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Introduction* Recently G. Szego [9] and Z. Nehari [8] have obtained
some interesting results connecting the singularities of axially symmetric
harmonic functions with those of analytic functions. In this paper we
shall show that a similar connection also exists between the singulari-
ties of a three-dimensional harmonic function and a function of two
complex variables. We may do this by considering the Whittaker-
Bergman operator [10] [1] B3(fy «9f Xo) which transforms functions of
two complex variables f(t,u), into harmonic functions of three variables.

H(X) = BΛ(f, J^X0), Bs(f, -2f-Xo) = irArffr ^)—

t = [_(x _ iy)Ά. + z + (x + iy)

X - Xo I < ε, X=(x,y, z), Xo = (x09 Vo, z0) ,

where Jέf is a closed diίferentiable arc1 in the w-plane, and ε > 0 is suf-
ficiently small. We may see how this operator maps the functions
f(t,u) into harmonic functions by considering the homogeneous polyno-
mials of degree n in x, y, z, which are defined by

-(x-iy)Ά + z + (X + iy)JL-\ = Σ K.m(x, y, z)u~m .
£ Δ ) m=—n

The hUιm(x, y, z) are linearly independent polynomials, which form a com-
plete system [4]. Now, any harmonic function regular in a neighborhood
of the origin \X\ < ε, may be expanded into a series

H(X) = H(x, y, z) =ΣΓ=o Σί=-» αn.iλn.ι(», y, z),

which converges inside the smallest sphere on whose surface there is a
singularity of H(X).

From the definition of the harmonic polynomials we see that

f t V ^ = hnm(x,y,z),tV
2π% J£ u

where Jίf is, say, the unit circle. In spherical coordinates this result
may be recognized as one of Heine's [7] integral representations for the

Received January 19, 1960. This work has been submitted to Carnegie Institute of
Technology in partial fulfillment of the requirement for the degree of Doctor of Philosophy.

1 We shall usually consider <£ to be closed; however there is nothing preventing us
from considering open arcs also.
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associated Legendre functions.2

It follows then that if H(X) is regular for \X\ < ε it may be gen-
erated by an integral operator

u

where

oo -\-n

n—0 m=—n

The harmonic functions which are regular at infinity, |X| > 1/ε,
are of the form

H°°(X) = —iϊf— ^ —}

and may also be generated by the Whittaker operator; however, in this
case we use the functions

How the functions G(ί, u) transform may be seen from Heine's other
representation

2π% )& tu

7 n'm\ r2 W'^

n\

where, as before, ^f is the unit circle.
Occasionally it is convenient to continue the arguments x, y, z to

complex values in order to study the behavior of H(X). For instance,
if we introduce, as a particular continuation, the complex spherical co-
ordinates

T - + (x2 + y2 + z2),1/2

2 By introducing spherical coordinates

x — r sin θ cos ψ ,

y — r sin θ sin φ ,

z — r cos θ ,

the polynomials may be written in the form hn,m(x,y,z) = (n\/(n + m!)) r w P?(cos0)e i m * >

Integrals of terms tnum, where \m\ > \n\ > 0, vanish; consequently, we may restrict

ourselves to just those functions where \m\ ^ \n\.
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x + iy V/2

x — iy J

which reduce to ζ = eiφ, ξ = cos 0, for real #, y, z, we may obtain an
inverse Whittaker operator.

LEMMA. Let V(r, cos θ9 e
ίφ), be a harmonic function regular at in-

finity; i.e.

V{r, cos θ, e«*) = iΓ~(X) = - M G(t, w)— ,
2πi )£ u

where

G(ί, tt) = ( Σ 2 α^ί-""1^™) ,

and £f is the unit circle.
Then G(s, u) may be generated by the integral transform

The integration path in the ξ-plane is the linear segment — 1 ^ ξ ^ 1,
the path in ζ-plane is the unit circle.

Proof. Let us define

s Σ Σ (2n + l)-^!
o (^ + m)

r \t ζ ( )

it follows then, directly from the orthogonality relation

that

(where the integration paths are those mentioned in the hypothesis).
Recalling the generating function for the spherical harmonics

Σ Σ (g)(
n=0 n=0 m=-n (n + m)\ \ %U
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we see that K may be formally summed to

JL9 ξ, * t ) = f 1 - 2 s ± X ± ( I ) 9 = rss

(s - tγ

providing (|ί/s|) < 1. In this case, K is an analytic function of t, and
hence also analytic in r, ξ, and ξ. The harmonic functions H°°(x, y, z),
which are regular at infinity, have a Taylor series expansion of the form
y°° A x~^v~Jcz~ι

If this series converges for x2 + y2 + z2 > (1/β2), then the series

j,Λ,l=0

if rewritten in the form

V 7? r-aΎ-rηj-bη.-S/γ-c7-t
/ J - f-/αδc? s ί ' Λ / Ί tΛ/2 ί/l ί/2 ^ l ^2 >

α,6,c
r,s,t

will converge for x\ + y\ + z\> (2/ε2), and x\ + y\ + z\> (2/ε2). Hence,
H°°(x, y, z) is an analytic function of the complex variable x, y, z, in some
neighborhqpd of infinity. The harmonic function V(r, ξ, ξ) obtained by
replacing x,y,z in H°°(x, y, z) by

+

- r ,

consequently is an analytic function of r, | , f, except of course at f = ± l ,
and ζ = 0.

It may be concluded, therefore, that the integrals involved in our
representation for G(s, u) are Cauchy-integrals, since the integrand is a
single-valued analytic function of ξ and ζ.

II Singularities of harmonic functions generated by the Whittaker*
Bergman operator* Bergman [2] has considered a special class of har-
monic functions generated by the Whittaker operator and has given a
simple procedure for finding their singularities. He does this as follows:

Suppose that (llu)f(t, u) has the form P(t, u)IQ(t, u), where P and
Q are polynomials in t and u. In order to study the harmonic function

H(X) = Bs(f, J^X0) = ^\j{, )

we consider the singularity manifold of P/Q, i.e.
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(x + iy)(2u)-\ w] = θ} .(£ iy) +

The manifold Z3 may also be written in the form

ZB = E{u = Φ,(X), v - 1, 2, 3, n} ,

where the Φ.(X) are algebraic functions of x, /̂, 2;, and the degree of u
in Q is n. At every point (as, y, z), except those which satisfy the equa-
tion

Π [φκ(X) - φs(X)] = 0 ,

there are n distinct branches of Z\ = E{u = Φυ(X), v = 1, 2, 3, , n}9

of Z\ We choose the contours j£f, t; — 1, 2, 3, , n, so that one and
only one u = φy(X) lies inside ~Sf. It follows from the residue theorem
that

where H^X) is the corresponding branch of

(x - iy)(2u)-\ u]
d{Q[-(x - iy)u/2 + z + (x - iy){2u)~\ u]}ldu '

with

Q[-(» - ii/)-|. + z + (x - iy)(2u)-\ u^ = 0 .

We notice that H(X) becomes singular for those values of (x, y, z) which
satisfy the equations

j + z + (x-~ iy)(2u)-\ w] = 0 ,

-(a? - iy)— + z + (x- iy)(2u)~\ u^/du = 0 .

We shall now show that Bergman's result does not depend on the
fact that (llu)f(t, u) is an algebraic function, but holds under more
general conditions. The only restriction we will impose is that the
singularities of (l/u)f(t, u) can be written in the implicit form
S(x, y, z, u) = 0.

THEOREM 1. If Zz — E{S(x, y, z, u) — 0} is an implicit representa-
tion of the singularities of
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•l/(ί, u), then H(X) = -5M /(*, * ) — ,
u 2π% J £ u

(where £? is the unit circle) is regular at X— (x, y, z), providing this
point does not lie simultaneously on the two surfaces

S(x, y, z, u) = 0 ,

and

~S(x, y, z, u) = 0 .
du

Proof. The proof of Theorem 1 will be based on a modified form
of an idea employed by Hadamard in the proof of his theorem on the
multiplication of singularities [8] [5]. The integral representation of
H{X) is valid for all points (x,y, z) which can be reached from an in-
itial point by continuation along a curve Γ(X) (in three dimensional
real-space, i23), provided no point of Γ(X) corresponds to a singularity
of (lfu)f(t9 u) on the integration path. This initial domain of definition
of H(X) can now be enlarged by continuously deforming the integration
path provided, again, that in this process of deformation the integration
path at no time crosses a singularity of {lju)f{t, u). Accordingly, we
may now write H(X) as

2πi)zf" w ' u '

where jg*' is now a new integration path obtained by observing the
above precautions.

Since t is dependent o n l = (x, y, z)9 the singularities of the integral
move in the w-plane as we continue H{X) along Γ(X). Now, as long as
we can avoid crossing such a singularity by deforming the contour ^fr

we are still able to continue H{X). Let us assume we have been able
to continue H(X) to the point X1 = (x19 y19 zλ), and let us consider the
singularities of the integral for X = Xx. The singularities of {lju)f{t9 u)
are those values of u satisfying S(x19 y19 z19 u) = 0. From Taylor's theo"
rem we may describe the local properties of S about some point u = a,
for which S = 0, by

iΛ^/y 01 v li\ — (ΊI /Ύ\ S\ (w ii <y /Ύ\ _J_ ^ /
KJ I «Λ/]_, t / i , Λ/ ,̂ M/l IM/ Otl^ λ_/\vθi, tf i . Λ-ι IΛ.I ~ ] ~

Unless dSjdu — 0 at u = α, in a neighborhood of u = a we may ap-
proximate S by

S(xu y» zlt u) = (u- )
du
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Therefore in some neighborhood of u — a, say | u — a | < ε, S does
not vanish save at u — a. Clearly, then, by deforming J5f' we can avoid
crossing u — α, or any other point u = β for which S(xlf y19 z19 β) = 0,
if we follow an arc of the circle | u — a \ = ε/2 about u = a. This com-
pletes our proof.

Using the language of real geometry we may say that unless we
are in the neighborhood of the envelope %?(x, y, z) — 0 to S(x, y, z,u) = 0
(in which case there are an infinite number of such surfaces tangent to
£?(#, y> z) = 0 we may avoid crossing these singularities by deforming

THEOREM 2. Let r = Φ(ξ, ξ) be a representation of the singularities
of V(r, ξ, ξ) = H°°{X), X e C3. The function of two complex variables

is then regular at (s,u) providing (s,u) does not lie on the "envelope"
of the two parameter family

ψ(s,u\ξ, ξ) = Φ(ξ, ζ)\ξ + ±VT=ψ(^ + X ) l - s = 0 .
L 2 \ζ uJΛ

Proof. The proof of this theorem closely parallels the one for
Theorem 1. As before, we consider the analytic continuation of G(s, u)
along an arc Γ4(s~\ u), beginning at s'1 = 0, u = 1. The integral rep-
resentation of

G(s, u) = J ^ ί T f Λ±trV(r, ξ, ξ)*f\dξ
iπi J-iLJ ζ (s — tf ζ J

will remain the same if either integration path (in ξ oτ ζ planes) is
continuously deformed in such a manner so that at no time they cross
a singularity of the integrand. Therefore, we may write G(s, u) as

where JSf and =Sf are new integration paths obtained by observing the
above precautions. Now, the kernel in our integral representation is
singular whenever

* - . =

and the harmonic function is singular for Φ(ξ, ζ) — r = 0. We notice a
significant difference in these two singularity manifolds; as G(s, u) is
continued along Γ\s~τ, u) the singularities of the kernel move in the
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ξ, f-planes, while those of the harmonic function remain fixed. By us-
ing the Hadamard idea we realize that we may always avoid an advanc-
ing singularity by deforming one of our contours with the possible
exception occur ing when the two manifolds coincide. Therefore, unless
r = Φ(ξ, ζ) as a function of ξ, and ξ also satisfies t — s — 0, G(s, u)
must be regular. This leads us to consider the two parameter family,

ψ(s, u\ξ,ζ) = Φ{ξ, ξ)[ξ + ±VT=F(± + X)] - s = 0 ,

as the only possible singularities of G(s, u).
Let us assume that we have been able to continue G(s, u) to (s0, u0)

and let us consider those values of f, ξ satisfying ψ(s0, uQ \ξ,ξ) = 0.
These values are singularities of the integrand which must be investigated
to determine whether they are avoidable by deforming the paths of in-
tegration. Let ξ — a, and ξ = β be singularities which may cross either
Jδf or -£f respectively if G(s, u) is continued further along Γ^s"1, u).
In a bicylindrical neighborhood \ξ — a\ < ε19 \ξ — β\ < ε2, we may expand
ψ(so, wo | | , ζ) in a double Taylor series as

ψ(βo, Wolf, ?) = ( ! - α)-^-ψ(«o, Wo|α, /3) + (f - β)^ψ(809 uo\a, β)

; dξ2 dξdζ • } dζ2 J

Now, unless the first variation of ^(s0, ^olf, f) vanishes at (a, β), ψ may
be approximated as

ψ(s0, uo\ξ, ζ) = {ξ- a)^-ψ(s0, uo\a, β) + (ξ - β)~ψ(s0, u,\a, β) .

In this case it is always possible to choose a secant to the circle
| | — a I = εJ2 not passing through ξ = a, and a secant to the circle
Iζ — βI = ε2/2 not passing through ξ = β, such that ψ(s0, uQ\ξ,ζ)Φθ on
those portions of the secants inside the respective circles. It follows
that, in this case, we may deform the paths Jδf, and -£f so that they
follow the secants about the singular point (α, β) and thereby continue
G(8, u) still further. The only possible singularities of G(s, u) are there-
fore those values of s and u satisfying simultaneously

and
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where ζ = π(ξ) is an arbitrary relationship between ξ and ζ. This com-
pletes our proof.

We notice here, that a particular class of singularities of G(s, u)
may occur for s and u satisfying simultaneously

dψ =

dξ

and

dζ

We have reduced the problem of locating the singularities of G(s,u)
to obtaining the envelope of a three parameter family of complex sur-
faces

φ(s, u r, ξ, ζ) = 0 ,

where the parameters r, ξ, ζ are subject to the condition

A(r, ξ,ζ) = O.

It was most natural, because of the Cauchy integrals involved, to con-
sider ξ and ζ as independent parameters, and r the dependent parameter.
However, unless we are in the neighborhood of a "singular point'' of
A = 0, it is no longer necessary to make this distinction.

For a point (s, u) to lie on the envelope E(s, u) = 0, the first varia-
tion,

dr dξ dζ

must vanish. If we proceed as before, and consider r dependent, we
obtain

dA dψ _ dA dψ\*t , {dA dψ dA dψ\^ _ Λ
dr dξ dξ dr ) \ dr dζ dr dr )

which implies that an arbitrary functional relationship exists between ξ-
and ζ, or more generally a relationship B(r, ξ, ζ) = 0, such that

dB^dψ^ _ ®B_dψι\zt i (dB dΨ _ dB ^ W - 0
dr dξ dξ dr ) \ dr dζ dζ dr ) '

where
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dA

w
dB

dr

dψ

~W
dψ

dξ

dA

dξ

dB

dξ

R.

dψ

dr

dψ
dr
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dA dψ
dr dξ

dB dψ
dr dξ

dA

dξ

dB
dξ

dψ
dr

dψ
dr

= 0

Let us consider the envelope of ψ(s, u\r, ξ, ζ) = 0 [subject to A(ry ξ, ζ) — 0]
under the transformation of parameters

r = + (χ2 + y2 + z 2

ς =

iy V

J

/2

χ — iy J

We realize that, for X = (x, y, z) z R\ the Jacobian cannot vanish and
hence the transformation is one-to-one. However, as may be confirmed
by direct computation

d( ξ ^ Φ 0, for all X e C\
d(x, y, z)

which are a finite distance from the origin.
Under this transformation our family of complex surfaces becomes

{ψ(8,u\r, ξ, ζ) = 0 } - ^ { χ ( β , u \ x , y , z ) = 0 } ,

with the auxiliary condition

{A(r, ξ, ξ) = 0} - {P(x, y, z) = 0} .

Now, for a point (s, u) to lie on the envelope to X = 0, the first varia-
tion must vanish, i.e.

δχ = ®Lδx + 2Lsy + ̂ -δz = 0
dx dy dz

+ +

dr dx dξ dx dζ dx
ίd±dr_ d±dξ_ dψ_ dζ\
V dr dy dξ dy dζ dy J
ίd±dr_ d±dξ_ d± dζ\δz

V dr dz dξ dz dζ dz J

(
dr \ dx dy dz

dξ\dx

dξ V dy

dy

dy

dz

®Lδz) = o
dz I
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From our auxiliary condition we have

8 y +

dy dz

dξ ldx dy dz M dr

dζ ldx dy dz M dr

which, together with δχ = 0, yields

VdA dψ _ d_A_ ̂ 1 VdAdψ_dA e±
Idr dξ dξ dr J '"' n Idr dζ dζ drdζ dζ

We conclude that under a one-to-one, continuous transformation of
parameters the envelope is invariant and we have the following corol-
lary to Theorem 2. Let F(x, y, z) = 0 be a representation of the sing-
ularities of H°°(X), X e C\ Then the function G(s, u), which generates
H°°(X) under the Whittaker operator, can only have singularities on the
envelope, E(s, u) = 0, to the family of complex surfaces

χ(s, u\x9yyz) = [-(x - iy)^- + z + (x^ + + (x + W)^] ~ s =

where the parameters (x,y, z) are subject to the auxiliary condition
F(x9 y, z) - 0.

To illustrate the use of Theorem 1, we consider the case where
{Hu)f(t, u) has the particular form

-!/(*, U) = FMu - -1
u L V U

F(x) is an arbitrary function of x singular at x = β. This choice of
(l/i&)/(ί, u) generates an H(X) having a simple type of singularity.
Since the singularities of (l/u)/(ί, u) satisfy u — (1/u) = t/3, we represent
the singularity manifold as

S(x, y, z,u)= - u[β(x - iy) + 2] + 2βz +—\β(x + iy) + 2] .
u

Eliminating u between S = 0, and Ŝ/9% = 0, we obtain the locus
(a? + 2/β)2 + y2 + z2 = 0, for the singularities of Jff(X).

When /3 is real this reduces to a point singularity in R\ However,
if β is complex the singularities in R3 are given by
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We note that these are only the possible singularities of H(X). To find
the actual singularities we make use of our inverse Whittaker operator
to find which of the possible singularities of H{X) correspond to singul-
arities of (llu)f(t, u).

Let us consider the locus of

x + - | T + y2 + z2 = 0 in R\ that is

2 3fte/9 ,
\β\

and

Ψ
l/5|4

If we wish to find which singularities of (llu)f(t, u) correspond to
this real locus, we eliminate two parameters from χ and consider the
first variation with respect to the remaining parameter. Doing this,

χ = _ Ξ-(u - —) + -^-(u + — ) + z - s = 0, becomes

The first variation is then

9Ύ

Eliminating z, between χ and dχ/dz yields

+ Y + (3ϊe£)(tt

By choosing suitable signs this is recognized readily as

u
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REMARK. In concluding we note, that as in the case of harmonic
functions regular at the origin, a connection will exist between the
coefficients of the series development for f(t,u) and the singularities of
H(Xy. Hence, it would be of interest to investigate whether a relation
exists between singularities as predicted by Theorem 1 of this paper,
and the corresponding coefficients of the series development for f(t,u).
Such an investigation should lead to a classification of harmonic functions
in terms of their pole-like singularities in three-dimensional complex
space.
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