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1. Introduction. The structure of the lattice L is known to depend
upon properties of the distributive lattice J(L) of all congruence rela-
tions on L; for example,

(1.1) (Birkhoff [1]) L is a subdirect union of a finite number of
simple lattices if and only if (L) is a finite Boolean algebra,

(1.2) (Dilworth [2]) L is a direct union of a finite number of simple
lattices if and only if (L) is a finite Boolean algebra in which all the
elements permute.

In the early development of structure theory for lattices, L was
assumed to be modular, and the notion of projectivity was used to study
congruence relations. For non-modular lattices a more general concept
was needed; accordingly, Dilworth [2] devised the notion of weak pro-
jectivity and showed that complementation has a strong influence on
structure. He proved:

(1.3) Every relatively complemented lattice satisfying the ascending
chain condition is the direct union of a finite number of simple relat-
ively complemented lattices;

(1.4) Every finite dimensional locally relatively complemented lattice
is a subdirect union of a finite union of simple, locally relatively com-
plemented lattices;

(1.5) A relatively complemented lattice which satisfies a chain con-
dition is simple if and only if all prime quotients are projective.

More recently these results have been developed and generalized by
Tanaka [7], Maeda [6], and Hashimoto [4].

It is interesting to observe for the lattices described in (1.3), (1.4),
and (1.5), weak projectivity of prime quotients reduces to projectivity.
The present paper studies the relationship between weak projectivity
and projectivity of prime quotients. It is shown that if L satisfies the
descending chain condition and if each join irreducible element of L
covers some element, then the corresponding irreducible congruence re-
lations generate #(L) and provide simple criteria for the structure of L.

2. Definitions. This section contains definitions of the basic terms
which are used; terminology generally conforms to that given in Birkhoft
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(a) Quotients. If a 2b in L, the quotient {xeL|b C x C a} is
denoted by a/b. If a covers b (a >b), then a/b is called a prime
quotient. The quotient ¢/d is contained im a/b if and only if bCdCcCa.

(b) Weak projectivity. A quotient a/b is said to be weakly pro-
jective into a quotient ¢/d (a/b WP c¢/d) whenever there exists a finite
sequence of quotients a/b = x,/y,, X./¥1, * **, ,/Y = ¢/d such that x,_,/y;—,
is contained in a transpose of x,/y;. Weak projectivity of quotients is a re-
flexive and transitive relation, but, unlike projectivity, is not symmetric.

(¢) Congruence relations. A congruence relation 8 on L is an equi-
valence relation which is preserved by the two basic lattice operations.
Congruence relations are partially ordered by writing 6 < ¢ if and only
if @ =b (0) implies @ = b (¢). Under this ordering the set of all con-
gruence relations on L is a complete lattice (L) in which the operations
are defined by

a=b (Ugl,) means a = &, &, +++, &, = b exist such that z,, =z,
(9,) for some 6,€S,

a=>b (N, means a =b (0,) for all 6,¢S.

Furthermore, (L) is distributive (Funayama and Nakayama [3]). Two
congruence relations are said to permute whenever a = ¢ (0) and ¢ = b (¢)
imply that d exists such that a =d (¢) and d = b (). The center I'(L)
of ¥(L) is the set of all ¢ € #(L) which permute with all 6 e }(L). The
trivial congruence relations ¢ and @ are the unit and null elements of
J(L). The quotient a/b is said to be collapsed by 0 if and only if a = b (6).
Clearly « =1y (0) if and only if (xUy)/(xNy) is collapsed by 6. Then
every quotient is collapsed by ¢, and no proper quotient is collapsed by w.

(d) Structural properties. L is simple if and only if the congruence
relations on L are trivial. L is irreducible if and only if there exist
distinct elements a and b such that a = b (0) for every 6 + w. Simpli-
city implies irreducibility, but not conversely.

(e) Dimenstonality. For the methods of this paper it is necessary
to impose on L the condition

(8) L satisfies the descending chain condition, and each join
irreducible element covers some element.
Any such lattice will be called a o-lattice.

(f) Quotient ideals. Given a congruence relation 6 on a lattice L,
let N(6) denote the set of all quotients collapsed by 6. Then N(0) is
a quotient ideal as defined by Maeda [5]; that is, N(0) satisfies

(2.1) ala e N(9),

(2.2) if a/be N(9) and ¢/d < a/b, then c/d e N(6),
(2.3) if a/be N(6) and a/b P c¢/d, then c/d e N(6),
(2.4) if a/be N(9) and b/ce N(F), then alce N(6).

Conversely, given any quotient ideal N, a congruence relation O(N) is
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defined by writing ¢ = b ((N)) if and only if (¢ Ub)/(@anb)e N. It fol-
lows that N(0(N)) = N. Furthermore,

(2.5) N(0) C N($) if and only if 0 C ¢.

The connection between quotient ideals and weak projectivity is
established as follows: let S be any set of quotients of L, and denote
by N(S) the set of all quotients a/b for which there exists a chain
a=2,2x 2+ 22, =0b such that x,_,/x;, is weakly projective into a
quotient of S, for ¢+ =1, .-+, k. Then N(S) is the minimal quotient
ideal containing S. In this way S determines a congruence relation
0(S) = (N(S)) which is the minimal congruence relation which collapses
the quotients of S.

This paper is concerned primarily with the case in which S consists
of a single irreducible prime quotient q/c,, where ¢ is join irreducible
and g > ¢,; the corresponding congruence relation will be denoted by
0,. Such a relation will be called an irreducible congruence relation.
This terminology is justified by the fact that precisely these congruence
relations are the join irreducible elements of J(L).

3. Irreducible congruence relations. Let L be a d-lattice, and let
@ be the set of its join irreducible elements. For each a e L define

Qa) = {geRlqg < a} .

Since the descending chain condition holds, each a € L is the union of a
finite subset of Q(a).

LEMMA 8.1. If aDb, then qlc, WP a/b for every qe Q(a) — Q(b),
and qle, P (qUb)/b for every q which is minimal in Q(a) — Q(b).

Proof. 1If q € Q(a) — Q(b), then qfc, € q/(gNd) T (qUb)/b < aldb, so
qle, WP a/b. If ¢ is minimal in Q(a) — Q(b), then ¢ > gNb, and the
second statement holds.

For each congruence relation 8 on L let W(#) denote the set of all
irreducibles ¢ for which ¢/c, is collapsed by 6; that is,

W(0) = {geQlg =c(0)} = {geQlg/c,e N(©O)} .

Likewise for any quotient a/b, let 6(a/b) be the congruence relation
generated by collapsing a/b; it follows that

W(6(a/b)) = {geQlq/c, WP alb} ,

and we write W(a/b) in place of W(f(a/b)). Using similar notation for
projectivity, let
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P(a/b) = {geQlq/c, P alb} .

The following statements are easy consequences of these definitions,
the properties of projectivity and weak projectivity, and Lemma 3.1.

(8.1) The sets P(g/c,) for ¢e @ form a partition of Q.

(3.2) P(a/b) < W(a/b).

(3.3) If a/b is prime and if ¢ is minimal in Q(a) — Q(b), then P(a/b) =
P(q/c,) and W(a/b) = W(q/c,).

(3.4) If qe W(a/b), then P(q/c,) < W(q/c,) = W(a/b).

(8.5) W(a/t) = \V ywmPlaley).

The remainder of this section is devoted to proving a sequence of
lemmas concerning these sets, weak projectivity, and congruence re-
lations to demonstrate the role of irreducible congruence relations in
generating J(L).

LEMMA 3.2. If a 2b, then a = b(0) t1f and only if 6(a/d) < 6.

Proof. Let a=1b () and x =y (6(a/b)). A chain, 2Uy =a,2 a,
D . Da,=xNYy, exists for which a,_,/a; WP a/be N(6). By (2.2), (2.3),
and the definition of weak projectivity, a,_./a; € N(6). Then (x Uy)/(xNy) €
N() by (2.4), and N(6(a/b)) < N(0). The lemma follows from (2.5),
the reverse implication being trivial.

COROLLARY. qe W(0) if and only if 6, < 6.

The next lemma is of fundamental importance, since it reveals that
the collapse of any quotient can be accomplished by the collapse of a
finite number of irreducible prime quotients; hence any congruence re-
lation is a finite union of irreducible congruence relations.

LEmMMA 3.3. If aDb, there exists a finite set S < Q(a) — Q(b) such
that a = b(U s0,).

Proof. By the descending chain condition it may be assumed that
every element properly contained in a has the property asserted in the
lemma. Let S, € Q(a) — Q(b) be chosen so that ¢, €S, is not redundant
in the representation ¢ =bU Us,q. Let S;=8 —q, and let a,=
bUUs,q; then e Da,2b. A finite set S; S Q(a,) — Q(b) éxists such that
a, =bU(Us, 0,). Also a finite set S, C Q(q;) — Q(a,Nq,) exists such that
6 =0a,Nq(Us,0). Then S= S8,V S, is a finite subset of Q(a) — Q(b)
for which a = b(Us 9,).

LEMMA 3.4. If a Db, there exists a finite set S Q(a) — Q(b) such
that 0(ajb) = Us 4,.

Proof. Lemmas 3.2 and 3.3 imply 6(a/b) € Usf,. Conversely,
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Lemma 3.1, the definition of W (), and the Corollary imply 6, < 6(a/b)
for every qeQ(a) — Q(b).

LEMMA 3.5. For some finite set S < W(0), 0 = U, 0,.

Proof. From the Corollary, Uy« 0, S 0. Conversely, let x = y(09),
x #vy; by Lemma 3.3 x Uy =« Ny (Us0, for some finite S < Q(x Uy)—
Q(x Ny). Hence 0 < Us0,. But g/c,e N(x UylxNy) < N@) for every
qe S, so Sc W().

LEMMA 3.6. W(0) < W(p) if and only if 0 C ¢.

Proof. The direct implication follows from Lemma 8.5, while the
reverse implication follows from (2.5) and the definition of W(6). Ob-
serve that if equality holds in either relation, it holds in both.

LEMMA 3.7. 8 s completely join trreducible in HNL) if and only
if 6 = 0, for some qeQ.

Proof. From Lemma 3.5 it is clear that any completely join irre-
ducible ¢ must be of the form 6, for some ge W(0) € Q. Conversely,
for any q e @ suppose 0, = Unesl,. Then q = ¢,(U.e. 6.), so there exists
a finite sequence

q = Doy &gy + 0+, B = Cq
such that
®; = 2,(0,,), for some «; € A,
for =1,2 ---, k. Then
(@, Ng)Ue, = (2, Ng)Uc(be,) .
But
2@ NgUec,2¢,,

so for each ¢ = 0,1,---,k, (x, N q) U ¢, equals q or ¢,. Since ¢ = (x,Ng)Uc,
and ¢, = (x, N q) U ¢c,, there exists an index 7,1 < j <k, for which

g=@NQPUe =@ NgUec = Cq(amj) .

By Lemma 3.2, 0, € 6, » also the reverse relation holds by hypothesis,
so 0, =24, 5

Thus any completely irreducible element of #(L) is an irreducible
congruence relation, 6, generated by collapsing an irreducible prime
quotient of L. It follows from (3.3) and Lemma 3.3 that the collapse
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of any prime quotient generates an irreducible congruence relation.
Clearly the number of distinct completely irreducible elements of (L)
cannot exceed the number of distinct irreducibles in L. Two additional
remarks concerning weak projectivity conclude this section.

LemmA 3.8. If a/b WP c/d, then for each q<Q(a) — Q(b) there
exists ¢ € Q(c) — Q(d) such that qlc, WP §/c;.

Proof. Let qeQ(a) — Q(b), where a/b WP c/d. Then qe W(c/d),
and 0, < 0(c/d) = Us 07, where S € Q(c) — Q(d). But in a distributive
lattice if an irreducible is contained in the join of elements, it is con-
tained in one of those elements. Hence 6, C 0; for some GeS. By
Lemma 3.6, q/c, WP qlc;.

LEMMA 3.9. If a/b WP c/d, then 0(a/b) < 6(c/d); the converse holds
if alb is prime.

Proof. If a/b WP c/d, then W(a/b) € W(c/d) since weak project-
ivity is transitive. By Lemma 3.6, 6(a/b) < 6(c/d). Conversely, if a/b
is prime, then a/b T g/c, for any minimal q € Q(a) — Q(b) < W(a/b). If
also 0(a/b) < 0(c/d), g € W(c/d), so a/b WP c/d.

4, Structure theorems. We now consider the role of irreducible
congruence relations in determining the structure of L. From the
theorems quoted in the introduction, it is clear that complementation
in ¥(L), permutability in $#(L), and the relation between weak project-
ivity of prime quotients have important effects on the structure of L.

THEOREM 4.1. In any dS-lattice the following statements are equi-
valent :

(a) HL) is a Boolean algebra,

(b) for every qeQ, 0, > w,

(c) the relation of weak projectivity is symmetric on the set of all
irreducible prime quotients.

Proof. Any join irreducible element of a Boolean algebra must be
a point, so (a) implies (b). Let 6, be a point, and suppose g/c; WP q/c,.
By Lemma 8.9, 0; < ,, and equality must hold. Then gq/c, WP §/c;,
again by Lemma 3.9, so (b) implies (¢). If weak projectivity is sym-
metric for all irreducible prime quotients, the sets W(q/c,) partition Q.
For arbitrary 6, let ' = Uy @ 0, where W'(0) = Q — W (). Then ¢ is
a complement of 4 in J(L), which therefore is a Boolean algebra.

It follows from the preceding argument that (L) is a Boolean
algebra if and only if the sets W(g/c,) partition €. But also the sets
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P(q/c,) partition Q, and P(q/c,) € W(q/c,). Thus if J(L) is a Boolean
algebra, the partition of € imposed by projectivity is a refinement of
the partition imposed by weak projectivity. These two partitions can
be distinct, even when L 1is simple. However, weak projectivity of
prime quotients does reduce to projectivity for a wide class of lattices
—for example, modular lattices and the lattices described in (1.3), (1.4),
and (1.5). In this connection the following theorem underlies correspond-
ing results obtained by Dilworth [2] and Hashimoto [4] for relatively
complemented lattices.

THEOREM 4.2. Let a O-lattice L satisfy the condition that if two
irreducible prime quotients are mutually weakly projective, then they
are projective. Then L is simple if and only if all prime quotients
are projective.

Proof. Hashimoto uses the term wuniserial to describe lattices in
which all prime quotients are projective. Clearly any uniserial lattice
is simple, because the collapse of any quotient collapses all of L. Con-
versely, if L is simple, let a/b and ¢/d be prime quotients. By (3.3)
and Lemma 3.6, 6(a/b) = 0(q/c,) = 0(c/d) = 0(¢/c;) where the middle
equality holds since L is simple, and where ¢ and ¢ can be chosen to
be minimal, respectively, in Q(a) — Q(b) and Q(c) — Q(d). Then a/b T
qle, WP qle; T c/d, and q/c; WP q/c,. Hence q/c, P §/c;, and a/b P c/d.

THEOREM 4.3. If L is a &-lattice for which (L) 1s a Boolean
algebra, then L is simple if and only if L is trreducible.

Proof. Let a + b be elements which establish the irreducibility of
L; a=0b(0) for all § + w. Forall e @, a = b(0,); thus 6(a Ub/anb)Zd,.
Therefore, for some ¢ and all g, 6(a U b/a N b) = 0; < 0,, so HL) has 07
as its only point. But if ¢(L) is also a Boolean algebra, ¢; = 6, for all
¢, and therefore L is simple. The converse is well known.

COROLLARY. A &-lattice L s irreducible if and only if JI(L) has
a single point.

Proof. The preceding proof shows that (L) has a unique point if
L is irreducible. But if 6, is the only point of (L), then 6 #+ w im-
plies ¢, € 0, and thus ¢ = ¢,(f). Therefore ¢ and ¢, satisfy the condi-
tion of irreducibility for L.

Our remaining remarks concern complementation and permutability
of irreducible congruence relations. The investigation of these proper-
ties arises naturally because any direct decomposition of L determines
a congruence relation ¢ which has a complement and which permutes
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with all congruence relations. A congruence relation with these two
properties is called a decomposition congruence relation, and the set of
all decomposition congruence relations forms a Boolean sublattice of $(L).

LemMmA 4.1. 60, has a complement in (L) tf and only if 0, satisfies
the condition that e Q and 6,0 0; + w 1mply 6; < 6,.*

Proof. Let 0* be a complement of 4,; it is easily verified that
W(6*) is the complement of W(6, in Q. Let 6,N6;=0>O>w. Then
W) 2 W@) so W) AN W(6*) is void. Also W(9) < W(b;), so if
G € W(6*), then by the Corollary following Lemma 3.2, W(0) < W(6;) <
W (6*), which is a contradiction. Hence ge W(,) and 6; < 6,. Con-
versely, suppose 6, satisfies the condition stated in the lemma. Lat
W* =@ — W(,), and let 6* = Uy-0;. Then W(0*) 2 W*, so 6,U6*=¢;
and 0, N 0* = Uw-(0,N 6;). But ge W* implies 0; £6,, so 6,N0; =w
for all ge W*. Thus 6,N 0* = w.

THEOREM 4.4. If L is a d-lattice, then $(L) is a Boolean algebra
if and only if 6, has a complement for every q € Q.

Proof. The condition is trivially necessary. Suppose each 6, has
a complement; then Lemma 4.1 implies that if 6; N 6; + w, then 6; S6;
and 0; < 6;. Hence for each ¢ €@, 6, must be a point, so by Theorem
4.1 %(L) is a Boolean algebra.

THEOREM 4.5. If L is a S&-lattice, then ['(L) = H(L) if and only if
0, and 07 permute for all q, e Q.

Proof. The necessity is trivial; the sufficiency follows from Lemma
3.5 and the fact that if 6 permutes with each member of a set of con-
gruence relations, then 6 permutes with any union of them.

Combining Theorems 4.4 and 4.5 with (1.1) and (1.2), we see that
under suitable dimensionality conditions, L is a subdirect union of simple
lattices if and only if each 6, has a complement, while L is a direct
union of simple lattices if and only if each 6, is a decomposition con-
gruence relation.

BIBLIOGRAPHY

1. G. Birkhoff, Lattice Theory, Rev. ed. Amer. Math. Soc. Colloquium Publications, Vol.
25 (1948).
2. R. P. Dilworth, The structure of relatively complemented lattices. Annals of Math, 51,

1 As the referee has pointed out, Lemma 4.1 expresses a property of the join irreduci-
bles of any complete, distributive lattice which satisfies the descending chain condition.



IRREDUCIBLE CONGRUENCE RELATIONS ON LATTICES 821

No. 2 (1950), 348-359.

3. N. Funayama, and T. Takayama, On the distributivity of a lattice of congruence re-
lations. Proc. Imp. Acad. Tokyo, 18 (1942), 553-554.

4. J. Hashimoto, Direct, subdirect decompositions and congruence relations. Osaka Math.
J., 9 (1957), 87-112.

5. F. Maeda, Kontinuierliche Geometrien, Grundlehren der Math. Wiss., Band XCV (1958).
6. ——— Direct and subdirect factorizations of lattices, J. Sci. Hiroshima Univ., Ser.
A, 15 (1951), 99-102.

7. T. Tanaka, Canonical subdirect factorizations of lattices, J. Sci. Hiroshima Univ., Ser.
A, 16 (1952), 239-246.

KENYON COLLEGE






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
Davip GiLBARG A. L. WHITEMAN
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
F. H. BRowWNELL L. J. Pace
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH E. HEWITT M. OHTSUKA E. SPANIER
T. M. CHERRY A. HORN H. L. ROYDEN E. G. STRAUS
D. DERRY L. NACHBIN M. M. SCHIFFER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE COLLEGE
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE COLLEGE AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY HUGHES AIRCRAFT COMPANY

UNIVERSITY OF SOUTHERN CALIFORNIA SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should\
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may '
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California. _

1

50 reprints per author of each article are furnished free of charge; additional copies may be .
obtained at cost in multiples of 50. N l
<

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues',
$1.25, . -

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California. *

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2.chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journil,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 10, No. 3 November, 1960

Glen Earl Baxter, An analytic problem whose solution follows from a simple

algebraic identity . ......... ... 731
Leonard D. Berkovitz and Melvin Dresher, A multimove infinite game with linear

DAY e e e e e 743
Earl Robert Berkson, Sequel to a paper of A. E. Taylor . ......................... 767
Gerald Berman and Robert Jerome Silverman, Embedding of algebraic systems.... 777
Peter Crawley, Lattices whose congruences form a boolean algebra . . ............ 787
Robert E. Edwards, Integral bases in inductive limit spaces...................... 797
Daniel T. Finkbeiner, II, Irreducible congruence relations on lattices ............. 813
William James Firey, Isoperimetric ratios of Reuleaux polygons.................. 823
Delbert Ray Fulkerson, Zero-one matrices with zero trace . ...................... 831
Leon W. Green, A sphere characterization related to Blaschke’s conjecture. . . ... .. 837
Israel (Yitzchak) Nathan Herstein and Erwin Kleinfeld, Lie mappings in

CRAracteriStiC 2 .. ... 843
Charles Ray Hobby, A characteristic subgroup of a p-group . .................... 853
R. K. Juberg, On the Dirichlet problem for certain higher order parabolic

CQUALIONS et ettt e e e e e e e e e e ettt et e e 859
Melvin Katz, Infinitely repeatable games . .......... ... . ... 879
Emma Lehmer, On Jacobi functions.............. ... i, 887
D. H. Lehmer, Power character matrices . .......... oo einenanennn. 895

Henry B. Mann, A refinement of the fundamental theorem on th
Of tWo Sets Of INtegers ........ouuiiiiiiiiiiiinn...
Marvin David Marcus and Roy Westwick, Linear maps on ske
matrices: the invariance of elementary symmetric function
Richard Dean Mayer and Richard Scott Pierce, Boolean algebr

Trevor James McMinn, On the line segments of a convex surfac
Frank Albert Raymond, The end point compactification of man
Edgar Reich and S. E. Warschawski, On canonical conformal
arbitrary CONNeCtiVity . .......c.ouuie e,
Marvin Rosenblum, The absolute continuity of Toeplitz’s matri
Lee Albert Rubel, Maximal means and Tauberian theorems . . .
Helmut Heinrich Schaefer, Some spectral properties of positive
OPEFALOTS . .\ ottt ettt e et
Jeremiah Milton Stark, Minimum problems in the theory of pse
transformations and their application to estimation of the
IMVATIANE TNCITIC . . . oot v vttt

Robert Steinberg, The simplicity of certain groups . ...........
Hisahiro Tamano, On paracompactness.....................

Angus E. Taylor, Mittag-Leffler expansions and spectral theory
Marion Franklin Tinsley, Permanents of cyclic matrices . . . ... .
Charles J. Titus, A theory of normal curves and some applicati
Charles R. B. Wright, On groups of exponent four with generat



	
	
	

