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1. Introduction. Suppose W is a real L*(— =, n) function that is
bounded below but not equivalent to a constant function. The Toeplitz
matrixz associated with Wis T, = [w,], 7,k =0,1,2, «--,
where

1.1 w, =2_1n~ g W(d)e dp, 1 = 0, & 1, =+ 2, =

The hermitian matrix T, gives rise to a semi-bounded transformation
T, on complex sequential Hilbert space [, and thus the Friedrichs ex-
tension T of T, is a self-adjoint operator. T = T(W(¢)) is the Toeplitz
operator associated with W,

In [5], [6] Hartman and Wintner show that the case in which W
is not semi-bounded (which we prudently avoid here) presents special
difficulty. However for semi-bounded W they prove that

(i) the spectrum of 7 fills the interval
|ess inf W, ess sup W],
and

(ii) T has no point spectrum.

Thus the spectral measure ([4], p. 58) E(-) of T is such that { E(-)F, F)
is a nonatomic Borel measure for each F e % If {(E(-)F,F) is AC
(absolutely continuous with respect to Lebesgue measure) for each F' e [,
then we say that 7T is AC.

Our investigation continues work of C. R. Putnam [11]. He proves
that T is AC in each of the following cases:

(i) W() =2cosnp, n=1,2 +-
(i) W) =2sinnp, n=1,2,+--
(iii) Let aj, = wy—; for k — 7 =1 and a,, = 0 otherwise.

Further suppose that the {w,} are real, that A, = [a,,] is bounded, and
that 0 is not an eigenvalue of the Hankel matrix [w; ., J, ¥=0,1, 2, .
For case (i) Putnam gives a more complete spectral analysis. He
applies the perturbation theory propounded in [13] to prove the follow-
ing result:
1.2 T(2cosng) is unitarily equivalent to 27,(37T(2cos ¢)). Here
T, is the nth degree Tchebichef polynomial, n =1, 2, +--.
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In 8§ 2 and 3 we prove that every Toeplitz operator is AC. The
method of proof first involves deriving a generating function formula
for the resolvent of 7. This formula appears in the work [2] of Calderon,
Spitzer, and Widom. However, we shall offer a different derivation,
one that points out an interesting connection between 7 and the Szego
kernel function. Next we shall apply a result from the Aronszajn-
Donoghue [1] theory of exponential representations of analytic functions,
and consequently deduce that 7' is absolutely continuous. We conclude
with § 4 where 1.2 is generalized. We elaborate on Putnam’s method.
By severely restricting W we are able to employ Kato’s generalization
[7], [8] of [13] to exhibit a multiplication operator M,; on an L* space
such that T is unitarily equivalent to M,..

2. T and the Szego kernel function. We first set down some
notation. We shall ambiguously employ ”F” to denote

(a) the element {f,}: of /%

(b) the element F(e") of L*— =, w) that has the Fourier series
Din=0 /ne™; and

(c) the holomorphic function F(u) = X2, fuu®, |u| < 1.

Let <, > Dbe the £ inner product and suppose * is the symbol of
complex conjugation, used so F'*(e¥) ~ S, fie!™ and [F(e")]* ~ Dm0
fxe~m¢,  Then

(21) F,Gy = 510t == |7 FenGEds .

We suppose that u,v are complex numbers such that |u] < 1, |v| <1,
and define U = {u™}; e 2, V = {v"}; € (. Note that U(e?) = (1 — ue'®)™
and V*(e'?) = (1 — v¥el®),

Select A so that 1 + )\ < ess inf W. Let »* be the inner product
space formd of elements F' € [* such that

1

[ 1@ — v d < .

Since
[F, Fl = <F, F)

it follows that [** is a (complete) Hilbert space. Define the linear
functional L, on ** by L,(F)=<F, V*>. L, is bounded since

IL(F)[! = <F, FYV* V5 < [F, FIKV V.

Hence by the Frechet-Riesz representation theorem ([12], p. 61) there
exists a unique element K, € (** such that [F, K,] = L,(F'). Thus

2.2 F(v) = <{F, V*> = [F, K,
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= o= || PR (W) — N dg
T J—=n

for all », |v| < 1.

It follows from 2.2 that K,(u) =<K, U*> is the Szego kernel
function associated with the Hilbert space of holomorphic functions F
such that [F, F'] is finite. From ([3], p. 51);

2.3 K, (u) = (1 — uwv*)7[g(v)]* g(u),
where

24 g =exp — = | log (W) — N(e + w)(e® — ) dop.

We next turn our attention to the Toeplitz matrix 7T,. We define
the transformation 7T, to be the restriction of T, to the subset <, of
[* consisting of elements F that have only a finite number of non-zero
components. Then if F' e &, and & is the Kronecker symbol,

2.5 AT =NF, Fy = 3 (wi—y — M,0fafi = [F, F] .

Since [F, F] =Z<F,F> we are in a situation to which the Friedrichs
extension theory is applicable ([12], p. 328-333). Upon applying this
theory we note that:

(a) There exists a unique self-adjoint operator T that is an ex-
tension of 7, and whose domain <7 is contained in [**. <7 is a inde-
pendent of the choice of A + 1 < ess inf W. Notice that T is a quite
convenient self-adjoint extension of 7, since it preserves the analytic
nicety 2.5 for all F e .

(b) (' — N\ is a bounded positive definite operator that maps £
into /»*, and furthermore

2.6 (F,G> = [F,(T — )G for all G e # and F e I,

THEOREM 1. Suppose N+ 1 < ess inf W. Then (T —\) exists,
18 bounded, and (T — \)7'V*, U*> = K (u).

Proof. Suppose F € [**. Then by 2.1 and 2.2, {F, V*> =S,
V" = F(v) = [F, K,]. But, by 2.6, {F, V*>=[F,(T —)\)"*V*]. Thus
K,=(T—)\)"V* and K, (u) =<K, U*> =T —N"'V* U*), as as-
serted.

As commented before, Theorem 1 can be derived from results in
Calderon, Spitzer, and Widom’s paper [2].

3. Exponential representation. We list some of the results of the
Aronszajn-Donoghue theory of exponential representations of holomorphic
functions in

THEOREM 2. Suppose R is a function holomorphic in the upper
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half plane and there having a non-negative tmaginary part. Then:
(i) ([1], p. 325). There exists a positive measure p and real

numbers o' = 0 and B such that

3.1 RO\ = a' + 8 + Sf [t — N — b + 1) dpe .

o' B, ¢ are uniquely determined by R, and (t* + 1)~ is integrable with
respect to p. If |t|(t* 4+ 1)~ 4s integrable with respect to p, then

3.2 R\ =arN+ B + Sm (t —N)tdy, where

B =8 S; B+ 1) dp

(ii) ([1], p. 3831). There exists a Lebesgue measurable function o
with 0 < a <1 and a real number ¢ such that

oo

3.3 RO\ = expo expS [(t — M)~ — (8 + 1)~ a(t) dt

a 18 determined by 3.3 modulo a set of Lebesgue measure zero.
(iii) ([1], p. 886). A sufficient condition for p to be AC is that
for all real x
3.4 o(x) =1lim {o(a,d):a | z,b | a2} <1,
where
w(a, b) = sup {a(d) —a(c):a <c< d < b} .

We next reframe 2.3 in a form suitable for application of the
preceding theorem. Let X, be the characteristic function of {¢: W(¢)<t,
—n < ¢ <=rm}. Put

P(p,w,0) = 2= [0 + u)(e — )+ (% + v)(e — o),
so if

v = re, P, v, v) = ?17; (1 — )1 — 2r cos (b — ) + 79~

is the Poisson kernel. Let

o, ) = — = |" log [1+ (W] Pk w, v d
and a(t, u,v) = S" X(d) P(p, u, v) dp . Notice that a(-, u, v) is of bound-
ed variation, with a(t, u, v) = 0 or 1 according to whether ¢ < ess inf

W or t > ess sup W respectively. Also note that a(-, », v) is monotone
increasing with 0 < a(t, v, v) < 1.

LEMMA 1. If Sm A # 0 or M < ess inf W, then
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3.5 (1 —uwv*) (T — N)7'V* U™
= exp o(u, v) exp Sm [t =N =t + D' alt, u, v)dt .
Proof. Temporarily assume that
*) x4+ 1=<ess inf W. By 2.3 and Theorem 1

(A — uo®) (T — )" V*, U*> = exp — S log (W($) — N)P(¢, u, v) do

= exp o(u, v) exp — S_ log [(W(¢) — M((W(#))* + 1)7*] P(¢, u, v) do
= exp d(u, v) exp — Sl log [(t — M@ + )7 d, a(t, u, v) .

We integrate by parts to obtain 3.5 under assumption (*). An analytic
continuation argument enables us to relax (*).
We now apply Theorem 2.

LEMMA 2. Suppose |v| < 1. Then {E(-)V* V*> is AC.

Proof. Consider R(\) = (1 — [v]) (T —N)7'V*, V*>. This is a
holomorphic function of the type described in Theorem 2. 3.5 assures
us that it has the exponential representation 3.3 with a(t) = a(t, v, v).
We shall show that a satisfies 3.4 and from this it will follow that
p(s) =<E()V* V*> is AC. Now,

w(a, b) = sup {S; [Xa($) — 2D)] P, v, v) dp: @ < ¢ < d < b}

=" @~ 2@ PG, v, 0) do

since P(-, v, v) is positive. Thus
0@ = | 1) = @1 P@, 0, 0) db = hir, ), where v = ret .

Since P(¢, v, v) is the Poisson kernel, 7 is a non-negative harmonic
function in [v| < 1. W is not equivalent to a constant, so % is not a
constant function. Thus by the maximum principle, i(r, ) < 1if r < 1.
We invoke 3.4 to complete the proof.

Now we can settle

THEOREM 3. T s AC.

Proof. From now on let v be real Lebesgue measure as restricted
to the real Borel sets <#. Assume v(4) =0. Lemma 2 assures us
that if |v| < 1. then {E (4)V*, V*> = 0. Suppose now that F' ¢ 2. We
use the Schwarz inequality and the fact that E(4) is a projection to
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note that
| KE(Q)V*, F> | S |[EA)VHIF|] = [KEQV*, E(QV*S 1" ||F ||
= [{EM)V*, V¥ ||F||=0.

Thus {E(4)V*, F> =0 forall »,|v|<1. Buttheset {V*:|v| <1} is
fundamental in [ since (G, V*>=37,0,0"=0 for all 2 |v]| <1
implies that the g, all vanish. Thus { E(4)F, F> =0, and T is AC.

4. Spectral theory. Our principal goal now is to establish a spec-
tral analysis for 7. More particularly, we wish to exhibit a multiplica-
tion operator M,. on an L? space such that M,; is unitarily equivalent
to T. However, we were able to achieve this goal only for a small
class of T(W(¢)). From now on we assume that W is even and AC,
and that the derivative W’ of W has an absolutely convergent Fourier
series, so >, |w,| < . Our techniques follow those of Putnam [11],
but whereas he uses the theory presented by this author in [13], we
use T. Kato’s generalization [7], [8] of [13]. See also [9] and [10].

We start by discussing some preliminary material that we include
here for completeness. A countably-additive function £ on <# to pro-
jection operators in a Hilbert space &~ is AC if v(4) = 0 implies E(4) = 0.
E is singular if there exists 8 € &7 such that v(8) =0 but E(4 n B)
= E(4) for all 4 e &. It is easy to see that a self-adjoint operator
M is AC if and only if its spectral measure is AC.

We shall now establish a Lebesgue decomposition theorem for
spectral measures as a corollary of the classical version of that theorem.

LEMMA 3. Suppose E(-) is a spectral measure im a separable
Hilbert space <. Then:
(i) There exists v € <& with v(—v) = 0 and such that

4.1 E ()=E(- Nv)is an AC and
4.2 Ey(-) = E(-—7) is a singular projection-valued measure.
(ii) If F,Ge &#, 4de &, and E. is the resolution of the identity
associated with E(-), then
(o (A)F, G> = Sd A{B,F,G> | dvdy .
(ili) The decomposition E(:) = E.(+) + Es(-) of E(-) as the sum
of an AC and singular measure is unique.

Proof. Suppose F,G e <, 4e <. Then since <E.F,G> is
of bounded variation it has a a derivative a.e. that is p-summable.
Also

S‘, d<E,F, Fy|dzdy < S d{E(-)F, Fy = < E(4)F, F < |F|},
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so the first term above represents a bounded quadratic form. Thus by
([4], ». 33), b(F,G) :S d<{E.,F,G>|dxdy is a bounded bilinear func-
tional, so there exists a ‘i)ounded operator E,.(4) such that {E,;(4)F,
G>=0b(F,G) for all F,G. E, (-) is clearly countably additive on =2,
and thus so is Es(-) = E(+) — E,c ().

Let {F,}7, be a countable dense subset of . By the classical
version of the Lebesgue decomposition theorem as found in ([14], p. 119),
corresponding to each pair 7,k of non-negative integers there exists
B, € B such that v(8,;) = 0 and

(*) KE(DF,, Fip = <E(4 N B,)F,;, Fiy + {Exc(DF,, Fiy

for all 4 e <. Let B be the union of all the B, 4,k=0,1,2, «--.
Then v(B) = 0 and (*) holds with B,, replaced by S. Now we Dpass
from the dense subset to all of &2. For all F,G € &, 4 € &

(*%) CE(F, Gy =<E4 N B)F, Gy + {E(NHF,G),
where the decomposition of the left hand term into singular and AC
parts is unique. Put vy = — 8. Then 4.2 holds and thus 4.1 is also

true. (iii) follows from (**).

It follows from lemma 3 that E,.(:) = E(v)E(-)E(y) is a spectral
measure in the Hilbert space E(v).<”. My = E(v)ME(y) is the self-adjoint
operator on E(y).<” having this spectral measure. M, is obviously AC.

The following simple example will play a role in what happens later.
Let W be as before, even, with 3 |w,| <. Let M be the multiplication
operator that maps any F € L*0,7) = <& into W-F e <. Let X(4)
be the characteristic function of {p: W(p) € 4:0 < ¢ < 7w}. Since

(MF, Fy = L j W) F@) dp = S td, - j LA F@) dep
T Jo —oo T Jo

it follows that the spectral measure E(:) of M is defined by E(4)F =
X(4)-F. Lemma 3 guarantees the existence of v € <& such the 1/x
ANDXC)P)F ()P dp is AC for all F e <, while E(-—v) is singular.

E(7)<Z can be identified with the Hilbert space L*(A), where F' e L*(A4)
if and only if ||F||, < o, where

43 WP =LV irer s = [ L] 1Feras]”,

T

and
A={p:W@)ey, 0=¢p=n}.

Similarly M,; can be considered to be the mapping that takes any
F ¢ L*(A) into W-F e L*(A).

Another concept that we shall have cause to use is that of trace
class. As is wusual, a bounded operator on [* is identified with its
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matrix representation. A matrix H= [w,,],4,7=0,1,2, ..+ belongs
to the Schmidt-Hilbert class SH if )7, o|lw, > < . H belongs to the
trace class TC if H € SH and || H ||, < «, where || H ||, is the sum of
the absolute values of the eigenvalues of H repeated according to mul-
tiplicity.

As an example we treat the Hankel matrix H = [w,,,,,]. As pro-
ved in [5], H € SH if and only if >;.m|w,,|* < . This follows
from the equality >.7i—o|W,ixiol* = S| w,|’, and gives a necessary
condition that H € TC. Now, define H, = [8,,513.]. Then H = 37,
w,H,. Since ||H,)l, < n it follows that || H||, < S\7_Jw,| | H,l|, < Si-nlw,.
Thus a sufficient condition H € TC is that W be AC such that W’ has
an absolutely convergent Fourier series. This, of course, is part of our
standing hypothesis on W for this section. We do not know a wuseful
necessary and sufficient condition for a Hankel matrix to belong to TC.

Hankel matrices enter into our picture, following an idea of Put-
nam’s, via the following

LEMMA 4. Let H be as as in the above example. Let S = [s;.],
where s, =2/ || W(g) sin (5 + g sin (k + Dpdp, 5,k =0, 1,2, -+~
Then T — S = H.

Proof. w,_, — $;, = —%L_—S:W(qf’) cos (J — k)p do
— % S:W(qb) sin (j + 1) sin (k + 1) dep .

-_—%S:W@)cos(j—i- k4 2)dg .

We can now state a specialization of Kato’s theorem in a form
suitable for our application. It is understood that in the statement 7T
and S need not necessarily be the operators we have already defined.

THEOREM 5. (Kato). Suppose T and S are self-adjoint operators
on a separable Hilbert space < such that T— S =H e TC and T is
AC. Let v and E(+) = Eic (+) + Es(+) be the Borel set and decomposi-
tion respectively guaranteed by Lemma 3. Then

(i) as t— o, exp (itT) exp (— itS) E(y) converges strongly to an
tsometric mapping U of E(y) Lonto &~ .

(i) U™ s the strong limit as t — o« of exp (itS) exp (— tT).

(ili) The self-adjoint operator Sic = E(v) SE(y) on E(v).& 1is uni-
tarily equivalent to T, with I = US, ;U™

From this follows the following spectral analysis theorem for 7.

THEOREM 6. Suppose W is a real even AC function on (— w, x)
whose derivative W' has an absolutely convergent Fourier series. Then
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the Toeplitz operator T(W(p)) is unitarily equivalent to to the multi-
plication operator My, : f — W-f on L*(A) (see 4.3).

Proof. The hypotheses of Theorem 5 are satisfied via Lemma 4,
the discussion following Lemma 3, and Theorem 3. Thus 7 is unitarily
equivalent to S,c. Since {f,}; — 2" S o fnsin (n 4+ 1)¢ is an isometry of
* onto L*0, 7), it follows that S, is unitarily equivalent to M,;. Thus
T is unitarily equivalent to M.

COROLLARY 1. Suppose W(p) = w, + 2 Sw, cos np, where the w,
are real and m s a positive integer. Then T(W(p)) is wunitarily
equivalent to the multiplication operator M:f— W-f on L0, ).

Proof. In this case M = M,.. (See Putnam [11], p. 522). Now
use Theorem 6.

If Wis AC and W” e L*0,7) then Y |w,| < . Hence a W
satisfying Theorem 6 can haye intervals of constancy. If such is the
case, then M has an infinite number of eigenvectors. Thus one cannot
validly replace ‘““M,.’’ and ‘‘L*(A)” by “M’’ and ‘‘L*0, )"’ respectively
in the statement of Theorem 6, since T has no point spectra.

We can easily deduce 1.2 from Corollary 1. T(W(2cos ng)) is uni-
tarily equivalent to multiplication by 2cosnp on L*0,7),n=1,2, .-,
and hence to 2cos (n arc cos 3T(2 cos ¢)) = 2 T,(3T(2 cos ¢)) on .

It would be of great interest to evaluate the limits in Theorem 5
(ii) and (iii) so one could exhibit the unitary transformation of Theorem
6. One could then have a super-abundance of new unitary operators.
We pose this as an unsolved problem.

5. Appendix. C. R. Putnam has extended the theory he set forth
in [11] in his recent article ‘“On Toeplitz matrices, absolute continuity
and unitary equivalence’’, Pacific J. Math., 9 (1959), 837-846. He
proves that T is AC provided that A, is bounded and M = M,.. whence,
using [13], he proves Theorem 6 under the added hypothesis that
M=M,,.

It is interesting to compare our proof that 7' is AC with Putnam’s
weaker version of that result. He applies his abstract theory of com-
mutators, while we exhibit the resolvent of 7' and employ the rather
deep function-theoretic results of [1].
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