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BOOLEAN ALGEBRAS WITH ORDERED BASES

R. D. MAYER AND R. S. PIERCE

1. Introduction* In 1939 Mostowski and Tarski introduced in [6]
the notion of a Boolean ring with an ordered basis and they showed
that many of the properties of countable Boolean rings can be generalized
to this larger class of rings.

DEFINITION 1.1. A subset S of a Boolean ring B is called an ordered
basis of B if:

( i ) S does not contain the zero 0 of B;
(ii) the ordering of B restricted to S is total, that is, for any

8, t in S, either s < t or t < s;
(iii) S generates J3, that is, there is no proper subalgebra of B

containing S.
Not every Boolean ring contains an ordered basis S. (See the end

of section two.) But a more serious difficulty is the fact that a Boolean
ring may have many different ordered bases. Consequently, it seems
natural to consider pairs ζβ, Sy consisting of Boolean rings B and
ordered bases S cz B.

In this paper the topological representation theory of Stone [7] is
used to study Boolean algebras with ordered bases. We first investigate
the topological interpretation of the extra structure provided by an
ordered basis in a Boolean algebra. It turns out that the existence of
an ordered basis S in B is equivalent to the existence of an ordering
< of the points of the Boolean space X of B with the property that
the topology of X coincides with the interval topology. Moreover, dis-
tinct bases in B correspond to different orderings of X. Section two is
devoted to establishing this correspondence ζB, Sy*-* (X, <> between
Boolean algebras with ordered bases and ordered Boolean spaces. The
remainder of the paper is devoted to exploiting the correspondence.
Boolean algebras with bases of special order types are considered. In
particular, a topological characterization of Boolean algebras with well
ordered bases is obtained. Moreover, complete invariants for the iso-
morphism types of such algebras are found and these invariants are
used to investigate free product decompositions.

A remark is in order concerning the restriction to Boolean algebras,
that is, Boolean rings with a unit 1. From the topological point of
view, this restriction yields the blessings of compactness. Moreover,
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from the algebraic standpoint the restriction is mild since, as can easily
be seen, if B is a Boolean ring with ordered basis S, then the Boolean
algebra B1 obtained from B by the usual process of unit adjunction has
Si = S u {1} as an ordered basis, and what is more, B can be recovered
from ζB19 S^) as the unique maximal ideal containing Sλ — {1}.

It is assumed that the reader of this paper has a working knowledge
of the Stone representation theory of Boolean algebras, as developed in
[7]. We shall denote by X(B) the Boolean space of prime ideals of the
Boolean algebra B. Also, for any topological space X, B(X) stands
for the Boolean algebra of open-and-closed sets in X. Operations in a
Boolean algebra are denoted by Λ, V, ( ' ) , and + (for the symmetric
difference). We use small Greek letters to designate ordinal numbers.
In particular, ω denotes the first infinite ordinal. Ordinal numbers are
considered as sets, namely the sets consisting of all ordinals less than
a given one. Thus, for ordinal numbers, the relations a < β, a c β and
a e β are equivalent. We will have occasion to use addition, multiplica-
tion, and exponentiation of order types. The definition of these opera-
tions are given in [3].

2 Boolean chains* If x and y are elements of a chain and x<y,
let(x,y)= {z I x < z < y], [x, y] = {z \ x < z < y), (x, y] = {z \ x < z < y}
and (y] = {z\z < y}. The element y covers x precisely when (x, y) = φ
(assuming x < y). In this case it is customary to call ζx, y) a jump
(see [2], p. 90).

DEFINITION 2.1. A chain C has the jump property if for any x<y
in C, there is a jump in the interval [x, y]. An element t in the chain
C is called a jump point if either t is covered in C or t is the greatest
element of C.

LEMMA 2.2. Let C be a chain with a greatest element 1. Let A
be the set of all jump points of C. Then the following two conditions
are equivalent:

( i ) C has the jump property;
(ii) the half open intervals (α, b] and (c\ with a, δ, c in A con-

stitute a base for the interval topology of C. If C is complete, then
these conditions are all equivalent to C being totally disconnected in
its interval topology.

Proof. The equivalence of (i) and (ii) is a routine consequence of the
definitions; also, (ii) clearly implies that the open-and-closed sets in C
form a basis for the interval topology. If C is complete, then it is
compact in its interval topology [1, p. 41]. Assume that C is totally
disconnected and let x < y in C. We wish to find a jump in the closed
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interval [x, y]. If y covers x, then <α?, yy is already a jump. If
x < z < y for some 2;, there is an open-and-closed set N with z e Nc:(x, y).
By compactness, N is a finite union of non-empty open intervals, say
N = (alf &0 U U (ak, bk) w i t h x < ax< < ak < y. T h e n aλ $ N, so
there is an open interval (c, d) containing aλ and disjoint from N. In
particular, (a19 d) c (c, c?) Π (αly δj = φ, that is, d covers aλ. Since
Mi < y, % < CLi < d < y and <αυ cΓ> is the required jump.

DEFINITION 2.3. A totally ordered set C is called a Boolean chain
if C is complete and has the jump property.

A Boolean chain will be considered to be both an ordered set and
a topological space with the order topology. By 2.2 and [1, p. 41], an
ordered set is a Boolean chain if and only if it is a compact, totally
disconnected space in its order topology.

Before formulating the main theorem, it is necessary to establish
the notion of isomorphism of Boolean algebras with ordered bases.

DEFINITION 2.4. Let <2?, S> and <β\ S'> be pairs consisting of
Boolean algebras with ordered bases. A Boolean isomorphism h of B
into Bf is called a basis isomorphism if h(S) = S'; in this case the pairs
(B, Sy, (B1', S'y are said to be isomorphic.

As usual, two chains are called isomorphic if there is a one-to-one,
order preserving correspondence between them. Such a correspondence
automatically preserves the order topology.

THEOREM 2.5. ( i ) Let B be a Boolean algebra and let S be an
ordered basis of B. Then there is a unique ordering <s of X(B) such
that

(a) (X{B), <sy is a Boolean chain;
( b) the Boolean topology of X(B) coincides with the interval topology

determined by <s;
( c ) in the natural isomorphism between B and the open-and-closed

sets of X(B), the elements of S correspond to intervals (J], where J is
a jump point of X(B).

(ii) Let <(C, <y be a Boolean chain and let S(<) be the set of
intervals of the form (α], where a is a jump point. Then S(<) is an
ordered basis for B(C).

(iii) The correspondences Σ: <B, S>-><X(B), <s> and T: <C, <>-+
(B(C), S(<)> are dual to each other, that is, TΣ (B, Sy is isomorphic
to <β, Sy and ΣT <C, <> is isomorphic to <C, <>.

Proof, (i) Let P and Q be prime ideals of B. Define P <s Q if
Pf]Sc:Qf)S. This relation is obviously transitive and reflexive. Moreover,

and QnS are ideals in the chain S, so that either P
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or Q n S c P n S . Finally, if P Φ Q, then PnSφQnS (see [6, Theorem
4.1]). Thus (X{B), <sy is a chain. The fact that this chain is complete
and has the jump property will follow from 2.2 once we show that the
order topology coincides with the Boolean topology. By the compactness
of X(B) it is enough to prove that every non-empty interval (P, R) is
open. Hence, suppose P <SQ <SR We want to find aeB such that
Q e X(a) c (P, R), where X(a) is the open-and-closed subset of X(B)
corresponding to α, namely X(a) = {Le X(B) \ a 0 L}. Since Pf]SaQ ΠS
ci2nS, there exist teQf]S - P n S and seRΓ)S-Qf)S. Let a=sΛt'.
Since teQ, s0Q, it follows that aφQ9 that is, QeX(a). If LeX(a),
then s Λ ί' $ L, so that s φ L and ί e L . Thus, L Π S ξ£ P Π S and
RnS£Lf)S. Hence P < S L < * # . This proves that X(α)C(P, β).

To prove (c), suppose that s e S. Then P<sQeX(s) implies
s$Qf)S^Pf)S. so that PeX(s). Thus, X(s) is an open-and-closed ideal
of the chain X(B) and therefore of the form (/], where / is a jump
point. Conversely, if J is a jump point, then (J] is an open-and-
closed ideal of the chain X(B). In particular, (J] = X(a) for some non-
zero aeB. Represent a in the form ak + ah-x + + a2 + alf with
ateS and 0 < ak < α*.̂  < < α2 < aλ. Since S generates i?, such a
representation exists. By what has just been shown, X(at) = (Jt] for
some Jt e X(B). Clearly, Jk <s Λ-i <« < ^ 2 < s ^ Then (J] =
(J2, JJ U (/4, J8] U , which is possible only if k = 1, J = Jx and (J] =

(ii) is a routine consequence of 2.2.
(iii) By [7], the correspondence a—>X(a) defines an isomorphism of

B onto B(X(B)). The assertion that this is a basis isomorphism is just
a restatement of (i)(c). Thus, (By S)> is isomorphic to TΣζB,Sy. Also,
if C is a Boolean chain, the mapping x —> P x = {ΛΓe S(C) | cc 0 AT} defines a
homeomorphism of C on X(B(C)). It x < y, and if N e S(<), then # e AT
implies α? 6 N. Thus, P x nS(<)cP 1 / nS(<) . Hence, <C, <> is isomorphic
to ΣT<C, <>.

REMARK. If <JB, S> and <JB', S'> are Boolean algebras with ordered
bases, and if h is homomorphism of B into Br such that h(S) c S\ then
the continuous mapping of X(Bf) into X(B) which the Stone representa-
tion theory associates with h can be shown to preserve the orderings
<s, and <s. Dually, if g is a continuous, order preserving mapping of
the Boolean chain <C, <> into the Boolean chain <C, <'>, then the
associated homomorphism of B{C) into B(C) maps S(<') into S(<).
Thus, the correspondences Σ and T are contra variant functors between
the categories of Boolean algebras with ordered bases and Boolean chains
(with the notion of homomorphism defined suitably). They are dual in the
sense that the isomorphisms of 2.5 (iii) define natural equivalences of
TΣ and ΣT to the identity functors on their respective categories.
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Mostowski and Tarski showed that a Boolean algebra B is uniquely
determined up to isomorphism by any of its ordered bases. Specifically,
if S and Sf are bases of the Boolean algebras B and Bf respectively,
and if h is a one-to-one, order preserving mapping of S onto S', then
h extends uniquely to an isomorphism of B onto B' [6, Theorem 2.1].
Thus, the ordered basis S of B also determines ζX(B), <5>. However,
X(B) can be constructed explicitly2 from S.

If S is a chain, a (possibly empty) subset JczS is called an ideal of
S if ae I, b < a implies be I. Any element ae S naturally determines
two ideals:

Ia= {x e S I x < a} ,

Ja = {x e S I x ^ a} ,

DEFINITION 2.6. Let S be a chain with a greatest element 1. Define
c{S) to be the set of all ideals I of S such that 10/.

LEMMA 2.7. ( i ) c(S) is a Boolean chain under inclusion;
(ii) a—> Ia is a one-to-one, order preserving mapping of S onto

the set of all jump points of c(S);
(iii) if S is complete, then c(S) = {Ia\ ae S} [j {Ja\ae S, a Φ 1}.

Proof. It is well known that the ideals of a chain form a complete
chain under inclusion. From this, it follows easily that c(S) is a complete
chain. Moreover, it is clear that for any aeS, Ja covers Ia in c(S).
If IcJ are ideals in c(S), and if ae J and aφ I, then

Thus, c(S) has the jump property. Moreover, if /covers /, then neces-
sarily I — Ia and J — Ja. Hence every jump point of c(S) is of the
form Ia for some aeS. (Note that the greatest element of c(S) is 71#)
This proves (i) and (ii). If S is complete and Iec(S), let a be the least
upper bound of /. Then b e I implies b < a. Hence IC Ja. On the
other hand, if b < a, then b < c for some eel and therefore b e I.
Thus, Ia c I. Consequently, either I = Ia, or I — Ja. This proves (iii).

THEOREM 2.8. If S is an ordered basis of the Boolean algebra B,
then ζX(B), <sy is order isomorphic to (c(S), c>.

Proof. The theorem follows from 2.7, 2.5 and the uniqueness
theorem of Mostowski and Tarski [6, Theorem 2.1].

2 We are indebted to the referee for a suggestion which simplified our original con-
struction of X(B).
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COROLLARY 2.9. A Boolean algebra B has a well ordered basis if
and only if X(B) is homeomorphic to /c, where K is a non-limit ordinal
with the interval topology.

Proof. If B has a well ordered basis S, then S is order isomorphic
to some ordinal fc. Since S has a greatest element, tc is a non-limit
ordinal. Since Λ: is complete and all of its points except the greatest
are covered, c(κ) = it. Hence, X{B) is homeomorphic to K by 2.8. The
converse is a consequence of 2.5.

We conclude this section with a result which provides examples of
Boolean algebras having no ordered basis.

THEOREM 2.10. If B is an infinite Boolean algebra with an ordered
basis S, then B is not countably complete.

Proof. Clearly S is infinite. Suppose S contains no descending
chain of type ω*. Then S is well ordered and therefore contains a
subset of type ω. Hence S has either an infinite descending or an
infinite ascending subsequence. The proof is similar for the two cases,
so assume that S contains a sequence s± < s2 < •••. By 2.5, X(sn) =
(«/„], where Jn is covered in X(B). Then J2n e (J2n-lf J2n] = X(s2n-λ + s2n).
Suppose t = V^=1 (s2w_! + s2n) exists. Then X(t) is a finite union of
intervals and one of these necessarily contains a pair of points J2m, J2n

with m < n. Hence, X(s2m + s2m+i) c: (J2 m, J2W] c X(t) and therefore
s2m + s2wi+1 < ί. But clearly (s2m + s2m+1) A t = 0, so s2m = s2m+1. This
contradiction proves the theorem.

3 Boolean algebras with scattered bases. A totally ordered set is
called scattered if it contains no subset whose order type is the same
as that of the rational numbers. For example, any well ordered set is
scattered. In this section we will study those Boolean algebras which
have a scattered basis, that is, an ordered basis which is scattered.
The first objective is to characterize the Boolean spaces of these algebras.

DEFINITION 3.1. Let X be any Hausdorff topological space. Define
X' to be the subspace of X consisting of all limit points, that is, the
complement of the set of isolated points of X. The space X' is called
the (first) derivative of X. Transfinite derivatives of X are defined
inductively: Xw - X; X{τ+1) = (X{τ))'; X{σ) = Πr<σ X{τ), when σ is a
limit ordinal.

It is convenient to collect some properties of the transfinite deriva-
tives.

LEMMA 3.2. If X is a Hausdorff space and a and τ are any
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ordinals, then
( i ) σ > τ implies X{σ) c X{τ);
(ii) for some smallest ordinal τ, X{τ) — X(Γ+1); for any larger

σ, X{τ) = X ( σ ) ;

(iii) X{τ) is a closed subspace of X;
(iv) XΏ Y implies X{τ) 3 Y^:

( v ) (X ( σ ) ) ( r ) = Xiσ+τ)',

(vi) ΐ/ Γ is an open subset of X, then Y[τ) = 7 π l ( r ) ;
(vii) if X is compact and X{τ) = φ, then there is a non-limit ordinal

λ such that X{λ) = φ and X{λ'1] is a finite, non-empty set:
(viii) if X is a chain and Xiτ) = φ for some τ, then X has the jump

property.

Proof. Properties (i)-(v) are simple consequences of the definitions.
To prove (vi), note that by (i) and (iv), F ς Γ n Xr. Suppose x e Y
and xφ Yf. Then there is a neighborhood Not x such that Nf] Y= {x}.
If Y is open, Nf] Y is open and therefore x φ X'. Thus, Yr = YΓ\X'.
Assume that (vi) holds for all ξ<τ. If τ = 0, Y{0) - Y= Yf]X =
Yf]X{0). If τ = ξ + l, then since Yf]X{ξ) is an open subset of X{ξ),

Γ(r) = ( Γ ( e ,y = ( y n x « ) y = Y n X ( ? ) n ( X ( ? ) ) ; - ΓΠX ( Γ ) . If τ is a limit
ordinal, Y{τ) - Γle<r Y{ζ) = Πe<r (ΓΠ-X:(€)) = Γ n Γ Γ ) . If X is compact
and infinite, then X* Φ φ. Also, if τ is a limit ordinal and X{ζ) Φ φ
for all ξ < τ, then X{τ) φ φ. From these two remarks, (vii) is evident.
Suppose that X is a chain and (x, y) is a non-empty open interval of X.
Then by (vi), (x, y)iτ) = (α, i/)ίlI ( T ) = φ. In particular, (x, y)f Φ (x, y),
which clearly implies that (x, y) contains a jump.

THEOREM 3.3. For a Boolean algebra B with an ordered basis S,
the following properties are equivalent:

( i ) every ordered basis of B is scattered;
(ii) S is scattered;
(iii) no quotient algebra of B is atom free;
(iv) every closed non-empty subspace of X{B) has isolated points;
(v) there is an ordinal τ such that X(B){τ) = φ.

Proof. The equivalence of (i), (ii) and (iii) is proved in [6, Theorem
3.12 and Theorem 3.15]. Properties (iii) and (iv) are equivalent since,
in the duality between Boolean algebras and Boolean spaces, quotient
algebras correspond to closed subspaces and atoms correspond to isolated
points. We shall not give this argument in detail. To prove that (iv)
and (v) are equivalent, suppose X(B) contains no closed non-empty
subspaces without isolated points. Let τ be an ordinal such that X(B){τ} —
X(B){τ+ι). Then X(B){τ) is a closed subspace of X(B) which has no isolated
points. Thus it must be empty. Conversely, if X(B) contains a closed
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non-empty subspace Y without isolated points, then for all τ, X(B){τ) =>

y(r) = YΦΦ.
It is a known fact that a countable Boolean algebra with a scattered

basis has a well ordered basis (see [5]). By 3.3, B can have a well
ordered basis only if every one of its bases is scattered. But there are
Boolean algebras with scattered bases which have no well ordered bases.
Our objective in the remainder of this section is to characterize
topologically the Boolean algebras with scattered bases which have well
ordered bases.

LEMMA 3.4. Let a and β be infinite limit ordinals and let C —
a + 1 + β*. Assume that either a or β has no countable cofinal subset.
Then B(C) is a Boolean algebra with a scattered basis, but B(C) has
no well ordered basis.

Proof. C is a complete chain with the jump property and by 2.5
B(C) has an ordered basis which has the same order type as a subchain
of C (to be precise, of type a + β*). Clearly any subchain of C is
scattered. Thus, B(C) has a scattered basis. Suppose B(C) has a well
ordered basis. Then by 2.8 there is a homeomorphism φ of C onto some
non-limit ordinal tc. Let p be the point of C between the upper and
lower intervals a and β*. Since a and β are limit ordinals and one of
them has no countable cofinal subset, C cannot satisfy the first countability
axiom at p. Thus φ(p) = μ, where μ is a limit ordinal in K with no
countable cofinal subset. The upper and lower intervals a and β* of C
have the property that the intersection of their closures is p. Thus
ψ{oί)~ Π φ{β*)~ = {μ}. But this is impossible. For it implies that if
ξ < μ, then φ(a) n (ξ, μ) Φ Φ and <p(β*) ΓΊ (ξ, μ) Φ φ. Thus, sequences
{xlf x2, •••} cz <p(a), {ylf y2, •••} c ^ * ) can be chosen so t h a t x1 <

Vi < x2 < V2 < < μ. Let z = sup xn= sup yn. Then z e <p(a)~ Π <p(β*)~ =
{μ}, contrary to the non-existence of countable cofinal subsets of μ.

If C is a chain and xeC, the character </>, σ*> of x (in C) is
defined by the conditions:

( i ) p — l if x covers or is the least element of C;
(ii) p = (ϋa if {y e C \ y < x} is cofinal with the regular ordinal ωa;
(iii) σ = 1 if x is covered or is the greatest element of C; σ = ωβ

if {?/eC|?/ > x} is coinitial with α>|, where α^ is regular. These con-
ditions uniquely determine p and tf (see [2], p. 142).

We shall now show how the example 3.4 leads to a restriction on
the possible characters of spaces which are homeomorphic to non-limit
ordinals. Two simple facts are needed.

LEMMA 3.5. Let W be a well ordered subset of a chain C. Suppose
the order type of W is the ordinal fc. Then the closure of W in C
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has order type either tc or tc + 1.

Proof. Assume inductively that the lemma is true for well ordered
subsets of C which are of type less than tc. If tc = ξ + 1, then T^Γhas
a largest point p and W — {p} has order type ξ. Hence W~ = (W —
{p})~U {p} has order type the same as, or one greater than the order
type of (W — {p})~, depending on whether pe(W— {p})~, or p$(W—
{p})~. By the induction hypothesis (W — {p})~ has order type ξ or
ξ + 1 — tc. If the order type is ξ, then pφ{W — {p})~, since otherwise
the order type of W~ would be less than the order type of W. Thus
if tc is a non-limit ordinal, the induction hypothesis leads easily to the
desired conclusion. Suppose therefore that tc is a limit ordinal. Let ψ
be the (unique) one-to-one, order preserving mapping of tc onto W. For
ξ < tc, let Wξ = φ{ξ) (where ξ is considered as a subset of tc). Then
Wξ is an initial segment of W and Wξ has order type ξ. Hence, Wj
is an initial segment of W~. By the induction hypothesis, there exist
one-to-one, order preserving mapping ψξ of Wj onto an initial segment
of tc for all ξ < fc. If ξ < η < /c, then Wj is an initial segment of W~,
so ψv maps Wj onto an initial segment of tc. By uniqueness [1, p. 35],
this implies ψv \ Wj = ψξ. Thus, the union ψ of all φξ's is a well
defined, one-to-one, order preserving mapping of \Jξ<κ Wj onto tc. But
\Jξ<κ Wi is an initial segment of W~ and this initial segment contains
W. Thus, either \Jξ<κ Wj = W~, or W~ consists of \Jζ<κ Wj and a
single point p greater than all points in this union. In these respective
cases, W~ has order type tc and tc + 1.

The next result is well known, so we omit its proof.

LEMMA 3.6. If C is a complete chain and A is a closed subset of
C, then the relative topology of A as a subspace of C is the same as
its order topology.

LEMMA 3.7. Let C be a complete chain which is homeomorphic to
an ordinal. Then each point in C has character of one of the follow-
ing types: <1, 1>, </>, 1>, <1, σ*>, <ω, ω*>.

Proof. Suppose some point of C has character ζω^, (o^y, where
either a > 0 or β > 0. By 3.5, C contains a closed subset A of order
type ωa + 1 + ω | , where either ωΛ or ωβ has no countable cofinal subset
(because of the regularity of ωΛ and ωβ). Under the homeomorphism
of C onto an ordinal, A is mapped into a closed subset. Thus, by 3.6,
ωa + 1 + ωl is homeomorphic to a well ordered chain, contrary to 3.4.

One more property is needed for the characterization of complete
chains which are homeomorphic to ordinals. A transfinite sequence
{xξ I ξ < p] (where p is a limit ordinal) will be called continuous if
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limί<r? xξ = xv for all limit ordinals rj < p. In particular, any sequence
of type ω is continuous.

LEMMA 3.8. Let C be a complete chain which is homeomorphic to
an ordinal. Let peC have the character (p, 1>, with p infinite. Then
there is a continuous increasing sequence S of type p in C, converging
to p, and such that every element of S is covered in C.

Proof. Let φ be a homeomorphism of C onto the non-limit ordinal
K. Suppose φ(p) — μ < K. Then μ is a limit ordinal, since p is not
isolated in C. Since φ is a homeomorphism and p is covered in C,
there is an ordinal v < μ such that (v, μ] c φ((p]). For each ηe(v, μ],
let yη = suipφ~Ί((v, η\). Since (v, 37] is open-and-closed, yv is the largest
element of <p~\(vy rj\), yv is covered in C, and yv < P with equality only
if η = μ. If ξ is a limit ordinal < μ, then ?/e = sup φ~\(v, ξ]) =

s u p ^ ί U ^ e ^ , ^)") = sup ( ( U ^ ^ - 1 ^ , >?]))-) = s u p d J ^ ^ O Λ >?])) =
sup ϊ?<ί 2/̂ . Consequently, Y — {yη \ v < ΎJ < μ} is closed in C and >̂ e F ' .
Thus, y contains a continuous, increasing sequence S of type p con-
verging to p. Since every element of Y is covered in C, S has the
same property.

REMARK. It is clear from 3.5 that in any complete chain C any
point of character ζp, 1> is the limit of a continuous sequence of type
p, but the points of this sequence need not be covered in C On the
other hand, in a chain with the jump property any point of character
<(jθ, 1)> is the limit of an increasing transfinite sequence, every element
of which is covered, but the sequence need not be continuous. For
example, in the chain (1 + ω*)ωλ + 1, the greatest element has the
character (ωlf 1)>, but it is clearly not the limit of continuous sequence,
all points of which are covered. Thus by 3.8, this chain cannot be
homeomorphic to an ordinal.3

THEOREM 3.9. Let C be a complete chain. Then C is homeomorphic
to the Boolean space of a Boolean algebra with a well ordered basis if
and only if

( i ) C ( r ) = ψ for some ordinal τ;
(ii) every interior point of C either covers, is covered, or has the

character ζω, α>*>;
(iii) every point in C which has character (p, V) with p infinite

is the limit of a continuous, increasing sequence of type p, consisting
of elements covered in C, and dually for points having character
<1, **>.

The conditions (i), (ii) and (iii) are necessary for C to be homeomorphic
3 Professor J. R. Isbell has shown us a somewhat different proof of this fact, and his

idea influenced the development of 3.8. We are indebted to him for his helpful suggestion.
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to an ordinal by 3.3, 3.7 and 3.8. The proof that these conditions are
sufficient will follow a lemma.

LEMMA 3.10. Let C be a compact Hausdorff space and suppose
there is a continuous mapping ψ of C onto an ordinal number λ such
that

( i ) φ~\ξ) is homeomorphic to an ordinal aξ for all ξ < λ;
(ii) aζ = 1 if ξ is a limit ordinal.

Then C is homeomorphic to an ordinal number.

Proof. Define /c = Σί<λ aξ. Suppose that for each ξ in λ, ψξ is a
homeomorphism of Aξ = φ~\ξ) onto aξ. Define X: C —> K by

X(«0 = Σ^<ί <*•* + ψξ(%), for x e Aζ .

Since C is the disjoint union of the sets Aξ, X is unambiguously defined
for all x € C. Because each ψξ is one-to-one and onto, X has the same
property. In view of the compactness of C, it only remains to show
that X is continuous.

Let μ e K, say μ = X(x). Suppose x e Aξ. Then μ = Σ>?<£ av + ψξ(χ)'
If ξ is a non-limit ordinal, then the intervals of the form I—[Σ^<f ^ +
P, Έπ<ξav + ψξ(x)]> where p < ψξ(x) is a non-limit number, form a
neighborhood basis of μ in Λ:. Moreover, X~\I) = ^"^[j^, ψ^)]) is open
in Af. But Aξ is open-and-closed because >̂ is continuous and ξ is
isolated. Thus, X~\I) is open. If £ is a limit ordinal, then aξ = 1 and
the intervals I = [ Σ ^ ^» Σ>?̂ ι a-n\> where ξ< ξ, constitute a neighborhood
basis of μ. Moreover, X~\I) = ^"'((f, |]) is open in C. (Note that
every aη is a non-limit number and therefore Σ^<rα>? i s a non-limit
number.)

Proof of 3.9. By 3.2 (vii), there is a non-limit ordinal λ such that
X(B){λl) is finite. We prove by induction on λ that C is homeomorphic
to an ordinal number. If λ = 1, then C is finite and homeomorphic to
an ordinal. Assume that λ > 1 and the theorem holds for all chains C
such that C{λ~1] = φ. We can also assume that C{λ~1] consists of a single
point p. For by the jump property and 3.2 (vi), C is a disjoint union
Cx U U Cn of open-and-closed intervals such that C|λ~1} contains only
one point. Clearly each Cέ satisfies (ii) and (iii) of 3.9. If Ct is ho-
meomorphic to Ki, then C is homeomorphic to ιcx + + tcn. The proof
is completed by considering the possible characters of p, subject to
condition (ii).

Case 1. The character of p is <α>, ω*̂ >. Then in C there exists a
strictly increasing sequence xx < x2 < < p and a strictly decreasing
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sequence zx > z2 > > p such that lim xn = lim zn — p. Because of the
jump property, we can assume that each xn is covered by a point yn

and each zn covers a point wn. Define the open-and-closed intervals
A = ( α j , Dn = [yn, xn+1], Eo = [zlf 1], En = [zn+1, wn}. These sets are

pairwise disjoint and their union is C — {p}. Moreover, D^-1) = E{n~1)=φ
for all n by 3.2 (vi). Hence, by the induction hypothesis, each Dn and
En is homeomorphic to an ordinal. Define ψ\ C—>ω + 1 by φ{x) = 2n if
x e Dn, φ{x) = 2n + 1 if xe En, and φ(p) = α>. It is clear that ^ is
continuous and φ~\2n) = Dn, φ~\2n + 1) = En. Thus, 3.10 applies and
C is homeomorphic to an ordinal number.

Case 2. The character of p is (β, 1> or <1, σ*>. We can assume
that the character is ζβ, 1)>, since the second possibility is transformed
into the first if C is replaced by C*. Since λ > 1, p is infinite. Thus,
by property (iii), there is a continuous increasing sequence S = {̂ f II < ί>}
such that each ccf is covered and lim ί < p xξ = p. Define φ(x) — 0 if
x < xo> Ψi®) = I if I is a non-limit number <p and x f_!<cc<x f, φ(xf) — |
if ξ is a limit number <p, φ(p) — p, and φ{x) = p + 1 iί x > p. Using
the fact that S is continuous and the points of S are covered, it is
easy to see that φ(x) is defined for all x in C and φ is continuous. If
ξ is a non-limit number <p, then ^ ( l ) = (xξ-lf xξ] is an open-and-closed
interval of C satisfying (xξ-lf Xξ]^^ = φ. Hence, by the induction
hypothesis <p~\ξ) is homeomorphic to an ordinal number. Similarly
ψ~\p + 1) is homeomorphic to an ordinal number. Finally, by 3.10, C
is homeomorphic to an ordinal number.

Using 2.8, it is possible to translate 3.9 into an algebraic condition
for a Boolean algebra with an ordered basis to have a well ordered
basis. However, we shall be content to give two sufficient conditions
for the existence of a well ordered basis.

COROLLARY 3.11 (Mazurkiewicz-Sierpinski). Any countable Boolean
algebra with a scattered basis has a well ordered basis.

Proof. If S is a scattered basis of J5, then <X(£), <sy satisfies
the first countability axiom, so the conditions (ii) and (iii) are fulfilled.

COROLLARY 3.12. If B is a Boolean algebra with a complete, scat-
tered basis, then B has a well ordered basis.

Proof. If S is a complete scattered basis of B, then the chain
ζX{B), <sy is complete, has some transfinite derivative empty (by 3.3),
and every interior point of this chain either covers or is covered (by 2.7
and 2.8). If p e X(B) has character ζp, 1>, let S be an increasing
sequence of type p approaching p, such that every point of S is covered.
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By 3.5, S' — {p} is a continuous increasing sequence of type p approach-
ing p. If x e S~ — S, then x is the limit of an increasing segment of
S. In particular, x does not cover. But then x is covered in C. Simi-
larly, every point of X(B) of character <1, <7*> is the limit of a decreas-
ing, continuous sequence of type σ*, all elements of which cover.

4. Boolean algebras with well ordered bases. The object of this
section is to show that a Boolean algebra with a well ordered basis has
a canonical basis. We restrict our attention to infinite Boolean algebras,
since the finite case is trivial.

LEMMA 4.1. If β and 7 are ordinal numbers, then the Boolean
chains β + 7 + 1 and 7 + β + 1 are homeomorphic.

Proof. The space β + 7 + 1 is the disjoint union of the open-and-
closed intervals (0], LI, β], [β + 1, β + 7] and [β + 1, β + 7] is homeo-
morphic to [1, 7]. Similarly, 7 + β + 1 is homeomorphic to the disjoint
union of these same intervals.

THEOREM 4.2. Let β be an infinite Boolean algebra with a well
ordered basis. Then B has a basis of order type ωΛ n + 1, where a
is an ordinal >0 and n is a positive integer.

Proof. By 2.9, X(B) is homeomorphic to K + 1 for some infinite
ordinal number K. Let /c = ωΛn + 7, with n > 0 and 7 < ω" [3, p. 67],
By 4.1, X(5) is homeomorphic to 7 + ω*.w + 1 = ω*ra + 1 [3, p. 68].
Thus B has an ordered basis of type ω^ n + 1 by 2.5.

The remainder of this section is devoted to proving that the pair
<α, ri) in 4.2 is an invariant of B. This result is a simple generaliza-
tion of Theorem 1 in [5]. The idea of the proof (due to Mazurkiewicz
and Sierpenski) is simple. If B has an ordered basis of type a)**n+l,
then X{B) is homeomorphic to the Boolean chain of-n + 1. What we
prove is that if a > 0, {af n + l){oύ) contains precisely n points. This
topological property must be shared by X(B). Therefore the algebraic
structure of B determines both n and a.

LEMMA 4.3. Let 7, Λ: and τ be ordinals with 7 < ft. Then 7 e fc{τ)

if and only if 7 6 (7 + 1)(Γ).
This is obvious.

LEMMA 4.4. Let β, 7, tc and τ be ordinals with 7>0 and β + y<tc.
Then β + yeκ{τ) if and only if yβfc{τ).

Proof. Let M= [1, 7] and N = [β + 1, β + 7]. Then M and N
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are open intervals in tc and the mapping ξ —> β + ξ is a homeomorphism
of M on N sending γ onto β + γ. Thus, by 3.2 (vi), γ e £(Γ) if and only
if yeMpifc{τ) = M{τ) and γ e l ί r ) is equivalent to β + γ e JV(Γ) = Nnκ{τ).
Hence, γeλ;(Γ) if and only if β + ye/cω.

LEMMA 4.5. If a > 0, ί/ien (ω* + l) ( α ) = {ω*}.

Proof. This is clear if α = 1. Assume (ω* + l){ξ) = {ω*} for all
ξ < a, where a > 1. If /5 < α>", then we can write β = γ + ωδ,
where δ < α [3, p. 67]. By induction, ωδ 0 (ω8 + 1){«], so by 4.3,
ω $ (ω* + l){a). Thus, by 4.4, βφ {ω« + l) ( α ) . Hence, (ωΛ + 1)(Λ) c {α>α}.
If a is a non-limit ordinal, then by 4.3, 4.4 and the induction hypothesis,
(ω« + 1)(*-1} contains ω^n for n = 1, 2, . Thus, (ω05 + l)(αJ) contains
limn ω

α-% = ω«. If α is a limit ordinal, and if ξ < ζ < a, then by 4.3
and the induction hypothesis ωζ e (ω* + 1)(^ c (ωα + 1)^}. Thus, # =
lim€^<Λα>^ e {of + l) ( f ) and therefore ω« e [\ζ<a{ωa + l) ( f ) = {ω« + l) ( α ) .
Hence {ω« + l) ( α ) = {ω*}, and the induction is complete.

THEOREM 4.6. Let B be an infinite Boolean algebra with a well
ordered basis, let a be an ordinal greater than zero and let n be a
positive integer. Then the following conditions are equivalent:

( i ) B has an ordered basis of type of n + 1;
(ii) X(B) is homeomorphic to ω* n + 1;
(iii) X{B){oύ) contains precisely n points.

Proof. Because of 2.5, 2.8 and 4.2, it suffices to show that {ω* n + 1)(Λ)

contains precisely n points. This fact follows from 4.5 and 3.2 (vi) since
ω* n + 1 is the disjoint union of the open intervals {ω"], [ωΛ + l, ωa2], ,
[o)*{n — 1) + 1, ω"ri\, each of which is homeomorphic to of + 1.

5 The free product decomposition of Boolean algebras with well
ordered bases. If Bλ and B2 are Boolean algebras, then the product
space X(J?i) x X(B2) is compact and totally disconnected. The Boolean
algebra B of open-and-closed subsets of X{B±) x X(B2) is called the free
product of Bx and B2 and is denoted Bλ*B2. We are going to apply the
results of the preceding section to determine the ways in which a Boolean
algebra with a well ordered basis can be written as a free product.

Since X{B±) x X(B2) contains closed subspaces homeomorphic to X{B±)f

for example X{B^) x {p} where p is any point of X{B2), the duality
theory implies that if B — Bλ*B2, then Bx is a homomorphic image of
B. By symmetry, so is B2. Thus by [6, Theorem 2.2]:

LEMMA 5.1. If B is a Boolean algebra with a well ordered basis,
and if B = B^B2y then B1 and B2 are Boolean algebras with well ordered



BOOLEAN ALGEBRAS WITH ORDERED BASES 933

bases.
The converse of this lemma is not generally true. In fact, the free

product of two Boolean algebras with well ordered bases need not even
have an ordered basis.

LEMMA 5.2. Let ω± be the first uncountable ordinal. Then, the
Boolean algebra B(ω1 + l)*B(ω + 1) does not have an ordered basis.

Proof. The Boolean space of B(ωx + l)*B(ω + 1) is homeomorphic
to X = (ωλ + 1) x (ω + 1). We will prove that if X is homeomorphic
to a chain, then the same is true of X— {(ω19 ω>} (in the relative
topology). But X — {ζωlf ω>} is not normal [8], whereas every topological
chain is normal.

First observe that if C is a chain and a e C i s a point that neither
covers, nor is covered (and is not an end point), then the relative topology
of C — {x} coincides with its interval topology. To see this, note that
since C — {x} is open in C, every open interval of C — {x} is open in
C. On the other hand, if I is an open interval of C and if neither
end-point of / is x, then If](C — {x}) is an open interval of C — {x}.
If x is one end-point of 7, say the lower one, then If](C — {x}) =
Uv>χ(In {zeC\z > y}), since x is not covered. Thus I n ( C — {x}) is
open in this case also. Now suppose that X is homeomorphic to a chain
C. Then the point xeC which corresponds to ζωly ώy is the limit of a
sequence of type ω because <ωu ωy is the limit of {ζo>lf 1>, ζωlf 2>, •}
in X. If x is either covered, covers, or is an end-point in C, then C
satisfies the first countability axiom at x, contrary to the fact that X
does not have a countable neighborhood basis at ζω19 ωy. The alternative,
by the preceding paragraph, is that C — {x} (and hence X — {<ωx, ω>})
is normal in the relative topology. Thus, X cannot be homeomorphic to
a chain.

THEOREM 5.3. Let Bx and B2 be infinite Boolean algebras with well
ordered bases. If Bx is uncountable, then Bλ*B2 is a Boolean algebra
which does not have an ordered basis.

Proof. By 2.9, X{BX) and X(B2) are homeomorphic to infinite non-
limit ordinals κx and κ2 respectively. Moreover, κx is uncountable, since
otherwise Bx would have a countable ordered basis and would therefore
be countable. Thus, X{B^) contains a closed subspace homeomorphic to
ω1 + 1 and X(B2) contains a closed subspace homeomorphic to ω + 1.
Consequently X{B^xX{B^ contains a closed subspace homeomorphic to
(ω, + 1) x (to + 1). Thus, X{B^ x X(B2) cannot be homeomorphic to a
chain, since otherwise, by 3.6, (ω1 + 1) x (ω + 1) would be homeomorphic
to a chain, contrary to 5.2.
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COROLLARY 5.4. If a is an uncountable ordinal, and if B(ωΛ

isomorpkic to Bλ* B2, then either B± or B2 is finite.

COROLLARY 5.5. If Bx and B2 are infinite Boolean algebras with
well ordered bases, then the following conditions are equivalent:

( i ) B±*B2 has a well ordered basis;
(ii) Bi*B2 has an ordered basis;
(iii) Bλ and B2 are countable.

Proof. Clearly (i) implies (ii) and (ii) implies (iii) by 5.3. Suppose
Bx and B2 are countable. By 2.9, X{B^) and X(B2) are countable. Thus
X(f?i) x X(B2) is countable, so X{B^) x X(B2) is homeomorphic to an
ordinal [5, Theorem 1].

The free product of a Boolean algebra Bx with an ordered basis
with a finite Boolean algebra B2 has an ordered basis. For X(B2) is
finite, so it can be ordered arbitrarily, and the order topology determined
by the lexicographic ordering of X(B2) x X{B^) agrees with the product
topopology. Indeed in the lexicographic ordering X(B2) x X{B^) is a finite
union of open-and-closed intervals, each homeomorphic to X{B^). More-
over, if X(JBI) is well ordered, so is the product space. Using the results
of section four, it is easy to determine Bλ*B2 when B2 is finite and Bλ is
infinite and has a well ordered basis. Let Bλ have an ordered basis of
type of1 m + 1 with a > 0, m > 0, and let B2 contain n atoms. By 3.2
(vi), (XiBJ x X(B2)){Λ) is the disjoint union of n copies of X(B^Λ\ and
therefore consists of mn points. Thus by 4.6,

B(ω" m + l)*B(ri) = B(ω«mn + 1) .

THEOREM 5.6. If B is an infinite Boolean algebra with a well
ordered basis, then B is isomorphic to a unique free product B^B2,
where Bx = B(ωaι + 1) for some ordinal a > 0 and B2 = B(n) for some
integer n > 1.

If B is any Boolean algebra, then B*B(1) is isomorphic to B. We
shall call B indecomposable if this is the only possible free product
decomposition of B. With this definition, 5.4 and 5.6 give an interest-
ing result.

COROLLARY 5.7. If a is an uncountable ordinal, then B(ωΛ + 1) is
indecomposable.

The free product factorization of B(n) runs entirely parallel to the
factorization of n into prime integers. Thus 5.6 and 5.7 settle the
problem of unique factorization of uncontable Boolean algebras with well
ordered bases and it only remains to consider algebras B(ωoί> + 1), where
a is a countable ordinal.



BOOLEAN ALGEBRAS WITH ORDERED BASES 941

Let a = ωλιm1 + + oAmfc and β — ωλlnx + + ωλfc%fc, where
\ > > λfc and the m« and nt are non-negative integers. The natural
sum [4, section 75] of a and β is defined to be

a # β = ωλι(mx + nλ) + + ωλ*(mk + nk) .

Note that α#/5 = /S#α, α#(/3#γ) = (α#/3)#γ and if a<β, γ < δ,
then α # γ < /3 # δ with equality only if α = /3 and γ = δ.

THEOREM 5.9. 7/ α cmώ /9 are countable ordinals greater than zero,
then B(ωoύ + l)*B(ωβ + 1) is isomorphic to B(ω^β + 1).

Proof. Assume inductively that the theorem is true for all pairs
</y, δ> such that γ # δ < α#/9. Without loss of generality, assume a>β.
Let a = ω λ ^ + γ, where γ < ωλ < a. If γ > 0, the induction hypothesis
gives isomorphisms

β ( ω " + l)*B(ωβ + 1)~ B(ω^n + l)*B{oP + l)*B(ωβ + 1)

Thus, we may suppose that a = ωλn and in particular a # β = a + β.
Under this assumption, we can complete the proof by showing that
{{ω« + 1) x (ωβ + l)){«+β) = {<ω«, ωβ>}.

By 4.5, <ω", |> e ((ω* + 1) x (ωβ + l)){ω) for all ξ < ωβ. Hence,
<ωΛ, ωβye((ω« + 1) x (ω^ + 1))(Λ+^ by 4.5 again. Suppose that <£, ^>
is a point of (ω« + 1) x (ωβ + 1) which is distinct from <α>*, ωβ}. Let
I = ξτ + a)*, η = ηx + ωv. Then ^ # i; < α # β, since either § < ωΛ or
ί? < ωβ. Define A = {</>, α> | ^ < />< | , % < σ < η} . Then A is an open
subset of (a)* + 1) x (ωβ + 1) which is homeomorphic to (ωμ + l)x(α>v + l)
if μ > 0 and v > 0, to ωv + 1 if μ = 0, i; > 0, to ω^ + 1 if μ > 0, v = 0,
and to a one point space if μ = v = 0. By the induction hypothesis in
case μ > 0 and v > 0, and by 4.5 in the other cases, A{oύ+β) = A(a^> = φ.
But A is open, so by 3.2 (vi), A(Λ+^ = An((ω» + 1) x (ωβ + l)){«+β).
Therefore, <|, ^>0((ωΛ + 1) x ( ^ + l)) ( a 5 + β ). Thus,

((a>a + 1) x (ωβ + l)) ( a+^ = {<ω», ωβ}} .

COROLLARY 5.10. Let a be a countable ordinal greater than zero.
Then Bio)* + 1) is indecomposable if and only if a is of the form
ωβ for some (countable) ordinal β.

COROLLARY 5.11. Let a be a countable ordinal greater than zero
and suppose a = ωλlm1 + + aΛmfc with λx > > λfc and mt > 0.
Let

Bt - B(ω»h + 1) .
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Then

B(ω« + 1) ~ Bfi*. •*#?* ,

where Ef* is the free product of Bt with itself m« times, and this
decomposition into indecomposables is unique up to the order of the
factors.
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