SOME CLASSES OF EQUIVALENT GAUSSIAN PROCESSES ON AN INTERVAL

JACOB FELDMAN
1. Introduction. Let T be an index set, R, S real-valued nonnegative definite functions of two variables in T, and m, n real-valued functions on T. Let Ω be the set of all real-valued functions on T, and \mathcal{F} the Borel field of cylinder sets. There are then unique measures μ, ν on \mathcal{F} such that the functions x_t on Ω defined by $x_t(\omega) = \omega(t)$ form Gaussian stochastic processes, with means respectively m and n, and covariances respectively R and S. It is shown in [2] that μ and ν are either mutually absolutely continuous or totally singular, and a necessary and sufficient condition for equivalence is given.

Suppose now that T is a subset of the real line, and $R(s, t) = \iota(s - t)$, $S(s, t) = \varsigma(s - t)$, where ι and ς are continuous nonnegative-definite functions, and hence can be written as inverse Fourier transforms of finite measures $d\rho, d\sigma$. Thus, using respectively the measures μ and ν on Ω, $x_t - m(t)$ and $x_t - n(t)$ are the restrictions to T of stationary Gaussian processes on the real line. For simplicity, only the case $m = n = 0$ will be considered.

When T is the entire real line, then it is easy to see, by looking at $d\rho$ and $d\sigma$, exactly when $\mu \sim \nu$, as is essentially known (see [3]). The precise conditions are:

a. ρ and σ must have identical non-atomic parts.

b. Their points of positive mass be the same, and if the masses are a_i and b_i at x_i, then $\sum [(a_i/b_i) - 1]^2$ must be finite.

Now suppose T is a finite interval. The problem of determining from knowledge of ρ and σ whether μ and ν are equivalent becomes much more difficult. We here discuss only a certain class of cases. Because of stationarity, one need only consider an interval symmetric about 0. Continuity of ι and ς implies that the Gaussian process is continuous with probability one at any given point, so that it makes no difference whether the interval is open or closed. There is no essential loss of generality, then, in considering only the closed interval $[-\pi, \pi]$. The following facts will then be proven:

Theorem. Let $d\rho(x) = \{dx\}(1 + x^2)^u$, where u is an integer ≥ 1, and let $d\sigma$ be some other finite nonnegative measure on the real line. Write $\tau = \sigma - \rho$. The following conditions are necessary and sufficient that the Gaussian processes induced on $[-\pi, \pi]$ by the Fourier trans-

Received December 21, 1959, Research partly supported by Contract NONR-222 (60).

1211
forms of ρ and σ have equivalent measures on path space:

(a) if k_n is a sequence of C_α functions with support in $]-\pi, \pi[$ and K_n is the Fourier transform of k_n, then $\int |K_n|^2 d\sigma \to 0$ implies $\int |K_n|^2 d\rho \to 0$.

(b) The Fourier transform (in the sense of Schwartz distributions) of $(1 + x^2)\sigma(x)$ agrees on $]-2\pi, 2\pi[$ with a function ψ such that

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |\psi(s-t)|^2 ds dt < \infty.$$

Remark 1. It will be seen that sufficiency still holds if (a) is weakened to:

(a') $\int |K_n|^2 d\sigma \to 0$ and $K_n \to K$ in $\mathcal{L}_2(\rho)$ implies that $K = 0$ on some set of positive ρ-measure.

Remark 2. As a consequence of Remark 1, it is clear that if σ has a component which is absolutely continuous with respect to ρ, then Condition (a) automatically satisfied.

Retaining the notation of the theorem:

Corollary 1. If $d\sigma = \Phi d\rho$, where Φ is a function such that $\Phi - 1$ is a finite linear combination of functions in various $L_a(-\infty, \infty)$ classes, $1 \leq a \leq 2$, then the Gaussian processes induced by ρ and σ have equivalent measures on path space.

One direction of the following corollary was proven by D. Slepian in [5], using techniques of G. Baxter in [1]:

Corollary 2. If A_j and B_j are polynomials, with degrees respectively a_j and b_j, $j = 1, 2$, and $b_j > a_j$, then the Gaussian processes whose spectral measures are $|A_j(x)|^2 B_j(x)^2 dx$ have equivalent measures on path space if and only if

(a) $b_1 - a_1 = b_2 - a_2$

(b) the ratio of the leading coefficients of A_1 and B_1 has the same absolute value as the ratio of the leading coefficients of A_2 and B_2.

The author wishes to thank J. F. Trèves for several useful discussions about distributions.

2. Some preliminaries on functions of exponential type. First, some notation. Functions will be complex-valued functions of a real variable, unless otherwise stated. \hat{F} will mean the Fourier transform of F (in various degrees of generalization, depending on context), and \hat{F}^* the conjugate Fourier transform. $\text{sup}(f)$ will mean the points where $f \neq 0$. $\mathcal{E}_a = \{F| F$ extends to an entire function of exponential type $\leq a\pi\}$. $\mathcal{H}_a = \mathcal{E}_a \cap \mathcal{L}_2(-\infty, \infty)$, or, by the Payley-Wiener theorem,
u will be a fixed integer ≥ 1, and $p(x) = (i + x)^u$. ρ is the measure $d\rho(x) = \{1/|p(x)|^u\}dx$. \mathcal{H} will denote the completion of \mathcal{D} in the inner product $\langle F, G \rangle = \int F \bar{G} d\rho$.

Naturally, \mathcal{H} really consists of equivalence classes of functions; but it will turn out that there is a continuous, in fact entire, member in each class. H_t will denote a fixed function of \mathcal{D} such that $h_t = \hat{H}_t$ is nonnegative and has integral 1. For $a > 0$, $h_a(s)$ will be $(1/a)h_t(s/a)$, $H_a(x) = H_t(ax)$, so that $h_a = \hat{H}_a$, and $H_a \in \mathcal{D}_a$. Then H_a vanishes faster than any polynomial, $|H_a(x)| \leq 1$ for all x, and $\lim_{a \to 0} H_a(x) = 1$ uniformly on any finite interval.

Lemma 1. If $F \in \mathcal{D}_1$ and $\int |F|^2 d\rho < \infty$, then $F \in \mathcal{H}$.

Proof. If $(1/2) < c < 1$, then

$$\left(\int |F(cx) - F(x)|^2 d\rho(x) \right)^{1/2} \leq \left(\int_{-b}^b |F(cx) - F(x)|^2 d\rho(x) \right)^{1/2} + \left(\int_{|x| > b} |F(cx)|^2 d\rho(x) \right)^{1/2} + \left(\int_{|x| > b} |F(x)|^2 d\rho(x) \right)^{1/2}.$$

Now,

$$\int_{|x| > b} |F(cx)|^2 d\rho(x) = \frac{1}{c} \int_{|x| > bc} |F(x)|^2 \frac{1}{|p(x)|^2} dx \leq 2 \int_{|x| < (1/2)} |F(x)|^2 \frac{1}{|p(x)|^2} dx.$$

Choosing b large, and then choosing c close enough to 1 to make $|F(cx) - F(x)|$ small on $[-b, b]$, we see that it suffices to show that the function $G: x \to F(cx)$ is in \mathcal{H}. Notice that $G \in \mathcal{D}_1$, as $c < 1$.

H_aG is square-integrable, since H_a vanishes faster than $(1/|p|^2)$. So H_aG is in \mathcal{H}_{a+c}, its Fourier transform being some g' in $\mathcal{L}_2(-\infty, \infty)$ with support in $[-(a+c)\pi, (a+c)\pi]$. Thus $h_a g' \in \mathcal{D}_{a+c}$, and $H_a^2 G \in \mathcal{D}_{2a+c}$. Choosing a small causes $H_a^2 G$ to be in \mathcal{D}_1, and simultaneously causes $\int |H_a^2 G - G|^2 d\rho$ to get small. This proves the lemma.

Let $\mathcal{H} = \{pF | F \in \mathcal{H}_c \}$, and $\mathcal{D} = \{pF | F \in \mathcal{D}_1 \}$. Lemma 1 tells us $\mathcal{H} \subset \mathcal{H}$.

Lemma 2. \mathcal{H} is precisely the closure of \mathcal{D} in \mathcal{H}.
Proof. First, we see that \mathcal{H} is closed. If $F_n \in \mathcal{H}_1$ and
\[
\left| \int p F_n - G \right|^2 d\rho \to 0,
\]
then $\left| \int F_n(x) - F_m(x) \right|^2 dx \to 0$.

Since \mathcal{H}_1 is complete, there is some $F \in \mathcal{H}_1$ with
\[
\int \left| F_n(x) - F(x) \right|^2 dx \to 0.
\]
So some subsequence of the $p F_n$ converges almost everywhere to $p F$. Thus $p F = G$ almost everywhere.

To approximate elements $p F$ in \mathcal{H} by elements in \mathcal{D}, just approximate F in $\mathcal{L}_2(-\infty, \infty)$ by elements in \mathcal{D}_1, using the technique of Lemma 1.

Lemma 3. $\mathcal{H} \subseteq \mathcal{H}$ is precisely the finite-dimensional space \mathcal{L} of functions of the form $x \rightarrow e^{i\pi q(i - x)}$, where q is a polynomial of degree $\leq u - 1$.

Proof. Suppose $F \in \mathcal{H} \subseteq \mathcal{H}$. Then $\int \{F(x)/p(x)\} G(x) dx = 0$ for all G in \mathcal{D}_1. Now, (F/p) is in $\mathcal{L}_1(-\infty, \infty)$, so it has a Fourier transform k which is likewise square-integrable, and, by Plancherel's theorem, $\int k(s)\overline{g(s)} ds = 0$ for all g in \mathcal{D}_1. So k vanishes in $]-\pi, \pi[$.

Since $F \in \mathcal{H}$, F can be approximated in \mathcal{H} by functions F_n in \mathcal{D}_1. Each F_n is in \mathcal{D}_a for some $a_n < 1$, since $\text{sup}(F_n) \subset [-\pi, \pi[$, and hence $\subset [-a_n \pi, a_n \pi[$ for some $a_n < 1$. Let k_n be the Fourier transform of F_n/p. Then $k_n \rightarrow k$ in $\mathcal{L}_2(-\infty, \infty)$, and k_n is in the domain of the \mathcal{L}_2-differential operator $p(-iD) = i^u(I-D)^u$. So $p(-iD)k_n = f_n$, where f_n is the Fourier transform of F_n. Since f_n vanishes outside some $[-a_n \pi, a_n \pi[$, k_n must be of the form $\sum_j a_j s^j e^s$ in $]-\infty, -\pi[$ and $\sum_j b_j s^j e^s$ in $[\pi, \infty[$, where j ranges between 0 and $u - 1$. Since k_n is in $\mathcal{L}_2(-\infty, \infty)$, the b_j are zero, and, letting φ be the indicator of $]-\infty, -\pi[$, we get $\varphi k_n = \varphi \sum a_j s^j e^s$. This converges in $\mathcal{L}_1(-\infty, \infty)$, so the limit is of the form $\varphi \sum a_j s^j e^s$. Then $k_n \rightarrow 0$ in $\{\pi, \infty[, 0$ in $[-\pi, \pi[,$ and $\sum a_j s^j e^s$ in $]-\infty, -\pi[$, so $k = \varphi \sum a_j s^j e^s$. F/p is then a linear combination of terms like $\int_0^\infty e^{-ix^2} s^j e^s ds$, $0 \leq j \leq u - 1$, which is a linear combination of terms like $e^{ix(i + x)^{-1}}$, $1 \leq j \leq u$. Multiplying by p gives the result.

Combining information from lemmas 1, 2, 3 we get a description of \mathcal{H}:

Proposition. \mathcal{H} is the orthogonal direct sum of \mathcal{H} and \mathcal{L}.

Lemma 4. $\mathcal{D} = \mathcal{H} \cap \mathcal{D}_1$.

Proof. $\mathcal{D} \subseteq \mathcal{H}$, by definition, since $\mathcal{D}_1 \subset \mathcal{H}_1$. Also $\mathcal{D} \subset \mathcal{D}_1$, since \mathcal{D}_1 is closed under multiplication by polynomials (because \mathcal{D}_1 is...
closed under differentiation). So \(\mathcal{D} \subset \mathcal{H} \cap \mathcal{D}_1 \), and it remains to show \(\mathcal{D} \supset \mathcal{H} \cap \mathcal{D}_1 \).

Suppose \(G \in \mathcal{H} \). Then \(G \) is a \(\langle \, , \rangle \) limit of elements \(G_n \) in \(\mathcal{D} \), by Lemma 2. \(G_n \) then has the form \(pF_n, F_n \) in \(\mathcal{D}_1 \). Thus \(F_n \) is an \(\mathcal{L}_2(-\infty, \infty) \) Cauchy sequence, hence has a limit \(F \). Then \(pF = G \).

Suppose \(G \) is also in \(\mathcal{D}_1 \). Then \(G \) is infinitely differentiable. Since \(\hat{G} = p\hat{F} = p(-iD)\hat{F} \), we conclude that \(\hat{F} \) is infinitely differentiable. Now it must be shown that \(\hat{F} \) vanishes outside some interval \([-a\pi, a\pi] \), \(0 < a < 1 \). But \(\hat{G} = p(-iD)\hat{F} \) vanishes outside such an interval, so \(\hat{F} \) is analytic outside \([-a\pi, a\pi] \). Also, \(\hat{F} \) vanishes outside \([-\pi, \pi] \), since each \(\hat{F}_n \) has support in \([-\pi, \pi] \). Therefore, \(\hat{F} \) vanishes outside \([-a\pi, a\pi] \). So \(\hat{F} \) is in \(\mathcal{D}_1 \), and \(F \) is in \(\mathcal{D}_1 \).

Lemma 5. \(\mathcal{D}_1 / \mathcal{D} \) is finite dimensional.

Proof. \(\mathcal{D}_1 / \mathcal{D} = \mathcal{D}_1 / \mathcal{D} \cap \mathcal{H} \approx (\mathcal{D} + \mathcal{H}) / \mathcal{H} \subset \mathcal{H} / \mathcal{H} \approx \mathcal{D} \).

3. Proof of theorem. In [2] it is shown that a necessary and sufficient condition for equivalence of \(\mu \) and \(\nu \) is that there be an equivalence operator from the closed linear span of \(\{ x_t \mid t \in T \} \) in \(\mathcal{L}_2(\mu) \) to their closed linear span in \(\mathcal{L}_2(\nu) \), sending the \(\mu \)-equivalence class of \(x_t \) to the \(\nu \)-equivalence class of \(x_t \) for each \(t \in T \). (An equivalence operator, as defined in [2], is a linear homeomorphism \(H \) between two Hilbert spaces such that \(I - H^*H \) is Hilbert Schmidt). Actually, we shall want the condition in complex \(\mathcal{L}_2 \), while the proof in [2] is for real \(\mathcal{L}_2 \); however, the transition from the one to the other is immediate.

Under this condition, \(H \) would map \(\int_{-\pi}^{\pi} f(x_t)dt \) as an \(\mathcal{L}_2(\mu) \)-valued integral to \(\int_{-\pi}^{\pi} f(t)x_t dt \) as an \(\mathcal{L}_2(\nu) \)-valued integral, for each \(f \in \mathcal{D}_2 \); and conversely, if \(H \) had this effect on all such \(\int_{-\pi}^{\pi} f(t)x_t dt \), then by choosing a sequence of \(f \) approximating a delta function, one could verify that \(H \) sent the equivalence class of \(x_t \) in \(\mathcal{L}_2(\mu) \) to the equivalence class of \(x_t \) in \(\mathcal{L}_2(\nu) \). Therefore, putting inner products \((\, , \) \) and \((\, , \gamma \) on \(\mathcal{D}_1 \), by the rules

\[
(f, g) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} (s - t)f(s)g(t)dsdt,
\]

\[
(f, g)\gamma = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} (s - t)f(s)g(t)dsdt,
\]

and noting that \((f, g) = \int (\int_{-\pi}^{\pi} f(s)x_s ds)(\int_{-\pi}^{\pi} g(t)x_t dt) d\mu \) and

\[
(f, g)\gamma = \int (\int_{-\pi}^{\pi} f(s)x_s ds)(\int_{-\pi}^{\pi} g(t)x_t dt) dv,
\]

it follows that a necessary and sufficient condition for the equivalence of \(\mu \) and \(\nu \) is the existence of an equivalence operator from the \((\, , \) com-
pletion of \mathcal{D}_1 to its $(\cdot, \cdot)^*$ completion, and sending the (\cdot, \cdot)-equivalence class of f to its $(\cdot, \cdot)^*$-equivalence class.

Now let $\langle F, G' \rangle = \int \overline{F} \overline{G} d\sigma$, where F and G are in \mathcal{D}_1 (and hence continuous and bounded, so that the integral exists). Let \mathcal{K} be the closure of \mathcal{D}_1 in $L_2(\sigma)$. Let J be the map assigning to F in \mathcal{K} its equivalence class in \mathcal{D}_1. Since $\langle F, G' \rangle = (\overline{F}, \overline{G})$, and $\langle F, G' \rangle = (\overline{F}, \overline{G})^*$, the necessary and sufficient condition for the equivalence of μ and ν in the theorem is that J be the restriction to \mathcal{D}_1 of an equivalence map from \mathcal{K} to \mathcal{K}.

To prove sufficiency of the conditions in the theorem, suppose first that $p(x)^2 d\tau(x)$ has a generalized Fourier transform (see [4]) which agrees on $[-2\pi, 2\pi]$ with a function ψ such that $\int \int |\psi(s-t)|^2 dsdt = a^2 < \infty$. We extend ψ by making it 0 outside $[-2\pi, 2\pi]$.

Lemma 6. If $F \in \mathcal{D}$, then $\langle F, F' \rangle \leq (1 + a) \langle F, F \rangle$.

Proof. Write $F = pG, G \in \mathcal{D}_1$. Then $\int |F|^2 d\sigma = \int |F|^2 d\rho + \int |G|^2 |p|^2 d\tau$. Now, \tilde{G} is in \mathcal{D}_1, so $\tilde{G} \ast \tilde{G}$ is infinitely differentiable with support in $[-2\pi, 2\pi]$. Then, by Schwartz's definition of generalized Fourier transform, we get $\int |G|^2 |p|^2 d\tau = \int |\tilde{G} \ast \tilde{G}(s)\psi(s)| ds = \int \int \tilde{G}(s-t)\tilde{G}(1-t)|\psi(s-t)|^2 dsdt$, where $a(s) = \max(-\pi, s - \pi)$ and $b(s) = \min(\pi, s + \pi)$. Letting $s - t = s'$ and $t = - t'$ gives $\int \int \tilde{G}(s')\tilde{G}(t')|\psi(s'-t')| ds'dt'$, whose absolute value, by the Schwartz inequality, is

$$\leq \left[\int \int \tilde{G}(s)|\psi(s)|^2 ds \right]^{1/2} \left[\int \int |\psi(s-t)|^2 dsdt \right]^{1/2} = \left(\int |F|^2 d\rho \right) a = \left(\int |F|^2 d\tau \right) a.$$

Pick a complete orthonormal set (c.o.n.s.) f_1, f_2, \cdots for $L_2(-\pi, \pi)$ out of the dense subset \mathcal{D}_1. Let $F_n = \hat{f}_n$, and $G_n = pF_n$. Then the G_n form a c.o.n.s. for \mathcal{K} (in $\langle \cdot, \cdot \rangle$) consisting of elements of \mathcal{D}, because the F_n are a c.o.n.s. for \mathcal{K} consisting of elements of \mathcal{D}.

Lemma 7. $\sum_{n=1}^\infty |\langle G_n, G_m \rangle - \langle G_n, G_m \rangle^*|^2 = a^2$.

Proof. $\int G_n(x)\overline{G}_m(x) d\tau(x) = \int f_n(s)\overline{f}_m(t)\psi(s-t) dsdt$. By using a change of variable as in the previous lemma, this equals $\int f_n(s)\overline{f}_m(t)\psi(s-t) dsdt$. But the functions $(s, t) \rightarrow (f_n, f_m)$ form a c.o.n.s. in $L_2([\pi, \pi] \times [-\pi, \pi])$, so that $\sum_{n=1}^\infty \sum_{m=1}^\infty |f_n(s)\overline{f}_m(t)\psi(s-t)| dsdt = a^2$.

Now consider the map J from \mathcal{D}_1 to \mathcal{K}. Lemma 6 implies that its restriction to \mathcal{D} is bounded, and, since \mathcal{D}/\mathcal{D} is finite-dimensional (Lemma 5), J is bounded as an operator from \mathcal{D}_1 to \mathcal{K} (a finite-dimensional...
extension of a bounded operator is bounded, as is readily seen). So J extends uniquely to a bounded operator A from H to K.

Lemma 8. $I - A^* A$ is a Hilbert-Schmidt operator.

Proof. Complete the o.n.s. G_1, G_2, \ldots by adding to it a c.o.n.s. $G_0, G_{-1}, \ldots, G_{-u}$ in L. Then, letting $k = u - 1$,

$$
\sum_{n, m = 1}^{\infty} \left| \langle (I - A^* A)G_n, G_m \rangle \right|^2
$$

using Parseval’s equality. But $\langle AG_n, AG_m \rangle = \langle G_n, G_m \rangle$ for $n, m > 0$, since such G_n are in D_1, so that the sum is exactly

$$
a^2 + 2 \sum_{n = 1}^{\infty} \langle (I - A^* A)G_n, (I - A^* A)G_n \rangle.
$$

In order to complete the proof, it must be shown that A is a homeomorphism from H onto K. Since $I - A^* A$ is completely continuous, it will suffice to show

1. that the range of A is dense in K.
2. that A sends no nonzero element to zero.

1 is clear, since the range of A contains the range of J, which is dense by the very definition of H.

We now make use of (a), or rather of the weaker (a'), to prove (2). Suppose, in fact, that $A(K)$ is zero in K for some K in H. Let K_n be a sequence of members of D_1 converging to K in K. Then K_n converges to zero in K, since $A(K_n) = J(K_n)$. Then, by (a'), $K = 0$ on a set of positive ρ measure. But the Proposition of the previous section tells us that K is analytic. Thus $K = 0$.

To show the necessity of condition (a), suppose J has an extension to an equivalence operator from H to K, which we call A. Then (a) is immediate from the fact that A is continuously invertible.

Since $I - A^* A$ is an equivalence operator, $\sum_{n, m = 1}^{\infty} \langle G_n, G_m \rangle - \langle G_n G_m \rangle \leq \langle G_n G_m \rangle < \infty$, where G_1, G_2, \ldots is the c.o.n.s. in D for H previously constructed. Define an operator Z on $L_2([0, \pi] \times [0, \pi])$ as follows: let $f_n(s, t) = f_n(s) f_m(t)$, where $G_n = p f_n$. For $Q = \sum_{n, m} a_{n, m} f_{n, m}$, Let $Z(Q) = \sum_{n, m} a_{n, m} (\langle G_n, G_m \rangle - \langle G_n G_m \rangle)$. Then

$$
| Z(Q) |^2 \leq \sum_{n, m} |a_{n, m}|^2 \sum_{n, m} |\langle G_n, G_m \rangle - \langle G_n G_m \rangle|\.
$$
So $Z(Q)$ has the form $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} Q(s, t) \mathcal{F}(s, t) \, ds \, dt$ for some \mathcal{F} such that $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |\mathcal{F}(s, t)|^2 \, ds \, dt < \infty$. In particular, consider $f, g \in \mathcal{D}_1$, and let $f = \sum_n a_n f_n, g = \sum_m b_m f_m$. Let $Q(s, t) = f(s)g(t)$. Then $Z(Q) = \sum_n a_n b_m \langle \langle G_n, G_m \rangle \rangle - \langle \langle G_n, G_m \rangle \rangle = \sum_n a_n b_m \left(\mathcal{F}(s) \mathcal{F}(t) \right) dt = \int \tilde{f} \tilde{g} \, |p|^3 \, dt.$

Let $0 < r < 2\pi$, and let f, g have the closure of their supports in $]-\pi, \pi[$. Let $f'(s) = f(s + r), g'(s) = g(s + r)$. Then f', g' are in \mathcal{D}_1, and their inverse Fourier transforms satisfy $\hat{f}'(x) = e^{irx} \hat{f}(x) = e^{irx} \hat{g}(x)$. Then

$$\int_{-\pi}^{\pi} f'(s)g'(t)\mathcal{F}(s, t) \, ds \, dt = \int \tilde{f}' \tilde{g}' \, |p|^3 \, dt \quad \text{But} \quad \int_{-\pi}^{\pi} f(s + r)g(t + r)\mathcal{F}(s, t) \, ds \, dt = \int f(s)g(t)\mathcal{F}(s, t) \, ds \, dt.$$
Φ is as in the statement, then \((\Phi - 1)dx\) has a generalized Fourier transform which is a function \(\varphi\) square-summable in any finite interval, so that

\[
\left[\int_{-\pi}^{\pi} \left| \varphi(s - t) \right|^2 ds dt \right] \leq \left[\int_{-\pi}^{\pi} \left| \varphi(r) \right|^2 dr \right] \leq 2\pi \left[\int_{-\pi}^{\pi} \left| \varphi(r) \right|^2 dr \right].
\]

To prove corollary 2: let \(c_j\) be the absolute value of the ratio of the leading terms of \(A_j\) and \(B_j\), and let \(u_j = b_j - a_j = \deg(B_j) - \deg(A_j)\). It is clear in general that equivalence of the Gaussian processes induced by given covariances is unaffected if both covariances are multiplied by the same constant. Thus, we find that the process whose spectral measure is

\[
\left| \frac{A_j(x)}{B_j(x)} \right|^2 dx
\]

has measure on path space equivalent to that whose spectral measure is

\[
\frac{c_j}{(1 + x^u_j)} dx,
\]

because the quotient of

\[
\left| \frac{A_j(x)}{B_j(x)} \right|^2 \text{ by } \frac{c_j}{(1 + x^u_j)}
\]

is of the form: 1 plus a function in \(\mathcal{L}^2(-\infty, \infty)\). So the problem is reduced to whether or not the processes with spectral measures

\[
\frac{1}{(1 + x^u_j)} dx \quad \text{and} \quad \frac{c_jc_i^{-1}}{(1 + x^u_2)} dx
\]

are equivalent. The criterion is that

\[
\left(1 - \frac{c_jc_i^{-1}}{(1 + x^u_2 - u_1)}\right) dx
\]

have a generalized Fourier transform which agrees with a function on \([-2\pi, 2\pi]\) having certain properties. But this generalized Fourier transform is explicitly calculated (see [4]), and is of the required form when and only when \(c_2 = c_1\) and \(u_2 = u_1\).

Bibliography

UNIVERSITY OF CALIFORNIA, BERKELEY
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
M. Altman, *An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space* .. 1107
Nesmith Cornett Ankeny, *Criterion for rth power residuacity* 1115
Julius Rubin Blum and David Lee Hanson, *On invariant probability measures I* 1125
Frank Featherstone Bonsall, *Positive operators compact in an auxiliary topology* 1131
Billy Joe Boyer, *Summability of derived conjugate series* 1139
Delmar L. Boyer, *A note on a problem of Fuchs* .. 1147
Hans-Joachim Bremermann, *The envelopes of holomorphy of tube domains in infinite dimensional Banach spaces* .. 1149
Andrew Michael Bruckner, *Minimal superadditive extensions of superadditive functions* .. 1155
Billy Finney Bryant, *On expansive homeomorphisms* ... 1163
Jean W. Butler, *On complete and independent sets of operations in finite algebras* 1169
Lucien Le Cam, *An approximation theorem for the Poisson binomial distribution* 1181
Paul Civin, *Involutions on locally compact rings* .. 1199
Earl A. Coddington, *Normal extensions of formally normal operators* 1203
Jacob Feldman, *Some classes of equivalent Gaussian processes on an interval* 1211
Shaul Foguel, *Weak and strong convergence for Markov processes* 1221
Martin Fox, *Some zero sum two-person games with moves in the unit interval* 1235
Robert Pertsch Gilbert, *Singularities of three-dimensional harmonic functions* 1243
Branko Grünbaum, *Partitions of mass-distributions and of convex bodies by hyperplanes* .. 1257
Sidney Morris Harmon, *Regular covering surfaces of Riemann surfaces* 1263
Edwin Hewitt and Herbert S. Zuckerman, *The multiplicative semigroup of integers modulo m* .. 1291
Paul Daniel Hill, *Relation of a direct limit group to associated vector groups* 1309
Calvin Virgil Holmes, *Commutator groups of monomial groups* 1313
James Fredrik Jakobsen and W. R. Utz, *The non-existence of expansive homeomorphisms on a closed 2-cell* .. 1319
John William Jewett, *Multiplication on classes of pseudo-analytic functions* 1323
Helmut Klingen, *Analytic automorphisms of bounded symmetric complex domains* 1327
Robert Jacob Koch, *Ordered semigroups in partially ordered semigroups* 1333
Marvin David Marcus and N. A. Khan, *On a commutator result of Taussky and Zassenhaus* .. 1337
John Glen Marica and Steve Jerome Bryant, *Unary algebras* 1347
Shu-Teh Chen Moy, *Asymptotic properties of derivatives of stationary measures* 1371
John William Neuberger, *Concerning boundary value problems* 1385
Marian Reichaw-Reichbach, *Some theorems on mappings onto* 1397
Marvin Rosenblum and Harold Widom, *Two extremal problems* 1409
Morton Lincoln Slater and Herbert S. Wilf, *A class of linear differential-difference equations* .. 1419
Charles Robson Storey, Jr., *The structure of threads* .. 1429
J. François Treves, *An estimate for differential polynomials in \(\partial / \partial z \), \(\cdots \), \(\partial / \partial z^n \)* .. 1447
J. D. Weston, *On the representation of operators by convolutions integrals* 1453
James Victor Whittaker, *Normal subgroups of some homeomorphism groups* 1469