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1. Introduction. Resume of some previous results.! Let B be a
domain in the z,, z,-space’ possessing a Bergman kernel function K@ (z,,
2y; ty ty), (21, 2,) € B, (t, t,) € B. By identifying the arguments (¢,, t,)=(z,, 2,)
one obtains the function K = K'? (z,, z,) = K'? (z,, 7,; 2., 2,) which plays
an essential role in the theory of pseudo-conformal transformations. An
important application to this theory is the theorem proved by S. Berg-
man stating that the metric

(1.1) dst = 3, T® dz,dz,, Ty =208 K”
moa=1 ™0 02,02,

is invariant under pseudo-conformal transformations (B. [1], p. 52). From
this follows that all measures of geometric objects in B which are based
on the metric (1.1) are also invariant under pseudo-conformal transfor-
mations.

In the present paper we are concerned in particular with the Riemann
Curvature of (1.1) in an analytic direction (see definition in section 3).
Since the second derivatives of the function log K‘® (z,, 2,) are the main
constituent in the definition of the curvature, we at first discuss bounds
for their distortion under pseudo-conformal transformation (see Theorem
1). For this purpose, Bergman’s method of the minimum integral is
used (B. [3], p. 48; K. [1]; S. [1]):

Relations among various solutions of minimum problems of the type

(1.2) L[ F@) [dw = min = A, (dw = volume element) ,

are studied (see Theorems 2 and 3). Here f(z) are analytic functions,

Received September 28, 1959. The author wishes to thank Mr. M. Maschler for value-
able help in preparing the manuscript for publication.

1 Square brackets refer to the bibliography at the end of the paper. We use the ab-
breviations B. = Bergman, F. = Fuchs, K. = Kobayashi, S. = Stark.

2 In the present paper we consider only domains in the space of two complex variables.
The generalization of the methods to the space of more complex variables involves difficul-
ties of technical nature only.
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1022 J. M. STARK

regular in B and subject to certain auxiliary conditions. By varying
these conditions, one obtains different »;’s. (Upper and lower indices on
Mg indicate the auxiliary conditions, as described, e. g., at the end of this
section.) The method of the minimum integral, which is applied in order
to obtain bounds and distortion theorems for various quantities having
a geometrical meaning, is based on the fact that these )\;’s depend
monotonically on the domain B (see (1.6), (1.7)). Indeed, if, for instance,
one can express these quantities and/or their distortion in terms of the
Ag’s, and if one knows that there exist ‘‘domains of comparison’”’ I and
A such that ICc BC A, then, using the relations among the \’s, one can
estimate the geometrical quantities and/or their distortion in terms of
the A,’s and the A,’s. In general, I and A are required to be domains
for which the kernel function can be expressed in a closed form; there-
fore, the various A\’s can be estimated if one knows how to express them
in terms of the kernel function. This is done in B. [2], pp. 41-43, (see
(1.5)), and in §2, (see (2.2)).

Using the method of the minimum integral, Fuchs [1] has obtained
an expression for the curvature in analytic direction R, in terms of
certain \,’s, (see (3.6)). From this expression a bound for R is derived
in terms of the corresponding \,/s and A,’s, where I and A are domains
of comparison, ICBCA, (see (3.7)). It is shown in Theorem 4 and in
the example which follows that this bound can be sharpened if a bound
for the volume of B is given, and if a finite number of orthogonal funec-
tions in B and certain integrals over B with weighting functions de-
pending only on A are known.

In order to prove some of the relations among the various \'s, we
use some results which were obtained in S. {1] and B. [4] p. 97 ff.
These results and the definitions of the \’s, used in S. [1], will be stated
now for the convenience of the reader:

Consider the following general minimum problem: Let {p™(2)},v =
1,2, .-+, be a system of functions orthogonal in a domain B® and com-
plete for the class <(B). Let a,,¢=1,2,--+,m,p=1,2,+-+, be a
system of conplex numbers such that 37, |a,, "< for ¢=1,2,+«, n.
Let X,,++-, X, be complex numbers. Finally, let \ represent the minimum

of the integral

(1.3) g | fldo = STAA4,, szg 7w
B v=1 B
for functions fe &% B) and satisfying
(1.4) S Ao, = X, g=1,20,m

then ([Cf. B. (2), pp. 41-43; S. (1), (2.13)})

3 In the sense that yBgafF‘)(z)-(plW(z)dm:(5‘pw, where Guy =0 for p #v,0nw=1. £%B) is
the class of functions f(z) which are regular in B and for which SBI f(2)2dw < oo.
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(1.5) X:_P XY\ . |y,
(X) D

where (X) is the column matrix of » rows having X, as elements in the
rth row, (X) is the transpose of (X), conjugated; (D) is the square
matrix of m rows having 3., @, as element in the rth row, sth
column, and |(D)| is the determinant of (D).

Denote by (1)-(8) the auxiliary conditions

(1) fO=1

(2) f@&)=0

(3) f,@)=1

(4) £, =0

(5) f,0=1

(6) f,0)=0

(7)Lﬂw:0

(8) wu,(0f]0z,), + u,(0f]02,), = 1, u,, u, complex numbers;

and let

(a) \p (0) N3 (c) N3 (d) M3
(e) M3™ (£) 25" (2) 23" (h) A5*
(i) A5° (3) A3 (k) A5 (1) 23
(m) N5’ (\s = Ny(t), t € B),

be the minima of the integral (1.2), for functions fe <% B) which are
normalized at ¢ € B by the respective auxiliary conditions

(a): (1); (b): (2) and (3); (¢): (2), (4) and (5);
(d): (3); (e): (8); (£): (2) and (5);
(2): (4) and (5); (h): (1) and (6); (i): (2), (3) and (6);
(3): (3) and (6); (k): (1) and (4); (1): (2) and (8);
(m): (8).

Let G be a domain containing a domain B, BCG; we denote by

() Xz (0 Mz (P) M (@) MeF
() Mgz () MG (vs = n4(8), t€ B),

the minima of the integral

[,l/1do,

for functions fe <*(G) and normalized at te B by the conditions
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(n): (1) and (7); (0): (2), (3) and (7);
(0): (2), (4), (5) and (7); (q): (2), (B) and (7);
(x): (2), (3), (6) and (7); (s): (2), (7) and (8).

It follows from the definitions of the various M\’s that
1.6) A < Ay < M, for domains I, B, A such that IcBCA
a.mn Mas = Mpg for domains A, B such that ADB

(See S. [1], (8.7a). (8.7b)). From these inequalities the following result
can be deduced*:

LEMMA. Let B be any domain with finite Euclidian volume, in
the (2., z,)-space, such that Vol B < V < . Then tf I and A are any do-
mains ICBCA, we have

(1.8) A/Ny) = ANw) + A/ V)

(1.9) ANG) = {1 — (N V)Y AN + () AN
(1.10) ANG) = {1 = OFIV)F AN + VAN
(1.11) AN = {1 — (M V)FANE) + O3 V)AL
(1.12) ANE) = {1 — MV AR + O V) (ANEY)
(1.13) ANG) = {1 = (V) ANG) + (W V) AAD)

at t = (b, t,)e L

2. Distortion theorems under some assumptions about the structure
of the domain. If integrals over a domain B of the type

[ Koo, | eKwpm);ado;,
B B

2.1
@D SSKm@Em%MM v=1,2,

are known, where A is a domain which contains the domain B, then in
(1.8)~(1.13) the terms involving the )\, can be evaluated. For, if N, is
any one of the \’s with double subindex in (1.8)-(1.13), then the relation
between A, and the A, which has the same upper indices is described
as follows: Let ¥ (2), 2 =(2,2)€ A, v=1,2,..-,be a complete ortho-
normal system of functions for the class &% A), then each function f(z)
of this class can be represented in the form: f(z) = 3, A9 (2),
and the series converges absolutely and uniformly in any closed subdo-
main of A. Therefore, each of the \,’s is a special case of the general
minimum problem described in (1.3), (1.4)>. Thus it follows from (1.5)

4 This is Theorem 2 of (S. [1]).
o In these formulas replace B by A.



MINIMUM PROBLEMS IN THE THEORY OF PSEUDO-CONFORMAL 1025

that each )\, can be written in the form )\, = — | (N)| = [(D)|, where
[(D)] is as in (1.5) and (N) is the matrix whose determinant occurs in
the numerator of (1.5).

Since K'“(z, £) = S (2)y™(€), the matrices (N) and (D) depend
only upon K“(z, £) and its derivatives at the points z =1¢, £ = ¢, and
in the case of A also upon wu,, u,.

LEMMA. If ), = — |(N)| = |(D)|, where (N) and (D) are used as ex-
plained above, thenm the corresponding Ay, t.e., the \,; which has the
same upper indices as \,, can be expressed in the form

(2.2) gy = — | V) (U)'\+ (D) (W)".
U) E (W) E

Here

g= | K@ Blwdw,
and
(W) = (WD Wm"'y Wn) )
(U) = (O, Wy, Wy eer, Wn)

are row matrices®, and (U)' is the transpose of the row matrix whose
elements are the conjugates of the elements of (U); the same rule applies to

(W)Y. The elements W, depend only upon the expressions (2.1), and in
the case of A% also upon u,, u,.
E. g., for

Nap = )\'lABy X%B} )“gﬂn 7\'54229 ’
we have, using the notation

K6, 1) = [0+ K W (€, £)[05y0550t10t;]

YUY

{=(nt) t=(ut),
W) = (| K0 D),
.

) = (| &5, t)dwg,g K, Do ) ,
(W) = (K9, D, | Kigie, Do, || K, Do),

0001

(
(W) = (K @ ¢, Dy, 7, || Kig(e, o + 7] Kig(e, Doy,

respectively.

8 Note that (X) in (1.5) is a colummn matrix.
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Proof. We shall prove (2.2) only for the case of \%;. The proof for
the other cases can be carried out along the same lines.

Let o,(z) be a complete orthogonal system for the class .<2%(A).
Choosing 7 = 2, m = 1, a,, = @,(t),

o, = —aq)"(z” 22) ’ Xl =0, Xz =1,
0z,

z=t

the general minimum problem of §1 (B is replaced by A) becomes the
minimum problem for \%.

The elements of the matrix (D) in (1.5) become values of the par-
tial derivatives of the kernel function and (1.5) is reduced to

o — _ IS
* BN
where
0 0 1
S=(0 K& K&
1 K& K@

1000 1010

and S,; is the matrix which one obtains by deletion of the first row and
the first column from the matrix S. Here

KA = § vt K (g, 1)[021025081083) 0y o =y.19) -
If we choose m = 1,n = 3, a,, = P,(t), Ay, = 0P,(2,, 2,)[02,],—,
Ay = S q)V(C)dws" Xl =0, Xz =1, Xs =0
B

then the same general minimum problem becomes the minimum problem

for A%, and (1.5) becomes \i; = — | T'|/| T |
where
0 0 1 0
|0 K& 8 [, K, o
1 K kg | Kae Hio,

0 [ K Baor | Ko Bos | | Kiste, Baodo,
B B BJB

and T,; is the matrix which one obtains by deletion of the first row and
the first column from the matrix 7. Since K (z,t) = K“(t, Z), we have
that this expression for \%; is equivalent to (2.2).
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Other assumptions about B permit further estimates: E.g., let
{Pi(z, 2)},0=1,2,-+-, 7 — 1, 9 (2, 2,) = constant, be a set of inde-
pendent functions of the class <#*(B). Let {¢(2, 2,)},0=1,2,--, r—1,
be functions obtained by orthonormalizing over B the set {®{"(z, 2,)},
c=1,2,---,r —1. If we assume that integrals over B of the type

U, = S PPOK (¢, By,
(2.3) »

Pron = ga SB(/)SW ({,’)WK(A)(L é)da)gda)e

m,m=1,2,-+,r —1
are known, then we can use the relation

@4) (WD) = W) + 512
where
(2.5) Mg = | (Po) | + | K0 (U)),

(U (Pun)

Here (P,,) is the square matrix whose elements P,,, are given by (2.3);

| (Pnrx)| is the determinant of (P,.,), (U,) is the row matrix (U, U,.-- U, ),

and (U,) is the transpose of (U,) conjugated.” Notice that Az = M.
Let

{2, 22)} c=1,2+,7r—1,

{af @)}, v=1,2,--,p— 1, {B¥@)}, ¢t =1,2,++,0 — 1

be sets of functions® such that each set consists of independent func-
tions and each function belongs to <% B). Further, let {p"}, {a™},
{8%},v=1,2,-.-, be sets of orthonormal functions such that each set
is complete for &*(B), and such that the first functions of each sequ-
ence are obtained respectively by orthonormalizing over B the sets {®{},
{a} and {B#}. For any domain G, GDB, we define Asixqg Mobr, Mk
Meat, in the same manner as we defined AJz, Mk, Aes, Mia', except that
auxiliary condition (7) of §1 is replaced respectively by the conditions

SWfdwzo,ﬂZI,zy-..,q_l;
B

§Wfdw=o,a=1,2,---,r—1;
(2.6) 177
ngda):O,u:I,z,---,p—l; and
B

Sﬁsﬂfdwzo,ml,z,---,q—l.
B

7 A formula similar to (2.4) is proved in B. [1, 4] for the case in which the domains
are two-dimensional. (Extension to the case of four-dimensional domains offers no difficulty.)
SE.g, {a’}= 00,z L 1B = L, o, A 0 Y2 L, 2y, 2 20}
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REMARK. Conditions (2.6) do not change if one replaces 8{*, {”, a*,
by other linearly independent functions which are respectively linear com-
binations of the previous functions. In particular, these functions can
be replaced by 8™, ¢, a, respectively.

THEOREM 1. Let B* be the tmage of a domain B under a pseudo-
conformal transformation zi = z}(z,2,), k =1,2, normalized at t by
(02:/0z,), = Oy, Heret = (L, t,)eB, z;(t, t.) =15, 6, =1,and 3,, = 0 for
v # (. Further, let I and A be domains of comparison for B such that
teICcBcA. Finally, let {9 (z,2)},0=1,2,--+,r — 1, {a™(z)}, v =
1,2,++,p— 1, and {8 (z)}, p=1,2,-++,q9—1, be three sets of functions
possessing the properties

2.7 SB Plp®dy = SG,G,SBa“’&T’de = 8y SBBWde:SM .

Then’
[ =M 18 )
+ O Z | 8% | [(1/)\,,13,) + Z I(Pm ]I’
(2.8a) < [0 log K\ (2%, 7%)/02508 | esr
< {(1/xgl)[(1/>¢m) + g | |]}O=,
and

(1= uElar)a -,
+ 0w lan fanm + Slegr ]}
(2.8b) < [0*log K ‘® (z*, t*)/@z;"at |
< {an api) + S 1o e]}
The Vs bearing multiple subscripts are functions of

K“W(t, 1), KA = [o*re+u K4 (2, 1)/02,0240810t3],—,

v+pu+u+v=12 and a finite number of integrals over B with
weighting functions depending only upon A.

REMARKS: For two given domains, the theorem gives necessary
conditions in terms of various properties that one of the domains can

9 We use the abbreviations 2z = (z1, 22), t = (t1, ta).

10 Concerning the symbols A4n see pp. 6 and 14.



MINIMUM PROBLEMS IN THE THEORY OF PSEUDO-CONFORMAL 1029

be mapped onto the other by a transformation of the type described.
The middle terms in (2.8a), (2.8b) depend only upon B*, t*.

For our proof we need certain relations between the A\’s which we
formulate in the

THEOREM 2. The following relations hold:

(2.9)  (A/Z5) = (1/Mzaxxa) + Vo ZIB“" "« {15 — (INBaxd)} »
(2.10)  (A/AF") = (U/NG5xp) + Mo Zla‘”’ QG — ANGE)}
211 (ANF) = (1/rss) + Z Pz I
(2.12) (AE*Y) = A/Nzs7) + Z lpal 7

213) () = (1= M2 8% )L/
0518 PN + S

@14 ap) = (1- A5 |2>(1/ml*p
y=1
=1 r—1
+ )»}.pzl | a® Iz{(l/xj;‘:) + Ell (p;? 12} ,
V= o=

Proof. To establish (2.9) we evaluate Aigisq A3, A3Y, and A} using
(1.5) by taking for (m, n, X,, X,, a;,, @) the values (g, 2,0, 1, 8%, 8Y),
1,2,0,1,8%,82),1,1,1,—, B, —)" and (1,1, 1, —, 8%, —) respec-
tively, where B and ,6’;:’ are evaluated at t = (¢, t,). Now all the \'s
of (2.9) are expressed in terms of {8™},v =1,2,.++, and their deriva-
tives at ¢, and the relation between these M\’s is easily verified to be
(2.9). Equation (2.10)-(2.12) are established in the same manner by using
in (1.5) for Ao, N&™, NF*, AL, MiL., MEL, MEAL AEYL, values of (m,nm, X,
X, &, @) respectively as follows: (p, 2,0, 1, a”, o), (1, 2,0, 1, a®, &g?),
aii1, —, a;;), -, 1,141, — a”, ), (r,1,1, —, ), (1,1,1, —, P,
—), (r, 1,1, — 92, —), and (1,1,1, —, @, —).

From the relations (1/Ay) > S 1|,8"” [ AL = o |a™ ], it fol-
lows that the coefficients before the braces in (2.9) and (2.10) are each
less than or equal to 1. By essentially the same reasoning used to derive

(1.7) (see S. [1], (8.7b)), we obtain.
(2'15) >"ABr > >"BBry )’AB*p 2 )’BB*QH )"AB**q 2 )"BB**(U ADB .

11 “__ means no special value is required for this quantity.
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Equations (2.9) and (2.10) are of the form®™
(2.16) (I/ns) = (U \ppis) + M5-g {A/NE") — U Nsais))} S

where A3-9 <1, and where the auxiliary condition associated with A5Y
are among the auxiliary conditions associated with Nzps. Hence Appes=>
A5V, and the brace in (2.16) is non-negative. By use of (2.15), and since

A/xg) = (AU rszs)) + Mg {ANG) — A/ Azpe)}
= (1 = A 9) 1/ Apns)) + A -9(1/NG")
we have
(2.17) A/g) = @ — X -9) AU Nass) + AM9@ANG") .

Using (2.15) in (2.11) and (2.12), and substituting the resulting inequali-
ties into (2.17), we obtain (2.13) and (2.14). This completes the proof of
Theorem 2 and we begin with the proof of the Theorem 1.

Since

2 _ 0z, 0z
T K —~q
Y ,,;41 az,’f 0z

(see (1.1)), it follows from the normalization that
TR, t) =T @ 8),
T2, t) = T2, L) .
From the relation

0z, =) |

K P(z,, 2,: 2, 7,) = K'"(2f, 23; 21, 25)
Ty 2)

(see B. [2]), it follows that the last two equalities are equivalent to
(ABAE), = T = [0°log K™ (2f, 25)[02102 ] 1.0z

and
(A, = T2 = [0’ log K (2], z?)/azfazf]uw;) .

Using the bounds for A}, A%, and A% as given by (2.4), (2.13), and (2.14),
we obtain (2.8a) and (2.8b).

To complete the proof of Theorem 1 we need only show that in
(2.8a) and (2.8b) the \’s bearing multiple subscripts are expressible in

12 (2.16) becomes (2.9) if we set Az =2}, ABBS) = Apyxq A = Ay 45T = 23! and
g = ZLTi18™|2; (2.16) becomes (2.10) if we set Az = 23", AsB(S) = ABgu, » 45 = Ap A =
A%*, and g = ¥ Ya®™ 2. The symbol (S) in 4zps) means that some additional conditions
are superimposed in addition to the conditions (n) — (s), see p. 6.
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terms of K, K sars, V+p+u+v=1,2, and a finite number of integrals over
B with certain weighting functions independent of B. That this is true
for Az is shown by (2.4). Let {4+»},v=1,2,--., be a system of or-
thonormal functions over A complete for <2*(A4). Nz is the minimum of

S AL, A, = S fdw
for functions fe ¢*A) and satisfying
o) = S A4 0 =1, | 7PQ)-fO)do

= S| PFOFOdor =0 pr=1,2,, 71,

v=1 JB
Thus MiL. can be evaluated using (1.5) and taking m = X, =1,n =7,
Xz == Xr = Oy alv = ‘P‘;:), ak\' = S ¢ék‘1)(é‘)'w(w(§)dw§9 2 S ks r. Like-

wise NIl Migssq and A5, are evaluated in the form required by the
theorem by substituting in (1.5) the values

(2.18) m=1l,n=r,X=1,X,=.-..=X,=0,
@ =¥, @ = | FFTOP Odos 2 < k<7
B

(2'19) m=1,n:q+1,X1:0,X2:1,X3="°
= Xq+1 =0,a, = \p(v), Uy = "1’;;)! (269

= | @ v @don 3 <k <q +1;
(2.20) m=1Ln=p+1,X,=0,X;,=1, X, = ---

= Apt1 = 0, a, = ‘I"My Ay, \l’z(;)y Ay
— |, @@ e, 3 <k <+ 1;
B

respectively. This completes the proof of the theorem.

3. Curvature in an analytic direction. In this paragraph we con-
sider the Riemann curvature of Bergman’s metric.
2 2 (B)
3.1) dsy = 3 T®de,dz,, T'® = T,y = 2108 KT

N

m,n=1 02,02,

is the metric defined in a domain B, where the formal operations are
carried out as if z, 2, z,, 2, were independent coordinates. The compo-
nents of the fundamental tensor of the Riemannian geometry defined by
(3.1) are then

gu=g12:gz2=gﬂ=giz'=gé§:0’

1 1

1 1
gi= ‘2‘ Tﬁ; Jr = ’E TlE’ 9o = ’2‘ Tﬁv gz = _2'T2§r



1032 J. M. STARK

where now

3.2) S gudzde, = -3, Tordendz,”

®,v=1,2,1,2 m,n=1
Taking the usual formula for the Riemannian curvature of the metric
Suv-12539wdz.dz, in the plane defined by the vectors {u,}, {v.},a =
1,2,1, 2(vz = ., vz = ¥,) We obtain

(3.3) Z Rnuvkun’v,ﬂbyvk
S (GnGus — GniGus)UnVuthyVy

where

and R,.,, are the usual Riemann symbols of the first kind.

If {v,} belongs to the same analytic plane as {u,} (i.e., if v,=au,,
v; = Gug, then (3.3) becomes what is called the curvature in the analy-
tic direction {u,}, @ =1, 2(B. [2], p. 54)

R = S Ri s W U1,

Z Tﬁu TVE anuuuvu—'k
where
2 T L s 0T 0T.x
= , Rx, pA Tk ZZwe T2kx
2 nu-Zk SN + kZI 0z, 0z,
T% = Ty/D, T® = — Ty/D, T® = — Ts/D, T® = Ty/D,

D= TﬁTzE - TlE' Tﬁ .

Using Bergman’s method of the minimum integral, Fuchs [1] has
obtained the following result. Let M = AMj(¢), t = (¢, t,) € B denote the
minimum of the integral

3.4) g |f[do, do = ddyde.dy,
B

for functions fe &L*B),f=f(2)=f(2y,?), 2e = X, + W, k=1,2, and
normalized by the auxiliary conditions

S@) = fu@) = ful) = 0, i fou(t) + 2uu,fu(t) + uife(t) =1

where f,..(t) = [6™"f[0202}],; w, and u, are arbitrary fixed complex num-
bers, then

13 J.e., in the summation, both x and v take the values 1, 2,1,2; Z5 = Z,.
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1 2
3.5 A = , SV = ,
3-5) RC = R STomung, | = ai

K=K®" (¢, z)v Tz = T::%(t’ -t-) .

Using (3.5), the relation 1/K = )} and the relation

2
dst = 3, T2u,il, = N\
1

wov=

(see B. [2], p. 53), we have
(3.6) 2 — R =\, R = R() .

Since A¥ and M are positive, it follows from (3.6) that the curva-
ture in an arbitrary analytic direction is less than 2. (B. [2], p. 54; F. [1]).
Let I and A4,teIcBc A, be domains of comparison for the given
domain B. Then from (3.6) and the monotonicity of the \’s, we obtain

3.7 R <2— (PN .

We shall show that the inequality (8.7) can be improved in certain
cases if information about B of the following types is given: (1) Volume
B <V, where V is a known number, (2) a few functions orthonormal
over B, and (8) certain moments over B with weighting functions de-
pending only upon I and A. We assume that

(3.8) Vol A > V > Vol B, IcBcCA.

We shall show that this information leads to an improvement in (8.7)
for some cases.

Define 25 = \;**)(t), t € B to be the minimum of the integral (3.4)
for functions f e _¢“*B) and normalized by the auxiliary conditions fi(f)=
Fo®) = 0, ul foo(t) + 2u,u,f ., (t) + uif(t) = 1, where u, and u, are arbitrary
fixed complex numbers.

Let

{aw)(zl)}i Y= 1: 2;' D — 17 {IB(M)(Z2)} ’
pr=12...,qg—1, be sets of functions satisfying

S a® - a®dw = §,,, S B¥.B®dw = §,, ,
B B

S = 0,0 # k, 8, = 1. We define N, Mok, Mgk« for BCG to be the
minima of the integral

(3.9) SG' Fledew

for functions fe ¢*(G) and normalized by the respective sets of auxi-
liary conditions
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1. f® = fu®) = ful) =0, uifau(t) + 2u,u,f1u(t)
+ufu® =1, | fdo=0;

2. fult) =0, ful®) =1, S av.fdw=0,u=1,2,p— 1;
B

. Sl =05u®) =1, | FPefdo=0,p=1,2+,q—1.

THEOREM 3. The following relations hold

(38.11) (M) = (UNGR) + (F'a/Vol B)-{(1/N5) — (A/NGH)}

where Fy = NyMIAR INEAEY,
(312) (W) = W) + A8 (S 1l AN — A3}
(3.13) (A/NE") = (1 N5Bsxa) + qill B I

=

Proof. Let {y'“@®)},0=1,2,---,4? = (Vol B)™"?, be a set of or-
thonormal functions complete for &#*(B). The minima A2, A and AEL
are expressed in terms of u,, %, and sums involving the functions {J‘’}
and their derivatives by taking in (1.5) values of [m, n, X, X;, X;, X,, a,,,
Ay, O, A,], Tespectively, as follows:

[1,4,0,0,0,1, 4> (), ¥ (), ¥a'(8), H] ,
[1: 37 07 07 1) T {5)(t)7 ‘P\é})(t)! H’ '_] ’

and

[2,4,0,0,0,1,y>(@), (@), ¥s'(t), H] ,
where
H = winpl(t) + 2uury (8) + wirsy' (t) .

The minima occurring in F, (see (3.11)) are expressed in terms of
u;, 4, and sums involving {y+"} and their derivatives as indicated in the
proof of Theorem 1. Combining the expressions for the minima so as to
eliminate u,, 4, and the sums involving {y°} and their derivatives, we
obtain (8.11). Relations (3.12) and (3.13) are established in a similar
manner. To express Mjiy, and Mjjis, in terms of sums involving {y*'}
and their derivatives, we take in (1.5) values of [m, n, X, X,, ay,, )],
respectively as follows: [p, 2, 0, 1, (), ¥ (£)], 14, 2, 0, 1, P (£), 4y (D)].
To find similar expressions for the other minima in (3.12) and (3.13), see
the proof of Theorem 2.
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THEOREM 4. Let B be a given domain in the (2, z,)-space having
interior and exterior domains of comparison I and A. Let the point
t =(t,t,) el and R be the Riemann curvature at t in the analytic direc-
tion (uy, u,), of the Bergman metric (3.1) where K = K'®(z,2) is the
kernel function of B. Let {9p'(z,2)},0=1,2,-«+,r — 1, {aV(2)}, v=
1,2, 0 =1, {B¥(=)}, £t =1,2,000e,q — 1, be three sets of functions
possessing the properties

61 | 9opvdo =6, | ava¥do =5, | g9FTd0 = .,

8 = 0,0 # k, 8y = 1.
Then
(3.15) R<2—\L
where

L = max {(IND), ANED + (FIVYINET) — ANEDT
V > Vol B, F' = M\ PV,

F, = max {(1/Xj1), (A/NiE) + :Z:l (Pz(;”lz} ,
F, = max{(1N5"), AG8hed) + 53182
i) + 27 (Z ) Iane) — g}

and where the \'s are solutions of minimum problems depending upon
the domains indicated in the subscripts, and where the \'s bearing
multiple subscripts depend only upon the kernel function of A, the first
few derivatives of the kernel function of A, a finite number of integrals
over B with weighting functions depending only uwpon A, and in the
case of AP} also upon u,, u,.

Proof. From the definitions it is clear that
(8.16) A <M <
Hence (3.11) implies
(3.17) Fy/Vol B = (AL A S M)/ (W as2.VolB) < 1.
Using the monotonicity of the \’s, (8.11)-(3.13) imply
(3.18) AN = ANED) + (FY VYA — Q)] .

(See details of the proof of Theorem 2 in 8. [1], which is the lemma in
§1 of this paper.)
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where F) is such that F; > F,
p—1
(319) WM = ANi,) + M el F)Ians) — A,
q—1
(3.20) -~ (A/AE™) = (I NiBexa) + 2B
m=1

From (3.6) it follows that
(3.21) R<2—-\?-L,

where L, is a lower bound for 1/A%'. Combining (3.21), (3.18), (3.19),
(3.20), (2.13), and (2.14), we obtain (3.15).
To express the minima bearing multiple subscripts in terms of the

quantities mentioned in the theorem, we proceed as in the proof of
Theorem 3.

ExamMpPLE. If L = 1/\, then (3.15) reduces to (3.7). To show that
there are cases in which (8.15) is an improvement over (3.7), we pro-
ceed as follows: Let the given domain B contain the origin and have
as interior an exterior domain of comparison at the origin the hyper-
spheres

I: ilz,c —em P < m?
k=1
and
A:ﬁ]lzk—eM|2<M?, g < 1/2
k=1
respectively.

In constructing examples we must always take m and M so related
that IcA. We note that ICA if m < M.
Define F';, to be

Fro= OGN (VN

and to facilitate computing take u, = 1, u, = y¢, ¥y real. Using formula

(1.5) (see also B. [2] p. 43] and the fact that the kernel functions of I
and A are

K09 = 2mi{e [me = 32 G — em)) G — em) ||

K, 3) = 2000 {= | M = 3 (2. — M) (3 — sM)]F

respectively, we compute the \’s in terms of ¢, m, M, y, and obtain that
(F o/ VYA and 1/AF*) can be written in the forms

(Fral VYANG) = pi plu S UW-e,

I
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4
AND) = a X Wu(y)e™
m=0

where

or = VI(EE) = ViVl 1) =1,

a:{ 48

B8 ) o= Mm>1,
M — 252)8} 0= Mim

and where the coefficients U,(y) and W, (y) are functions of y ounly.
Computation gives that Uy(y) = (y + 1)* = Wy), and

Ul(y) = 4(y4 - 22/2 - 3) = Wl(y) .
If we let 7 = (1/1/2) — ¢ we obtain

3 U@ = biy) + 9,07 + 007)

and

z W m)e— = by) + g:u)y + 0(7) ,

where by (y) = 4(1 — 2y — 3y*) and where g,(y) > g.(y) for |y| sufficiently
small.

To obtain our desired example, we first choose y sufficiently near
zero that ¢,(y) > ¢,(y). Then we take ¢ positive and near to 1/1/2, m
near to M, and B such that Ic BC A and such that V/(VolI) is near
1 so that

(Fal VYA > QAT .
This then gives the desired example, lfor we have
L= (F|VYANF) = (Frf VYA > AN,

so that (3.15) gives a better bound for R at the origin in the direction
(1, y7), ¥ real and |y| small, than does (3.7).
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