Pacific Journal of Mathematics

ON INVARIANT PROBABILITY MEASURES I

JULIUS RUBIN BLUM AND DAVID LEE HANSON

Vol. 10, No. 4

December 1960

ON INVARIANT PROBABILITY MEASURES I

J. R. BLUM¹ AND D. L. HANSON²

1. Introduction. Let Ω be a set and let \mathscr{A} be a σ -algebra of subsets of Ω . Let T be a one-to-one bimeasurable transformation mapping Ω onto itself. T then induces the group of transformations $\{T^i, i = 0, \pm 1, \cdots\}$ defined in the usual way. If $A \in \mathscr{A}$, T^iA is defined to be the set of images of the elements of A under the transformation T^i .

Let \mathscr{P} be the class of probability measures defined on \mathscr{A} for which T is invariant, i.e. if P is a probability measure defined on \mathscr{A} then $P \in \mathscr{P}$ if and only if PA = PTA for every $A \in \mathscr{A}$. Let \mathscr{A}_1 be the subclass of \mathscr{A} which is invariant under T; a set $A \in \mathscr{A}$ belongs to \mathscr{A}_1 if and only if A = TA. It is trivial to verify that \mathscr{A}_1 is sub- σ algebra of \mathscr{A} . Finally let \mathscr{P}_1 be the subclass of \mathscr{P} for which T is ergodic, i.e. if $P \in \mathscr{P}$ then $P \in \mathscr{P}_1$ if and only if PA = 0 or PA = 1 for every $A \in \mathscr{A}_1$.

In §2. several results are proved, concerning the structure of the class \mathscr{P} . These are not new, although several of them do not seem to have appeared in the literature. The main theorem of this paper is in §3 where it is shown that each element of \mathscr{P} can be represented as a convex combination of the extreme points of \mathscr{P} . Several consequences of this theorem are pointed out.

2. Some properties of the class \mathcal{P} .

THEOREM 1. Let P and Q be elements of \mathscr{P} . Suppose PA = QAfor $A \in \mathscr{N}_1$ Then $P \equiv Q$.

Proof. Let $\mu = P - Q$. Then μ is a completely additive set function defined on \mathscr{N} . If μ is not identically zero, there exists $A \in \mathscr{N}$ such $\mu(A) > 0$ and $\mu(A) \ge \mu(B)$ for all $B \in \mathscr{N}$. This follows from the Hahn decomposition theorem. Write $\mu(A) = \alpha + \beta$, where $\alpha = \mu(A - A \cap TA)$ and $\beta = \mu(A \cap TA)$. Since $\mu(A - A \cap TA) = \mu(TA - A \cap TA)$ we have $\mu(A \cup TA) = 2\alpha + \beta$. Now if $\alpha < 0$, then $\mu(A \cap TA) > \mu(A)$ and A is not maximal, and if $\beta < 0$ then $\mu(A - A \cap TA) > \mu(A)$ and A is not maximal. Consequently $\alpha \ge 0$ and $\beta \ge 0$. But if A is maximal then $\alpha + \beta \ge 2\alpha + \beta$. Hence $\alpha = 0$ and $\mu(A \cup TA) = \mu(A)$. By the same argument we show that $\mu(T^{-1}A \cup A \cup TA) = \mu(A)$ and it follows by in-

Received December 9, 1959.

¹ Supported in part by the Office of Ordnance Research, U. S. Army, under Contract No. DA-33-008-ORD-965.

² Work done while the author was a Standard Oil Co. Fellow at Indiana University.

duction that $\mu(B_n) = \mu(A)$ for every positive integer *n*, where $B_n = \bigcup_{i=-n}^n T^i A$. Now B_n is an increasing sequence of sets. Let $B = \lim_{n \to \infty} B_n$. Then $\mu(B) = \mu(A) > 0$. But clearly $B = \bigcup_{i=-\infty}^{\infty} T^i A \in \mathscr{H}_1$ and μ is zero on \mathscr{H}_1 . Consequently we have a contradiction and the theorem is proved.

Suppose now that $P \in \mathscr{P}_1$ and $Q \in \mathscr{P}$ and suppose also that Q is absolutely continuous with respect to P. Then if $A \in \mathscr{M}_1$ we have PA = 0 or PA = 1 and hence Q agrees with P on \mathscr{M}_1 . Thus the theorem applies and we have

COROLLARY 1. If $P \in \mathscr{P}_1, Q \in \mathscr{P}$, and Q is absolutely continuous with respect to P then $Q \equiv P$.

Theorem 1 also furnishes an elegant proof of a result which was proved by Lamperti [3], and in a special situation by Harris [1]. Suppose P and Q are both ergodic, i.e. $P \in \mathscr{P}_1$ and $Q \in \mathscr{P}_1$. Then either P and Q are orthogonal or for each $A \in \mathscr{N}$ for which PA = 1 we have Q(A) > 0. Now suppose $A \in \mathscr{P}_1$ and PA = 1. Then if Q is not orthogonal to Pand since $Q \in \mathscr{P}_1$ we must have Q(A) = 1 and it follows that P = Q on \mathscr{P}_1 . We have

COROLLARY 2. If $P \in \mathcal{P}_1$, $Q \in \mathcal{P}_1$, then either $P \equiv Q$ or P is orthogonal to Q.

In § 3, we shall show that this result can be considerably generalized.

THEOREM 2. \mathscr{P} is a convex set. $P \in \mathscr{P}_1$ if and only if P is an extreme point of \mathscr{P} .

Proof. The first statement is obvious. Suppose $P \in \mathscr{P}_1$ and suppose we may represent P in the form $P \equiv \alpha P_1 + (1 - \alpha)P_2$ where 0 < a < 1and $P_i \in \mathscr{P}, i = 1, 2$. Then clearly P_1 and P_2 are absolutely continuous with respect to P and it follows from Corollary 1 that $P_1 \equiv P_2 \equiv P$. Thus if $P \in \mathscr{P}_1$ it is an extreme point of \mathscr{P} . Conversely if $P \notin \mathscr{P}_1$ there exists a set $B \in \mathscr{M}_1$ with 0 < PB < 1. Then we may write $P \equiv \alpha P_1 + (1 - \alpha)P_2$ where $\alpha = PB$, and for $A \in \mathscr{A}$ we have $P_1(A) = P(A \cap B)/P(B)$ and $P_2(A) = P(A \cap B^c)/P(B^c)$. It is easily verified that P_1 and P_2 are invariant probability measures and it follows that P is not an extreme point of \mathscr{P} .

Theorem 2 strongly suggests that it may be possible to obtain the elements of \mathscr{P} as convex combinations of the extreme points of \mathscr{P}_1 . Under a rather mild assumption this is in fact true, as will be shown in the next section. Examples of the kind of theorem we have in mind were proved by Hewitt and Savage [2].

3. The representation theorem. Throughout part of this section we shall assume that if $A \in \mathscr{N}_1$ and if PA = 0 for every $P \in \mathscr{P}_1$ then

PA = 0 for every $P \in \mathscr{P}$. Clearly such a condition is necessary for a convex representation theorem and the condition can actually be verified in many examples of interest.

Suppose now that $P \in \mathscr{P}_1$. Theorem 1 tells us that P has a unique invariant extension from \mathscr{N}_1 to \mathscr{N} . This suggests that if $A \in \mathscr{N}$ we should be able to determine PA by knowing only the values of P on \mathscr{N}_1 . A proof of this statement follows from the individual ergodic theorem.

THEOREM 3. Let $A \in \mathscr{A}$. For every α with $0 \leq \alpha \leq 1$ there exists a set $A'_{\alpha} \in \mathscr{A}_1$ such that if $P \in \mathscr{P}_1$ then $PA = \alpha$ if and only if $PA'_{\alpha} = 1$.

Proof. Let $f_s(x)$ be the set characteristic function of the set S. Let $A \in \mathcal{N}$, and α be given. For every positive integer n define $g_{n,A}(x) = 1/n \sum_{i=1}^{n-1} f_A(T^i x)$, and define $A'_{\alpha} = \{x \mid \lim_{n \to \infty} g_{n,A}(x) = \alpha\}$. Clearly $A'_{\alpha} \in \mathcal{N}_1$ and the individual ergodic theorem implies that $PA = \alpha$ if and only if $PA'_{\alpha} = 1$, whenever $P \in \mathcal{R}$.

Using the same technique we can prove

THEOREM 4. Let $A \in \mathscr{A}$. For every α with $0 \leq \alpha \leq 1$ there exists a set $A_{\alpha} \in \mathscr{A}_1$ such that if $P \in \mathscr{P}_1$ then $PA \leq \alpha$ if and only if $PA_{\alpha} = 1$.

Let $A \in \mathscr{A}_1$. Define π_A by $\pi_A = \{P \in \mathscr{P}_1 | PA = 1\}$. Let Π be the collection of all such sets π_A i.e. $\Pi = \{\pi_A | A \in \mathscr{A}_1\}$. The following facts are easily verified:

- (i) $\pi_{\Omega} = \mathscr{P}_1$
- (ii) $[\pi_A]^c = \pi^c$
- (iii) $\pi \bigcup_n A_n = \bigcup_n \pi A_n$

where A and each A_n is an element of \mathscr{A}_1 . Since \mathscr{A}_1 is a σ -algebra it follows that Π is a σ -algebra. Now let $Q \in \mathscr{P}$. We define a set function μ_q on Π by $\mu_q(\pi_A) = Q(A)$.

We shall show that under the assumption at the beginning of this section μ_q is in fact a probability measure defined on Π . Clearly $\mu_q(\pi_A) \ge 0$ for each π_A , and $\mu_q(\mathscr{P}_1) = \mu_q(\pi_{\Omega}) = Q(\Omega) = 1$. Now suppose $\{\pi_{A_n}\}$ is a sequence of disjoint elements of π . It is easily verified that this is the case if and only if $PA_n \cap A_m = 0$ for every pair of sets A_n, A_m in \mathscr{P}_1 with $n \neq m$ and for every $P \in \mathscr{P}_1$. It follows from the assumption that $Q(A_n \cap A_m) = 0$ for $n \neq m$. Hence $\mu_q\{\bigcup_n \pi A_n\} = Q(\bigcup_n A_n) = \sum_n Q(A_n) =$ $\sum_n \mu_q\{\pi_{A_n}\}$ and we have shown that μ_q is a probability measure defined on Π . We summarize in

THEOREM 5. If Π and μ_{Q} are defined as above then Π is a σ -algebra of subsets of \mathscr{P}_{1} . Under the assumption at the beginning of this section μ_{Q} is a probability measure defined on Π .

THEOREM 6. Let $A \in \mathcal{N}$. Consider the function $f_A(P)$ defined on \mathscr{T}_1 and with values $f_A(P) = PA$. Then $f_A(P)$ is measurable with respect to Π .

Proof. We must show that for every α with $0 \leq \alpha \leq 1$ we have $\{P \in \mathscr{P}_1 \mid f_A(P) \leq \alpha\} = \{P \in \mathscr{P}_1 \mid PA \leq \alpha\} \in \Pi$. But it follows from Theorem 4 that $\{P \in \mathscr{P}_1 \mid PA \leq \alpha\} = \pi_{A \leftarrow A_{\alpha}}$ where $A_{\alpha} \in \mathscr{N}_1$ is the set guaranteed by Theorem 4, and the theorem follows.

Since $f_A(P)$ is bounded and measurable it is clearly integrable with respect to any probability measure defined on Π . Now let $Q \in \mathscr{P}$ and μ_Q be the corresponding probability measure defined on Π . For each $A \in \mathscr{N}$ define Q'(A) by

$$Q'(A) = \int_{\mathscr{P}_1} f_{\scriptscriptstyle A}(P) d\mu_{\scriptscriptstyle Q} = \int_{\mathscr{P}_1} PAd\mu_{\scriptscriptstyle Q} \; .$$

It follows immediately from this definition that Q' is an invariant probability measure defined on \mathscr{N} . But if $A \in \mathscr{N}_1$ we have $Q'(A) = \mu_Q \{\pi_A\} = Q(A)$. Hence Q' = Q on \mathscr{N}_1 and it follows from Theorem 1 that $Q' \equiv Q$. Furthermore suppose we know that $Q(A) = \int_{\mathscr{P}_1} PAd\mu$, where μ is some probability measure defined on Π . Then if $A \in \mathscr{N}_1$ we have $Q(A) = \int_{\mathscr{P}_1} PAd\mu = \mu \{\pi_A\} = \mu_Q \{\pi_A\}$, i.e. $\mu \equiv \mu_Q$. We state these results in

THEOREM 7. Suppose the assumption at the beginning of the section holds. Then for every $Q \in \mathscr{P}$ there exists a unique probability measure μ_o defined on Π such that

$$Q(A) = \int_{\mathscr{P}_i} P(A) d\mu_{\scriptscriptstyle Q} \ for \ every \ A \in \mathscr{A} \ .$$

We shall refer to Theorem 7 as the representation theorem, and the rest of this section is devoted to exploring some consequences of this theorem. One immediate consequence is a generalization of Corollary 2 to Theorem 1.

THEOREM 8. Let $Q_i \in \mathscr{P}$, i = 1, 2. Then Q_1 and Q_2 are orthogonal if and only if the corresponding measured μ_{Q_1} and μ_{Q_2} are orthogonal.

Proof. Suppose Q_1 and Q_2 are orthogonal. Let B be a set such that $Q_1(B) = 1 = Q_2(B^c)$ and let $A = \bigcup_{i=-\infty}^{\infty} T^i B$. Then $A \in \mathscr{M}_1$ and $Q_1(A) = 1 = Q_2(A^c)$ and we obtain $1 = \mu_{q_1}\{\pi_A\} = \mu_{q_2}\{(\pi_A)^c\}$. Thus μ_{q_1} and μ_{q_2} are orthogonal. Conversely if μ_{q_1} and μ_{q_2} are orthogonal there is a set $A \in \mathscr{M}_1$ such that $1 = \mu_{q_1}\{\pi_A\} = Q_1(A)$ and $0 = \mu_{q_2}\{\pi_A\} = Q_2(A)$ and the theorem js proved.

Another interesting consequence of the theorem is the obvious fact that if $A \in \mathscr{N}$ and if PA = 1 for each $P \in \mathscr{P}_1$ then Q(A) = 1 for each $Q \in \mathscr{P}$. Thus the individual ergodic theorem for arbitrary invariant measures is an immediate consequence of that theorem for ergodic measures. Furthermore Theorem 7 throws some light on the evaluation of the limiting function in the individual ergodic theorem. Let $Q \in \mathscr{P}$ and let f(x) be defined on Ω and measurable with respect to \mathscr{N} . Let $f_n(x) = 1/n \sum_{i=0}^{n-1} f(T^i x)$. Then if $f \in L_1(Q)$ the ergodic theorem states that $\lim_{n\to\infty} f_n(x) = f^*(x)$ say, exists on a set of Q-measure one. It is clear that f^* is invariant i.e. $f^*(Tx) = f^*(x)$ for all x for which f^* exists. If f is also integrable with respect to $P \in \mathscr{P}_1$ then f^* is constant on a set of P-measure one, and we have

$$Q\{x \mid f^*(x) \leq u\} = \int_{\mathscr{B}_1} Px\{ \mid f^*(x) \leq u\} d\mu_Q = \mu_Q\{P \in \mathscr{P}_1 \mid f^* \leq u\} ,$$

In particular we conclude f^* is a constant, say c, on a set of Q-measure one if and only if $\mu_P[P \in \mathscr{P}_1 | P\{x | f^*(x) = c\}] = 1$.

Finally, suppose f is again measurable with respect to \mathscr{N} . Let $Q \in \mathscr{P}$ and suppose $\mu_{Q} P \Big\{ \in \mathscr{P}_{1} | \int_{\Omega} |f| dP < \infty \Big\} = 1$. Then we can easily prove

THEOREM 8. If $\int_{\Omega} |f| dP$ is an integrable function of P (with respect to μ_Q) then $f \in L_1(Q)$ and

$$\int_{\Omega} f dQ = \int_{\mathscr{P}_1} \left[\int_{\Omega} f dP \right] d\mu_Q \; .$$

References

1. T. E. Harris, On chains of infinite order, Pacific J. Math., 5 (1955), 707-724.

2. E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, TAMS, 80 (1955), 470-501.

3. J. Lamperti, Stationary measures for certain stochastic processes, Pacific J. Math., 8 (1958), 127-132.

SANDIA CORPORATION AND INTERNATIONAL BUSINESS MACHINES CORPORATION

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL

University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	E. HEWITT	M. OHTSUKA	E. SPANIER
T. M. CHERRY	A. HORN	H. L. ROYDEN	E. G. STRAUS
D. DERRY	L. NACHBIN	M. M. SCHIFFER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIASTANFOCALIFORNIA INSTITUTE OF TECHNOLOGYUNIVERUNIVERSITY OF CALIFORNIAUNIVERMONTANA STATE UNIVERSITYWASHINUNIVERSITY OF NEVADAUNIVERNEW MEXICO STATE UNIVERSITY*OREGON STATE COLLEGEAMERICOUNIVERSITY OF OREGONCALIFODOSAKA UNIVERSITYHUGHESUNIVERSITY OF SOUTHERN CALIFORNIASPACE *

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of in	-	
bounded operator in Hilbert space		
Nesmith Cornett Ankeny, Criterion for rth power residuacity	••••••	1115
Julius Rubin Blum and David Lee Hanson, On invariant probability	measures I	1125
Frank Featherstone Bonsall, Positive operators compact in an auxil	iary topology	1131
Billy Joe Boyer, Summability of derived conjugate series		1139
Delmar L. Boyer, A note on a problem of Fuchs		1147
Hans-Joachim Bremermann, <i>The envelopes of holomorphy of tube a</i> <i>dimensional Banach spaces</i>		1149
Andrew Michael Bruckner, Minimal superadditive extensions of sup		
functions		1155
Billy Finney Bryant, On expansive homeomorphisms		1163
Jean W. Butler, On complete and independent sets of operations in		
Lucien Le Cam, An approximation theorem for the Poisson binomic		
Paul Civin, Involutions on locally compact rings		
Earl A. Coddington, Normal extensions of formally normal operato	rs	1203
Jacob Feldman, Some classes of equivalent Gaussian processes on a		
Shaul Foguel, Weak and strong convergence for Markov processes.		
Martin Fox, Some zero sum two-person games with moves in the un	it interval	1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic		
Branko Grünbaum, Partitions of mass-distributions and of convex b	0	
hyperplanes	•	1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surf	aces	1263
	<i></i>	
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigr	oup of integers	
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigr</i> modulo m		1291
<i>modulo m</i>	or groups	1309
modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector	pr groups	1309
modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups	or groups	1309 1313
modulo m Paul Daniel Hill, <i>Relation of a direct limit group to associated vecto</i> Calvin Virgil Holmes, <i>Commutator groups of monomial groups</i> James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expans</i>	or groups	1309 1313 1319
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	sive homeomorphisms	1309 1313 1319 1323
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f 	pr groups sive homeomorphisms unctions mplex domains	1309 1313 1319 1323 1327
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric company 	or groups sive homeomorphisms unctions mplex domains roups	1309 1313 1319 1323 1327
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semigrical semigroups in partially ordered semigroups in partially 	or groups sive homeomorphisms unctions roups Faussky and	1309 1313 1319 1323 1327 1333
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric co Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of f 	or groups sive homeomorphisms unctions mplex domains Faussky and	1309 1313 1319 1323 1327 1333 1337
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric co Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus 	pr groups sive homeomorphisms unctions mplex domains Faussky and	1309 1313 1319 1323 1327 1333 1337 1347
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational 	or groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction try measures	1309 1313 1319 1323 1327 1333 1337 1347 1361 1371
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems 	or groups sive homeomorphisms unctions roups Faussky and d fraction rry measures	1309 1313 1319 1323 1327 1333 1337 1347 1361 1371 1385
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings 	pr groups sive homeomorphisms unctions mplex domains Foups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1333 1337 1347 1347 1361 1371 1385 1393
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems 	pr groups sive homeomorphisms unctions mplex domains Foups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1333 1337 1347 1347 1361 1371 1385 1393
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings 	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1337 1347 1347 1347 1361 1371 1385 1393 1397
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1337 1347 1347 1347 1361 1371 1385 1393 1397
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems 	or groups sive homeomorphisms unctions roups Faussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1361 1371 1385 1393 1397 1409 1419
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Taussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1347 1347 1347 1385 1393 1397 1409 1419 1429
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1347 1347 1347 1393 1397 1409 1419 1429 1447
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction try measures ntial-difference $(1,, \partial/\partial z_n$ tegrals	1309 1313 1319 1323 1327 1337 1347 1347 1361 1371 1385 1393 1397 1409 1419 1429 1447 1453