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SOME CLASSES OF EQUIVALENT GAUSSIAN

PROCESSES ON AN INTERVAL

JACOB FELDMAN

l Introduction. Let T be an index set, Ry S real-valued nonnega-
tive definite functions of two variables in T, and m, n real-valued functions
on T. Let Ω be the set of all real-valued functions on T, and £/" the
Borel field of cylinder sets. There are then unique measures μ, v on Sf
such that the functions xt on Ω defined by xt(oή = ω(t) form Gaussian
stochastic processes, with means respectively m and n, and covariances
respectively R and S. It is shown in [2] that μ and v are either mu-
tually absolutely continuous or totally singular, and a necessary and suf-
ficient condition for equivalence is given.

Suppose now that T is a subset of the real line, and R(s, t) = t (s — £),
S(s, ί) =^(s — ί), where t. and ά are continuous nonnegative-definite
functions, and hence can be written as inverse Fourier transforms of
finite measures dp, dσ. Thus, using respectively the measures μ and v
on Ω, xt — m(t) and xt — n(t) are the restrictions to T of stationary
Gaussian processes on the real line. For simplicity, only the case m =
n — 0 will be considered.

When T is the entire real line, then it is easy to see, by looking at
dp and dσ, exactly when μ^v, as is essentially known (see [3]). The
precise conditions are:

a. p and a must have identical non-atomic parts.
b. Their points of positive mass be the same, and if the masses

are a% and bt at xif then Σ{(αi/&0 — I}2 must be finite.
Now suppose T is a finite interval. The problem of determining

from knowledge of p and σ whether μ and v are equivalent becomes
much more difficult. We here discuss only a certain class of cases.
Because of stationarity, one need only consider an interval symmetric
about 0. Continuity of t and ά implies that the Gaussian process is
continuous with probability one at any given point, so that it makes no
difference whether the interval is open or closed. There is no essential
loss of generality, then, in considering only the closed interval [ — π, π\.
The followingLfacts will then be proven:

THEOREM. Let dp(x) = {dxftL + x2)u}> where u is an integer ^ 1,
and let\a he some other finite nonnegative measure on the real line.
Write τ — G — p. The following conditions are necessary and sufficient
that the Gaussian processes induced on [ — π, π] by the Fourier trans-
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forms of p and σ have equivalent measures on path space:

(a) if kn is a sequence of CL functions with support in ] — π, π[

and Kn is the Fourier transform of kny then I \Kn\
2dσ-+ 0 implies

J l X I ' d O
(b) The Fourier transform {in the sense of Schwartz distributions)

of (1 + xΐ)udτ{x) agrees on ] — 2τr, 2π[ with a function ψ such that

Γ Γ \ψ{s-t)\2dsdt
J-πJ-π

<

REMARK 1. It will be seen that sufficiency still holds if (a) is
weakened to:

(a') I \Kn\
2dσ—+ 0 and Kn—*Kin ^ζ{p) implies that K=0 on some

set of positive p-measure.

REMARK 2. As a consequence of Remark 1, it is clear that if σ
has a component which is absolutely continuous with respect to p, then
Condition (a) automatically satisfied.

Retaining the notation of the theorem:

COROLLARY 1. If dσ — Φdp, where Φ is a function such that Φ—l
is a finite linear combination of functions in various La{— <χ>, oo)
classes, 1 :g a rg 2, then the Gaussian processes induced by p and σ have
equivalent measures on path space.

One direction of the following corollary was proven by D. Slepian
in [5], using techniques of G. Baxter in [1]:

COROLLARY 2. If A5 and B3 are polynomials, with degrees re-
spectively a5 and bjfj = 1, 2, and bό> ajy then the Gaussian processes
whose spectral measures are \ A5{x)lBό{x) \2 dx have equivalent measures
on path space if and only if

(a) bλ — a1 = b2 — a2

(b) the ratio of the leading coefficients of Aλ and Bλ has the same
absolute value as the ratio of the leading coefficients of A2 and B2.

The author wishes to thank J. F. Treves for several useful discus-
sions about distributions.

2» Some preliminaries on functions of exponential type. First, some
notation. Functions will be complex-valued functions of a real variable,
unless otherwise stated. F will mean the Fourier transform of F (in
various degrees of generalization, depending on context), and F the con-
jugate Fourier transform, sup (/) will mean the points where fφO. &a=
{F\F extends to an entire function of exponential type ^ aπ}.
iζ Π -£^(— °°, °°), or, by the Payley-Wiener theorem,
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= {/|/e -SSK-oo, co), sup(/) c [-aπ, aπ]} .

u will be a fixed integer ^ 1, and p{x) = (i + x)u. p is the measure
dp(x) = {1/1 p(#) |2}cte. ^ ^ will denote the completion of £^ in the inner

product <F, G> = [FGdp.

Naturally, 3ίΓ really consists of equivalence classes of functions; but
it will turn out that there is a continuous, in fact entire, member in
each class. Hx will denote a fixed function of &x such that hλ = Hx is
nonnegative and has integral 1. For a > 0, ha(s) will be (llcήh^s/a),
Ha{x) = H^ax), so that ha = H<*, and Hae 2?ra. Then Ha vanishes faster
than any polynomial, | Ha(x) | ^ 1 for all x, and \ima^0Ha(x) = 1 uniformly
on any finite interval.

LEMMA 1. // Fe<g'1 and [\F\2dρ < co, then F e

Proof. If (1/2) < c < 1, then

( j | F(cx) - F(x) Vdp(x))112 £ ( j J F(cx) - F(x)

G \l/2 /f \l/2

| F ( c ί κ ) | ^ ( x ) ) + ( l ) ! ^ ^ ) )
l x | > 6 / \J | a : |>6

Now,

\F(ex)\*dρ(x) = —[
G JU p

c

Choosing 6 large, and then choosing c close enough to 1 to make \F(cx)—F(x)\
small on [ — 6, 6], we see that it suffices to show that the function G: x—>
F(cx) is in 3tΓ. Notice that G e g ^ , as c < 1.

HaG is square-integrable, since Ha vanishes faster than (1/| p |2).
So HaG is in J ^ α + C , its Fourier transform being some g' in ^ 2 ( — co, co)
with support in [ — (a + c)π, (α + c)π]. Thus ha*g' e ^2a+c, and H2

aG e &2a+c.
Choosing a small causes R\G to be in ^ Ί , and simultaneously causes

1| H2

aG — G \2dp to get small. This proves the lemma.

Let ^ ={pF\Fe^1}, and & = {pF\ Fe ^f1}. Lemma 1 tells us

LEMMA 2. Sίf is precisely the closure of £& in
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Proof. First, we see that ^f is closed. If Fne^fx and

f I pFn-G\ 2dp — 0, then f | Fn(x) - Fm(x) \ 2dx — 0 .

Since 3ffx is complete, there is some Fe 3(fx with l| Fn(x) — F(x) \2dx—>0.

So some subsequence of the pFn converges almost everywhere to pF.
Thus pF = G almost everywhere.

To approximate elements pF in Sίf* by elements in &, just approx-
imate F in J 2 ^ 2 ( — co, oo) by elements in £^\, using the technique of
Lemma 1.

LEMMA 3. j ^ θ £ίf is precisely the finite-dimensional space £f
of functions of the form x—*eixπq(i — x), where q is a polynomial of
degree ^ u — 1.

Proof. Suppose Fe J T θ ^ Then [FpGdp = 0 for all G in &r19 i.e.

[{F(x)lp(x)}G(x)dx = 0 for all G in ̂ . Now, (F/p) is in j ^ 2 ( - o o , oo),

so it has a Fourier transform A: which is likewise square-integrable, and,

by PlanchereΓs theorem, \k(s)g(s)ds = 0 for all g in ώλ. So k vanishes

in ] — π, π[.

Since Fe Sf9 F can be approximated in JίΓ by functions Fn in ^ 1 #

Each F w is in £^α^ for some an < 1, since sup(i^)c:] — π, π[, and hence
c]—a nπ, anπ[ for some an < 1. Let fcw be the Fourier transform of FJp.
Then kn—>k in S^2{— ̂ , oo), and few is in the domain of the «S^2—differ-
ential operator p{ — iD) — iu(I—D)u. So p( — iD)kn=fn, where/ n is the Fou-
rier transform of Fn. Since/„ vanishes outside some [—αnπ:, αwπ], an<l,
kn must be of the form Σjaϊn)s3e8 in ] —oo, —π[ and ̂ jbjn)sjes in ]π , oo[,
where j ranges between 0 and u — 1. Since kn is in -Sf(— oo, oo), the
bjn) are zero, and, letting φ be the indicator of ] — oo, — π[, we get
φkn = φ^ιjajn)sjes. This converges in J^2(— oo, oo), so the limit is of the
form ^ / i ^ . Then /bw —> 0 in ]τr, oo[, 0 in [ — π, π], and Σfl)Sjes in
] — oo, — τr[, so A; = Ψ^Σjβ^e8. Fjp is then a linear combination of terms

e~ίxssjesds, 0 ̂  j ^u — lf which is a linear combination of terms

like eίxπ(i + #)~J, 1 ̂  i ^ ^. Multiplying by p gives the result.
Combining information from lemmas 1, 2, 3 we get a description of

PROPOSITION. 3ίΓ is the orthogonal direct sum of ^ and

LEMMA 4. ^

Proof. S^c^tf, by definition, since ^ Ί C ^ . Also ̂ c ^ ^
since ^ Ί is closed under multiplication by polynomials (because ^ i is
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closed under differentiation). So ^ c ^ Π ^ Ί , and it remains to show

Suppose G e Sίf. Then G is a < , > limit of elements Gw in £^, by Lem-
ma 2. Gw then has the form pFn, Fn in ^ Ί . Thus Fn is an _$ 2̂( — oo, oo)
Cauchy sequence, hence has a limit F. Then pF = G.

Suppose G is also in ^ 1 # Then G is infinitely differentiate. Since
G = p # = p(—iD)F, we conclude that F is infinitely differentiate. Now
it must be shown that F vanishes outsides some interval [—aπ, aπ],
0 < a < 1. But G = p(—iD)F vanishes outside such on interval, so F
is analytic outside [—aπ,aπ\. Also, F vanishes outside [ — π,π], since
each Fn has support in ] — π, π[. Therefore, F vanishes outside [—απ,
aπ]. So F is in £grl9 and F is in £^Ί.

LEMMA 5. £&x\3i is finite dimensional.

Proof, ^rj&r = 3Jx\3ί1 Π ^ ^ ( ^ +

3. Proof of theorem. In [2] it is shown that a necessary and suf-
ficient condition for equivalence of μ and v is that there be an equiva-
lence operator from the closed linear span of {xt\te T] in ^f2(μ) to their
closed linear span in £?2{v), sending the /^-equivalence class of xt to the
^-equivalence class of xt for each te T. (An equivalence operator, as
defined in [2], is a linear homeomorphism H between two Hubert spaces
such that I— H*H is Hubert Schmidt). Actually, we shall want the
condition in complex ^ 2 , while the proof in [2] is for real i^Y, however,
the transition from the one to the other is immediate.

Under this condition, if would map \ f(xt)dt as an j£?2{μ)— valued
f(t)xtdt as an jSfa(v)-valued integral, for each / e £ ^ γ ,

-π Cπ

and conversely, if H had this effect on all such I f(t)xtdt, then by choosing
J — *

a sequence of / approximating a delta function, one could verify that H
sent the equivalence class of xt in J*f2(μ) to the equivalence class of xt in
jδ^aίv). Therefore, putting inner products (,) and (, )# on &λ by the rules

, g) = \*\['(8 - t)f{s)g(t)dsdt,

/(s - t)f(s)g(t)dsdt ,

and noting that (/, g) — \[\ f(s)xsds)[\ g(t)xtdt)dμ and
/

\ /Cic \

f(s)xsds g(t)xtdt )dv,
•π / \J—π /

it follows that a necessary and sufficient condition for the equivalence
of μ and v is the existence of an equivalence operator from the (,) com-
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pletion of Qϊλ to its (, )• completion, and sending the (, )-equivalence class
of / to its (, )*-equivalence class.

Now let (Fj G>* = I FGdσ, where F and G are in 2$Ύ (and hence con-

tinuous and bounded, so that the integral exists). Let J%Γ be the closure

of ϋ?Ί in ^f2{σ). Let J be the map assigning to F in £^Ί its equivalence

class in ^ t . Since <F, G> = (F, G), and <F, G> = (F, G)', the necessary

and sufficient condition for the equivalence of μ and v in the theorem

is that J be the restriction to ̂ Ί of an equivalence map from 3fΓ to JΓ~.

To prove sufficiency of the conditions in the theorem, suppose first

that I p(x) 12 dτ(x) has a generalized Fourier transform (see [4]) which

agrees on ]—2π, 2π[ with a function ψ such that 1 I | ψ(s—t) | 2 dsdt —

a2 < oo. We extend ψ by making it 0 outside ]—2π, 2π[.

LEMMA 6. If Fe &, then <F, F> ^ (1 + a) <F9 F>.

Proof. W r i t e i T = p G , G e ^ 1 . Thenf| F | 2 d σ = ί | F l 2 ^ + f | G | 2 | p | 2 d r .

Now, G is in £&if so G*G is infinitely differentiate with support in
]—2π,2π[. Then, by Schwartz's definition of generalized Fourier trans-

form, we get | G |21 p | 2 dτ = G*G(s)ψ(s) ds = G(s - t)G(l-t)
J J-27Γ J-2π}a(s)

ψ(s)dtds, where a(s) = max (—π, s — π) and b(s) = min (7Γ, s + π). Let-

ting s - t = s', and ί = - t f gives Γ Γ G(s')G(t')ψ(s' - t')ds'dt', whose

absolute value, by the Schwartz inequality, is

Q π Cπ ^ -z. Γπ Cπ "11/2

I G(s)G(t) 12 dsdt \ψ(s-t)\ 2dsdt
-πj-π J—πJ-π J

w

Pick a complete orthonormal set (c.o.n.s.) / i , / 2 , for -S^2(—TΓ, π)
out of the dense subset ^ 1 # Let Fn =fn, and Gw — pFn. Then the G
form a c.o.n.s. for ^ ( i n < , » consisting of elements of £^, because the
Fn are a c.o.n.s. for Sίfx consisting of elements of j ^ .

LEMMA 7. Σϊ.«=i I <G». Gm> - <GW, Gm> | 2 = a\

Proof. [Gn(x)Gm(x)dτ(x) = Γ^ Fn*Fm(s)ψ(s)ds. By using a change of
J J-2π Γπ Γπ

variable as in the previous lemma, this equals I I fn(s)fm(t)ψ(s — t)dsdt.
J — π J — π

But the functions (s, t)-+(fns)fm(t) form a c.o.n.s. in =£^2([—π, 7r] x [—7Γ,τr]),
( , )(fn)fm() ([

so that Σϊ.«=i|(* j * fn(8)fm(t)ψ(8-t)d8dt 2 is exactly j * j * ^ ψ(β-t) dsdt.

Now consider the map J from ^ Ί to ̂ " . Lemma 6 implies that its
restriction to & is bounded, and, since £$λ\3ϊ is finite-dimensional (Lem-
ma 5), J is bounded as an operator from *&x to ̂  (a finite-dimensional
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extension of a bounded operator is bounded, as is readily seen). So J
extends uniquely to a bounded operator A from 3Γ to JΓ\

LEMMA 8. I— A*A is a Hilbert-Schmίdt operator.

Proof. Complete the o.n.s. GlfG2,' - by adding to it a c.o.n.s.
G^u in £f. Then, letting k = u - 1,, G_!,

+ 2ΣSU-* l</ - A*A)Gn, (I - A*A)Gny |2 ,

using ParsevaΓs equality. But (AGn, AGm)>' = (Gn, Gm>* for n, m > 0,
since such GM are in <gfx, so that the sum is exactly

In order to complete the proof, it must be shown that A is a ho-
meomorphism from 3ίΓ onto J3Γ. Since / — A*̂ L is completely continu-
ous, it will suffice to show

(1) that the range of A is dense in 3ίΓ.
(2) that A sends no nonzero element to zero.

(1) is clear, since the range of A contains the range of J, which

is dense by the very definition of Jf.
We now make use of (a), or rather of the weaker (a'), to prove

(2). Suppose, in fact, that A(K) is zero in ^ for some K in
Let Kn be a sequence of members of ^ converging to K in
Then Kn converges to zero in K, since A(Kn) — J(Kn). Then, by (a'),
K = 0 on a set of positive p measure. But the Proposition of the
previous section tells us that K is analytic. Thus K— 0.

To show the necessity of condition (a), suppose J has an extension
to an equivalence operator from SΓ to j%r9 which we call A. Then
(a) is immediate from the fact that A is continuously invertible.

Since / — A*A is an equivalence operator, Σ»,TO=i I <Gn, GTO> —
<GnGmy I2 < oo, where Glf G2, -is the c.o.n.s. in &t for ^f previously
constructed. Define an operator Z on ^ 2 ( [ — π, π] x [ — π, π\) as follows:
let /n>TO(8, t) =fn(s)fm(t), where Gw = p/n- For Q = Σn.»α».m/n.«, Let

= Σ».mα».» «Gn.GTO> - <GW, Gm> ). Then
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So Z(Q) has the form Γ \* Q(s,t)Ψ (s,t)dsdt for some Ψ such that

ί
π Cπ J-πJ-π

l I Ψ(s, t) \2dsdt < Co. In particular, consider/, ge 2$1, and let / =

Σ A Λ ,9 = Σbnfm. Let Q(β, t) =f(s)gW Then Z(Q) = Σ».«α A.«G», Gm>

-<<?„, Gmy) = Σ , , Λ ^ J ( P ^ ) ( Λ ) ^ = J/£ I V V dt.
Let 0 < r < 2π, and let /, 0 have the closure of their supports in

in ]-π+r9 π[. Let f'(s) = f(s + r), g'(s) = g(s + r). Then / ' , g' are in &rlf

and their inverse Fourier transforms satisfy f'(x) = eίrxf(x) = eίrxg(x). Then

p

= \fg\vVdt = J* j r f(s)WW(s,t)dsdt.

But

Γ Γ /(s + r)fl(t + r)^(s, t)dsdt = Γ Γ f(s)W)Ψ(s - r, t-r)dsdt.
J - π j -π J-πJ-π

in view of the restrictions on the support of / and g. Since this
holds for all such /, g, the equality Ψ(s — r,t — r) — Ψ(s, t) holds for
almost all (s, ί) for which s,t, s — r,t — r are in ] — π, π[ (r being fixed).
T h u s , {(r, s, ί ) I s, t, s - r, a r e in ] — π, π[ a n d Ψ(s - r,t - r) Φ Ψ(s, t)}
has measure zero.

Applying Fubini's theorem, we get: for almost all pairs s, t in ] — π,π[
the set {r \ s — r, t — r lie in ] — π, 7r[ and Ψ(s — r,t — r) Φ Ψ(s, r)} has
measure 0. Denote by Δ the exceptional set of pairs (s, t).

Now let Γ s be the line of slope 1 which passes through (s, — s),
where — π < s < π. Let Γ be the set of s for which Γsf]A is ^oί a
set of measure 0. Then Γ has measure 0, again by Fubini's theorem,
and by rotation-invariance of Lebesgue measure. If s is in ]—π, π[ but
not in Γ, then almost all points on that portion of Ls which lies in
] — π, π[ x ] — π, π[ assign to Ψ a common value; thus, if the function

S δ(s . ί )

Ψ{s — r, t — r)dr, where a(s, t) =
a(s,t)

max (s — π, t — π) and δ(s, t) — min (s + π,t + π), then, for (s, t) on Γ r,
^'(s, ί) has this common value. Thus, for almost all r, Ψr{s, t) = Ψ(s,t)
for almost all (in linear measure) points (s, t) with — π < s, £ < π and s,
i o n / " , . . Then Ψ'(s,t) is equal almost everywhere to Ψ(s,t). Now
set ψ(r) = SF( — r/2,r/2), - 2 π < r < 27Γ.
Then

r ( s , ί) - SΓ'(β-(β + t)/2, ί - (s + ί)/2)

= r ( _ ( i _ 8)/2, (« - 8)/2) - ψ (ί - β),

for 8, t in ] — 7Γ, π[. This completes the proof.
Corollary 1 is just a consequence of the fact (proven in [4]) that if
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Φ is as in the statement, then (Φ — l)dx has a generalized Fourier
transform which is a function φ square-summable in any finite interval,
so that

S π Cπ 2 I ΓJΓ C2π 2 Ciπ

\ φ(s -1) dsdt g 1 \ φ(r) dr ^ 2π \

φ(T) dr .

To prove corollary 2: let c5 be the absolute value of the ratio of the
leading terms of A3 and B3, and let u3 = b3 — a3 = degCB )̂ — deg(A^).
It is clear in general that equivalence of the Gaussian processes induced
by given covariances is unaffected if both covariances are multiplied by
the same constant. Thus, we find that the process whose spectral mea-
sure is

A / - . \ 2

dx

has measure on path space equivalent to that whose spectral measure
is

-dx,
(l +

because the quotient of

A3{x)

Bj(x)
by

(1 +

is of the form: 1 plus a function in -Sf(— °o, °o). So the problem is re-
duced to whether or not the processes with spectral measures

dx and • dx
(1 + x2)^ (1 +

are equivalent. The criterion is that

(l ^ )dχ

have a generalized Fourier transform which agrees with a function on
]—2π, 2π[ having certain properties. But this generalized Fourier trans-
form is explicitly calculated (see [4]), and is of the required form when
and only when c2 — cx and u2 = uλ.
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