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1. Introduction. The notion of the normal curve as introduced by
Whitney [12] is important partly for the following reasons: the normal
curves are dense in a natural sense in the regular C' curves; the com-
binatorial topology embodied in the self-intersection numbers is well-
defined. The self-intersection numbers and another minor condition
determine a curve up to a sense preserving homeomorphism of the plane
onto itself. This fact follows, e.g., directly from work of Adkisson and
MacLane [1] and Gehman [3] but will not be verified here since no direct
use will be made. It is mentioned, however, since it clearly indicates
the amount of information in the intersection numbers. This matter
is discussed in detail and used in an essential way in [10].

In the literature, from the point of view of combinatorial topology,
there has been, after the beginnings, an emphasis on the study of curves
as point sets in their own right and suprisingly little on their study as
mappings directly. In this paper relations between the intersections
are defined and various properties of curves are described in terms of
these relations. Some applications are then given primarily to clarify
the sense in which the normal curves are dense among the regular
curves and to show how one can obtain theorems on representations of
curves directly which then imply theorems on the extensions of these
representations to, e.g., interior mappings on the disk. For conditions
on the intersection numbers that there exist an extension by an inter-
ior mapping, see [9] and [10].

Lemmas 1, 3, 4, 5, 7 are all implicity in the work of Whitney [12]
and [13] and are proved here in more or less detail for completeness
and in some cases because the direct development, in the special situa-
tion here, is more concise.

2. Basic concepts and techniques. A complex valued function
£(t) defined on an interval of the real line is called a regular repre-
sentation of a curve if it possesses a continuous non-vanishing derivative
¢'(t). If, as will usually be the case, ¢ has the period 27 then ¢ is a
regular repesentation of a closed curve and the interval [0, 27) may be
identified with the unit circle oriented by increasing t.

An image point ¢, is called a simple crossing if there exist exactly
two distinct numbers ¢’ and ¢” such that &(¢') = £(¢) = ¢, and such that
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the tangent vectors ¢’(t') and ¢’(¢”) are independent. A regular repre-
sentation is called normal (Whitney [13], p. 281) if it has a finite number
of simple crossing points and is one-to-one everywhere else.

Let &(t) = &(t) 4+ in9(t) be a normal representation of period 27 on
the real t-line and restricted to the interval S = [0, 2n). Let {{.}, k =
1,2, --+,m, be the set of all simple crossing points. Let {¢i}, {ti}, k =
1,2, -.-,m, be the set of numbers in S indexed so that {(t,) = ¢(t),
<ty and 0 <t <t oo <t, < 2. From now on the simple cross-
ing points ¢, will be called vertices. Let the set of all numbers in S
which are mapped onto vertices by ¢ be denoted also by {s;},k =
1,2, .-+, 2n, indexed so that 0 < s, <8, < +++ < 8, < 2m. Given s, let
s¥ be yet another name for the number in {s,} such that &(s,) = ¢(ss).
Let vy, be given by

E(se) &'(s)
7'(s8) 7'(s¥)

_uk:_u(sk)ZSgn’ vk:172’°"r2n:

and ), by v(t}), i.e.,

gt £
7t 7t
Given any pair of distinct vertices ¢, and &, exactly one of the follow-
ing five relations R holds:

Rl jck, ie., t,<t, <t] <t/

R2 Dk, ie., th<t, <t <t

R3 j links k on the right, i.e., ¢, < t) <) <t/, denoted by je R,,
R4 7 links k on the left, ie., tj < &, <t} < ¢/, denoted by je L,,

R5 j and k are disjoint, i.e., either ¢} < ¢t} < t, <t/ or

—A=—y(t;) = sgn  k=1,2, 4,0 .

i, <ty <) < ¢/, denoted by jik.

The sequence {s;}, the function given by v(s;) and the star operation *
determine what will be called the intersection sequence of the normal
representation £. A vertex ¢, will be signed positive [negative] if
v(ty) > O[u(t,) < 0]. In a straight forward but mildly tedious way one
can show that a knowledge of the signs of the vertices and the relations
R for each pair of vertices is equivalent to a knowledge of the inter-
section sequence.

Let ¢ and ¢ be a pair of regular representations defined on a com-
mon interval I. The following norm will be used:

16 — £ll = sup {I£(t) — £®)| + 1) — TO -

LEMMA 1. The intersection sequence of a normal representation s
stable; 1.e., given any normal representation & on an interval I there
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exists an ¢ > 0 such that for every regular representation on I for
which ||& — || < e, it follows that ¢ is normal and possesses the same
intersection sequence as £; namely, sgnf, = sgn fk for all k and ¢, and
¢, satisfy the same relation R as ¢, and &, for all j and k.

Proof. Let v,(1) = a,(t) + iB,(t) and 7,(t) = a,(t) + 'i,éj(t) be a pair
of regular representations defined on an interval I,, To prove the lemma
the following two facts (i) and (i) will be used. Kach follows in a
known way; see e.g., Whitney, [13], p. 281, proof of Lemma 2.

(i) If v,(t) and 7,(t) have no image points in common then there
exists and e > 0 such that, whenever ||y, — %,|| and ||v, — ¥.|| are each
less than ¢, 7,(t) and 7,(f) have no image points in common.

(i) If v,(¢) and 7,(¢) have exactly one point in common, say v,(t;)=
7:(ty), and if the tangent vectors v)(¢;,) and v}(¢,) are independent then
there exists and ¢ > 0 such that, whenever ||v, — %,|| and ||v, — 7:/|
are each less than ¢, 7, and ¥, have exactly one point in common, say

7,t) = ¥:(t,); the tangents 7)(¢,) and ¥,(t,) are independent; and

at) Byt ayt) Bt)
auty) Bt ait) Bty

Select numbers g, so that 0 = 0, < s, < 7, < 8, < +++ < 8y, < 0y, = 27
and define the intervals I, = (0,.,,0,),5=1,2, -+, 2n. Let v,(t) = ¢|I;;
i.e., 7,(t) = ¢&(t) on I,. Now, given any distinct pair of representations
v, and v, either (i) or (ii) applies. The smallest ¢ associated with a
distinct pair of representations is chosen and the lemma follows.

Let [£] denote the point set consisting of the images of ¢.

sgn

= 8gn

LEMMA 2. Let & be a mormal representation of a closed curve
(&(t) has period 2m) and let v(u) = a(u) + 18(w) be a normal representa-
tton on {0, 1] with v, = ¥(0) and v, = v(1) not on [{]. Assume that §
and v intersect one another in a finite number of points 7,,0 =
1,2, ---, p, which correspond to the parameter values v, and u, re-
spectively; that the points £(v,) and &(u,) are not self imtersection points
of & and v respectively; that the tangents {'(v,) and v'(u,) are inde-
pendent. Let wy)w,] denote the index (winding number) of the curve ¢
about the point v,[v,]. Then,

w_w—zsn g(”a’) 77(/00')
i a'(us) B'(Us)

Proof. Let the self intersection points of v correspond to parameter
values {w,} where 0 < w, < w, < ++- < w,, <1. Let {w)} be chosen
sothat 0 = w) < w, < w, < +++ < w,, <w, =1 and so that y(w,) never
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lies on [¢]. Let I, denote the interval [w'., w}],7=1,2, .-+, m. Let
@, denote the index of ¢ about the point {(w.). Then, since v|I, is an
arc, one has by classical intersection theory

Dy — @, = 5, sgn |F ) T

w}<jo_<mj+1 a’(ua-) B,(ua)

Thus, since @, = w, and &,, = w,, one has

&) 7'(vo)
a'(us) '(us)

(UI—CUO—Z((Uj‘—U)J 1)-“24S n

o=1
as was to be shown.

LemmA 8. (Whitney, [13], Theorem 2, p. 281).

Let & be a normal representation with &, = £(0) on the outer bounda-
ry of [&]. (Then in every meighborhood of , there exist point about
which & has index =1.) Then, the tangent winding number 7(¢) s
given by

() = SN, &

where the sign is chosen + as the sign of the mon-zero index of about

points chose to &, is +.

Proof. This lemma is easily reduced to the Theorem of Whitney
mentioned.

LEMMA 4. Given a regular periodic representation ¢ and an €>0
there exists a regular periodic representation ¢ such that

(i) | = ¢l < e and there exists a 8 > 0 such that for all t

() (Ot —-8<t<t+NE@DIt—8<t<t+ 8}
s emply.

Proof. Let &*(t) = &(r)dr and define

el
£t) = ¢(t) — iple*(t))

The lemma will be proved by selecting E(t) to be of this form. For
part (i), note that ||& — || = omax [(£*) ]| + [(£*)’]. Since (¢*) and
(¢*)" are continuous periodic functions and therefore bounded one can
select a o, so that ||& —¢|l <e for 0 < p,. For part (ii) consider

¢ — & = p|(€*Y]. Since (¢*) converges uniformly to ¢’ as & tends to
zero and since |¢'| is bounded away from zero there exists an s small

enough that |(¢*)| = |¢ — £| is bounded away from zero. There exists
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therefore a &>0 so that [£(t)— &£(@")] >0 whenever ¢ — &< ¢,
t" <t -+ 3.

Finally, to show that ¢ can be chosen to be a regular representa-
tion, consider Z" = ¢ —1p(¢*). Since |¢’'] is bounded away from zero
and |(¢*)| is bounded there is a o small enough so that o < p, and ¢
is never zero.

The idea of the intersection sequence has already been introduced.
However, one can easily construct simple examples of intersection sequ-
ences which cannot come from a closed curve. For example, the sequence
th <t <t < tY, no matter what function v(¢,) is chosen cannot corre-
spond to a closed curve in the plane. It does however correspond to a
closed curve on the torus. See v. Sz. Nagy [7], p. 579. Thus these
questions are apparently related to the homology properties of the im-
bedding manifold. The next theorem extends the results of Nagy to
intersection sequences of closed curves in the plane. Denote the interval
tr<t<t by T, and let {| T, denote the representation given by ¢ re-
stricted to the interval T,.

THEOREM 1. Let ¢ be a normal representation of a closed curve
with &, chosen on the outer boundary. Let w, be the index of the curve
given by ¢ T, about the point £(v) where s; =&, > v > s,.,8, = 0. Then

Zxozzxa:wk'

GELIC n'GRk

Proof. The proof follows immediately by use of Lemma 2 and the
section of ¥(t) as v(t) = ¢(t),0 = ¢ =< v. This gives

W, = Z Ao
U'GL’c
The fact that
Wy = 2 Ng
o"elx’k

follows similarly by choosing (t) =&@), 0 <t < w,s, =t/ < w < 8;.4,
and using v(t,) = —u(t)).

COROLLARY 1. If¢| T, is a representation with {(u), th=s,>u>s,_,,
such that ¢(u) is tn unbounded component of complement of [¢|T,l,
then

S =S, =0.

o€, gE R,

Proof. Use Theorem 1 and the fact the w, = 0 in this case.

COROLLARY 2. (Gauss-Nagy [7], Theorem I, p. 580),



1088 C. J. TITUS

The number of s, between s; and st for any normal closed curve ¢
s always even.

Proof. 1f s, is between t, = s, and s¥ =t/ then the vertex corre-
sponding to s, either links &, on the left, on the right or ock. Since
Sieers Mo = Sicers Mo the number of s, between ¢, and ¢, namely,

S e| + S| + 2(no. of &,, 0Ck)
t7'EL,c o'eLlC

is certainly even since S er |Ne| and X.er: |Ne| are both even or both
odd.

THEOREM 2. Let ¢ be a normal representation for which & = Z‘(O)
is mot a vertex. Let the indices with respect to & of points near &, be
denoted by w;i and @y where @ = &y + 1. Then

@) = SN + (@5 + ) -

Proof. From the Whitney theorem, here Lemma 3, one has with
¢, selected on the outer boundary that

) = 3 + (F + 7).

The following identity follows directly from the definitions of the A,
the relations F and Theorem 1:

©) Ex_zx +2x +Zx +2§)» — Mg -
Let u be a number such that ¢(u) = £(0) and s, = t, < u < s;.,. Now,

by use of Lemmas 1,2 and 4 one has, with & and é: representing the
same curve,

W, — w; = Yo ;

. !
slgsdgck

but again from definitions of the ), and the relations K one has

2 Vo= 2+ XN

Uef aCk
SISSO_<&,c

It follows easily by use of Lemma 2 that
af — wF = w; — w; .

Thus,

(D) (@7 +35) = 2{ 30 + Thof + (@7 + o)
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Now, again from definitions of the )\, and the relations R,

(E) S e = S 4 S — S A —

o=1 olk oCk ook

Thus, by (D) and (E),

S he 4+ (@7 + @7) = SN + S he + S Ao + 25N — Ny + (@F + @F) .
o=1 olk oCk oDk O'ELIC

But, using (C),
};x + (@F + @7) = zx + (of + 07) =7(),

and the Theorem follows.

Let @, denote the angle, —7 < @, < 7, measured from the direction
of ¢'(t/) to the direction of ¢'(f;). Let +r, denote the change in the
angle of ¢'(t) as t varies from ¢, to ¢/. Then, as usual, the concept of
the tangent winding number can be extended to the closed curve re-
presented by &| T, by

fmm=;m+m.

THEOREM 3. With ¢, chosen on the outer boundary of [£],¢ a
normal representation, then

(€| k)—ZX +2 3N

TEL,

Proof. Since ¢, is chosen on the outer boundary of [¢] it follows
that the index of &|T, about the point ¢, is zero for all k. In order
to compute 7(¢|T,) Theorem 2 will be used and thus w;|T, and w;| T,
must be computed. Explicitly, choose u,t, =3, <u < 8,,;, and let
wi | T, and w;|T, be the indices of ¢| T} about points near ¢(w) with as
before w} | T, = wy | T, +1. Some computation using Lemmas 1 and 4
as in proof of Theorem 2 gives

of [T, + 07 1Ty =23 A + A ©
tfeLk

By Theorem 2, as applied to ¢| T.,
¢l T) = X N +22x =X+ of [ To + o7 | T,

oaélc

as was to be shown.

A regular closed curve is said to be of non-negative circulation,
Loewner [6], p. 316, if the index of ¢ about any point not on [¢] is
non-negative. Part of the importance of this concept comes from the



1090 C. J. TITUS

following fact: Let w = w(z) be an analytic function on |2| < 1 and
continuous on [z| < 1. Then, the curve represented by ¢&(f) = w(e™),
z = pe”, is of non-negative circulation. The proof of this statement
follows easily from a lemma of Loewner, [6], Lemma 2, page 318, and
is left to the interested reader.

THEOREM 4. A closed curve given by a mormal representation ¢,
with &, on the outer boundary, is of mnon-negative circulation if and
only if

She + 20 =0 for all k,
oDk ‘TERk

and wf + w;y =1. (As usual, o/ and w; are the indices of &(¢) about
points near &).

Proof. The condition that w; + wy; = 1 is clearly necessary. Con-
sider ¢(v) with s, < v < s;;,. Let w; denote the smaller of the indices
of ¢ about points near ¢(v). By Lemmas 1, 2, and 4, again as in proof
of Theorem 1, one obtains, since w; = 0, that

w; = >, v(s,) .

<
SL_—_SO_ Sj

A

Now, w; = 0 for all j since ¢ is of non-negative circulation. Also it is

clear that given any point 7 not on [¢] there is a j such that the index

of ¢ about 7 is either equal to w, or to w; + 1. Thus, the condition
>V u(s,) = 0 for all 5

< .
sl=sg§ 55

together with w; + w; = 1 is necessary and sufficient. But given any
J there is an k, and vice-versa, such that

SToU(Se) = S he + D A .
Sj oCk UeRk

<
SI:SV s

1A

For given j choose k& to be the largest integer such that ¢, < s;,. Given
k choose j to be the least integer such that s; = ¢,. Using the fact
that v(¥') = —u(t”) the above equality holds and the proof of Theorem
4 is complete.
A sub-set @ of the vertices of a normal curve ¢ will be called ex-

terior provided that

S he =0, all £,¢Q .

O‘GELIc
Let % be a number such that ¢, =s, > u >s,, and let &, denote the
index of ¢| T, about the point &(u). Then as established in proof of
Theorem 3, one has for all k£ that
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é)lc:ZXO':ZA’U'

G'EL,C a'eRk
Thus, @ is exterior provided that
», =0, all ¢, eQ .

There is a natural way to generate an exterior sub-set @ of vertices to
a given normal curve represented by ¢ with &, on the outer boundary
of [¢] which is as follows:
(i) &+ &y,€eQ if @, are all zero, j,=1 and j,,6>1, is the
smallest index such that j, > j._, and j,|j._:;
(i) Zepvevr8r,€Q if @, are all zero and there exists a ;€@ such
that k, is the smallest index with k, < Jj and k., ¢ > 1, is the smallest
index with k,Cj, ks > k., and k. |k,_, .

Subsets @ so generated will be called properly exterior.

THEOREM 5. Let Q be a properly exterior sub-set of wvertices of a
normal representation & then

w(©) = T\ + (@F + 7).

Proof. From the generation process it follows that each vertex
k¢ @ must link some vertex je@ on the right; i.e., ke R;. Thus,
to each vertex k¢ @, one can associate a unique vertex je@ by the
following device: let je @ be such that ke R, and j is minimal on @
with respect to the order relation Rl. Let K be the set of vertices k¢ Q
which are associated by this device with the same vertex 5. Anargument,
as in proof of Theorem 1, gives the fact that

S A% =0, jeq.

o'eanRj
Thus,

m

=3t Bl =B

a=1 Q\oEK ;NR;

and the proof follows by Theorem 2.

3. A criteria that a curve be simple.

THEOREM 6. A closed curve given by a mnormal representation ¢,
¢, on outer boundary, is simple and positively oriented if and only if
(1) 7€) £1, i.e., tangent winding number not greater than 1,

(i) 7| T) =0 for all k, i.e., tangent winding number of each sub-
loop is mon-negative,
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(ili) ¢ 1s of mon-negative circulation.

Proof. The conditions are clearly necessary for (ii) and (iii) follow
immediately and (i) by the ‘“Umlaufshtz’’, Hopf [4], p. 53.

From the theorems in §2 the hypotheses are equivalent, with ¢, on
the outer boundary, to

(i)Y S =0,
o=1

(i) S, +23 A, =0 for all k,
aCk O‘ELIC

(i) e + SUa, =0 for all k .
aok O‘EZk

By applying (iii), to a vertex ¢, with ke @, @ properly exterior and with
k maximal on @, one has
0=+ XN =N,
o’EL’C

and thus that ), = 1. Let C, denote the set of vertices in @ covered
by k, (k covers j if k =+ 7 and if kD>o>j implies ¢ is either k or 7).
Now, since ke @,

Sho=n+ B (),

jeo, Nocs
and by (ii)’
S =0
ac
Thus
S e =N, =1

oCk

Finally, with M denoting the maximal elements in @, using Theorem 5,

r—1= iko => (ZM) = (no. of vertices in M) .
o=1 keM \oCk

Thus, since 7 —1 <0, there are no vertices in M and therefore ¢

itself has no vertices. The proof is complete.

NoTE. Actually the full strength of (i) as well as (ili) were not
used and the Theorem could be strengthened. However, in the hypo-
theses, (ii) and (iii) are convenient for various applications and it
seems, at present, that estimations of the maximum index of ¢ under
(ii), (i) with more general inequalities on 7 are more interesting. Some
estimates of this type will be published in a later paper. For an in-
tuitive discussion of these kinds of ‘‘valence’’ estimates as applied to
analytic functions see Umezawa [11].
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4. Applications to regular curves. In order, among other things,
to illustrate how these ideas for normal curves can be applied by a
limiting process to regular curves the following theorem will be proved.

THEOREM 7. Let & be a regular representation of a closed curve
which satisfies the following conditions:
0 <© = 1.

Let the angle variation of {’(t) on a sub-interval T on the circle on
which ¢ is defined be denoted by @(T); thus 2z7(¢) is the value of @
on the whole circle.

(ii) &(T) > —mx for all T.
(iii) There exists an ¢ > 0 such that for all regular ¢ with ||¢ — cll<e
it follows that & is of non-negative circulation.

Then & represents a simple positively oriented Jordan curve.

Some preliminary lemmas are required for the proof.

LeMMA 5 (Whitney). Given a regular curve ¢ there exist normal
curves {* such that ||£* — ¢ 1s arbitrarily small.

Proof. See Whitney, [13], page 281, Lemma 2.

LEMMA 6. Let ¢ be a normal representation of a closed curve with
O(T) = —r on every interval T on the circle then ©(5|T,) = 0 for all k.

Proof. From the geometric definition of 7(¢|7T,) one has, as in in-
troduction to Theorem 3, that

2rc(¢|Ty) = O(Ty) + oy — T < P < T .

Thus, 2x7(¢|T,) > —2r, and since 7(¢| T,) is an integer the lemma fol-
lows.

LEMMA 7. If ¢ is a regular representation which is not simple
then there exist mormal representations *, with || — &*|| arbitrarily
small, which are not simple.

Proof. If there exist distinct values ¢’ and t” such that ¢(') =
£(t") then either the tangents ¢'(t') and '(t”’) are independent or they
are not. If they are independent then, since the curve is regular, there
exists a & > 0 such that ¢ is one-to-one on [t — &, ¢ + 8] and also on
[t" — 8,t" + 8]. Furthermore, with & sufficiently small there arcs in-
tersect only at ¢(t') = £(t”). By the density lemma, Lemma 5, ¢ can
be approximated arbitrarily closely by normal representation ¢* and by
the stability lemma, Lemma 1, the intersection will be preserved.

If &(t') and £’'(t”) are not independent then it is clear that there is
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a regular curve arbitrarily close to ¢ such that it intersects itself in at
least one point with independent tangents and thus the method for the
previous case can be applied. The proof is complete.

Proof of Theorem 7. By Lemma 5 there exist normal curves ¢*
such that [|& — ¢*|| is arbitrarily small. But when [[& — ¢*|| is small
enough one has that 7(¢*) <1 and @(T) > —x on ¢* since these con-
ditions are easily seen to be stable. Furthermore, ¢* is of non-negative
circulation by the hypothesis (iii). Thus, by Theorem 6, &* is simple
and positively oriented when ||¢ — ¢*|| is sufficiently small. But if ¢ is
not simple Lemma 7 implies that there exist normal ¢*, with [|& — &*||
arbitrarily small, which are not simple. This contradiction completes
the proof.

5. Application to the theory of interior mappings. Regular re-
presentations which satisfy the condition @(T) > —=x for all intervals
T, are called close to convex, [5], p. 169.

The following theorem proved for interior mappings gives a result
of Kaplan, [5], Theorem 1, p. 170, when the interior mapping is an an-
alytic function. There is related work in these directions by Paatero
[8], Umezawa [11] in the case of analytic functions. Their results
depend strongly on the fact that the mappings are analytic and have
no obvious analogue even when the interior mappings are solutions to
elliptic systems of partial differential equations.

THEOREM 8. Let ¢ be a regular representation of a close to convex
curve with (&) = 1 such that there exists a mapping f continuous on
|z] =1, C’ and interior (=light and open) on |z]| < 1 with f(e') = &(1).
Then the mapping f is a homeomorphism.

Before beginning the proof consider the following lemmas.

LEMMA 8. (Loewner). Let f(z) be a mapping continuous on the
annulus 0 < 0, =< p < 0, 2 = pe'’, continuously differentiable and pos-
sessing a mon-negative Jacobian on o, < p < 0,. Then for every point
P mot on [f(0e™)]U[f(0.£")] the index of f(0.e*) about P is mot greater
than the index of f(0.e™).

Proof. See Loewner, [6], Lemma 2, p. 318.

LEMMA 9. If f is a mapping continuous on |z| <1,C’' and in-
tertor on |z| <1 and if &(t) = f(e') is regular then there exists an
e >0 such that any regular &, with ¢ — E [| <e, ts of mon-negative
ctreulation.
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Proof. For any k > 0 the curve f((1 — k)e*) is of non-negative circu-
lation as is easily seen by Lemma 8. As in the proof of Lemma 4 let

e = | " s
oh Ji-n
but let & = ¢ + ip(5*Y.
Consider ¢ as a mapping from the annulus 1 — k < 0 =1 in the
ot-polar coordinate plane. The polar coordinate Jacobian is non-negative
with o and k sufficiently small so that Lemma 8 again applies and one

has that for every point P in the plane, not on [§]U[E], the index
o(p, &) of ¢ about P is not less that w(p, ~;);

w(p, §) = w(p, §) for all P ¢ [£1U[L] .

But given k& the p can be chosen so small that, by the continuity of
the degree functions on the space of regular representations,

w(p, &) = o(P, f((1 — k)e")) for all P & [FIULf((1 — k)e] .

But with ¢ chosen sufficiently small,

w(p, &) = w(p, §) for all P ¢ [E]U[L] -
Thus,

w(p, £) = o(p, §) = w(p, £(1 —k)e")) =0

for all p ¢ [E]U[E]U[f((l — k)e')]. Since none of the sets of image
points involved contain any open sets it follows by a simple limiting
process that

w(p, £) = 0 for all p ¢ [Z],

or, in other words, that E is of non-negative circulation. The proof of
the lemma is complete.

Proof of Theorem 8. By Lemma 9 the curve ¢ satisfies the hypo-
theses of Theorem 7. Therefore, ¢ represents a simple positively oriented
Jordan curve. Therefore the mapping f is one-to-one on the boundary
and as is well known, even for general interior mappings (here, Lemma
8 easily applies) the mapping f is a homeomorphism.
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