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1. Introduction and Summary. Consider a bounded linear operator
A acting in a complex Banach space X having some nonzero elements.
In this paper we shall assume that g(A), the spectrum of A, consists
of 0 and the distinet points N, Ny, Ny, +++, Where A, 0 and »,— 0 as
n— oo, We shall denote by [X] the Banach space of all bounded linear
operators mapping X into itself, with the usual operator norm. The
inverse operator (A — A)! = R,(A) (the resolvent of A) is an analytic
function from the resolvent set 0(A) (the complement of o(4)) to [X].
We shall assume that each of the points ), is a simple pole of R,(A).
Let E, be the residue of R,(A) at \,. Then it is known, from general
spectral theory, that

(1.1) E:=FE,, EFE,=0if m+n,

and further, that E, + 0, E, = I. It is also important to note that
AE, = E,A. For these facts and other relevant parts of general theory
we refer the reader to Chapter 5 of the author’s book [3].

By using the extension of Mittag-Leffler’s theorem to vector-valued
analytic functions, along with an inversion to convert R,(A4) into a meromor-
phic function, and then converting back again, we find that R,(A4) can
be expressed in the form

1.2) Ry(A) = ZF(—;‘U——)E L o0,

where each v, is a nonnegative integer and @ is an entire function of
1/x. The series involving the E,’s converges (in the uniform operator
topology) uniformly on each compact set in the complement of d(4). It
turns out that v, > 0 for all sufficiently large values of n. Also, the
coefficients in the expansion of @ as a power series in 1/\ are expressi-
ble in terms of A and the E,’s. The details of all this are given in § 2.

The main purpose of this paper is to investigate the particular cases
in which v, is the same for all values of n. The case v,=1 is the

simplest and the most fundamental. In that case the series in (1.2)
takes the form

Hl
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X(ijxn) " 2[)»-—)» _%}E"
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In a certain sense this series supplies a notivation for the entire in-
vestigation, for a series of this form occurs in the theory of compact
self-adjoint operators in Hilbert space.

Let us suppose, in fact, that T is a compact self-adjoint operator
on a complex Hilbert space X of infinite dimension, and let in have dis-
tinct nonzero eigenvalues X\, A\, N4, +--. Then, if E, is the projection
associated with the spectral set consisting of the single point \,, we
can represent T in the form

1.3) Te = S 0B .
The resolvent of T has the representation

1 d 1 1
14 N—T)'x =— __,l:-—-————]En .
(14) ( ) 7\.x+Z1 N — A\, N v

For reference, see §6-4 in [3]. These series representations are also
valid in the forms

(1.5) T = S \E, ,
I | it 1
(1.6) O —T) —-);+’;1[X_M]En,

with convergence in the sense of the operator norm. To prove (1.5),
for example, we make use of the fact that in this situation the E,’s
themselves are self-adjoint and mutually orthogonal. Hence

”Tx — é Mo x
k=1

= < i Nl jzglij,x)

k=n+1
= 2 M(Eyw, ) = X N[ Bl = ||a|sup); .
k=n+1 k=n-+1 k>n
The last inequality results from the fact that
kE:.lllEkwlP = llzlP.
Since \, — 0, it follows that

—0

sup
llzlis1

Tx — j‘_‘, N
k=1

as n — oo; thus (1.5) is proved. The proof of (1.6) is entirely similar
in principle.

Let us now return to the general context of (1.2). Our first main
theorem is concerned with the case in which v, = 1 for all values of »
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(actually if we merely assume that v, < 1 for all values of n, we can
alter the function @ slightly in (1.2) and thereby arrange to make v, =1
for every value of ).

FIRST MAIN THEOREM. Let A be a bounded linear operator on the
complex Banach space X, with spectrum and spectral projections {E,}
as set forth at the begimming of this section. Suppose that the resol-
vent R,(A) is representable in the form

(L7 Ri(A) = 5 5 B+ 00

where @ 1is an entire function of 1/n. Then there exist bounded opera-
tors B,, C, such that B, and C, commute with A, B,C, = C,.B, =0, B, has
the same spectrum as A, C, 1s quasi-nilpotent and hence has spectrum
consisting of the single point 0, and, finally,

(1.3) A=B +C,.
Furthermore,

(1.9) B, = iw ,

(1.10) R(B)=L 43|t — L&,
and

(1.11) R,\(A) = R\(B) + R\(C) — %

The proof is given in §3.

The second main theorem is concerned with the case in which v, = p
(where p > 1) for all values of n. In other words, the spectrum of A
is as before, but it is assumed that for some p > 1 the resolvent of A
is expressible in the form
(1.12) R(A)=S_— ™ _E 1o
. A - = )\;p(>\; _ 7\%) n ’

where @ is an entire function of 1/\.

SECOND MAIN THEOREM. When R,(A) ts expressible in the form
(1.12), the first main theorem is applicable to the operator A*, and the
result is that there is a decomposition

(1-13) Ap - Bp + Cp ’
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where

I
M

(1.14) B, ME,

3
I

1

and the relations between A®, B,, C, are the same as the relations between
A, B, C, in the first main theorem, and

I =T 1 1
1.15 R(B) =1L [ ——]En.
(1.15) B =L gt -1

The proof of this second theorem is given in §4.

Subject to the general conditions on A stated at the outset of the
paper, there is a sort of ‘‘simple canonical form of order p” which R,(A)
may take under certain conditions. It is

o

I A Art A2
1.16 R.(A) = — il e n
(1.16) A(4) st T + 5 +n§=:1v(x—x,,)

n e

The infinite series here may also be written in the form

it 1 1 by ARt
1.17 [ B S n :IE .
(1.17) D Y NP

When (1.16) holds we also have
(1.18) A’ = S\ME, .

It is shown in §5 that, conversely, if v, = p for all n (where p = 1),
and if (1.18) holds, then R,(A) can be expressed in the form (1.16).
When (1.16) holds for a certain value of p, it also holds for the
next larger value of p. This is clear from (1.17) and (1.18). If (1.16)
holds and if p is minimal—i.e. if (1.16) does not hold with p replaced
by a smaller exponent ¢, we shall say that A is of finite type p. There
is a growth condition on R,(A) which insures that A shall be of finite
type not exceeding p. This is the subject of our third main theorem.

THIRD MAIN THEOREM. Suppose there exists a sequence {C,} of
rectifiable closed Jordan curves of the following sort:

(1) The origin and A, Myiy * -+ are inside C,, but Ny, <<+, N, are
outside C,;

(2) if ¢, = max|t| for t on C,, then ¢, — 0asn— o, and I(C,) =
O(¢,), where I(C,) is the length of C,;

) if M, =max|| R,(A)| for t on C,, then " M,— 0 as n— oo;
here p denotes some positive integer.

Under these conditions A is of some finite type not exceeding p.
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This theorem is proved in §5.
The last two sections of the paper (§§86,7) are concerned with
operators of the form

B = S\\E,,
n=1
where the series converges in [X |, the E,’s are mutually orthogonal
non-zero projections, and {\}, is a sequence of distinct constants (which
must necessarily converge to zero). In §6 two different kinds of con-
ditions are given which are sufficient to insure that B is of finite type
1. One condition bears on the sequence {\,}. It is that the series

S M = M|

n=1

be convergent. This is of course satisfied if the \,’s approach 0 monotone-
ly along some ray. The other condition bears on the projections FE,.
It is that for all finite sets of constants ¢, -+, ¢,

< Msup|c],

where M is some absolute constant. This condition is satisfied (with
M = 1) if in particular the space X is a Hilbert space and the projec-
tions are symmetric and mutually orthogonal.

In §7 some unsettled questions regarding B are raised, for the case
in which the foregoing conditions are not satisfied.

Our first main theorem is somewhat reminiscent of Dunford’s theory
of spectral operators, as developed in [2], because a spectral operator,
in Dunford’s sense, admits a decomposition as a sum of a spectral operator
of scalar type and a quasi-nilpotent operator. However, the operator B,
of (1.9) need not be a spectral operator, for examples may be constructed
in which the norms {|| E,||} form an unbounded sequence.

2. The Mittag-Leffler expansion of the resolvent. Let f be a func-
tion which is analytic in the entire complex z-plane except for simple
poles at a,, @,, a,, -+, where a, # 0 and a, — . The values of f are
agssumed to be in a complex Banach space. Let the residue of f at a,
be 7,. According to the classical theorem of Mittag-Leffler, whose state-
ment and proof remain valid when the function values are in a Banach
space, there exists a sequence {v,} of nonnegative integers such that if

(2.1) Pul2) = ——:f—[l +E e +( ? )]

n n Ay, /

then
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(2.2) =5 =@ |+ 40),

n=1 —_ n
where ¢ is an entire function of z and the first series in (2.2) converges
uniformly on each compact set which contains none of the a,’s.

It may be noted that p,(z) is a partial sum of the Taylor’s series
of the function

T
z—a,

when it is expanded in powers of z.

Let us now consider R,(A) as a function of )\, where A is the
operator described in the first paragraph of §1. The function values
here are in [X]. If we set z=1/» and f(z) = R,(4), the fact that
R,(A) has a simple pole with residue E, at )\, is readily found to mean
that f has a simple pole of residue (—1/A:E,) at z = 1/»,. When we
write

1 1 1
= T n = T s = —=HK,, OQN) =
R R

in (2.2), we find, after some simplification,

1

2.3) R(4) = 5| L~ P.v [, + 00v,

n

where @ is an entire function of 1/», and

1[x A "] .
N e R ifv, =21,
(2.4) P,\) = {dald <>“>

0 ifv,=0.

It is an easy matter to verify that

consequently (2.4) and (1.2) are equivalent.

We shall refer to (2.3) or (1.2) as a Mittag-Lefller development of
R,(A). 1t is not claimed to be unique, since there is considerable freedom
in the choice of the integers v, v,, -

The fact that R,(A) is a resolvent has many implications for the
structure of the series (2.83). We shall proceed to explore these im-
plications.
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LEMMA 2.1. It follows from (1.2) that v, > 0 for all sufficiently
large values of n.

Proof. We have || E,|| =1 as a result of the fact that E, is a pro-
jection. Now

lim (%)Un —/\——f—”i =0,

n—rco

as a result of the convergence of the series in (1.2). Since \,— 0, the
assertion of the lemma must be true, if we are to avoid a contradiction.
Let us now express @()\) in the form

(2.5) o) =35 2,

where the series converges for all nonzero values of A. We shall see
how to obtain information about the @,’s by contour integration.

LEMMA 2.2. The coefficients @, in (2.5) are given by the formulas

(2.6) Q=0,
@7 Q=I-3E,
28) Q= A* = 3 NiE, kz1).

It is part of the implication here that, if there are infinitely many v,
not exceeding k, the series in (2.8) is convergent.

Proof. We know that

A A?
(2:9) A =T+5 AP

when [M| > [[A]|. Hence, integration around a very large circle cen-
tered at » = 0 gives

0 if k= —1,
(2.10) 1 f NRy(A)N = T if k=0,
2my, .
A if E>1.

On the other hand, we can compute the integral in (2.10) by using (2.3)
and (2.5). The calculations are simple, and formulas (2.6), (2.7) and (2.8)
are the results,
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3. The case v, <1 for all n. In this section we assume that v,
never exceeds 1. We may just as well assume that v, = 1 for all values
of n, for, since there can be only finitely many integers n for which
v, = 0, it is easy to see with the aid of Lemma 2.2 that we can write

I .3 1 1 &1 Ny
@1 B =3 +7»Z=1[x—xn x]E”+7§1 MH[A ;;ME’“]

Let us define an operator B, by the formula
(3.2) B = S\\E, .

The convergence of this series (in the uniform operator topology) is as-
sured by Lemma 2.2.

LEmMMA 3.1. B, has the same spectrum as A, and

Proof. Let us denote by S, the right member of the formula (3.3);
it is defined when N\ € p(A), where p(4) denotes the resolvent set of A.
From (1.1) we see that

Moreover, S, commutes with each E, and hence with B,. Using (3.4)
we see that

= AN — A,
But
S = % 2 x()? ijin)
Hence
B.S, = x(sx - i) =S, — I,
or

N—B)S,=1.

Since B, and S, commute, it now follows that (A — B)™* exists and is
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equal to S, when N\ € p(4). Hence p(4) C p(B)).

It remains to prove that o(B,) C p(A4), or what is the same, that
0(A) C o(B,). Now, elements x in the range of E, are characterized by
the relation E,x = x. Since E, + 0, we can choose an z of this kind
such that « #+ 0. Then

B = BEx = S \MEEL = \Ex = M .
k=1
This shows that )\, is an eigenvalue of B,. Since the spectrum of an
operator is a closed set, it follows that ¢(A4) C o(B,). This completes

the proof of the lemma.

Proof of the first main theorem. We now come to the proof of this
theorem, whose statement appears in §1. Let us define

C,=A—-B,.
It follows readily from (3.2) and (1.1) that

(3.5) B'=S\ME, if k=1.

From (3.1) and Lemma 2.2 we see that

(3.6) R(4) = ByB) + 52,
where
(3.7) Qu=A"—By ifn=>1.

We observe that Q, = A — B, = C,. We shall prove that

(38) Q?Bl = Ble =0,
and that
3.9) Qui=@Qr if n=2.

To prove (3.8) we start by observing that, since A, is a first-order
pole of R,(A), we have the relation

(3.10) (A—\)E, =0,

This is because (A — \,)E, is the coefficient of (\ — \,)~? in the Laurent
expansion of R,(A) about the point N =\,; see formulas (5.8.1) and
(5.8.6) in [3], p. 306. The same reasoning, or a direct argument from
(3.2), shows that

(3.11) (B, — M)E, =0,
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It follows that
QzEn = (A - Bl)En - O )

and from (3.2) we then deduce @,B, = 0. Since E, commutes with A
and B,, (3.8) is now proved.
From (3.6) we see that

(3.12) I=(v = HRB)+ - A3 (;f;’

when » € p(4). Now A = B, + Q,, and hence
(M — A)R\(B) = (M — B, — Q)R\(B)) = I — Q,R\(B) .

Going back to (3.12) and using the Neumann expansion for R,(B,), we
find that, for all sufficiently large values of A,

0=-e5 B in-B-@E%.

On comparing coefficients, we obtain the recurrence relations

(3.13) Quin = (B, +Q)Q, if n=2.
In view of (3.8), the truth of (3.9) now follows at once by induction.
The series
o Qn
7‘?—_‘_‘2 Xn

now takes the form

(8.14) s _CF

Asi et

Since the series converges when \ # 0, it follows that C, is quasi-nil-
potent, i.e. that

lim || C |['" = 0

and that o(C)) is the single point 0. Moreover, in view of the form of
the Neumann expansion, the series in (3.14) has the value

R)\(Cl) - —i‘ .

In connection with these arguments, see §5.2 of [3]. The proof of the
first main theorem is now completed,
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4., The case v, = p for all n. According to Lemma 2.2, the form
of R,(A) in this case is

I A Art
4.1 R, (A) = — .
(4.1) =LA A
J 1 )
R ) A
+%1[X A AP
+ 5 [ AR
< WAt

We remark in passing that if we merely assume v, < p for all n,
R,(A) can still be brought to the form (4.1), so that one might as well
assume v, = p for all n. Also, the expansion (4.1) will be valid if
lim sup,_.. v, = p, for in that case v, < p when n is sufficiently large,
and it is possible, by a finite number of rearrangements, to arrange
matters just as they would be if we had v, < p for all values of n.

Now we define an operator B, by the formula

(4.2) B, = S\\E, ,
n-—1

and we proceed to prove the second main theorem, as stated in §1.

By the spectral mapping theorem (see §5.71 of [3]) we know that
0(A®) congsists of 0 and the points A2, A2, A%, -+ . We shall compute the
resolvent of A?. If X\ is different from 0 and all of the \2, we know
by the operational calculus that

(v — A7 = f(A), where f(t) = (v — ") ;

see §5-6 of [3], especially Theorem 5.6-B. Thus

(4.3) (L — APt = 1 f —-Ri(4)dt,

where the integral is extended over the boundary of a Cauchy domain
which contains ¢(A) and whose closure excludes all the pth roots of .
When we use (4.1) to give R,(A), and compute the integral in (4.3) by
term-by-term integration, the result is

LT er 1 1
44 N— A = L [ ———]En
(44 ( rEStELTE Ty
S iXE]
r=1 k=1

It is a simple matter to show that the series with index = converges
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uniformly on compact subsets of p(A®), while the series with index »
converges whenever )\ = 0.

A comparison of (4.4) and (3.1) now shows that the first main
theorem is applicable to A?. We have A7, A\, B, in place of A, \,, B,
respectively. There is one minor point which calls for comment. The
points A2, A%, ... need not all be distinct, even though the points
A1y Mg, +++ are all distinct. This is not an essential matter, however. If
several of the A2 are the same, the terms which involve them can be
combined, and the sum of the corresponding FE,’s is a projection. This
concludes the proof of the second main theorem.

5. Operations of finite type p. Let us start out by assuming that
A is such that v, = p for all values of n, so that (4.1) holds. Let us
also assume that
(5.1) A» = S\ME,
k=1

so that the C, of (1.13) is 0 in this case. By (3.10) we know that
AE, = 2E,. Hence from (5.1) it follows by induction that

A" = S\IE,
i1

if n = p. We then see from (4.1) that R,(A) has the form

I A el 1 1 A
2 RA=L+... [ 1M ]E
(5.2) R\(A) x + + 7 +nZ='1 — N v

which means that A is of finite type < p (see §1). Conversely, from
(5.2), written more conveniently in the form (1.16), we readily deduce
(5.1) (multiply by \* and integrate around a contour enclosing ¢(A)).

Let us now undertake the proof of the third main theorem, as
stated in §1. The motivation for this theorem is an expansion theorem
for meromorphic functions, due originally to Cauchy, but conveniently
accessible in Titchmarsh’s text [4] (§3.2 and §3.21).

Let ) be confined to a compact set S lying in p(A). Let I" be a cir-
cle with center at the origin, large enough to enclose S, d(4), and all

the contours C,, C,, --- . Consider the integrals (in the counterclockwise
sense)
L= 2 R,
21 Jop N — 1t
J= —1_§ ?__ R(A)dt.
2my Jrn — ¢
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Evidently J — I, is equal to the sum of the residues of the integrand
at the points N\, A, -+, \,,. This sum of residues is

o Y
xRWD+;X—EEW

We can calculate the value of J, for on [”

rRay=L L4484

and

v
AN—t

=14 2 e M),

It then follows readily that
(5.3) J= —(AP + NAPTE A oo AP

Hence

I A Ar? u A 1
5.4) RuA)=—+4 . A 4 M paylp
Gh) BA=S+S Tt Tt e e

We shall now prove that I, — 0 uniformly with respect to » in S. This

will complete the proof of the third main theorem. Using the notation
established in the theorem itself, we see that

€n

provided that ¢, < |)]|. Since I(C,) = O(¢,), ¢, — 0, and S is a compact
set not containing the origin, the result now follows from the assump-
tion that ™M, — 0.

6. Some sufficient conditions for operators of finite type 1. Let us
suppose that E,, E,, --- are bounded projections on X such that E, + 0
and E,E, =0 if m #+#n. Then E,+ I. For, E, = I for some n would
imply 0 = E,E,,, = E,.,. Next, let us suppose {\,} is a sequence of
distinet constants such that the series

S NE,
n=1
is convergent in [X], (This implies that », —0.) Let

(6.1) B=3\E,.
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We ask the question: What further conditions, if any, are required
to assure us that B is of finite type 1? The necessary and sufficient
condition for this is that all points except 0 and the )\,’s be in o(B),
and that

I o 1 1
6.2 R(B) =L [ — -]E,, :
(6.2) B =+ 5 o
The proof of Lemma 3.1, if we re-read it in the present context, allows
us to assert the following:

LEMMA 6.1. With the assumptions made in the first paragraph of
this section, the operator B defined by (6.1) ts of finite type 1 if and
only if the series on the right in (6.2) converges uniformly on compact
subsets of the \-plane which do not contain 0 or any of the \,’s.

We shall give two types of conditions which enable us to utilize the
foregoing lemma.

THEOREM 6.2. In addition to the assumptions made in the para-
graph leading up to (6.1), let us assume that the series

nz:‘l ] )\’n+1 - )\’n '
18 convergent. Then the operator B defined by (6.1) is of finite type 1.

Proof. The argument is like that in certain classical tests for non-
absolute convergence (see, e.g. [1], pp. 25-26 and pp. 98-100). Let S
be a compact subset of the plane of the type mentioned in Lemma 6.1.
Then there is a positive constant M such that | (A — \,)' | £ M for all
n if A is in S. Let

ry = nglann "
rk=n__%an,,. k=12,
Let
200 = — 1 =

Then |v,(\) | < M when ) is in S, and it is easy to see that
(6'3) nzj; I /U'nJrl()") - vn()") I é M nE;II 7\’n—H - )"n | .

It suffices to prove that the series
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S AV,
n=1
converges uniformly on S. Now, if p > 1,
b P
NZ:]Kn+k/vn+k(>\’)En+k = }; {/vnlec()\’) - vnﬂc*l()\’)} Trtr—1

+ 'rnvn()") - ,rnervn—’rp()\') ’

and so

|

n
k)% )\'n+ Icvn+lc(>")En+lc

< sup |7, (| {30000 — 000 [+ 2}
< sup |7 | {M° 5 s = M|+ 2M

Since 7, — 0 as m — oo, this finishes the proof.

Observe that the geometrical meaning of the convergence of the
series (6.3) is that the polygonal path formed by joining X, Ay, Ay, <+ in
succession shall have finite length. This is true, in particular, if the
\,,’s approach the origin monotonely along some ray.

THEOREM 6.3. Suppose that {E,} is a sequence of projections on
the Banach space X, of such a character that E, + 0 and E,E, =0 if
m = n. Suppose further that there is some constant M such that, for
every finite set of constants ¢, +--, c,, we have

(6.4) Hg ¢.E,

=sup|c|.

Then, if {\,} 1s any sequence of distinct conmstants such that \,— 0,
the series

(6.5) B=>S\E,
converges 1n [X] and defines an operator of finite type 1.

Proof. The convergence of (6.5) results from (6.4), for, it m <n

kE=m+1

éMsup |>\’i|;

m<i<n

and the Cauchy convergence condition is satisfied, since )\, — 0.
Now let S be any compact set which does not contain 0 or any of
the \,’s. Then

inf[ v — X\, | =6>0 (Xes,n:l,zr"')'

Hence, for » € S and m <n
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n
M pll< M
= — su N | -
k—%ﬂ)\,—xk k - 8m<lc£n\ Ml
The uniform convergence on S of

& A

__.l‘___E
= N— Ny

is thus established, and the conclusion follows from Lemma 6.1.

The condition (6.4) is automatically satisfied (with M = 1) if {FE,}
is a sequence of nonzero mutually orthogonal projections in Hilbert space.
For, in this case we can first of all establish that

(6.6) S BelF <ol

for each x. In fact, let .

Ex

if BE.x+0, v,=0 otherwise.

]C:

The (v, v,) =0 if j # k, and || v, || is either 0 or 1. Hence, since an
easy calculation shows that (x, v;) = || Eyx |/, we have

SIBel =5 @or=lalk,

by the Bessel inequality. It now follows, using (6.6), that

n
DI I
k=1

(=Sl Bl

= (L1 B |F) sup [,

=< !Ioc!lzsgpcwc,c *.
From this we infer

n
' IR I
k=1

=sup|cg|.
k

7. Some open questions. Let us consider an operator B as defin-
ed by (6.1), and let us assume nothing more than is specified in the first
paragraph of §6. It is not clear that this is enough to give us an
operator of finite type 1. Indeed, the nature of ¢(B) is not clear. We
can prove that each )\, is an eigenvalue, but it is not evident that a \
different from 0 and all the \,’s is in po(B). We shall prove, however,
that for such a )\ the range of » — B is dense in X and consists of
exactly those elements y € X for which the series
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& by
7.1 Mg
(7.1) S B

1s convergent. Moreover, such a )\ is not an eigenvalue of B.

Proof of the italicized assertions: With ) as indicated, suppose ¥
is in the range of A — B, so that (\ — B)x = y for some z. Then

e — iannxzy,
n=1

AMNEo —NEx=Ey,

ij:__E_jy___
AN — N
Therefore
& MELY
e — S Ll
vg‘x)\,—xn Y
or
1 a A\
7.2 r= = - KBy,
(7.2) >\,y+7§‘1x(x—7\.n) Y

Thus the series in (7.2) converges, and (7.2) defines « as the unique
vector such that (\ — B)x = y. This guarantees that X\ is not an eigen-
value of B.

Suppose now that y is a vector such that the series (7.1) is con-
vergent (\ being fixed, different from 0 and all the A\,’s). Define a vec-
tor x by the series (7.2). A direct calculation shows that

Eux = _‘E_Zy_ ,
N—N
whence
x ==y + i M E.x,
N n=1 N\

or (A — B =y.

We have now proved all of the italicized assertions except the as-
sertion that the range of » — B is dense in X. To do this we consider
the first and second conjugate spaces X’, X", and the conjugate operators

B =S\\E,, B'=SN\E!
n=1 n=1
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The original assumptions about B and the E,’s carry over to these con-
jugate operators, and, accordingly, a A different from 0 and all the \,,’s
is not an eigenvalue of B’ or of B”. Now, if the range of A — B were
not dense in X, this would imply that A\ is an eigenvalue of B’ (see
Theorem 4.6-E, p. 226, or the state diagram, p. 237, in [3]). Hence the
range of A — B s dense in X, and likewise the range of A — B’ is dense
in X’. A perusal of the state diagram in [3] now shows that a )\ dif-
ferent from 0 and all the ),’s, if indeed such a \ can be in ¢(B), is in
the continuous spectrum of B. That is, » — B has range dense in X,
but the inverse is discontinuous. Likewise for \ in relation to B'.

Supplementary note: After this paper had been accepted for pub-
lication, a discussion of its contents with Mr. Earl Berkson led him to
settle the problems of this final section very neatly. His results are in
the immediately following paper. Mr. Berkson also spotted some am-
biguity in the concept of an operator of finite type. His comments of
clarification, and his interesting example of a resolvent with a Mittag-
Leffler development which is not unconditionally convergent, should be
noted by readers of my paper.
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