj9 j = 1, , n to the space generated by {x19y19 , xn9 yn} and
a diagonalizing basis for this unitary operator; we see that it suffices to
consider the case in which Vx5 = βjXjf | βj \ = 1, j = 1, , n.

Choose real a5 in the half-open interval ( — π, π] such that expia3 =
βj9 and let A be a self-ad joint operator in 2ί such that Ax5 = a5x3 (such
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an operator exists by [2, Theorem 1]). Define g(a) as a for a in [min {aό},
max {aj}], as min {a5} and max {a3}, for a < min {a3} and α > m a x ^ } ,
respectively. Then g(A) is a self-ad joint operator in 2ί with spectrum
in [min {oc3}, max {#?}], and #04.)#j = otjXj. It follows that exp ig(A) is
a unitary operator U in 21, tf(ί7) Φ C, and ί/â  = βjXj.

Another unitary analogue of a known result which seems of some
value is the following variant of Kaplansky's Density Theorem [3, Theorem
1], It is a consequence of Kaplansky's theorem and some commutative
spectral theory.

THEOREM 2. If ^(21, k) is the set of unitary operators in the C*-
algebra 21 whose distance from I does not exceed k, then ^(21, k)~ con-
tains ^(?X~, k).

Proof. Note that || U — I\\ < k, for a unitary operator U, if and
only if σ{U) is contained in {z: \ z — 11 < k, \ z \ = 1}, a closed subset Sk

of the unit circle C. From spectral theory, each unitary operator is a
uniform limit of unitary operators which are finite linear combinations
of orthogonal spectral projections for it, and which do not have —1 in
their spectra (i. e. whose distance from / is less than 2). Thus, it suf-
fices to consider the case where k < 2.

Assuming k < 2, let arg z be that number in the open interval
( — 7Γ, π) such that z — exp [i arg z], for z in Sk; and let/ be a continuous
extension of arg to C. If a — 2 sin"1(fc/2) and ,^(2I, a) denotes the set
of self-ad joint operators in 21 with norm not exceeding α, then / maps
^(21, k) into ,^(2I, a) continuously in the strong topology, C/=exp [if (17)],
and exp maps i^(2ϊ, a) into ^/(2ί, fc) continuously in the strong topology,
from spectral theory, [3, Lemma 3], and [3, Lemma 2], Thus, if U lies
in ^(2Γ, k),f(U) lies in ̂ (2X~, α) and is a strong limit point of ^(21, α),
from [3, Theorem 1]; so that U(= exp [if (U)]) is a strong limit point of
^(St, fc).

In the next lemma, we make use of Mackey's concept of disjoint
representations [5]. These are ̂ representations of self-ad joint operator
algebras which have no unitarily equivalent non-zero subrepresentations
(the restriction of the representation to an invariant subspace). The
application in [5] is to unitary representations of groups and ours is to
^-representations of algebras—the difference is slight, however; and our
lemma and proof are valid for groups.

LEMMA 3. // {φa} are *-representations of the self-adjoint operator
algebra 21, then {φa} consists of mutually disjoint representations if and
only if φ(21)" = Σ Θ (Φ*(2l)-), where φ=

Proof. Suppose φΛ{%) acts on ^ , T = Σ θ ^ a n d P« *s t h e
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orthogonal projection of ^ upon 3%. If Φ(2l)- = Σ Θ (Φ (3I)~), and t/is
a partial isometry [6] of Ea{Sίζ) onto E„,(£%,), where α ^ α ' and #„, £7Λ,
are projections commuting with φΛ(5I) and </v(3I), respectively, such that
Uφa(A)U* = φa,(A)Ea, for each A in 2ί, then Z7commutes with φ(2ί). In
fact, ϊ/φ(il)=ϊ7φΛ(A)=φΛ,(A)J7=φ(A)ί7. Thus Ucommutes with Σ&ΦM)
and, in particular, with each Pa. But UP# = Z7 = PJJ = 0; so that
0 = ϋ7Λ = 2?Λ/ and {φ*} consists of mutually disjoint representations.

If the φa are mutually disjoint and V is a partial isometry in the
commutant of φ(SX) with the initial space EΛ in Pa and final space 2?Λ, in
P«, (cf. [6]); then VEΛφa{A)EaV* = FF*Fφ(A)F*FF*=# Λ ,φ(A)FF*# Λ , -
φΛ,(A)EΛ,, for each A in 2ί. Thus, by disjointness, 2£Λ and 2£Λ/ are 0.
It follows that the central carrier of Pa is orthogonal to that of each
PΛ,, and hence to each PΛ,, with a' Φ a (see [4], for example). Since
Σ Λ = ^ and the central carrier of P* contains Pa, PΛ is its own central
carrier. In particular, Pa lies in the center of the commutant and there-
fore in φ(9ϊ)-. It is immediate from this that φ(2I)~ = Σ Θ (Φ«(2t)~).

Since the commutant of an irreducible representation consists of
scalars, two such are either unitarily equivalent or disjoint. From this
and Lemma 3, we have as an immediate consequence:

COROLLARY 4. If {φa} is a family of irreducible *-representations
of a self-adjoint operator algebra SI, no two of which are unitarily
equivalent, then φ(SI)~ = Σ θ ^L> where φ = Σ 0 Φ* and &» is the al-
gebra of all bounded operators on the representation space of φa.

We shall need a result asserting the possibility of "lifting" unitary
operators from a representing algebra to the original algebra under cer-
tain circumstances.

LEMMA 5. If φ is a *-representation of the C*-algebra 21 and ϋ
is a unitary operator in Φ(Ά) with o{U) Φ C, there is a unitary ope-
rator Uo in 31 such that φ(U0) = U.

Proof. As in Theorem 2, we can find a continuous function f on C
such that f(U) is self-ad joint and exp [if (U)] = U. Let A be a self-
ad joint operator in 21 such that φ(A) = f{U). (Recall that φ(2I) is a C*-
algebra, so that/(E/) lies in φ(2ί). If φ(B) =f(U) then A may be chosen
as (£* + B)I2.) If Uo = exp iA then φ(UQ) = exp [if (17)] = Z7, by uni-
form continuity of φ.

REMARK 6. It may not be possible to lift a given unitary operator
(as indicated by the condition σ(U)ΦC in Lemma 5). In fact, illustrat-
ing this with commutative C*-algebras, we may deal with the algebras
of continuous complex-valued functions on compact Hausdorff spaces and
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unitary functions on them (functions with modulus 1). View C as the
equator of a two-sphere S9 and let a be the inclusion mapping of C into
S. Then a induces a homomorphism of the function algebra of S onto
that of C ("onto" by the Tietze Extension Theorem) which is, of course,
the mapping that restricts a function on S to C. The identity map-
ping of C onto C is a unitary function on C which does not have a
continuous unitary extension to S; for such an extension restricted to
one hemisphere would amount to a retraction of the disk onto its
boundary.

As a corollary to the foregoing considerations, we have the follow-
ing extension of Theorem 1:

COROLLARY 7. // {</>„} is a family of unitarily inequivalent ir-
reducible *-representations of the C*-algebra 2ί on Hilbert spaces { ^ } ,
φ is the direct sum of {φΛ},^f of {££«}, {x19 •••,&„} and {y19 * ,yn}
are two finite sets of vectors with {x19 , xn} linearly independent and
each Xj and corresponding y3 in some 3ί%\ then there is an A in % such
that φ(A)Xj = y3. If Bx3 = y3 for some self-adjoint or unitary operator
B on Stf then A may be chosen self-adjoint or unitary, respectively.

Proof. The argument of [2, Theorem 1] applies directly to the first
assertion once we note that the general constructions and norm estimates
of that theorem can be performed on each <%%, since each xj9 y3 lie in
some 2%\ and the strong approximations are valid by virtue of Corollary
4. With B self-ad joint, each PaBPa is self-ad joint and PΰiBPoύx3 = y5 (for
xj9 y3 in 3Cζ)9 where Pa is the projection of έ%f onto ^\ so that the
argument of [2, Theorem 1], in the self-adjoint case, applies to give a
self-adjoint operator Φ(A) such that φ(A)x3 = yj9 j = 1, , n. Of course,
A may be chosen self-ad joint in this case. If B is unitary it can be
replaced by one which maps each S^ onto itself and acts in the same
way on {x19 , xn} (extend the mappings of x3 onto y3 on each Stζ).
Having the self-ad joint result, in this case, the argument of Theorem 1
now applies to give a unitary operator φ(U) such that Φ(U)x3 = yj9

/ = 1 , # ,w, and o[φ{U)] Φ C. From Lemma 5, U may be chosen as a
unitary operator in 21.

3. Some applications* The next result indicates that the most
favorable situation obtains with regard to the relation between pure
states which give rise to unitarily equivalent representations.

COROLLARY 8. If p and τ are pure states of the C*-algebra 21, then
p and τ induce unitarily equivalent representations of 21 if and only
if there is a unitary operator U in 2t such that p{A) — τ(UMAU) for
each A in 21.
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Proof. If such a U exists, and φp and φτ are the representations
due to p and τ with left kernels ^ and 3ίΓ > respectively; then the
mapping V of %\j? onto %\3ίT defined by, V(A + κy) = AU + 3% is an
isometric mapping of a dense subset of the representation space for p
onto a dense subset of the representation space for r, since p(A*A) =
r(J7*A*AΪ7). Thus F has a unitary extension mapping one representa-
tion space onto the other. Moreover, V-1φ^(B)V(A + ̂ jr) = V-\BAU+3T) =
BA + j? = φp(B)(A + ^), whence the unitary extension of F imple-
ments a unitary equivalence between φτ and φp.

Suppose, now, that V implements a unitary equivalence between φp

and φτ, that x and 1/ are unit vectors in the representation spaces for
φp and φτ, respectively, such that o)xφp = p and ω ^ = r, and that
UQVy = x, with Uo a unitary operator in φp(21) such that ff(ϊ70) =£ C (cf.
Theorem 1). Let U be a unitary operator in 21 such that φP(U) — Uo

(cf. Lemma 5). Then

, Vy)

= τ(ϊ7*Aί7) ,

for each A in 21.

COROLLARY 9. 1/ p and τ are pure states of a C:v-algebra 21 such
that II |0 — r II < 2, then p and τ give rise to unitarily equivalent repre-
sentations of 21.

Proof. If φp and φτ are unitarily inequivalent and φ, their direct
sum, represents 21 on the direct sum Sίf of 3ίζ and 3%, then there are
unit vectors x and y in 3ί% and J^ , respectively, such that p = ω̂ φ and
r = ίo^φ. According to Corollary 7, we can find U in 21 such that
φ(U)x = a? and Φ(U)y = —y (approximation using Theorem 2 would do).
T h e n I (p - τ)U\ - | (φ(U)x, x) - (φ(U)y, y)\=2; so t h a t || p - τ \\ = 2
(recall that | | ^ | | = | | r | | = l, since ô and τ are states).

REMARK 10. The condition || p — τ || < 2 noted above is not neces-
sary for unitary equivalence. Indeed, if x and y are orthogonal unit
vectors in a Hubert space £ίf, E is a projection with a? in its range and
y orthogonal to its range, then (ωx — ωy)(2E—J) = 2, so that ||α>x — ω y | |=2;
while o)x and α>y give rise to unitarily equivalent representations of the
algebra of all bounded operators on £ίf (both, in fact, equivalent to the
given representation on 3ί?}. On the other hand, | (ωx — ωy) (A) \ <
I ( A x , x - y) I + I (A(x - y ) , y ) \ <2\\x-y ||, w h e n |) A \\ < 1; s o t h a t
there are pure states giving rise to unitarily equivalent representations
the norms of whose differences are as small as we please.

Our next application is to the solution of a minor problem raised by
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Gelfand and Neumark in connection with their conditions for a Banach
algebra to be isomorphic (and isometric) to a C*-algebra [1]. In [1],
six conditions are listed for this to be the case—the first three being
the standard algebraic conditions for a * operation defined on a Banach
algebra, viz. {aa + ί>)* = aa* + b*, (α&)* = δ*α*, and (a*)*=a; the fourth,
|| α*α || = || α* || || a ||, is the critical condition relating the metric struc-
ture to the * operation; the fifth, | | α * | | = | | α | | , asserts the isometric
character of the * operation; and the sixth, the so-called '"symmetry"
condition, assumes that α*α + e has an inverse. Gelfand and Neumark
conjectured that both the fifth and sixth conditions are consequences of
the first four. After much preliminary work (notably by I. Kaplansky),
the symmetry question was reduced to showing that the sum of two
self-adjoint elements with non-negative spectrum is again such an ele-
ment. This was done independently by Kelley-Vought and Fukamya
(though not recognized as the missing information—Kaplansky pointed this
out). We noted that this had been effected without assuming the * oper-
ation is isometric, and went on to prove that it was, accordingly, iso-
metric on regular elements. From this, its continuity followed; and one
could derive all but the isometric character of the isomorphism in the
Gelfand-Neumark theorem, with a little care. During some seminar
lectures, we noted, some years ago that the symmetry condition could
be derived in a quite natural way in the course of the imbedding proof.
The last loose end, establishing the fully isometric character of the
* operation, can be tied by the results of this paper. The closing of this
last gap would seem to be an appropriate occasion for presenting the
finished result in its entirety. From another viewpoint, the supression
of the fifth condition introduces subtle traps into these considerations
—statements which are made in complete safety with operators require
delicate proof in the present circumstances (e. g. despite the Gelfand-
Neumark commutative result, we cannot take the commutative case as
settled; for the uniform closure of the real algebra generated by a single
self-adjoint element is not known a priori to consist entirely of self-
adjoint elements, since continuity of the * operation is missing—again, the
Schwarz inequality for states will not yield the fact that they have norm
1, under these circumstances).

By a i?*-algebra, we shall mean a Banach algebra with unit element
e and normalized norm (|| e || = 1, || ab || ^ || a || || b ||) which has a * oper-
ation satisfying the first four conditions noted above. An element a is
self-adjoint, unitary, positive, or regular, when a = α*, α*α = aa* = e,
a — α* and the spectrum σ(a) of a consists of non-negative real numbers,
or a has an inverse, respectively. A state of a i?*-algebra is a linear
functional which is 1 at e and real, non-negative on positive elements.
We make use of the Hahn-Banach theorem from normed space theory
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and the following standard facts about complex Banach algebras with a
unit and a normalized norm: the spectral radius r(a) of an element a
(i.e. sup {| a |: aeσ(a)}) is l im^^ || an | |1/w(and does not exceed || a | |); e+a
is regular if || a \\ < 1; σ(p(a)) = p(σ(a))( = {p(a): ae ε(α)}) for each poly-
nomial p; and the quotient modulo a maximal ideal is the complex num-
bers, for a commutative algebra.

THEOREM 11 (Gelfand-Neumark). A B*-algebra 3ί is isometric and
*-isomorphic with a C*-algebra.

Proof. If α* = α then || α21| = || α ||2 so that || of || = || α | Γ and
|| α || =r(α). Since p(a) is self-adjoint for each real polynomial p, \\ p(a) \\~
r(p(a)) = sup {| p(a) |: α: in σ(a)}. If p is complex then p ~ pλ + ip2, with
p19 p2 real, and

r((pl + PΪ)(a)) < r((Pl - ip2){a))*r{{Vl + p2)(a)) < \\ [(Pl +

•II (p, + ip2){a) || = || (pi + pt)(a) || - r((p2 + pΐ)(a)) .

Thus, equality holds throughout; and since

- ip,)(a)) < || [(^ +

equality must hold in each. Hence || p(a) \\ = r(p(a)) = sup {| p(α) | : α e
o (α)}, for complex polynomials p and self-ad joint elements a. The map-
ping carrying an element p(a) onto the polynomial p on σ(α) is an iso-
morphism of the algebra of (complex) polynomials in a into C(σ(a)) and
has an isometric isomorphism extension mapping the closure Sί(α) onto the
closure P of the polynomials in C(σ(a)).

If a 6 σ(a), then the mapping # —* #(a) (g in P) is a linear functional
of norm 1 on P which assigns 1 to the image in P of e and a to that
of a. Via the isometry, this gives rise to a linear functional f0 of norm
1 on SI(α), such that /0(β) = l,fo(a) = «. Let / be a norm 1 extension
of /o to 21. If 6 is self-adjoint and/(&) is not real, by adding a suitable
real multiple of e to b we arrive at a self-adjoint element on which j
takes a non-zero imaginary value. Suppose f(b) = ΐ/3, with /3 > 0 (if
/3 < 0, use - 6 ) . Then

ine) |2 = β2 + 2/3^ + ^ 2 < || 6 + ΐne ||2 = [r(b

= (r(b + ine))(r([6 + ine]*)) = || 6 + ine || || δ - ine \\ = || δ2 +

which is absurd for n > (|| δ21| — β2)j2β (note that r(c) = r(c*), for each
c, since σ(c*) = ^τ(c)). Thus / is real on each self-adjoint element. In
particular, f(a) = α is real, and σ(a) consists of real numbers. Hence,
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the algebra of complex polynomials on σ(a) is invariant under complex
conjugation, the Stone-Weierstrass theorem applies, and P is C(σ(a)). If
6 > 0 and f(b) < 0, then σ(b - || 6 || e) = σ(b) - || 6 ||. Since σ(b) > 0,
r(δ - || 6 || β) = || & - || 6 | |e || < || 6 ||. But | / ( δ - | | 6 || e) | = | / (δ)- | | 6 | | | >
II 6 || > || 6 - || 6 || e ||, contradicting | | / | | = 1. Thus / is a state of 3,
f(a) = α, and / has norm 1.

If a19 , αw are positive and a e σ(aλ + + an) there is a state /
of §ί such that a = /(αx + + αn) = / ( α j + + /(αn) > 0, so that
a>i+ + ttn is positive. If 6 is self-ad joint and has an inverse, then
0 is not in σ(b); so that the image of 6 in C(σ(b)) has an inverse; and the
inverse of 6 lies in §1(6). If 6 is in §I(α), with a self-adjoint, then §1(6)
is contained in §I(α) and the inverse of 6 lies in §I(α). Thus the spectrum
of a self-ad joint element in §ί(α) is the same relative to §ί(α) and to §1.
In view of the isomorphism between §ί(α) and C(σ(a)), this spectrum is
the range of its representing function in C(σ(a)). Thus a2 > 0 for a
self-ad joint. With a and 6 positive, choose a state / of norm 1 such
that /(α) = r(α) = || α | | , then | | α + 6| | >f(a + 6) >f(a) - || a | |.

Suppose next that §ί0 is a subalgebra of §ί which is maximal with
respect to the properties of being abelian and self-ad joint (i.e. §ί*=§ί0).
If 6 commutes with §ί0 then δα* — α*6, for each a in §l0; so that 6*α=
αδ*. Thus, the self-ad joint elements 6 + 6* and (6 — δ*)/ί commute with
§I0, and, by maximality, lie in §ί0. Hence b( = (b + 6*)/2 + i(b - 6*)/2i)
lies in §ί0; and §I0 is maximal with respect to the property of being abe-
lian. It follows that §ί0 is closed. If 6 is the limit of self-ad joint ele-
ments in §I0 and 6 = bλ + ib2 with bλ and 62 self-adjoint (in §ί0 — the
decomposition just noted), then

II 621| < IK&! — α)2 + δ2 II = || bx + ib2 — a \\ || bλ — ib2 — a \\

with a self-ad joint in §ϊ0. Choosing a near 6, we see that || 621|( = || 62 H
2)

is dominated by an arbitrarily small quantity, so that 62 = 0. Thus 6 is
self-ad joint, and the self-ad joint elements in §I0 are closed. If a is
self-adjoint, the polynomials in a from a commutative self-adjoint algebra
which can be imbeded in a maximal one §ί0 (Zorn's Lemma). Since §ί(

is closed, §I(α) is contained in it. Thus, the closure of the real
polynomials in a (which maps onto the algebra of real functions in
C(σ(a))) consists of self adjoint elements.

The isomorphism of §I(α*α) with C(σ(α*α)) establishes the existence
of positive elements 6 and c in §I(α*α) such that α*α = 6—c, and δc = 0.
Thus (ac)*(ac) — — c3, which is negative, so that (αc)(αc)* is negative.
(In an arbitrary ring with a unit, if c is the inverse to e — ab then
e + bca is the inverse to e — δα; so that, in a Banach algebra, the spectra
of ab and ba with 0 adjoined is the same set.) But with ac = a1

ax and α2 self-ad joint,

0
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0 > {ac){acY + (αc)*(αc) = 2(α2 + aζ) > 0.

Thus,

so that aλ = α2 = αc = c3 — c = 0, and α*α > 0. The function represent-
ing a*a in C(σ(a*a)) is real and non-negative and therefore has a con-
tinuous non-negative square root. This square root corresponds to an
element (α*α)1/2 which is a positive square root of α*α in 2ί(α*α). If a
is regular so is α* and (<x*α)1/2. The element α(αV)-1 / 2(=u) is unitary,
since uu* — a{a%aYλa% = αα^α*" 1*!* = β and u*u = (α*α)~1/2α*α(α*α)~1/2 =
(α*α)(α*α)~1 = e. Extend the self-ad joint abelian algebra of polynomials
in u and u* to a maximal one 2ί0; and let M be a proper maximal ideal in
2ί0. Then 6 + M = δ(Λf)e + Λf, for some complex number δ(Λf)(i.e. 2ίo/M
is the complex numbers), (cb)(M) = c(M)6(M), δ(Λf) is in the spectrum of
b relative to 2ί0, and if b — b1 + ib2 with bλ and b2 self-ad joint then 6*(Λί) =

— ib2(M) — b(M), since the spectra of 6X and b2 are real. Thus 1 =
e(M) = (%*%)(Λf) = I u(M) |2. Now || u | | > r ( ^ ) > l , and similarly, | | % * | | > 1 .
But 1 = || e || = || u*u \\ = || u* \\ \\u ||, so that || u || = 1. Hence

|| a ||2 -

and || α || < || α* ||, symmetrically, || α* || < \\a\\, so that \\a\\ = || α* || (i.e.
the ;|ί operation is isometric on regular elements). If || 6 || < 1, then e + b
is regular, so that || 6* || - 1 < || e + 6* || = || e + b \\ < 1 + || b \\ < 2.
Thus the * operation is continuous (bounded), and the self-ad joint elements
in 5Ϊ form a closed set.

If / is a state of 21, the mapping α, b—+f(b*a) is a positive semi-
definite inner product on Sί (write (α, b) for the inner product of a and
6). If a is a null vector then (6α, δα) = (α, δ*6α) = 0 (from the Schwarz
inequality); so that ba is a null vector. Thus, the set ^β; of null vectors
is a left ideal in 21 (the "left kernel" of/) . The quotient vector space
2 1 / ^ has a positive definite inner product induced on it from that on
21. Let csίf be the (Hubert space) completion of 2 1 / ^ in this inner pro-
duct. Define the operator φ(a) on 2 ί / ^ by Φ(a)(b + j?) = ab + J?7,
for each a in 21. If c > 0, then (6V/2)(c1/26) > 0. With 11 α*α ||e - a*a
in place of c, we have || a*a \\ 6*6 > 6*α*αδ; so that 3 || a ||2 (b+^9 b+j?-)>
|| α*α ||/(δ*6) ^/(6*α*αδ) = (0(α)(6+ ^ ) , φ ( α ) ( 6 + ^ ) ) , and | | φ ( α ) | | <
3 1 / 2 | | α | | ( | |φ(α)| | < | | α | | if a is self-ad joint). Thus φ(a) has a unique
extension to Sί?, with the same bound, which we denote again by φ(α).
Since (φ(α) (6 + ^ ) , c + ^ ) = /(c*α6) - (6 + ^ , φ(α*)(c + ^ ) ) , φ(α)* =
Φ(a*). It follows that φ is a ^-representation of 21 in the algebra of
bounded operators on Sί?. If φ(α)=0 then/(α) = (φ(α)(e + t ^

Γ ) , e + ^ j ^ ) ^ 0 .

If we perform this construction for each state of 2ί, the direct sum
ψ of the resulting ^-representations is a *-isomorphism of 2ί. In fact,



556 JAMES G. GLIMM AND RICHARD V. KADISON

if ψ(a) = 0, then φ(a*a) = 0, so that f(a*a) = 0 for each state / of St.
But there is a state / such that /(α*α) = || α*α || = || α* || || a | |. Thus
α = 0. If b is self-ad joint || ψ(b) \\ < \\b\\, since each of the represen-
tations is norm decreasing on b. With / a state of 31 such that || 6 || =
|/(6) I = I (φ(b)(e + ^ ) , e + <jr)\, however, we see that || φ(b) \\>\\b ||;
so that || ψ(b) || = || b ||. Since the self-ad joint elements in 21 are closed
(hence complete) they are complete (hence closed) in ψ(Sί); whence ^(21)
is closed (i.e. a C*-algebra). If a is regular, || a ||2 = || a*a || = || <ψ{α*α) || =

Defining | | | ^ ( 6 ) | | | to be | |6 | | ,^(2t) has two norms (||| | | |, and its
operator norm || ||) relative to which it is a i?*-algebra. These norms
agree on self-ad joint and regular elements. If we show that they agree
everywhere (i.e. that ψ is isometric) then the * operation is isometric on
SI since it is preserved by ψ and is isometric on Ί|Γ(SI). We write 21
in place of ^(Sί)(3ί is a C*-algebra with the two i?*-norms as described).
As the first step, we establish the formula || A || = sup {\f(UAV) |: U
and V unitary operators in 3ί and / a pure state of 31}. Since each
state of 31 has norm 1 (from the Schwarz inequality) relative to the
operator norm, \f(UAV) \ < || UAV\\ < \\ A ||. On the other hand, if ψ
is the (irreducible) representation induced by/, \f(U*AV) \ = \(Φ(A)φ(V)x,
Φ(U)x) I, where x is a unit vector (in fact, the special one corresponding
to I+.JΓ). In view of Theorem 1 (or Theorem 2), sup {\f(U*AV) |:
U and V unitary operators in 31} = sup {| (φ(A)x, y)\: | |a?| | = | |2/| | = l} =
11 Φ(A) 11. Now the direct sum of the ^-representations due to each pure
state of Sί is a ^-isomorphism and hence an isometry of 31; so that
sup {|| φ(A) ||: / a pure state of Sί} = || A ||, and our formula follows.

Each state of Sί has norm 1 relative to the norm ||| |||; for if
HI B HI < 1 and f(B) = | f(B) \ a (where | a \ = 1), then aB + I is regular.
Hence, \f(άβ + /) | = \f(B) \ + 1 < || aB + / | | = ||| άβ + I\\\ < 2. Thus
\f(UAV)\ < HI UAV\\\ < HI A HI; and || A \\ < ||| A || |, for each A. But
|| A* II . II A || = || A*A \\ = ||| A*A | | | - || | A* ||| . ||| A | | |; so that || A \\ =
HI A HI for each A. The proof is complete.
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HUGH GORDON

Let a linear space L of real-valued functions on a set E and a
semi-norm on L be given. We shall consider when there exists a
countably additive measure on E such that L is Lp with respect to this
measure. We shall prove that certain conditions are sufficient for the
measure to exist; it is obvious that these conditions are necessary. (We
consider only the case where the constant function l e L . )

We need not assume that the elements of L are functions on a set.
If we do not make this assumption, we use a theorem of Kakutani
([3], p. 998) to construct a representation for L as a space of continuous
functions on a compact Hausdorff space. If, however, the elements of
L are given as functions, we leave this preestablished representation
unchanged, even when it is not the one given by Kakutani's theorem.

The case where p = 1 and the elements of L are not given as
functions was treated by Kakutani [2]. The case p = 2 will receive
special attention at the end of the present paper. In this latter case,
one may replace some of the hypotheses of the general case by the
hypothesis that the semi-norm on L arises from a positive semi-definite
bilinear form.

Let L be a Riesz space whose elements are functions on a set E.
That is, let L be a set of real-valued functions on E which contains
with /, g:

( a ) f + g defined by (/ + g)(x) = f(x) + g(x),
( b ) af defined by (af)(x) = a[f(x)]f for each real number a,
(c ) / Λ g defined by (/ Λ g)(x) = min (f(x), g(x)),

and ( d ) / V g defined by (/ V g)(x) = max (f(χ), g(χ)).
We denote / V 0 by /+ and (-/) V 0 by / - . (The case where L is an
abstract Banach lattice will be considered shortly.)

Let p be a fixed real number > 1 . Throughout the paper, p will
always stand for this fixed number. We suppose there is a semi-norm,
which we denote by || ||, defined on L. We further suppose:

(1) L is complete. That is, if fu f2, 6 L are such that \\fn — fm ||
is small for large n, m; then there is a geL such that \\g — fn\\ —+ 0.

(2) For each feL, || | / | || = | | / | | .
(3 ) Iff,g a r e positive, | | / + g \\' > \\f\\* + || g \\>.
( 4 ) If /, g a r e positive and / Λ g = 0, \\f+g\\'<, 11/11"+||fli ||».
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( 5 ) 1 e L and || 11| = 1. (Here 1 denotes the constant function 1.)
We note that if /, geL and 0<f<g, then | | / | | < || flf ||; since

\\f\\p<\\f\\p + \\9-f\\p<\\f+g-f\\p = \\g\\p b y ( 3 ) a b o v e . W e
also note that, for each / e L , | | / + | | < | | / | | ; since | | / + || < | | / + + / - || =
|| I/I II = 11/11 using (2) and the preceding remark.

We now briefly consider abstract Lp spaces. Let L be a Riesz space
(i. e. a vector lattice), whose elements need not be functions. Suppose
there is a norm on L. (If a semi-norm is given instead of a norm, we
use, in place of L, the quotient space of L modulo the elements of norm
0. This quotient space will be a normed Riesz space provided the semi-
norm satisfies (2) and (3) above.) Suppose, for some p > 1, that L has
properties (l)-(4) above. Instead of (5), we suppose that L has a weak
unit, i. e.:

(5') There is a positive e eL such that / Λ e = 0, feL imply/ = 0.
(We suppose L is normalized so that || e || = 1.)
Under these conditions we may call L an abstract Lp space. (In the
case p = 1, an abstract L2 space is thus an abstract (L)-space in the
sense of Kakutani [2].)

We seek to represent abstract Lp spaces as function spaces. We
recall from [1], p. 248, that a norm on a Banach lattice is called uniformly
monotone when, given ε > 0, one can find δ > 0 so small that if / > 0,
<7>0, | | / | | = 1 and | | / + # || - 1 < δ, then | | f lr | |<ε. It follows at
once from (3) that the norm on L is uniformly monotone. Thus, since
L is complete, it is completely reticulated ([1], p. 249); i. e. every
non-empty subset of L bounded from above has a least upper bound.
Hence, by a theorem of Kakutani ([3], p. 998) in the form given by
Stone ([4], p. 85), L is isomorphic as a Riesz space to a space of
continuous functions on a compact Hausdorff space, if we entirely
ignore nowhere dense sets. If we do not ignore these sets, we obtain
a space of functions with a semi-norm, defined by the norm on L, which
satisfies the hypotheses given at the beginning of this section. Thus
we may now return to these hypotheses without loss of generality.

We now define a collection N of functions, which we call null func-
tions, by feN if there are flf /2, eL such that:

( a ) fn>\f\ for a l ln
and(b) H / J I - 0 .
Clearly if / e JVnL, | | / | | = 0. It is also clear that N is a lattice ideal
in the set of all functions on E; i. e. N is a linear subspace of this
set with the property that | / | < \g\ and ge N imply feN.

We define L'z)L by fe U if there are geL, he N such that / = g+h.
Clearly L' is a linear space. Suppose / = gx + hλ — g2 + h2 with gi e L,
h%e N (i = 1, 2). Then h, - h2 = g2 - g1 e LnN. Thus || g% - gλ \\ = 0.
Hence || g2 \\ = || gx + g2 ~ gx \\ < || gx \\ + || g2 - gx \\ = || gλ ||. Similarly
|| 0! || < || g2 \\. Hence || gx \\ = || g21|. It follows that we may define a



MEASURES DEFINED BY ABSTRACT Lp SPACES 559

semi-norm on U by defining || g + h || to be || g ||, where ge L and he N.
We next show that U is a lattice; i. e. that fλAf2eL' whenever

f19 f2 6 ZΛ Let f1 = g1 + hlf f2 = g2 + h2 with gt eL,hte N. Then gxAg2 e L.
We have f,Af2 = (& + hx) A (g2 + h2) < (gx + hi) A (g2 + hi) <g±Ag2 +
hi + hi. Thus fλAf2 - g1Ag2 < hi + hi. Similarly f,Af2 - g1 A g2 > -
hϊ — h2. Since N is a lattice ideal, fxAf2 — gλ A g2 e N. Hence fλAf2 e L'.

It is easy to check that 1/ satisfies all the hypotheses imposed above
on L. In addition, L' has the following property:

If fif Λ, eL' are positive, fn ] f pointwise and \\fn || < a for all
w, then / e L ' and | | / — /«| |->0. To see this we note that {||/n||} is
an increasing sequence of real numbers bounded from above by a; hence
it is a Cauchy sequence. Thus {||/w||p} is also a Cauchy sequence.
Whenever n > m we have | | fn - fm \Y < | | fn - fm + fm \\* - \\ fm \\p =

\\fn\\p - \\fm\\p by (3) above. Thus there is an / ' e U such that
11/' - fn II -> 0 by (1) above. Since fn<f for all n, f -fn>Γ ~f for
all n. Since f'-fneΠ, f -fn = gn + K with gneL, hne ΛΓ. By the
definiton of ΛΓ, we can find, for each n, a g'ne L such that ^^ > hn and
| | ^ | | < 1 M . Let / ; = ί/,, + Λ. Then f'n>gn + hn =f> -fn>f> -f.
Also | | / ; || < || gn \\ + \\g'n\\ < \\f - fn \\ + 1/^-0. By the definition of N,
f'-feN. Thus/eL' . Also | | / - fn \\ < \\f - / ' | | + 11/' ~ / J | - 0.

At this point, we replace L by L'; i. e. we write L for U.

LEMMA. Let feLbe positive. Let g be the characteristic function
of the set on which f differs from 0. Then ge L.

Proof. Clearly nfAl]g pointwise. Since || nfAl \\ < || 11|= 1 for
all n, geL by what has just been proved.

LEMMA. Let feLbe positive. Then there are positive flf f2, 6 L

such that fn\f pointwise, \\f — /„ II —>0, and each fn assumes only

finitely many values.

Proof. For each positive integer n, let fn be defined by: fn(x) =
2'n[2n(f A n)(x)] for all x e E. (By [a] we mean the largest integer
<a.) For each xe E, fn{x) = 2~n[2nf(x)] for large n; thus clearly
f(x). Hence fn—>f pointwise. We note

> i[

for each xeE. Hence fn\f pointwise. If we show fneL for all n,

we shall know | | / — / „ ||—»0 and the lemma will be proved.
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Let n be fixed. Let g19 g2, be functions on E defined by:

gt(x) = 1 if x is such that 2n(fΛn)(x) > i

g%(x) = 0 if x is such that 2n(fΛn)(x) < i .

We note that /„(»)= 2-n ΣΓ-i ft(»)- Since 2 B ( / Λ φ ) < 2 \ gt(x)=0
for all α; when i > 2nn. Thus /n(α) = 2~n Σί ΐ f lΦO Clearly each 1-g,
is the characteristic function of the set on which (2n(fΛn) — i)~ differs
from 0. Since (2n(fΛri) — i)-eL, l — gteL by the previous lemma;
hence g% e L. We note fn = 2~n ΣΪΛ9t which shows fne L and completes
the proof.

We now define a measure μ on the set E. Let A be a subset of
E. If fAf the characteristic function of A, is in L, we call A measurable
and put μ(A) = | |/^ | |p. The verification that μ is a countably additive
measure is trivial, making use of conditions (3) and (4) of our hypothesis,
except for the following: Let A19 A2y •••c.E' be pairwise disjoint and
measurable. Let fn be the characteristic function of Aλ U U 4
(n = 1, 2, •••). Then fn\f pointwise, where / is the characteristic
function of Uw=i An. By what has been shown above, feL and | |/—/J|—>0.

Thus / i ( Λ ) + ••• + μ(An) = \\fn\\*-+\\f\\* = μ(\jϊ_1An).

Next we consider the space Lp defined by μ. The functions in L
which assume only finitely many values are precisely the measurable
functions which assume only finitely many values. Clearly the given
semi-norm on L coincides with the Lp norm for such functions. It fol-
lows, by considering pointwise limits of increasing sequences of such
functions, that the functions in Lp are precisely those in L and that
the norms agree. Remembering that we modified the original L by
introducing null functions, we have the following theorem:

THEOREM. Let L be a Riesz space of functions on a set E. Sup-
pose there is a semi-norm on L which satisfies conditions (l)-(5) above.
Then there is a countably additive measure μ on E such that L is es-
sentially Lp with respect to μ; i. e. such that:

( a ) For every feL, \\f\\*=^\f\*dμ.

and ( b ) If f > 0 and \fpdμ< oo, then there is a g e L such that

f(x) = g(χ) for almost all x e E.

In the case p — 2, we can modify the hypotheses above. We sup-
pose that H is a Riesz space of functions. We also suppose that there
is a positive semi-definite bilinear form defined on H and that H is
complete in the semi-norm determined by this form. We also assume
that 11/11 < || 0 || whenever /, geH and 0 < / < g. Next suppose that
| | / + || < Il/H for all feH. Finally we suppose l e i J a n d || 11| = 1. We
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prove the following lemmas to show that H satisfies, with p = 2, the
hypotheses given at the beginning of the paper.

LEMMA. // /, ge H are positive, then (/, g) > 0.

Proof. We note / + ag > f > 0 for all a > 0. Thus \\f + ag\\ >

| | / 1 | . Hence we have 0 < \\f+ag\\>- | | / | | 2 = 2α(/, g) + a*\\g\\\ I t

follows t h a t 2(/, g) > - a \\ g | |2 for all a > 0. Hence (/, #) > 0.

LEMMA. If f, ge H are positive and f A g = 0, ί/κm (/, g) — 0.

Proof. We note / Λ (α^) = 0 for all α > 0. Hence (/ — ag)+ = /.

| | / | | | | ( / ^ ) | r | | / ^ | | | | / | | ( / ^ ) + ||/||
Hence α || (/1|2 > 2(/, g) for all α > 0. Thus (/, (/) < 0. By the previous
lemma, (/, g) > 0. Therefore (/, g) = 0.

LEMMA. | | / | | = || | / | || for all fe H.

Proof. We have | | / | | 2 - | | / + - / - ||2 = | | / + 1 | 2 - 2(/ + , / - ) + \\f~ ||2 -
| | / + + / - II2 - 4 ( / + , / - ) - II I/I ||2 - 4 C Γ , / - ) . But (/ + , / - ) - 0 by the
previous lemma.

LEMMA. | | / + g ||2 > 11/IΓ + 11 g 112 whenever /, # e i 7 a r e positive.

Proof. | | / + < / | | 2 - | | / | | 2 + 2 ( / , </) + || ff ||
2 > | | / | | 2 + || ̂  ||2 s i n c e

(/, g) > 0.

LEMMA. If f, ge H are positive and f A g = 0, £Λew | | / + g ||2 =

Proof. We have | | / + g | |2 = | | / 1 | 2 + 2(/, (/) + || ^ ||2 = \\f | |2 + || g \\\

Thus we have verified t h a t H satisfies the hypotheses for L with

p = 2. On this basis we prove:

THEOREM. Lei H be as described above. Then there is a count-
ably additive measure μ on E such that H is essentially L2 with respect
to μ; i. e. such that:

( a ) For every /, g e H, (/, g) = j /# dμ .

and ( b) 7/ / > 0 and \ / 2 dμ < oo, £/z,ew ί/z,ere is a g e H such that

f(x) = g(x) for almost all xeE.

Proof, In addition to what has been proved above, it is enough to
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note that the inner product may be expressed in terms of the norm in
the usual way.
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SEPARABLE CONJUGATE SPACES

ROBERT C. JAMES

A Banach space B is reflexive if the natural isometric mapping of
B into the second conjugate space B** covers all of B**. All conjugate
spaces of a reflexive separable space B are separable. The nonreflexive
space i(1) is separable and its first conjugate space is (m), which is non-
separable. The space (c0) is separable, its first conjugate space is ί(1\
and its second conjugate space is (m). An example is known of a non-
reflexive Banach space whose conjugate spaces are all separable [4].
This space is pseudo-reflexive in the sense that its natural image in the
second conjugate space has a finite-dimensional complement. The struc-
ture of such spaces has been studied carefully [2].

The main purpose of this paper is to show that the sequence started
by lω and (c0) can be extended to give a sequence {Bn} of separable
Banach spaces such that, for each n, the nth conjugate space of Bn is
its first nonseparable conjugate space. The principal tool used is a theorem
which states a sufficient condition on a space T for the existence of
a space B with

£** = π(B) + T ,

where π(B) is the natural image of B in I?**. The following definition
and notation will be used.

A basis for a Banach space B is a sequence {u1} such that, for each
x of B, there is a unique sequence of numbers {αj for which lim w_>oo 11 a? —
Σ i Λ4%< 11 = 0. A sequence {Ui} is a basis for its closed linear span if
and only if there is a number ε > 0 such that

n + p

Σ CiXi
1

> £

n

2-1 CίXί
1

for any numbers {cj and positive integers n and p [1, page 111]. If ε
can be + 1, the basis is an orthogonal basis. It will be useful to clas-
sify bases as follows:

Type a. If {αj is a sequence of numbers for which supw || Σ f α ^ | | <
oo, then ΣΓaίUi converges.

Type β. If / is a linear functional defined on B and | | / | | n is the
norm of / on the closed linear span of {ut\i>n}, then l i m , ^ || / IL = 0.

There are Banach spaces which have bases which are neither of type a
nor of type β, while a basis is of both types if and only if the space

Received April 28, 1959.
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is reflexive [3; Theorem 1].
The symbols C, (m), lω, and (c0) are used in the usual sense [1 pages

11, 12, 181]. The set of all r + t with r e R and t e T is denoted by
R + T. A space R is said to be embedded in a space S if i? is mapped
isomorphically and isometrically on a subspace of S; for a? e i2, the
image of x is indicated by $ ( 5 ). In particular, x(G) is a continuous func-
tion defined on [0,1] and the value of x(0) at t is denoted by x(G)(t). If
w = (w19w2, •••) is a sequence of numbers, then nw is the sequence
obtained by replacing wt by 0 if i > n. A ί>Zoc& of w is a sequence
™w obtained from w by replacing ^ by 0 if i < m or i > w. Two blocks
miw and S2^ are said to overlap if the intervals (m19 %J and (m2, w2] overlap.

LEMMA 1. Let T be a Banach space with an orthogonal basis
Then T can be embedded in (m) in such a way that:

(i) if x = Σ Γ α Λ > ίfcew ίfce ^ϊrsί 2ΛΓ coordinates of x{m) are zero
if and only if a% = 0 /or i < N;

(ii) ΐ/ {αj and {a?Γ} are related by x = X ^ Λ and ίu(m) = (x?9 xf, •),
ί/ιβn ax, * ',aN are each continuous functions of x™, •• ,x%!r and

x?f * •> %7N a r e βac/^ continuous functions of au , a^;

(iii) ί/ x (w) = (xΓ, «?, •)

Proof. Let Γ be embedded in the space C. Let {ίj be a sequence
of numbers in the interval [0,1] for which the sequence {t2i^1}, i =
1, 2, , is dense in [0, 1] and, for each i, u\0)(t2i) Φ 0. If x = Σ r « Λ ,
let x(7?ι) be the sequence (#Γ, ajf, •••) for which

Then for any t e [0,1],

2 J a t % i — ι>-ι a

Hence \\xim)\\ < \\x\\. But if ε > 0 a n d N is chosen so that \\x - Σ ί
it k > N, then it follows from {^-xl being dense in [0, 1] that

\x - ε

Hence | | ίc | | = | | ^ ( m ) | | and Γ and its image in (m) are isometric. But if
β = Σ ^ + i α ^ ί , then »S-i = ^ = 0 if fc < iSΓ. If a?Γ = 0 for i < 2N,
then the equations x™k = ΣiαΛ(<7)(*2fc) = 0̂  k < N, successively imply
0 = αx = α2 = = aN, since uk

c)(t2k) Φ 0. The conclusion (ii) follows
from this system of equations and the continuity of Σ f < W in
aι> I M , ^ while (iii) follows from {ίafc-x} being dense in [0,1].
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LEMMA 2. Let T be a Banach space with an orthogonal basis
and let T be embedded in (m) as described in Lemma 1. Then the
following are equivalent:

(i) the basis {uι} is of type a;
(ii) if w 6 (m), then w = v + t, with v an element of (m) which

has all coordinates zero after the Mth (M > 0) and t the image of an
element of T, provided there is a sequence of elements {yk} of T for
which sup \\yk || < oo and

o o ^ = wi for i > M,

where w = (wlf w2, •) and yim) = (y%tl, y%s, •)-

Proof. Assume the basis {ut} is of type a and let w = (wt, w2, •)
and 0/J satisfy the hypotheses of (ii). Since \\yk\\ is bounded, there
is a subsequence {zk} of {̂ /J such that

exists for i < M. Let v = (w1 — v19 , wM — vMy 0, 0, •). Also let
%ic = ΣΓ^f^i for each fc. It now follows from (ii) of Lemma 1 that

a\ = a% exists for each i. Since the basis is orthogonal, || Σ ? a « ^ II ^
||. Since {^J is a basis of type a, it then follows that ΣiΓaiui

is convergent. Also, w — v = t is the (m)-image of X Γ t t This fol-
lows from the fact that the numbers aif i < N, continuously determine
the first 2Ncoordinates of the (m)-image of ΣΓflM^, while zk = Σϊa\uu

lim^ooαf = ai9 and \im^^z^i exists and is the ith coordinate of w — v.
Now assume (ii) and let || Σ?aίuί II be a bounded function of n. Let

w = (wlf w2, ) be the element of (m) whose first 2N coordinates are
determined by alf , aN. Take M = 0 and yk to be the (m)-image of
Σi^i^ί It then follows from (ii) that w is the (m)-image of some
element of Γ, which can only be Σ

THEOREM 1. Let T be a Banach space which has an orthogonal
basis of type a. Then there is a Banach space B which has a basis
of type β and for which

£** = π(B) + Tx ,

where π(B) is the natural image of B in I?**, T and Tλ are isometric,
and || r + t \\ > \\t \\ if r e π(B) and t e Tλ.

Proof. Let Tλ be the embedding of T in (m) as described in Lemma 1.
The norm of (m) will be denoted by || ||. For elements w of (m) which
have only a finite number of nonzero coordinates, let

(1) θ(w) = inf || ί || for w a block of t, where t is either a member
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of Tλ or has only one nonzero coordinate (note that Θ(w) is defined only
for elements w which are blocks of at least one t e 2\ or which have
only one nonzero coordinate);

(2) h(w) = {inf Σ I W ] 2 } 1 / 2 , where w = Σ&o each b, is a block of
w, and no two blocks overlap.

(3) | | | α ? | | | = i n f Σ M ^ ) for a? = Σ ^ .
In the above, all sums have a finite number of terms. The trian-

gular inequality for | | | | | | is a direct consequence of (3). Also, | | | # | | | >
|| x ||, since θ(w) >\\w\\ and h(w) >\\w | |. Let B be the completion of
the space of sequences with a finite number of nonzero coordinates,
using the norm ||| | | |. The sequence of elements {i&4} for which ut has
all coordinates 0 except the ίth, which is 1, is an orthogonal basis for
B. This means that I H Σ Γ ^ Λ I I I > IIIΣΓ°M^III> which follows by not-
ing that, if Σ.i+P(liui = Σw,, then Σ ? α ι % * = Σ 7 ^ and h(nw3) < h{w5)
for each j , where nw5 is obtained from w3 by replacing each coordinate
after the nth by 0.

The basis {ut} is of type β. For suppose there is a linear functional
/ for which l im w _ | | | / | | | n = K Φ 0 and choose N so that \\\f\\\N < Ί/6K.
Then there are two elements x = Σ ^ α Λ ^ V = ΣSjα^i, for which N<
n1<n2<n3< n4, \\\x\\\ = \\\y\\\ = l,f(x) > 7/8JBΓ a n d / ( y ) > 7/8ίΓ. Then

and ||| x + y\\\ > - | .

Since θ and /& are both monotone decreasing as a block has coordinates
at the ends replaced by zeros, there exists {xj} and {y5} such that

x = Σ^j> 1/ = Σ*VJ> Σ Φ J ) < III β III + ε» a n d ΣtHVj) < III 1/ III + ε> where
each a?j has zero coordinates outside the index interval [n19 n2] and each
y3 has zero coordinates outside the index interval [n3, nA]. Now replace
the sets {x3} and {y^ by {xj} and {y^ defined as follows: if h(xp) is
the smallest of all the numbers h(Xj) and h{y5), then let xx — xp and
yλ = [h(xp)lh(yr)]yr (for some r) and replace yr by [1 - h(xp)lh(yr)]yr.
The analogous process is used if h takes on its minimum at one of the
y/s. This process creates two new elements and eliminates one old one
at each step, until all of the x/s or all of the y/s are eliminated. If
only Xj's remain, say xp'a, then ΣAHXP3) < ε> a n d similarly Σ*HvPj) < e

if only y/s remain. Also

Σ Λ f o ) ~ e - Σ M ^ ) - ε < III x \\\ - ||| y III - 1

and h(xj) = h(y3) for each j . For each i, there are nonoverlapping
blocks {xH} and {yόi} such that

- { Σ J ^ H ) ] 2 } 1 / 2 = ί Σ .

Then
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Hxj + y3) < {Σ* [θxn)f + Σ* [0(Vn)]V2 = l/2"M^)

Hence

) + e < VY + e.

Since \\\x + y\\\ > 3/2, this is contradictory if V~2 + ε < 3/2. It has
therefore been shown that {wj is a basis of type β.

Since {%} is an orthogonal basis of type β for B, it follows that
I?** consists of all sequences F = (F19 F a , •••) for which

HI Fill = ]imn-»\\\(Fu...,Fn, 0,0, . . . ) || |

e x i s t s [ 4 ; p a g e 1 7 4 ] . N o t e f i r s t t h a t i f t = ( ί x , •••) e T19 t h e n

. . . , ί n , o , o , — ) I I I = I I ( * x , • • - , « „ , 0 , 0 , . - o i l

a n d l i m ^ H K ^ , . . . , ί n , 0 , 0 , - - O l l l = III < III = II < ll T h u s T λ c : B * * . A l s o ,
the natural mapping of B into 5** is merely the mapping of a sequence
in B onto the identical sequence in 5**. It then follows that ||| r + t \\\ >
III t III if r e π(B) and t e T19 since r can be approximated by a sequence
with a finite number of nonzero coordinates but (Lemma 1) | | ί | | =
limsupl ί41.

Now suppose that F = (F19F2, ) is a sequence for which lim^ool|\nF\\\
exists; i.e., F e β**. It will be shown that there is an element v of
π(B) + Tλ for which || | F — v \\\ < 15/16 ||| F | | |. Successive application of
this would then establish that F e π(B) + Tλ. For each n9 there are
nWj and blocks bn

JΛ, which are either blocks of elements of Tx or have
only one nonzero coordinate, such that

= y\Λ(nwi)f

nF= Σ , X and U»w<) - {Σ J0(&?.*)la}1/a ,

where each nw3 and each bn

Li have all coordinates zero after the wth.
This follows by a limit argument, using the facts (1) that there are only
a finite number Kn of ways of choosing division points for nonoverlapp-
ing blocks from the integers 1,2, « ,w and (2) that it follows from
Lemma 1 and the orthogonality of the basis for T that θ{b)*i), for a block
b)Nι which has zero coordinates beyond the 2iVth coordinate, can be
evaluated by using only members of the span of the first N basis ele-
ments of Γ.

If m < n and mwnj is obtained from nwό by replacing coordinates
after the mth by zeros, then

Σ.
If mwnjλ and mwn

jti are of the "same type" in the sense that they are
divided into blocks by using the same division points, then it follows
by using these same division points for mwn^ + mwn

5 that
5
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h(mw\ + mwn

J2) < h(mwn

Jτ) + h(mwn

J2) .

For each n > m, let mwnj be the sum of all mwn

ό of the "same type"
as mwnj. A limit argument gives a sequence of integers {n^ such that
\immw"t ~ mWj exists for each " t y p e " . If m < n, then there exist
bn

JΛ such that

IIImFIII < Σ»Hmw,) < Έ^Knwk) < \\\F\\\ ,

and mWj is equal to the sum of all mwn

3 which are of the same type as
mWj and are obtained from nw3 by replacing all coordinates after the
mth by zeros. The points used to divide mw3 into the blocks bftt will
be called the division points of mWj.

Choose M so that | | | W J P | | | > 15/16 || | i^| | | . Note that if mWj is of
a particular type and n > m, then mwj is the sum of one or more ele-
ments obtained from the nwk's by replacing coordinates after the mth
by zeros. For n > m > M, let H be the sum of all w:wVs which have no
division points between M and n and let mtn be obtained from H by
replacing coordinates after the mth by zeros. Let {nt} be chosen so
that

\imi^
mtni = mt

exists for each m > M. Let 1 be defined so as to have the same first

m coordinates as mt. Then any finite block of 1 whose first M coordinates

are zero is also approximately a block of an element of Tx and these

elements of Tλ are of bounded norm. It then follows from Lemma 2

that there is an element vQ, with a finite number of nonzero coordinates,

such that v0 + 1 e 7\. Thus

t e π(B) + TΊ .

First assume that | | | ί | | | > 1 / 8 | | | J P | | | and choose N so that

| | |»ί | | | > 1/8 HI F | | | if n>N.

For n > N, choose p > n so that

Since | | |njF7 | | | < Σ J M W ^ A discarding all nwpj without division points be-
tween M and p gives

\\\nF- np\\\
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Hence || | n . F - nί || | < \\\F\\\ - \\\nt\\\ + 1/16| | |F | | | < 15/16 ||| F | | | . Since
n was an arbitrary integer with n > N, it follows that

\\\F-t\\\<^\\\F\\\.

Now assume t h a t | | | ί | | | < 1/8 | | | F\\\. Then | | | »ί"||| < 1/8 \\\F\\\ for

all n. Choose q so t h a t

III « « III <i^HI^III
16

For each qw5 which has a division point between M and q, let u) be
obtained from qWj by replacing all coordinates after the last such divi-
sion point by zeros. Let

Choose n > q. Then nF = Σ w ^ j and

Since \\\"F\\\ > 15/16 ||| F\\\, we have Σ Λ W ) > 3/4 ||| F | | | . Now con-
sider F-u. Since | | | » F | | | < E ^ C 1 ^ ) , where fe^) - {Σi[0(&?.i)Ja}1/a,
we have

"(F - u) = Σnΰj

where nw5 is obtained from nw5 by replacing all coordinates before the
last division point between M and q by zeros (if there is no such point,
then nWj = nWj). The following trivial facts will be used: If A and B
are nonnegative and

if VΎA < B, then VA2 + £ 2 > 2A

if yΊΓA > β, then B < VA1 + Bλ - \-A .
4

Each nw5 which has a division point between M and q makes a contri-
bution to some uqj. For such an nwj9 let

where the Ar'& and JSr's are, respectively, the values of θ{bn

}ί) for bn

jΛ a

block of some u) and 6jfl ι̂oί a block of any ^ . Then
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where the sum is over all nwό which make a contribution to u). Let
Σ (A02 be of class (1) or of class (2) according asΣ»

VW [Σ(Λ)?/ 2 < [ΣCEOT2 or -i/T [Σ(Λ)?/2 >

Since ΣM^3) > 3/4|||i<Ί||, the sum of all terms of class (1) is not larger
than 1/2 IK F | | | (otherwise we would have Σ M n w , ) > III F\\\) and the
sum of all terms of class (2) is greater than 1 /4 111 F \ \ |. But for a term
of class (2),

Adding these inequalities for each nw5 and discarding each Σ ( A )2 which
is of class (1) gives

Σ.HnWj) < ΣH-Wj) - - L Ill FIII a n d ||| *(F - u) \\\ < j | \\\F\\\ .

Since n was an arbitrary integer with n > q, it follows that

\\\F-u\\\<^\\\F\\\.
lb

The importance of the assumption in Theorem 1 that 2\ have a basis
of type a is made clear by the fact that the theorem breaks down if
Tx has a subspace isomorphic with (c0). In fact, in this case there can
not be a separable space B with

£** = π(B) + Tx

and Tλ separable, whether or not B and Tλ have bases. This follows
from the fact that if a conjugate space i?* contains a subspace isomor-
phic with (c0), then ϋ?* contains a subspace isomorphic with (m) and is
not separable. To establish this fact, suppose that {Fn} are continuous
linear functionals defined on some Banach space B and that the closed
linear span of {Fn} is isomorphic with (c0), the correspondence being

1

F o r a n y b o u n d e d s e q u e n c e w = (wlf w2, •••)> d e f i n e Fw b y

Fw(f) = ]im

for each / of B. This limit exists, since if it did not there would exist
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1 - Σ ? 1 ^ ^ , G* = ΣSsw4F,f ., with 1 < wx< w2< w3< w4 <• ,
such that G*(/) > ε. Then correct choice of signs would give

Σ? ± Gt(f) > nε ,

which contradicts the boundedness of H Σ n ± GJI Clearly the corre-
spondence with (c0) is thus extended to a bicontinuous correspondence
with (m).

THEOREM 2. For any positive integer n, there is a Banach space
Bn such that the nth conjugate space of Bn is the first nonseparable con-
jugate space of Bn.

Proof. Let Bx = lω and B2 = (c0). Then Bλ has a basis of type a
and B2 has a basis of type β. In the following, the notation R + S is
used only if |]r + s| | > | | s | | whenever r e R and s e S. It follows from
Theorem 1 that there is a separable Banach space B3 with a basis of
type β for which

Br = B3 + i<" = B3 + B*

Then I?3*** is nonseparable and Bf has a basis of type a [3, Theorem
3]. Now suppose that, for k <n, Bu has been found for which

if k > 3, Bk has a basis of type β if fc > 2, and the kth conjugate space
of Bk is the first nonseparable conjugate space of Bk. Then B* has
a basis of type a and it follows from Theorem 1 that there exists
a separable space Bn+1 which has a basis of type β and for which

Then S*?* = B*+1 + 5W + .B*_i. The (n - 2)nd conjugate space of B*^
is the first nonseparable conjugate space of β*_α, while the (n — 2)nd
conjugate space of Bn is separable. Hence the (n + l)st conjugate space
of Bn+1 is the first nonseparable conjugate space of Bn+1.
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ON NON-ASSOCIATIVE ALGEBRAS ASSOCIATED WITH

BILINEAR FORMS

W. E. JENNER

If 33O is a vector space over a field k, then with any non-degenerate
bilinear form / 0 on SS0 x SS0 is associated the group © of linear trans-
formations of 33O which keep fQ invariant. In this paper a procedure
is given for associating with such a bilinear form an algebra 51, non-
associative in general, whose automorphism group is isomorphic to ©
and which is right and left simple provided 23O has dimension at least
2. In case k is the field of real numbers, then © is a Lie group
and its Lie algebra is the Lie algebra of derivations of 51. In case
the form f0 is degenerate, and either symmetric or alternating, then
the analogue of the Wedderburn Principal Theorem holds for 51. The
results obtained apply, in particular, to the orthogonal and symplectic
groups.

Let 23O be a vector space of dimension n over a field k with basis
M19 , un. It is assumed that Xv = vX for all v e 330 and X e k. Sup-
pose / 0 is a bilinear form on 33O x 230. Define SI to be the algebra
over k with basis e0, ely , en and multiplication table el = eOf e^e^ = eo

e% = ei9 et-βj = /(e4 e^K for ΐ, i = 1, 2, , w, where /(e,, e,) = fo(ui9 u3).
Let 55 be the subspace of SI spanned be elf * ,en. Then / is a
bilinear form on 93 x S3.

THEOREM 1. Suppose that f is non-degenerate and that n ^ 2.
T%e% 51 is right and left simple.

Proof. Let 11 be a non-zero left ideal of Sί and let u be a non-zero
element of II. Suppose first that u e S3. Then there exists an element
v e V such that /(v, u) Φ 0. Then i u =/(v, u)e0. Therefore e0 e U
and so U = 51. Next suppose u = αβ0 + v where a Φ 0 in k and v e V.
Then one can assume a = 1. Since w ^ 2 it follows that βx t6 = e2 + λ^o
and e2-^ = β2 + X2e0 where \lf λ2 e k. If λ2 = 0 then e1 e U and the
first part of the proof applies; similarly if λ2 = 0. Consequently one
can suppose XtX2 Φ 0. Then X2eτu — Xλe2u = X2eλ — Xxe2 is a non-zero ele-
ment in U Π S3. Thus the first part of the proof again applies and so
U — 5ί. Therefore 51 is left simple; similarly SI is right simple.

If SI is any (non-associative) algebra over k then left (right) multi-
plication by an element a e SI determines a linear transformation La(Ra)
of the underlying vector space of 51 by a u = Lau(u*a = Rau), u e 51.
The set of linear transformations La (Ra) for a e 31 generate an associa-
tive algebra L(SI) (22(31)) over k. The algebras L(SI) and 22(51) together
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generate the transformation algebra T(2I).

THEOREM 2. If f is non-degenerate and n ^ 2 then L(2I) = R(W) =

Proof. The proof of Theorem 1 shows that for any u Φ 0 in 2ί
there is an element of L(2I) mapping % into any arbitrarily assigned
element of 21. Therefore L(2I) = [k]n+1; similarly for i2(2ϊ), and so also
for T(2I).

Albert has introduced in [1] the concept of isotopy of non-asso-
ciative algebras. Suppose 21 is an algebra with left multiplications La

defined by a-u = Lau. Then an isotope of 21 is an algebra 21° with the
same underlying vector space and multiplication defined by aou = PLaQSu
where P, Q, S are invertible linear transformations of the underlying
vector space of 21. An algebra 21 is said to be isotopically left (right)
simple if every isotope of 2Ϊ is left (right) simple.

THEOREM 3. Suppose f is non-degenerate and that n ^ 2. Then
3ί is isotopically left and right simple.

Proof. Suppose U is a subspace of 21 such that PLxQSU s U for all
x e 21. Now choose x e 21 such that LxQ = LβQ = 7, the identity trans-
formation. T h e n P S U g U . Therefore PSVL = 11 and Stt =P~m since
P and S are invertible. Then for any u e 2ί, LwQSU g P-2U = SU and
so SIX is a left ideal of 21. Therefore either U = (0) or 2ί. Consequen-
tly 21 is isotopically left simple; similarly it is isotopically right simple.

REMARK. Brack has shown in [2] that left and right isotopic sim-
plicity follow from left and right simplicity if the algebra has a unit
element. The proof has been given here for sake of completeness.

THEOREM 4. Suppose that f is non-degenerate and that n>2. Let
© be the group of linear transformations of 93 which keep f invariant.
Then the group of automorphisms of 2ί is isomorphic to ©. In case
k is the field of real numbers the Lie group ® has for its Lie algebra
the Lie algebra of derivations of 21.

Proof. Let φ be an automorphism of 21. It is understood that φ is a
fc-automorphism so that ψ keeps scalar multiples of eQ fixed. Suppose
φei = λέβ0 + vt where λt e &, vt e S3 and i — 1, 2, , n. Then each
product φet φe5 — μί3e0 + \vjy +\jvi1 μ^ek, must be a scalar multiple
of e0. Therefore λ ^ + λ ^ = 0 and so φ(Xjei + ̂ iej — 2κ{Kfi^ = 0, which
implies that λέ = Xj = 0 if i ^ j . Therefore φ^> c 93. Then ψe^φe5 =
f(φei9 φej)e0 = ψ{ece^ = 9>/(e4, ej)eo=f(et, eό)eQ for i, i = 1, , n. There-
fore f(φei9 φe3) = /(e*, β̂ ) /or i, i = 1, , n. Therefore the restriction
of φ to 93 is an element of ©. Conversely any element of (S can be
extended uniquely to an automorphism of 2L Thus © is isomorphic to
the group of automorphisms of 2ί. Note that if these two groups are
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realized as groups of matrices with respect to the given basis, then
the isomorphism is trivially birational and biregular in the sense of al-
gebraic geometry, so that the groups are isomorphic as algebraic groups.
The last statement of the theorem follows from a classical result in
the theory of Lie groups (cf. [3] p. 137).

THEOREM 5 (Wedderburn Principal Theorem). Suppose that f is
degenerate and either symmetric or alternating. Then 21 has a semisim-
ple subalgebra 2I0 and a nilpotent ideal 31 such that St = 210 H- SR (vec-
tor space direct sum).

Proof. If / is identically zero take 31 = 33 and 2I0 to be the sub-
algebra spanned by e0. Otherwise let -ϊί0 be the set of elements u e S3
such that f(u, v) = 0 for all v e S3. Choose a basis e19 , er+1, , en

for S3 such that er+1 * -,en span 3l0. Suppose first that r Ξ> 2. Then
%t e2, , er span a subalgebra δί0 which is isotopically left and right
simple by Theorem 3. Taking 3l=^3l0 it follows that % = % + 31
with 31 a nilpotent ideal of index two. Now suppose r = 1. Then
e\ = Xe0 where λ Φ 0 in k. If the subalgebra spanned by e0 and eλ is
semisimple, then §ί0 and 31 may be taken as before. Otherwise, suppose
that eQ + βe19 β Φ 0 in k, spans the one-dimensional radical of this sub-
algebra. Then take 31 to be the ideal of 21 spannned by eQ + βelf e2,
• , en and 2I0 to be the subalgebra spanned by e0.

REMARK. The use of the terms "semisimple" and "nilpotent ideal"
does not seem yet to be standardized in the literature on non-associative
algebras. Although in the present case all of the customary interpre-
tations of these terms are equivalent, nevertheless it desirable to give
explicit definitions. An algebra is said to be semisimple if it is a direct
sum of simple algebras, none of which is the zero algebra of dimension
1. An ideal is said to be nilpotent if there is an integer m > 0 such
that every product of m elements of the ideal, irrespective of the
manner of bracketing, is zero.
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ON TERMINATING PROLONGATION PROCEDURES*

H. H. JOHNSON

In the classical treatments [3] of systems of differential equations
there are two outstanding techniques—the Cauchy-Kowalewski theorem
and completely integrable systems (the latter is really a special case of
the former [1, p. 77]). In terms of systems of differential forms the
Cauchy-Kowalewski theorem becomes the Cartan-Kahler theorem, and
systems with independent variables which satisfy its conditions are called
involutive.

Many systems are not involutive, and the central problem of prolonga-
tion theory is to construct a procedure by which one can reduce every
system to an equivalent involutive system. For total prolongations
Kuranishi's theorem [4, p. 44] gives a precise answer to the question
of when total prolongations will lead to involutive systems. If S is the
initial system in euclidean space En, Pg(S) the gth total prolongation in
the space Rg1 then for all points xeEn

f except possibly on a proper
subvariety, there is a number gQ such that if g ^ gQ and y e Rg is a
point over x, then Pg(S) is involutive at y if and only if y is an ordinary
integral point [4, p. 7] and the 1-forms of P°(S) do not imply any de-
pendencies among the independent variables at integral points in a
neighborhood of y. Then y is called a normal point.

The first part of this paper deals with an application of this theo-
rem to certain types of differential systems. We show that under certain
conditions the total prolongation process must result in normal points if
there are to be any solutions. An application of this leads to a theorem
often used in differential geometry [2, p. 14].

The second section is concerned with what can be done if normal
points are not obtained for Pg(S) as is the case with an example of
Kuranishi. Here we must distinguish two cases. If Pg(S) does not
contain ordinary intergal points, so that its 0-forms are not a regular
system of equations [4, p. 7] the Cartan-Kahler theory does not apply.
Let us call such systems singular. We shall not consider this aspect
of the problem in this paper.

If, however, the problem lies in a dependency among the indepen-
dent variables implied by 1-forms of P9(S), at generic integral points,
one would naturally think of restricting the system to those points where
dependencies do not occur, since solutions must lie only in these points.
Thus one obtains a sort of partial prolongation which could in turn be
prolonged. Such a procedure was certainly what Cartan and Kuranishi
had in mind. However, it is not clear that the process will ever result
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in an involutive system. One might conceivably go on obtaining non-
normal systems indefinitely.

Kuranishi has recently proved a generalization of his prolongation
theorem which is used to show that the above procedure does in fact
ultimately stop, barring the occurrence of singular systems somewhere
along the line.

The first section of this paper is part of the author's doctoral thesis
at the University of California at Berkeley, written under the direction
of Professor Harley Flanders to whom the author would like to record
here his appreciation.

All functions, forms, and manifolds are assumed to be real analytic.

1. Kuranishi's fundamental theorem [4, p. 44] concerns a certain
general type of differential system (called normal) which is generated
by 1-forms ΘΛ, a — 1, , αlβ If α>\ , ωp is a basis of a system of in-
dependent variables and π1, , πm any other 1-forms to fill out a basis,
then the θa are normal if dθ* can be expressed as

ι A πλ Σ Σ A

modulo (θ*). Suppose that these are defined on En where n = aλ + p + m
of variables x\ « ,x\ Then Rg is the euclidean space of variables

X , V/tι9 ^ί

where j = 1, , n; ilf , ig = 1, , p; λ = 1, , m, and the u\5...k

are symmetric in the lower indicies.
Then P9(S) can be taken to be the system on Rg generated by the

1-forms

dπλ - Σ •
. 7 - 1

Σ

ί
and certain functions

It turns out that for t < a — 2,

while

- 1

modulo
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^ t t W S-! ~ Aφ,}λdu\kχ...kg_)Σ

Σ+ Σ Bφ.i},tι...t t
fc = 1 y

modulo πy.
These JB'S are defined inductively by

where DkF is defined as follows.
If F is any function on Rt-1 it can be considered to be a function

on Rs for all s ^ t — 1. If we form dF, then modulo πs, when s ^ t,
dF involves only ωι, , ωp:

dF = X Ffcα>fc modulo πs ,

and the Fk are independent of s so long as s ^ t. Then one defines
D f cF to be Fk. DkF is a function on i^.

THEOREM 1. Let S be a normal system where
(1) the Aφ.ιλ are constants,
(2) dBφ.tj = 0 modulo (ω\ Θa).

Then if P9(S) is non-singular for all g, there is a g0 such that P9(S)
is involutive for all g >̂ gQ at ordinary integral points, or else there
exist no solutions.

Proof. If an ordinary integral point y e Rg is not normal, then there
must be a dependency among ω\ , ωp implied by the 1-forms of Pg(S)
at integral points yt arbitrarily near y. This can happen only if there
is a relation of the type

EE 0 modulo (ω*) ,

where the left side does not vanish identically. This can only happen if

0 = ^Γ ί p " ;*i-*α-i(1/1)[A^ tλ(i/1)(d<1... fc^1)yi - Aφ.Jλ(y1)(duikl...kg_i)Vι] ,

while for some k,

!) Φ 0 .

Since the A depend only on x1, « ,a;w, we can choose the Γ to be
functions of x1, , xn.

Now, the functions in P9+1(S) have the form
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m

Θφ'Λl Ίcγ lGg — Σ \Aφ.,i\Hj1Cι%m.kg — Aφ jλUilCγ..kg) + Bφ;ij Jc1...kg

Hence we have in Pg+1(S) the function which is not in P9(S),

Consider now these B. Since the A are constants,

where

modulo π s .
By assumption (2), d-B^, have the form

= Σ Cφ,ihkω
h modulo

fc = l

hence

are functions of cc1, , α;w alone. Obviously dBφ.ij.1e = 0 modulo (̂
also, so the argument can be repeated to show that the functions

depend only on x\ » ,xn. But that means that

(I)

is a function in P9+1(S), not in Pg(S), and dependent only on x1, « ,x\
Now, to any integral manifold I oί S there corresponds a unique

integral manifold Ig+1 of Pg+1(S), such that if />g+1 is the natural fibre
bundle mapping on Rg+1 to En, then pg+1 (P + 1 ) = / [4, p. 15]. I9+1

must annihilate the function (1). Since it is a function of x1, « ,xw

alone, / must itself annihilate it.

We conclude; if there exist ordinary integral points in Rg where
Pg(S) is not normal, then the manifold of integral points of S where
solutions can occur must satisfy an additional condition to any imposed
by Pι(S), t < g. Clearly, this can happen at most n — p times if there
are to be solutions

Since the Aφ,iλ are constants, every point of En is regular of order
0 [4, p. 36], so by Kuranishi's fundamental theorem there exists an in-



ON TERMINATING PROLONGATION PROCEDURES 581

teger g1 such that if y is an ordinary integral point in Rg for g ^ glf

then Pg(S) is involutive at y if and only if y is normal. Taking g0 —
gλ + (n — p) one obtains the theorem.

Next an application of this theorem will be made to a certain type
of system of differential equations.

Let En be the euclidean space of variables x1, ••-,xp,z\ * ,zm.
Consider the problem of finding m functions fλ(xτ

y , xp) = zλ which
will satisfy a given set of first order partial differential equations

dz0*
= φ*(x9 z), a = 1, , m; i = 1, , p .

dx%

In terms of differential forms this is the problem of finding integral
manifolds of the system S generated by the 1-forms

θ« = dz" — Σ ψt{x9 z)dxι

with independent 1-forms dx\ — ,dxp. Here there are no πλ. Then

ί i j i \ β i dzβ β i dZβ

If then

ίψl _ dψ±λdχj Λ d , modulo
dxj dx* /

1 ' β î ^ β Ύj β-i dZ? T

one can deduce the following theorem from the nature of the forms

THEOREM 2. /u order that the system of differential equations

have a solution, given that the equations

Bφ tj.^...^ = 0, t ^ g

are non-singular for all g, it is necessary and sufficient that for all

ψy i,j, K * , ^ ,

BφΛUkγ...kg = 0 modulo (Bθ.rs,hχ...ht\t % g - 1)

for some g ^ m — 1, [See 2, p. 14],
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2. In Theorem 1, the prolongation process had to yield an involutive
system because whenever a non-normal prolongation occured, this implied
additional restrictions on the original system. In general this need not
happen. Kuranishi gives an example of a system in which P9(S) is not
normal for any g ^ 1 [4, p. 45].

Normality at integral points y of Pg(S) involves two conditions; the
set of 0-forms of Pg(S) which define y must define a regular system of
equations at y, and the 1-forms of P9(S) must imply no relations among
the independent variables at integral points near y. This paper will
ignore the first problem. It would seem to call for a more delicate ap-
proach to the Cartan-Kahler theorem. Let y be a non-normal integral
point of Pg(S) such that for all integral points yx near y there is a de-
pendency of the type

in Pg(S). Then obviously solutions can occur only at points yx where
Ax{y^) = A2(y^) = = Ap(y^ = 0. Hence a natural step to solving the
system would be to add A19 •••, Ap as 0-forms to the system Pg(S).
One would obtain a system having the same solutions as Pg(S).

Observe also that if P9(S) contains a 0-form which is a function
on Rg-19 obviously any solution of Pg~τ(S) must annihilate that function;
hence, adding it to Pg-\S) would generate a system having the same
solutions as P ^ S ) .

We introduce the following definition: let the system T in indepen-
dent variables x\ , xp, and dependent variables y\ , y\ z1, , z™
be called complete if the 1-forms of T contain no forms of the type
2Ά|ft>', where ω1, , ωp is a basis of independent variables, A% not in T.

LEMMA. Let S be any system with independent variables x1, , xp,
and dependent variables z1, •• ,2m. Then there exists a sequence {S9}
of differential systems S9, closed, on Rg such that

(1) Sg has the same solutions as Pg(S),
(2) Sg is complete,
(3) PiS9-1) s S°, and
(4) the 0-forms of Sg contain no functions on Rg-λ except those in

sg-\
(5) Sg is generated by 0-forms, πg, and their derivatives.

Proof. Let X be the set of all sequences {Tg \g = 1, 2, •}, where
Tg is a closed differential system on Rg generated by 0-forms, πg and their
derivatives and having the same solutions as Pg(S) and PiT9'1) £ Tg.
The elements of X can be partially ordered by inclusion: {Ug} ^ {T9}
if Ug S T9 for all g = 1, 2, . If A = {{Π} |α e A} is a nest in X,
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then {T9}, where Tg is the closed differential system generated by
U{T9

a\ae A}, is in X and is Ξ> every element of A. Hence, X contains
a maximal element, {Sg}. By definition, {S9} satisfies (1) and (3). If
Sh were not complete, one could add to Sh the coefficients of forms of
the type ΣA^1 to obtain a still larger system S\ and {S9}, where
S9 = S9 for g < h, and S9 = P9~h(Sh) for 0 ^ Λ,, would be properly
greater than {S9}. Similarly, if condition (4) did not hold for some Sh,
we could enlarge Sh~\ Hence the lemma.

The construction of such a sequence, given S, could proceed as fol-
lows. Form P(S) and complete it in the obvious way to form a system
T\ If the resulting system involves any functions on RQ i.e., depending only
on the coordinates of Ro, add these to the system S and begin again.
Otherwise, form P(Tλ) and complete to form T2. If T2 contains func-
tions on Rly add these to ϊ\ and begin again at that step. Observe
that the addition of new functions to any one system on, say, Rg, is
limited by the dimension of Rg, since each such addition reduces the
dimension of the variety of integral points, which must have at least
dimension p if there are to be any solutions at all.

Granted that such a sequence {S9} as given in the lemma exists,
it is still not clear whether any S° is involutive. Of course, the 0-forms
might not define a regular system of equations for the integral points.
But barring this one can prove that for g sufficiently large, Sg is in-
volutive. This follows from a recent extension of Kuranishi's prolonga-
tion theorem [5, Theorem III. 1], where the required conditions are
precisely those of the lemma.

THEOREM 3. Given a differential system S with independent vari-
able dx1, ' *,dxp, there exists a sequence {S9} of closed differential
systems, where S9 is on Rg, g = 1, 2, , which have the same solutions
as P°(S). Moreover, if for all g ^ g0, S

9 is non-singular, then there
exists a gx such that for g ^ g19 P(Sg~1) = S9 and S9 is involutive.
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TWO REMARKS ON FIBER HOMOTOPY TYPE

JOHN MILNOR AND EDWIN SPANIER

Section 1 of this note considers the normal sphere bundle of a
compact, connected, orientable manifold Mn (without boundary) differen-
tiably imbedded in euclidean space Rn+1ύ. (These hypotheses on Mn will
be assumed throughout § 1.) It is shown that if k is sufficiently large
then the normal sphere bundle has the fiber homotopy type of a product
bundle if and only if there exists an S-map from Sn to Mn of degree
one (i.e. for some p there exists a continuous map of degree one from
Sn+P to the p-ΐold suspension of Mn). The proof is based on the fact
that the Thorn space of the normal bundle is dual in the sense of Spanier-
Whitehead [8] to the disjoint union of Mn and a point.

Section 2 studies the tangent sphere bundle of a homotopy ^-sphere.
This has the fiber homotopy type of a product bundle if and only if n
equals 1, 3 or 7. The proof is based on Adams' work [1].

If X is a space, SkX will denote the k-ΐolά suspension of X as in
[8, 9]. If X h a s a base point xQ, then SkX will denote the fc-fold reduced
suspension and is the identification space S^X/S^XQ obtained from SkX by
collapsing Skx0 to a point (to be used as base point for S$X). There is
a canonical homeomorphism SkX^ Sk x X/Sk V X.

Two fiber bundles with the same fiber and with projections px: Ex —*
B, p2: E2-+B have the same fiber homotopy type [3, 4, 10] if there
exist fiber preserving maps/*: Et —> E^t and fiber preserving1 homotopies
ht: Ei x I—>Et such that ht(x, 0) —f3_.f.(χ), h^x, 1) = x.

Let ξ denote an oriented (k — l)-sphere bundle. The total space of
ξ will be denoted by E and the total space of the associated fc-disk
bundle will be denoted by E. The Thorn space T(ξ) is the identification
space E\E obtained from E by collapsing E to a single point (to be used
as base point for T(ξ)). The following are easily verified:

(A) If ξ19 ξ2 are (k — l)-sphere bundles of the same fiber homotopy
type, then Γ(|i), T(ξ2) have the same homotopy type,

(B) If ξ is a product bundle, then T(ξ) is homeomorphic to S$(B U p0)
(where B{Jp0 is the disjoint union of B and a point, p0, which is
taken as the base point of B{jp0).

1. The normal bundle. If X and Y are spaces we let [X, Y]
denote the *set of homotopy classes of maps of X into Y and we let

Received May 19, 1959. The authors were supported by the Sloan Foundation and by
the United States Air Force (Contract No. AF 49(638)-393 monitored by the Air Force Office
of Scientific Research), respectively, during the period when this paper was in preparation.

1 The phrase "fiber-preserving" means that p3-tfι(x) = pι{x) and pιhι(x, t) = pt(x).
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{X, Y} denote the set of S-maps of X into Y as in [8]. Thus, {X, Y}
is defined to be the direct limit of the sequence

[X, Y] -^-> [SX, SY] — ^> [S*X, S^Γ] — . . .

There is a natural map

φ: [X, Y] > {X, Y}

which assigns to every homotopy class [/] ε [X, Y] the S-map {/}
represented by any map of [/]. The following gives a sufficient condi-
tion for φ to be onto {X, Y}.

LEMMA 1. Let Y be a k-connected CW-complex (k > 1) and let X
be a finite CW-complex with2 Hq(X) = 0 for q>2k+l. Then φ([X, Y]) =
{X, Y}.

Proof, It suffices to prove that under the hypotheses of the lemma
the map S: [X, Y] -> [SX, SY] is onto [SX, SY] because then, for each
V > 0 , the map S: [S*X, SPY] — [S*+1X, Sp+Ύ] is onto [SP+1X, Sp+Ύ]
(because SPY is (p + &)-connected and Hq(SpX) = 0 for q > 2k + p + 1
and 2(k + p) + 1 > 2k + p + 1).

Choose base points xoeX, yoεY and let [X, Y]' denote the set of
homotopy classes of maps (X, xQ) —> (F, y0). Since Y is simply-connected
the natural map [X, Y]f —> [X, Y] is a 1-1 correspondence. Since X, F
are CTT-complexes the collapsing maps SX—+S0X and SY—>S0Y are
homotopy equivalences (Theorem 12 of [11]) so there are 1-1 cor-
respondences

[S0X, S0Y] & [S0X, SY] & [SX, SY] .

Since S0Y is simply connected, we also have a 1-1 correspondence
[S0X, S0Y]r & [S0X, SOΓ1. Hence, it suffices to show that S0([X, Y]') =
[S0X, SOYY.

Let ΩSQY denote the space of closed paths in S 0 F based at yQ.
There is a canonical 1-1 correspondence [S0X, S0YYτ&[X, ΩS0Y]' and a
natural imbedding YaΩS0Y such that the map So: [X, Γ]'->[S0X, S0Y]'
corresponds to the injection (see § 9 of [7])

[X, YY—>[x, ΩSOYY .

Hence, it suffices to show this injection is onto or, equivalently, that
the natural injection (without base point condition) [X, Y] —>[X, ΩS0Y]
is onto.

2 When no coefficient group appears explicitly in the notation for a homology or
cohomology group it is to be understood that the coefficient group is the group of integers.
In dimension 0 the groups will be taken reduced.



TWO REMARKS ON FIBER HOMOTOPY TYPE 587

Since Y is A>connected it follows from the suspension theorem (see
§ 7 of [9]) that

So: πi(Y) >πi+1(S0Y)

is 1-1 if i < 2k and is onto if i < 2k + 1. Since SQ corresponds to the
injection map πt(Y) —» πt(ΩSQY), this is equivalent to the statement that

, Y) = 0 for i < 2k + 1 .

Since Y is simply-connected the groups π^ΩSoY, Y) form a simple system
for every i. Now the groups H%X; π^ΩSJΓ, Y)) vanish for every i
because for i < 2k + 1 the coefficient group vanishes while for i > 2k + 1
the groups vanish because of the assumption on the cohomology of X.
By Theorem 4.4.2 of [2] it follows that any map X—> ΩS0Y is homotopic
to a map X—> Y9 completing the proof.

REMARK. If in Lemma 1 we assume that Hq(X) = 0 for q > 2k,
then a similar argument shows that φ is 1-1, however we shall not
need this result.

Let Mn c Rn+k be as in the introduction (i.e. Mn is a differentiably
imbedded manifold which is compact, connected, orientable, and without
boundary). The following result relates the normal bundle of Mn to Mn

itself by means of duality.

LEMMA 2. Let ξ be the normal (k — l)-sphere bundle of Mn in
Rn+Ic. Then the Thorn space T(ξ) is weakly (n + k + l)-dual to the
disjoint union MnUp0.

Proof. Regard Sn+lc as the one point compactification of Rn+1c. Let
E be a closed tubular neighborhood of Mn and assume E is contained
in a large disk Dn+k. Then (Dn+fc-interior E) is a deformation retract of
En+lc — Mn ~ Sn+k ~ (Mn{J (point at infinity)). Using standard homotopy
extension properties and the contractibility of Dn+Ic it follows that if E
denotes the boundary of E then

T(ξ) = E\E = Dn+Jcl(Dn+k - interior E)

has the homotopy type of the suspension S(Dn+IC — interior E). Since
(Dn+k — interior E) is an (n + fe)-dual of Mn{J (point at infinity), and the
suspension of an (n + Λ)-dual is an (n + k + l)-dual, this completes the
proof.

REMARK. Lemma 2 shows that the S-type of T(ξ) depends only on
that of Mn. If k is sufficiently large this implies that the homotopy
type of T{ξ) depends only on that of Mn. This suggests the conjecture



588 JOHN MILNOR AND EDWIN SPANIER

that the fiber homotopy type of the normal bundle of any manifold
Mn c Rn+k, Jc large, is completely determined by the homotopy type of
Mn. A similar conjecture can be made for the tangent bundle.

THEOREM 1. Let MnaRn+]c be as before and assume that Hq(Mn) = 0
for q < r and that k > min (n — r + 2, 3). The following statements
are equivalent:

( 1 ) There is an S-map aε{Sn, Mn} such that

α*: Hn(Sn) & Hn(Mn) .

( 2) The normal sphere bundle of MndRn+k has the fiber homotopy
type of a product bundle.

( 3 ) The disjoint union Mn U p0 is weakly (n + k + l)-dual to
Sk(Mn{jp0).

Proof. (1)=>(2). Let N denote the complement in Sn+k of an open
tubular neighborhood of Mn. Then N is (n + fc)-dual to Mn. The S-map
a is (n+k)-dua\ to an S-map βe{N, S*"1} such that £*: H^iS^^H^iN).
Since HP(N) & Hn+k^p^(Mn)f we see that HP(N) = 0 iί p>n + k - r - 1.
Since S*-1 is (k - 2)-connected, k - 2 > 1, and k > n - r + 2 (so 2(k-2) +
1 > n+k — r — 1), it follows from Lemma 1 that there is a map/ : N-+S10-1

representing β. Then/* : H10'1^-1) & H^N). Let E be the boundary
of N (so E is the normal (k — l)-sphere bundle of Mn), and let F be a
fiber of E. Then the inclusion map F' c N induces an isomorphism
Hk~\N) & Hk-\F) (because by Corollaries III. 15 and 1.5 of [10] or
by Theorems 14 and 21 of [5] we have Hk~\E) & Hk~\Mn) + Z and
the injection Hk-1(N)—>Hk~1(E) maps isomorphically onto the second sum-
mand while the injection Hk'\E) —• Hk~\F) maps the second summand
isomorphically.) Therefore, the map / | E: E-->Sk-1 has the property that
its restriction to a fiber F induces an isomorphism of the cohomology of
S*-"1 onto that of F so is a homotopy equivalence of F with S*"1. This
implies (by Corollary 2 on p. 121 of [3]) that E has the same fiber
homotopy type as a product bundle.

(2) =φ (3). By Lemma 2, T(ξ) is weakly (n + k + l)-dual to MnUPo
If ξ is of the same fiber homotopy type as a product bundle, it follows
from {A), (B) that T(ξ) is of the same homotopy type as Sk(Mn{Jp0).
Combining these two statements gives the result.

(3) =φ (1) assume Mn (J p0 is weakly (n + k + l)-dual to Sk(Mn \j p0).
The map Mn u p0 —> S° collapsing each component of Mn U Po to a single
point represents an S-map β: Sk(Mn U Po) — Sk

0(S°) = Sfc such that
β*: Hk(Sk)^Hk(Sk(Mn{jp0)). By duality there is an S-map ae{Sn,
Mn U Po} such that a*: Hn(Sn) & Hn(Mn U Po) ̂  ίίw(Λίw). Since.
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{Sn, MnUPo} & {Sn, F } + {Sn, S°} ,

the result is proved.
As a corollary we obtain the following result proved by Massey [4].

COROLLARY. Let Mn be a homology sphere. Then the normal
bundle of Mn in Rn+k has the same fiber homotopy type as a product
bundle.

Proof. Since r = n, the case k > 3 follows from the theorem. For
the cases k = 1, 2 it is well known that the normal bundle is, in fact,
trivial.

REMARK. Puppe [6] calls a manifold "sphere-like" if the unstable
group πn+1(SMn) contains an element of degree one. (The group πn(Mn)
can contain an element of degree one if and only if Mn is a homotopy
sphere.) Theorem 1 shows that the normal sphere bundle of a sphere-
like manifold MnczRn+Jύ has the fiber homotopy type of a product bundle
provided k is sufficiently large. An example of a manifold with trivial
normal bundle which is not sphere-like is provided by the real protective
3-space.

2 The tangent bundle* Let Mn be as above (i.e. compact, con-
nected, orientable, and without boundary), but let E denote a closed
tubular neighborhood of the diagonal in Mn x Mn. If the tangent bundle
has the fiber homotopy type of a product bundle, then there exists a
map E —> S71-1 (where E is the boundary of E) having degree one on
each fiber. This gives rise to a map (E, E) —• (Dn, Sn~1)—^(Sn

1 point) of
degree one and, hence, to a map

Mn x Mn > Mn x Mn/(Mn x Λf "-interior E) = E\E > Sn

which has degree (1, 1) (the degree is (1, 1) because a generator of
Hn(Sn) maps, under the homomorphism induced by the above composite,
into a cohomology class of Mn x Mn dual under Poincare duality to the
diagonal class of Hn(Mn x Mn)).

THEOREM 2. Suppose that Mn has the homotopy type of an n-sphere.
Then the tangent bundle has the fiber homotopy type of a product bundle
if and only if n equals 1, 3 or 7 (and in this case the tangent bundle
is a product bundle).

Proof. If a map Sn x Sn —> Sn of degree (1, 1) exists, then accord-
ing to Adams n must be equal to 1, 3 or 7 (see Theorem la of [1]).

Conversely, if n equals 1, 3 or 7 then πn^(SO(n)) = 0. Using
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obstruction theory it follows that any homotopy ^-sphere is parallelizable.
This completes the proof.
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A NOTE ON ASSOCIATIVITY

DONALD A. NORTON

1Φ Introduction* In a groupoid with binary operation (•) the cons-
traints that the groupoid be a quasigroupx and that it be associative are
not independent. This note defines three forms of associativity in or-
der of descending strength and shows that in a groupoid they are essen-
tially independent while in a quasigroup (with minor limitations on the
number of elements) the stronger implies the weaker. Let us define:

A groupoid is tri-associatίve if for every triple x, y, z of distinct
elements

(1) x - ( y z) = (x y) z

A groupoid is di-associative2 if in (1) above, exactly two of the
elements are distinct;

A groupoid is mono-associative if (1) is true when all three x, y and
z are equal.

The next section shows that a tri-associative quasigroup Q which
contains sufficient elements (seventeen are adequate) for which Q2 =
{q\ all q e Q} also contains sufficient elements (seventeen are again
adequate) is di-associative. Further, any di-associative quasigroup is
mono-associative. The restrictions on the minimum number of elements
in Q and Q2 are necessitated by the method of proof for which there
does not seem any essential improvement but Theorem II is probably
true for all quasigroups. An examination of all possibilities indicates
its validity if Q contains no more than 5 elements.

The final section illustrates, by examples, the falseness of these
theorems if the assumption that Q is a quasigroup is removed.

2 Associativity conditions. We shall first prove a theorem of
interest in its own right but which contributes little to the main theorems-
Theorems II and III.

THEOREM I. A tri-associative quasigroup Q has a unity element.

Before proving the theorem it is convenient to have

LEMMA. There exists no idempotent tri-associative quasigroup Q
containing at least 2 elements.

Proof of Lemma. We shall use product as our operation in Q with

Received May 21, 1959.
1 For definitions of groupoid and quasigroup see, for instance, [1, pp. 1, 8, 15].
2 This definition differs from the one used by this author [2, p. 59] in which di-

associativity included power-associativity, and thereby mono-associativity. Theorem III
shows that, in a quasigroup, this distinction is vacuous.
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the usual conventions of juxtaposition of u and x to mean the binary
product of u and x and the notation a ux to mean a(ux).

Suppose that q2 = q, all q e Q. For fixed q e Q let u e Q, u Φ q.
Then if x is the solution of q = w&, it is true that α? =£ g, w; for if:

(a) x =z qf q — uq = q2 implies u — q

(b) x =: u, q = u2. But u2 = u implies u = q.

Either is a contradiction.

Now consider q2 = g. Since q ^ ux, substitution yields g wx = ux.
Since u Φ q Φ x Φ u, tri-associativity implies qu x = UOJ, from which
qu = u = u2. So g = w; a contradiction. We are now ready for:

Proof of Theorem I. If Q contains 1, 2, or 3 elements an examina-
tion of possibilities yields the theorem. So suppose that Q contains at
least 4 elements.

Q is not idempotent by preceding lemma so there is an a e Q so
that a2 Φ a. Let ae = a whence e Φ a. Now choose some b φ a, e.
Tri-associativity yields a eb = ae 6 = ab; and since Q is a quasigroup

(1) eb = b for all 6 Φ a, e .

Finally choose c e Q, c Φ b, e. As before cb = c* eb — ce >b and

(2) cβ = e for all c Φ b, e .

Therefore, combining (1) and (2), we see that e is a unity except per-
haps for the products ea, ee, and be. Listing the possible values of the
products from (1):

I (a) ea — a I (b) ea = e

ee — e \ ee = α

and from (2):

II (a) δe = 6 II (b) be - β

ee = β ee = 6 .

Now I(b) and Π(b) are inconsistent since a Φb. Similarly II(a) and I(b)
or I(a) and Π(b) are inconsistent since e Φ α, and e φb respectively.

This leaves I(a) and II(a), or ea = a

ee = e

and e is a unity element.
We can now prove

THEOREM II. Let Q be a trί-associative quasigroup for which both
Q and Q2 = {q2; all q e Q} contain a "sufficient number'9 of elements,
then Q is di-asssociative.
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Proof. There are 3 equalities to show, where a Φ b:

(1) a ab = α2 6

(2) α δα = αδ α

(3) δ α2 = 6α α .

Because of the symmetry of the postulates, it is necessary to prove
Dnly one of (1) and (3). We shall prove (1) and (2).

As the proof will be given, each step of it has restrictions on the
elements which will be listed and considered at the end.

(1) Proof Restrictions on elements

a ab

= xy ab

= x(y-ab)

= x(ya b)

= (x ya)b

= (xy a)b

Let us now consider the restrictions:
(a) Since Q is a quasigroup, given either x, or y the other can

always be found.
(b) If Q contains sufficient elements it is always possible to find

x and y\x Φ ab, y Φ ab.

We next note that if Q2 contains n elements, there will be at least
n or n — 1 pairs, x, y, x Φ y for which xy = α, (the number depending
on whether or not a e Q2).

(c) Conditions y Φ α, b can always be satisfied if Q contains suffici-
ent pairs to satisfy (a) and Q2 enough to also satisfy (b) as well.

(d) The same as (c) may be said about the conditions ya Φ b and
x Φ b. Consider now the condition x Φ ya. Then x2 Φ x ya.

Before proceeding we can also satisfy (e) which is a condition similar
to (c).

Now since x Φ y x, y Φ a .

x2 φ x ya = xy a = α2

Conversely, if

x2 φ a2 = xy a = x ya

then x Φ ya.

So the remaining condition of (d) can be satisfied if Q2 contains an
adequate number of elements.

The proof of (2) is parallel.
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(2) a ba
(a) xy = a

= xy oα
, 7 x (b) 6α =£ x Φ y Φ ba .

= x(y-ba)
, , , (c) y Φ a Φ b Φy .

= x(yb-a)
, Lx (d) a? ^ ?/6 =£ α =£ x ,

= (χ.yb)a
, LX (e) x =£ ?/ =£ 6 =£ ̂  .

= (xy-b)a
= ab a

Condition (a), (c), (e) and a Φ x of (d) have already been met pre-
viously. Condition (b) is a condition similar to (b) of the previous part
and can be similarly met if Q contains adequate elements. The condi-
tion

x φ yb of part (d) yields

x2 Φ x yb

x2 Φ xy b

x2 Φ ab .

Again if Q2 contains a sufficient number of elements, this may be met.
To complete this section we shall prove

THEOREM III. If a quasigroup Q satisfies the constraint x xy = x2y
when x Φ yy then Q is mono-associative.

Proof. We must show that q-q2 = q2 q, all q e Q. Since Q is a
quasigroup, 3 x so that

If x Φ α, from the condition of the theorem

a ax = a2x .

Then a2 = αx since Q is a quasigroup and a = sc, a contradiction.
So it must be that α = #.

COROLLARY. A di-associative quasigroup is mono-assoiciative.

3 Associativity conditions for groupoids*

EXAMPLE I. The groupoid whose multiplication table is
displayed is trivially tri-associative since any triple of dis-
tinct elements must contain c and so the product must be
c. However, it is not di-associative since

ab a = ba = a while a ba = a2 = b

nor is it mono-associative since

α,2 α = ba = α while α α2 = αδ = 6 .

•

α

c

α

6

α

c

6

6

b

c

c

c

c

c
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•

a

b

X

y

a
b

X

a

a

b

V
a

b

b

X

a

b

X

X

y

a

b

X

X

EXAMPLE II. The groupoid whose multiplication table
is displayed is di-associative as an examination of all possi-
ble triple products containing two distinct elements will
reveal but it is not mono-associative since

aa2 — ab = y while a2a = ba = x .

These examples illustrate that for the groupoid the "stronger" as-
sociativity assumption does not imply the weaker, while examples of
power-associative and Moufang loops illustrate that, even for quasigroups
the "weaker" do not imply the ''stronger".
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ON THE EXTENSIONS OF A TORSION MODULE

R. J. NUNKE

This paper concerns the structure of Ext (A, T) = Extβ(A, T) where
A is a torsion-free and T is a torsion module over a Dedekind ring R.
In the first section it is shown that for a given torsion-free module A
the structure of Ext {A, T) is completely determined by the basic sub-
group of T. If in addition T is primary the structure of Ext {A, T) de-
pends on a single known invariant of T, called by Szele [4] the critical
number. The rest of the paper is devoted to showing the nature of this
dependence in the special case in which A is the quotient field of R and
T is primary. The problem reduces to that of computing the rank of
certain complete modules over a discrete valuation ring. This computa-
tion is carried out in section two and the description of Ext (A, T) is
given in section three.

Throughout the paper R is assumed to be a Dedekind ring other than
a field. A consequence of this assumption, used in section two, is that
R is infinite. An exact sequence 0 —> A! —* A —> A" —> 0 and a module C
give rise to two exact sequences. We follow S. MacLane in calling the
one beginning 0—> Horn (A", C) the first exact sequence and the one
beginning 0 —> Horn (C, Af) the second exact sequence.

1. In this section it is shown that whenever A is torsion-free and
C is a torsion module, then the structure of Ext (A, C) depends only on
the basic submodule of C.

LEMMA 1.1. If A, B,C are modules with A torsion-free and if
there is a homomorphism of B into C with divisible cokernel, then
Ext(A, C) is a direct summand of Ext (A, B).

Proof. Suppose that f:B—*C is a homomorphism with Coker / =
Cjlmf divisible. Let / be factored into an epimorphism g followed by
a monomorphism h:f = hg. We get two exact sequences

0 >Imf Λ c > Coker/ >0

0 >Ker/ >B-^->Im f >0 ,

and the relevant parts of the associated second exact sequences are
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Horn (A, Coker/) >

Ext (A, Imf) -^-> Ext (A, C) > Ext (A, Coker /) > 0

Ext (A, Koker /) > Ext (A, B) -^> Ext (A, Im f) > 0 .

Since A is torsion-free all the terms with Ext in them are divisible. But
the divisibility of Coker / implies that Horn (A, Coker /) is also divisible.
For suppose that φ : A —> Coker / is a given homomorphism and r is any
nonzero element of R. Since A is torsion-free, division by r in A is
unique; hence there is a homomorphism ψ: rA —> Coker / defined by
ψ(ra) — φ(a) for α in A. Since Coker / is divisible ψ can be extended
to all of A. Then rψ(a) — ψ(ra) = φ(a) so that rψ = φ and ̂  is divisi-
ble by r.

Hence all the modules in the last two exact sequences are divisible
and the images of the various homomorphisms are direct summands. In
addition Ext (A, Coker/) = 0 because Coker/is divisible. It follows that
Ext (A, C) is a direct summand of Ext (A, Imf) which is in turn a direct
summand of Ext (A, B).

COROLLARY 1.2. If A is torsion-free and each of B and C has a
homomorphism into the other with divisible cokernel, then

Ext (A, B)^Ext(A, C) .

Proof. A divisible i2-module is a direct sum of submodules each of
which is isomorphic to Q or to a primary component of Q/R, the number
of summands of each type being independent of the decomposition.

THEOREM 1.3. If A is torsion-free, C is a torsion module, and B
is a basic submodule of C, then

Proof. A basic submodule of a torsion module is a pure submodule
for which the factor module is divisible and which is a direct sum of
cyclic modules. Hence there is a homomorphism of B into C with divi-
sible cokernel. On the other hand Szele has shown in [4] that B is a
homomorphic image of C (Szele's proof is for primary groups but the
generalization to this case is trivial). Hence the hypotheses of Corollary
1.2 are satisfied and the conclusion follows.

Suppose now that P is a prime ideal of R and that T is a P-primary
module. The order ideal of an element x of T has the form Pe(x) with
e(x) a nonnegative integer which we will call the exponential order of
x. The submodule of T consisting of those elements with exponential
order < 1 is a vector space over the field R/P; its dimension will be
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called the P-rank of T and will be denoted by rP(T). If 2? is a basic
submodule of T, the minimum of the numbers rP(PnB) with n ranging
over the non-negative integers is independent of the choice of B because
the basic submodules of T are all isomorphic. This number is thus an
invariant of T. We shall follow Szele in calling it the critical number
of T.

If the basic submodule B of T is decomposed into the direct sum of
cyclic modules, then rP(PnB) is the number of summands whose gene-
rators have exponential order > n. Hence rP(PnB) finite implies that
the orders of the elements of B are bounded and the critical number of
T is then 0. Thus the critical number of T is either 0 or infinite, and
if 0, B is a direct summand of T which is therefore a direct sum of a
divisible module and a module all of whose elements have bounded order.

THEOREM 1.4. Let T be a P-primary module with critical number
fc$ and let A be torsion-free.

( i ) // K = 0, then Ext (A, T) = 0.
(ii) If ^ is infinite and M is the direct sum of ^ copies of

ΣnRIP*1, then Ext (Af T) and Ext(A,M) are isomorphic. Thus the
module structure of Ext (A, T) depends only on the critical number of
T.

Proof. Since the maximal divisible submodule of T is a direct sum-
mand of T and contributes neither to Ext (A, T) nor to the critical num-
ber of Γ, we may as well assume T reduced. In the paragraph preceding
the theorem it was shown that if ^ = 0, the orders of the elements
of T are bounded. Any extension of T having a torsion-free factor
module contains T as a pure submodule. Hence it splits and Ext (A, T)—0
in this case.

Suppose now that ^ is infinite and M is the direct sum of ^ copies
of ΣnRIPn- By Theorem 1.3 Ext (A, T) & Ext {A, B) where B is a basic
submodule of T. We write B = Σ n B n where each Bn is a direct sum
of copies of RIPn. There is a natural number m such that ^ = rP(PmB)
and B = Bf + B" where B' is the sum of the Bn with n < m and B"
is the sum of the remaining Bn. Since PmBf = 0 and A is torsion-free,
Ext(A,Bf) = 0. Then the additivity of Ext implies that Ext(A,B)&
Ext (A, B"). The module B" is the direct sum of cyclic modules and
rP(B") = rP{PmB") = ^ so that B" is generated by ^ elements. Hence
it is a homomorphic image of M. On the other hand B" can be ex-
pressed as a direct sum B" = C + ΣγCγ where the summands Cy are ^
in number and each Cy is the direct sum of a sequence of cyclic modules
whose orders are strictly increasing. It follows that M is also a homo-
morphic image of B", hence Ext (A, B") & Ext (A, M) by Corollary 1.2.
This proves (ii).
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2. In this section we assume that R is a discrete valuation ring
with prime p. If M is an i?-module for which the submodules pnM have
intersection 0 (i. e. if M has no elements of infinite height), then these
submodules are a base at 0 for a topology called the p-adic topology.
The completion of M in this topology will be denoted by M*. The p-
adic topology on M induces a topology on each submodule N which may
or may not coincide with the p-adic topology on N. The two topologies
will certainly coincide if N is pure in M for then pnN = N Π PUM for
all n.

The problem to be solved in this section is that of determining the
rank of M* where M is a direct sum of copies of ΣnRlpnR.

A subset Xof an iϋ-module A is called independent if rλxx+ + τnxn =
0 implies rx = = rn = 0 whenever x19 , xn are distinct elements of
X and r19 , rn are elements of R. The cardinal | X | of a maximal
independent subset of A is an invariant of A called its rank (denoted
by r(A)); the rank of A is in fact the dimension of A® Λ Q as a vector
space over Q. The rank formula

r(A) = r(J8) + r(A/5)

holds for any jR-modules A and B with J5 a submodule of A. If A is
torsion-free its cardinal | A | and its rank are connected by the relation

I A I = r ( A ) \ R \ .

In particular r(A) = | A | wherenever A is torsion-free and r(A) < \ R \
(The properties mentioned is this paragraph hold for any Dedekind ring.)

LEMMA 2.1. If M — ΣyMy is the direct sum of the modules MΊJ each
of which is without elements of infinite height then M* is isomorphic
to the submodule of the direct product ΠyM* consisting of those sequences
u = (uy) such that (*) for each natural number n, uy e pnMy

< for all but
a finite set of indices.

The condition (*) implies that uy = 0 for all but a countable set of
indices.

Proof. For each index γ My is pure in M which is pure in M*.
Hence My is pure in ikf*. By Lemma 20 of [2] the closure My of MΊ

in the p-adic topology is also pure in ikf*. Therefore M* induces the
p-adic topology on M^ and, since a closed subspace of a complete space
is complete, My = M%.

We next show that the sum ΣyM* c ikf* is direct. Suppose Σyxy=0
where xy e M* and γ belongs to a finite set σ of indices. For each nat-
ural number n and each ye σ there is an xyn e My such that xyn—xy e pnMf,
hence 2 ^ ^ = ^ ( ^ — #γ) € pnM*. Since lyiίy is pure in ikί* it is pure
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in ΣyMf so that Σyxyn e (ΣyMy) Π pnΣyM* = pnΣyMy. Then xyn e pnM for
each yeσ because the sum ΣyMy is direct. Thus for each yeσ, xyn—>0
and #γ = 0.

Let S be the submodule of ΠyM* defined by (*). We shall define
an isomorphism φ of Λf* onto S. Let a; be any element of ikf*. Since
ΣyMy is dense in ikZ* there is, for each natural number n, an element
xneΣyMy such that xn — #epwikf*. We express each xn as a sum xn=
Σyxyn with #γw e ikf* where #γ w = 0 for all 7 not in some finite set τn.
Since xn converges to x, the arguments of the preceding paragraph show
that, for each 7, xyn converges to some uye ikf*. It is easily shown that
the elements uy depend only on x. We set φ(x) = (uy).

It is necessary to show that u lies in S. Consider a fixed natural
number i and assume that 7 is not in τt so that xyi = 0. Then, for j>i,
xyj = # γ j — # γ ί e p*ikf * Π M * = p W * . Passing to the limit we have uy e plM*
because p*M* is closed in ikf*. Since each τi is finite, uy satisfies (*) and
is in S as required.

To prove φ epimorphic suppose ueS. For each n let τn be a finite
set of indices such that uy e pnMy

< for all 7 not in τn and let xn be the
sum (in ikf*) of the w7 for γ e τn. The existence of τn is insured by (*).
Since τn c: τ m for m < n, xm — xn e pnM*. Hence the xn converge to an
element x in ikf*. Moreover a^ — xepnM*. An examination of the de-
finition of φ shows that xyn = uy if 7 e τn and xγw = 0 otherwise. Hence
φ{x) = % and 9) is epimorphic.

Finally suppose that φ(x) = 0. Refering to the definition of φ we
have, for fixed n and all i > n, (Σyi — xγw) = χt — χn e pnM*. Since ΣyMf
is pure in ikf* and the sum is direct, this implies that xyi — xyn e pnMy

for each index 7 and each i > n. We are assuming all uy = 0 so that
^7ίepwikf* for large i, hence α?yn6pnilf^. But then ^w = 2;7a?7n 6 pnM*
and α;w —> 0, a; = 0. This shows that φ is a monomorphism and completes
the proof.

LEMMA 2.3. IfM= ΠyMy where 7 ranges over a set of cardinal
^ and the My are all torsion-free with the same rank, then

r(ikf) = I My I* .

Proof. Note first that for each 7 I My \ = r(ikfγ) |'i21 so that all the
My have the same power. If we can show that r(ikf) > | R |, then r(ikf) =
I MI — I My I* as required.

Suppose the indices are the natural numbers and that each My=R.
Consideration of a suitable Vandermonde determinant shows that the
elements (1, r,r\ •) e M with r ranging over R are independent so that
r(ikf) > I R I in this case. In the general case ^ is infinite and each My

contains a copy of R so that ikf contains a countable product of copies
of R, hence r(ikf) >\R\ in all cases.
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LEMMA 2.3. Suppose that N is a submodule of M and that, for
each natural number n, Mn and Nn are copies of M and N respectively.
If φ: ΠnMn —> M is a homomorphism such that <p-\N) c= ΠnNn, then

r(MIN) = r(MIN)*° .

Proof. Since φ maps φ~\N) into N, it induces a monomorphism

(1) 0 -> ΠnMnlφ-\N) -> MIN .

Since φ"\N) c ΠnNn, there is an epimorphism

( 2 ) ΠnMJφ-\N) -> Πn{MnINn) - 0 .

Rank does not increase on passing to submodules or to homomorphic
images, hence (1) and (2) imply

( 3) r(MIN) > r{ΠnMnjφ-\N)) > r(Πn(MJNn)) .

By the definition of rank MIN contains a free module F such that
r{F) = r(M/N). For each n let Fn be a copy of F in MJNn. Then
/7nFn c Πn(MJNn) and Lemma 2.2 implies

( 4 ) r(Πn(MJNn)) > r{ΠnFn) = \F\*°> r(F)*<> = r(MjN)*» .

Thus (3) and (4) imply the conclusion of the lemma.

THEOREM 2.4. If M is the direct sum of ^ copies of ΣnRlpnR,

then r(M*) = (H I R l)No.

Proof. We first consider the case ^ = 1. It will be convenient to
replace R\pnR by the isomorphic module R(pn) which consists of all ele-
ments of QIR annihilated by pn, for then R(pn) c R(pm) for all m>n.
Each element a Φ 0 in i2(pw) has a height Λw(α) in i2(pw) where hn(a) — i
if aeplR{pn) but a is not in ^>i+1.R(pn). The height and exponential or-
der of a are related by hn(a) + e(a) = n. We let C = I/Jf?^) and -0=
ΠnR(pn). Then C* consists of those elements x = (α?n) e D such that
^n(^n) goes to CΌ with n.

We show first that r(C*) = r(D). The inequality r(C*) < r(D) holds
because C* ςz D. To prove the opposite inequality we define p: D—>C*
by

fc if w = 2fc .

Since R(pk) c i2(p2fc), p is a homomorphism into D. Since β(xfc) < fc and
hic(χk) + e(χk) = 2ft, h21c(xk) > ft so that /?(#) lies in C*. The map p is
clearly a monomorphism so r(D) < r(C*) as required.
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The next step is to show that

r(D) = r(D)*° .

Let σ19 σ2, be an infinite partition of the set of natural numbers into
infinite subsets. For each n let Dn be a copy of D. An element u e ΠnDn

is a sequence (u19 u2, •) with un — (uni) e D. We define ξ : ΠnDn^D by
ξ(u)k = uw i if fc is the i th element of σn; uni e R(pk) because k > i. The
hypotheses of Lemma 2.3 are satisfied with M = D and JV = 0 which
shows that r(D) = r(D)^°.

The module D can be represented as the module of all infinite se-
quences (xlf x2, •••) of elements of R modulo the sequences of the form
ΦiP, b2p\ δ3p\ •••)• Thus Lemma 2.2 and the fact that rank does not
increase on passing to homomorphic images imply that r(D) < | R |*°.
We shall show that r(D) >\R\. Then r(D) = r(D)*° >\R\*° and we
get

r(D) = I i 2 | * o .

To show that r{D) >\R\ let a(τ) = (1, r, r\ •) for each reR and
let a(r) be the image of a{r) in Z). We show that the elements ά(r)
for reR — (p) are independent. Suppose rlf , rn are distinct elements
of R not in (p), and suppose alf , ane R such that

»i«(^i) + + αwά(rw) = 0 .

Then elements b19 62, exist in i? such that

aMrJ + + ana(rn) = (6^, 62p
2, •) .

Hence, for each fc, the at satisfy a system of n equations

aλτ\ + ••• + anr\anr\ =

The determinant Δ of this system is τ\ rid where d is the Vander-
monde determinant of rlf , rn; d Φ 0 because the r 's are distinct. We
set d = pms with s prime to p and t = rf r^s. Then zί = pmί where
ί is prime to p because rlf , rn, s e R — (p). Then by Cramer's rule
each at satisfies an equation of the form pmtai = pkci. Hence, for k>m,
pk-m diodes %ai a n ( j therefore divides a% because it is prime to t. Since
this is true for all k > m, α£ = 0 for each i. Therefore the a{r) with
r ranging over R — (p) is an independent subset of D so τ(D)>\ R—(p)\.
But R — (p) is the disjoint union of cosets of (p) so that | R — (p) >
\(p)\ = \R\; hence | R - (p) \ = | R | .
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We now have r(C*) = r(D) = | R |*° which completes the proof in
the case y$ = 1.

Now suppose ^ arbitrary, let Γ be a set with cardinal ^ and let
M = ΣyMy where, for each γ e Γ, My — C = 2VR(pn). In view of Lemma
2.1 and the remark following it M* is contained in the submodule A of
all sequences x e ΠyM^ with x7 = 0 for all but a countable number of
indices. Each such sequence is determined by the set σ of indices γ
such that xy Φ 0 and a function / : σ —> C* — {0}. From this it follows
easily that | - A | < ( H | C * | ) * ° . Since C * c ΰ and D is a homomorphic
image of the direct product of ^ 0 copies of R, | C* | < | R |*°. Since
I R |κo = r ( c * ) < I C* I we have | C* | = | R |*°. Hence

r(Af *) < r(A) < | A \ < ( ^ | R |)»o .

Using Lemma 2.1 again we have 2yk/7 c t f * so that

r(M*) > r(ΣyM*) = | Γ | r(C*) = « | β |»

These last two sets of inequalities combine to give

If ^ is finite this completes the proof. If ^ is infinite, the proof will
be complete once we show that r(M*)*° = r(M*). To show this assume
^ infinite and partition the index set Γ into a countable sequence Γ19

Γ2, of disjoint subsets such that | Γn \ = | Γ \ = y$ and set Mn =
Σ {My I γ e Γn}. Then ikfw ^ M and ikί* ^ M* for each n. Our purpose
will be achieved if we can define a monomorphism φ : ΠnM* —> M*, for
then φ-^iifcf*) = t{ΠnMt) c ΠJM%, where ίΛf* is the torsion submodule
of M*. Now Lemma 2.3 applies to give r(Λf*/£M*) = r(ikί*/ίM*)Ko.
Butr(M*) = r(M*/ίM*) so r(M*) = r(M*)*°.

Earlier in the proof of this theorem we defined a monomorphism
p : D —> C*. For each fc we now define a monomorphism ψk: D —> i) by

For i > k we have e(xt-n) < ί — k so that /^(ov*) = ί—e(x^k) > k. Hence

: pkD so that / o ^ maps D into p fcC*. We define φk\ C* —>pfcC*
to be the restriction of |Oi/rfc to C* and note that it is a monomorpoism.

We now use Lemma 2.1 to identify Tkf* with the submodule of
ΠyM$ described by the condition (*). An element x of ΠnMZ is a se-
quence (x19 Ba, •••) where xwe Λί* e/7{Λί* | γ e Γ J . We define ^ by
99(#)γ = φn(xny) for γ e Γn. Then 9?: //wMί —> ΠyM* and is a monomor-
phism because each <pw is one. There remains the task of showing that
φ(x) lies in Λf *. Let ^ be a natural number. For each k < n there is
by Lemma 2.1 a finite subset τΛ of Γk such that xkyepnMf for γ e Γ f c
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but not in τk. By the definition of <pk, ψlc{xky)epnM^ for all yeΓk with
k > n. Hence φ(x)y e pnMy for all not in τx u U τw_x which is a
finite set. Thus φ(x) satisfies (*) of Lemma 2.1 and is in M* as re-
quired.

3* Let R once more be an arbitrary Dedekind ring and let P be a
prime ideal of R. For any i2-module T, Ext(Q, T) is a vector space over
Q and is therefore completely described by its dimension over Q or
equivalently its rank over R. According to Theorem 1.4 this dimension
is a function of the critical number of T if T is primary.

THEOREM 3.1. If T is a P-primary R-module with infinite critical
number ^ , then the rank of Ext(Q, T) is (^ | R

Proof, In order to make the results of section two available we
change rings. The module T, being P-primary, can be considered as a
module over the ring S consisting of all elements of the form α/6 in Q
with a and b in R and b prime to P. The theory of P-primary modules
is left unchanged by the shift from R to S. In particular the critical
number of T is ^ i n both cases.

Since S is torsion-free as an iϋ-module Proposition 4.1.3. of [1] ap-
plies to give a natural isomorphism

ExtΛ(Q, T) ^ Ext,(S <g)ΛQ, T) .

Since R and S have the same quotient field Q,Q = S (g)Λ Q and

ExtΛ(Q, Γ) ^ Ext*(Q, Γ) .

These are both vector spaces over Q and the isomorphism is a Q-isomor-
phism; hence the two modules have the same dimension over Q. Let M
be the direct sum of ^ copies of ΣnSjpnS where p is the prime of S.
According to Theorem 1.4

Extδ(Q, T) & Exts(Q, M) .

Since M is a basic submodule of ίikf*, Theorem 1.3 gives

Q, M)

By Theorem 7.4 of [3], Exts(Qf Λf*) = 0 because M* is complete, while
H.oms(Q, M*) = 0 because M* is reduced. Hence the second exact se-
quence associated with Q and 0 —> ίM* —• ikί* —> M*/tM* —> 0 reduces to

0 -> Hom^(Q, M*/ίM*) -> Ext5(Q, ίikf *) — 0 .

Since M*jtM* is torsion-free divisible

Hom^Q, M
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It follows that Extβ(Q, T) and ikf*/£M* have the same dimension over
Q. This dimension is (^ | S |)*° by Theorem 2.5. Moreover | R | = | S \.
Hence the theorem is proved.

Since the integers are the most important example of a Dedekind
ring it is appropriate to interpret the last theorem for this special case.
Since rank and cardinality coincide for torsion-free abelian groups of
infinite rank, we can say that if T is a p-primary abelian group with
infinite critical number fc$, there are *̂*° inequivalent extensions of T
by the rational numbers.

REFERENCES

1. H. Cartan and S. Eilenberg, Homological Algebra, Princeton 1956.
2. I Kaplansky, Infinite Abelian Groups, Ann Arbor, 1954.
3. R. J. Nunke, Modules of extensions over Dedekind rings. 111. Journ. of Math., 3, (1959),
222-241.
4. T. Szele, On the basic subgroups of abelian p-groups, Acta. Math. Acad. Sci. Hung., 5
(1954), 129-141.

UNIVERSITY OF WASHINGTON



MIXED MODULES OVER VALUATION RINGS

JOSEPH ROTMAN

l Introduction, A p-primary abelian group is a module over the
p-adic integers; thus Ulm's theorem can be viewed as a classification of
reduced countably generated torsion modules over the p-adic integers,
or, more generally, over a complete discrete valuation ring. It is with
this point of view that Kaplansky and Mackey [4] generalized Ulm's
theorem to cover mixed modules of rank 1. In this paper their result
is generalized in various ways, sometimes to modules of finite rank,
sometimes to modules over possibly incomplete rings. The structure
theorems obtained are applied to solve square-root, cancellation, and
direct summand problems.

The main idea is to squeeze as much information as possible from
the proof of Ulm's theorem in [4]. In order to understand our pro-
cedure, we sketch that proof. Order, once for all, generating sets of
the modules T and Tf: tlf t2, •; t[, t'2, The plan is to build an iso-
morphism stepwise up these lists. The crucial point is then, given a
height-preserving isomorphism f:S—>S',S finitely generated, to extend
/ to a height-preserving isomorphism of {tl9 S} and a suitable submodule
of T" containing S'. In order to construct this extension it is necessary
to normalize ίt in two ways:

(i) assume ptte S;
(ii) assume that ί4 has maximal height in the coset tt + S. If T

is torsion, both of these normalizations are always possible. Now the"
possibility of extra generality arises precisely at these two points. If
T is mixed and (ii) is satisfied, then the proof will go through if T/S
is torsion; this is what Kaplansky and Mackey did in their paper. In
this paper, we define a class of modules in which (ii) can always be
satisfied, and it is this class of modules which we shall consider.

2 Definitions, A discrete valuation ring (DVR) is a principal ideal
domain R with a unique prime ideal (p). Γ\n=i(Pn) = (0). Hence if r e R
is non-zero, there is a maximal n, depending on r, such that r e (pn).
Define \r\ = e~n; define |0 | = 0. | | is a norm which satisfies the strong
triangle inequality: \r + r'\ < max \r\, \r'\. This norm induces a metric
on R. R is a complete DVR if it is complete in this metric. If R is
incomplete, we may form its completion i2*, and JS* is a complete DVR.
The p-adic integers is a complete DVR; it is also compact as a metric
space.

Let Q be the quotient field of R. We define the rank of a module
M (often called the 'torsion-free rank') to be the dimension of the Q
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vector space Q®tf . Thus if M is torsion, rank M = 0. The rank can
also be defined as the cardinality of a maximal independent subset of
M. Note that every element in an independent subset has infinite order.

The word module will mean unitary module over a DVR. All abelian
group-theoretic notions can be found in [2; 3; 5].

3. KM modules* In this section we shall define a certain family
of modules and determine some members of this family.

DEFINITION. A semί-KM module is a reduced countably generated
module of finite rank.

DEFINITION. A module M has the coset property if the coset x+S
has an element of maximal height whenever S is a finitely generated
submodule of M.

DEFINITION. A KM module is a semi-KM module with the coset
property.

The coset property is the crucial part of the definition of a KM
module; for later use, we now give a characterization of this property.

DEFINITION. Let S be a submodule of M; if xeM, let. a?* denote
the image of x in MjS under the natural homomorphism. S is copure
if any a?* e M/S has a pre-image x such that h(x*) — h(x). (h(x) denotes
the height of the element x).

LEMMA 3.1. S is copure in M if and only if every coset of S has
an element of maximal height.

Proof. Induction on h(x) that h(x) = h(x*) if x has maximal height
in x + S.

COROLLARY 3.2. M has the coset property if and only if every
finitely generated submodule is copure.

LEMMA 3.3. // R is completef a reduced module M with no ele-
ments of infinite height has the coset property.

Proof. Let S = {ylf , ys}. It must be shown that x + S contains
an element of maximal height. We may assume that x $ S, otherwise
0 has maximal height in x + S. Under this assumption we show by
induction on s that y + S contains only finitely many distinct heights.

Let s = 1. If h(x + any) = an is strictly increasing, then h(bny)=an,
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where bn = an+1 — an. Hence h(bn+1y) > h(bny). Let (pm{n)) be the smal-
lest ideal containing bn. Then m(n + 1) > m(n), i.e., m(n)—+ oo, and so
ί>w —> 0. Hence {αn} is a Cauchy sequence and an —• α, since ϋ! is com-
plete. Now α? + α?/ = # + αn2/ + (α — αn)#. If fe((α — αw)τ/) > an for all
w, then x + ay has infinite height and is thus 0, contradicting x $ S.
Therefore we may assume that h((a — an)y) = h((a — am)y) for all m>n.
But then a — an and α — am are associates, contradicting a — am —» 0.
Hence {αn} cannot be strictly increasing, i.e., there can only be a finite
number of heights in the coset.

For the general case, suppose h(x + a\yx + + afys) = an is strictly
increasing. Suppose further that each coordinate sequence {αf} is
Cauchy, and so α? —> α̂  for each i. Then

» + »i2/i + + cbsVs = (» + α?2/i + ' + α?l/β)

+ (α! - α?)^ + + (as - αs

w)?/s .

The height of the first term on the right is an while the height of the
remaining terms gets arbitrarily large. Hence x + a1y1 + + asys has
infinite height and so must be 0, contradicting x <£ S. Hence {an} can-
not be strictly increasing, i.e., there are only a finite number of heights.

Therefore we may assume {αf} contains no Cauchy subsequence,
and so we may assume further that it consists of incongruent units.
Now

h{a^\x + Σa]yό) — α?(a? + Σa]+ιy3)) — an — h((a^+1 — aΐ)x + Σblyk) ,

where

and fc > 2. Since α?+1 — α? is a unit, and since multiplication by a unit
does not alter heights, we may assume it is 1. But there are only
8 — 1 y's occurring, and so the inductive hypothesis applies. Hence
there can only be a finite number of heights, and so {an} cannot be
strictly increasing. Thus x + S contains only finitely many distinct
heights.

LEMMA 3.4. If R is compact and M is a reduced module of rank
2, then M has the coset property.

Proof. Let S be a finitely generated submodule with x $ S. By
the method of [4], it suffices to consider the case when S is generated
by two elements of infinite order, y and z. Moreover, we may assume
h(x + any + bnz) — an, where {an} is strictly increasing. Since R is
compact, we may assume that an—> a and bn-^b. x + ay + bz =
(x + any + bnz) + ((a — an)y + (b — bn)z). Now the height of the first
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term on the right is an. If the other term has height > an for all n,
then h(x + ay + bz) > an for all n and x + ay + bz is the desired ele-
ment. Hence we may suppose that h((a — an)y + (b — bn)z) = β < an.
This equation must hold for all m > n. If a sequence {cw} converges
to c, there is a subsequence {cw.} such that c — cn. and cTO — cn. are
associates, In our case, there are units un and vn such that (a — an)y —
un(an+1 — an)y and (b — bn)z = vw(δw+1 — 6n)z. (We have assumed, for
notation, that {an} and {6W} are the subsequences). Hence

(a - an)y + (b - 6J2 = un(x + an+1y + bn+1z)

- ^ w (x + αwτ/ + bnz) + (vw - un)(bn+1 - bn)z .

Hence h((vn — un)(bn+1 — bn)z) = β for large n. Therefore, (vn — un)(bn+1 — bn)
are associates, and non-zero since β < an < 00. Hence there must be a
maximal power of p dividing any of them, contradicting the fact that

LEMMA 3.5. // R is complete and M is reduced of rank 1, then
M has the coset property.

Proof. Kaplansky and Mackey [4].

To this point, all modules with the coset property have been modules
over a complete DVR. We shall now exhibit modules over a possibly
incomplete ring which have the coset property. For this purpose we
consider tensor products. All tensor products will be taken over the
ring R.

LEMMA 3.6. Let R be a DVR with completion i£*. Any R-module
M can be imbedded as a pure R-submodule in R*&)M; moreover, the
torsion submodule T of M coincides with R* ξZ) T, which is the torsion
submodule of i?* 0 M.

Proof, i?* is a torsion-free i?-module, and R is a pure submodule
[31. Further, if δ + R e R*/R, there is an r e R such that δ - r = p8',
8'eR*. Therefore δ + R = pδ' + R and so p(R*/R) = R*IR. Hence
R*/R is torsion-free and divisible.

Exactness of the sequence 0 —> R —* R* —> R*jR —> 0 induces
exactness of Tor (R*/R, M) -> JB(g) M-> R* ® Λf-> {R*IR) (g) JkΓ—> 0..
i2(g) Λf = Λf and, since R*/R is torsion-free, Tor (R*jR, M) = 0. Thus
x —> 1 0 x is an imbedding of M into R* ® M. But the sequence also
implies that (i2* (g) M)\M& (R*/R) (g) M. Since i2*/i2 is torsion-free
and divisible, we have (i2*/JB) (g) Λf torsion-free. Hence Λf is pure in
i? * (g) Λί and contains the torsion submodule of i? * 0 M. We already
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know that x —> 1 (g) x is a monomorphism; this last remark shows it is
an epimorphism when restricted to T. Thus T ^ 22* (g) T, which is the
torsion submodule of R * (g) M.

LEMMA 3.7. If R is a DVR with completion 22*, and if M is an
R-module of rank 1 with no elements of infinite height, then 22* (g)M
has no elements of infinite height.

Proof. Suppose z — Σ8-, (g) m4 e 22* (g) M has infinite height. By the
preceding lemma, z has infinite order. Let xe M have infinite order.
Since rank M — 1, there is an n such that for all i, pwm.t = rta?, r4 e R.
pnz = I ^ r * ® a;. As any element in 22*, Σhιri can be expressed as γp\
where γ is a unit. But then h(z) < h(pnz) = fc(γ (g) pfcx) = /ι(l (g) p&^) =
h(pkx) which is finite. This contradiction completes the proof.

LEMMA 3.8. // M is an R-module of rank 1 with no elements of
infinite height, then M has the coset property.

Proof. Let S be a finitely generated submodule of M, and let
x $ S. Then i?*(g)S is a finitely generated 22*-submodule of 22*(g)M.
We now show 1 (g) # 0 22*® S. Consider the following commutative
diagram with exact rows:

0 > S > M -^U MIS >0

0 >22*<g)S > 2 2 * ® M — 22

where the downward maps are # —> 1 ® 2/. Then

But

γ: (22* ® M)/(22* ® S) > 22* (g) (MIS)

defined by

γ(r* (g) m + 22* (g) S) = /5(r* (g) m)

is an isomorphism. In particular,

7(1 (g) x + 22* <g) S) = /β(l ® a?) = i(» + S) .

Since x $ S, x + S Φ 0. Since j is a monomorphism, by Lemma 3.6,
i(α + S) ^ 0. Therefore l (g)^ + 22*(g)S^O, i.e., 1 (g) x $ 22* (g) S.
Hence l(g)# + 22*(g)S contains only finitely many distinct heights, bj;
Lemma 3.3. Therefore the pure subset x + S of l(g)x + 22*(g)S car
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contain only finitely many distinct heights, and so it has an element of
maximal height.

We now sum up the results of this section in the following theorem.

THEOREM 3.9. A semi-KM module is a KM module if any of the
following conditions hold:

( i ) R is complete and M has no elements of infinite height;
(ii) R is compact and rank M = 2;
(iii) R is complete and rank M = 1;
(iv) rank M = 1 and M has no elements of infinite height.
It is an open question whether these are all the semi-ίΓM modules

with the coset property. Later we shall give an example of a module
of rank 2 with no elements of infinite height over an incomplete ring
which does not have the coset property.

4 The Structure theorem. The main result of this section is the
classification of all KM modules.

DEFINITION. A strand is a function from the cartesian product
of s copies of R into the ordinals and the symbol oo, where R is a DVR
and s is finite.

DEFINITION TWO strands / and g: R x x R —> ordinals and oo
are equivalent, denoted f ^ g, in case there is an s by s non-singular
matrix A over R and non-negative integers m and n such that
g(pm+n(rlf , r,)) = f(pn(r19 , rs)A) for all r4 e R. The argument of
f is obtained by regarding (r19 , rs) as a 1 by s matrix.

It is easy to verify that / == g is an equivalence relation. If M is
a reduced module of finite rank s, then any ordered independent set of
elements xlf , xs determines a strand / by f(rlf , rs) = h(ΣriXi).
f is the strand determined by the x's. It is straightforward to see that
two strands determined by different ordered maximal independent sub-
sets of M are equivalent in the above sense. Thus M determines an
equivalence class of strands, which we denote S(M). Clearly S(M) is
an invariant of M.

LEMMA 4.1. Let M and Mf be KM modules. Let S and S' be
finitely generated submodules of M and Mr respectively, let f be a
height-preserving isomorphism of S onto S', and let xeM with pxeS.
Then f can be extended to a height-preserving isomorphism between
{x, S} and a suitable submodule of M' which contains Sf.

Proof. Exactly as in [4].
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LEMMA 4.2. Let M and M' be KM modules with S(M) = S(M').
Then there are maximal independent subsets in M and in Mr which
determine the same strand.

Proof. Let ylf « ,^g be independent in M with strand / ; let
y[f "'yV's be independent in Mf with strand g. Since S(M) = S(Mf),
f ΞΞΞ g. Hence there are non-negative integers m and n and a non-
singular matrix (ai3) over R such that

g(p»+n(rlf , r,)) = f(pn(rlf , rs)(α,,)) ,

i.e.,

h(P'»+»Σrty'i) = h{pnΣΣriai3yj) .

Set &« = pnΣaίjyj and set α J = p ™ ^ .

THEOREM 4.3. Let M and Mf be KM modules. M and M' are
isomorphic if and only if they have the same Ulm invariants and
S(M) = S(M').

Proof. By Lemma 4.2, there are maximal independent subsets
x19 • ••,#, in My x[y •••,»! in I F such that hilr^) = h(ΣriX'i) for all
rteR. Let S be the submodule of Λf generated by the cc's and let S'
be the submodule of M' generated by the x"s. Define f:S—+S' by
f(xί) = fljj. Since S and S' are free on generators xi9 respectively x[9f
is a well-defined isomorphism. Moreover, our choice of generators makes
/ height-preserving. This isomorphism is now extended stepwise to an
isomorphism of M and M' by Lemma 4.1. To ensure catching all of
M and M'y we take fixed countable sets of generators for each and
alternate between adjoining an element of M and an element of Mr.
Since the elements of M and Mf have finite order modulo S and S' re-
spectively, we can suppose that at each step we are adjoining an ele-
ment x such that px lies in the preceding submodule. This is precisely
the situation of Lemma 4.1.

COROLLARY 4.4. Let M and Mf be isomorphic KM modules. Then
any height-preserving isomorphism between finitely generated submodules
S and S' of M and Mr respectively (rank S = rank M) can be extended
to an isomorphism of M with M'.

As first applications of the structure theorem, we now solve a
square-root problem and a cancellation problem.

THEOREM 4.5. Let M and M' be KM modules of rank 1 with
M®M&M'®M'. Then M&M*.
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Proof. It is a corollary of Ulm's theorem that the above is true
when M and M' are torsion. Hence the torsion submodules of M and
M' are isomorphic. Let xe M have infinite order. Then there is an
element (α, b) e M' 0 Mr such that h(rx) = &(rα, r6) for all reR. Since
rank M7 = 1, there are non-negative integers m and n such that pma =
pnub = i/, where % is a unit in R. We assume m > n. Thus, for large
k, we have h(p*x) = h((pk-my, pk-nu-1y))=h(pk-my). Hence S(M)=S(ikΓ).
Therefore, Mτ^Mr by the structure theorem.

I have been unable to prove the analogous result in the case of
higher rank, and I conjecture it is false.

THEOREM 4.6. Let M and Mf be KM modules, and let T be a re-
duced countably generated torsion module such that Ua{T) is finite for
all a, where Ua{T) is the αth Ulm invariant of T. Then
Γ 0 I ' implies M^ M'.

Proof.

S(M) = S(T®M) = S ( T 0 I ' ) = S(M') .

By Ulm's Theorem, we may cancel T to obtain that the torsion sub-
modules of M and M' are isomorphic. By the structure theorem,
M&M'.

S(M) is a rather cumbersome invariant. We make the following
definition in order to rephrase Theorem 4.4.

DEFINITION. TWO modules M and M' are almost isomorphic if there
exist torsion modules T and T such that

THEOREM 4.7. Two KM modules M and Mf are isomorphic if and
only if they are almost isomorphic and they have the same Ulm in-
variants.

Proof. The necessity is obvious. For sufficiency, note that if M
and M' are almost isomorphic, then S(M) = S(M'). Since M and Mf

have the same Ulm invariants, M^M' by 4.3.

5Φ Modules over incomplete rings* At present we have a structure
theorem for KM modules, and the only KM modules over incomplete
rings that we know are those of rank 1 with no elements of infinite
height. In Lemmas 3.6, 3.7, and 3.8, however, we saw that we could
obtain information about a module M by examining 12*(g)Λf, which we
henceforth denote M*. We now investigate this situation more closely.
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LEMMA 5.1. The rank of M as an R-module = the rank of Λf* as
an R*-module.

Proof. Rank Λf>rankΛf*, for if xlf- ,x8 is a maximal inde-
pendent subset of M, then l®xlf , 1 (g) a?s is a maximal independent
subset of Λf*. For the other inequality, let S be a free submodule of
Λf with rank S = rank Λf. Since i2* is torsion-free, exactness of
0 —• S —> Λf implies exactness of 0 —> S* —> Λf *. Since tensor product
commutes with direct sums, rank Λf < rank Λf *

LEMMA 5.2. Lei W 6β cm R*-module of finite rank s, with torsion
submodule T. Let M and Mf be R-modules of rank s contained in W
satisfying:

(i) TcMnM';
(ii) there is an independent subset xlf •••, xs in Λf fΊ Mf;
(iii) if f is the strand determined by the x's in M, and if g is

the strand they determine in M', then f = g. Under these conditions,
M= M'.

Proof. Let x e M. Since rank W = s, pkx = Σc%xu k > 0, and
cteR^. But each cteR, lest Σctxi9 x19 , xs are s + 1 independent
(over R) element in M, contradicting rank M = $. Hence pkx e M Π M'.
In ikf, HΣctXt) > k. By (iii), hiΣc.x,) > k in Λf' Thus there i s a i / e F
such that p*y — Σctx%. Hence pk(x — y) = 0, and so x — y eT. Thus
aj = 7/ + (x — ̂ /) 6 Λf'. The other inclusion is proved similarly.

LEMMA 5.3. Let M and M' be reduced R-modules; let xly •••, xs be
a maximal independent subset in M, x[, •••,$' a maximal independent
subset of Mf such that h{Σrtx^ = fc(Sr^ ) for all rteR. If CiβR*,
then h(ΣcL (g) xt) = ^(I'c^ 0 #5) i/ either is finite; also, if one of these
heights is infinite, so is the other.

Proof. We shall be done if we can prove h{Σc% 0 ĉ ) > k implies
h(Σct (g) x'i) > k, for any finite k. Choose r t e R such that c h — r4 e pfci2*.
Then Jet (g) ajt = ί (c t - rt) (g) a?4 + I'rj <g) a?4 Hence /^(iJr, (g) x,) > fc. By
Lemma 3.6, h(Σrt (g) xz) = h(Σrtx.t) = hiΣr^) = feίl'r* (g) x!) Hence
feίl'r, (g) x\) > k. But I'c, (g) a?ί = ^(c, - r«) (g) x5 + ί r t (g) xj.. Thus
h(Σci (g) α?ί) > k.

DEFINITION. Let Λf be a module with no elements of infinite
height. M is taut if length Λf = length Λf*; otherwise Λf is slack.

Note that length ([3, page 26]) may be defined for not necessarily
reduced modules. Thus Λf is taut if and only if the reduced part of
Λf * has no elements of infinite height. It is an open question whether
slack modules exist; it is easy, however, to give an example in which
Λf has no elements of infinite height while Λf * has a proper divisible
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submodule. Let M be an indecomposable torsion-free lϋ-module of rank
2 of the type exhibited in [3, page 46]. M is reduced (and so has no
elements of infinite height, being torsion-free), but M* « iϋ* 0 Q*, Q*
being the quotient field of i£*.

LEMMA 5.4. Any direct sum of taut modules is taut.

LEMMA 5.5. Any module of rank 1 with no elements of infinite
height is taut.

Proof. Lemma 3.7.

DEFINITION. A module is completely decomposable if it is the direct
sum of modules of rank 1.

COROLLARY 5.6. Any completely decomposable module with no ele-
ments of infinite height is taut.

LEMMA 5.7. Any reduced torsion-free module is taut.

Proof. There is a unique solution to the equation py = x.

THEOREM 5.8. Let M and M' be taut semi-KM modules. Then M
and M' are isomorphic if and only if they have the same Ulm in-
variants and S(M) = S(M').

Proof. Since M and M' have isomorphic torsion submodules, so do
M* and M7*, by 3.6. By 4.2 there are maximal independent subsets
xu , xs in M, xΊ, « , x's in M' such that fe(2>4cc4) = h(ΣriXl) for all
rt e R. Since both M and Mf are taut, the reduced parts of M* and
M'* have no elements of infinite height. By 5.3, {1 0 xt} and {1 0 x[}
determine the same strand. In particular, the divisible parts of M*
and M'* have the same rank and hence are isomorphic, since they are
torsion-free. By 4.3, Λf* ^ Λf'*. By Corollary 4.4, there is an isomor-
phism / : M*-+M'* such that /(I 0 x,) = 1 0 x\ for all i. But now
M' and f(M) satisfy the conditions of 5.2. Hence M' = f(M). Thus
Λf and M' are isomorphic.

Theorem 5.8 suggests that taut modules have the coset property.
We now exhibit a counter-example.

EXAMPLE 5.9. There exist taut modules which do not have the
coset property.

Proof. Let M be an indecomposable torsion-free iϋ-module of rank
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2, where R is (necessarily) incomplete. M is taut, by 5.7. Let S be a
pure submodule of rank 1. Since M is reduced, S must be cyclic.
Further, M/S& Q. Thus S cannot be copure. Hence M does not have
the coset property, by 3.2.

6 Completely decomposable modules We begin this section with
the study of the simplest completely decomposable modules: those of
rank 1. We have already seen that if we assume no elements of in-
finite height, modules of rank 1 are taut. Using results of the last
section, we can now prove a cancellation law.

THEOREM 6.1. Let M and M' be semi-KM modules of rank 1 with
no elements of infinite height. Then M ?& Mf if and only if Λf* ^ ΛΓ*.

Proof. By 3.6. M* ^ ΛΓ* implies that the torsion submodules of
M and M' are isomorphic. If x has infinite order in M, xf has infinite
order in ΛF, then the strands determined by 1 (g) x and 1 (g) xf are
equivalent. But equivalence for modules of rank 1 is via two non-
negative integers and a one-by-one matrix over R*, i.e., an element
of R*. But any element of iϋ* has the form up* where u is a unit.
Since multiplication by a unit does not alter heights, we may assume
that the one-by-one matrix lies in R. But then we are calculating
equivalence over R. The purity of the imbedding of M into M* yields
S(M) = S(M'). Hence M^ M'.

If rank ikf = 1, then S(M) has a representative / : R—» ordinals
and co, where f(r) = h(rx) for some element x of infinite order. But
we know that if r and rf are associates in R, then f(r) = f(r'). Hence
/ is completely determined by its values at pfc, k = 0, 1, 2, Thus
S(M) can be looked upon as an equivalence class of sequences of ordi-
nals. Indeed, these ordinal sequences are the extra invariant Kaplansky
and Mackey discovered in their paper.

DEFINITION. A sequence of ordinals {an} has a gap at an if
an+1 > 1 + an.

LEMMA (Kaplansky). If {an} is the Ulm sequence of x ([3, page
57]), and if {an} has a gap at <xnJ then the anth Ulm invariant of
MΦO.

Proof. Since h(pnx) = an and h(pn+1x) — an+1 > 1 + an, there is a
yeM such that h(pny) > an and pn+2y = pn+1x. Set t = pn+1y — pnx.
Then t has order p and height an. Thus the anth. Ulm invariant of M
is non-zero.

Suppose we are given a monotone increasing sequence of non-negative
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integers and a torsion module T. Is there a module of rank 1 pos-
sessing these as invariants? Kaplansky's lemma provides a link be-
tween these two objects, and the following theorem shows it is the only
restriction.

THEOREM 6.2. Let T be a countaly generated torsion module with
no elements of infinite height; let {an} be a strictly increasing sequence
of non-negative integers such that {an} has a gap at an implies Ua (T)
is non-zero. Then there exists a KM module M of rank 1 whose tors-
ion submodule is isomorphic to T and such that S(M) is the equiva-
lence class of {an}.

Proof. In this proof we often denote pk by expfc. If {an} has
only a finite number of gaps, equivalence allows us to assume that
an = n for all n. Then M = Γ φ R is the desired module. Therefore
we may assume {an} has an infinite number of gaps. Let {an.} be the
subsequence of gaps. The conditions on T imply T is the direct sum
of cyclic modules. Further the compatibility condition tells us that T
has a cyclic summand C.h of order (exp (an. + 1)); let a% be a generator
of Ct. There is a B such that T&B®ΣCt. We first construct a
certain submodule M' of 77 Cέ.

Define x = {w4αj where u% = exp (an. — nt). x has infinite order;
for pmx = 0 4=Φ> pmuiai = 0 for all i φ=#> exp (m + an. — n^di = 0 for
all i <Φ=Φ m + ocnι — nt> an. + 1 for all i <#=#> m > nt + 1 for all i.
This is impossible since n% —• oo. We claim that if p ^ α i ^ 0, then
p f c ^ e (exp ak). In other words, if k + an. — ̂  < an. + 1, then
k + an. — nt > ak. Equivalently, if nt > k, then an. — ak > nt — k.
But an. - ak = (αn. - ^ ^ J + . . . + (α fc+1 - ak) > nt - k. Thus for
each k we may define an element xk with the property that (exp αfc)#fc =
pkx: set xk = {^ίαj, where te* = 0 if fc > ^ + 1, while u\ = exp( — αfc +
fc + αw. — wO otherwise.

Set Mr = the submodule of 77C£ generated by the xfc's. Note that
h(pkx) = αfc in Λf'. It can be no greater, since the height of an ele-
ment of 77 Ci is the smallest power of p which occurs in one of its co-
ordinates. Hence h(pkx) = ak in 77 C ,̂ and so can be no larger in the
submodule M'.

We still must determine the torsion submodule T' of Mr. Given
any two xks, multiplication of each by a suitable power of p makes
their coordinates equal from some point on. Hence any element of
finite order in Mr cannot have an infinite number of non-zero coordinates.
But it may be verified that for all i,

a, = exp (an.+i - an. - nt+1 + ^ K . + 1 - %H .

Hence T' = ΣCi. Thus I = F 0 β is the module we seek, where B
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is the module we originally found satisfying T' 0 B & T.

We now prove the existence of minimal modules possessing an ele-
ment of a given Ulm sequence.

COROLLARY. Let {an} be a strictly increasing sequence of non-
negative integers, and let {an.} be its subsequence of gaps. Let T be
the direct sum of cyclic modules Ct of order (exp (an. + 1)). Then there
exists a KM module 1 with torsion submodule T and which contains
an element x such that h(pnx) = an. Further, M is a direct summand
of any KM module Mf of rank 1 which contains an elements whose
Ulm sequence is {ctn}.

Proof. We need only prove the last statement, since the existence
of M with the prescribed invariants follows immediately from Theorem
6.2. Let Tr be the torsion submodule of Λf\ By Kaplansky's lemma,
the α^.th Ulm invariant of T' is non-zero. Hence there are cardinals
Un such that Un{T') = Un + Un(T). Let V be the torsion module with
Ulm invariants given by Un. By Ulm's theorem, Tf τ& V® T. The
KM module V@M has torsion submodule 7 0 Γ and S ( F 0 I ) =
S(M'). Hence 7 0 M and Mr are isomorphic, by the structure theorem.

Thus there is an uncountable number of non-isomorphic KM modules
of rank 1 with no elements of infinite height. In particular we have
exhibited modules of rank 1 which do not split.

DEFINITION. xlf •• ,α?s is a decomposition set for M if it is a
maximal independent subset of M and h^Er^ = min hfaxt) for all
r̂  e R. A subdecomposition set is a not necessarily maximal independent
subset satisfying the above condition on heights.

DEFINITION. A decomposition set has k gaps at level n if k of its
elements have Ulm sequences which have a gap at n.

LEMMA 6.3. Let X = x19 , xs be decompostion set with k gaps at
level n. Then the the nth Ulm invariant of M > k.

Proof. If x19 , xs is a decompostion set for M, so is rλxx, , rsxs

where r4 Φ 0 for all i. Hence we may assume that h{x^) — n and
> n + 1 for i <Ξ k. Thus there are elements yu i < k, such that

KvVi) > n + 1 and p2yt = pxt. Set ti = pyt — x%. We now have k ele-
ments of order p and of height n. It remains to prove that they are
independent over Rj{p). Suppose Σ?-iri*i = 0, where rt is either 0 or
a unit in R. By the definition of the tl9 Σri{pyi — #<) = 0 which implies



620 JOSEPH ROTMAN

that pΣriyi = Σr^x^ Since X is a decomposition set, h(ΣriXi) =
min/φ'ίCCf) = w or oo. But h{pΣrty^ > n + 1. Hence 2 V ^ = 0. The
independence of the x's implies that each ri = 0; hence the tt are in-
dependent over Rl(p).

THEOREM 6.4. Let M be a taut semi-KM module. M is completely
decomposable if and only if M contains a decomposition set.

Proof. If M is completely decomposable, the assertion is trivial.
Suppose M contains a decomposition set x19 •••,#,. Define functions
Ut: non-negative integers —> cardinals < ^ 0 , i = 1, 2, , s as follows:
Σί-i Ut(n) = wth Ulm invariant of M; if the Ulm sequence of xt has a
gap at n9 then Ϊ74(w) Φ 0. By Lemma 6.3, the Ulm invariants of M
are sufficiently large to allow this construction. Let Tt be the torsion
module with Ulm invariants given by U%. By Theorem 6.2, there exists
a KM module of rank 1, Mi, having torsion submodule Tt and with
S(Mi) the equivalence class of the Ulm sequence of xt. Consider ΣM%.
Since Ulm invariants are additive, the first condition in the definition
of the Ut coupled with Ulm's theorem yields the fact that the torsion
submodules of M and of ΣM% are isomorphic. Further, S(M) = S(ΣMi).
By Corollary 5.6, ΣMi is a taut semi-JOί module. By Theorem 5.8,

LEMMA 6.5. Let M and M' be taut semi-KM modules of rank 1
such that S(M) = S(M'). Then M and M' are almost isomorphic.

Proof. Let T and Tf be the torsion submodules of M and M' re-
spectively. Then I 0 Γ and tf'φT are isomorphic, by 5.8.

We now prove a technical lemma which will allow us to obtain our
first direct summand theorem.

LEMMA 6.6. Let M be a reduced module of finite rank s. Let
x19 , xs be a decomposition set such that each xt has the same Ulm
sequence. Suppose also that x% = wφλ + + wίsas, and, for all
i, I Will <Ξ \wn\. Under these conditions, y% — wilx1 — wnxi9 i > 2, is a
subdecomposition set and each y% is in A, the submodule generated by

Proof. Rank M = s while rank A < s — 1. Hence not all the wiχ

are 0 lest we have s independent elements xlf •••, xs lying in A. Thus
wn is non-zero.

First we show the yt

98 are independent. Suppose Σriyi = 0. Then
0 = {Σr^w^Xi — ΣTiWnXi which implies r t w u = 0 for all i > 2, since the
x's are independent. Since wn Φ 0, we must have rt = 0 for all i > 2 ;
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hence the y's are independent.
Next we show that the y's satisfy the required condition on their

heights.

W^x, - Σriw11xί) = min

But

I max | r%wn \ — max | ri \ \ wtl \ < max | rt \ \ wn | = max | riw11 |

Hence there is an i such that {ΣViWnl < | n w n | . Therefore, h(Σriwilx1)>
h(riwnχi) f ° r that i. Hence h{Σr%y^) = min hir^^x^). On the other
hand, min / ^ r ^ ) = min h{riwilxι — r^^x^) = min ^(r^w^), h(riWnXi).
But for all i, | rttc7411 < | r 4 w u | . Therefore, h^iW^x^ > h(rtwuxt). Hence
min hir^i) = min hir^^x^. Hence /2,(2r^) = min

THEOREM 6.7. Lβ£ Mbe a completely decomposable semi-KM module
with no elements of infinite height. Let M = ΣMU all the M% isomor-
phic and of rank 1. If M = A φ J5, ί/ιe?t B is completely decomposable.
In fact, B is almost isomorphic to a direct sum of copies of Mt.

Proof. We first prove that any two elements in M of infinite order
have equivalent Ulm sequences. Let xt e Mi have infinite order. Clear-
ly these #'s form a decomposition set. Further, since all the Mt are
isomorphic, we may assume that all the xt'& have identical Ulm sequ-
ences. Let ze M have infinite order. There is an m > 0 such that
pmz = Irtxt. Suppose \rt\ < \rx\. Then h(pm+Jcz) = h^Σr^) = Hp^xJ

for any non-negative k.
Choose a19 •••,»„-* independent in A, as-k+1, « , α s independent in

B. We are now in the situation of the lemma. Applying the lemma k
times (after each application, we must normalize the y's obtained so
that they have identical Ulm sequences), we obtain s — k independent
elements in {αs_fc+1, • , α j c 5 which is a subdecompostion set of M. By
the purity of B, and since rank B = s — k, these elements constitute a
decomposition set for B. By Theorem 6.4, B is completely decomposable.
Hence B = ΣBjf and our initial remarks imply that S(Bj) = S(Mi) for
all i and j . By Lemma 6.5, B3 and Af4 are almost isomorphic. Hence
5 is almost isomorphic to a direct sum of copies of ML.

I have been unable to discover the truth of Theorem 6.7 in the
event all the Mt are not isomorphic to each other.

COROLLARY 6.8. Let M — Σ M α {a in some index set), each Ma

a semi-KM module of rank 1 with no elements of infinite height. If
all the M^ are isomorphic, any direct summand B of M of finite rank
is almost isomorphic to a direct sum of copies of MJs.
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Proof. Let x^ e Ma have infinite order. Let y19 , ys be a maximal
independent subset of B. There is a finite subset xai, , x«k of the
a '̂s such that pmy% lies in the submodule they generate, for all i. Let
B' be the submodule of M generated by B and MΛλ, , Λf̂ . Since JB'
is countably generated and of finite rank, B' = Σ Λf'«j> where S(Mf

aj) =
[E/a;Λj] (If # e M, Ux is its Ulm sequence and [Ux] is the equivalence
class of Ux). Hence all the S(M'a)

9s are the same. Since B is a direct
summand of M, it is a direct summand of 2?'. By 6.7, B is completely
decomposable. Since all elements of infinite order have equivalent Ulm
sequences, B is almost isomorphic to a direct sum of copies of MΛ.

We are now in a position to consider uniqueness of a decomposition
of a module into the direct sum of modules of rank 1. The unpre-
dictability of the torsion submodules does not allow one to find pairs of
isomorphic summands from two different decompositions. For example,
if C is cyclic of order (p) and i k ί = i 2 0 C 0 C φ i 2 , different associa-
tions yield different decompositions of M as a direct sum of modules of
rank 1 whose terms are not pairwise isomorphic. However, the two
decompositions do have isomorphic refinements.

THEOREM 6.9. Let M~ ^2-^MiJMi a KM module of rank 1, all
the Mi isomorphic. Any two decompositions of M into summands of
rank 1 have isomorphic refinements.

Proof. We saw in the proof of Theorem 6.7 that any two elements
in M of infinite order have equivalent Ulm sequences. Hence if M —
Σ L M 1 , all the Ml of rank 1, then S(Mf) = S(M't) for all i. By the
existence theorem, there are modules JVi of rank 1 such that:

(i) ΛΓ, 0 T, ̂  M,, AT, © T < ^ M[ for some torsion Tίy T\\
(ii) if Wt is the torsion submodule of Nif then the Ulm invariants

of Wt are O's and Vs. Now Σ ^ Θ Σ ^ - Σ ^ Θ ΣΓί B? U l m ' s

Theorem and condition (ii), we may cancel and obtain Σ ^ ^ Σ Π̂
Since any two decompositions of a module which is the direct sum of
cyclic modules have isomorphic refinements, Σ ^ ΐ a n ( i Σ ^ l have isomor-
phic refinements. This completes the proof.

As a corollary, we have another proof of the square root problem,
Theorem 4.5.

This paper is part of a dissertation written at the University of
Chicago. I wish to thank Professor I. Kaplansky for his guidance.
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THEORIE DES SYSTEMES DEMOSIENS DE GROUPOIDES

ALBERT SADE

1. Introduction* L'idee premiere de ces recherches est dans deux
papiers de M. Schauffler consacres a Γ etude des codes avec un vocabulaire
ayant un nombre uniforme de figures, [40], [41]. Dans le second, il
construit un tel code au moyen d'une population Ω de quasigroupes Qiy

definis sur le meme ensemble fini, E — (1, 2, 3, , n) et satisfaisant a
une associativite qu'il appelle "im Ganzen", yx,y,z e E, y d , Q2 e Ω,
3Q3, Q4 6 Ω, xQ1(yQ2z) = (xQdy)Q±z. II montre que F ensemble de tous les
quasigroupes construits sur E ne peut etre associatif "im Ganzen" si
n surpasse 3. Dans le present travail on se propose, sans preoccupations
cryptographiques immediates, d'etudier systematiquement les ensembles
(finis ou non) de groupoϊdes construits sur un support commun et satis-
faisant a quelque relation demosienne analogue a Γassociativite "im
Ganzen". De telles considerations ont deja ete abordees dans un pre-
cedent travail de Γauteur ([35], p. 156, N°2, iv, p. 161, N°8, IV). Elles
ne sont pas seulement susceptibles de conduire a des applications dans
le domaine du "chiffre", elles presentent encore un interet en soi dans
le champ de la speculation pure. De tels ensembles multistructures,
c'est-a-dire munis de plusieurs lois de composition, se rencontrent a
chaque pas en algebre. On sait que les anneaux, corps, clusters,
narings et neofields ([32], p. 296, III) possedent deux lois de compo-
sition. Skolem ([43], p. 53) donne un systeme de quatre semigroupes
idempotents, abeliens, et qui sont deux a deux mutuellement distributifs.
Les ensembles de groupoϊdes engendres par deux groupoϊdes orthogonaux
([31], p. 231, N°6), les ringoϊdes ([7], p. 203, N°2) en possedent un
nombre quelconque. Dans [21b], Hasse, p 27, definite un ensemble
muni de quatre operations.

Le fait que le meme ensemble soit muni de toute une population
de lois de composition suggere le nom de demosiennes, deja introduit
dans [35] pour qualifier les identites entre elements de tels ensembles.
On trouve dans la litterature maints exemples de relations contenant a
la fois plusieurs lois de composition. A peu pres toutes les egalites de
Γalgebre classique font intervenir six operations usuelles. L' equation
d'associativite mutuelle ([36], def. 17, [43], p. 47), (x x y) x z = x x (y x z),
Γequation de Kolmogoroff ([2], equ. Γ), st x tu — su, Γequation de
Cacciopoli [9], Ghermanescu [15], Gyires [19], Aczel [l], [3], fix x y) =
f(x) x f{y), oύ / est une application de E sur lui-meme, l'equation de
Ghermanescu [16], (x x a) x (y x b) = x x y, celle de Kurepa [29],
[(a x b) x c] x (a x b) = (b x c) x \a x (b x c)], l'equation de distibuti-
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vite [23], [17], ([43], p. 52, equ. 4), (x x y) x z = (x x z) x (y x z),
Γ equation d'Aczel-Hosszύ [4], (x x y) x z = x x (y o z), contiennent toutes
deux operations differentes. Hosszύ ([25], p. 206), considere une identite
avec quatre lois de composition, F[x, G(y, z)] — H[K(x, y), z],

Mais la plupart des auteurs qui ont traite de ces relations ont
regarde les lois qu'elles contiennent comme des fonctions de deux vari-
ables definies sur un corps (celui des reels, en general). Si Γon cesse
de considerer ces egalites comme des equations fonctionnelles, pour les
interpreter comme des conditions entre elements d'une meme support,
muni de plusieurs lois, c'est-a-dire comme des equations entre groupoϊdes,
alors ce changement de point de vue peut amener, avec une generalite
plus grande, des simplifications notables et inattendues. Pareil fait n'est
pas nouveau. Scherk [42], developpe sur dix pages de pesantes con-
siderations d'analyse pour etablir une proposition dont la demonstration
directe tient en quelques lignes. Ici, soit par exemple Γ equation de
Cauchy-Cacciopoli, f(x x y) — f(x) x f{y), qui a fait Γobjet de nombreux
memoires couvrant plus d'une centaine de pages. Si E est un ensemble
quelconque, muni de deux operations (x) et (x), cette equation exprime
que le groupoϊde Gf — E(x) est homomorphe de G — E(x). Soit T —
[#—•/(#)] Γhomomorphisme qui fait passer de G a G' et A le groupe
d'automorphisme de G alors, toutes les solutions en / sont donnees par
les elements du coset AΊ. Le probleme n'est possible que si G' est
homomorphe de G. L'affirmation d'Aczel [1], que G et Gf sont en meme
temps bissymetriques ou non devient evidente puisque G ~ G'. Le
theoreme d'Aczel ([3], p. 329), que (8) est un groupe continu, devient
immediat puisque Gr est alors homomorphe au groupe additif des reels.
De meme Γequation ci-dessus de Hosszύ, mise sous la forme x x (y x z) —
(xQy) ° z, a ete completement resolue par Belousov [6], dans le cas des
quasigroupes, par Hosszύ [26], et par Rado (Cluj). Les quatre quasi-
groupes sont isotopes d'un meme groupe. (Voir, N°7.2 une solution
differente de ce probleme, et [37] une extension aux multigroupoϊdes).1

On aura un autre exemple de telles simplifications a propos de V equation
de distributivite (Ci-apres, N°8) et de celle de transitivite [38].

II est certain qu'un pareil sujet deborde le cadre d'une simple note;
nous nous bornerons a Γesquisser ici. Les questions abordees sont, en
se limitant a quelques identites classiques, les systemes satisfaisant a
une equation fonctionnelle ou a une loi demosienne particuliere donnee,
les consequences de Γ existence de deux lois demosiennes, les systemes
demosiens dont les elements sont derives d'un meme groupe par des
isotopies ay ant pour composantes des translations de ce groupe, (systemes
(G, K, T))} un essai sur les systemes demosiens organises au moyen d'une
loi de composition entre les groupoϊdes qui les forment.

La nomenclature, les definitions et notations sont celles des trois
papiers [34], [35], [27], auxquels le lecteur est prie de se reporter. En
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outre les symboles suivants seront utilises:
a<b, Relation d'ordre,
φt, symbole operatoire d'une loi de composition,
Φ, ensemble des φu sur un meme ensemble E,
<α, 6, c, •>, ensemble ordonne,
(£, V> ζ)f isotopie de composantes ξ, η, ζ.
Un index, avant la bibliographie, renvoie aux N°.

CHAPITRE I

SYSTEMES ADMETTANT UNE LOI DEMOSIENNE DETERMINEE

2. Definitions. Un ensemble quelconque, fini ou non, E = {x, y, •)
muni de plusieurs lois de composition φ, formant une population finie
ou non, Φ = (φu φ2J •••)> e s ^ dit multistructure ou demosien, et note

(E,Φ). Les lois φ sont supposees partout definies et homogenes ([35],
p. 156, N°2, equ. 55) et, sauf stipulation contraire, il n'est fait aucune
supposition particuliere (commutativite, associativite, axiome d'absorp-
tion, [7], p. 18) sur la nature de ces lois. Une expression sur (E, Φ)
est un assemblage d' elements eE, separes par les signes operatoires
Ψi e Φ et par des parentheses, crochets et accolades. Elle definit une
suite ά'operations a efFectuer, dans un ordre determine, sur ces ele-
ments, aboutissant comme resultat final a un element bien defini e E.
Deux expressions sont egales si elles definissent le meme element. Si
deux expressions sont egales quels que soient les elements qu'elles con-
tiennent, elles forment une identite. Si Γegalite n'a lieu que pour
certains choix des lettres, on obtient une equation. Mais les choses
dependent aussi des signes operatoires, et les significations des deux
vocables empietent; il convient de preciser dans chaque cas quels sont
les elements ou symboles qui peuvent, on non, etre choisis arbitraire-
ment dans une egalite. De telles relations sont dites demosiennes parce
qu'elles ont lieu sur toute une population de groupoϊdes ([35], p. 156,
N°2 iv; p. 161, N°8, IV, p. 172, N°30).

Remarquons qu'un systeme de groupoϊdes homogenes satisfaisant a
une identite demosienne, quels que soient les elements et les symboles,
se reduirait en general a un seul groupoϊde. Soit par exemple

yx,y,z e E , y ^ e Φ , (xφ1y)φ2z = xφz{yφ,z) .

Si les E(φ) sont homogenes on peut yα, b e E, choisir x = a et y, z tels
que yφAz = b. Laissant tous les φ, sauf <p3, invariables et posant
{xφλy)φ2z = c, on aurait done ŷ >3 e Φ, c = aφjb, α, 6, c — Constantes.
Le produit aφb serait le meme dans tous les groupoϊdes. Cela pouvant
etre repete yα, 6, tous les E(φ) coϊncideraient avec un meme groupoϊde,
qui serait evidemment un semigroupe. Plus generalement, soit A une
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expression dependant des elements x,y, z, e E, associes au moyen
des lois φ19 φ2, φ3, 6 Φ et B une expression analogue. Supposons
Γidentite A = B verifiee γ#, y, e E, y/φlf φ2, e Φ, Alors, laissant
tous les x constants et tous les φ, sauf un, φu invariables, on aura, en
designant par α, 6, c trois constantes, c = α<^6. Ainsi, le produit aφb
sera le meme dans tous les groupoϊdes du systeme, Si toutes les lois
de Φ sont homogenes, on pourra toujours choisir les x, y, de maniere
a attribuer a a et b deux valeurs choisies d'avance (Γhomogeneite n'est
meme pas tou jours necessaire, comme par exemple dans le cas de la
commutativite demosienne). Alors

yα, b 6 E , y/φt e Φ , aφfi = constante.

Le produit aφb etant le meme dans tous les groupoϊdes, Φ se reduit a
une seule loi.

3 Commutativite demosienne DEFINITION 3.1. Un systeme (E, Φ)
admet la commutativite demosienne si

yx,y e E , y/φ 6 Φ , 3^' , xφy = yφ'x .

Quand φ' ne depend ni de x, ni de y, la commutativite est forte. Quand
φ' depend a la fois de φ, de x et de y, la commutativite est faible. II
est clair qu'un systeme satisfaisant a la commutativite forte contient,
avec tout groupoϊde, G — E(φ), le groupoϊde conjoint, ([35], p. 155, N°2,
ii), xφy — zτlyφfx = z. Dans le cas fini, les deux tables de Cayley de
G = E(φ) et de G' = E(φr) sont deux matrices dont chacune est trans-
posee de Γautre.

EXEMPLE 3.2. Le systeme de quasigroupes, defini sur le corps R
d e s r e e l s p a r x φ λ y = ( α λ + b)x + ( c λ + d)y + f X + g , a , b , c -*-,g, c o n -
stantes G R, admet la commutativite faible.

DEFINITION 3.3. Un soussysteme d'un systeme (E, Φ) satisfaisant
a une ou plusieurs relations demosiennes est un systeme (Ef, Φ'), avec
Ef cz E, Φr cz Φ, et satisfaisant aux memes relations demosiennes.

EXEMPLE 3.4. Dans le systeme {E, Φ) ci-dessus (3.1), les memes
equations de definition, appliquees au corps Q des fractions relationnelles,
fournissent le sous-systeme demosien (Q, Φ1), λ, α, &, , g e Q.

Question 3.5. Un systeme commutatif faible contient-il tou jours
deux groupoϊdes con joints (distincts ou non)?

DEFINITION 3.6. Etant donne un quasigroupe Q(x), Vensemble
( , ΔϊxΔi9 •), i, j e Q, ou Δi — {x—^xx i), s'appelle le complexe
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relatίf aux translations a droite, Vensemble ( , Γf1/"^, •••)» le com~

plexe relatif aux translations a gauche.

Ces deux complexes engendrent deux groupes qui sont des diviseurs
des groupes engendres par les translations elles-memes et introduits par
Albert [5], p. 509). L'interet de ces deux groupes est qu'ils restent
invariants si Γon soumet le quasigroupe Q a une isotopie quelconque de
forme (f, η, 1) Si Γon fait subir a Q(x) Γisotopie principle x x y =

et

ΔϊJΔjv = (u x irj —>u x jrj) — {xξ x iη —> xξ x jrj)

= (xxi~^xxj) — AilA0 .

Le calcul est le meme a gauche.

THEOREME 3.7. Le systeme demosien derive d'un groupoϊde abelien
en le soumettant a toutes les isotopies possibles est commutatif demo-
sien fort.

Preuve. Si G est un groupoϊde abelien, les isotopies (ξ, η, ζ) et
(T), ξ, ξ) le transforment en deux groupoϊdes conjoints. A toute isotopie
appliquee a G en correspond une autre (pouvant coϊncider avec la pre-
miere) et pour laquelle les deux isotopes obtenus sont conjoints. Ainsi,
le systeme possede la commutativite forte. La reciproque n'est pas vraie
comme le montre Γexemple suivant. Soit Q le quasigroupe du 5° ordre
defini par ses translations a droite Δo = 1, Δλ = (01)(234), Δ2 = (04132),
4 = (03124), z/4 = (02143). Par Γisotopie (1,1, (24)), Q devient son pro-
pre conjoint Qr. Si Γon soumet Q et Q' a une commune isotopie on
obtiendra deux quasigroupes conjoints et le systeme (Q, Φ) aura la com-
mutativite forte. Pourtant aucun isotope de Q ne sera abelien. II suffit
pour s'en assurer d'examiner les isotopies (1,^,1); or aucune ne rend
Q abelien. On a toutefois la condition.

THEOREME 3.8. Pour que le systeme obtenu en soumettant un quasi-
groupe Q a toutes les isotopies admette la commutativite demosienne il
faut et il suffit quef dans Q, les complexes relatifs aux translations a
droite, ( ΔϊλΔ3* •) et a gauche (•••Γϊ1ΓJ ), soient isomorphes.2

Preuve. La condition est necessaire. Dans toute isotopie, chacun
des complexes reste evidemment isomorphe a lui-meme. Si (E, Φ) est
commutatif demosien, il contient, avec tout quasigroupe K, son conjoint
K'. Soient G et D les complexes a gauche et a droite de K, G' et Df

ceux de K'. On aura, puisque K et Kr sont isotopes, G ~ Gr, D ~ D'.
Mais, d'autre part, K et K' etant conjoints, G = D\D = G'} done D~G.



630 ALBERT SADE

Elle est suffisante. Soit S la permutation de Γensemble Q qui pro-
jette le premier complexe sur le second. On peut d'abord par une iso-
topie (ξ, 1,1) s'arranger de maniere que >ji,j, AilA3 ~ ΓϊλΓ'.,; en faisant
alors Γisotopie (1,1, S), le nouveau complexe a gauche deviendra Γancien
complexe a droite. Une derniere isotopie de la forme (1, η, 1) fournira
le conjoint de Q.

COROLLAIRE 3.9. Uensemble des isotopes dyun groupe possede la
commutativite demosienne.

Car ses deux Cayleyens sont isomorphes.
Remarquons pour terminer que Γimage d'un systeme demosien com-

mutatif par une isotopie de la formq (ξ, Ύ] — ξ, ξ), appliquee a tous ses
groupoϊdes, est encore un systeme commutatif.

4 Loi des keys DEFINITION 4.1. Un systeme (E, Φ) satisfait a
la loi demosienne des keys (a droite) si la condition

(4.1) yx,y 6 E , yψλ e Φ , ^ψ2 e Φ , (xφ1y)φ2y = x

est verifiee. Cette loi apparait pour la premiere fois dans Grassmann
([18], p. 37).

THEOREME 4.2. Pour qu'un systeme (E, Φ) de quasigroupes a gauche
satisfasse a la loi demosienne des keys (a droite) il faut et il suffit
qufil contienne, en meme temps que tout quasigroupe Q — E(x), son
reciproque Qf = E(Q), defini par χχy = z^lzQy=:χ, ([34], def. 1.2).
Pour les keys a gauche il faudrait x x y — z^lx® z = y, ([34], def. 1.5).

Preuve. En effet (4.1) est equivalente a \/x, y e E, yf<px e Φ,
^φ2 e Φ, xφΎy — z ^1 zφ2y = x. On demontre, comme pour 3.7 que, si
un quasigroupe a gauche Q est self-reciproque le systeme derive de Q
en le soumettant a toutes les isotopies possibles satisfait a la loi demo-
sienne des keys. Enfin une consequence du Theoreme 3.8 est que, pour
que Γensemble des isotopes d'un quasigroupe Q satisfasse a la loi demo-
sienne des keys (a droite) il faut et il suffit que Q soit parastrophique
par (x x y = z~^2x®z = y) d'un quasigroupe satisfaisant a la condition
du Theoreme 3.8. Car, soit aψfi = cTlaφ^ — b et xψλy = yψ2x = z; il
en resultera xφλz = y et yφ2z = x, d?oύ, par elimination {xφxz)φ2z — x.
(Cf N°9.3)

5 Demi-symetrίe DEFINITION 5.1. Un systeme (E, Φ) de grou-
poϊdes satisfait a la demi-symetrie demosienne si

yx,y e E, \fψ1 e Φ , SΨ2 e Φ , %<Pi(y<P2x) = y

([35], p. 153, N°2, equ. 11), ([34], def. 18.7).
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THEOREME 5.2. Pour qu'un systeme (E, Φ) de quasigroupes a droite
([34], N°l) admette la demi-symetrie demosienne il faut et il suffίt
qu'il contienne, avec tout quasigroupe E(φ), son parastrophique par
aφb = c^Hb ~ c 0 α, ([34], def. 1.4), c'est a dire, avec chaque operation,
sa division a gauche ([111, p. 170).

Preuve. Soit xφλu — y, done u = y 0 x\ alors xφλ(y 0 x) = y, done
2/φx = yφ<βj E(φ2) = i?(0). Ainsi le systeme contient, avee tout
quasigroupe a droite E(φΊ), son parastrophique ϋ7(φ). La reciproque
est evidente.

On parvient au sujet de la demi-symetrie, a des conclusions analo-
gues a celles des N°3 et 4.

6. Inversibilite 3
 DEFINITION 6.1. ([41], p. 428, dans le cas fini).

Un systeme (E, Φ) admet V inversϊbilite demosienne sHl satisfait a

yx,y,z € E , y<p19 ψ2 e Φ , 3^3, <P4, <p69 <pβ e Φ ,

(xφ1y)φ2Z =

Les deux relations sont conjointes. La premiere est Γ extension demo-
sienne de la loi d'Abel-Grassmann ([35], p. 154, N°2, equ. 21).

EXEMPLE 6.2. Sur le corps Q des fractions rationnelles, le systeme
des quasigroupes definis par xφy — ax + by + c, a,b, c e Q est inversible
demosien.

7. Associativite* DEFINITION 7.1. Un systeme {E, Φ) satisfait a
Γassociativite demosienne si la condition

(7.1) yx,y,z e E , y<plf φ2 e Φ , g<p3, <p4, Φ*, φβ e Φ ,
{xφxy)Ψ2z = xφlyq\z) , xψlyq\z) = (xφ5y)φ6z

est verifiee.
Pour approcher de la solution du probleme pose par la construction

de tels systemes, on peut d'abord chercher les conditions auxquelles
doivent satisfaire quatre groupoϊdes pour etre solution de (7.1). Cette
equation a ete etudiee par Evans [13], Belousov [6] et Hosszύ [26]. Le
premier a montre que, si les E(φ) sont isotopes d'un groupoϊde fini,
avec element neutre, ce groupoϊde est associatif. Le troisieme a donne
la solution generale de (7.1) dans le cas oύ les φ sont des fonctions
continues, differentiables, strictement monotones ([25], p. 212). Belousov
a enonce et Hosszύ [26] a demontre que quatre quasigroupes satisfaisant
(7.1) sont isotopes d'un meme groupe, theoreme que j'ai etendu aux
multigroupoϊdes [37]. Le theoreme suivant donne une solution explicite
generale de Γequation demosienne d'associativite lorsque les φ sont des
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fonctions arbitraires sur un ensemble quelconque, avec fonction inverse
uniforme, c'est-a-dire dans le cas des quasigroupes. Cette solution reste
valable—mais sans etre generale—si les groupoϊdes sont quelconques.

THEOREME 7.2. Si E est un ensemble quelconque, (i) la solution
generale de

(7.2) yx,y,z e E , (xφ1y)φ2z = xφlyψ.z) ,

oύ les φ sont des lois de quasigroupes, est

fxψλy — xξ yθ ,

xφ2y = (x yX)ξ~1 ,

xφ3y = (xξ yη)ζ'λ ,(i)

oύ ξ,η,ζ,θ,X sont cinq permutations arbitraires de E et E( ) un
groupe defini sur E.

(ii) Quatre groupoϊdes quelconques, isotopes d'un meme semigroupe

E( ) par les ίsotopies (I), sont solution de (7.2).

Preuve. Soient quatre quasigroupes definis sur le meme ensemble
E par les lois de composition φ19 φ2, φB, φ4 et satisfaisant a Γidentite
(7.2). Designons la translation a droite, relative a Γelement α, dans le
quasigroupe E(φt) par Δι

a. Faisons decrire E a Γelement generique x
et assignons des valeurs fixes, a et 6, a y et z respectivement. L'egalite

(7.3) (xφ^φφ = X<ps(aφJ))

s'ecrit

(7.4) Δ\Δl = /!*, (c =

Dans (7.4) on peut maintenant supposer a constant et faire decrire a b
tout le champ E\ alors c, dans le quasigroupe E(φ4), decrira aussi tout
Γensemble E. Done Δ\ decrira la totalite des translations a droite du
quasigroupe E(φ3). En recommenςant le meme processus a partir d'une
autre valeur de a e E, on devra obtenir, chaque fois, le meme ensemble
de valeurs de Δ\, sans quoi les translations de E(φB) ne seraient pas
definies univoques. Les ensembles

Δ\Δ\, Δ\Δ\, Δ\Δ\, Δ\Δ\, ••., Δ\Δ\, . . .

Δ\Δl, Δ\Δ\, Δ\Δ\, Δ \ Δ l •-., Δ\Δ\, .-•
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oύ Γemploi des indices inferieurs ne signifie pas que ces ensembles soi-
ent denombrables, seront tous identiques. Considerons le groupe syme-
trique total £fE, et dans ce groupe les deux complexes

A = Δ\, Δ\, Δ\, Δl, . . . , J}, . . .

B = Δl, Δl Δl, Δl ...,z/J, «...

D'apres ce qui precede, si Γon multiplie a gauche le second complexe B
par un element quelconque Δ) du premier A, Γensemble T des permu-
tations obtenues doit rester le meme \/Δ). Si Γon introduit les nouveaux
complexes C = P~1A, D — BQ'1, P e A, Q e B, on aura par hypothese

CD = P-'ABQ'1 = P-'TQ-1 .

Or C et D contiennent Γunite P~λP = QQ-1 = 1 de £%, done

Cl = C = P-'TQ-1 , ID = D = P

et

Ainsi C est ferme, associatif (puisque e'est un sous ensemble de ^ ) et
contient Γidentique. C'est done un semigroupe avec element neutre,
contenu dans S^. Les permutations Δ\, elements de C, sont les trans-
lations a droite d'un semigroupe isomorphe a C, G = E(φ0), avec zίoα =
(a? —> x^o^)- Done

(7.5) 3 S e ^ , aj^j/ - x ^ - (xP)Jo

yβ = (xP)<Po{yS) ,

ce qui exprime que E(φ1) est isotope de G par (£ = P, η = S, ζ — 1) et
D, etant un quasigroupe, G est done un groupe. De meme

(7.6) 3 Γ e ^ , a ̂ y = α J2, = (xJ«Γ)Q = (xφoyT)Q ,

ce qui signifie que 2?(<p2) est isotope de G par ( | = 1, rj = ϊ7, f = Q"1).
L'egalite (7.4) prend la forme PΔo

aSΔ°bTQ = 4 ,

(7.7) PΔ°aS(PΰbτQ = J ^ 4 & .

Cela entraϊne que (aScpφT—> aφjj) soit une permutation de £7 car, d'abord
α<p4& decrit tout le champ Ey ensuite, d'apres (7.5), aSφJbT decrit aussi
tout Γensemble E, enfin, si avec aSφobT = a'SφJb'T on avait aφjj Φ
a'φjb', il en resulterait Δ\,φj>, — Δ\φy, deux translations distinctes de
E(φ3) coϊncideraient et φ3 ne serait plus une loi de quasigroupe. Le
meme argument est valable en renversant les roles de φ0 et de φA. On
a done

(7.8) aφj) = (aSφobT)R ,



634 ALBERT SADE

oύ R est une permutation de E, et E(φ4) est isotope de E(φ0) par
(ξ = S, 7]=T, ξ = R-1). Maintenant (7.7) s'ecrit

(7.9) Δ\R = PΔIQ , xφ3cR = (a;PW)<3 , xφzy

ce qui exprime que 2£(£>3) est isotope de G par (ξ = P, ^ = iϋ"1, f = Q'1).
En remplaςant <p0 par (•) dans les relations (7.5), (7.6), (7.8), (7.9), elles
prennent la forme (I) de Γenonce. On verifie immediatement que la
condition (I) est suffisante, meme si les E(φ) sont des groupoϊdes quel-
conques, pourvu que E( ) soit associatif, ce qui etablit (ii).

EXEMPLE 7.3. Sur Γanneau Z des entiers rationnels tous les grou-
poϊdes xφty = x + y + i sont des groupes. Si Pon suppose i etj compris
entre deux entiers fixes, Pensemble obtenu aura Passociativite demosienne
avec

EXEMPLE 7.4. Soit le semigroupe x y = x + y sur Pensemble N+

des entiers naturels; il ne possede ni inverse, ni element neutre, mais
les quatre isotopes xφλy = ax + y, xφ2y = b(x + y), xφ3y = b(ax + y + c),
xφ4y = x + y — c, oύ α, 6, c 6 iV+, verifient Pequation (7.2).

EXEMPLE 7.5. Sur Panneau Z\n (et dans tout champ de Galois),
Pensemble des quasigroupes xφy =• ax + by + c, (a, n) = (6, w) = 1, est
associatif demosien (II est aussi reversible). Cet ensemble contient
n[φ(n)]2 quasigroupes, φ(n) etant Pindicateur dΈuler.

REMARQUE 7.6. Pour obtenir toutes les solutions de (7.2) il faut
faire parcourir a G Pensemble de tous les groupes G — E(-), que Pon
peut construire sur E. Si deux d'entre eux sont isomorphes, (Gf — Gτ)
les formules (I) donneront des solutions isomorphes par T. Par con-
sequent les formes (Γ)

xφλy = (xξ yθ)μ~1 ,

xφ2y = {xμ
(V)
v ; %<p3y = (xξ

. y\)η-λ ,

ne sont pas plus generales que (I).

THEOREME 7.7. Tout systeme (E, Φ) de groupoϊdes satisfaisant aux
axiomes,

( i ) associativite demosienne deux cotes,
(ii) element neutre,
(iii) inverse, se reduit a un seul groupe.
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Preuve. Par hypothese

, φ2 e Φ , yx,y,z e E , 3^3, φ, e Φ ,

, ^ e ί , yx,y,z e E , 3 ^ , φ2 e Φ , (xφ1y)φ2z = xφ3(yφiz) .

II existe au moins un element neutre a gauche, le meme pour tous
les groupoϊdes, y<p 6 #\ yx e i?, gβ e E\ e^x = x.

Parmi les e il y en a au moins un tel que chaque element x de 2?
ait un, ou plusieurs, inverses a gauche, dans tous les groupoϊdes, ne
dependant que de x

\fψ e Φ , \/x e E , ^e, x e E , xφx = e .

(A) Soit eφa = α, ^ΦX = β. Multiplions a droite, les deux membres
de la seconde egalite par e, (xφx)φ±e = eφxe = β = <̂pα;, done (xφx)φ1e —

;. Par l'associativite demosienne,

Posons /̂/λr = e et multiplions les deux membres de Γ egalite precedente
par y, a gauche

yφixφx) = ^/ 4̂[^
(P2(^^3e)] ,

appliquant Γassociativite, (yφ7χ)φ8x = {yφbχ)φ%{xφ^)j o u e ^8^
et enfin ,τ = χίp3e. Mais, plus haut, <p3 a ete defini par {aφb)φxc
L'associativite demosienne etant supposee bilatere, (i), γ<p2, ̂ p3 e Φ,
3<Pi, φ e Φ, done x^3β = a? est varie quelque soit <p3. Ainsi e est element
neutre a droite. Si maintenant e et e sont deux elements neutres,
eφe = e = e; done tous les elements neutres sont egaux et Γunite est
unique et bilatere.

(B) Multiplions les deux membres de xφx = e par x; on a {xφx)φ1x =
eφxx = ^. En appliquant Γassociativite, xφ2(xφ όx) — ^. Posons xV^ = e

et multiplions les deux membres de la derniere egalite par xr, a gauche,
xfφA[xφ2{xφzx)] = x'φβ, ou (xfφδx)φQ(xφβ) = β, ou eφ6(xφ3x) = e, enfin
χr/;3χ = β. Mais <p3 est defini plus haut par (aφtyφβ = aφ2(bφdc), ou
Vr/)2t ^3 e ^, 395, <yDx e (P; done a? est aussi inverse a droite de α? dans
tous les groupoϊdes et tout inverse a gauche est aussi inverse a droite.

(C) Soit xφλx = e et xV2^ — e; on a (xfφ2x)φxx = xrφ3(xφ4x)f ou
e^!» = xV3β; £ = x', finalement y ^ , <p2 e (P, a?^^' = xfφ2x = e, et tout
element est permutable avec son inverse.

(D) Soit xφλy = ^ et T/"1 Γinverse de 7/; alors (xφ1y)φ2y~1 = xψ kVΨ^1) —
xψφ = a;. Ainsi y<p2 e 0, s^i/-1 = x. Le produit de deux elements
quelconques z et 3/-1 etant egal a x, et par consequent etant le meme
dans tous les groupoϊdes E{ψ2) il s'en suit que tous ces groupoϊdes co-
incident. Le systeme se reduit a un seul groupoϊde, qui est un groupe.
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8 Distributivite • DEFINITION 8.1. Un systeme (E, Φ) satisfait a la
distributivite demosienne a droite ( g e n e r a l i s a t i o n d e [22]), s i yx, y,z e E,

<pj e Φ, 3<PJC, <Pm, <Pp e Φ, ( ΐ , j , k,m,p = 1, 2, 3, 4, 5)

(8.1)

(Definition symetrique a gauche). Le systeme est self-distributif si φd =
% = <P2, Ψi = φ± et si

THEOREME 8.2. Si un systeme (E, Φ) de quasigroupes a gauche est
distributif demosien a droite,

( i ) I'ensemble des reciproques de ces quasigroupes est encore dis-
tributif a droite,

(ii) Vensemble des conjoints est distributif a gauche.

Preuve. ( i ) Posons xφzz — c, yφδz = eZ, cφ4d = 6, xφλy = α, α 2̂a; = 6.
Sur le reciproque, en representant les nouveaux signes operatoires par
ψ, on aura aψ^y = a?, bψ2z = α, c ^ = #, d ^ = /̂, 6̂ 4cZ = c. Egalant
les expressions de x, on a α^j/ = cψsz. Remplaςant a, y et c par leur
valeur, (bψ^ψ^dψ^) = (bψAd)ψ3z. Comme, par hypothese, deux des φ
determinent les trois autres, il en est de meme des ψ et le systeme
(E, Ψ) est encore distributif demosien a droite.

(ii) En representant par θ les operations conjointes, on aura, sur
le conjoint de (E, Φ), (zθδy)θ4(zθ3x) = zθ2{yθxx).

EQUATION FONCTIONNELLE 8.3. Hosszύ ([23], p. 160), envisage Γe-
quation fonctionnelle F[G(x, y), z] = G[F(x, z), F(y, z)], oύ x, y, z appar-
tiennent a un corps. On peut se proposer de trouver deux groupoϊdes
E(x) et E( ), definis sur un meme ensemble quelconque E, de maniere
que

(8.2) yx, y,z e E , (x x y) z = (x z) x (y z) .

Par exemple, Pun des groupoϊdes etant arbitraire, Γequation sera
veriίiee si Γautre satisfait a la loi de translation identique xy — x
([35], p. 153, N°2, equ. 9).

THEOREME 8.4. Etant donne un groupoϊde arbitraire E( x), on
obtient une solution de Vequation (8.2) en prenant pour chacune des
translations Δz de E{ ) un endomorphisme quelconque de E(x).

Preuve. Considerons z comme une constante sur E( ) et soit

4 = (»->/(«)) = (»-> α s)

la translation relative a z. L'equation (8.2) devient f(x x y) = f(x) x f(y),
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ce qui definit un endomorphisme de E(x); ainsi chaque Δz est un
endomorphisme de E(x).

EXEMPLE 8.5. Soit sur ZjS le groupe xxy~x + y + l. Les series
de produits a droite ([33], p. 87), sont (00121102) et (2), les seuls auto-
morphismes sont Γidentique et la transposition (01). En se bornant aux
quasigroupes a gauche on pourra prendre Δ — 1 ou (01), ce qui donnera
huit solutions E(-).

EXEMPLE 8.6. En prenant pour E(x) un quasigroupe automorphe
par le groupe cyclique ([30], p. 321), on pourra prendre pour E(-) le
groupe cyclique et chacun de ses isotopes de la forme (1, ηf 1), avec η
arbitraire. Ainsi en prenant ([30], p. 325, ex. 15), on a 13 x 7 = 11;
(13 x 7) 4 = 11 + 4 = 0; 13.4 = 2; 7.4 = 11; 2 x 1 1 = 0.

EXEMPLE 8.7. En prenant pour E{x) un groupoϊde " e n d o " ([32],
p. 297, N°3), c'est-a-dire satisfaisant, sur un ensemble E de nombres
reels, a x x y = z =φ xm x ym — zm, la solution £/(•) sera fournie par
le semigroupe multiplicatif de E. Ainsi, en prenant ([32], p. 298, Ex.
II), on a 5 x 4 = 2; 2.3 = 6 et 5.3 = 1; 4.3 = 5; 1 x 5 = 6.

COROLLAIRE 8.7. U ensemble des quasigroupes a gauche construits
sur un meme ensemble E satίsfaίt a la distrίbutivίte demosίenne re-
streίnte

(8.3) yx,y,z e E, yrA e Φ , 3<p2 e Φ , {xφιy)φ2z =

Preuve. On a vu, N°8.4, que, si E(φL) est un groupoϊde quelconque
sur E, il existe toujours au moins un groupoϊde E(φ2), satisfaisant (8.3)
et dont les translations sont des endomorphismes de E(φλ). Si E(φλ) est
un quasigroupe a gauche quelconque, les translations pourront etre
choisies parmi les automorphismes de E(ψ^)\ ce seront alors des permu-
tations de E et E(φ2) sera encore un quasigroupe a gauche.

9. Parastrophies DEFINITION 9.1. Le ί-parastrophίque d7un sys-
teme demosien (E, Φ) est le systeme derive du premier en soumettant
tous les groupoϊdes de (E, Φ) a la meme ί-parastrophie. Ainsi le con-
joint d'un systeme est le systeme forme par les con joints de tous ses
groupoϊdes; le reciproque d'un systeme de quasigroupes a gauche est
Γensemble des reciproques de ces quasigroupes, etc. Si (E, Φ) ne contient
que des quasigroupes, il pourra prendre six formes parastrophiques.

THEOREME 9.2. Si (E, Ψ) est le conjoint de (Ey Φ), il sera en meme
temps que lui, commutatify associatif, inversible bilatere, self-distributij
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bilatere demosien.

Preuve. Si (E, Φ) a la commutativite demosienne (N°3.1)

yx, y e E , >/£>! e Φ , 3 ^ e Φ , x<Pi2/

En designant par ψ les operations conjointes ([34], N°6),

yx,y e E , γψi e ^ , 3^2 e ^ , αψ^ =

done (E, Ψ) est encore commutatif demosien.
Si (Ef Φ) est associatif demosien (N°7.1)

yx,y,z e E ,
(xφ1y)φ2z = xφ2>{yφ4z)

Done, sur le systeme conjoint (zψ4y)ψ3x = zψ2(yψ1x)f et zψβ(yψδx) =
(zψ2y)ψ1x. Ainsi (ί7, ?F) est encore associatif demosien.

Le cas de Γinversibilite est analogue; celui de la distributivite
resulte de 8.2. On rapprochera ce resultat de ([34], N°14-16). Plus
generalement, on verrait que, si (ί) est une identite self -con jointe ([34],
N°19.1), sur un groupoϊde, les systemes (£7, (?) et (£7, ?/) possedent en
meme temps la propriete ϊ-demosienne.

THEOREME 9.3. Si un systeme S de quasigroupes satis fait a une
identite demosienne, le systeme derive de S en transformant tous les
quasigroupes par une meme parastrophίe satisfait a une identite demo-
sienne derivee de la premiere par la meme parastrophie.

Preuve. Supprimons les indices dans les signes operatoires 9̂  et ne
conservons que les parentheses, crochets etc, ce qui est evidemment
legitime au point de vue formel. Des lors les calculs qu'il faut effectuer
pour trouver ce que devient la relation R demosienne en passant au i-
parastrophique, sont precisement ceux que Γon ferait pour passer de la
relation R sur un seul quasigroupe a sa ί-parastrophique. Soit par ex-
emple un systeme de quasigroupes a gauche satisfaisant a Γassociativite
demosienne; on trouve que le systeme reciproque satisfait a la trasi-
tivite demosienne ([24], p. 203, [35], p. 156, N°2, iv, equ. 63). Or la
transitivite usuelle est bien reciproque de Γassociativite ([35], p. 154, N°2,
equ. 25).

Ainsi, tout systeme S de quasigroupes a gauche possedant la transi-
tivite demosienne se deduit d'un systeme associatif S' en remplaςant
chaque quasigroupe de S' par son reciproque. Or S' se compose (ci
dessus, Theoreme 7.2, [37]), de quasigroupes isomorphes a un groupe
G'. Done S se compose de quasigroupes isotopes au reciproque d'un
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groupe. On comparera ce resultat a la solution directe donnee dans
[38]. Si G est lui-meme un groupe, alors il satisfait a la fois a (xt)(yt) =
xy et a Fassociativite, done en faisant t = y, on a (xy)(yy) = xy, y2 = 1
et tous les les elements de G sont du second ordre. On obtient le
theoreme ci-apres 22.2. De meme si (E, Φ) est un systeme commutatif
demosien de quasigroupes et si Von remplace chaque quasigroupe par
son reciproque, le nouveau systeme satisfera a la loi demosienne des
keys a gauche ([35], p. 153, N°2, equ. 5). Soit

xφλy — z ϋ zψ±y = x et yφjc = z^l zψ2x — y

alors

(V^i e Φ , j<p2 e Φ , yψ2x = a^s/) ^

(VΨΊ € ?/ , 3ψa 6 ?Γ , ^ ( ^ a ? ) = x) .

Enfin les conditions exprimant qu'un systeme satisfait a la com-
mutativite, ou a la loi des keys a gauche demosiennes, doivent etre
reciproques, au sens des parastrophies. Et en effet, la premiere (N°3.1)
est que le systeme contienne, avec tout quasigroupe, son conjoint; la
seconde (Th. 4.2, in fine), que le systeme contienne, avec tout quasi-
groupe, son parastrophique par

(9.1) x x y = zt^xφz = y .

Or si Fon a xy — z et yx = z, cela devient, sur les reciproques
zy = x et zx — y, ce qui est bien la parastrophie (9.1).

COROLLAIRE 9.4. Si une relation R est self-i-parastrophique et si
un systeme S(E, Φ) de quasigroupes satisfait ά la relation R-demosienne,
le systeme i-parastrophique S' de S satisfera encore a la relation R-
demosienne.

Cela resulte immediatement du theoreme 9.3. Par exemple si un
systeme de quasigroupes satisfait a Fentropie demosienne ([35], p. 155,
N°2, equ. 38),

yx, y,z,u e E , yψl9 ψ2, ψ3 e Φ , g^4, <p6, ψG e Φ ,

alors tous les parastrophiques de ce systeme satisferont a Fentropie
demosienne, puisque tous les parastrophiques d'un quasigroupe entropi-
que, comme le montre un calcul immediat, sont eux-memes entropiques.

10. Immersion* Etant donne un systeme demosien (E, Φ) est il
possible de le plonger dans un systeme admettant quelque loi demosienne
determinee? La reponse a cette question depend de la nature de cette
loi. II est clair que tout systeme peut etre immerge dans un systeme
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demosien commutatif. D'apres le Theoreme 7.2, pour qu'un ensemble
de quasigroupes puisse etre un sous-ensemble d'un systeme associatif
demosien il faut que chaque quasigroupe de cet ensemble puisse etre
obtenu comme isotope de quelque groupe par xξ yθ = xφxy. Or ce que
Γon sait, par exemple, des quasigroupes du 5° ordre, ([35], N°25) suffit
a montrer qu'il existe des quasigroupes qui ne sont isotopes d'aucun
groupe. Done, on ne pent plonger, en general, un systeme donne dans
un systeme associatif demosien. En revanche, il pourra etre interessant
d'etudier le nucleus [27] forme par tous les E(φ) d'un systeme demosien
(E, Φ) qui satisfont localement a une loi determinee.

l l Associateur, DEFINITION 11.1. Uassociateur a gauche dyun
systeme S(E, Φ) de groupoϊdes est un sous-ensemble A ci E, satisfaisant
aux deux conditions:

yα e A , yx,y e E , \f<plf φ2 e Φ , 3^3, φ, e Φ ,

yα, b e A , yφ19 φ2 e Φ , aφj) = aφ2b .

THEOREME 11.2. Uassociateur a gauche d'un systeme demosien
quelconque est un semigroupe, (sous-groupoϊde commun a tous les groα-
poϊdes du systeme).

Preuve. Soient α, b e A, alors

yx,y e E , y/φlf φ2 e Φ , 3^3, <p* e Φ ,

{aφλx)φ2y = aφ3(xφ4y) (bφ1x)φ2y =

Considerons le produit aφb, (φ e Φ). On aura

[{aφb)φλx\φ2y = [a<Ps(b<PiX)\cpM = aφ.lφφ^φ.y] = aφb[bφ7(xφ8y)]

= (aφ9b)φ10(xφ8y) = (aφb)φlo(xφ8y) .

Done αφ& e A et A est ferme dans chacun des groupoϊdes du systeme.
D'ailleurs

(aφλb)φ2c = aφ3(bφ,c) , ya, b, c e A , v<Pi, ^2, ^3 ^4 e (P;

done, en particulier (aφb)φc = aφ{bφc) et A est un semigroupe.

12. Multigroupoϊde. DEFINITION 12.1. L% multigroupoϊde ([37],
[12], p. 183), es£ ^ n ensemble, E, muni d7une loi de composition ( x ) ,

faisant correspondre a tout couple ordonne x,y e E, un sous-ensemble

non vide, x x y = (α, 6, c •) cz E.

THEOREME 12.2. ( i ) Tout systeme demosien S definit un multi-
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groupoϊde, M, dans lequel le produit x x y est determine comme etant

Vensemble (xφΎy, xφ2y, , %<PiV, •) ou φt decrit Φ.
(ii) Pour que M soit associatif il faut et il suffit que le systeme

S ait V associativite demosienne.
(iii) Pour que M soit abelien il faut et il suffit que S ait la com-

mutativite demosienne.

Preuve. Si M est associatif, on a (x x y) x z — x x (y x z). Done

(12.1) y/i, j , 3k, m et γ&> w gi, j ,

et S possede Γassociativite demosienne. Reciproquement, si le systeme
S est associatif demosien, (12.1) est verifiee, done

(x x y) x z c x x (y x z) c (x x y) x z et (x x y) x z = x x (y x z) .

La preuve est analogue pour la commutativite. Plus generalement, le

multigroupoϊde M satisfera a une identite (I) en meme temps que le

systeme S verifiera Γidentite (ί)-demosienne.

CHAPITRE II

INTERACTION DES LOIS DEMOSIENNES

13. Question* Lorsqu'un groupoϊde G satisfait a une ou plusieurs
identites, /, /', •••, il est bien connu ([25], p. 205, equ. 2, a(bc) = c(ba)
entraίne Γentropie; [28], ab = 6α, (ab)x = (ax)(bx)y sur un ensemble
ordonne a multiplication monotone, entraίne Γentropie; [35], p. 161, N°8,
IV, keys et commutativite, N°35 & 36), que, dans certains cas, il existe
une nouvelle identite J, consequence des /, /', •••, et qui est encore
verifiee sur G. Si un systeme (E, Φ) satisfait a diverses lois demosien-
nes, /, /', •••, cette situation entraίne-ί-elle, comme dans le cas d'un
seul groupoϊde, Γexistence d'une nouvelle loi demosienne, J, consequence
des /, /', •••, qui soit encore verifiee sur (E,Φ)Ί Dans Γaffirmative, la
relation J = / ( / , /', •) est-elle la meme pour un groupoϊde isole et pour
un systeme (E, Φ)Ί La reponse a cette question ne peut pas etre for-
mulee d'une maniere generale. II peut arriver (N°14.2-14.3) qu'elle
depende de conditions supplementaires a imposer au systeme et meme
que le transfert d'une implication du cas uniforme au cas demosien ne
soit pas possible. Ainsi, contrairement a ce qui se passe pour un quasi-
groupe isole ([8], p. 112), la self-distributivite demosienne n'entraϊne pas
Γidempotence, comme le montre Γexemple 7.5. Les quasigroupes xφy =
ax + by + c ne sont pas idempotents et ils satisfont neanmoins a
Γidentite demosienne y/φlf jφ2, xψx{yφzz) — (xψii^ψj^xψ^)* La solution
est xφ2y = px + (1 — p)y.
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De meme, le theoreme de Knaster [28], a savoir qu'un quasigroupe
abelien self distributif G, muni d'une relation d'ordre total et d'une
multiplication strictement monotone ([14], p. 306) est entropique, ne se
laisse pas transmettre au cas des systemes demosiens. Observons ici
que, pour la validite du theoreme, la condition que G est un quasigroupe
peut etre affaiblie et remplacee par cancellabilite de G, condition qui
est d'ailleurs entraϊnee par la stabilite de la relation d'ordre; Γidempo-
tence, puis Γentropie en resultent ensuite, sans consideration de conti-
nuite. On peut poser cette question:

Le sent systeme demosίen sur lequel le theoreme de Knaster puisse
etre transfers se reduit-il a un groupoϊde unique*!

Dans ce qui suit nous nous bornerons a Γetude de quelques lois
particulieres.

14. Commutativite-Associativite-Inversibilite.4 THEOREME 14.1. Si
(E, Φ) est commutatif demosien, pour qu'il ait Γassociativite demosienne
il faut et il suffit qu'il soit inversible demosien. ([41] dans le cas ίini).

Preuve. ( i ) Si le systeme est associatif et commutatif, on aura

\fχyyyz e E , y<p19 cp2 e Φ ,
xq\{yφ2z) = (xφ7y)φ8z = zφ9(yφ10x) ,

oύ <p3, φ4, •• ,<Pio sont des elements determines de Φ. Ainsi {EyΦ) est
inversible des deux cotes.

(ii) Reciproquement, si (E, Φ) est inversible et commutatif on aura

yx,y,z e E , yφ19 φ2 e Φ , j<p6, φ6, , φ10 ,
(xφ1y)φ2z = zφlyψ^x) = xφδ(yφ6z) xφλ(yφ2z) = (zφ7y)φ8x = (xφ9y)φwz

et le systeme sera associatif demosien.

THEOREME 14.2. Si un semigroupe inversible S (au sens du N°6),
satisfait a Vune des conditions suivantes,

( i ) S est homogene,
(ii) S est diagonal,
(iii) S est un quasigroupe a droite,
(iv) S est idempotent,
(v) S a un element neutre bilatere,

alors il est abelien.

Preuve. ( i ) S etant homogene, tout element x peut etre obtenu
comme un produit x = ay; a son tour, y peut etre mis sous la forme
y — be, d'oύ x = abc. On a alors, z etant un element quelconque,

xz = abcz = (ab)(c)(z) = (z)(c)(ab) = z(ca)b =

= zx ,
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(ii) \fx, y, xyy = yyx, ou x(yy) = (yy)x. On tire d'abord de la que,
dans tout semigroupe inversible (au sens du N°6), Γensemble des (xx),
c'est-a-dire la diagonale, est contenu dans le centre. Si S est diagonal,
cet ensemble coincide avec S et S est abelien.

(iii) On a yx, y, (xy)(xy) = (%){y)(%y) = (χy)(y)(χ), cancellant par xy
a gauche, xy = yx.

(iv) resulte de (ii) car Γidempotence entraϊne la diagonalite.
(v) Si u est Γunite, on a xyu = ŵ /α?, ou #?/ = yx.
Chacune de ces conditions est d'ailleurs une consequence de la pre-

miere car tout groupoϊde diagonal, ou avec quotient a droite, ou idem-
potent, ou avec unite bilatere est necessairement homogene. Elles sont
toutes suffisantes, mais aucune n'est necessaire, comme le montre
Γexemple du semigroupe additif, N+, des entiers naturels, qui n'est pas
homogene et qui est tout de meme abelien. Quelques-unes des condi-
tions precedentes se laissent transferer aux systemes demosiens ce sont
(ii), (iv) et (v).

THEOREME 14.3. Si tous les groupoϊdes d'un systeme (E, Φ) pos-
sedant Vassociativite et Vinversibilite demosiennes, satisfont a Vune
des conditions suivantes: (ii) Us sont diagonaux et ont la meme diago-
nale, (yί, j , xψiX = xψjX), (iv) Us sont idempotentsf (v) Us ont une unite
bilatere commune, alors (E, Φ) aura la commutativite demosienne.

Preuve. (ii) Par hypothese y/x, y, z e E, y/φlf φ2 e Φ, 3Φ>3, φ±, e

Φ> {^ψiV)ψ^ = x<p*(y<p&) = zφAvψtP)- S i χ = VJ X(Piχ = X(P^X = t e t tψ& =
zφ5t. Comme tous les groupoϊdes sont diagonaux, yί, jx, xφx = ί, done
(£7, Φ) a la commutativite demosienne.

(iv) resulte de (ii).
(v) Si u est element neutre dans tous les groupoϊdes, on a y#, y e E,

V<Pi, ΨΊ e Φ, 3ψΆ, ψ4, e Φ, (xφλy)cp2u = χrp3(yφ,u) = uφΰ(yφβx), d?ou

QUESTION 14.4. Quelle est la condition necessaire et suffisante pour
que, sur un systeme (E, Φ), Vassociativite et Vinversibilite demosiennes
entraίnent la commutativite demosienne^

15. Distributivite THEOREME 15.1. Tout systeme (E, Φ) associatif
et commutatif demosien, dont tous les groupoϊdes sont idempotents,
possede la distributivite demosienne.

Preuve. Par hypothese yx, y,z e E, y<p3, <p4, <pδ e Φ, jφlf <p2, <p6,
•••60, (xφ5z)φ,(yφrβ) = X<Pβ[zφ7(yφδz)] = Xφ«[zφ7(zφ8y)] = X<Pe[(zφ9z)φ1Qy] =
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16 Keys, transitivite, eingewandter Produkt THEOREME 16.1. Sur
un systeme (E, Φ) de quasigroupes a gauche, de ces trois lois:

( i ) la loi demosienne des keys a droίte ([35], p. 153, N°2, equ. 4)
& N°4,

(16.1) yz,y e E , yφ5 e Φ , 3 ^ e Φ , (zφδy)φ6y = z

(ii) Zα transitivite demosienne ([35], p. 154, N°2, equ. 25) & N°
9.3, supra,

(16.2) yx,y,z e E , γ^ x , φ2 e Φ , 3^3, £>4,

(iii) Ze "eingewandte Produkt" ([35], p. 154, N°2, equ. 22)

(16.3) y/x,y,t e E , y^i, ^2 e Φ, 3^3, ^5 e 0, {xφλy)φφ = xφ4(tφδy) ,

chacune des deux dernieres est entrainee par les deux autres.

Preuve. A. Soit un systeme (2?, 0) satisfaisant (i) et (ii). La
premiere (N°4), exprime que les quasigroupes du systeme sont deux a
deux reciproques; done γ<p3, 3<p7, zψzy — t^ltφΊy = 2. Alors (16.2)
d e v i e n t , y^> y,t e E, y/φ19 <p2 e Φ, 3 ^ 4 , ^ 7 e 0 , (x<p1y)<p2t = x<p4(t<p7y), c e
qui est (iii). Ainsi (i) Π (ii) =Φ (iii).

B. Supposons (i) et (iii) verifiees. Comme ci-dessus, (i) exprime
que γ£, y e E, γ<^3 e Φ, 39^ e Φ, z e E, t = 2;̂ ?/ ^ ί̂ B2/ = «; Des lors
(iii) devient yx, y,z e E, yφlf ψ2 e Φy 3^3, φA, φ6, e Φ, (xφ1y)φ2(zφ,y) =

xφ4z. Ainsi (i) Π (iii) ==> (ii).

17 Entropie. THEOREME 17.1 ([25], p. 207, Th. 1, dans le cas d'un
seul groupoϊde). Tout systeme (E, Φ) inversible demosien est entropique
([35], p. 155, N°2, equ. 38).

Preuve. Par hypothese y/x, y, z e E, yfψ19 φ2 £ Φ, 3ψzj Ψι β Φ,
xφ^yφ^—zφ^yψiX). En appliquant iterativement celle-ci (xφ1y)φ2(zφ3t) =
tφι[zφb{xφιy)} = tφ4[yφ6(xφ7z)] = (xφ7z)φ8(yφ9t). Les membres extremes
sont ceux de Γidentite d'entropie demosienne. (cf. [26] p. 55.f

18* Commutativite et loi des keys, THEOREME 18.1. Sur un sys-
teme (E, Φ) de quasigroupes, deux quelconques des lois demosiennes
suivantes entrainent la troisieme;

( i ) commutativite,
(ii) loi des keys a droite,
(iii) loi des keys a gauche.

Preuve. L'implication (i) Π (ii) =Φ (iii) a deja ete demontree ([35],
p. 161, N°8.4). Par raison de symetrie, (i) Π (iii) =φ> (ii) en resulte. Pour
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etablir la derniere, ecrivons Γhypothese sous la forme (ii) yx, y e E,
e Φ, 3</>2 e Φ, (xq\y)ψM = x, (iii) yx, y e E, y<p2 e Φ, jψs e Ψ,

) = y. Si Γon choisit arbitrairement y et z e E, puisque les
elements de Φ sont des lois de quasigroupes, Γequation xφ2y = z a une
solution et une seule en x, done \fy, z e E, yq\ e Φ, jψ2 e Φ, x e E,
xφ2y — z et 29̂ 2/ = x) yy, z e E, y<px e Φ, jφΆ e Φ, xφΆz = ^/. De plus,

par hypothese, yx, y, z e E, y ^ e 0, g#>4 e Φ, (xφ3z)φΛz — x. En rem-
plaςant xφzz par 7/, cela devient yφ4z = £c, done ^ ^ = # = 2/̂ 2;. Ainsi
y?/, z e E, yfφx e Φ, 3^4 e Φ, zφλy = ^Λ^, ce qui est la commutativite
demosienne.

QUESTION 18.2. Sur un groupoϊde G les identites (a) et (β) en-
traϊnent Γidentite (γ). Sur Γensemble (E, Φ) et en particulier sur le
systeme obtenu en soumettant G a toutes les isotopies de quelque groupe
<Γisotopies, quelle est la condition pour que les identites demosiennes
(A), (B) et (C), induites par (α), (β) et (γ) satisfassent a (A) n (B) =φ(C)?

CHAPITRE III

ISOTOPIE. SYSTEMES (G, K, T)

19 Generalites QUESTION 19.1. Un groupoϊde G satisfait a une
identίte (L); on soumet G a toutes les isotopies d'un groupe (d'isotopie);
on obtient un systeme de groupoϊdes. Quelle est la condition pour que
ce systeme satisfasse a Γidentite demosienne induite par (L)?

Comme au Chapitre II, il n'est pas possible de donner a ce prob-
leme une solution generale. Parfois, comme dans le cas de la com-
mutativite, la condition se reduit a quelqu' egalite evidente: "Si un
groupoϊde G est abelien, le systeme derive de G en le soumettant a
toutes les isotopies du groupe (X, X, Z), oύ X et Z sont deux groupes
de permutations quelconques de Γensemble G, est evidemment commu-
tatif demosien". Mais le plus souvent Γexistence de la loi demosienne
induite depend de conditions moins evidentes et peut meme etre hors
de cause. II est un cas ou la question peut recevoir une solution com-
plete, e'est celui oύ G est un groupe, les composantes des isotopies
etant des translations de G. De telles isotopies (ξ, η, ξ), xξ x ηy = xyζ,
ne dependent en realite que de deux parametres et peuvent se mettre
sous la forme x x y = xξyθ, ξ9 θ e G. Parmi ces isotopies considerons
seulement celles qui derivent de deux sous-groupes K, T c: G, avec
ξ 6 K, θ e T. Les isotopes ainsi definis sont evidemment des quasi-
groupes. Designons un tel quasigroupe par G(ξ, θ).

DEFINITION 19.2. Un systeme (G, K, ϊ7), oύ K et T sont deux sous-
groupes du Groupe G, est Vensemble des quasigroupes G(ξ, θ), isotopes
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de G par les isotopies x x y = xξyθ, oύ ξ e K, θ e T. (Cf. [39].)

THEOREME 19.3. La condition necessaire et suffisante pour que
G(ξ, θ) soit un groupe est que θ soit dans le centre de G. Uunite de
ce groupe est alors u = ξ~τθ~ι. Si θ $ %*Oj le quasigroupe G(ξ, θ) a
seulement une unite a droite, u, (et n'est pas associatif.)

Preuve. La condition d'associativite est yx, y, z e G, xξyθξzθ =
xξyξzθθ, ou yz, θξz = ξzθ. Si z = 1 (unite de G), θξ = ξθ. Ainsi θ et
ξ sont permutables, done θξz = ξθz — ξzθ, et, en cancellant par ξ> \jzy

θz — zθ, ce qui exprime que θ est central dans G. Cette condition con-
tient la precedente; elle est visiblement suffisante.

Soit u une unite a droite de G(ξ, θ), done x x u — xξuθ = a;, et
% = l"1^"1. Pour qu'il existe une unite a gauche v, il faut que v x x —
^gxό1 = x, oύ v est independant de x. En faisant a? — 1, v = θ~λξ-λ,
d'oύ θ^ξ^ξxθ = x, xθ = θx et θ e %rQ. Ainsi Γunite bilatere n'existe
que si θ est central, e'est-a-dire si G(ξ, θ) est associatif. Si θ n'est pas
dans le centre de G, le quasigroupe G(ξ, θ) a seulement une unite a
droite.

20. Commutativite* THEOREME 20.1. Pour que le systeme (G, K, T)
ait la commutativite demosienne il faut et il suffit que G soit abelien.
(Cf N°3, 7, 8, 9)

Preuve. Que le systeme ait la commutativite demosienne s'ecrit
yα, y e G, yξ e K, θ e T, jξx e K, θx e T, xξyθ = yξ.xθ,. Si α?=»=l,
ξθ = 1 ^ . Si a? = 1, | ^ = yξ1θ1 = yξθy d'oύ, en cancellant par 0,
ξy ~ yξ. Ainsi tout element £ e iΓ est central. Done xξyθ = #2/|τ# =
2/̂ 050! = ί/ίclî i = yxξθ. Cancellant par ξθ, on a xy — yx. La condition
est evidemment suffisante. Cette conclusion n'est pas en contradiction
avec le Corollaire 3.9, car, ici, le groupe G n'est soumis qu'a une partie
de toutes les isotopies possibles.

21. Associativite. THEOREME 21.1. Tout systeme (G, K, T) est as-
sociatif demosien.

Preuve. L ' a s s o c i a t i v i t e d e m o s i e n n e e s t e x p r i m e e p a r γ # , y , z e G ,

Vl, ξi e iΓ, θ, θλ e T, 3ξ*> Is e K, θ2, θ5 e T.

(21.1) (χξyθ)ξ1zθ1 = xξjyξ0θz)θ2.

Si 7/ = 2; = 1, en cancellant par x,

(21.2) fflfA = ξ&ΘA .

Si 2/ = 1,
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ξϊιξϊΛξθξγz = zθ.θ.β-1 .

Done θφφ? est dans le centre de G. Si z = 1, yθξγ0λθςλθςλξςλ = ξ~%y
et l" 1^ € ^Γo Comme ;£•%/, K et T sont des sous groupes de G, leurs
intersections ne sont jamais vides, Soit t e T Π ;;Γ et fe 6 JSΓ n ^ ,
arbitraires. On prendra θβfii1 = t, θ^ = tθβϊ1, avec #2 arbitraire dans
T. Ensuite f"1^ = fc donne £2 = £fc. Enfin £3 est determine par la pre-
miere condition (21.2), ξ3 = ξ^ξθξββ^θ^ = k~ιθξλt~\ Cela fait, Γegalite
(21.1) est surement verifiee car

xHvξ^)θ2 = xξkyk^θξ^ztθβ^θ* = xξykk~1θξιzt~1tθι = xξyθξ.zθ, .

Cela est conforme au Theoreme 7.2, toutefois, si Γon veut que (21.1)
ait d^autres solutions que la solution evidente ^ = ^2; ξ3 = ^ 6̂ 3 = #i#2~\
il faudra supposer fc, t Φ 1, c?est-a-dire Γ Π ̂ \ 1 ^ Φ et if n JT \ 1 ^ φ.

22. Demi'symetrie, keys, transitivitέ LEMME 22.1. S etant un
groupe quelconque et G un de ses sous-groupes, on consίdere le complexe
maximum A c S satisfaίsant a \fx e G, \/a e A, xax = α ([35], p. 153,
N°2, equ. 11), [271. Alors, (i) A est vide ou G est abelien, (ii) Si G^
{C2)

n et si %? est le centralίsateur de G dans S ([20], p. 470), on a
ya e A, A = ^ " α = α ^ , eί ^Γ + A βsί u?ι groupe.

Preuve. ( i ) Si A Φ φ, s o i e n t x,y e G e t a e A , xax = α , e t
= α, done x(yay)x = α, ou (xy)a(yx) = α. Mais ^ 6 G, done

ίC7/) = α. En comparant, 053/ = yx.
(ii) Si v$ e G, #2 = sec, (z e %), ^lors α ^α^ = zxax = zα, done

zα 6 A. Reciproquement, soient α, β e A; alors yx e G, #to = /5; mais
X'1 e G, done x^ax'1 = α, d?ou x/9^^"^^-1 = /3α = x/ία^"1 ou (βά)x —
x(βά) et /5α e %?. D'ailleurs a e A^l a~ι e A car ίcα^ = a ^2 xaxa~λ =
1 ϋ xα"1 = α"1^-1 ^! xa~λx = α"1. Done /9a"1 e ^Γ; /Sα"1 = z, β = zα.
On a done JTα Q A c %ΌC, d?oύ A = ^ α . Enfin β = zazXβ-1 = a-
et comme z~ι e ĵ Γ puisque ^ est un groupe, A = oc1^', A =
Les egalites ^ A = A ^ = A, ;L4 c ^ montrent que A + ^T est ferme
dans S, et comme A contient, avec tout element α, son inverse α"1, le
complexe A + ^f est un sous-groupe de S. Le centralisateur ^ de G
est diviseur normal dans ^ + A etle quotient (̂ Γ + A)I^T est le groupe
du second ordre. Pour construire A il suffit de multiplier %f par une
solution particuliere en a. Si x, y e G et si a satisfait a xax = α,
yay = α, on aura, puisque G est alors abelien, xyaxy = xyayx = xαx =
α. Par suite, pour que α satisfasse yα? 6 G, #αx = α, il suffit qu'il
satisfasse a cette condition quand x parcourt les generateurs de G. En
particulier, si G est cyclique, (G = C = {c}), on pourra prendre pour a
la solution du second ordre a == (C —> C"1) et comme dans ce cas G est
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son propre centralisateur, dans le groupe symetrique Si, A — Ca. Ex-

emple C = {0123} = (0123), (02)(13), (0321), (0)(l)(2)(3). C est son pro-

pre centralisateur dans le groupe symetrique S^(0,1, 2, 3). En choisissant

a = (0321) = (13), on pourra prendre A = C(13) = (03)(12), (02), (01)(23),

(13).
Si un element de A est involutif, tous seront du second ordre car

a(xax) — aa = (ax)(ax). Si aa — 1, (ax)(ax) = 1.
On pourrait appeler A un ' 'anti-centre'\ Nous ne hasarderons pas

ce neologisme.

THEOREME 22.2. Pour que le systeme (G, K, T) satisfasse
( i ) a la demi-symetrie demosienne (N°5),
(ii) ou a la loi demosienne des keys a droite (N°4),
(iii) ou a la transitivite demosienne (N°9.3), il faut et il suffit

que tous les elements de G soient involutifs.

Preuve. (iii) (La demonstration est analogue pour les trois parties;
demontrons seulement la derniere) La condition yφlf <P3<Pz, <p4, {%Ψίy)
φ2(zφBy) = xφ4z prend la forme

m = xξ1yθ1ξ2zξ5yθβ2 = xξ4zθ4 .

En faisant y — z = 1, on a ξ1θ1ξ2ξββ2 = ξβ4, d?oύ θλξ2ξz — IΓ^A^'1^"1-
Si z = 1, on a ξ1yθ1ξ^yθ^θ2 = ξ4θ4J ou yθτξ^y = ξ^ξββ^θ^1 = θxξ2ξ^ done
^il2̂ 3 = a tel que yay = α. Par suite (Lemme 22.1), G est abelien et com-
me a e G, 2/2/̂  = α, yy = 1. Tous les elements de G sont involutifs.
Cette condition est suffisante car, si elle est verifiee, m = xξ1yθ1ξ2zξ3yθβ2 =
xzyyξβλξ2ξββ2. On choisit arbitrairement 1^ | 2 , | 3 , 0X, ^2, ^3, ^4 et on
determine ξ4 par ξιθ1ξ2ξββ2 = ^4^4; alors m = &z|:404 = α?̂ 42:̂ 4, et la condi-
tion du debut est verifiee.

23. Loi de Moufang THEOREME 23.1. La condition necessaire et
suffisante pour que le systeme (G, K,T) satisfasse a la loi demosienne
de Moufang ([35], p. 154, N°2, equ. 29), est que les intersections de K
et T avec le centre de G ne se reduisent pas a Γidentiquef K Π
1ΦΦ, T Π %T\l Φ φ.

Preuve. La condition [xφ^yψiX^φsZ = xφ4[yφ6(xφ6z)] s'ecrit \jx,y,
zeG, vli, !„ h e K, yθly θ2, θ3 e T, jξ4, ξδ, | 6 , θ4, θ6, θ,f

(23.1)

Elle devient, si y = z = 1 = a;,

(23.2) UΦM
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En faisant settlement x = y = 1, ξιξ2θ2θιξzzθ.6 = ξ£bξ6zΘQΘb0Aj ou

Ainsi Θβbθβ7ι est dans le centre. En faisant dans (23.1) x = 2 = 1, on
a ξ1yξAθ1ξA = ξϋlξJtAΘA9 ou yξJAξAθfθς'θΐfrξς* = If 1^; done
fΓ1^ est central.

Reciproquement, si If et T ont des elements centraux, soient ί, k,
k', trois d'entre eux, t e T; k, k' e K. Choisissons arbitrairement ξ19

ξ» f8, θ» θ2, 08f ΘA, θ5 et prenons θ6 = tθzθ?θί\ ξ4 - ξjc, enfin ξ5 = f ^^fe' =
Ar 1 ^' . La Condition (23.2) donne alors ξ6 = ξ^ξlιξ1ξ2θ2θ1ξsθ3θ;1θ^1θ^1 =
k'-^kk-^ξgAθiξAθ^θ^θtθfaH-1 = k'-WA&t"1- Si Γon substitue ces
valeurs dans (23.1) elle devient xξ^yξ^xθβ^zθ, = xξJcyk^ξJc'xk'^ΘAξ^ztθz,
ou, en tenant compte de la permutabilite de ί, fe et k', yξzXθβ^z —
kk~1kfkr'1t~1tyξ2xθ2θ1ξ3zf ce qui est une identite. Si Γon ne se contente
pas de la solution evidente 06 = θβιxθ70\ ξ4 = | 1 ? f5 = f2, §6 = θ%θ£^ il
faut supposer que les intersections de T et de K avec le centre ne se
reduisent pas a Γunite.

24 Remarques. ( i ) Si l'on soumet tous les groupoϊdes d'un
systeme quelconque (E, Φ) a une commune isotopie, le nouveau systeme
ne satisfait plus, en general, aux memes identites demosiennes que le
premier. (Par exemple les derives de deux groupoϊdes conjoints par
une meme isotopie ne sont plus conjoints). A queues identites obeit le
nouveau systeme?

(ii) M. Schauffler ([41], Th. 2, p. 430) a montre que Γensemble de
tous les quasigroupes finis d'ordre n est associatif demosien seulement
pour n — 2 et 3. Cette proposition resulte immediatement du Theoreme
N°7.2. En effet, d'apres 7.2, deux quelconques des quasigroupes du
systeme sont toujours isotopes d'un meme groupe. Or on sait ([35],
N°25), qu'a partir de n = 4 Γensemble des quasigroupes definis sur un
ensemble d'ordre n contient des elements qui ne coincident par aucune
isotopie.

CHAPITRE IV

COMPOSITION

25 Produit de deux groupoϊdes L'interet des systeme demosiens
serait grandement accru si Γon parvenait a les organiser eux-memes en
groupoϊdes en introduisant quelque loi de composition entre les <p, re-
gardes comme des elements de Φ. On pourrait alors appliquer a de tels
systemes des isomorphismes, homomorphismes, isotopies, isomeries, para-
strophies, y definir des relations d'ordre stables, considerer leurs sous-
groupoϊdes, leurs groupoϊdes quotients, etc. et examiner dans chaque cas
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la nature nouvelle des identites demosiennes obeies par le systeme, en
elles-memes et dans leurs connexions avec les identites initiales et les
constructions affectuees dans le systeme primitif. Deux lois de com-
position entre groupoϊdes ont deja ete introduites par Γauteur: le produit
a droite, ([36], N°12), le produit suίvant un groupoϊde de base donne
G(o), ([31], p. 230, N°4). Mais on peut en imaginer d'autres, en parti-
culier sur les systemes construits par isotopie. Le chapitre se termine
par la definition du produit direct de deux systemes demosiens.

26. Produit a droite* DEFINITION 26.1. ( i ) Etant donnes deux
groupoϊdes, definis sur le meme ensemble E par les lois de composition
φλ et φ2, leur produit a droite φλvψ2 = Ψ est le groupoϊde defini sur E
par la relation, \/x,y e E, xφy = {xφλy)φ2y, ([36], N°12), [27].

(ii) Le semigroupe defini par xy = y s'appelle le semigroupe a
translation identique, ou de Thierrin.

Ce semigroupe, qui satisfait a la loi de translation identique ([35],
p. 153, N°2, equ. 9, [36], N°3, ex. IV), a ete etudie par Thierrin ([44],
p. 178), sous le nom d'anti-semigroupe.

THEOREME 26.2. ( i ) Vensemble de groupoϊdes, S, engendre par
un systeme {E, Φ) au moyen du produit a droite, est un semigroupe
par rapport a ce produit. Le semigroupe xy = x est unite, le semi-
groupe de Thierrin est ideal nul a droite dans tous les cas et zero a
gauche si tous les ψi e Φ sont idempotents.

(ii) Pour que S soit un groupe il faut et il suffit,
(a) qu'il contienne le semigroupe xy = x,
(b) que ses generateurs soient des quasigroupes a gauche,
(c) que (E, Φ) satisfasse a la loi demosienne des keys (N°4). Si

E est fini la condition (b) entraine les deux autres.

Preuve. ( i ) Par definition yx, y e E,
ψivφ29 {pφdftψiV = %cp5y^φ,=- (ψiv<p2)vΦ±,

Ψ2 V <Pi9 (uφjyypM = uφΊy ^ φ7 = η\ f7 φ6 = cPl v (<p2 V
 (Pi) On tire de la

3rae equation, en mettant uφLy a la place de x, [(uφ^φ^φ^y = (uφxy)φ%y =
uφ7y; done (cPl ψ φ2) y φ4 = φΊ = cPl v (φ2 V Ψi)-

Le semigroupe de translation identique, xφy = x, est visiblement
unite de S car {x(pxy)q^y — xψ{y = (%φy)φiy, done φL ψ φ — φ ψ φλ — φx.

Le semigroupe de Thierrin, xφoy — y, est ideal nul a droite car
(xφiy)φoy — y = xφQy, done φ% ψ φ0 — φQ. Si tous les φ% e Φ sont des

groupoϊdes idempotents, xφtx — x, il en est de meme de tous les φt e {Φ}
et alors (xφoy)φiy = y ^ yψ%y = y = %φoy, ou φ0 v ψi = <Po L ^ zero φ0

et Γunite φ sont conjoints ([35], p. 155, N°2, ii).
(ii) Pour que S soit un groupe il faut et il suffit qu'il contienne

Γunite, φ, et, avec tout groupoϊde φif son inverse φό, (φt V
 cPj = φ). Si
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S est un groupe et ψ% la loi de composition d'un de ses groupoϊdes,
Γinverse de <pt sera <pj9 defini par

(26.1) Φίyφj = Φ, ou {xφiy)φjV = xφy = x .

Si xφ%a = δ, on aura done bφμ = x; cela signifie que Γequation xφ%a — 6,
yφt e {Φ}, a une solution et une seule en x, x — bφμ, Tous les φu et
en particulier φ% e Φ, sont done des lois de quasigroupes a gauche. En-
fin la relation (26.1) exprime que S satisfait a la loi demosienne des
keys a droite (def. 4.1). Ainsi, les conditions (a), (b), et (c) sont rem-
plies. Reciproquement, supposons (a), (b), (c) verifiees. Tous les gene-
rateurs, ψ% e Φ, de S sont des quasigroupes a gauche et il en sera
evidemment de meme de tous les ψ5 engendres par Φ au moyen du
produit a droite; d'autre part Φ contient, en meme temps que tout
groupoϊde, son inverse car, tout quasigroupe a gauche a un reciproque
([34], def. 1.2), xφty = ziΣLzψjy = x. Ensuite, en vertu de (c), on a
V<Pi e Φ, 3ψj e Φ, (xφίy)φjy =x. Ainsi, <pj9 inverse de φi9 est defini (b)
et appartient a Φ9 (c). Des lors, soient <pt et φκ deux groupoϊdes de Φ,
Ψj et ψt leurs inverses respectifs; alors,

(<Pi V ΦL) V (Φt V Φj) = Φι V (<Pk V Φt) V Φ3 = ΦiV ΦV Φj = Φι V Φj = Φ .

Done les produits φt y Φk et φt y φ3 sont encore inverses. A toute etape
de la construction de {Φ}, la partie deja engendree contiendra toujours,
avec tout groupoϊde, son inverse et, d'apres la remarque precedente, il
sera possible de maintenir cette situation jusqu' au bout en faisant, en
meme temps que le produit de deux groupoϊdes de cette partie deja
construite, celui de leurs inverses. De sorte que S, contenant lui aussi,
avec tout groupoϊde, son inverse, est un groupe.

Si Γon postule seulement la condition (b), soit ψt un element quel-
conque de {Φ}. L'application da = (x—>xψta) est une permutation de
Γensemble E sur lequel est construit chaque quasigroupe. Les trans-
lations Δa calculees pour les puissances successives de φ%: φiy φ\ = φty <pif

φl = Φ\V Φi, - - seront Aa = (x -^ xφ,β)9 [x —> (xφ^Φ^] = (z/J2, [x —>
(xcp'latyid] = (day, Ce sont les puissances successives de la premiere.
Si E est fini, il existera un entier positif n, tel que {Δa)

n soit identique
quel que soit α. Done xψ'Ίy = x = xφy et {Φ} contiendra le semigroupe
units. Enfin Γegalite ψTγ V Φι = Φ montre que tout <pt aura un inverse;
done S sera un groupe. Le raisonnement n'est plus valable si E n'est
pas fini. Alors S peut ne pas contenir Γunite. Par exemple si S est
engendre par le groupe cyclique Xφ{y = x + y sur Γanneau Z des en-
tiers rationnels, xψζy — x + yi; il n'y a aucune valeur de Ventier positif
i pour laquelle xφ%y se reduise a x. Si Γon adjoint a 1'ensemble Φ le
semigroupe unite xφy = x, neanmoins, cet ensemble ne contiendra pas
les reciproques de ψu (xφky = x — yi).
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REMARQUE 26.3. Dans tout ce chapitre, certains vocables sont in-
separables du contexte. Ainsi quand on dira qu'un groupoϊde φt est
idempotent, cela peut signifier que tous ses elements sont idempotents
(x<PtX — χ)9 ou que Γelement φi du semigroupe Φ est idempotent par
rapport au produit a droite (/z), c'est-a-dire ΨiV Ψ% — Ψu ou (xφ%y)ψιy —
xψ%y. De meme il est tres different de dire que le groupoϊde E(φi)
satisfait a la loi des keys, {xφ%y)ψ%y = x, ou que le systeme (E, Φ) pos-
sede la loi des keys demosienne, (xφ1y)φ2y = x. Dans le premier cas on
pourrait parler de la loi des keys en soί, dans le second de la loi demo-
sienne.

27 Systeme associatif. THEOREME 27.1. Si (E, Φ) est un systeme
associatίf demosien, dont chaque element est un groupoϊde idempotent
en soi, alors (E, Φ) est ferme par rapport au produit a droite (/z).
Conclusion analogue si le systeme a Vinversibilite demosienne.

Preuve. Par definition du produit (y) de deux groupoϊdes, (xψλy)ψ2y —
xφ3y ϋ φx V Ψ2 = Ψz Comme (E, Φ) a Γassociativite demosienne, yφ19 φ2e
Φ, IP*, Ψh e Φ, (x<Piy)φ2y — wψSyΦby)- Mais puisque tous les groupoϊdes
de (E, Φ) sont idempotents, γ^ 5 , yφby = y, d'oύ (xφ1y)φ2y = x<PtV, et
φ3 — φ4. Done ψίf/ φ2 e Φ. De plus φλ v φ2 est evidemment idempotent
en soi. Ainsi Φ est ferme par rapport au produit (p).

L'exemple suivant est susceptible d'applications pratiques.

EXEMPLE 27.2. Sur un corps quelconque, K, le systeme des quasi-
groupes xφay = ax + (1 — a)y, (α, x,y e K), ([8], p. 112) possede Γas-
sociativite demosienne et il est ferme par rapport a (p). II est isomorphe
au groupe multiplicatif du corps.

28. Systemes unipoteαts, idempotent, nilpotents, THEOREME 28.1.
Etant donne un systeme (E, Φ) engendre par le produit a droite (p),
(i) pourqu'un groupoϊde ψt e Φ soit unipotent par rapport a ce produit
{ψι V Ψι = φ, xφy = x), il faut et il suffit qu'il satisfasse a la loi des
keys a droite (en soi). Toutes les translations a droite Δy sont alors,
dans φiy des involutions, (ii) Pour que φ,-, soit idempotent par rapport
ά {v)XΨi V Φi — Ψί), il faut et il suffit que les elements de E qui ont une
unite a gauche dans E{φi), {uφ%x = x, yx) soient idempotents et que,
dans chaque translation Δy — (x —> xr/\y), tout element x soit sa propre
projection, ou ait comme image un element se projetant sur lui-meme.
(iii) Pour que ψi soit nilpotent d'index n, il faut et il suffit qu'il
soit idempotent en soi {xφtx = x) et que chaque translation Δy definisse
sur E une relation dyordre partiel (a >• b^2 aφfi — b) ayant pour dia-
gramme de Hasse ([21], II, N°17, p. 102, [7], p. 6) un arbre issu de b
y et dont les chaίnes maximales aient pour longueur n.
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Preuve. ( i ) Soit xφty = a et aφty = 6, done (xψιV)Ψiy = 6. L'unite,
= # est le semigroupe conjoint de celui de Thierrin (N°26.1). Pour

que φ%ψ φt = φ il faut et il suffit que 6 = x, ou (x<PiV)<Piy = x. C'est
la loi des keys a droite (en soi). La translation Δy est alors Δy = (x —> α)
et comme α ^ ^ — #, on a aussi 4/ = (α ~* χY> done z/ est du second ordre.

(ii) Pour que φi soit idempotent il faut et il suffit que φi v φ% = <Pi
ou {xψiy)ψiy — xφ%y* Si 1'element a possede une unite gauche x9 dans
ψi9 xφ%a = α, la condition ci-dessus devient, en faisant y = a, aφ%a = α.
L'element a est done idempotent dans E(φt). En particulier, les zeroϊdes
([10], p. 118, [45], p. 87) a gauche de E(φi) seront idempotents. D'autre
part xφty = α => α^?/ = α; done la translation 4y = (a? —> x^^) projette
chaque element, soit sur lui-meme, soit sur un element qui est sa pro-
pre image par A. La condition est visiblement suffisante.

(iii) Supposons ψi nilpotent d'index n Φ 1; soit xφty = a. II y a
au moins un x e E pour lequel a Φ y, sans quoi on aurait xφ%y — y,
y#, φt — φ0 et φt serait nul. II y a de meme au moins un 6 tel que
a*φ%y = b Φ y, bφ%y = c Φ yy , etc. enfin kφty = y. II y a done une
chaϊne unique x,a,b, - *,y, definie par les puissances successives de la
translation Δyy reliant un element arbitraire de E a y, et dont la long-
ueur est inferieure ou egale a n, le maximum etant atteint au moins
une fois. Partant de Γelement a defini ci-dessus, et puisque φt est
nilpotent d'index n, on devra avoir [{aφ^φiy *\ψύi = 2/. Mais, d'apres
le choix de α, Γexpression entre crochets est egale a kφty, ou y, d?oύ
yψ%y = y, V̂ / Ainsi φt est idempotent en soi. La reciproque est evi-
dente.

29 Systeme associatif ferme. THEOREME 29.1. Si S = (E, Φ) est
un systeme de groupoϊdes idempotents (xφ^x = x), avec element neutre
a gauche commun, u, et satisfaisant a V'associativite demosienne, alors,
tout sous-systeme Sr = {E, Φr), Φ' c φ, ferme par rapport au produit a
droite (p), possede aussi Vassociativite demosienne.

Preuve. Par hypothese y^i, <P2 € Φ\ 3<Pz, φ4 e (P, (xφ1y)φ2z =
Si 2 = y, on α (xφ1y)φ2y = xφ^yφ^y), Le premier membre est le produit
ά droite φx y <p2 et, dans le second, yφ4y — y en vertu de l'idempotence,
done yx, y e E, x(φx ψ φ2)y = %<p3y, ou φ^ — φxψ φ2, et puisque Φ' est
ferme par rapport a (p), ^ 3 e (P;. Si x = u, Γhypothese devient
{uφ^φ^z = ?/̂ 22; = uφ3(yφ4z) = τ/9?4z, done <pά = φ2 β Φ'. Puisque 9̂3 et
^ 4 sont dans Φ', le systeme (I?, <P') est associatif demosien. On aurait
un theoreme analogue avec la transitivite.

REMARQUE 29.2. La reciproque n'est pas vraie. Ainsi, le systeme
propose en exemple au N° 27.2 admet le sous-systeme engendre par les
puissances de φa, xφn

ay = anx + (1 — an)y. Ce soussysteme est associatif
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demosien; φn

a est idempotent, mais n'a pas d'unite a gauche.

QUESTION 29.3. On munίt un systeme (E, Φ), satίsfaίsant a Vas-
sociativite demosienne, d'une loi de composition (L) entre les groupoides
de ce systeme. he systeme {E, Φ) engendre, au moyen de cette loi, un
systeme plus large (E, Φ'), Φf Ξ2 Φ. Quelles sont les lois (L) pour les-
quelles (E, Φ') possede encore Vassociativite demosienneΊ

3O Produit suivant u n groupoide (x). DEFINITION 30.1. Si
et E(φ2) sont deux groupoides quelconques sur un ensemble commun E,
et E(x) un groupoϊde fixe (fondamental) donne sur E, on appelle pro-
duiί des groupoides E(φ^) par E(φ2), selon le groupoϊde de base E(x),
le groupoϊde E(φ9) defini par la relation xφ3y = (xφλy) x (%<P2y), symboli-
quement φz — φxo φ2,

Cette definition a ete donnee a Γ occasion des groupoides orthogonaux
([31], N°4, p. 230), mais elle est generate quels que soient les compo-
sants <plf φ2. Un ensemble demosien est ferme par rapport au produit
(o) selon un groupoϊde fondamental E( x)—appartenant ou non a Φ—
si yφ1,φ2 e Φ, <p1°φ2e Φ. L'ensemble {E, {Φ}) engendre par un sys-
teme demosien {E, Φ) au moyen du produit (o) est evidemment ferme
par rapport a ce produit.

EXEMPLE 30.2. Sur Γanneau Z des entiers rationnels le systeme
demosien dont les elements sont les groupoides xφy = ax + by + c, Z B
%,b, c = Constantes, est ferme par rapport a chacun de ces groupoides.

THEOREME 30.3. Tout systeme (E, Φ) dont chaque groupoϊde est
idempotent en soi (xφx = x), et qui possede Γassociativite et la com-
mutativite demosiennes, est ferme par rapport a chacun de ses grou-
poides.

Preuve. Par hypothese, le groupoϊde fondamental, φίf appartient
au systeme et si φ — φλ o φ2 on aura

W i > Φ* Φi = Φ f 3<Ps, ΦA9 , Φio € Φ .

xφx = { ) { ) λ

Done <p = <p10 e Φ.

La reciproque n'est pas vraie, comme le montre Pexemple ci dessus,
qui est ferme sans que ses groupoides soient idempotents en eux-memes.

THEOREME 30.4. Si G(x) est un groupoide quelconque, appartenant
ou non a {E, Φ), et fixe sur Vensemble E, le systeme (E, {Φ})9 engendre
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par le systeme (E, Φ) sous la loi de compositionφλo φ2=: φd^l γ#, y, ze E,
(xφxy) x (xψ2y) = xψzVi est un groupoϊde Σ(o) par rapport a Γoperation
(o), ayant pour elements les φu et Σ est (i) un quasigroupe, (ii) un se-
migroupe, (iii) un groupoϊde abelien f en meme temps que G(x).

Preuve. ( i ) Si G(x) est un quasigroupe, a tous xφ2y et xφzy
donnes correspond un z e E, et un seul, tel que z x (xφ2y) = x<P3y.
Maintenant, z etant defini univoque, yx, y e E, la fonction z = xφxy
est determinee. Ainsi, Γequation φ ° φ2 = φ3 a une solution unique ψx

en φ, y<p2, φz et la loi de composition (o) satisfait a Γaxiome du quotient
a gauche. Le meme argument est valable a droite et ^(o) est un
quasigroupe.

(ii) Si G(x) est associatif, \fx,y,z e E, v<Pi,<p2,<p3e {Φ},

^i ° (^2 ° Φz) Done ^(o) est un semigroupe.
(iii) Si G(x) est commutatif, >jx,y e £7, \fψι,φ2 e {Φ}, {xψiU) x

(xφ2y) = (xφ2y) x {x<PiU), ou φ±o φ2 =z φ2o <p19 et 2"(o) est abelien. Les
reciproques sont evidentes (Cf [31], p. 233, N°8).

THEOREME 30.4.1. Si chaque groupoϊde dyun systeme associatif et
inversible demosien (E, Φ) est idempotent en soi, {xφ%x = x), alors le
systeme (E, {Φ}), engendre par (E, Φ) sous la loi de composition φxo <p2 =
<P%7l{x<Piy) x (xψ2y) = x<P3y, Φ B x, fixe, possede encore Vassociativite
Vinversibilite demosiennes, Vidempotence en soi.

Preuve. ( i ) Demontrons Γidempotence par induction. Supposons
qu'a une etape donnee de la construction de (E, {Φ}) tous les groupoϊdes
deja engendres soient idempotents; alors, yx e E, xφtx = x, xφ3x = x,
oύ E{ψi) et E{φό) sont des ,.groupoϊdes deja construits. Le produit
φ. o <pj =z φk est defini par xφky = {xψiV) x (xφfii). Si x = y, xφkx =
(xψix) x (xφ5x) ~ x x x = x; done φk est idempotent.

(ii) II resulte du N°14.3, iv que (E,Φ) a la commutativite demo-
sienne. Le meme argument que ci-dessus montre que cette commuta-
tivite se transfere a (E, {Φ}). En effet, avec les memes notations que
plus haut, soit xφty = yφλx, xφjy = yφ2x, xφky = {xφty) x ixψjy) =
(yψix) x (v<p2%) = yφ*χ, avec φ3 = ^ o ̂ ?2.

(iii) La meme induction s'applique a Γinversibilite demosienne. On
a successivement

= (χ<PtV) x (aj^i/) = (v<p%χ)

Done {xφky)φnz = (yφlox)φnz = (xφuy)φnz = xφjyψuz)- L a demonstration
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serait analogue a partir de (xφuy)φkz; par suite, φk satisfait a Γassocia-
tivite demosienne et, en vertu du N° 14.1, le systeme est aussi inver-
sible demosien.

THEOREME 30.5. Sur un systeme (E, Φ) associatif inversible demo-
sien, ferme par rapport au semigroupe (avec unite) x e Φ, Vapplication
(Ψi -^Ψ2o(Pio Ψi) 71 [x<Pty -> (xφ2y) * (x<PiV) * (x<PiV)], <Pi, Φ2 fixes, on

(xφ1y)x(xφ2y)—u, unite de E(x), yx,y e E, est un endomorphisme.

Preuve. Soit φt o φ3 = φk, ou (xφty) x

(χφ2y) x (χφ%y) x (χφ,y) x (χφ2y) x (χφ5y) x

= (χφ*y) * {χψιy) x u x (xφ3y) x {χφxy)

x

Done (<p2 o φ^ φλ) o (φ2 o ψ. a φx) = ψ2oφlBoψlm On peut aussi concevoir
des endomorphismes s^exerςant par application de E dans lui-meme
(x—>x')9 dans chaque groupoϊde. Alors, si /« est le semigroupe d'endo-
morphisme de E(<Pi), celui du systeme sera evidemment Π/t.

REMARQUES 30.6. Soient a, β, m, p des constantes quelconques choi-
sies parmi les elements du E. On peut definir des classes—analogues
aux classes d'isonomie ([31], p. 236, N°16)—par la condition que deux
groupoϊdes E(ψt) et E(ψj) du systeme (E, Φ) soient dans la meme classe
Km si aφβ = oίφβ = m. Ici ces classes sont necessairement disjointes
et, a chaque classe, correspond univoquement un element m e E. Une
telle partition de (E, Φ) est reguliere par rapport au produit selon un
groupoϊde G{ x), car soit ψz — φλ o φ2 ^ yx, y e E, (xφλy) x (xφ2y) =
xφ3y. Si φ1 6 Km et φ2 e Kp, on aura aφβ = m, aφβ = p, et αφ3/3 =
(aφβ) x (aφβ) = m x p = r. L' element r ne depend que de m et de
p, done Kmo Kp = Km*P. L'application (φt —>m)^lφi e Km est un homo-
morphisme de (E,Φ) sur G(x). A chaque choix de (a, β), e'est-a-dire
a chaque element de EE correspond un tel homomorphisme. L'ensemble
de tous ces homomorphismes, quand (α, β) decrit EE, muni de la loi de
composition (a, β) o (a', β') — (a x af, β x βf), est isomorphe au carre
direct de G(x).

On peut imaginer d'autres moyens d? organiser un systeme demosien
en groupoϊde. Bornons-nous, pour terminer, a indiquer la construction
du produit de deux systemes demosiens.

31. Produit direct. DEFINITION 31.1. Soient (E, Φ) et (£", Φ') deux
systemes demosiens, EE' et ΦΦ' les ensembles produits. Le produit
direct de ces deux systemes est le systeme (EE', ΦΦ') deίini γ#, y e E,
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x', yf e Ef', φit ψj e Φ, ψ'u ψ) e φf', et dont les groupoϊdes ont pour loi
de composition, sur Γensemble EE\ les [φi9 φ'5] e ΦΦ\ tels que
(x, x')[<Pt, Φj](y, y') = {xψiV, x'<p]y'). Comme cas partίculier, les ensem-
bles peuvent coϊncider: E = E', ou Φ = (^;. Dans le premier cas
(x, y)[<pu <Pj](z, t) = (flJ9?42,2/^5ί). Dans le second cas, on peut prendre
O, x')<p(y, y') — [(x<py), (x'φy')], sans modifier φ, ou bien (x, x')[φu φ5]{y, y') =

') en passant de Φ a ΦΦ.

THEOREME 31.2. Si deux systemes sαtisfont ά une meme loi demo-
sienne, leur produit direct sαtisfαit αussi ά cette loi.

Bornons nous a exposer les calculs dans le cas de l'associativite
demosienne.

{(x, x')[<Pi, Φt](y, y')}[φj, <p'j](z, z') = {xψty, χ'<p'iy')[<pj9 <p'j](z, z')

= [{%Ψiy)φjZ, (χ'φ'iy')<PjZr] = [χψk(yφmz), x'φΊAy'φLz')}

= (x, xf)[φk, φί]((yφmz), (y'ψ'mz'))

- (x, χ')[φ*, Φ'A{(y, v')l<pm, v'm](z, z')} .

EXEMPLE 31.3. Le systeme E = (0, 1), Φ = (x , x), defini par 0 x 0 =
1 x 1 = 0, 0 x 1 = 1 x 0 = 1, 0 x 0 = 1 x 1 = 1, 0 x 1 = 1 x 0 = 0,
est associatif demosien. Si Γon fait son carre direct, on obtient un
systeme associatif demosien de quatre groupes isomorphes au groupe
carre de Klein.

Terminologie

Anticentre 22.1
Associateur d'un systeme (E, Φ) 11
Associativite demosienne 7
Complexe relatif aux translations a droite 3.6
Conjoint 3
Demi-symetrie 5
Demosien 2
Distributivite demosienne 8
Egales (Expressions) 2
Ensemble demosien ferme 30
Equation 2
Expression sur (£7, Φ) 2
Identite 2
Inversibilite demosienne 6
Keys 4
Multigroupoϊde 12
Multistructure 2
Parastrophie 9
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Produit a droite de deux groupoϊdes 26.1
Produit direct de deux (E, Φ) 31
Produit suivant un groupoϊde fondamental 25; 30.1
Semigroupe a translation identique 26
Semigroupe de Thierrin 26.1
Sous-systeme demosien 3.3
Systeme (G, K, T) 19.2
Transiti vite 9.3
Zeroϊde 28

NOTES

1. Cf. Un theorem plus general—Entropie demosienne de multigroupoϊdes et de quasi-
groupes—Ann. Soc Sci. Bruxelles. 7 3 (1959), 302-309.

2. II faut entendre id Γisomorphisme de deux complexes comme appliquant les sous-
ensembles ΣjA^1Jj (/i=constante) les uns sur les autres.

8. Ne pas confondre cette notion, due a Schanffler, aυec le concept usuel d'inverse.
4. Au sens de Schauffler.
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ON NORMAL NUMBERS

WOLFGANG SCHMIDT

l Introduction* A real number ξ, 0 ^ ξ < 1, is said to the normal
in the scale of r (or to base r), if in ξ = 0 aLa2 expanded in the
scale of r(1) every combination of digits occurs with the proper frequency.
If bj)2 bk is any combination of digits, and ZN the number of indices
i in 1 ^ ί ^ ΛΓ having

then the condition is that

(1) \\mZNN-λ ^ rk .

A number f is called simply normal in the scale of r if (1) holds
for k = 1. A number is said to be absolutely normal if it is normal to
every base r. It is well-known (see, for example, [6], Theorem 8.11)
that almost every number ξ is absolutely normal.

We write r ^ s, if there exist integers n, m with rn — sm. Other-
wise, we put r Φ s.

In this paper we solve the following problem. Under what condi-
tions on r, s is every number ξ which is normal to base r also normal
to base s ? The answer is given by

THEOREM 1. A Assume r ~ s. Then any number normal to base
r is normal to base s.

B If r o° s, then the set of numbers ξ which are normal to base
r but not even simply normal to base s has the power of the continuum.

The A-part of the Theorem is rather trivial, but I shall sketch a
proof of it, since I could not find one in the literature.

Next, let I be an interval of length | I\ contained in the unit-interval
U = [0, 1]. We write MN(ξ, r, I) for the number of indices i in lrgifg JV
such that the fractional part {rιξ} of r%ξ lies /. A sequence ξ, rξ, r2ξ,
has uniform distribution modulo 1 if

RN(ξ9 r, I) = MN(ξ, r,I)-N\I\= o(N)

for any J. It was proved by Wall | 8 | (the most accessible proof in [6|,
Theorem 8.15) that ξ is normal to base r if and only if ξ, rξ, r2ξ,
has uniform distribution modulo 1.

Write TStt, where 1 < t < s, for the following mapping in U: If
ξ = 0 aλa2 in the scale of t, then TSΛξ = 0*axa2 in the scale of s.

Received June 2, 1959.
1 In case of ambiguity we take the representation with an infinity of aι less then r — 1.

But this does not affect the property of £ to be normal or not.
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THEOREM 2. Assume r φ s. Then there exists a constant aλ =
ax{r, s,t)>0 such that for almost every ξ there exists a N0(ξ) with

( 2 ) RN(TsJ,rfI)^N^

for every N ^ N0(ξ) and any I.
Thus TSttξ is normal to base r for almost all ξ. Since TSttξ is not

simply normal to base s part B of Theorem 1 follows. It does not follow
immediately for s = 2, but instead of T2tt, which does not exist, we
may take T4ιt.

We can interpret our results as follows. Write CSΛ for the image
set TSιtU of the unit-interval U under the mapping TStt. CStt is es-
sentially a Cantor set. In CSιt we define a measure μStt by

( 3 )

where f(ξ) is any real-valued function such that the integral on the
right hand side of (3) exists. Then it follows from Theorem 2 that
with respect to μStt almost every ξ in Cs>t is normal in the scale of r.

Throughout this paper, lower case italics stand for integers. aλ =
a^r, s, t)y a2, α3, will be positive constants depending on some or all
the variables r, s, t.

l The case r ~ s. First, it follows almost from the definition that
any number normal to base s11 is normal to base s.

Next, assume ξ is normal to base r, we shall show it is normal in
the scale of rm. If ξ = 0 aλa2 ••• in the scale of r, bλ bmk is any
combination of mk digits and Z(JP is the number of indices i in 1 ̂  i ^ N
with i == 1 (mod m) satisfying

b1 = aif , bmk = ttj+j^fc-! ,

then it was shown in [7] and in [3] that

lim

N-*oo

and hence

lim ^ ()
N->oe

Thus I is normal to base rm.
Combining the above remarks we obtain the A-part of Theorem 1.

2. The measure μSιt. We define numbers of order h to be the
number Q ax ah with 0 S α« < t in the scale of s. There are th

numbers of order h, we denote them in ascending order by θ[h\ •••, θ{%\
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LEMMA 1. Let f(ξ) be a step-function, having a finite number of
steps. Then

\ f(ξ)dμs,t - [f(TsJ)dξ = lim t~h Σ / ( ^ } ) .
JG<. I J o Λ,->oo fc = l

The integrals and the limit exist and are finite.

Proof. It will be sufficient to prove the lemma for f(ξ) = {1,7},
where 0 ^ 7 ^ 1 and

{ f f 7 } = j l , if if} < 7
0 otherwise.

ξ™ = I {Γs t^, ^Λ)}d^ is the least upper bound of numbers § having
Jo

Ts,tξ^Θ%ι). Thus if 0ί'° = 0 αL ••• αft in the scale of s, then |(fc

ft) =
O αi ah in the scale of t and therefore |&Λ) == (k — l)t~h.

Hence if θΐ] ^ 7 ^ *̂+\> o r if ^*Λ) ^ 7 with k = tΛ, then

Jo

where 0 <£ ε ^ ί"Λ. We can rewrite this in the form

and Lemma 1 follows.
Particularly, for

μ(Ύ,x) - [{xT8.tξ9y}dξ
Jo

μ(Ύ, x, y) = [{xTstξ, 7} {yTsJ,
Jo

we have

(4) μ(y, x) = l i m ί - Λ Σ

( 5 ) //(7, x, 1/) = lim t~h 2 {̂ f̂c713, 7} {y@ih), 7} .
Jl-*oo Jc — 1

3 Exponential sums. Write e(ξ) for β2πί?. There exist ([5], pp. 91-
92, 99) for any γ, 0 ^ γ g 1, and any η > 0 functions f1(ξ)ff2(t) periodic
in I with period 1, such that fx{ξ) ^ {£,7} ^/3(f), having Fourier ex-
pansions



664 WOLFGANG SCHMIDT

where the summation is over all u φ 0 and A^ is majorized by

1
( 6 ) I A u I ^

Applying this to (5) we obtain

U27]

μ(y, x, y) S (Ύ + Ψ + lim t- Z-4
u,υ

=7^0,0

where we put A[2) = γ + η and take the sum over all pairs u, v of
numbers not both being zero. Since

and since the double sum over u, v is uniformly convergent in h, we
may change the order of limit and summation and obtain

Vf Σ'
U, V

?> | lim t~h , e((ux + vy)θ(

k

h})

The numbers θίh) are the numbers

I _ ~Γ ' * * ~Γ . >

where 0 ^ α̂  < ί. Hence

n = ft

If we keep w fixed, and if j is large, then

t\w\

Therefore

(7) / , ( s ,

exists and

(8 ) μ(j, x, Vf + Σ ' I ̂  11 ̂ 2 ) I Π(s, t ux + v y ) .
u,v

The next three sections will be devoted to finding bounds for sums
like

Σ Π(s, t urn + vrm) .
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4«. Two lemmas on digits*

665

LEMMA 2. Write w = cg
m the scale of s. Assume there

are at least z pairs of digits clΛ.γci with

( 9 ) l^cί+ιcί^s2~

(Here ci+lct = sci+1 + c4).

uhere a2 = αa(s, ί), 0 < α2 < 1.

Proof. There are at least 2 numbers ΐ having

For such an i we have

- 2 = to2

and the Lemma is proved.
There exists an α3(s), 0 < α3 < 1/4, such that

LEMMA 3. If k is large, k > aj^s), then the number of combinations
of digits c]cck.1 cx in the scale of s with less than a3(s)k indices i
satisfying (9) is not greater than 2(3/4)fc.

Proof. It will be sufficient to show that the number of combinations
with less than a3(s)k indices i satisfying both (9) and i = 1 (mod 2) is
not greater than 2(3/4)fc. We first assume k is even. There exist

2 ](s 2 - 2y2 f c / 2 " ί

combinations ck cλ with exactly I indices i having both (9) and i = 1
(mod 2). Hence the number of combinations with less than a3(s)k
indices i satisfying (9) and i = 1 (mod 2) does not exceed
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Using Stirling's formula for the binomial coefficient we obtain for large
enough k the upper bound

/Q 3 ( ( / ) 3 )
5V ; ( 2 ) β * ( l 2 ) ( ( 1 / 2 ) ^ ) f c

Actually, the expression on the left hand side is < 2Λefc, where a6 < 3/4.
This permits us to extend the result to odd k.

5* The order of r modulo p* as a function of k.

LEMMA 4. Assume p is a prime with p \ r. Then the order o(r, pk),
of r modulo pk satisfies

o(r, pk) > a7(r, p)pJΰ .

COROLLARY. Let n run through a residue system modulo p*. Then
at most α8(r, p) of the numbers rn will fall into the same residue class
modulo p*.

Proof. Write

g = g i p ) = \P-l> if V is odd
(2 , if p = 2.

There exists an α9 = oc9(r, p) such that

(10) rg = 1 + qp"*'1 (mod p**) ,

where q Ξ£ 0 (mod p). We have necessarily α9 > 1 and even α9 > 2 if
p = 2. If follows from (10) by standard methods (see, for instance, [4],
§ 5.5) that

rop* = 1 + qp«<j-1+e (mod p^+e)

for a n y e ^ 0. T h u s for k >̂ α:9 w e h a v e

and

o(r, pk) ^ ^ p f c - ^ = aΊ{r, p)pk .

Assume r φ s. Write

where we may assume that never both dt = 0, β4 = 0. We also may
assume that the primes pl9 , ph are ordered in such a way that
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^1 ^> ^2 ^> . , , ^> fe

dλ ~ d2 ~ ~ dh

where we put (ejdt) = + oo if di = 0. Since r ^ s , we have
rβ l

r * = Ί Γ > X *

From now on, p = pL(r, s) is the prime defined above. We have p \ s
but p\rλ. For any x =£ 0, 7/ > 1 we define two new numbers x}J and
α j by x = #„#£, where α^ is a power of 2/ and 2/<|Ό;£.

LEMMA 5. A. Assume r φ s, v Φ 0. Let m run through a system
K(sk) of non-negative representatives modulo sk. Then at most

ί s Y
\ 2 / P

of the numbers

v(rmγs

are in the same residue class modulo sk.
B. Assume r Φ s, furthermore p\r. Suppose u Φ 0, v Φ 0, n are

fixed. Then, if m runs through K(sk), at most

of the numbers

urn + vrm

will fall into the same residue class modulo sfc.

Proof. A. Write m = m1e1 + m2, 0 ^ m 2 < eλ. Then rm = rTOlβl+w*2 ==

gί»idirmiri»2 a n ( j ^ ( r ^ ) ^ — 'yrf^r™2)^ The equation

rψι = α (mod pfc)

has for fixed α at most e^a^r^ p) solutions in m = mxex + m2, if m runs
through a system if(pfc) of residues modulo pk. This follows from the
corollary of Lemma 4. The equation

av(rm*ys == δ(mod pk)

has for fixed 6, m2 at most

g.c.d.(v(rm2Ys, pk) ^ vpr™2

solutions in α. Hence the number of solutions of
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vrΊllι(rm2)r

s = b (mod pk)

in m = m^i + m2 e if(pfc) does not exceed

But this implies that the number of solutions of

vr^r^Ys ΞΞΞ 6 (mod sk)

in m = ra^i + m2 e iί(sfc) is not greater than

<xlo(r, s)vp(—J ^ aw(r,

B. The equation

urn + vrm = 6 (mod £>fc)

has according to the corollary of Lemma 4 at most

solutions in 7neK(pk), The result follows as before.
The following conjecture seems related to our results: Assume

r q^ s. Then for any ε and k almost all the numbers r, r2, are
(ε, kynormal to the base s in the sense of Besicovitch |1] that is, the
number of n <̂  N for which rn is not (ε, k)-normal is o(N) as N—>oo
for fixed e and k.

6. Bounds for exponential sums.

LEMMA 6. A. Let r, s, v be as in Lemma 5A. Then

Σ #(s, t vrm) ^ a12vps
(ι~^)k

meκ(sk)

B. Let r, s, u, v, n be as in Lemma 5B. Then

Π(s, t; urn + vrm)

Proof. A. Write v(rm)'s = cff cΛ cλ in the scale of s. Lemma
5A implies that any digit combination c^k-i ' ci will occur at most
#io(Λ s)(s/2)fcvp times. According to Lemma 3, there are for large k not
more than 2(3/4)fc digit-combinations ck cλ with less than a^k indices i
satisfying (9). Thus of all the numbers v{rm)r

SJ meK(sk), and hence of
all the numbers vrm there will be at most

α lo(r, s)(sl2)kvp2
(^)k - α lo(r, s)^(s/21/4)fc - α lo(r, s)vps (1-" }*
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having less than α3ft digits ct in their expansion in the scale of s satisfying
(9). Thus Lemma 2 yields

Π(s, t vrm) ^ αf 3

for all but at most

alo(r,

numbers meK{sk). This gives

Σ Π{s, t vrm) ^ sΛαf
m6Jf(/)

B is proved similarly, using Lemma 5B.

LEMMA 7. A. Assume r o6 s, v =£ 0.

(11) Σ /?(β, t w w ) ^ α17(ΛΓ2 - Ntf-uv, .

B. Assume r rh s, u Φ 0, v ^ 0. Then

(12) Σ Π(s9 t;urn + w m ) ^ α19(iV2 - Ntf-** max

Proof. A. There exists a ft having s2k ^ N2- N,< s

2(k+1\ hence
there exists a w satisfying skw ^N2 — N±< sk(w + 1), where sk ^ w < sfc+2.
Thus if m runs from JVi to N2, then m runs through w systems K(sk)
of residue classes modulo sk and at most sk other numbers. Hence by
Lemma 6A

Σ Π(s, t vrm) ^ II; a12vps
a~ai5)k + sfc ^ cCi7(N2 — N^'^Vp .

iV1<m^iV2

B. If p | r , then we proceed as in part A. We first take the sum
over m and use Lemma 6B.

If p/r, then our argument is as follows. Consider, for example,
the part of the sum with n ^ m. Changing the notation in n> m, we
see that this part of the sum (12) equals

77(s, t (urn + v)rm) .v̂
 = 0

v
m = N-.+l

Except for possibly one exceptional n we have (urn)p Φ vp and therefore
(urn + v)p ^ vp ^ max (up, vp). If n is not exceptional, then the al-
ready proved Lemma 7A can be applied to the inner sum and we obtain
the bound

^17(^2 — Nλ — ^)1-*i8 max (upf vp) .

Taking the sum over n we obtain (12).
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7 A fundamental lemma. Generalizing MN(ξ, r, I) we write

NιMN.β, r, I) for the number of indices i in JVi < i S N2 such that {rιξ}
lies in /. We put

NlRNβf r, I) = NιMN£ξ, r, I) - (N2 - NJ\ I\ .

Fundamental lemma. Assume r Φ s. Then

sJ, r, I)dξ ^ a2l(N2 - Ntf-*™ .

Proof. It is enough to prove this for intervals of the type / = [0, γ).

Then

and

(13)

δ γ T) — y !rnt yl
, , I y 1 ) 2-Λ \l b> / /

[ SlMN%(TtΛξ, r, I)dξ = Σ μ(Ύ, rn)
JO i ^ 1 < W ^ ^ 2

Γ 1

JO Λ r

1 <ίi ,w^i^ 2

Now we combine (8) and Lemma 7. We obtain, together with (6),

μ(γ, rn

f rm) ^ (γ -Σ

+ 2(γ +

+ Σ Σ

ηv

Since the sums

Ύ]UΎ]V

Σ— , Σ Σ
"9 φQ^

m a x

are convergent, and since η was arbitrary, we have

Σ μ(Ύ, r\ rm) - (N2 - Nrfy2 ^ a23(N2 -

In the same fashion we can prove

Σ μ(Ύ, r\ rm) - (N2 - Nlt

Σ μ(y, rn) - (N2 - Nx
a2b(N2 - NJ1-** .

These two inequalities, together with (13) and (14), give the Fundamental
Lemma.



ON NORMAL NUMBERS 671

8. Proof of the theorems* Once the Fundamental Lemma is shown,
we can prove Theorem 2 by the standard method developed in [2].

By JB, B > 0, we denote the set of intervals [β,i), 0 ^ β < γ < 1
of the type β = a2r\ γ = (α + 1)2"\ where 0 ^ 6 ^ a22B\2. By P β we
denote the set of all pairs of integers Nlf N2 having 0 ^ Nx < N2 ^ 2B

of the type N± = α2&, iV2 = (α + l)2δ for integers a and & ̂  0.

LEMMA 8. Assume r + s. Then

Proof. Because of the Fundamental Lemma the left hand side is
not greater than

where 2*22BI2+1 is an upper bound for the number of intervals in JB and

(15) Σ= Σ (JSΓf

In (15) each value of N2 — Nx — 2b occurs 2B~b times, so that

B

& = 0

Hence Lemma 8 is true with a28 = α22/4.

LEMMA 9. For large B there exists a set EB of measure not greater
than 2-"™B such that

(16) RATsJ, r, I) ^ 2*<1-"*>

for all I, N <> 2B and all ξ in [0, 1) but not in EB.

Proof. We define EB to be the set consisting of all ξ in [0,1) for
which it is not true that

(17) Σ Σ Nβ2

N2(Ts,tξ, r, /) S
CNL,N2yePB iejB

Lemma 8 assures that the measure of EB does not exceed

for large B. We have to show that (16) is a consequence of (17).
We first assume / to be of the type / = [0, γ), γ = a2~h, where

0 g & ^ oc22B\2. Then the interval [0, γ), is the sum of at most b < B
intervals /, IeJB, as may be seen by expressing a in the binary scale.
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Expressing N in the binary scale we see that the interval [0, N) can
be expressed as a union of at most B intervals [N19 N2), where the pair
Nlf N2 € PB. Hence we can write RN(TSttξ, r, I) as a sum of NίRNt{TSttξ, r, I)
over at most B2 sets N19 N2,1, where N19 N2ePB, IeJB:

RN(TsJ, r, I) = ΣNlRN%(T,J, r, I) .

Hence by (17) and Cauchy's inequality,

RN(T,.£, r, I) ^

for large B.
Next, let 1 = [0, γ) be of the type α2~& ̂  γ S (a + 1)2"&, where

a22B/A < b ^ a22B/2. Then

I RAT.J, r, [0, γ))| = I MN(Ttttξ, r, [0, γ)) - jN\

£ I Λ^Γ.,tf, r, [0, (a + 1)2"&)) | + | RN(TSJ, r, [0, a2~»)) \ + 2'»N

The Lemma now follows from

I RN( , , [/3, γ)) I ̂  I RN( , , [0, β))\ + \ RN( , , [0, γ)) | .

Proo/ o/ Theorem 2. Since IE"* 3 0 8 is convergent, there exists for
almost all ξ a Bo = £<,(£) such that f 0 JS7Λ for J5 ̂  Bo. Iί N ^ 2B\ then
we can find a i? ^ Bo satisfying 2B~λ < N <; 2B and Lemma 9 yields

for large enough N.
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THE METRIZATION OF STATISTICAL METRIC SPACES

B. SCHWEIZER, A. SKLAR AND E. THORP

In a previous paper on statistical metric spaces [3] it was shown
that a statistical metric induces a natural topology for the space on
which it is defined and that with this topology a large class of statistical
metric (briefly, SM) spaces are Hausdorff spaces.

In this paper we show that this result (Theorem 7.2 of [3]) can be
considerably generalized. In addition, as an immediate corollary of this
generalization, we prove that with the given topology a large number
of SM spaces are metrizable, i.e., that in numerous instances the existence
of a statistical metric implies the existence of an ordinary metric.1

THEOREM I. 2 Let (S, J^~) be a statistical metric space, <%s the two-

parameter collection of subsets ofSxS defined by

W = {U(e, λ ) ; ε > 0 , λ > 0} ,

where

U(e, λ) - {(p, q); p, q in S and Fpq(e) > 1 - λ} ,

and T a two-place function from [0, 1] x [0, 1] to [0, 1] satisfying T(c, d)^
T(α, b) for c ϋ> α, d ^ b and supx<1T(x, x) = 1. Suppose further that
for all p, q, r in S and for all real numbers x, y, the Menger triangle
inequality.

( 1 ) Fvr{x + y)^ T(FJx), F

is satisfied. Then <%/ is the basis for a Hausdorff uniformity on S x S.

Proof. We verify that the U(e, λ) satisfy the axioms for a basis
for a Hausdorff (or separated) uniformity as given in [2; p. 174-1801 (or
in [1; II, §1, n°l]).

(a) Let Δ = {(p, p); p e S} and U(ε, λ) be given. Since for any
p e S, Fpp(e) = 1, it follows that (p, p) e U(e, λ). Thus Δ<zU(ε,X).

(b) Since Fpq = Fqp, £7(ε, λ) is symmetric.
(c) Let U(ε9 λ) be given. We have to show that there is a W e W

such that Wo Wcz U. To this end, choose e' = ε/2 and λ' so small that
T(l — λ', 1 — λ') > 1 — λ. Suppose now that (p, q) and (q, r) belong to

Received June 12, 1959.
1 These considerations have led to the study of SM spaces which are not metrizable as

well as to other natural topologies for SM spaces, questions which will be investigated in
a subsequent paper.

2 The terminology and notation are as in [3].
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W{εf, λ') so that Fpq(ε') > 1 - V and Fqr(ε') > 1 - λ\ Then, by (1),

Fpr(ε) ^ T(Fpq(ε'), Fqr(e')) ^ T(l - λ',1 - λ') > 1 - λ .

Thus (p, r) e U(ε, λ). But this means that Wo We: U.

(d) The intersection of U(ε, λ) and U(ε', λ') contains a member of
ψyy namely Ϊ7(min (e, ε'), min (λ, λ')).

Thus fs is the basis for a uniformity on S x S.
(e) If p and q are distinct, there exists an ε > 0 such that Fpq(ε) Φ 1

and hence ε0, λ0 such that Fpq(ε0) = 1 — λ0. Consequently (p, q) is not in
U(ε0, λ0) and the uniformity generated by ^/ is separated, i.e., Hausdorff.

Note that the theorem is true in particular for all Menger spaces
in which supx<1 T(x, x) = 1. However, it is true as well for many SM
spaces which are not Menger spaces.

COROLLARY. If (S, ̂ ~) is an SM space satisfying the hypotheses
of Theorem 1, then the sets of the form Np(ε, λ) = {q; Fpq(ε) > 1 — λ}
are the neighborhood basis for a Hausdorff topology on S.

Proof. These sets are a neighborhood basis for the uniform topology
on S derived from ^Λ

THEOREM 2. If an SM space satisfies the hypotheses of Theorem 1,
then the topology determined by the sets Np(εf λ) is metrizable.

Proof. Let {(εn, \n)} be a sequence that converges to (0, 0). Then
the collection {U(εnf Xn)} is a countable base for ̂ /. The conclusion now
follows from [2; p. 186].

Theorem 2 may be restated as follows: Under the hypotheses of
Theorem 1, there exist numbers δ(p, q) which are determined by the
distance distribution functions Fpq in such a manner that the function
δ is an ordinary metric on S. Loosely speaking, if the statistical
distances have certain properties, then certain numerical quantities as-
sociated with them have the properties of an ordinary distance. In a
given particular case such quantities might be the means, medians, modes,
etc.. For example, most of the particular spaces studied in [3] satisfy the
hypotheses of Theorem 2, hence are metrizable. Indeed, as was shown
in [3], in a simple space, the means (when they exist), medians, and modes
(if unique) of the statistical distances each form metric spaces; and
similarly, in a normal space, the means of the Fpq form a (generally
discrete) metric space. What Theorem 2 now tells us is that in many
(though not all!) SM spaces we can expect results of this general nature
to hold.
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ON UNIQUENESS QUESTIONS FOR HYPERBOLIC
DIFFERENTIAL EQUATIONS

JOHN P. SHANAHAN

1. Statement of results* This note is concerned with the existence,
uniqueness, and successive approximations for solutions of the initial
value problem

Zxv = f(x, V> z, P> Q), z(Xf 0) = σ(x), z(0, y) = τ(y) ,

where σ(0) = τ(0) = z0, on a rectangle R: 0 ^ x ^ α, 0 ^ 7 / ^ 6 . By a
solution is meant a continuous function having partial derivatives almost
everywhere and satisfying the integral equation

( 1 ) z(x, y) = σ{x) + τ(y) - zQ + I \ f(s, t, z(s, ί), zx(s, ί), sy(s, t))dsdt.
Jo Jo

Actually it will be clear from the conditions imposed on σ, τ and / that
any solution of (1) is uniformly Lipschitz continuous. Let D be the
five-dimensional set D = {(x, y, z, p, q,) : (x, y) e R and z, p, q arbitrary}.
Let f(x, y, z, p, q) be defined and continuous on D, such that \f(x, y, z,
p, q,)\ < N = const, for (x, y, z, p, q) e D. Let σ(x), τ(y) be defined and
uniformly Lipschitz continuous on 0 <S x ^ α, 0 <£ j/ ̂  6, respectively
(so that |σ(x) — σ(#)| ^ ϋΓla? — ά|, |τ(y) — τ(y)\ ^ iί|^/ — y\ for some cons-
tant K) and let σ(0) ="r(0) = z0. In addition, for (x, y) e R and arbi-
trary z, p, q, z, p, q assume that

( 2 ) \f(x, y} z, p, q,) - f(x, y, z, p, q)\ ^ φ(x, y, \z - z\, \p - p | , \q - q\) ,

where φ(x, y, z, p, q) is a continuous, non-negative function defined for
(x, y) e R and non-negative z, p, q, non-decreasing in each of the vari-
ables z, p, q, and with the property that for every {a, β), where
0 < a ^ α, 0 < / 5 ^ 6 , the only solution of

5 xCy

1 <p(8, t, z(s, t), zx(s, ί), zy(s, t))dsdt
o j o

i n t h e r e c t a n g l e R Λ β : 0 ^ x <£ α , 0 ^ τ / ^ / 3 i s ^ = 0 .

THEOREM (*). Under the above assumptions on σ, τ, f and φ, (1)
possesses one and only one solution on R. This solution is the uniform
limit of the successive approximations defined by

Received June 25, 1959. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under contract No. AF 18 (603)-41. Reproduction in whole or in part is permit-
ted for any purpose of the United States Government.
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(40) zo(x, y) = σ(x) + τ(y) - z0

and, for n = 1, 2, 3, , by

(4n) zn(x, y) = zo(a?, y) + I \ f{x, y, zn^(8, t), z ^ x(s, ί), z ^ y(
J o j o

The existence assertion of (*) neither implies nor is implied by that
in Hartman-Wintner [3] and its generalizations due to Conti, Szmydt,
Ciliberto, Kisynski (for references, see [6] and [2]). The uniqueness
assertion of (*) can be considered as a crude analogue of Kamke's
uniqueness theorem (cf. [5], p. 139) in the theory of ordinary differen-
tial equations. Finally, the assertion concerning the convergence of
successive approximations is an analogue of a result on ordinary differen-
tial equations (cf. Viswanatham [8] and references there to van Kampen,
to Wintner and to Dieudonne, and Coddington and Levinson [1]).

A theorem similar to (*), in which / and ψ do not depend on p, q
is proved by Guglielmino [2]. The proof of (#) below will be a generali-
zation of that of [2]. A uniqueness theorem for (1) involving a majorant
function of the form φ{z, p, q) = φ(\z\ + \p\ + |g|) is given in [6]. (After
the completion of this manuscript, I learned1 of a paper 'On the exis-
tence theorem of Caratheodory for ordinary and hyperbolic differential
equations" by W. Walter, written at about the same time, which con-
tains a theorem in the direction of the uniqueness assertion of (#).
Walter's assumptions, however, are somewhat different.)

REMARK. It will be clear from the proofs that (*) remains valid
if f z> V> QJ (?i T are n-vectors (say, with the norm \z\ = Σϊ-i|s*l or
\z\ = max fls1!, , \zn\) if z = (z\ , zn)). Of course φ will still be a
function of 5 variables, (not of (3π + 2) variables as / is).

A theorem suggested by Nagumo's uniqueness theorem (cf. [5], p. 97)
for ordinary differential equations is the following:

THEOREM (**). Let f(x, y, z, p, q) be defined, continuous and bounded
on D, and satisfy, for xy > 0 and arbitrary z, p, q, z, p, q,

( 5) \f(x, y, z, p, q,) - fix, y, z, p, q) ^ cx(x, y)\z - z\\xy +

o(x, y)\p - p\ly + cjίx, y)\q - q\\x ,

where c^x, y), i = 1, 2, 3, are non-negative, continuous functions such
that

Ci + C2 + C3 = 1 .

Let σix), τiy) be as in (*), and, in addition, let
1 Added in proof, 4 April 1960. Since this paper was accepted for publication, the

following related articles have appeared: W. L. Walter, Ueber die Differentialgleichung
Uχy=f(x,y,u,ux,Uy), I and II, Math. Zeit., 7 1 (1959), 308-324 and 436-453; my attention
has also been called to the paper of J. B. Diaz and W. L. Walter, On uniqueness theorems
for ordinary differential equations and for partial differential equatitions of hyperbolic
type, to appear in Trans. A.M.S..
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( 6 ) * , ( + 0) = lim σx{x), τv(+ 0) = lim τv(y)

exist. Then (1) has at most one solution z = z(x, y). Further'more, if

(6*) 0,(0,0) > 0 ,

then a solution exist and is the uniform limit of the successive approxi-
mations (4).

In (6), x\oτ y] tends to + 0 through the set of values on which σx

[or τy] exists.
Nagumo's theorem follows from Kamke's (with φ(x, y) = y/x). How-

ever (**) does not follow from (*) because φ(x, y, z, p, q) is assumed
continuous on x = 0 and on y = 0.

REMARK 1. (##) is valid if /, z, p, q, σ, τ are w-vectors (say z =
(z\ -. ,«n) and either \z\ = Σϊ- i | s* l or \z\ = max(|31 |, •••, \zn\)).

REMARK 2. A modification of an example of Perron [7] in the
theory of ordinary differential equations will show that (*#) is false if
cx = const. > 1, c2 == c3 = 0 (so that / does not depend on p, q). Also,
a modification of an example of Haviland [4] shows that successive
approximations need not converge if cx = const. > 1, c2 = c3 == 0.

The proof of (#) will be given in §§ 2-4 below; that of (**) in §§ 5-6;
finally, the proof of the last remark will be indicated in § 7.

The results above answer some questions suggested by Professor P.
Hartman. I also wish the acknowledge helpful discussions with him.

2 Proof of (*)• Preliminaries, In the proof of (*) below, there
is no loss of generality in supposing that φ is bounded, say 0 ^ <p(x, y
z, P, Q,) ύ 2iV on D. For otherwise ψ can be replaced by ψ, where
φ(x, y, z, p, q) equals φ(x, y, z, p, q) or 2N according as φ(x, y> z, p} q)
does not or does exceed 2N. It is clear that φ is continuous and non-
decreasing in each of the variables z, p, q. Furthermore, the only solu-
tion z(x, y) of

J xΓy _

I φ(s, t, x(s, ί), zx(s, ί,), zυ(s, t))dsdt
o j o

on any rectangle Rxβ : 0 <; x g α ( g α), 0 ^ y ^ β(<L b) is z = 0.

In order to see this, note that φ(x, y, 0, 0, 0) = 0 because z = 0 is
a solution of (3). Hence there exists an ε > 0 such that 0 ^ φ(x, yy z,
p, q) g 2N if \z\, \p\, \q\ < ε. Suppose that z(x, y) Φ 0 is a solution of
(3') on Raβ. Let d, 0 ^ d ^ (α2 + /32) ,̂ be the largest value of r for
which «(a?, y) Ξ 0 in the intersection S r of α?2 + 2/2 ^ r2 and i?αβ. If U
is any neighborhood of Sd (relative to RΛβ), there exists a rectangle i?γδ

in U on which 2 ΐ O . Since z = 0 on Sd, it is clear that if Z7 is "suffi-
ciently small", then, on [/(hence on RyS), \z\ < ε and, almost everywhere,
l̂ xl + \zv\ < ε But then 2; ̂  0 is a solution of (3) on Ry8. Since this
is impossible, the only solution of (3') on Raβ is z = 0.
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It will be convenient to have the following notation. Rx denotes a
subset (not always the same) of R of the from E x [0, 6], where E is a
(Lebesgue) measurable subset of [0, a] with means E = α. Similary,
R2 is a subset (not always the same) of the form [0, α] x E, where E
is a measurable subset of [0, b] and means E — b. Partial derivatives
zx, zy of a function z will be denoted by p, q.

3 Lemma for (*)• The proof of (*) will depend on the following
lemma.

LEMMA 1. Let a(x, y), β(x, y) γ(#, y) be non-negative, measurable
functions defined on R, Rlf R2, respectively, such that a is continuous,
β is uniformly Lipschitz continuous with respect to y and γ is uni-
formly Lipschitz continuous with respect to x, In addition, let

( 7 ) a(x, y) ^ \'\Vφ(s, t, a(s, t), β(s, t), y(s,t))dsdt ,
Jojo

( 8 ) β(x, y) S \"φ(8, t, a(x, t), β(x, t), y(x, t))dt ,
Jo

5 X

φ{sy y, a(s, y), β(s, y), γ(s, y)) ds ,
o

where φ satisfies the conditions of (*) and is bounded. Then a == β =

Note that the Lipschitz continuity of β [or a] with respect to y [or x]
is assumed to be uniform with respect to x and y.

The proof of the lemma below follows a suggestion made by R.
Sacksteder. My original proof, which will be omitted, depended on two
results. The first result is an existence theorem for

5 χCv
φ(s, t, z(s, t), p(s, t), q(s, t))dsdt ,

o j o

where ψ is a non-negative, uniformly Lipschitz continuous function
which is non-decreasing in x and in y. This existence theorem is
proved by using the successive approximations z0 = ψ(x, y) and

xCy

(11) zjx, y) = zo(x, y)+\\ Φ(8, t, zn-19 p n - 1 9 qn

Jojo

which satisfy

(12) zn ^ zn+1, p n ^ p n + 1 , qn S Qn+i -

The second result is the fact that if ψ is replaced by another function
ψ with similar properties and, almost everywhere,

(13) ψ ̂  φ, ψx^ φx, ψy^ψy,
then the corresponding solution z satisfies

(14) z^z, p ^p, q Sq -
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Proof. Define sequences of successive approximations as follows:
Let

(15) zQ(x, y) = a(x, y), uo(x, y) = β(x, y), vQ(x, y) = y(x, y)

and, for n ^ 1,

(16) zn(x, y) = I \φ(s, t, zn^(sf ί), t ^ s , ί), iv^s, t))dsdt ,
j o j o

(17) un(x, y) = <p(#, ί, Z ^ E , ί), ^-^(x, ί), ^-i(^> t))dt,
Jo

(18) vn(a?, 2/) = I φ(s, y, z^s, y), un^(s9 y), vn^(s9 y))ds .
Jo

The functions zn, un, vn are defined on sets R, Rlf R2, respectively, which
can be taken independent of n. The inequalities (7), (8), (9) give the
case n = 0 of

(19) zn ^ zn+1, un ^ un+1, vn ^ vn+1 .

The cases n > 0 of these inequalities follow by induction by virtue
of the monotony of φ.

The boundedness of φ implies the uniform boundedness of the func-
tions zn, un, vn. Hence, as n —> oo

(20) z = lim zn, % = lim un, v = lim vn ,

exist on R, Rly R2, respectively. It is clear from (15) and (19), (20) that

(21) O g α ^ z , 0 ^ β Su, 0 ^ 7 ^ ^ .

Lebesgue's theorem on term-by-term integration under bounded
convergence implies

(22) z(x, y) = \ \ φ(s, ί, φ , ί), w(s, t), v(s, t))dsdt ,
Jo Jo

ΓV

(23) w(α?f 2/) = \ φ(x, t, z(x, t), u(x, t), v(x, t))dt ,
Jo

(24) v(x, z) = I φ(s, y z(s, y)9 u(s, y), v(s, y))ds .
Jo

It is clear that zy = u, zy — v almost everywhere. Thus the assumptior
on φ concerning (3) shows that z == u = v = 0. Lemma 1 follows fron
(21).

4 Proof of (*)• (i). Let z(xf y) be a solution of (1). There exisi
functions u(x, y)t v(x, y) defined on sets Rif R2, respectively, such that

Γ*Γy

(25) z(x9 y) = σ(x) + τ(y) - z0 + \ \ f(s9 ί, φ , ί)» ^(s» 0» ^(s^ t)dsdt ,
Jo Jo

(26) u(x9 y) = (/«(«?) + \ /(a?, ί, z(fl5, ί)>
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f(s, y, φ , y), zx{s, y)9 zy(s, y))ds ,
o

and the relations u — zx and v = zy hold almost everywhere. In order

to see this, note that almost everywhere on R,

f(x, t, z(x, t), zx(x, t), Zy(x, t))dt ,

o

Zy(%, V) = σv(v) + \ f(β> V> Φ > y), zx(s, y), zy(s, y))ds ,
Jo

The expressions on the right side of these equations are defined for
{x, y) on sets Rl9 R2, respectively. Define u(x, y)y v(x, y) to be these ex-
pressions on Rlf R2. In particular zx = u and zy = v almost everywhere.
Hence (26), (27) hold on (possibly different) sets R19 R2. Clearly (25) is
valid for all (x, y) on R.

(ii). Uniqueness in (*). Suppose that (1) possesses two solutions
z = zλ(xf y), z2(x, y) on R. Let uλ(xf y), vx(x9 y) and u2(x, y), v2(x, y) be
the functions associated with z19 z2 by (i). Let a = \zλ — z2\, β = \ux — u2\,
7 = 1^ — v2\. If the relations (25) for z = z19 z2 are subtracted, it is seen
that the inequality (2) for / implies (7). Similarly (26), (27) imply (8),
(9) respectively.

The functions α, β9 y satisfy the assumptions of Lemma 1. Hence
the uniqueness assertion in (*) follows from Lemma 1.

(iii). Existence and successive approximations. Let zo(x, y), zjix9 y),
• be the successive approximations defined by (4). Corresponding to
each zn(x, y)f it is possible to introduce functions un(x, y)f vn(x, y) de-
fined on sets Rlf R2y respectively, and satisfying u0 = σx(x)t v0 = τy(y),

(28n) zn(x, y) = σ(x) + τ{y) - z0

(S, ί, Zn^(s, ί), Wn-xίs, t), Vn-^8, t))dδdt ,

5 y
f(X9 t, Zn-^X, ί), Un-^X, ί), Vn-X (X9 t))dt ,

o

5 x

f(s, y, zn-x(x9 ί), wn-i(s, y), vn-x{x, t))ds .
o

The sets Rlf R2 can be assumed to be independent of n.
Let Zmn = \zm - zn\, Umn = \um - wn|, Vmn = |vm - vn| and

(31) = 1 u b

It is clear that Zm w, Z7OTn, VTOn are uniformly Lipschitz continuous with
respect to (x, y), x, y, respectively, and that a corresponding statement
holds for ak9 βk9 γfc.

By subtracting the relation (28n) from (28W_X) and using the inequal-
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ity (2) for /, it is seen that

Zmm(x, z) ^ I \φ(s, t, Zm.λ nφ, t), Umml nφ, t), Vm-± nφ, t))dsdt .
Jo Jo

Thus, if m, n ^ fc, the monotony of ^ shows that

>(s, ί, α*-i(s, ί)ι ft-i(s, ί), 7*-i(s
Jo Jo

Hence

I ^(s, ί, akφ, ί), /3fc-!(s, ί), Tfc-iίs,

o j o

Similarly

$</
φ(x, t, aκ.x{x, t), Λ_!(x, ί), Ύjfc-xίa?,

0

yk(x, y) ^ I 9?(s, y, αfc_x(s, 2/), /9fc_x(s, 2/), y^s, y))ds .
Jo

By (31), the sequences {ah(xf y)}, {βk(x, y)}, {7fc(a?, ?/)} are non-increas-
ing (and non-negative). Let a(x, y), β(x, y), y(x, y) denote the respec-
tive limits of these sequence, The Lipschitz continuity of ak, βky yk is
preserved under the limiting process. Lebesgue's theorem on term-by-
term integration under bounded convergence gives the inequalities (7),
(8), (9). Hence Lemma 1 shows that a = 0, β = 0, γ = 0 on R, Rlf R2,
respectively. This implies the existence of the functions z = lim zn,
u = lim un, v = lim vn on Rlf R2, as n —> 00, satisfying (25), (26), (27). It
is clear that the limit function z(x, y) is a solution of (1).

Finally, the equicontinuity of the functions zn(x, y) (implied by
their uniform Lipschitz continuity) shows that z(x, z) is the uniform
limit of the zn(x, y). This proves (*).

5. Lemma for (**)• The proof of (**) will depend on the follow-
ing lemma:

LEMMA 2. Let a(x, y)9 β(x,y), y(x, y) be non-negative, measurable
functions defined on R, Rlf R2, respectively, so that a is continuous, β
is uniformly Lipschitz continuous with respect to y and y is uniformly
Lipschitz continuous with respect to x. Furthermore, assume that

(32) a(x, y)\xy -> 0 as 0 < xy -> 0

and that, uniformly with respect to x and y, respectively,

(33) β(x, y)\y —* 0 as y —* 0 and y(x, y)\x —> 0 as x —> 0 .

Finally, suppose that

(34) a(x, y) ^ (T {φ, t)a(s, t)/st + φ, t)β(s, ί)/ί
Jojo

+ o3(s, t)y(s, ί)/s} dsdt ,
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(35) β(x, y) ^ [V {c^x, t)a(x, t)jxt + c2(x, t)β(x, t)/t
Jo

+ c3(x, t)j(xf t)/x}dt ,

(36) 7(x, y) S \ {φ, y)a(s, y)/sy + φ , y)β{s, y)\y
Jo

+ Φ> y)y(s, y)ls}ds,

where clf c2, c3 are as in the first part of (**). Then a == β = γ = 0.

Proof. By (32), if a(x, y)\xy is defined as 0 when xy = 0, it becomes
a continuous function on R. Hence, it assumes its maximum Mλ at some
point (x1

fy
1) e R. Let M2 == l.u.b. β(x, y)\y and M3 = l.u.b. y(x, y)jx

for (x, y) e R.
Note that there exist numbers Mjky where j , k = 1, 2, 3, satisfying

(37) Mjfc ^ 0 and Σ ΛfjJb = 1 for j = 1, 2, 3 ,
fc = l

and

(38,) M^Σ^M*-

If Mi ̂  0, then ML = αία;1, T / 1 ) / ^ 1 holds for some point (x\ y1) of i2
with xΎyλ > 0. In this case, (38X) follows from (34) with (x, /̂) = (a?1, T/1) if

(39) Mlk = (ΛJV1)-1 (" ("
J

If Mλ = 0, let Λf1Jt = cfc(0, 0).
In order to obtain (382), let (x^yj), where j — 1, 2, •••, be points

of R such t h a t lim (xjf yό) = (^2, #2) exists, l i m ^ ^ j , 1/̂ )/̂ ^ = M2 and
lim /5(α;̂ , /̂) = β(v) exists uniformly for 0 ^ 7/ ̂  6. Then (35) leads to
(38,) with

(40) M2fc = 0/2)-1 \yck(x\ t)dt or M t t = ck(x\ 0)
Jo

according as y2 > 0 or ?/2 = 0. A relation of the type (383) is obtained
similarly.

Let Mj = max (Mu M2, MΆ). Suppose, if possible, that Mj > 0.
Assume, for the moment, that Mj > M3 if j φ / . Then, by (37) and
(38j), MJJ = 1 and MJk = 0 for k φ J. But the derivation of (38j) can
then be modified to obtain Mj < Mj. For example, if J = 1, then
φ , t) ΞΞ 1 and c2(s, ί) = c3(s, ί) = 0 in (34) when (x, y) = (x\ y1), while
α(s, ί)/sί is nearly zero for small st, so that one obtains Mλ < Mλ. Or
if J = 2, then #2 > 0 and cx{x\ t) = 1, c2(#2, ί) = c3(α;2, ί) = 0 for 0 ^ t
^ 2/2, while the relations

give M2 < Λί2 since /3(ί)/έ is nearly 0 for small t by the uniformity of
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the first limit relation in (33).
Similar arguments show that if two or three of the numbers M19

M2, M3 are equal to Mj > 0, one is led to a contradiction. Hence Mj = 0.
This proves the lemma.

6. Proof of (**). ( i ) . Uniqueness in (**). Let z = zx(x, y), z2(x, y)
be two solutions of (1) on R. Let ux{x, y), vx(x9 y) and u2(x9 y), v2(x, y)
be the functions associated with them as in the proof of (*). Let
a = \zx — z2\, β = \uλ — u2\, γ = 1^ — v2\. It will be verified that, as
x (or y) —> 0, then, except for sets of measure zero,

(41) a(x, y), β{x, y), y(x, y) -> 0 .

Consider the case x —> 0. The assertions (41) concerning a and γ are
clear. In order to verify assertion (41) for the function β> it will
first be shown that if z = z(x, y) is any solution of (1) (say, z = zx or
2 = z2) and if w(α?, y) v(x, y) are its associated functions, then

(42) lim u(x, y) = jθ(j/), as x —> 0, exists uniformly in 2/

To see this, let xJf where j = 1, 2, 3, be a sequence of x values
such that lim x3 = 0 and lim ^(a^, /̂) = (̂̂ z) exists uniformly as j —> oo.
Putting x = Xj in (26) and letting j" —> oo, it is seen that

(43) p{y) = σ x (+ 0) + (V(0, t, τ(ί),
Jo

We note that />(?/) is continuous. Furthermore, p(y) does not depend
on the sequence xlf x2, . Suppose that another sequence leads to a
different limit p(y) φ p(y). By substituting ~p for p in (43), and sub-
tracting, we get

(44) \p(y) - p(y)\ <:
Jo

- /(0, ί, τ(ί), p(t), τy(t))ldt.

Since /, p, p are continuous and ρ(0) = jo(0) = σ x (+ 0), the integrand of

(44) can be made small by making y small. Hence

(45) \p(y) - p(y)\ly -> 0, as y - 0 .

By relation (5),

\P(v) - P(V)\IV ^ y-1 \vφf t)\p(t) - p(t)\dt/t,
Jo

Using (45) as before, this leads to a contradiction. Hence p == p.
Therefore every sequence, for which the limit in (42) exists, leads to
the same limit. Hence (42) holds.

If limUiix, y) — pλ(y) a n d \\mv,2{x, y) = p2(y)9 a s x—>0, w e c a n r e -
peat the above argument and obtain px == />2. This completes the verifi-
cation of (41).
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We now verify assumptions (32) and (33) of Lemma 2. Consider,
for example, the assertion

(46) β(x, y)\y -> 0 as y -> 0 .

By putting u = ulf u2 in (26) and subtracting we get

(47) β(x, y) S Γ \f(x, t, zλ(x, t), iφ, ί), vx(x9 «))
Jo

— f(x, t, z2(x, ί), u2(x, ί), v2(x, t))\dt .

Now the integrand of (47) can be made small, by making y small, and
using (41). This proves (46). The other limits in (32) and (33) are
verified similarly. The other assumptions of Lemma 2 are quite straight-
forward. Therefore a == β = γ == 0. This proves "uniqueness".

(ii). Existence and successive approximations in (**). Let zQ(x, y),
zλ{xy y), , be the successive approximations defined by (4). Correspond-
ing to zn(x, y) it is possible to introduce, as in the proof of (*), functions
un(x, y), vn(x, y) defined on sets R19 R2 (independent of n) and satisfying
u0 = σx(x), ô = τv(y), (28n), (29,) and (30w). Let Zmn, Umn, Vmn be defined
as in the existence proof (*) above. It will be verified that, given ε,
there exists a δ(ε) and an N(ε), such that

(48) Zmn{x, y), Umn(x, y), Vmn(x, y) < ε

for x < δ(ε) and for all m, n > N(e). A similar statement will be seen
to hold when x is replaced by y. The assertion (48) concerning Zmn

and Vmn is clear. In order to verify (48) for the function Umn it will
first be shown that

(49) lim un(x, y) = hn(y), as x —> 0, exists uniformly in y and n .

It is easily verified, by induction, that hn(y) exists uniformly in y for
fixed n, where

(50n) hn(y) = σx(+ 0) + (7(0, ί, τ(t), hn-M> τv(t))dt .
Jo

To see the uniformity in n, define

(51n) zn(x, y) = zn(x, y) - σ(x) - τ(y) + zo; un{yy y) = ujy, y) - σx(y);

vn{x, y) = vn(x, y) - τυ(y)

(52) g(x, y, z, p, q) = f(x, y,z + σ(x) + τ(y) - z0, p + σx(x)9 q + τy(y)) .

For ΰn we define hn corresponding to h. Clearly g satisfies a condition

analogous to (5), ϋo(x, y) = ho(y) = 0, and

ί y _ _ _

g ( x , t , z n - x { x f ί ) , u n ^ ( x f t), v n - λ { x , t ) ) d t f n ^ l
o

( 5 4 n ) h n ( y ) = f ' f l f ί O , ί , 0 , K - & ) , O)dt9 n ^ l .
Jo
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To prove (49) it suffices to verify that

(55) lim nn{x, y) = hn(y), as x —> 0, exists uniformly in y and n.

By subtracting (54J from (53J, it is seen that

(56) \ϋn(x, y) - hn{y)\ ^ Γ ί\9i ~ 9*\ + Ift -
Jo

where & = g(x, t, zn-λ(x, t), ΰn^(x,1), Vn-^x, t)), g2 = g(0, t, 0, ^^(a;, t), 0)

and gr3 = g(Q, t, 0, hn^(t)y 0). We note that, given ε > 0, there exists a

δ(ε) such that \gλ — g2\ < ε if x < δ for all # and w. Hence, noting (5),

(57n) |δn(a?, y) - hn(z)\ ^ \V {ε + t-1 ca(0, t ) ^ , , - ^ , t) - Λn-^lldt .
Jo

By continuity, because of (6*), c2(0, ί) < 1 for small ί > 0. Hence there
exists a number 0, 0 < 0 < 1, such that

Pc2(0, ί)dί S θy for 0 < y S b .
Jo

A simple induction shows that

(58) \un(x, y) - hn(y)\ ^ (1 - ^n) ε W(l - 0) ^ 6 ε /(I - 0) .

This proves (55). Hence (49) is established.
Next we note that hn(y), n = 0,1,2, , are the successive approxi-

mations for the initial value problem

(59) dwjdt = F(t, w), w{0) = σx(+ 0) ,

where F(t, w) = /(0, t, τ(t), w, τy(t)) is bounded, measurable and continu-
ous in w (for almost all fixed ί). By (5),

(60) |F(ί, w) - F(t, w)\^\w -w\lt .

Note that the existence of τy(+ 0) implies that F(t, w) —> F(0, w) =
/(0, 0, τ(0), w, τy(+ 0)) as t -> + 0. The proof of the main theorem in
[8] shows that these successive approximations converge uniformly, (60)
being Nagumo's uniqueness condition (cf. [5], p. 97). Hence

(61) lim hn(y) = h(y), exists uniformly in y as n —> oo.

Now (61) and (49) together give (48) for Umn(x,y). Hence (48) is
established.

By an argument similar to that used in verifying (46) it is seen
that, given ε > 0, there exists δ(ε) such that

(xy)-1 Zmn{xy y) < ε for xy < δ(ε) and for m,n> N(e)

(52) x'1 Umn(x, y) < ε for x < δ(ε) and for m, n > N(ε)

V~ι Vmn(x, y) < ε for y < δ(ε) and for m,n> N(e) .

Now defining ak, βk, γfc as in (31), we note that we can substitute
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them for Zmn, UmnJ Vmn, respectively, in (62) changing m,n> N(ε) to
k > JV(ε). Proceeding as in the analogous section of the proof of theorem
(*), we conclude that α, β, γ, satisfy (34), (35) and (36), also (32) and
(33). Therefore, by Lemma 2, the successive approximations converge
uniformly to a solution of (1).

7. Counter-examples, (a). Let a = b = 1 , 1 + ε = δ2, ε > 0, δ > 1.
Let f(x, y, z, p, q) be independent of p, q and defined by

(0 if (x, y) e R, z ^ 0 ,

f(XfVf z, P>Q) = j(l + ε)φy if (x,y) e R,0 <z < {xyf ,

((1 + eXxy)'-1 if (x, y) e R, (xyf ^ z .

Then f(x, y, z, p, q) is continuous and satifies (5) for cλ{x, y) = 1 + ε,
(and c2 = c3 = 0). Let σ(x) = r(j/) Ξ 0. Then (1) has an infinity of solu-
tions, namely, z = c(ίπ/)δ> where 0 < c < 1.

(b). Let a = 6 = 1, J2° = {(a?, i/): 0 < a?, 2/ ^ 1}, 1 + ε = δ2, ε > 0,
δ > 0 and

f(%,y,z,p,q) =

Ό if x = 0,2/ = 0 ,

if (a , y) e R°,z<0,

if (a?, y) e Λ°, 0 g ^ ^

if (a?, y) e R\ (xy)8 < z .

Then f(x, y> z, p, q) satisfies the same relation (5) as in example (a).
However, in (4), z2n = 0, z2n+1 = (xy)8/8\ so that successive approxima-
tions (4) do not converge.

(xy)8-1 - (1 +

, - ε{xyf-1
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SEQUENCES OF COVERINGS

A. H. STONE

1. Introduction* The metrisable spaces S for which S' (the set of
limit points of S) is compact, can be characterized as those uniformisable
spaces for which the finest uniformity (compatible with the topology) is
metrisable (see [5], [1], where further characterizations are given). B.
T. Levshenko has shown [4] that they also coincide with the regular
spaces in which every point-finite covering1 can be refined by one of a
fixed sequence of point-finite coverings, and that ' 'point-finite'' can be
replaced throughout by "star-finite" or "locally finite". We shall extend
these results (Theorem 2) and obtain an analogue for uniform spaces
(Theorem 3). The proofs depend on a criterion for metrisability (Theorem
1) which may be of independent interest since, though not really new in
content, it is particularly simple in form.

NOTATION. If ^ is a covering of a space S, and A c S, the star
St(A, ^) of A in ^/ is U [U\ U e <%s, A Π U Φ φ}. When A is a 1-point
set (a?), we abbreviate St((x), W) to St(x, <&). The covering by the sets
St(U,^/)y Ue <%s, is denoted by St(^/). A covering ^/ will be called
"almost discrete" if only finitely many pairs U, V of sets of ^/ inter-
sect; such a covering is clearly star-finite (in fact star-bounded) and so
locally finite.

2 Metrisation criterion*

THEOREM 1. A necessary and sufficient condition that a To space
S be metrisable is that S have a sequence of coverings ^ , n = 1, 2, ,
such that, for each x e S, the stars St(G, ^ζ) of the open sets G 3 x
form a basis for the neighborhoods of x.

The condition is trivially necessary. To prove it sufficient, we observe
first that S is developable—i.e., the stars St(x, %ζ) form a basis for the
neighborhoods of each x e S. It follows that S is TΊ; for if x,y are
distinct points of S, one of them, say x, has a neighborhood St(x, %ζ)
not containing y, and then St(y, ^/n) does not contain x. We next show
that S is collectionwise normal (see [2]). We may assume that ^ + 1

refines ^ (by replacing each ^/n by the "intersection" of the coverings
α̂> •", ^ ) . Let ^4λ (λ e A) be a discrete collection of closed subsets

of S, and for each n and λ put

Hnλ = U {U\ U e <%£, St(U, %ζ) meets Aλ but not Aμ if μ ψ λ} ,

Received June 8, 1959.
1 Throughout this paper, ''covering" means "open covering."
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Let Pnλ = U {Hmμ I m^n, μ^X}, Knλ = Hnλ-Pnλ, Hλ = \J{Hnλ \ n = l, 2,...},
K>< = U {̂ nλ I n = 1, 2, •} these sets are all open. It is easy to verify
that Kλ Γ) Kμ = φ it X Φ μ, that Aλ c Hλ, and that Aλ Π J°wλ = φ; hence
Aλ c J?λ where the sets Kλ are disjoint and open, as required.

As Bing has proved [2, Th. 10] that every developable collectionwise
normal ϊ\ space is metrisable, the theorem follows. Alternatively
Theorem 1 could be deduced from a general theorem of Nagata [6], or
from a theorem of F. B. Jones [3].

3. THEOREM 2. The following statements about a regular Tλ space
S are equivalent:

( 1 ) S is metrisable and S' is compact,
( 2 ) S has a sequence of coverings ^n (n = 1, 2, •) such that each

finite covering of S is refined by some &n,
( 3 ) S has a sequence of almost discrete coverings 5^ (n = 1, 2, •)

such that each covering of S is refined by some g^w.
The implication (3) —• (2) is trivial. To prove (2) —»(1), we first show

that, assuming (2), S is metrisable. Given x e U where U is open in S,
there is an open set V such that x e V and VaU. The finite covering
^r — {V,U — (x), S — V} of S has a refinement 2^, and a; e some
G° e ^ then G° c F, the only set of ^ which contains x. If G1 e 5fn

and meets G°, it follows that G1 c F U (17 - (a?)) = U. Thus Sί(G°, ^ ) c 17,
so Theorem 1 applies and S is metrisable. Let p be a metric for S; we
construct another, σ, for which each ^n is uniform. We do this by
successively constructing coverings ^ , ^ , •••, such that St(^n+1) re-
fines Ψ/n, ^/n refines ^ , and ^ ζ consists of sets of ^-diameters < ljn.
By [7, p. 51] there is a corresponding pseudo-metric σ for which each
f/n9 and so each ^ , is uniform; and as σ{x, y) = 0 implies jθ(#, ̂ /) = 0
here, σ is a metric. Condition (2) shows that every finite covering of S
is uniform in the metric σ; it follows ([5]; see also [1, Th. 1, (4) —>(3)]
that S' is compact (and every covering of S is uniform).

Finally, (1) —* (3) by the argument in [4], which we sketch for com-
pleteness. For each n = 1, 2, •••, cover Sf by a finite system of open
sets Gni (i = 1, 2, , fcw) of diameters < 1/n, all meeting S', and adjoin
the 1-point sets (x) for each x e S — \J {Gnί \ i = 1, , fcj to produce
an almost discrete covering &n of S. It is easy to see that every
covering <zs of S is refined by 5^ when n is large enough.

REMARK. TO require that S be separable, in (1), would be equivalent
to requiring that the coverings 5fn be countable, in (2) and (3).

THEOREM 3. The following statements about a completely regular
Tλ space S are equivalent:

( 1 ) S is metrisable,
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(2) S has a uniformity in which every finite uniform covering
is refined by some member of a fixed sequence of (not necessarily uni-
form) coverings &n of S,

(3) S has a uniformity in which every uniform covering is re-
fined by some member of a fixed sequence of locally finite uniform
coverings 5^ of S.

To prove (1) —> (3), we use the fact that S is paracompact to take
^n — a locally finite refinement of the covering of S by "spheres" of
radius 1/n. As (3) —> (2) trivially, it remains to deduce (1) from (2).
Given a neighborhood N of x e S, there exists a uniform covering <%/
such that St(x, 9/) c N, and there exist uniform coverings ψ\y/^ such
that St(^) refines ^/ and St(W) refines ψ\ Let x e Wo e W~ and
St(W0, 5T~)c V e 3^. Write X = St(W0, <W\ Y = U {W\ W e <W,
x$ W, W meets V}, Z=\J {W\ W e<W", WnV=φ}. Then JT =
{X, Y, Z}, being refined by ^ ^ , is a uniform covering of S. Some &n

refines ^ say x e G° e 5fn. Because X Γ) Z = φ, it follows by an argu-
ment similar to one used in the proof of Theorem 2 that St(G°, S )̂ c
l U Γ c St(V, <%r) c St(V, <?')c St(x, %/) c N; hence S is metrisable, by
Theorem 1.

REMARK. The uniformities in (2) and (3) of Theorem 3 will be dif-
ferent in general; that in (3) will be metrisable, while that in (2) need
not be. By Theorem 2, not every uniformity on S can arise in (2) or
(3) (unless S' is compact), but I have not found any satisfactory de-
scription of those which do.
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PROJECTIONS ONTO THE SUBSPACE OF
COMPACT OPERATORS

E. 0. THORP

Introduction. The purpose of this paper is to establish the follow-
ing theorem.

THEOREM. Suppose U and V are Banach spaces and that there are
bounded projections Px from U onto X and P2 from V onto Y. Then
there are no bounded projections from the space of bounded operators
on U into V onto the closed subspace of compact operators, in the fol-
lowing cases:

1. X is isomorphic [1] to /p, 1 < p < oo Y is isomorphic to /q,
1 < P < Q < °o or cQ or c.

2. X is isomorphic to co; Y is isomorphic to /*>, c0 or c.
3. X is isomorphic to c; Y is isomorphic to /°°.

NOTATION. If X and Y are Banach spaces, [X, Y] is the set of
bounded linear operators from X into Y. /°° is the set of bounded
sequences with the sup norm.

A space X is said to have a countable basis if there is a countable
subset of elements of X, called a basis, such that each x e X is uni-
quely expressible as

oo

α = Σ ξiΨi
ί = l

in the sense that

α-Σ£i?>«ll = 0-

If X and Y are spaces with countable bases (<Pa) and (ψj) respectively
and A is a bounded linear transformation from X into Y, then A can
be represented by an infinite matrix (aυ), with

ΣsυΨi

[2]. In what follows, the basis used for sp will be given by φ3 =
(0, 0, , 0,1, 0, 0, •) where there is a 1 in the jth place and 0 else-
where. Similarly for ψt. The matrix representations of operators will
all be with respect to these bases.

Received April 29, 1959. The author thanks Professor Angus Taylor for proposing
this problem and thanks both him and Professor Richard Arens for helpful discussions.
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Proof of the theorem. The details of the proof are given below
only for X = /*, 1 < p < oo, and Y = /q, 1 <p <q < oo. The proof
for the remaining pairs is similar and is indicated in a remark at the
end.

DEFINITION. Let E be the function on [/p, /% 1 < p < q < oo,
which sends an operator whose matrix is (aυ) into the operator whose
matrix is (α^δ^), i.e. the non-diagonal matrix elements are replaced by
zero and the diagonal elements are unaltered.

LEMMA 1. E is a projection with \\E\\ = 1, range the diagonal
operators, and null-space the operators with au = 0, all i.

Proof. E is additive and homogeneous as easily follows from [2].
E2 = E, and the characterization of the range and null-spaces are ap-
parent.

From the chain

o o > | | A | | = sup || Ax \\q > sup| | Aφ3 \\q
\\χ\\p£i J

= s u p | | Σ ^ ^ l l q > sup || ajjψj \\q = sup|α^|
) i j J

> sup {Σi\auξi\Ύp> sup

where the last > is by Jensen's inequality, we see that E sends bound-
ed operators into bounded operators and, further, ||2£|| = 1. Also

|| EA || < sup I a331 .

In fact,

USA || =Bxip\a33\
j

because

|| EA || > sup || EAφ3 \\ = sup | a33 \ .

LEMMA 2. The mapping γ from the set of diagonal operators onto
/°° defined by γ(α«) = (αn, α22, •••) is an isometry which carries the
compact diagonal operators onto c0.

Proof. That γ is an isometry from the diagonal operators onto /~
follows from the previous observation that | |SA| | ^ s u p j α ^ l . Hence
it suffices to show that the compact diagonal operators are exactly those
with the additional condition lim^ | aH \ = 0. This condition is necessary;
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otherwise for some ε > 0 there is an infinite index set I such that
I au I > ε whenever i e I. Then the bounded sequence {φ^)iel would be
carried into the sequence (auψϊ)ieI, which has no convergent subsequence,
showing (au) is not compact. The condition is sufficient because, if
| | a ; | L < l then

I « W^ <T ί s m n \ n... \\ \\ v.W <T s u p | α i 4 |

and [2; Th. 2] applies. The last inequality follows from Jensen's ine-
quality and our assumptions p < q,\\x\\p < 1.

LEMMA 3. Suppose X is a Banach space with a closed subspace
3Ji onto which there is a bounded projection E. Let sJi be the null-space
of E. Let Sβ be any closed linear manifold of X such that ίffety then
f = g + h, with g e β̂ Π 2JΪ and h e ty Π ϊϊ. Then, given any bounded
projection F onto Sβ, EF is a bounded projection onto ty Π 9JΪ such that
II TPTP I ^ II ΊP \\ II TP \\

II stir | \ | | - C / | | II JΓ | | .

The proof is an obvious modification of [3; Lemma 1.2.1],

Let %*> be the set of compact operators, 9JΪ the set of diagonal opera-
tors, E the projection of Lemma 1, and ϊϊ its null-space. In order to
apply Lemma 3 it remains to show: given any compact operator /, Ef
and / — Ef are compact. Ef is compact because, if / is compact,

lim y , α 4 < ψ . = l i m ( Σ α 4 ( l
β = 0

uniformly in j . This implies l im M |α w w | = 0 , which shows that Ef is
compact. Hence / — Ef is compact.

To prove the theorem for [/*, / β ] , 1 < p < q < oo, assume there
is a bounded projection F from [/p, /α] onto Sβ. By Lemma 3, the
restriction of E'ί7 to 3Jί is a bounded projection from 9Ji onto 3JI n s^β. By
Lemma 2 there must be a corresponding bounded projection from /°°
onto c0. This contradicts [4; Cor. 7.5]. For the remaining X and Y
pairs of the main theorem, the proof is similar except that the ex-
istence of expressions for | |A | | in terms of the matrix coefficients (e.g.,
see [5]) makes some of the work simpler.

Next we extend the theorem to [U, V]. Let E be the function on

[U, V] defined by Ef = PJP1 for all / in [U, V], E is linear and

homogeneous and bounded. E2f = P^PJP^P, = PJPλ = Ef so E is

a projection. The range of E is the set of operators g such that P2gPλ =

# and is isomorphic with [X, Y], The null-space of i? is the set of

operators h such that P2hPλ = 0. If Q4 is the projection I — Pt, the
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decomposition / == g + h is given by

/ = (P, + Q2)f(Pι + Oi) = PJPi + (PJQi + QJPi +

9 h

If / is compact, so are g and h. We apply Lemma 3 with X =
[Z7, F], aJi the range of Ef E acting as the projection E of that lemma,
and Sβ the set of compact operators from U to V. The conclusion is
that if there were a bounded projection F from X to Sβ, the restriction
of j^ί7 to 2Jί would be a bounded projection from 3Jί onto Sβ n 2ft, con-
tradicting our result for [X, Y].

REMARK. The problem of finding a bounded projection onto the
compact operators is trivial when all the bounded operators are compact.
This happens, for example, for [/p, /% 00 > p > q > 1, [2, p. 700],
or p = 00, q = 1, and for [c0, / α ] , [c, / e ] , 00 > q > 1. Whether there exists
a pair of normed spaces with a bounded proper projection from the
bounded operators onto the compact operators seems to be unknown.
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CONCERNING CERTAIN LOCALLY PERIPHERALLY
SEPARABLE SPACES

L. B. TREYBIG

In 1954, F. Burton Jones raised the question [2] "Is every connected,
locally peripherally separable [3], metric space separable ?" In this paper
it will be shown that there exists a connected, semi-locally-connected,
space Σ satisfying R. L. Moore's axioms 0 and C1, in which every
region has a separable boundary, every pair of points is a subset
of some separable continuum2, and the set of all points at which Σ
is not locally separable is separable. It will also be shown that every
compactly connected, locally peripherally separable, metric space is com-
pletely separable.

PART 1

Let Sf denote the set of all points of the Euclidean plane E. A
square disk in E will be said to be horizontal if it has two horizonta
sides. A point set in E will be called an H-disk only if that set is a
horizontal square disk. By the width of a square disk will be meant
the length of one of its sides.

Let K denote a definite ϋ-disk of width d. Let R0(K) denote the
H-disk of width d/4 whose center is on the vertical line that contains
the center of K, and whose upper side lies at a distance of cZ/16 below
the upper side of K. Let R00(K) and R01(K) denote the ίf-disks of
width dβ whose upper sides are at a distance of d/32 above the lower
side of R0(K) and whose centers are on the vertical lines containing the
left and right sides, respectively, of R0(K).

In general, for each positive integer n let Un(K) denote a collection
of 2n mutually exclusive congruent iϊ-disks such that

(1) R01{K) and R00(K) are the elements of U^K),
(2) if n is a positive integer and y is an element of Un{K), and x

and z are iϊ-disks of width d/4(2)"+1 whose centers lie on the same
vertical lines as the left and right sides of y, respectively, and whose
upper sides lie at a distance of d/S2(2)n above the lower side of y, then
x and z are elements of Un+1(K).

If n is a positive integer and RXιXr..Xn{K) is an elements of Un(K),
then let the elements x and y of Un+1(K) whose centers lie on the same

Presented to the American Mathematical Society, June 15, 1957; received by the editors
September 4, 1958. This paper is part of a dissertation submitted to the Graduate School
of the University of Texas in partial fulfillment of the requirements for the Ph. D. degree.

1 The proof that every space which satisfies axioms 0 and C is metric is due to R. L.
Moore.

2 A continuum is a connected, closed set.
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vertical lines as the left and right sides of RXlX2...Xn(K), respectively, be
denoted by RXlX2...xJK) and RXιX2...xJK), respectively. Let C(K) be a
collection to which x belongs if and only if x is R0(K) or in one of the
collections t φ Γ ) , U3(K), •••.

Let L(K) denote the iϊ-disk of width eZ/8 whose center is on the
same vertical line as the center of K, and whose lower side is at a
distance of 3c£/16 above the lower side of K. Let PZ{K) and Pr(K)
denote the left and right-hand end points, respectively, of the lower
side of L(K). Let M(K) denote the point set such that a point P be-
longs to it if and only if P is a point of the interval Pι(K)Pr(K) such
that there is no nonnegative integer p and positive integer q such that
PPι(K)IPι(K)Pr(K) = pj2*. Let I(K) denote the collection to which x
belongs if and only if x is a vertical interval containing a point of
M(K), and with both end points on the boundary of L(K). Let an in-
terval i of I{K) be denoted by ix(I(K)) if and only if it is true that if
P is the lowest point of i, then Pι{K)PlPι{K)Pr{K) = x.

Let R denote some definite i/-disk. Let RQ(R) be denoted by Qo;
let R00(R) and R01(R) be denoted by Qoo and Q01, respectively. Let
R00Q(R), RW1(R), Roio{R), and Ron{R) be denoted by Qooo, Qooi, Qow> a n d Qon>

respectively, and so forth. Let C(R) be denoted by Cx and let I(R) be
denoted by 70.

Let C2 denote the collection to which x belongs if and only if x is
an element of C(y), for some element y of Cλ distinct from Qo. Let
#o(Qoo) be denoted by Q00(0; let Roι(QJ be denote by ζ>00>01. In general,
let Rx{Qy) be denoted by Qy<x. Also, if Qx is in Cλ and x Φ 0, let I(QX)
be denoted by Ix.

In general, let Cn+1 denote the collection to which x belongs if
and only if x is an element of C(y), for some elements y of Cn,
which, in case xn is 0, is distinct from QXl,X2,...,Xn Let the element
R^JR^R^J... [RXι(R)] ...]]] of Cn+1 be denoted" by QXι,H Xγι+1. Also

if w is the element QZι,X2,...,Xn of Cn and xn Φ 0, then let I(w) be denoted
by Iχvχ.,,...,x . For each n let In be the collection to which x belongs if
and only if there is an element QXl.X2,...,Xn of Cn such that xn Φ 0 and x
is in I(QXl,X2,...,Xn).

Let W denote the point set to which a point P belongs if and only
if P belongs to C*3 for each positive integer n. For each positive in-
teger n let Bn denote the collection of all the boundaries of the ele-
ments of Cn. The boundary of QXl,X2,...,Xn will be denoted by JXl,x%...,Xn.

Let S denote [I* + IT + •] + [Bf + B* + •] + W.

Let C be a collection to which w belongs if and only if w is R or

I(w) is a subset of S and there is a positive integer n such that w is

in Cn.

3 C* Means the sum of all the point sets of the collection Cn.
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For each positive integer n let Hn denote a collection to which x
belongs if and only if x is the common part of S and the interior of
some square of [Bn + Bn+1 + •]. For each element QXι,x,...,x of Cn, let
the set of all points of S in the interior of JXΛ X}... x be denoted by

For each positive integer n let Kn denote a collection to which x
belongs if and only if, either (1) x is a segment of an arc lying on some
square J of (Bτ + B2 + •••)> having length less than l/4π times the
perimeter of /, and intersecting no square of the collection (B1 + B2+ )
except J, or (2) x is the sum of two straight line segments p and q
intersecting at their midpoints and lying on different squares Jp and Jq

of (Bx + Bλ + ••), such that p and q each have length less than 1/4"
times the perimeters of Jp and Jq, respectively, and such that neither
p nor q intersects three squares of (Bx + B2 + •).

Suppose x is a positive number such that iχ[IjLj,,...,jn] is an interval
of /jlfja,...jn. For each positive integer n there exists a unique pair
{kn, xn) such that kn is a non-negative integer, xn is a positive number
less than one, and x == (&„ + xn)βn. By ^[i^/^,^,...,.^)] will be meant
the vertical interval iXn(I(y)), where y is the ϋZ-disk of Un[QJltj,Zι...j ]
with only kn disks of Un(QJVJ:ίt...tJn) to the left of it.

Suppose, for some y in C , P is the highest point of the interval
ίx(I(y)). By Rn{P) will be meant the sum of all the sects z such that
either

(1) for some positive integer d greater than or eqal to n, z is the
subset of ia[iχ(I(v))] with length 1/2W times the length of ίd[ix(I(y))]
that contains the lowest point of id[ix(I(y))], or

(2) z is the subset of ίx[I(y)] with length 1/2W times the length of
ίx(I(y)) that contains the highest point of ix(I(y)).

For each positive integer n let Ln denote a collection such that x
belongs to it if and only if there exists a positive integer d greater
than or equal to n, an element y of C", and an interval of the collection
I(y) such that if P denotes the highest point of that interval, then

x = Λβ(P)
For each positive integer n let Nn denote a collection to which a

belongs if and only if either
(1) for some element y of C" there exists an interval ί of the col-

lection I(y) such that # is a segment of i of length less than 1/27* times
the length of ί, or

(2) for some element y of C there exists an element i of I(y]
such that x is a sect lying in i, containing the lowest point of i and
of length less than 1/2W times the length of i.

For each positive integer n let Gn denote a collection to which a
belongs if and only if it lies in Hn + Kn + Ln + Nn. S is the set oJ
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all points of Σ. A subset r of S is a region in Σ if and only if r belongs
to G\.

R. L. Moore's axioms 0 and C are as follows:

Axiom 0. Every region is a point set.

Axiom C. There exists a sequence Glf G2, such that
(1) for each positive integer n, Gn is a collection such that each

element of Gn is of region and Gn covers S,
(2) for each n, Gn+1 is a subcollection of Gn9

(3) if A is a point, ΰ is a point and R is a region containing A,
then there exists a positive integer w such that if x is a region of Gw

containing A and 7/ is a region of Gn intersecting x, then
(a) y is a subset of R and
(b) if 5 is not A, y does not contain J5,

(4) if Mlf M2, is a sequence of closed point sets such that for
each n there exists a region gn of Gn such that M"w is a subset of (/w

and for each n Mn contains Mn+1, then there is a point common to all
the point sets of this sequence.

It is obvious that in the space Σ each region has a countable, and
therefore separable, boundary, and that the sequence Glf G2, defined
for the space Σ satisfies conditions (1) and (2) of axiom C. It will be
shown that it also satisfies conditions (3) and (4) of this axiom.

Suppose that P is a point of W, that r = rXιtXit...tXn is a region of
Hn containing P, and that Q is a point of r distinct from P. If q is a
region containing a point of W, then q must belong to Hx. Since each
element of Cn+1 which contains P has a side of length less than or equal
1/4 times the length of a side of QXl,X2,...,v and each element of Cn+2

which contains P has a side of length less than or equal 1/42 times the
length of side of Q»1(Xa,...ia,n, and so forth; it is obvious that there is a
d > n such that if q is a region of Hd which contains P, then q does
not intersect Q and is a subset of r. Suppose that α? and y are two
intersecting regions of Gn+1 such that a? contains P. a? belongs to Hn+1

and is therefore a subset of r. Every region of Gn+1 which intersects
x is a subset of r, so clearly, y is a subset of r.

Now suppose that P is a point of JXl,x.2,...,Xn of Bn and r is a region
containing P, and Q is a point of r distinct from P. There exists a
circle J in E with center at P such that every point of S in the inter-
ior of J belongs to r, but Q is not in the interior of J . There exists
a positive integer d such that l/4d times the perimeter of any square
of (Bλ + B2 + •) to which P belongs is less than the radius of J, and
such that no region of Ha contains P. If R1 is a region of Gd+1 con-
taining P, then 5 1 does not contain Q and is a subset of r. If n > d + 2

The collection Gi of regions is a basis for the space Σ.
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and x and y are two intersecting regions of Gn such that x contains P,
then x + y is a subset of r.

Now suppose that P is a point of ix(I(y)), for 7/ in C", and that r
is a region containing P and that Q is a point of r distinct from P.

Case 1. Suppose P is not the highest point of ix(I(y)). There ex-
ists a segment t containing P, or a sect in case P is the lowest point
of ΐx(/(?/)), such that t is a subset of r and does not contain Q nor the
highest point of ix(I(y)). There exists a positive number ε such that
every point of ίx(I(y)) which is at a distance from P of less than ε lies
in t. There exists a positive integer d such that

(1) no region of Ld intersects t and no region of Hd intersects

ίx(I(y)), and
(2) 1/2* times the length of ix(I(y)) is less than ε. Therefore, if

fc is a region of Gd+1 containing P, then ΐ is a subset of r and does
not contain Q. Also, if x and y are two intersecting regions of Gd+2

such that x contains P, then x + y is a subset of r.

Case 2. Suppose P is the highest point of ix(I(y)). Whether Q
belongs to ix(I(y)) or there is a positive integer p such that Q belongs
to iP[ix(I(y))] or r is in Hx and Q does not belong to ίx(I(y)) + iL[ίx(I))] +
h[iχ(I(y))] + , there is a positive integer d such that

(1) Rd(P) does not contain Q and is a subset of r, and
(2) no region of Hd contains P. If A; is a region of Gd+1 containing

P, then fc is a subset of r and does not contain Q. Also, if x and y
are two intersecting regions of Gd+3 such that sc contains P, then a? + y
is a subset of r.

Therefore Gj, G2, satisfies the third part of axiom C.
Suppose that M19 M2, is a sequence of closed point sets such

that

(1) for each n Mn contains Mn+lf and

(2) for each n there is a region gn of Gn such that Mn is a subset

of gn

In case, for each n, gn is in HnJ then by definition of W, there is
a point common to M19 M2, because some point of W can be easily
shown to be a limit point or point of Mn for each n.

In case there is a positive integer j such that gj belongs to K5,
then for n > j , gn belongs to Kn. But MJt MJ+1, is a sequence of
closed and compact point sets such that for n ^ j Mn contains Mn+1.
So there is a point common to MJf Mj+1, and thus common to
M19 M 2 , .

In case there is a positive integer j such that g5 belongs to Njf

then for n > j,gn belongs to Nn. So, for the same reason as in the
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previous case, there is a point common to M19 M2, •••-
The only case not considered is the one where there is a positive

integer j 1 such that, for n >̂ j \ , gn belongs to Ln. In this case gh must
be RXι(P) for some point P and positive integer xx. There is a positive
integer j2 > j \ such that # J 3 = RX2(P), where x2 > xx. There is a positive
integer j3 > y2 such that gh = RXz{P), for x3 > x2, and so forth. P is
common to the sets RXλ{P), RX%{P), . But if P does not belong to
each of the sets Mh, MJ2, then there is a positive integer d such
that Rχa(P) contains no point of Mx for any j . But RXd(P) contains
Mjά+i. So P is common to the sets Mjχ, M3%, and thus common to
MlfM2, . . . .

Thus, Σ satisfies the fourth part of axiom C
In order to show that Σ is connected, an indirect argument will be

used. Suppose that S is the sum of two mutually separated sets H
and K. Since W + {Bf + B* + . . .) is connected, let H' be the one of
the sets H and K that contains this set and let K' be the other. There
exists an element y of C" such that for some xix[I(y)] is a subset of
K'. But there exists a positive integer dx such that for n ^ cίj,
ΐn|>x(ί(l/))L belongs to K'. There exists a positive integer d2 such that
for n ^ d2 inlidftxiliy)))] belongs to K'. So, obviously, there is a positive
integer sequence, d19 d2, such that if j is a positive integer and
n^dj, then in(ia3_jj>a3_j<m ia^JJiv))) # '))) belongs to iΓ. But from
this fact it is easily seen that some point of W is a limit point of if'.
So 2" is connected.

It has been shown that in any space satisfying axioms 0 and C (1)
if M is a separable point set, M is completely separable, and (2) if M
is separable, any subset of M is separable.

In order to show that any two points of S lie in a separable con-
tinuum, suppose first that P and Q are two points of S. Obviously,
(JBf + Bf + •) is separable and connected, and therefore W + (Bf +
Bf + •••) is a separable continuum. In case P and Q both lie in
W+(-B* + J5*+ •••)> this continuum has the desired properties. In
case P does not belong to this set, P belongs to ίx[I(y)] for some y in
C". Let MP be the set to which point R belongs if and only if, either

(1) there is a finite positive integer sequence xlf x2, , xn such
that R belongs to i j ί j ίXn[ix(I(y))] •••]], or

(2) there is a positive integer q such that R belongs to iq[ίx(I(y))], or
(3) R belongs to ΐ x [ iM| . MP + (B* + Bf + •) + W is a separa-

ble continuum. If Q does not belongs to this set, let MQ be a set re-
lated to Q like MP was related to P. The continuum MP + MQ + (Bf +
Bf+ •) + W is separable.

The statement that 21 is locally separable at the point P means that
there is a region R containing P such that R is separable. Alexandroίf
[1] has shown that if β is a connected, locally completely separable,
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space satisfying axioms 0 and C, then β is completely separable. It is
interesting to note that Σ is locally separable, and therefore locally
completely separable, at each point except those of a separable set, and
yet, Σ is not separable.

Σ is obviously locally separable at all points not belonging to W.
Since every region that contains a point of W contains uncountably
many mutually exclusive domains, Σ is not locally separable at any point
of W. Furthermore (J3* + Bϊ + •) is separable, and so (Bf + Bt + •••)
is separable, and thus, since W is a subset of the latter, W is separable.

Σ is said to be semi-locally-connected [5] at point P if and only if
it is true that if R is a region containing P, R contains a region R'
containing P such that S — R does not intersect infinitely many com-
ponents of S — R'. Σ is said to be semi-locally-connected if and only
if Σ is semi-locally-connected at each point.

The space Σ is obviously semi-locally-connected because S minus any
region has only a finite number of components.

PART 2

Suppose that Σ is a space satisfying the conditions specified on the
first page of this paper.

For each positive integer j let Gό denote the collection of all open
sets which have diameter less that j ' 1 .

Let P denote some definite point, and suppose n is a positive in-
teger such that no countable subcollection of Gn covers S. Let Rn be
some region of Gn which contains P, let Hλ = {Rn}, and let Kλ be the
boundary of Rn.

For each point Q of S let Δ{Q) be the least integer j > n such that
some region R(Q) of Gn contains every region of Gj that intersects a
region of Gj that contains Q.

It has been shown that in a space satisfying these axioms if L is
a separable point set and G is a collection of open sets covering L,
then some countable subcollection of G covers L. Therefore, there is a
countable point set Tλ dense in Kλ such that the collection H2 of all
R(Q)'s, for Q's in T19 covers Kx. Let K2 be the sum of the boundaries
of all the sets in Hx + H2. There is a countable point set T2 dense in
K2 such that the collection H3 of all R(QY$ for Q's in T2, covers K2.
Let iΓ3 be the sum of the boundaries of the sets in Hλ + H2 + Hd, and
so forth.

There is a point B not in the closure of H = (Hλ + H2 + •••)*•
Let M be a compact continuum containing P and 5 .

Case 1. Suppose some point A of M — M H is a limit point of

κ κ κ
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Let R[ be a region of Gn containing A, let Qx be a point of Γ —
T1 + T2 + in R[, and let ^2 be the largest integer i such that R[
belongs to G> Let R'2 be a region of Caji+i containing A such that R'Λ
lies in R[ — Qλ. Let Q2 be a point of T in R'2 and let #2 be the largest
integer i such that R'2 is in G> Obtain Rr

s, Q3, and #3 similarly, and so
forth, w ^ a?! < #2 < x3 < . For each i, /ί(ζh) > a?f. Otherwise, for
some i, jR(Qi) would contain Rf

iy and thus A. However, there is a posi-
tive integer t > n such that if x, y, and z are regions of Gt such that
α? y and 2/ 2 exist and x contains A, then Rn contains x + y + z. For
some 8 > t, Δ{QS) > t. But Rn contains every region of Gt that inter-
sects a region of Gt that contains Gs. So J(QS) ^ ί, which is a con-
tradiction.

Case 2. Suppose no point of M — M H is a limit point of iί. For
each point Q of M — M - H let gQ be a region containing Q such that
flfρ contains no point of K + P. Some finite subcollection C of the gQ's
covers this set of limit points. Let D = H — H C*. Let Cx be the
component of M — M D which contains i?. Some point 2 of M JD is
a limit point of Clβ But z lies in a region r of iί, and therefore Cλ

would intersect the boundary of r, and thus contain a limit point of K.
This yields a contradiction.

Since, for each n, some countable subcollection of Gn covers S», 21 is
completely separable.
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ON THE COMMUTATIVITY OF A CORRESPONDENCE

AND A PERMUTATION

MILO W. WEAVER

Foreword* A permutation is a one-to-one mapping of a finite set
onto itself. The necessary and sufficient conditions for two permuta-
tions Sλ and S2 to satisfy

(0.1) s^ = s2£i

are known1: Sλ and S2 satisfy (0.1) if and only if S2 is a product PQ
of a permutation P which is a product of powers of cycles of S1 and a
permutation Q which permutes cycles of S1 with equal numbers of
symbols. For example if Sx ~ (1 2 3 4) (5 6 7 8), P = (1 3) (2 4), and Q ~
(1 5) (2 6) (3 7) (4 8), then PQ commutes with S1# A correspondence is a
mapping of a finite set into itself. Hence a permutation is a special
case of a correspondence. It is our major object in this paper to find
the necessary and sufficient conditions for a permutation to commute
with a correspondence. These conditions are stated in Theorem 3.15
below.

As the literature2 has very little on "correspondences/' all the
fundamental definitions needed in this paper and pertaining to corre-
spondences are given.

It is assumed that the reader knows a little about groups of
permutations.

1. Fundamental definitions*3 A correspondence relates each symbol
of a finite set 5ft to exactly one symbol of SJL A permutation is a corre-
spondence such that each image symbol is the image of exactly one
symbol of 5JL The statement, m is the image of n under the cor re-

Received April 27, 1959. The work on this paper was done under National Science
Foundation Grant 8238. The writer wishes to express his appreciation to his 1958 Univer-
sity of Texas class, and particularly to Robert R. Bunten, for suggestions concerning
terminology and explanations. He also wishes to thank the referee for a valuable sugges-
tion relating to the definition at the beginning of Section 3.

1 Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897, pp.
215, 216.

2 Two papers on correspondences are: R. R. Stoll, ''Representations of Finite Simple
Semigroups," Duke Math J., vol. 11, no. 2 (1944), 251-265; Milo Weaver, 'On the Imbed-
ding of a Finite Commutative Semigroup of Idempotents in a Uniquely Factorable Semi-
group, "Proc. Nat. Acad. Sei., vol. 42, no. 10 (1956), 772-775.

3 Most of the definitions in this section and Theorem 1.5 were given: H. S. Vandiver
and M. W. Weaver, " A Development of Associative Algebra and an Algebraic Theory
of Numbers, III," Math. Mag., vol. 29 (1956), 135-149.
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spondence D is abbreviated nD = m.
The notation for a correspondence D:

is interpreted: "the α's are distinct symbols of %l and aj) = bu

i = 1, 2, , r . " If n e Jί and %Z) = % and xD — n has no solution
x, a? Φ n, x e sJί, n may be omitted from both lines of (1.1). The single-
lined notation for a cycle C:

(1.2) {dA •••<*.)

means that the d's are distinct symbols of 5R, dsC = <Z<+1, i — 1, 2, • ••,
s — 1, but dsC = c ;̂ and that nC = n if n e W and w is not one of
the cϊ's. If s = l, (1.2) becomes (d^) and means that this cycle is the
identity permutation, E, defined by nE = n, for each n of ?ί. The
example (233) suggests that some correspondence cannot be described
either by (1.2) or by a "product" of cycles. We describe the particular
correspondence Df by the notation

(1.3) (dA-.-d . }

and interpret this exactly as we did (1.2), except here s > 1 and
dsD

f = ds. A correspondence of the type (1.3) is called a 1-1-excycle,
or just a 1-excycle.

The correspondences A and Da are said to be equivalent if wZΛ =
nD2, for each w e 9̂ . We describe this by A = A

The product A = A A is defined by nDs = {nDι)D2 = %AA for
each n e 5ft. We illustrate: if P =* (5ϊSSSϊ5Sl> and S ^ GίϊϊJJSS) then

PS~SP= (3) (1 2 3} (4 2} (5 6 3} (7 6} (8 9) . (1 5 4 7) (8 9) (2 6)

^ (3) (1 6 3} (4 6} (5 2 3} (7 2} .

Positive integral exponents will be interpreted exactly as in permuta-
tion theory. If it is convenient, m e 9Ϊ, and A is a correspondence,
mA° may be used to denote m. Only non-negative exponents will be
used for correspondences which are not permutations.

In (1.3) above, the set of dys are elements of a set called $>(D'); dι

is the only element of a set called &(Df); and ds is the only element
of a set called Sϊ(D'). These sets get their notations, respectively,
from the words: involved, end, and core, spelled k-o-r-e. We now de-
fine these sets, formally.

If D is a correspondence, the set $(D) is defined by i e ^(D) if
and only if i e N and either iD Φ i or %,Ό = i has a solution x, x e 5ft,
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x Φ i. If i e Zs(D), we notice that iDr e $(D) also, for each positive
integer r.

The set gf(D) is defined by j e gf(Z>) if and only if xD = j , j e 31,
has no solution x, x e 31. Clearly, jD Φ j and gf (Z>) c $(D).

The set S(D) is defined by k e ®(D) if and only if k e %(D) and
kDs = fc for some non-negative integer s. We note that Z> acts either
as a cycle or as a product of cycles on Sΐ(D). lί k e ®(D), &Dr e S(D)
also, for each positive integer r. The d's of (1.3) exemplify the fact
that it is not necessarily true that 5Ϊ(D) U g?(D) = 3(D).

Let ΰ be a correspondence and A; e ί?(Z)). If each symbol of ®(D)
is one of the symbols k, kD, kD\ , then D is called an excycle. Ap-
parently, if i 6 $(D), there exists a non-negative integer r such that
ΐD r e &{D). If J5 is an excycle and gf (£>) and fl(D) contain exactly r
and s symbols, respectively, then D is called an rs-excycle. This explains
the term, 1-1-excycle. A 0-s-excycle is a cycle with s symbols. The
product PS of (1.4) is a 4-1-excycle.

THEOREM 1.5 (known). Each correspondence is either an excycle or
a product of excycles with disjoint $-sets.

The proof is not given here as it is very similar to that for the
well-known theorem: Each permutation, not a cycle, is a product
of cycles with disjoint $j-sets. The excycles (cycles) of Theorem 1.5 are
called excycles (cycles) of the given correspondence. The excycles of P
of (1.4) are (3) (1 2 3} (4 2} (5 6 3} (7 6} and (8 9).

If j 6 %f(D), clearly, for some u and v, the operation of D on a
subset of 8(D) is described by D, = (jDυjDυ+1 jDu) (j jD jDυ}.
We call Ό5 a \-(u — v+l)-subexcycle of D determined by j and the first
factor of Dj a subcycle of D. D} may also be called simply a 1-subex-
cycle.

2. Some properties of a correspondence and a permutation which
commute* We next make three simple remarks about commutativity
of correspondences. The usual proofs of the corresponding remarks about
permutations are valid here.

The identity E commutes with each correspondence.
If L is a correspondence, then LaLb = LbLa.
If L and ikf are correspondences and $>(L) Π 3»(Af) = 0, then LM = ML.
The relation (1.4) illustrates Theorem 2.1 and Theorem 2.4 below.

THEOREM 2.1. If S is a permutation on 31 and P is a correspon-
dence, not a substitution on 31 such that SP = PS, then S maps $(P)
onto itself and S?(P) onto itself.

Suppose that the hypothesis of the theorem is satisfied and that
n e $(P), but that nS $ 8(P). Then if nP = m, we have
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(2.2) nS = nSP = nPS = mS .

Whence m = n. Since n e $(P) and nP = n, there exists an α, α e
such that αP = n Φ α. And since wS 0 3>(-P), it follows from the
equation

(2.3) aSP = αPS = wS

that aS = wS and α = w, a contradiction to a Φ n. Hence nS e 3(P),
and since S is a permutation S maps 3>(P) onto itself. Also if we as-
sume n e I?(P) and wP = m in (2.2), the conclusion nP = w contradicts
the hypothesis, w e ^ ( P ) . Whence S maps g"(P) onto itself.

The following is also a theorem, but we shall not prove it as it is
not needed in this paper.

THEOREM 2.4. If P is a correspondence with j e ^ (P) and P}

is a l-(u — v + l)-subexcycle of P, determined by j , and if S is a
permutation such that SP = PS and jSbPm = jPn, for b > 0, m < u,
n <uy and either m < v or n < v, then m — n.

3. Products of cycles which permute l-(u — v + l)-excycles We
shall first generalize the idea of a permution permuting cyclically a
set of cycles of equal numbers of symbols. Let u, v, and t be any
integers such that u > v > 0 and t > 1, and Fo, F19 •••, Ft be
l-(u — v + l)-excycles whose g'-symobols are, respectively, the distinct
symbols, jQ,j19 , j t such that if c is an integer, 0 < c < u, and d is
the least nonnegative residue of the positive integer e, e < t, modulo
tc + 1, with tc + 1, defined below, then

(3.1) jeFt - jaFi .

Let Co, Clf , Cu be cycles of a permutation S such that

(3.2) C^

with ί0 = t and the order *„, + 1 of C^ dividing that ίβ + 1 of Cz

whenever 0 < z < w < u. Then S is said to permute cyclically the
1-excycles Fo, F19 Ft.

We give examples here. The permutation (1 4) (2 5) (3 6) permutes
cyclically each of the pairs: (2 3) (1 2}, (5 6) (4 5} (1 2 3}, (4 5 6} (1 2 3 7},
(4567} . Also (1467) (2 5) permutes cyclically the set (1 2 3}, (4 5 3},
(6 2 3}, (7 5 3} and (5 6) (1 3) (2 4) permutes cyclically the set (12 3 4)
(5 1}, (3 4 1 2) (6 3}. The reader should study each of these examples
and refer to them, frequently, while studying the rest of this paper.

We shall use the above terminology for the .F's and C's, hereafter.

LEMMA 3.3. If Cx = E and 0 <x <y <u9 then Cy ^ E, also.
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This is true, since ty + 1 divides tx + 1.
Let r be the largest integer x such that x < u and Cz ^ E. We im-

pose the added restriction on r, that it be the smallest integer x such
that Cu i = 0,1, , x gives all the distinct (Vs.

THEOREM 3.4. Let P be a correspondence and R be a permutation
such that:

( i ) 3(P) = > $ ( # ) .
(ii) R is a product of the distinct cycles of a set of permutations,

each of which permutes cyclically 1-subexcycles of P.
(iii) If F is a 1-subexcycle of P, then ,^(F) Π ?s(R) = 0, unless F

is one of a set permuted cyclically by R.
Then

(3.5) RP-PR.

If n 0 ^s(R), then neither is wP, by (iii); and

(3.6) nPR = nP = nRP .

If n e $(P). Let w e 3(Πϊ-iC<), where Π?-i C* permutes cyclically the
1-subexcycles Fly I = 0, 1, , t; further let n e $(Cq) and n — jpF

q

p,
for 0 < q < r, and j p e cg(P). Then from (3.2), for 0 < p < tq,

nPR =, nP(U C,) = JPFl+1Cq+1 = i P + 1 Fί:i

(3.7)

while if p = tQ, both the leftmost and rightmost members of (3.7) yield
joE$+1. Hence, by (3.6) and (3.7), we have (3.5).

THEOREM 3.8. Let P be a correspondence and S be a permutation
such that SP ~ PS, with j e if (P) and jPs e ^(S) for some non-nega-
tive s; further let t + 1 be the least positive integer such that jSt+1 — j
and Flf I — 0, 1, , t be the 1-subexcycle of P whose if -symbol is jS1.
Then S permutes the set Fo, Flf , Ft cyclically.

Let g be the largest value, if there is one, of x such that jPx e $(S),
with 0 < x < u, u + 1 the order of the subexcycle Pj9 and u — v + 1 the
order of its subcycle. Let Ct,ί = 0fl, ,g be the cycle of S, pos-
sibly the identity, such that

(3.9) Ct =

for some non-negative integer tt. Certainly t = ί0. The order of Ct is
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ί, + 1. By Theorem 2.1, jPιSι e 9f(P) and i S ι 6 ξ?(P), for i < g,
0 < £ < tt. Since S is a permutation, we have cancellation by Sι and
both equations in each of the pairs of equations hold simultaneously:

l _ jυ0 ^ jSiPU0 + 1 = jSi

(3.10)

jPuι+1 = jp»z, jSιPuι+1 =

Hence, ^ = ^ 0 and vz = v0. We notice that for 0 < z < w < g, and
h + z = w, we have

(3.11) jPw = jP'SΊ+Ψ* = jPz+hSιz+1 = jPwSιz+1 .

Therefore, since tw + 1 is the order of Cw, it follows from group theory
that tw + 1 divides tz + 1. Also if e = d(mod ίc + 1), we have
β — m(ίc + 1) + d, m a non-negative integer and

(3.12) jSeFc

e = jSm(tc+v+dPc = jPcSd = i S d P c = iS d^S ,

which gives (3.1), since here j e = i*Se and jd = i*Sd. Hence S permutes
the F's cyclically.

Let S be a permutation and P be a correspondence, which is not
a permutation. Clearly, P is expressible in the form

(3.13) P ^ 7\T2 ,

where either Tλ = E or 2\ is a product of cycles of P, and T2 is pro-
duct of those excycles of P which are not cycles. And S is expressible
in the form

(3.14) S = Sβ2 ,

where S1 is either a product of those cycles C of S such that I(C) Π
7(!Γ2) = 0 or S1 = Ey depending on whether or not such C's exist, and
S2 is either a product of those cycles D of S such that $(!>) Π I(T2) Φ 0
or S2 = £7, depending on whether or not such D's exist.

THEOREM 3.15. If S is a permutation and P is a correspondence,
not a permutation, and S19 S29 Tlf and T2 satisfy (3.13) and (3.14),
then SP = PS if and only if:

(i) S^sΓA;
(ii) Whenever j e &(T2) such that for some non-negative integer

s, jPs e S(S), then S2 permutes cyclically the set of 1-excycles of T2

whose &-symbols are the distinct symbols obtained by applying all
powers of S to j.

Suppose that PS = SP. By Theorem 3.8, if j e gf (P) and jPs e 3(S),
a product π defined as in (3.2) of cycles of S permutes cyclically a set
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of 1-subexcycles of P, and therefore of Γ2, having powers of S applied
to j as their gf -symbols. By (3.2) I(π) is contained in the union of the
$-sets of the subexcycles which it permutes. Clearly, S2 is a product
of the distinct cycles of all such TΓ'S, or S2 = E, depending on whether
or not such TΓ'S exist, and S2 satisfies (ii) of Theorem 3.15. From (3.13)
and (3.14)

(3.16) 3(?\) n 3(Ta) - m ) n 3(Ta) = o

Since 3f(Sa) c £(T2), we have

(3.17) 3(2*0 n 3KS0 = o .

Hence ^(T,) U 3(<Si) n 3(Γa) U 3(Sa) = 0, and S ^ and Γ A operate on
9KS0 U SίΓO exactly as ST and ΓS do; and for n 0 ^(TO U S(S2),
wSjTi = WΓLSJ = n. Whence S^ = Tβlf and (i) is satisfied. Now as-
sume that (i) and (ii) of Theorem 3.15 are satisfied by S and P. From
Theorem 3.4, we have S2T2 ^ T2S2. By (i), S& = T&. From (3.16)
and (3.17), S,T2 = T2Sly T,T2 ^ TJΓlf and S2T, = Tβt. Hence

(3.18) SP ^ S1S2TiTΛ = S^SJΓ, = T&T& = Ttf&S, = PS .

This completes the proof of Theorem 3.15 which was the major objec-
tive of this paper.

The necessary and sufficient conditions for (i) to hold were stated
in the foreword. In each of the examples below (3.2), if S is taken
to be the permutation and P to be the correspondence whose 1-subex-
cycles are permuted by S, then S and P obey (i) and (ii) of Theorem
3.15. A more complicated example of such a P and S is: P = (4) (1 2 3}
(2 3} (8) (5 7 8} (6 7}, S = (1 5) (2 6) (3 7) (4 8). On the other hand if
S = (146)(25) and P = (1 2 3} (45 3} (6 5}, then SP £ PS, since the
order of (2 5) fails to divide that of (14 6) and S2 fails to permute
cyclically the 1-1-subexcycles (12 3}, (4 5 3}, and (6 5 3} of P.





ON THE ZEROS OF SOLUTIONS OF SOME LINEAR
COMPLEX DIFFERENTIAL EQUATIONS

DAVID V. V. WEND

Introduction* In this paper Green's function methods are used to
investigate the distribution on the real axis of zeros of solutions of the
complex differential equations

(1) (v(χ)y'ϊ + f(χ)y = o

and

(2) y"'+f(x)y = 0.

In both cases the coefficient f(x) is assumed to be complex-valued and
continuous on a half-line /: x0 < x < oo, while p(x) in equation (1) is
assumed to belong to a special class of complex-valued functions to be
defined in Section I.

Equation (1) or equation (2) is said to be nonoscίllatory on a set E
if no nontrivial solution has an infinite number of zeros in E. In what
follows a solution shall mean a nontrivial solution. Suppose in equation
(1) x is a complex variable and p(x) and f(x) are analytic in a simply-
connected region R. Consider the well known Green's function g(x, s)
for the differential system

(3) (p(x)y')' = 0, y(a) = y(b) = 0 ,

where a and b are distinct points of R1. If a and b are zeros of a solu-
tion of equation (1), then

< [\g(x,8)\\f(x)\\dx\ ,
Ja

where the integral is taken along a path C in R and s is an interior
point of C. Starting with this inequality and imposing various bounds
on \f(x)\, Z. Nehari [7] and P. R. Beesack [3] have obtained nonoscilla-
tion theorems for y" + f(x)y = 0 in various regions of the complex plane
where f(x) is analytic. By the same methods the author [2] has ex-
tended some of these theorems and obtained similar results for equation
(1). The methods used in this paper are essentially those employed in
the sources mentioned above. However, by restricting the independent
variable to the real axis the condition of analyticity is relaxed and

Received May 21, 1959. This research was sponsored by the Office of Ordnance Research
under Contract DA-04-495-ORD-1088. Presented to the American Mathematical Society
November, 1958.

1 Sufficient conditions for the existence of g(x,s) are given in [2, p 15].
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upper bounds on the number of zeros of a solution on a given interval
are obtained not only for equation (1) but also for the third order equa-
tion (2).

1. A nonoscillation theorem* In this section we will consider equa-
tion (1). It will be assumed that p(x) is continuous and different from
zero on /. In order to make use of Green's function we wish to have
the system (3) incompatible, i.e., possess no (nontrivial) solution on /.

If p(x) is allowed to be complex-valued on /, then the system (3)
may be compatible. For example the system (e~ixy')f = 0, y(2mπ) = 0,
y(2nπ) = 0, m and n distinct positive integers, has the nontrivial solu-
tion y(x) = eix — 1 on I: 0 < x < oo. In order to avoid such examples
and also to be able to make use of certain estimates of Green's function,
only a restricted class of functions p{x) will be considered.

DEFINITION. Let G(I) denote the class of all complex-valued, con-
tinuous and non-zero functions p(x) defined on I: x0 < x < oo which
possess the further property that for any three numbers α, b and c such
that # 0 < α < δ < c < o o ,

( 4 )

( \ \[ dx . [c dx
(a) I —T-r < I — —

\Up(x) iap(x)

d x dx

Note. The class G(I) contains the functions p(x) > 0 which are
continuous on /.

An interesting subclass of G(I) is the collection of complex-valued
functions p(x) in G{I) which possess the additional property that if

- ^ - u(x) + iv(x) ,
*o V(t)

then

and for any x', x" in /, θ' = arctan {dv\άx\du\dx) \x.x, and

arctan I
/ dv/dx \
\ duldx /

can be chosen so that | θ' — θ" \ < π/2. In effect, the image curve of /
under φ(x) cannot change direction by more than π/2.
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Suppose p(x) e G(I). Then the differential system (3) is incom-
patible. Therefore the Green's function for this system exists, and it
has the explicit form

( 5 ) g{x, s) =

\ J*L
)ap(t)a p(t) Js p(t)

dt

d t

)ap(t))χp(t)

dt

, a < x < s

, s < x < b

a < s < b.

Since p(x) e G(I), the inequalities (4) are satisfied and these inequal-
ities together with the above expressions for g(x, s) show that

( 6 ) g(χ9
< -

(a)

Φ)

(0

Γ-
ja

dt
P(t)\

dt

P(t)\

dt

I p{t) I I

x Φ a, b and s Φ α, b.

If y(x) is a nontrivial solution of equation (1) on the interval a< x <b
such that y(a) = y(b) = 0, then the inequalities (4) imply f(x) is not
identically zero on a < x < b and

y(x) = I flf(a?, s)y{s)f(s)ds .
Jα

If x is chosen so that | y(x) | is a maximum on the interval a < x < b,
then (following Z. Nehari [7]):

( 7 ) 1 < [\g(x,s)\\f(s)\ds.
Ja

As a consequence of inequalities (6) and (7),

(a) \b\f(x)\dx[-
Ja Ja

( 8 )

dx
\~PW\

THEOREM 1. Suppose p(x) e G(7), and a, < α2 < αw are
secutίve zeros of a solution of (p(x)yj + f(x)y = 0, a2 > ίc0.
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must satisfy the inequalities

(<*\ Ύi 1 ^

( 9 )

(x)\

(b) n~l<\an\f(x)\([
\p(t)\

(c) n - ^ p ^ ^

Proof. Since p(a ) e G(7), the inequalities (8) are satisfied for a and
6 zeros of a solution of equation (1). From inequality (8a)

* 1 - ^ - , j = 1,2, . - . , » - 1 .
a ιγ\ί rγ J

_ ί ϊr\ ) I

Adding these w. — 1 inequalities,

w - 1 < \

giving the inequality (9a). The inequalities (9b) and (9c) follow in similar

fashion from the inequalities (8b) and (8c), respectively.

The following theorem is an immediate corollary of Theorem 1.

THEOREM 2. Nonoscillation theorem. Suppose p(x) e G(I) and

\p(t)

\f(x)\(^τ^
U Ĵz \p(t) I

where L and M many assume the value + oo. Then (p(x)yf)' + f(%)y = 0
is nonoscillatory on I if either L or M is finite, and if either L or M is
less than 1, then equation (1) is disconjugate on /, i.e., no solution has
more than one zero on I.

In the case f(x) and p(x) are real, the tests in Theorem 2 compare
with known criteria, for example those of W. Leighton [5, Corollary
4.2], E. Hille [4, p. 238], R. A. Moore [6, Theorems 3, 4 and 7 Corollary 1]
and R. L. Potter [8, Theorem 4.2].

2 An example* The substitution y = v/i/'p' transforms equation
(1) into the normal form

(10) v" + F(x)v = 0

where
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+
p 4 V p 1 2 V p

and equation (1) is nonoscillatory if and only if equation (10) is nonoscil-
latory. With p(x) == 1, the constant M in Theorem 2 is infinite, while
the nonoscillation condition

(11) L

is equivalent to

(12) [° x I F{x) I dx < oo .
J^o

In the following differential equation the integral in (12) is infinite,
hence fails to show nonoscillation, while in (11) L < 2, showing that no
solution of the equation can have more than two zeros on /. Let

( - 5 — f - λ — y ' ) ' + , * y = 0, *o = 1 .
V 2 — sin \ogx / (cc + )̂

Since j)(α5) = x2/(2 — sin logx) > 0 on 7, p(x) e G(I), and it is easily esti-
mated that

dt)dx<.
| + | t2 / 2

For equation (13)

£7/ x __ 2 — sin logo? , 1 / — 3cos 2 logx , 2sin logx — 2cos l o g x \
x\x + ί)2 4cc2 V (2 — sin logx)2 2 — sin log$ /

and easy estimations give

[°°x\F(x)\dx > ί°° —
Ji Ji Ax

-r
2 sin log x — 2 cos log ce 3 cos2 log x

2 — sin log x (2 — sin log xf
dx

2 - s i n l o g ^
d

+ 1)

where 0 < I2 < 3/4. Letting £ = logx in /x,

(cosί - sint)2 + cos2ί - 4(sin£ - cosί) \dt/: > — \
36 Jo

36 Jo

From the graph of ft(ί), fc(ί) > 1 for 0 < t < τr/4 and 57r/4 < £ < 2π,



718 DAVID V. V. WEND

while k(t) < - 1 for 3ττ/4 < t < πy so | k(t) | > 1 for intervals of length
5ττ/4 out of each interval of length 2π on 0 < t < oo. Therefore £ = oo,

5 00

x I F(x) I dx = 00 .

3* Distribution of zeros Suppose the upper limits of the integrals
on the right in the inequalities (9) are considered as continuous varia-
bles and f(x) is not identically zero on any subinterval of /. Then in
each case the integral is a strictly monotone increasing function of the
upper limit and there exists at most one value of the upper limit for
which equality will hold. If xλ is such a value, then no solution of
equation (1) can have more than n zeros on the interval x0 < x < xx.
Since an> xlf the value xx also gives a lower bound on the magnitude
of the nt\ί consecutive zero on I of any solution of equation (1).

Adapting the notation used in [6], let N(x19 x2) be the maximum
number of zeros any solution of equation (1) may have on the interval
Xi < x < x2- Since in the complex case there is often no zero separation
theorem, the number N(x19 x2) merely puts an upper bound on the num-
ber of zeros a particular solution may have. See [1, Theorem 1.2].

As an application of the above discussion we give the following
theorem:

THEOREM 3. Suppose aλ < α2 < < an, 1 < x0 < aιy are n consecu-
tive zeros of a solution of

{χσy')'

and H = f" \f(x) \ dx < 00. If 0 < σ < 1, then

(14) [1 + (n -

and N(xQ, xj < n. If σ = 1, then

(15)

and N(x0, x2) < n.

Proof. Inequality (14) follows from inequality (9a). Inequality (15)
may be obtained from inequality (14) by letting σ —> 1 or directly from
inequality (9b).

Other lower bounds on the magnitude of the zeros of solutions of
equation (1) can be obtained by considering the maximum value of
I g(x, s)\ on a < x < b, a < s < b. We assume p(x) > 0 and continuous
on /. From the expressions for g(x, s) given in (5) it can be shown
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that the maximum value of | g(x, s) | occurs when x = s and s satisfies
the equation

(16) ( ' " T Γ = Γ - ^ r (Compare [3, p. 231].)
Jα P(X) }s p(X)

As an illustration of this result we give the following theorem:

THEOREM 4. Suppose ax < α2 < < an, 0 < x0 < au are n consecu-

tive zeros of a solution of equation (1) and H= \ \f(x)\dx < oo. If

p(x) = 1 on I, then N(x0, 4(n — 1)/H) < n. If p(x) Ξ= X on I, then
N(xo,xoexv[4:(n-l)IH])<n. If p(x) = x2 on I, then N(x0, oo) <
(H/4:X0) + 1, x0 > 0, /^tice ί/̂ e equation is nonoscillatory on I.

Proof. If p(#) = 1 on /, then from equation (16) s = (α + 6)/2 and
the maximum value of | g(xy s) \ = (6 —α)/4. From inequality (7),

1 < max 1 flf(a?, s) | (βJ+1|/(») I ^ , i = 1, 2, . . . , n - 1
JCtj

so that

4 Jao 4

and αw > 4(n ~ 1)IH. The results for p(x) = OJ and p(#) = α;2 can be ob-
tained in a similar fashion.

4 The equation ym + /(^)τ/ = 0 The differential system y"f = 0,
2/(α) = j/(6) = y(c) = 0, α < 6 < c, is incompatible, so that the Green's
function for this system exists and has the explicit form

(17) g(x,8)

\ (

 {C~ SY

 M (x - a)(x - 6) = Λ l , b < s < c, a < x < s
2 (c — α)(c — 6)

_ 1 / _ v _ A / / / /

_ _ 1/,

1 c-b
2 c — α

(x - α)(a? - 6) = flr31, s = 6, a <x < s

1
2 "" "" *
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An upper bound for | g(x, s)\ on a<x<c,a<s<c can be ob-
tained when a > 0 by considering each of the expressions gi5 above. It
is easily found that

I 0ii | < ^rΛ 9n \<C\\ 031 | < -ξ-, 1̂ 32 | < C2 .
Lt LA

The expression for g22(x, s) can be written as

2 (c — a)(b — α)

whence | g22 | < c2/2, and | ^211 < | g22 \ + (l/2)(ίc — s)2 < c2. Thus in each
case \gtj\ < c2, so

(18) I g(x, s) I < c2 for α < x < c , α < s < c .

Assume /(#) is continuous on I. If ]/(#) is a nontrivial solution of

equation (2) on the interval a < x < c for which y(a) = /̂(δ) = y(c) = 0,

O < ^ o < ^ < & < ^ » then

τ/(x) = \ gf(χ, s)y(s)f(s)ds ,
Jα

and as in § 1,

K

Using inequality (18),

(19) l<c*[\f(x)\dx.
Jα

THEOREM 5. Suppose f{x) is continuous on I: x0 < x < oo, χ0 > 0,

S oo

|/(ίc) I dx — N. If ax < α2 < < an are n consecutive zero of
XQ

a solution of y"f + f(x)y — 0, a± > x0, then

(20) an > V[{n - 1 ) - ( 1 + ( - l)n)j2]j2N, n > S .

Proof. From inequality (19),

(21) l<a*j+X3*2\f(x)\dx, j = l,2,.. , n - 2 .

Let n = 2m. Then adding the inequalities in (21) for j = 2, 4, , 2m — 2,

m - 1 < αL Γ 2 m |/(^) | dx < a\mN.

Therefore a2m =- an> τ/(n — 2)/2JV. If n = 2m + 1, then adding ine-
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qualities in (21) for j = 1, 3, , 2m — 1, m < alm+1N, so a2m+1 = an >
y / ^ __ i)/2N. Combining these two cases the inequality (20) results.

Note 2. Adding the n — 2 inequalities in (21),

5 00

I f(x) I dx — co, this last inequality still yields

lower bounds for the zeros an. For example, if f(x) = V~x + i and
x0 — 0, then

n — 2 < —^[(α,, + 1)3/2 — 1], n > 3 ,

and the positive root of

x7 + 3x6 + 3x5 - — (n - 2)x2 - — (n, - 2)2 = 0
2 16

is a lower bound for an.

5, Higher order equations* The methods employed in deriving ine-

qualities (14) (σ = 0) and (20) can be applied to the A th order differential

equation

(22) y™ + f(x)y = 0 ,

where f(x) is continuous and complex-valued on I. For suppose ax <
x2 < < an are n consecutive zeros of a solution of equation (22),
%! > x0 > 0, n = kq + r > k. Then

K \aj+IC~1\g(χ,s)\\f(χ)\dx, i = i ,2, . . . ,7*- fc + i ,

where (/(#, s) is the Green's function for the system.

y(fc) — 0, y(dj) = 2/(αj+1) = = y(aj+lc-1) — 0 .

Suppose a bound can be found for | g(x, s) \ on the interval a3 < x < aj+k-.x

which is a monotone function, say B(aj+lc-ι)1 of aό+k-λ. Then

where N = \ |/(ίc) | dx < oo. In particular if we conjecture2 B(an) < α^"1,
Jx0

as is the case for k = 2, 3, then

2 This conjecture has been verified for n < 6.
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POLARITY AND DUALITY

FRED B. WRIGHT

One of the most frequently encountered situations in mathematics
is the existence of a Galois correspondence between two partially ordered
systems. An abstract formulation of this concept has been given by
Garrett Birkhoff [1, pp. 54-57] and Ore [5], in the following terms.

DEFINITION. Let A and B be two partially ordered sets, and let
# : A-^B and + : A-^B be two mappings such t h a t :

( i ) if pλ < p2 in A, then p\ < p\ in B
(ii) if qx < q2 in B, then q2

+ < qf in A; and
(iii) for any p e A and any q eB, p < q*+ and q < q+K

Then the mappings # and + are said to define a Galois correspondence
between A and B.

The number of ways in which a Galois correspondence can arise is
quite large, and most of them are very well known instances of what
is usually called "duality theory" . Perhaps the commonest source is
the existence of a relation between the elements of two sets. Birkhoff
has described this procedure as follows. Let S and T be two sets, and
let p be a relation from S to T. That is, p is a subset of the cartesian
product S x T; we write spt to denote (s, t) e p, as is customary. For
any subset Sλ c S, define S\ to be the set of all those elements teT
such that sφt for all sλ e Sτ. Similarly, for any subset Tx c Γ, denote
by Tt the set of all those seS such that sptx for all txe 7\. Then the
mapping #: A—>B and + : B—>A define a Galois correspondence between
the Boolean algebra A of all subsets of S and the Boolean algebra B of
all subsets of T.

This example has some special features which are not available for
general partially ordered systems. If φ denotes the empty set of S, then
φ* = 2\ and if S, and S2 are any two subsets of S, then (S, U S2)* = Sf U S*.
A similar result holds for the other mapping + . This is due to the fact
that Boolean algebras are special cases of lattices which satisfy the
conditions of the following result.

LEMMA. Let A and B be lattices, each having a greatest element
1 and a least element 0, and let % : A—>B and + : B—>A define a Galois
correspondence between A and B. Then 0# = 1, 0+ = 1, and {pλ\/p^f —
P*Λp\, 07iVg2)

+ = qΐΛtfί, for any p19 p2eA and glf q2eB.
This result is well known and, in any event, easily proved. (The

Received May 8, 1959. The author is an Alfred P. Sloan Research Fellow,
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symbols 0,1 denote ambiguously the least and greatest elements of both
A and B.)

This suggests that these two conditons might perhaps be taken as
more primitive embodiments of general duality concepts. In so doing,
of course, one loses the full generality of partially ordered systems.
The purpose of this note is to consider mappings of Boolean algebras
which have these two properties. It will be shown that, in this case,
the method of Birkhoff described above is not only sufficient for const-
ructing a Galois corresponcence but is also necessary.

To be precise, we introduce the following terminolgy.

DEFINITION. Let A and B be two Boolean algebras. By a polarity
of A into Bf we shall mean a mapping # of A into B satisfying the
two requirements : (i) 0* = 1, and (ii) for any p, q e A, (pVqY = p*ΛqK

Some recent developments in the duality theory of Boolean algebras
may be used to characterize completely such mappings. It may be well
to summarize these developments.

If A is any Boolean algebra, its dual space X is a Boolean space—
that is, a compact, totally disconnected, Hausdorff space. The algebra
A is isomorphic with the Boolean algebra Φ{X) of all continuous functions
from the space X to the (discrete) two-element Boolean algebra Φ. The
algebra A will, in fact, be identified with the algebra <£(X), so that each
element peA is a continuous function from X to Φ, and each such
function is an element of A. This relationship between Boolean algebras
A and Boolean spaces X is the basis of the duality theory of M. H.
Stone [6, 7].

Let A and B be two Boolean algebras, with dual spaces X and Y
respectively, so that A = Φ(X) and B — Φ(Y). By a hemimorphism a
of A into B is meant a mapping a: AB such that (i) αO = 0, and (ii)
a{p\Jq) = ap\/aq, for any p, qe A. Every hemimorphism a of A into
B defines a relation, denoted by α*, of 7 into X, as follows : ya*x if
and only if p(x) < ap(y) for every peA. The relation α* so defined
has two special topological properties. If E is any subset of X, let
α*-1!? denote the set of all those yeY such that ya*x for some x e E.
Then α* has the property that α*-\P is a clopen set in Y whenever P
is a clopen set in X. (A clopen set in a topological space is one which
is both closed and open.) Another way of expressing this property is
to say that α*-1{cceX: p(x) = 1} = {yeY: ap(y) = 1}, for each peA.
Moreover, if y e Y is any point, then the set of all those x e X such that
ya*x is compact.

Conversely, let p be any relation from the space Y to the space X.
For any element peA, we define a function p*p from Y to Φ by
setting ρ*p(y) = lub {p(x): ypx]. It is easily seen that p*Q(y) = 0 for
every yeY and that p*(pVq)(y) = P*p(y)Vp*q(y) for any ye F a n d any
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two elements p, q e A. If p has the property that ρ~λP is a clopen set in
Y whenever P is a clopen set in X, then p*p will be a continuous function
for each element peA, and hence p* will be a hemimorphism of A into J5.

If α is a hemimorphism of A into 1?, and if α* is the relation from
Y to X described above, then α** is also a hemimorphism of A into £>.
One easily shows that α** = a. (Any mapping α has a dual relation
α*, defined as before in order that a = α**, it is necessary and sufficient
that a be a hemimorphism.) On the other hand, suppose that p is a
relation from Y to X such that ρ~λP is clopen in F whenever P is clopen
in X; then jθ* is a hemimorphism of A into J5, and hence ô** is a
relation from Y to X. A necessary and sufficient condition that p = ^**
is that for each t/e7, the set {#e X: ?/|0£c} is compact. Such a relation
is called a Boolean relation. The correspondence between hemimorphisms
and Boolean relations just described is one-to-one. This extension of
Stone's duality theory is due to Halmos [2]. See also Jonsson and Tarski
[4] and Wright [8].

Cognizance should be taken of the fact that topological considerations
may be ignored when the algebras A and B are the algebras of all
subsets of two sets, say of S and T, respectively. If A = Φ(X) and
B = Φ(Y), then the Boolean spaces X and Y are the Stone-Cech com-
pactifications of the discrete spaces S and T respectively. Then a
Boolean relation from Y to X defines a relation from T to S, and any
relation from T to S may be extended to a Boolean relation from Y to X.

The duality between hemimorphisms and Boolean relations is sufficient
to describe completely the structure of polarities, because the theory of
polarities is coextensive with the theory of hemimorphisms. (If p is an
element of a Boolean algebra, we denote the complement of p by the
symbol p\)

THEOREM 1. If % is a polarity of a Boolean algebra A into a
Boolean algebra B, and if, for each peA, we set ap = (p*)', then a is
a hemimorphism of A into B. Conversely, if a is a hemimorphism
of A into B, and if, for each peA, we set p* = (ap)r, then § is a
polarity of A into B.

Proof. This is quite trivial: let a and # be two mappings of A
into B such that (ap)' — p# for each peA. Then αO = 0 if and only if
0* = 1, and a(pVq) = apyaq if and only if (pVqY = p*Λq*.

This means that every special property of a polarity can be translated
into a corresponding special property of a hemimorphism, and con-
sequently into a special property of a Boolean relation. It is, however,
sometimes more revealing to use the complementary relation. If p is a
relation from Y to X, the complementary relation pf from Y to X is
the complement of p in the cartesian product Y x X; that is, the set-
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theoretic complement of p considered as a subset of Y x X. Since it
will be convenient to use such complementary relations, we shall introduce
the following name for them.

DEFINITION. A relation p from one Boolean space Y to another
Boolean space X will be called a polarity relation if it is the comple-
mentary relation σr of a Boolean relation σ of Y into X. If # is a
polarity of one Boolean algebra A into another Boolean algebra B, and
if a is the hemimorphism of A into B defined by ap = (p% then a and
# will be said to be associated. If α* is the dual Boolean relation for
the hemimorphism a, the polarity relation α*' will be called the conjugate
relation of the polarity # associated with a.

Suppose, in the notation of this definition, that # is a polarity from
A to B. For any clopen set P in X, there is an element p sA such
that p — {x 6 X : p(x) = 1}. We may, temporarily, denote by p* the set
{y e Y: p\y) = 1}. The comprement (p#)' of p* in Y is given by the
formulas

={yeY: (p*)'(y) = l} = {yeY: ap{y) = 1}

= a^-^xeX: p(x) = 1} = a*-χp .

Thus y ° (P#)' if and only if there is an element xeP such that ya*x,
and hence y e P* if and only if ya*'x for all xe P. If p denotes the
polarity relation p = α* ;, then y e P* if and only if ^ x for all xeP.
In other words, every polarity has the form given by Birkhoff, if con-
sideration is given to the topological structure of the dual spaces. Then
Theorem 1 may be restated in the following (somewhat telegraphic) form.

THEOREM 2. There is a one-to-one correspondence between polarities
of Boolean algebras and polarity relations of Boolean spaces.

Special properties of hemimorphisms have been investigated in terms
of their dual Boolean relations [8]. It is thus quite easy to obtain the
corresponding facts about polarities.

DEFINITION. A polarity # of A into B is called a DeMorgan polarity
if (pΛqf = p*Vq*, for each p, q e A, and if 1# = 0.

THEOREM 3. Let % be a polarity of A into B. The following are
then equivalent:

( i ) % is a DeMorgan polarity
(ii) the associated hemimorphism a is a homomorphism :
(iii) the Boolean relation α* is a function
(iv) the polarity relation p = α*', has the property that for any

y eY, if xλ and x2 are distinct elements of X, then either ypx1 or ypx2

and
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(v) (p*)' = (p'Y, for any peA.

Proof. A hemimorphism a is a homomorphism if and only if
i(pAq) = <xpf\aq for all p, qeA, and al = 1. The theorem follows
from this and from the fact that α is a homomorphism if and only if
Ύ* is a function [2].

Let A, Z?, C be Boolean algebras, with dual spaces X, Y, Z re-
spectively. If a: A—>B and /5: j?—>C are hemimorphisms, then the
product βa: A—>C is also a hemimorphism. Correspondingly if a is a
Boolean from Z to Y and if /? is a Boolean relation from Y to X, then
the prodnct pσ is a Boolean relation from Z to X [3]. Recall then
z(pσ)x if and only if there is an element y e Y such that zσy and 2/̂ $.
If α* = p and β* = σ, then (/βα)* ~ pσ — α*/3* [2].

The iteration of two polarities is not, is general, a polarity. However,
it may have other important properties in particular, we are interested
in the properties of a Galois correspondence. Note that if # : A—>B is a
polarity, then p1 < p2 in A implies p* < p\ in 5. This means that it is
only the third condition in the definition of a Galois correspondence
which needs investigation.

Recall that if p is a relation from Y to X, the inverse relation p'1

is a relation from X to F, defined by declaring xp~λy if and only if ypx.

THEOREM 4. Let % be a polarity from a Boolean algebra A, with
dual space X, to a Boolean algebra B, with dual space Y. Let a be
the associated hemimorphism, let a* be the dual Boolean relation of a,
and let p be the conjugate polarity relation of #. Let + be a polarity
from B into A, let β be the associated hemimorphism, let β* be the
dual Boolean relation of β, and let σ be the conjugate polarity relation
of #. Then the following are equivalent:

( i ) P < P#+ for each peA;
(ii) β(ap)r < p' for each peA;
(iii) xβ*y implies ya*x for each xeX,yeY
(iv) β* c α*-1:
(v) ypx implies xσy for each x e X, y e Y and
(vi) paσ-\

Proof. The only problem is to show that (ii) and (iii) are equivalent.
This will follow from the slightly more general result: for any two
elements xx and x2 e X, we have β{ap)\x^) < p\x2) for all peA if and
only if, for any yeY, %Jϊ*y implies ya*x2. For we have β{ap)\x^) =
lub{(ap)f(y): xλβ

γy}, so that β{ap)\x1) < p\x2) if and only if xβ*y
implies p(x2) < ap(y). This last inequality holds for each peA if and
only if ya*x2.

This result has a number of immediate corollaries which clarify the
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nature of Galois correspondences between Boolean algebras.

THEOREM 5. In the notation of Theorem 3, the polarities % and +
define a Galois correspondence of A and B if and only if β* = α*"1.

This means that a given polarity # can have at most one other
polarity+which may be paired with it to yield a Galois correspondence.
Theorem 2 showed that the method given by Birkhoff is the only way
bo obtain a polarity this result shows that the same method is the
mly way to obtain a Galois correspondence. These facts also given an
mswer to an important question in connection with Boolean relations
themselves : when is the inverse of a Boolean relation again a Boolean
relation ?

THEOREM 6. Let Θ be a Boolean relation from a Boolean space Y
\o another Boolean space X. A necessary and sufficient condition that
\he inverse relation Θ'1 be a Boolean relation is that the dual hemi-
morphism θ* of φ(X) into Φ(Y) be the associated hemimorphism of a
polarity of φ(X) to φ(Y) which is part of a Galois correspondence.

In the special case of most importance, when X = Y, this condition
Decomes very simple.

THEOREM 7. Let % be a polarity of a Boolean algebra A into itself,
let a be its associated hemimorphismf let α* be the dual relation of a,
md let p be the conjugate polarity relation of #. Then the following
ire equivalent:

( i ) p < pu for each pe A;
(ii) a(ap)' < pf for each pe A
(iii) α* is symmetric and
(iv) p is symmetric .
A polarity has some to the properties of the complementation

mapping p—>p'. We may ask what other properties of complementation
it can have, and in particular, we may seek a characterization of
complementation. Since we are given a Boolean algebra at the outset,
there is already available one characterization of complementation: In
any distributive lattice with 0 and 1, if every element p has an element
pf such that p\/p' = 1 and p/\pf = 0, then the element p' is unique.
Furthermore, the mapping p—>pf is a DeMorgan polarity satisfying
p = p". When we ask for a characterization of complementation, we
ask for additional assumptions about a polarity # which imply that
p# — p' for each element p.

Let # be a polarity of a Boolean algebra A into itself. Theorem 3
gives precise conditions that # satisfy DeMorgan's laws, and Theorem 7
gives equally precise conditions that p < pu for each pe A. From the
above list of properties of complementation, this leaves three attributes
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to be investigated (1) pVP* = 1 for each pe A (2) pΛp* = 0 for each
p e A and (3) p*# < p for each p e A.

In the next two theorems, let a be the associated hemimorphism
of the polarity # of A into itself, let α* be the dual Boolean relation
of a, and let p be the conjugate polarity ralation of #.

THEOREM 8. T%e following are equivalent:
( i ) pVp# = 1 /or eαc/k p € A
(ii) p* = p'vδ /or eαcfe p e i , where be A is some fixed element
(iii) i/ α^α*^, £/^% ^ = x2 ami
(iv) if x1 Φ x2f then xλpx2.

In particular, the following are equivalent :
( I ) pVp# = 1 for each pe A, and 1* = 0
( I I ) p# = p' for each pe A;
(III) xxa*x2 if and only if xx = x2 and
(IV) EijOίCa i/ cmcZ only if xx Φ x2.

Proof. It is easily seen that pVp* — 1 if and only if ap < p. It
is known [8] that a hemimorphism a satisfies this condition for each
peA if and only if ap = pΛ<x, for some fixed α e i . The theorem
follows from this fact.

THEOREM 9. The following are equivalent:
( i ) p/\p% = 0 for each pe A)
(ii) p < ap for each pe A;
(iii) α* is reflexive αmϋ
(iv) /> is irreflexive.

Proof. The equivalence of (ii) with (iii) is proved in [8] the
equivalence of the others is then trivial. (Note that an irreflexive
relation p is one such that either xprx or else xpx implies xpy for all y.)

The problem of condition (3) can be treated in more generality.
Return for a moment to the definition of a Galois correspondence. If
we retain (i) and (ii) of this definition, but alter (iii) to read (iii')
p# + < p and <?+# < q, then the lemma stated at the beginning must also
be altered. In fact, the conclusion becomes 1# = 0,1 + = 0, {p±Ap2y —
V\VPL (QiΛq2)

+ —qΐVQt These properties might also be considered in
the manner in which we have treated of polarities. There is obviously
no need to do this.

However, if we have two polarities % and + having the property
given by (iii') above, then the altered lemma shows that we have two
DeMorgan polarities. If a and β are the associated hemimorphisms,
then both a and β are homomorphisms. Furthermore, βap = pp+r =
p t + < P, for each pe A. Then [8], βap = p/\a, and since βal = 1, we
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have βap = p for each pe A. This gives the following result.

THEOREM 10. Let % be a polarity of A into B and let + be a
polarity of B into A. In the notation of Theorem 4, the following are
equivalent :

( i ) P*+ < P and g+# < q for each pe A and qe B
(ii) p#+ = p and q+* = q for each pe A and qe B
(iii) a and β are reciprocal isomorphisms of A onto B and of B

onto A respectively and
(iv) α* and β* are reciprocal homeomorphisms of Y onto X and

of X onto Y respectively.
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