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1. Introduction. Letx,;5=1,2, «--- be independent random varia-
bles such that Prob(X; = 1) = 1 — Prob (X, = 0) = p;. Let @ = (X))
be the distribution of their sum. This kind of distribution is often re-
ferred to as a Poisson binomial distribution. For any finite measure p
on the real line let || ¢£|| be the norm defined by

eell = sup { | (e}

the supremum being taken over all measurable functions f such that
[f1=1. Let » = J3p,, let ¥p} = v and let « = sup,p,. Finally let P
be the Poisson distribution whose expectation is equal to .

The purpose of the present paper is to show that there exist ab-
solute constants D, and D, such that ||Q — P|| < Dx for all values of
the p/’s and [|Q@ — P|| £ Dyw if 4o = 1.

The constant D, is not larger than 9 and the constant D, is not
larger than 16.

Such a result can be considered a generalization of a theorem of
Yu. V. Prohorov [9] according to which such constants exist when all
the probabilities p, are equal.

The norm || @ — P|| is always larger than the maximum distance
O(P, Q) between the cumulative distributions. For this distance o a very
general theorem of A. N. Kolmogorov [6] implies that o(P, Q) is at
most of order a'®. The improvement obtained here is made possible by
the smaller scope of our assumptions.

The method of proof used in the present paper is not quite ele-
mentary, since it uses both operator theoretic methods and characteristic
functions. The relevant concepts are described in § 2.

A completely elementary approach, described in {4] leads to bounds
of the order of 3a**® for the distance p. Unfortunately, the elementary
method does not seem to be able to provide the more precise result of
the present paper.

The developments given here were prompted by discussions with
J. H. Hodges, Jr. in connection with the writing of [4].

2. Measures as operators. Let {9, %} be a measurable Abelian
group, that is, an Abelian group on which a o-field 2 has been selected
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in such a way that the map(x,y) — ¢ + y from X x X to X is measura-
ble for the o-fields A x A and A.

Let <7 denote the set of bounded measurable numerical functions
on {X, A}. A finite signed measure ¢ on 2 defines an operator, also
denoted y, from <# to itself. To the function fe <z the operator n
makes correspond the element pf whose value at the point @ is (¢f)(x) =

S fx + E)(dg). Linear combinations of two operators are defined by
the equality

(ap + BIf = a(f) + BS) .

The product of two operators will be defined by composition: (¢)f =
p(vf). In other words,

(7)) = | ) | f@ + & + wm(ad)

It follows from Fubini’s theorem that gy = vy, The product pv cor-
responds to the convolution of the two measures.

For any element f of <7 let |f]| be the norm | f| = sup|f(x)|. De-
fine the operator norm || ¢ || by

Il =sup{ pf s Lf I =1}

The norm || £]] is equal to the total mass of y considered as a measure.
It is an immediate consequence of the operator representation of v that
IS

Let 9 be the system of operators obtained from all the finite signed
measures. What precedes can be summarized by saying that I is
a normed commutative algebra having for identity the operator I which
is the probability measure whose mass is entirely concentrated at the
point £ = 0. It is not difficult to show that 9 is complete for the
norm, so that 9 is in fact a real commutative Banach algebra.

Let @ be a complex-valued function of a complex variable z. Sup-
pose that for |z| < @, the function ¢ has a convergent power series
expansion. It is then possible to define @(A4) for every A € M such that
Il A]l < a by simple formal substitution in the power series expansion
of @,

The entity ¢(A) is then of the form ¢(A) = B + ¢C where both B
and C belong to M. Other possible definitions can be found in [3], [2], [8]-

If /i is the Fourier transform fi(t) = \e"* p(dx) of the measure g then

@(y) is the measure where the Fourier transform is @(f).

In most cases of statistical interest, the space ¥ is either the real
line, or the additive group of integers, or the circle, or a Euclidean
space. In those circumstances, as well as in the case where ¥ is an ar-
bitrary Abelian locally compact group, we may replace <& by the space
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of continuous functions which tend to zero at infinity without affecting
any of the above properties.

Let M be an arbitrary finite positive measure on ¥. Then exp (M) =
e =I+M+ -+« + Q) M* + --.. It follows that exp[M — || M ||I] =
exp[—|| M ||]] exp (M) is always a probability measure.

If a random variable X is equal to the origin of % with probability
(1 — p) the distribution &2(X) can be written (X)) =1+ p(M — 1)
where M is a probability measure.

The following theorem, essentially due to Khintchin [5] and Doeblin
[1] is concerned with the distribution @ of a sum XX, of independent
variables having distributions G, = I + p,(M; — I) where M, is a prob-
ability measure. The product [],G, is always convergent when )\ =
>.;D; is finite. Conversely finiteness of \ is necessary to the convergence
of TI,;G, when ¥ is the additive group of integers. More generally,
suppose that X is the real line and that there exists an € > 0 such that
N: = 3p;M{[—e¢, €]} = 0. Then I],;G, cannot be convergent. This fol-
lows for instance from a result of Paul Lévy [7] according to which
any interval containing the sum XX, with probability & > 0 must have
a length of the order of e1/..

A refinement of Paul Lévy’s theorem can be found in [6], Lemma 1.
However, the finiteness of )\ is not generally necessary to the conver-
gence of [[;G,. This is quite obvious if X is the circle and G, is the
Haar measure of the circle, but the condition is not even necessary on
the line.

THEOREM 1. Let X,;;5=1,2, .-+ be independent random variables
taking their values in the measurable Abelian group X. Assume that
LX) =1+ p(M; — I) where M, is a probability measure and as-
sume that N = Sp; < . Let p, = \¢;, let w = X¢,p, and finally let
M = 3¢;M,. Then

1Q — P|| = 2vor
Jfor P = exp|[MM — I)].

Proof. The proof is essentially the same as the proof of Theorem 1
in [4], given there in terms of random variables. In terms of operators
one can proceed as follows.

Let F, =expp,(M,; — I) and let B, = [],:.G;. For k> 1 let R, =
(ILs26— F)(IT 2241 G). Then R.F, = Ry ,Gy., so that

].;IGJ'_IJ[F]:%:RJ(GJ'—F»°

Since R, is a probability measure, this implies
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IIG, — I1F 1l = 31 Gy — Fy ]l -

The difference F'; — G, can be written

F— Gy = e — (1= p)ll+pe”s — DM, + 5 <2 pis

Hence || F, — G, || = 2p,(1 — e™%) =< 2p5.
Noting that I[,F, = exp [MM — I)], this proves the desired result.

REMARK. The literature does not seem to contain any reference to
the fact that Theorem 1 can be proved as in [4] and coupled with
Lindeberg’s proof of the normal approximation theorem to obtain a com-
pletely elementary proof of the general Central Limit theorem.

3. Sums of indicator variables and binomial distributions. In all
the subsequent sections of this paper ¥ will be the additive group of
integers and {X,;; 1,2, ...} will be a family of independent random
variables such that Prob(X, = 1) = 1 — Prob (X, =0) = P,. The distri-
bution &(X,) can then be written either as I + p;4 or (1 — p,)I + p,H
where 4 is the difference operator 4 = H — I and H is the probability
measure whose mass is entirely concentrated at the point x =1. The
Poisson distribution whose expectation is )\ can be written P = exp (\4).

Letting M¢; = p, and @ = J¢,;p,, Theorem 1 implies that if @ =
Z(2X;) then the following inequality holds.

PROPOSITION 1. || @ — exp (M) || = 2\w.

From now on we shall assume that )\ < « and that a = supp,
does not exceed 1/4.

It may be expected that @ would be approximable by a binomial
distribution much more closely than by a Poisson distribution. Letting
A = v, a binomial distribution with v trials and probability of success
w can be written

B=U+ w4y =»10—-wy(d+ pH)y

with p = w/1 — @, at least when v is an integer. If v is not an in-
teger the expression

B=(L—w¥ﬁ+(ﬁpH+.u+(@¢Hk+.”}

where

r'v+1)
By —Fk+1)

<Z)=~k17v(u—1)---(u—k+1):
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still possesses a precise meaning as long as p < 1. However, B is not
a probability measure even though SldB = 1. Let n be the integer such

that (n — 1) < v < n. The coefficients <}:> oforderk =(n+1),(n+2)---
are alternately positive and negative.
Let S=(1 — w) 3, (Z)p’“H’“ The norm of S is equal to

(7) 2 (E)eer

The term inside the absolute value symbol is simply the remainder of
the expansion of (1 — p)*. By Taylor’s formula || S]|| is equal to the
absolute value of

1S =1 —wy 3

k=n+1

0= (1 - )

%u(y -1 (yv—n)(1—w)1 — p)"gzllip(——l)”t”(l + i

Therefore, since n —1 <y <n
P/l
[4]

IS=@—opa—or| e+ oa

1 N N [O >n+1
= 1 — )1 — I
s 50— oyl —p) (1_p
= T 2wy E g
n -+ 1 v+ 1

In the cases considered here v = (Xp,)(Xp?)* is always larger than or
equal to unity. In all cases where v is large and w is small || S| will
be rather negligible.

Note that M =vw = Sde and vo(l — w) = S(x — \)dB. How-
ever, this last quantity may not be treated as a variance, since B pos-
sesses negative terms.

In spite of this it will be convenient to bound the remainder term

Sm) = (1~ wy 5 (})erH

=m+
for large values of m, by Chebyshev’s inequality. Assuming A< m < n
the terms (1 — m’)”(’,’c)p’c are smaller than (1 — w) ™ (1 — tf)”(Z’)p".
Therefore

4m/v+1
v+ 1

1Stm) | = 4% 4+ (1 = vy 5 @ —oy(})er

Finally, by Chebyshev’s inequality applied to the binomial [1 + w 4],
one obtains
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no(l — ©)

=y

4,®«v+1
I S(m) || = 222

In particular, if m < 2nw <m + 1

4’(7”'1 + (1 — ,Gr)l—(n—v)

18(m) || = 2= 2

gmww+u%.

To show that @ can be approximated by the Poisson distribution P
in the cases where X is too large for Proposition 1 to have any significance,
we shall first show that @ can be approximated by B and then show
that B is very close to P. The argument will be divided into three
parts according to the values of A and \a’ for o’ = Jey(p; — w)’. If &
is large but Ma® is small, bounds will be obtained through operator
theoretic methods. If A\ is so large that Aa® becomes large, bounds will
be obtained through computations on characteristic functions.

4. Approximations by binomial distributions. In this section, it will
be assumed throughout that » = 3 and that a < 1/4.

For the distributions @ and B defined in the preceding section we
can write

log@Q — log B = Zj}log(f-l- p,4) — vlog (I + w4)

= xg cj{i log (I + p,4) — —élog I+ m’A)}

D;

i(l)BMH—MM
with

2( ) B,4*

and B, = 3,,¢;0f — wt = 0.
Since (—1)¥4*= 3, (if >(—1)SH s, the measure M assigns negative masses
$=0
to the odd positive integers and positive masses to the even nonnegative

integers.
The norm of M is precisely equal to

Bu2® _ _ 1 _ _ 1 _
1M1= £ 757 = —Sedg, gt~ 20) — gLlog (1~ 2w)} .

Letting 4 = 2w and v; = 2(p, — w) this can also be written
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1M1= S:ZC’{[l - t(@ll, To) 1 = tn ]}dt :

Since Xecw, = 0 and Jev? = 4a* while

1=t + )] — A —tw)™ =1 — tu)f{l + (o)l — tu + v, Mo,

one can write

_ 1 ,v? tZ
171 = go{zcj 1 —tu + vj)]} A — tuy at
4&2 Sl tz dt
1—2alto (1 —tuy

4a’ 3w
= 3(1 — 2a){1 + 1- 217)2} )

Hence || M || = ha® with

4 3w
= 3(1—2w) {1+ (1—217)2} )

One can also write M = 4M, = 4*M, with || M || = 2|| M, || = 4|| M, .
It results from these equalities that

Q = Bexp[MM].

For every measure p, Taylor’s formula gives

o= I+ ySlef“dé .
0

Hence
Q — B = 4BM| e dg
= \aBM| e
Finally
|Q — Bl = M| M|| || 4B [|e
and

1Q—B| = -;—xn M| || £B [|le

One can also note that there exist probability measures F' and G such
that if ¢ = || M|] then

Qexp[re(F — I)] = Bexp[re(G — I)] .
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According to the foregoing expressions, to obtain bounds on || @ — B||
it will be sufficient to evaluate || 4B|| and || 4’B]|.

Let f(x) = (’;)mﬂ(l — w)*® and consider only values x such that

2 <n—1. In this range f achieves its maximum at a value x such that
M+ o —1<a=)+ w. It follows that (4f)(z’) is positive for 2’ = =
and negative for x’ > x. Finally

| 4B || = 2f(x) + || S| .
Let ©x = v&€&. An application of Stirling’s formula leads to the inequality
log f(z) < — — log [2m2£(1 — £)]

0

fle) = Yoy

with

o= vlea-9]

Since w(l + 1/v) — 1/y < ¢ £ w1 + 1/v) the quantity /w1 — §) is larger
than

2= 2= oo D] [t 252 - <o+ 2]
2B o P2 1-8).

Consequently,
72 \*
o< (——
“(7071-)
and
4,m/‘u+2
AB <__
4B = =t

Thus, we have shown the validity of the following proposition.

PROPOSITION 2. Let =3 and a < 1/4, then

2 —_— . 4@/1/4»2
1@ — B|| < 2ha*V' ) exp(2h>»a){0 + = }

with
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4/ 1 3o 32
hs——————[l ____]g__
—3<1—2a> T A2y I =3

and

o (B ) s L.
~\8x/ T V38

A computation using the fact that 4M = 4*°M, and the bounds for
{l 4B || can be carried out as follows.

Let u=2+1—vw and let f(u) be the probability of = =
vw + # — 1 for the binomial B. Let 6 =vw(l — w) and let 8 = wé
and v = (1 — w)é. Then

S+l _ 1—pBu—1)
fu) 1+yu

‘The second differences of the function f for x <% are equal to some
positive quantity multiplied by

gu) =u"— 2w — Du — (v + 2wl — @) .

Let », and 7,, r, < 7, be the roots of this polynomial. The second
differences (4°f)(u) are negative for we(r, 7,) and positive otherwise.
Letting @(u) = (4f)(u) it follows that

| #B|| < o(u,) + | P(uy) — (U, — 1|+ @(n — » + 1) — @(u, — 1)
8
v+ 1

+ ,m/v+1 .

The values u, are determined by the condition that the correspond-
ing « values, say x, and x,, are respectively the largest integer not
exceeding 7, + ) and the smallest integer as large as 7, + A. The roots
r, and 7, are given by the expression

r= (o —1/2) + [(u + Dol — o) + %]”2 .

If » = 3 the value u, is negative while u, — 1 is positive.
In this case

P) = flon + D1 - g ]

= flu, + D[l uy | + o]

1

= _
= 1 — )

]+ |
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Similarly,
| p(u) | < f(uz)[l_—{if‘—;u——l) -1]

o ]+ o))

Note that |, — 1| =14+ 1/2 4+ vVyw(d — w) + 1/6 = 5/3 + /N1 — w).
Hence

-

o= = Hamaysls VA= 9]+ )

A

0
A
90
4N
The other terms can be bounded in a similar manner giving

1489 + 18 oo < 54
A A A

Finally the following result holds.
PROPOSITION 3. If A= 3 and a < 1/4 then
| Q@ — Bl < (2.7)h exp [2h\a?]a?

with h < 32/3.

It is possible to obtain bounds on the third difference || 4°B|| by
similar procedures. The algebra becomes somewhat more cumbersome.
Nevertheless, it is not difficult to see that bounds of the type

1Q—B||<C 11"%)" exp [2Aath]a?

can be obtained in this manner.

The bounds given in Propositions 2 and 3 will be of value if Ma? is
small. When A is so large that Aa® is large, better inequalities than
the preceding may be obtained through the use of Fourier transforms.

Let £t be the Fourier transform of the measure p. For instance
Q(t) = Se“” Q(dx). Note the following inequalities.

First

|1+ pe® —1)P=1—2p(1 — p)(1 — cost) .

Hence, if |t]| = 7/2
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2
11+ pe” — P =1—2p( —p)=[t].

If [t]| £ /2 then

1 t=21— £ coset
COS ——é—[ —1—2008 ]

with [&] < 1.
Consequently, for |t| < =/2

; t* (48 — 7*
1+ T _DEPL1—2p1 — —_—
| p(e Y= o( p)2< B )

and for |t| = w/4

. /192 — 72
1 it 1)< 1 — 2p(l — ~<___~>
|1+ ple Y= 2( p)z 153

It follows that | B(t)| <1 and
(1) For w2 < lt[:grz:
max {{B@) |, | Q) |} < exp —{M1 — o)(2/n)| t]}.
(2) Forzl4 < |t| = w2
max {| B(t) |, | Q) [} < exp[—(*/2) 2]
with v* = (1 — w) — 7°/48.
(3) For |t| < xm/4 A
max {| B®) |, | Q) [} = exp[—(8%/2) 2]
with 8° = (1 — »)(1 — 7*/192).
In addition, for |¢| = 7/4 and for 2 = ¢ — 1 one can write

log @ — log B =\ [-Llog (1 +p2) — Llog L+ w3)|

J

S S S -

o(1 + Ewa) 1+ épsz

with ¢; = p,/» and 8, = p;, — w.
This gives
|log @ — logB| < —é— M| 7 ()

where

! 3& 1

- dg .
V(@) = sup sup So 0+ wrf A ) |
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Since |14 fwz|*=|(1 — £w) + Ewe' |?
=1-— 2wl — £w)(1 — cost)
one has
[1+évzf21-@-vVE) Lo,
Finally
1 1
P(z) =
a (ng
/1-5 (-3

Hence

IlogQ — logﬁ] < K2t
with

It follows that, for |¢t]| < 7/4 one can write

| Q) — B(t)| < | B(t) |Ma*K?| t [* exp [MaK?| ¢ ]
1
S N 272 t 3 —_—— 242
< M’K? |t exp[ 5 )uyt]
with 7* = 82 — a*’K®7w[4 = 0.
Let V=(Q — B). The individual terms of V are given by the
formula

1 [+ N
V(k):.z_g e P(t)dt .

Applying to this formula the above inequalities one obtains:

or | V(k)| < 2m2K2§” £ sup [—.;. Mzﬁ]dt
0

oo

4 S exp [—xbz—tzi]dt

nl4

+4:S°°

]2

exp[—m _ ﬁr)%]dt :

Therefore,

4K?%a’ 16 [ Abm? 27
= —_ — —(1 — .
2| Vik) | =< o —+ =" exp 32 ] + " — ) exp[—( )N



AN APPROXIMATION THEOREM FOR THE POISSON BINOMIAL DISTRIBUTION 1193

Noting that xe=* < e for = 0, this gives

2o | Vil | s 25 4 (22 2

ch* (1 — w)%e N

Let m be an integer such that m <2nw <m + 1 with n—1<v < n.
The sum of the first m terms of [V(k)| is inferior to

L{4K2a2 n 16 x 32 27 }(1 1)

T 7 ATPeb? ML — w)e v

From this and Chebyshev’s inequality it follows that

1 1\[4K*a’ 16 x 32 27
~pis Lo+ ) ;
e Ih= n( * Y vt " APeb! g Ml — w)e

Q—w) | 1 g
+ S +k[+m’ 1.

As a summary, one can state the following.

PROPOSITION 4. Assume )\ = 8 and a < 1/4. Then, there exist con-
stants C, and C, such that

Il —Bll= Ca’+ Ca™.

5. Approximation of the binomial by a Poisson distribution. A
theorem of Yu. V. Prohorov [9] states that the binomial B =[]+ w4}
and the Poisson P = exp(\4) differ little. Explicitly, there is a con-
stant C, such that || P — B|| = Cyw.

Prohorov’s result is proved in [9] only for integer values of v. For
this reason we shall give here a complete proof which happens to be
somewhat simpler than Prohorov’s original argument. This proof leads
to an evaluation of the constant C, which may not be the best availa-
ble but will serve our purposes.

Let R(x) be the ratio of the binomial probability B[{x}] to the
Poisson probability P[{x}]

Rx)y=vy—1)--- (v —2 + Do*(l — @) %e\?.
Let us restrict ourselves to the interval 0 < x < n. Since

Rw+1) _ v—u

R(x) v(l — w)

the ratio R achieves in this interval a maximum at the point x such
that x — 1 = A < 2.

For this particular value of #, Stirling’s formula leads to the ine-
quality
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1
log R(z) < —5 log(1 — §)

with
w<§§w(1+%>.

Finally for » = 3 and 4w <1,

R() = T/T—l_?_g <1+ ﬁ__—?
N

<1+ (2)'s.

Let f be a nonnegative function such that 0 < f < 1. The above ine-
qualities imply that

[ ram = j‘i —+ | R@f@Ps)

=27+ (2) o | f@PE) + | s@)P@)

v+1 3
< Jruman o {(2) ).
Similarly,
Sa — fYB=1— g fdB < ga — f)dP + w[(_g->/ + ;“fl ] .
Consequently:

PROPOSITION 5. If A =3 and 4w < 1, then

IB—P| = 2w[(—§-)“2 + j‘jl]
< [1.64]w .

Collecting the inequalities established in the preceding sections one
obtains the following statement.

THEOREM 2. Let {X;5=1,2,.--} be a family of independent
random variables. Assume that < (X;) =1+ p,4 and that » = Zp, is



AN APPROXIMATION THEOREM FOR THE POISSON BINOMIAL DISTRIBUTION 1195

finite. Let p, = \¢; and w = Xe,p; and « = sup,;p;. Denote by Q the
distribution Q = & (2X;) and P the Poisson distribution P = exp (\J).
There exist constants D, and D, such that
(1) For all values of the p; one has

IP—Q| =2y
and
P —-Qf = De.
2) If da <1 then
IP—-Qll = Dw .

The constant D, is inferior to 9 and the constant D, is im-
fertor to 16.

Proof. The proof of Theorem 2 consists essentially of an evaluation
of the constants involved in the bounds given by Propositions 2, 3 and
4. To these propositions one must add the following remarks.

The quantity a® = Jc,(p, — @)’ can be written

o' = ch<pj — %)2 — (% — m’>2 .

Hence

@t < omr(l ~ %) = <%> :

In particular ¢* < aw and ¢ £ /2 £ 1/8 for a < 1/4. The bound
[|@ — P|| < D is operative only when Da < 2. It is therefore sufficient
to prove that ||Q — P|| £ D for a« < 2D;* and 27\ = D,. A constant
D, can then be obtained through application of Proposition 2 for )\a? <
y* and Proposition 4 for A’ = y*, the quantity ¥* being adjusted to give
the best value available.

Similarly, the second inequality can be proved by use of Proposi-
tions 3 and 4, assuming 2\ = 16 and w < 1/8.

Note that the constants 9 and 16 are certainly much too large.
For very small values of a or @ one can obtain much better values of
D, and D,.

Statement 2 of Theorem 2 implies that the approximation by a Pois-
son dis_tribution will be good even though a few of the probabilities P,
may be close to the bound « < 1/4. This will happen provided only that
these large values contribute relatively little to the value of )\, the bulk
of ) being due to very small values of the p,.
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6. Concluding remarks.

REMARK 1. It would be highly desirable for the applications to
lower the values of the coefficients D, and D, to a more reasonable level.
When « is fixed, this can be achieved for D, by restricting the range
of values of w to which the inequalities apply. For instance, taking
40 =1 but w = 107?% the coefficient D, can be taken approximately
equal to 8. Such a value being still too large one may inquire whether
there is a lower bound to the acceptable values of D,.

In this connection the following remarks may be of interest. When
X becomes very large the distance (1/w) || @ — B || becomes rapidly negligi-
ble. This can be seen for instance by using the inequalities which led
to Proposition 4 and the bounds in a®log )\/1/\ obtained through the
use of third differences.

The main contribution to (1/w)]|| — P|| is then attributable to the
difference between the binomial B and the Poisson measure P.

Prohorov’s theorem implies that (1/w)|| B — P|| cannot be much
smaller than (.483). Therefore, one cannot expect to obtain a result
of the type ||@ — P|| £ D,o where D, would be substantially smaller
than 1/2.

ReEMARK 2. The result of Theorem 1 cannot be materially improv-
ed unless one is willing to restrict further the measures M, or the
group X.

A slight modification of the proof given here leads to the inequality

le-prisei-1a-8)],

where 3, is taken equal to p,(1 — e ?5). The bound so obtained is
actually reached for certain choices of the measures M,. An example
of this can be constructed when X is the real line. It is sufficient to
take M, to be the probability measure giving all its mass to a point
x, and select the values {x;; 5 =1,2, ---} to be rationally independent.
For any fixed ¢>0 one may find values p; < ¢ such that 2[1 — [](1 —3,)] >
2 — ¢ and such that » = >};p; be finite.
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