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Introduction. The purpose of this paper is:

1. To present a simple proof for the existence of a conformal map
of an arbitrary bounded region onto a circular slit disk and—if the re-
gion possesses at least one isolated boundary components which is not
a point—onto a radial slit disk;*

2. To remark on certain geometric properties and problems of uni-
queness of the canonical slit domains thus obtained. The possibility of
mapping regions of finite connectivity onto (circular and radial) slit disks
was originally considered from the point of view of various variational
problems by Koebe [8] and Rengel [14], Schiffer [18], Nehari [11]. Ex-
tension to regions of infinite connectivity were made by Grotzsch [3, 5],
Schiffer [17] and more recently, within the framework of certain ex-
tremal problems on Riemann surfaces by Sario [16], Jurchescu [7], and
in the book on Riemann Surfaces by Ahlfors and Sario [1], Chapter III,
§ 16D.>

In the present paper we consider, in connection with the circular
slit mapping, an extremal problem which is suggested by the now com-
mon proof of Riemann’s mapping theorem.’ Let 2 be a bounded region
which contains the origin, and let % denote the family of functions
f(z) with the properties:

1. f(2) is analytic and univalent in 2

2. f(0)=0,70)>0,|f()|<1in Q.

(Note that nothing regarding the boundary behavior of f is pre-
dicated in the definition of .%) We shall show that the function ¢ € 7~
which solves the extremal problem ¢'(0) = max,. = f'(0), gives a mapping
of 2 onto a circular slit disk. The proof that ¢(2) is a circular slit
disk may be based on a well known inequality of Rengel [13]. We derive
it, however, from a more general lemma (L.emma 1) which enables us, in
addition, to discuss further properties of ¢, in particular the uniqueness
aspect of the solution. For a given £ there may be more than one
mSeptember 30, 1959. The preparation of this paper was sponsored in part by

the Office of Naval Research. Reproduction in whole or in part is permitted for any pur-
pose of the United States Government.

1 A region is called a circular slit (radial slit) disk if a circle |z] =7 is one of the
components of its boundary and if all other boundary components are circular arcs in
| 2| < r concentric with |z} = r (radial segments contained in 0 < |z| < r), or points other
than the origin.

2 See also K. Oikawa’s doctoral dissertation [12], Chapter III, in which he states that
the circular slit disk mapping may be obtained from Sario [15].

3 Cf. also Nehari [11], p. 352, for the case of finite connectivity.
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extremal function ¢, even in the case of finite connectivity. However,
one achieves uniqueness of the solution of the extremal problem if one
replaces the class & by the subclass & * = & *(2), whose elements
f are further restricted by the requirement that they carry the outer
boundary component of £ into |w| =1 (8§84 and 5).

To obtain an insight into all possible solutions ¢ of the extremal
problem in & (£) we consider the broader problem of the uniqueness
of a properly normalized conformal map of 2 onto a circular slit unit
disk. It is well known that the map f of a bounded region 2, nor-
malized by the condition that f e & *(2), onto a circular slit unit
disk Y is not necessarily unique, unless Y is further restricted. A cha-
racterization of such disks 3 onto which there exists only one normalized
conformal map was given by Grotzsch [5], p. 289 (Normalbereiche). In
this paper we obtain a characterization of these disks—which we detote
as ‘“‘extremal circular slit disks’’—in terms of the extremal length A, {7}
of all cycles v € X surrounding z =0 and lying in an annulus q <
|z] < 1 which contains all slits of 2 (Theorem 5). An extension of our
fundamental Lemma 1 to extremal circular slit disks (Theorem 6) per-
mits us to discuss certain features of the extremal function ¢ € & (2).

The problem of mapping onto radial slit disks is treated by con-
sidering the min,c g« |f'(0)|, where however 2 and & * are subjected
to an additional restriction. Similar results regarding the unigueness
of the extremal function and properties of the extremal domain are ob-
tained here.

1. Mapping onto a circular slit disk. We begin with the principal
lemma which is related to results of Grunsky [6] and Spencer [19].

LEMMA 1. Let X be a circular slit unit disk centered at z = 0 such
that the circular projection E of the boundary points of X onto a fixed
radius® has linear measure zero. Suppose that w = f(2) is analytic and
untvalent in X, that f(0) = 0, and that f(z) maps 3 onto a bounded re-
gion 4 in such a manner that |z| = 1 corresponds to the outer boundary
component of 4. Let F(z) =log(f(2)/z), F(0) = log f'(0) (F'(z) is single-
valued in X once a branch of log f'(0) is chosen). Let A denote the area
of 4. Then

(1) exp| o |17 rasay || 70) 1 </ % :
In particular,
(1) o) <y/4

ti.e. F is the set of points on a fixed radius at which the circles |z| = r containing
a boundary point of 5 intersect this radius.
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and equality implies F'(z) = 0, 1.e. f(z) = az, where a s a constant.

REMARKS. If Y has only a finite number of slits and if | f(z)| < M,
(') implies Rengel’s inequality [13], | f'(0)| < M, and the equality holds
only if f() =az. If X is the disk |z| < 1, then (1) becomes Bieber-
bach’s area theorem.

Proof. It is easily seen that the set E is closed. Consequently,
given any ¢ > 0, there exist a finite number of intervals, [r,, 7] on
0,1, nn<r,<ry,v=12,+.-,m—1, such that Ec U2, [n, r.] and
that 37, (r, — ) <e. We may assume that no boundary points of %
are on |z =7, and [2|=7, (v=1,2,-.-,n— 1) and on |2z| = 7,, and
that », = 1.

Denote by D, the annulus 7, <|z| < 7,;, (1 <vyv<n—1) and by
D, the circle |z| < 7. F(z) is single-valued and analytic in each D,.
Assume first that f'(0) = 1, F(0) = 0.

Let z=re”, F(z)=u+1iv, f(z)=pe¥. Then’ in each D,, v=1,2, ...,
n—1,

[} 7@ pavay = [ , udv = Sovlog—f‘-(d\p — d6)

where C, is the boundary of D,. Furthermore, we have for Dy(C, =

{lz] = n})

H | F'(z) dwdy = Scolog£(d«1f — do) .

Dy

Next we note that for v=20,1, -+, n — 1
0= “gm” —E—(i)dz} _ S [logﬁdﬁ +(p— 0L
o, 2 P r

v 0\/

= S llog pdf — log rdr] .
¢

v

For v = 0 this follows from the fact that F(0) =0, for v > 0 this is
a consequence of the regularity of F(z)/z in D,. Thus we obtain

S\1F@rasay =S| 1og oy — 210g ray + og raey .
v=1 . = e

I)v v
We can evaluate the sum of the last two terms:

5 The following argument is similar to a technique used by Golusin [2}, pp. 149-150.
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Z; S log rd@

n—1

(2) 2 {log rvgmzrv dd — log T”Sm:r;d‘g} + log T"S dae

|zl =71,

n—1 '
= _27:Zlog:"l + 27 log 7, .
v=1 y
The assumption that under the mapping w = f(z), the circle |z| =1
corresponds to the outer component of f(2), implies that the images of
|z] = 7, and |z| = 7, are closed Jordan curves which contain w =0 in

their interiors. Hence g dyr = § ,dyr = 2m. We obtain therefore

lzl=ry, lz]= r

in the same manner as above

(3) ~7§S logrd«p:2ngllogﬁ—2nlogm .
v=0Jo, y=1 r

Hence, combining (2) and (3) we find

v=0

{-2S log rdyr + S log rdé‘} =2r Z log— — 2 log 7,
01/

v=1 1/
_—
/‘/' —_— p—
<ors =T 4 oon L—7
v=1 7y Tn

2r
r rl

<

ﬁMg

since >\"_ (r, — 7r,) < e Thus, if =23 — UG D, and |2] < d is a disk
contained in 2%,

(4) Sj | F'(2) Pdedy < ggoylog pdvr + _gdﬂg + SZS | F'(2) Pdady .
Now, if I, = f(C,), 4, = f(D,)

Lylog ody = S log odyr = ﬁ%‘f—'j’ =1

v

and if we remove a sufficiently small disk & of radius p¢ about w = 0,

Lolog pdrpr = 'Lulog pdvr = H d“dlj’ +onlogp .

49—k l

Hence, if f(2) = 4,

(5) ggovlog pdy < SS dudv | orlog pr.

—k

Let K = {w]| |w]| < R} be a disk with area 7R*= A. Then
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(- f e [fdms (]

(6)

d-E)NK p|w|<R

= 27 (log B — log 1) .
Thus we obtain from (4), (5) and (6)

“ | F/(2) fdady < 27 log\/ 44 —d~s + Sg | F'(2) ['dady .

Since the measure of 7 is smaller than 27¢ and the last inequality is
true for every ¢ > 0, we obtain the conclusion for the case f’(0) = 1.
If £'(0) = 1, we need only to replace A by A/|f'(0)|* and the lemma
follows.

Let 2 be a bounded region, let 2z =0 ¢ 2, and let &% denote the
class of functions f(2) with the properties:

1. f(2) is analytic and univalent in 2

2. f(0)=0,70)>0,|fr)| <1,z e 2.
Since .# is normal there exists a function ¢(z) € # such that ¢'(0) >
f'(0) for any f e # (note that ¢'(0) > 0 since cz € & for some ¢ > 0,
so that ¢(z) = constant).

THEOREM 1. The function w = ¢(z) maps 2 conformelly onto a cir-
cular slit unit disk.

Proof. Let Q' = ¢(2). Every point w, |w,| =1, is a boundary
point of 2'. If not, there exists a region 4. in |w|<1 bounded by
|w|=1 and an arc {|w — w,| =¢,|w]| <1}, such that Q' c 4.. If the
function which maps 4. onto |w| < 1 and preserves the origin is com-
posed with ¢(z), then by the inequality (1’) of Lemma 1, the result is
a function f(z) € # with |f'(0)] > |¢'(0)].

Let 4 be an arbitrary component of the boundary of Q’.

Case 1. There exists a point w, € 4, |w,| =1. Then 4,= {|w| <1} —
is simply connected and 4, D 2'. As above, it follows by Lemma 1 that
A1 = {|lw]| <1} and hence 4 = {{w| = 1}.

Case 2. /A does not meet {{w|=1}. Then 4 is a circular slit con-
centric with |w| = 1. Otherwise, we could map the doubly connected
region 4,(> Q') onto the unit disk minus a concentric circular slit, pre-
serving the origin and |w| =1, and the result is, again by (1') a func-
tion f e . with |f'(0)| > |¢'(0)|. This proves the theorem.

3. Some properties of #(z). To study ¢(2) further we derive several
additional lemmas. Let D be a doubly connected circular slit region
with outer boundary |z| =1 and slit 0 = {z]|z2 = 7€, 6, <0 <6, + a}.
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Let D' be another region of this type in the w-plane with slit ¢’ =

{w|w = pe®, 0, <0 <6, + B}. Let R be the annulus {¢|g¢ < || <1},
q > 0.

LEMMA 2. Suppose w = f(z) provides a one-to-one conformal map
of D onto D’ such that f(0) = 0 and ¢ is mapped onto |w| =1. (Hence
o' will correspond to |z|=1.) Then

1£10)| = £
r

Proof. We may suppose ¢ to be symmetrical with respect to the
real axis. The function F'(z) = log [(f(?)/z)(z — r)] is regular in D once
a branch of F(0) = log(—rf’(0)) is chosen. Let ¢(8) be a curvilinear
quadrilateral whose sides are {[z| =71+ 8, —a/2—8 < 0 < a/2 + 8} and
r—8<L|2z|<r+8,60=x(2+8}. Let C;=0a() U {|z| =1}.

By Cauchy’s formula

ol — i L [ FQR)
1og|rf(0)|_g912m508 ¢ @z} .

Hence

log | 7'(0) | = | " (log 0 + log ¢ — 7 )d0 — 72| L&z
0 A

Now

—1—21 o ___I_Sh ] ew_,,. ) ‘
ZnSo log|e r[dﬁ—zn_ 0log —————1_#_97‘(1 er)|do

= —l—rlogll—e“’ﬂd@ =0.
21 Jo

Furthermore, as is easily seen,

%{?}m—.g%—ﬁ—g—z—)dz} =o(1) as 5—0.

Thus log [7|f'(0)|] = logp, or [f'(0)] = p/r.

LemMMA 3. Suppose w = g(£) provides a one-to-one conformal map
of R onto D' in such a way that the outer boundaries of R and D’
correspond. If g(&) = 0 then |&,| = p.

Proof. This lemma may be obtained from an explicit formula for
g(&) as given by Komatu [10], but it may also be proved in an ele-
mentary way as follows.
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Any branch of F(¢) = 1/¢log g(£)/¢ — &, is regular in R. Hence

[ _1__ e
Fsee| FO)E = 0.

We have

ﬂ‘g?llz‘ylz_{gaxélog (S §O)d§} =7 {2_;'—“@[:(1 B Smsj}

— Zlog(—t) + %SZ’logw —¢,1d6

= log | &, |
and

%’{—2%533 log g(é)—d—gg} = —logp .

Hence, o0 = |¢,|, as was to be shown.

Now let ¢, be the harmonic measure of ¢ with respect to D, evaluat-
ed at the origin, i.e., if w(z) is harmonic in D with boundary values
w(iz)=0,|z] =1, and w(z) =1,z € g, then £ = w(0). Also let ¢ = g, be
the inner radius obtained when D is mapped onto an annulus R,. (The
numbers z, and g, are completely determined by » and a.)

LEMMA 4. Let f(2) be defined as in Lemma 2. Then
Lf(0)] = gp™»
Hence | f'(0)] > 1 if and only tf pp, > 1/2.

Proof. Let D be mapped onto R, in such a way that the outer
boundaries of D and R, correspond. If & = £(z) is the mapping function.

log [£(2) ]

w(z) =
logq,

Hence, if &, ¢ R is the point corresponding to the origin in D, we must
have
log | &, |

fp = 2=,

log q,

By Lemma 3. |{,| = . Hence r = ¢j». Now ¢, = qp, and t, =1 — Y,
(due to the fact that the inner boundary of D corresponds to the outer
boundary of D'). Therefore o = ¢5*». The assertion now follows by
Lemma 2. We may note that if a > 7 this is sufficient to guarantee
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that g, = 1/27 S:” w(re®)do >1/2n S:Wt dé = 1/2. Hence a > m implies
|f(0)| > 1. '

In view of Lemma 4 we can draw the following conclusion regard-
ing the domain Q' = ¢(2) of Theorem 1. Let the arc 4 be an arbitrary
inner component of 99’ and f, the value of the harmonic measure of A
with respect to 4, = {Jw| < 1} — 4 at the origin. Then we have

THEOREM 2. For any inner boundary component A of $(2), p, < 1/2.
In particular all immer boundary components of ¢(2) subtend angles
less than 7w at the origin.

Proof. 1f a boundary component A with f, > 1/2 existed, form
$(?) = f($(2)), where f(2) maps the doubly connected region 4, =
{{w]| < 1} — 4 conformally onto a circular slit unit disk such that f(0) =0
and 4 corresponds to the unit circle. Then, by Lemma 4, |¢1(0)] > ¢'(0)],
contrary to the definition of ¢(z).

4. Mappings preserving the outer boundary component. The ex-
tremal function ¢(z) of the family .&# obtained in Theorem 1 is not
necessarily unique. For a region of finite connectivity ¢(2) is uniquely
determined if ¢ is subjected to the additional restriction that it carries
a prescribed boundary component into the circle |w| = 1. In this case
¢(z) is also the only mapping function of £ onto a circular slit disk with
¢(0) = 0, ¢'(0) > 0. Lemma 4 shows for the case in which £ = D, a disk
with only one slit o, that there may exist two distinct function ¢,(z),
¢»(2) which map D onto a circular slit disk and for which ¢(0) = ¢(0) = 1.
One of these carries |z] = 1 into the slit of ¥ and the other into the
outer boundary |w| = 1. This is the case when g, = 1/2. These func-
tions ¢, and ¢, are necessarily extremal functions of % in D.

We now prove,® for the case of an arbitrary bounded region £, the

6 For the purpose of what follows it is convenient to use in place of the usual defini-
tion of a boundary component (viz. a boundary continuum which is not a proper subset of
any connected subset of 92) an alternate definition. Let {2,} be a sequence of subregions
of 2 such that (i) £n+1 C £2n, (ii) the relative boundary 82, N 2 consists of a single closed
(rectifiable) Jordan curve, (iii) Nn-182, = 0. Two sequences {2,}, {.Q;Z} are called equiva-
lent if, for any =, there exist m such that 2, C Qn and Q;n C £,. A boundary component
of @ is defined as an equivalence class of {2,}. Then it is known that, given any com-
ponent B of 82, there exists a sequence {2,} such that B = ﬂrﬁ_]ﬁn and conversely, given
a sequence {£,}, the set Nn-12y is a component B of 82 in the usual sense.

Let w = f(z) be a topological mapping of £ onto a plane region £’. Then the present
definition establishes a one-to-one correspondence between the boundary components of £
and £2’. (See Stoilow [20], pp. 85-87; Oikawa [12].) It also follows: If £ is a region in
l2[<1,z=0¢€ 2, and if [z]| =1 is a boundary component of £, there exists a sequence
of closed Jordan curves C, C &, such that C, separates z =0 from |z| =1 and lies in the
annulus -1 — e, < ]z| <1 where limy e, = 0.
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existence and uniqueness of the extremal function which preserves the
outer boundary component.

THEOREM 3. Let Q2 be a bounded region which contains z = 0. Let
¥ be the class of functions f(z) with the properties:

1. f(?) is analytic and univalent in 0.

2. f(0)=0,0)>0,]fx)|<1,ze Q.

3. The outer boundary component of £ corresponds to the outer
boundary component of f(£2).

Then there exists a function $p(z) € F * for which

(7) #'(0) = max f'(0)
Teg*
and ¢(z) maps Q onto a circular slit unit disk. ¢(z) is unique.

Proof. The existence of a function ¢(z) which satisfies (7) and the
properties 1 and 2 of the class & *, and which maps Q2 onto a circular
slit unit disk is seen as in the proof of Theorem 1. The fact that ¢(z)
also possesses property 3 of the class & * follows from Lemma 5 below.
The uniqueness will be proved in Theorem 4.

LEMMA 5. Suppose {f,(2)} is a sequence of functions analytic and
univalent in a bounded region 2, which contains z = 0. Suppose that
F(0) =0, £(2)| <1, and that under the mapping w = f,(2) the outer
boundary component B of 2 corresponds to the outer boundary com-
ponent of f(2). If lim,_.[f.(2) = $(z) % const. in 2, uniformly on any
compact subset, then, under the mapping w = ¢(z), B corresponds to
the outer boundary component of H(2).

Proof. We may assume B to be the circle |z2] = 1. There exists
a sequence of closed rectifiable Jordan curves, C,, such that C, lies in
the annulus 1 — ¢, < |z| < 1, lim,..¢, = 0, and such that C, separates
z =0 from [z]| =1 (see®). If I = f,(C,), then as is easily seen I'®
separates w = 0 from the outer component B! of f,(2). Thus

1= 1.S dw _ 1.S f;,(z)dz_
2z Jr®  w 271 Joy, f(2)

In the last integral we let n — o and obtain, if H(C,) =1,

1 — l.S ¢r(z)dz: 1-5 dw
27i Jo, () 2y Jr, w

which shows that I, = #(C,) separates w = 0 from the outer boundary
component B’ of ¢(£2).
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Now, if 4 is any component of 602 different from |z| =1, then it
is entirely contained in the interior I(C,) of C, for sufficiently large k.
Since 2z = 0 may then be connected with some point of 4 by an arc v
in I(Cy) N Q (except for its endpoint on A), the boundary component A’
corresponding to 4 under the mapping w = ¢(z) must lie in I(I";). Thus
I", separates A’ from B’. Hence no component of 9 except for {|z]| =
1} can correspond to B’. This proves the lemma.

5. Uniqueness of the extremal function of % *. Let 2 be a bound-
ed region which contains z = 0 and let {2,} be an exhaustion of 2, i.e.,
the regions 2, have the properties:

1. 2=0e0,C,,,C 2.

2. 0, is bounded by n closed rectifiable Jordan curves C, v =
1,2, -+, m, such that C is the outer boundary component of £2,.

3. U;g:1 QV = L.

Let . * be the class of functions defined in Theorem 3 and ¢(z)
an extremal function of . # *. Let .# } be the corresponding class for
2, and ¢,(z) an extremal function of # f. Let X, denote the circular
slit disk ¢,(2,), and let X be ¢(Q).

THEOREM 4. lim, . ¢.(2) = #(2) uniformly in any compact set in
2. Hence the solution of the extremal problem (7) is umique.

Proof. The functions {¢,(2)} form a normal family in any sub-
region of 2. Let {#n,(2)} be a convergent subsequence, ¢(2) =1lim ... $, (2).
If say, 2 c {{w| <1} then ¢,(0) > 1 (the function z being a member
of & %) Hence also ¢'(0) > 1, so that g¢(z) == const. and hence uni-
valent in 0.

We note that ¢(z) € &# *.. Conditions 1 and 2 are clearly satisfied.
To verify Condition 3 we note first: If C is any closed rectifiable Jordan
curve in 2 which contains z = 0 in its interior, then " = ¢g(C) contains
w = 0 in its interior. For sufficiently large n, C C £,; consider the sub-
region of 2, which is bounded by C and the contours C{® which are
contained in I(C). Then

1 [ o®,, 1 [ Du?)
T omi So a(2) dz 2ri zﬁ}o‘f’ Pa(2) d

Since ¢,(C™) is a slit it follows that each integral of the last sum is
0. Letting n —  we obtain

1= 1'5 gf(z)dz: 1.S dw
21 Jo g(z) 2 Jrow

ie.,, w=0e¢e II).
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Now it is seen as in the proof of Lemma 5 that any component A
of 92 which is different from the outer component B will be in the in-
torior of a suitable closed Jordan curve C in @ which separates z = 0
from B. If A corresponds to A’ then A will be in the interior of I =
9(C), so that I' separates A’ from the outer boundary component of g(£2).

Since g(z) € . * we have

(8) g'(0) < ¢'(0) .

We apply now Lemma 1 with f,(w)=¢[¢,(w)], F.(2)=log {f.(w)/w}=
g {$(2)/p.(2)} (z € 2,), where F,(0)=log ¢'(0)—log ¢,(0) is real. We find

exp| ||| Fi(a) Py | < j—(%l .

n

Here we take m = m, and observe that by (8), lim,..¢; (0)/¢'(0) < 1.
Let F'(z) = log {¢(2)/9(2)}, SmF'(0) = 0. Then, as k — c«, we have in any
closed subdomain S < 2,

ng \F(2) fdady = 0
27 )

and therefore g(z) = ¢(z).
Since any convergent subsequence of {¢,} has the limit ¢(z), the
whole sequence converges. ‘

COROLLARY. The domain X onto which the extremal function ¢ of
7 * maps 2 has Lebesgue area w. Hence 8 has measure 0.

Proof. By (1'), applied to f = f.(w) we obtain

1O = [j((%)) ] < ‘i — %“ | 6'(2) Pdady .

R

For n — n, we find from (8), letting & — oo,

|

: < lim SS | '(2) Pdady — SS | /(2) dady .
O 7 g

Since the right side does not exceed m the conclusion follows.

6. Extremal slit disks. It is well known that the conformal trans-
formation of a bounded region 2 onto a circular slit disk by means of
a function fe ¥ * = & *(2) need not be unique.” To characterize a

7 For example, if £ is a circular slit unit disk with positive (two-dimensional) slit

rneasure, the identity and the extremal function for &*({) provide two distinct mappings
of class @*() onto circular slit disks,
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class of disks onto which there is only one (normalized) conformal map
possible we introduce the following.

DEFINITION. X s called an extremal circular slit unit disk (e.s.d.)
if the extremal function Y(w)of F *(3), i.e., the solution of problem
(7) over 2, is the identity, Y(w) = w."

Two consequences of this definition are immediate:

1. The set S of the slits of an e.s.d. 3 has two-dimensional measure
0. This follows from the Corollary of Theorem 4, applied to the extremal
function y(w) of F *(2).

2. If the circular projection E of the slits of a circular slit disk
Y onto a fized radius has linear measure zero, then 2 is an e.s.d.
For in this case we can apply Lemma 1 to the extremal function r(w)
of Z#7*(2) and find +'(0) < 1. Since the function w € & *() we have
Y'(0) > 1 and hence '(0) =1 and, because of the uniqueness of the
extremal function, Y(w) = w.

One can characterize an extremal slit disk in terms of extremal
length. Suppose the annulus A,;: 0 < g <]|z| <1 contains all slits of
a circular slit unit disk Y. Let S, = 4, N 2 and let ) {y} denote the
extremal length of the family of closed rectifiable curves in S, which
separate |z| = 1 from |z| = q. Denote by 4,{y} the extremal length of
the corresponding family {v} in A4,, so that 4, {v} = 2x/log(1/q). Then:

THEOREM 5. A mnecessary and sufficient condition that ¥ be an ex-
tremal circular slit disk is that for some q <1, for which A, contains
all slits of %,

27 °

log 1
q

(9) {7} = A7}t =

REMARK. If (9) holds for some ¢ it is also true for all p, 0 < p <q.
This is easily seen by use of elementary properties of the extremal length,
since, for the family {y} in the annulus p < |2| < ¢, the extremal length
A{v} = 2z/log (q/p).

8 This is the analogue to Koebe’s ‘“‘Minimaler Schlitzbereich’’ [9] in the case of the
parallel slit mapping. Groétzsch [5] considered the corresponding domain for the mapping
on a circular slit annulus and denoted it as ‘‘Normalbereich.”” He defined the Normal-
bereich by means of his ‘“‘Extremalprinzip” [5], p. 239 which he formulated first for the
parallel slit domain in [4]. Our characterization of an e.s.d. below is suggested by Grotzsch’
Extremalenprinzip.

9 Theorem 5 could also be obtained by use of inequalities due to Oikawa [12] and
Jurchescu [7]. Cf. also Strebel [22], and Sakai [23)], where similar, but not identical charac-
terizations for mappings onto annuli are considered,
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Proof. Suppose Y is an extremal slit disk. Since A4, O S, we have

2r
10g-1—
q

>hq{W} = Aq{r}/} =

Let {D,} be an exhaustion of Y, where D, is bounded by = rectifiable
closed Jordan curves. We assume that the disk |2z] < ¢ is contained in
all D,. Let ¢,(2) be the extremal function in F *(D,) = F F; ¢a(?)
maps D, onto a circular slit unit disk Y, with n —1 slits. Let ¢, =
max, —q | $.(2)|. Since Y is an e.s.d., ¢,(2) — 2, uniformly in any com-
pact subset of 2 (Theorem 4) and, therefore, ¢, — q as n — oo,

Let S = A, N D,. If )\{v}, denotes the extremal length of the
family {y} of S, then

X7} < N{V}n

since S{” < S,. Now ), {7}, may be calculated in the region ¢,(S”).
But this region contains the annulus ¢, < |w] < 1 minus the slits of Y,
within this ring. If we denote the extremal length of the family {v}
confined to this slit annulus by 4, {v} we have

7\‘tz{ry}n S /’qn{(\/} .

From the fundamental properties of the extremal length it follows that
the extremal length of the family {y} is an annulus slit along a finite
number of slits is the same as that in the annulus itself. Hence

27
Aqn{Py} :1 1 -
og —
Thus we obtain
2 <) < 2
1
log— log —
q qx

and letting n — o« we find (9).

Suppose now, conversely, that (9) is satisfied. Let ¢(z) be the ex-
tremal function in . *(2) and choose o = |¢'(2)/H(2)| as a metric in
S, = A, N Y. Then, from the definition of extremal length,

]
B(2)

S([ ¢ <lwl<1

> (2z)”

2da:dy S __dud:;
| w|

A {7} =
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where ¢ =min,, -, |$(z)]. Since SS dudv/| w|* = Szx SI' 1/rdrdfd =

¢’ <|wl<1

2w log1/9’ we obtain

A7 > 272.'1 _ 127‘: )
log= log—= + logi,
q q q

Suppose that X were not an e.s.d. Then ¢'(0) > 1. Since (by the
Remark above) we may assume ¢ arbitrarily small, we note that
lim,_, log q/q¢' = log 1/¢'(0) < 0, and hence, for a suitable & > 0,

N7} = i” > 2”1 ,
log— — &6 log—
q q

which contradicts the present hypothesis.

THEOREM 6. Let X be a circular slit unit disk. Then the con-
clusion (1) of Lemma 1 holds for all f e 7 *(2) if and only if 3 1s
an extremal circular slit disk.

Proof. (a) Suppose X is an e.s.d. Consider an exhaustion {D,} of
Y, where D, is bounded by # closed rectifiable Jordan curves; z = 0z D,.
Let ¢ = ¢,(2) be the extremal function of & = & *(D,); $.(?) maps D,
conformally onto a circular slit disk %, with n — 1 slits. We apply
Lemma 1 to f,(§) = f[¢.'(£)] and

— o I8 f(2)
where F,(0) = log f'(0) — log ¢,(0) and log¢,(0) is real. Let A, =
SS | £'(2) Pdxdy; A, is the area of f(D,). Then we obtain

exp [-21?5)75 | F'(2) I2dwdy] . % < / % .

Since X is an e.s.d., we have by Theorem 4, lim,_.. ¢,(z) = 2, uniformly
in any compact subset of 2. Furthermore, using the lower semicon-
tinuity of the Dirichlet integral on the left and the fact that lim,_.A4,=A4,
the area of f(2), on the right, we obtain with F'(z) = log f(z)/z,

(1) exp| 5|1 7@ raady |1 701 < /4

5

(b) Suppose conversely, that (1) is true for every fe & *(3). Then
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we apply (1) to the extremal function ¢ in this class and find
$'(0) < 1.

Since the function f ==z e 7 *(2), we have ¢'(0) > 1, hence ¢'(0) =1,
and, therefore, in view of the uniqueness of the extremal function,

P(2) = z.

THEOREM 7. Let 2 be a bounded region which contains z = 0.
There 1s at most one conformal map, f e 7 (2), of 2 onto an extremal
circular slit unit disk which carries a given compoment of 002 into
lw]| = 1.

Proof. Suppose there were two such mappings, f, and f,, fi(Q) =
2y fu(2) = 2,. Then g = fiof,' e 7 7(2,).

Since Y, is an e.s.d. we have, by Theorem 6, ¢’(0) < 1. The same
argument applies to f,o f;" and shows that ¢’(0) > 1. Hence, ¢'(0) =1
and g(w) = w or f, = f,

THEOREM 8. If ¢ is an extremal function in &7 (Q), then $(Q) =%
is an extremal slit disk.

Proof. Let y(w) denote the extremal function of & *(X). If X were
not an e.s.d., then we would have v'(0) > 1. Then f = y(¢(2)) € .7 (Q),
but f'(0) = 4'(0)9'(0) > ¢'(0), which contradicts the definition of ¢.

REMARK. In view of Theorem 2 it is clear that the class of all
possible domains ¢(2), produced by an extremal function ¢ of & (Q) is
a proper subclass of the class of all extremal slit disks.

7. Mapping onto a radial slit disk. Suppose 2 is a bounded re-
gion which has a free boundary component B, not a single isolated point.
We may assume that B is the circle {2]| =1 and that £ is contained in
|z| <1 and contains an annulus 0 < |z| <1. We suppose also that
z=0¢ 2.

Let & denote the class of functions g(z) with the properties:

1. g¢(2) is analytic and univalent in £ and on |z]| = 1.

2. g(0)=0,0'(0) >0 and |9(r)| <1,z € Q.

3. lglz)| =1 for |z] =1.

THEOREM 9. There exists a unique function r(z) € & such that
¥'(0) = min ¢ 9'(0); Yr(z) maps Q conformally onto a radial slit disk of
radius one such that |z| =1 corresponds to |w| = 1.°

9 See Sario [16] where this mapping is obtained by a different extremal problem. An
example by Oikawa [12] which is modeled after a construction of Strebel [21] indicates

that the mapping of an arbitrary bounded region onto a radial slit disk is not always
possible,
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We shall need the following lemma which plays a similar role in
the proof of this theorem as Lemma 1 in the case of the circular slit
disk mapping.

LEMMA 6. Let X be a radial slit unit disk centered at z = 0 such
that the closure of the radial projection of the slits onto |z| =1 has
measure 0. Suppose w = f(z) is analytic and wunivalent in ¥, that
S(0) =0 and that f(z) maps X onto a bounded region 4 in such a
manner that |z| =1 corresponds to the outer boundary component of
4. Let m = inf |, |f(2)], and let A denote the area of 4. If F(z) =
log (f(2)/2), F'(0) = log f'(0), then

(10) exo| || 1 7@ Pdwdy |- w2 <1701/ % .

b3

In particular,
11 s < | £0)] /A
(11) m <1704

and the equality sign implies that F'(z) = 0, i.e., f(2) = a2z, where a is
a constant.

REMARK. If Y has only a finite number of slits and |f(2)]| < M,
z € X, then (10) implies Rengel’s inequality |7'(0)| > m?*/ M [13]. Again,
equality holds only if f(z) = az.

Proof. Let E denote closure of the radial projection of the
slits onto |z| = 1. K is a closed set of measure zero. Consequently, for
every ¢ > 0—and we assume ¢ < m—there exist a finite number of arcs
B, = {2} |z|=1,0,<0 <0}, where 0, <0, <80,,,,v=1,2,+.++,n, and
0,1, = 0, + 2, such that

(12) EcUB, and 36 —6)<c.

We may assume that 0, ¢ E,0, ¢ E. Let |z| <d be a disk contained
in ¥ and let § >0 (1 — & > d) be so small that, for 1 —8 < |z]| <1,
ze 2, |fR) =m —e.

We denote by ¢, the arc composed of the following three parts:
the two segments {z|0 =0,,d < |z| <1—06},{z|0=06,,d<|z|<1— 8}
and the arc {z][z|=4d,0, <0 <0,}. Let v, = {#]|2]|=1—-8,0,<0<L
0,,.},v=1,2,-++, . Then we define Cy=(J".,¢,) U(U".7); Cs is a closed
Jordan curve in Y which contains the origin in its interior D;, and F(2)
is regular in Dy U C;. We assume again at first that £/(0) = 1, F(0) = 0.
We write F'(z) = u + v, f(z)= pe'” and obtain
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lg | F'(z) Pdady — SCS udv = 508 log £ (dy — d0) .

Using the fact that F(0) = 0 and consequently

3111{505

__Mdz} = g (log rdyr — log pdf) = 0
4 Cs

we find

SS | F'(2) Pdedy = g (log pdrr — 2log pd@ + log rd0) .
s

Ds

Since S log rd0 < 0, we have
Cs

(13) H | F'(2) Pdady + 2S log 0d0 < g log pdrpr .
Cs Cs
Dy

Let 0, = min,, .| f(?)|. Writing 6, — 6, = | 8,| and using (12) we obtain

(14) g log pd6 > log o, 2 18] + log (m — 6)[271' — z 18, 1]
> 2rlog(m — &) — re

where )\ is a positive constant.
Let I's = f(Cs), 45 = f(Ds), k the disk |w| < p, where g is so small
that k < 4,. We have

S logpdw,!r:g log pdvr = “fm—dg—k%rlog/z.
N Jrg Jlw|

45—k

Just as in the proof of Lemma 1 we then obtain

(15) S log pdr < 27 log 1/2 .
Cs T
Thus we have from (13), (14), and (15)

H | F'(2) Pdedy + 4r log (m — ¢) < 27 log ]/E + 2xe .
T

Ds

Letting first § — 0 and then observing that the resulting inequality holds
for every ¢, 0 < e < m, we obtain (10) when f'(0) = 1.

If £/(0) 1, let @ = |f'(0)]. Then we need only to replace f(z) by
f(@)]a, A by Ala* and m by m/a to obtain (10).

Proof of Theorem 9. Since & is a normal family in 2 there exists
a sequence {g,(?)}, 9, € ©, which converges to a function y(2) and for
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which lim, ... g,(0) = Inf ¢ ¢'(0). Clearly, y(z) is analytic in 2, 4(0) =
0, |y(2)| <1. We show that r(2) # constant. Let P, be the annulus
© < |z| <1 contained in 2. Then for every », 0 < r < 1,|g,(re¥)| as-
sumes the value r. Otherwise the image of |z| = » lies entirely either
in the interior or in the exterior of |2z| = ». In either case the ring
onto which w = g,(2) maps P,: r < |z| < 1 cannot have the module log (1/7)
(which it must have). Because of the uniform convergence of {g,(2)}
on |z| =7, |Y(re?)| assume the value r somewhere on |z| = ». Hence
Jr # const. Consequently v is univalent in 2, 4'(0) > 0, and (z) # 0 in
P, since 4(0) = 0.

Each g € @ may be continued analytically across |z| =1 by the
relation

9(z) = — (1<1z|<%>.

()

If p <r <1, the fact that g,(z) converges uniformly to y(z) on |z| =1r
and that () # 0 implies that, uniformly on |z| = 1/r,lim, .. ¢,(2) =
11p(1/z) = (2).

The uniform convergence of g, for |z| = » and |z| = 1/ implies that
9.(2) — Y(z) uniformly in the ring r < {z| < 1/r and therefore in par-
ticular on |2z| = 1; hence |Y(?)| =1 for |z| = 1.

The function ~(2) maps, therefore, 2 onto a region ¥ in |w|< 1
and |z] =1 onto |w|=1. We maintain that all other boundary com-
ponents of Y which are not points must be radial slits. For, if 4 is
a boundary component of ¥ in |w| < 1 which is not a slit, we map the
doubly connected region 4 consisting of the complement of A with re-
spect to | w| < 1 onto a radial slit unit disk. By Lemma 6 the mapping
function ¢ = h(w) has the property |h'(0)| < 1; hence h[y(z)] € & and
[R' (00 (0) ]| < |4'(0)] contrary to the construction of +r(z).

The uniqueness of (z) follows from Theorem 10 below.

8. Uniqueness of the extremal function of &. Suppose {2,} denotes
an exhaustion of the region 2 considered in § 7, of the following type:

1. 2=0¢e 2,C 2,,,C L.

2. Each 2, is bounded by the circle |z = 1 and n — 1 closed Jordan
curves C™,v=1,2, ..., n — 1, contained in |[2z]| < 1 and exterior each
other.

3. 0=Uc, 2,

It follows, in particular, that the annulus P,: p < |z| < 1, which is
in 2, is also contained in all 2, for sufficiently large n.

Let &, denote the family & defined in 2, and let -, (2) be an ex-
tremal function in &,, such that /(0) = min g 9¢'(0); Y¥.(z) maps 2,
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onto a radial slit disk Y, having n — 1 slits. Let +«(z) be the function
defined in Theorem 9 and let X = ().

THEOREM 10. Uniformly in any compact subset of Q, lim, ... (2) =
yr(z). Hence the extremal function of Theorem 9 is unique.

Proof. Since the functions {y,(2)} form a normal family in any
fixed 2,,(n = m), there exists a convergent subsequence {yr, }. Let ¥(z) =
lim, ..., (2). Just as in the proof of Theorem 9, by applying the argu-
ment to a fixed region 2, in place of 2, one shows that 7(z) is analytie

on the unit circle and that |v(z)| =1 for |2| = 1. Thus ¥(z) € ®, and
we have, therefore,

(16) 7'(0) = '(0) (>0).

We apply now Lemma 6 to f.(w) = (Y, (w)),

F(z) = log YW W) _ 100 V(@)
w Va(?)

where F,(0) = log+'(0) - log+(0) is real. Noting that m =1, A < «,
we obtain

ze‘Qna

exp| o= |] 17260 Pdady | < ;{’((g)) .

Let F(z)=log {(2)/7(z)} where F(0)=log{~'(0)/7'(0)} is real. Then
we find for every compact subset S < @, as k — o, because of (16),

n

1

o SS | F'(z) 'dedy = 0.

s
Hence F'(z) = 0 and consequently r(z) = ().
Since every convergent subsequence of {yr,} has the limit 4 the
conclusion of the theorem follows.
COROLLARY. The Lebesgue area of the domain 3 onto which the

extremal function (z) of & maps Q is w. Hence the measure of 6%
8 zero.

The proof is entirely analogous to that of the corollary to Theorem 4.

9. Extremal radial slit disks. Let Y be a radial slit unit disk such
that |z] =1 is an isolated boundary component. X shall be called an
extremal radial slit unit disk (e.r.s.d.) if the extremal function 4 of
®&(2) is the identity, YH(w) = w.

Clearly, the slit measure of an e.r.s.d. is zero. Furthermore, if the
closure of the radial projection of the slits of a radial slit unit disk 3
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has (linear) measure 0, then X is an e.r.s.d.

An e.r.s.d. may be characterized in terms of the extremal length
of a suitable family {v}. Let X be a radial slit unit disk with isolated
outer boundary, let A,;:q < |z]| <1 be an annulus containing all slits of
Y, and let S, = A, N 2. Suppose )\ {7} denotes the extremal length of
all rectifiable curves v in S, (except for the endpoints) which join |z| =
to |z] =1. Let AX{vy} be the extremal length of the corresponding
family {7} in A4,.

THEOREM 11. Necessary and sufficient that X be an e.r.s.d. is that
Me{v} = A¥{v} = 1/2rlogl/q, for some q, for which A, contains all slits
of 2.

The proof is entirely analogous to that of Theorem 5.%

Finally, one extends the validity of Lemma 6 to an extremal radial
slit disk in a manner parallel to the extension of Lemma 1 to Theorem 6,
and one proves by use of this extension:

THEOREM 12. If ge® = &(2) and if 3 = g(2) is an extremal radial
slit unit disk, then g is the extremal function v € &,
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