THE NON-EXISTENCE OF EXPANSIVE HOMEOMORPHISMS ON A CLOSED 2-CELL

JAMES FREDRIK JAKOBSEN AND W. R. UTZ
THE NONEXISTENCE OF EXPANSIVE HOMEOMORPHISMS ON A CLOSED 2-CELL

J. F. JAKOBSEN AND W. R. UTZ

1. Introduction. If X is a metric space with metric ρ and $T(X) = X$ is a self-homeomorphism of X, then T is said to be expansive\(^1\) provided there exists a $\delta > 0$ depending only upon X and T such that corresponding to each distinct pair $x, y \in X$ there exists an integer $n(x, y)$ for which $\rho(T^n(x), T^n(y)) > \delta$. W. H. Gottschalk [2] has asked if the n-cell can carry an expansive homeomorphism. B. F. Bryant [1] obtained a partial answer to this question when he essentially showed that there are no expansive self-homeomorphisms of a closed 1-cell, that is, of an arc. In this paper we show that there are no expansive self-homeomorphisms of a closed 2-cell and, in the final section, point out an error in a paper of R. F. Williams. The authors wish to acknowledge the referee’s assistance in condensing the paper.

Throughout the paper, X will denote a metric space with metric ρ and $T(X) = X$ will denote a self-homeomorphism of X. The set $0(x) = \bigcup_{n \in I} T^n(x)$, where I denotes the integers, is called the orbit of x under T. A set $M \subset X$ is said to be minimal under T if, and only if, M is non-vacuous and M is the closure of the orbit of each of its points. If $x, y \in X$, then $0(x)$ and $0(y)$ are said to be positively (negatively) asymptotic if corresponding to $\varepsilon > 0$, there exists an integer N such that

$$\rho(T^n(x), T^n(y)) < \varepsilon \text{ for all } n > N (n < N).$$

If $0(x)$ and $0(y)$ are both positively and negatively asymptotic, then the orbits are said to be doubly asymptotic.

2. Self-homeomorphisms of the 2-cell. In this section we show with the aid of results of van Kampen that there is no expansive self-homeomorphism of a circle, and from this obtain the same result for a simple closed curve and a closed 2-cell.

Theorem. If T is a homeomorphism of a closed 2-cell onto itself, then T is not expansive.

Proof. If there is an expansive homeomorphism, T, of a closed 2-cell onto itself then, since the boundary of the 2-cell is invariant under

\(^1\) In most of the literature cited, the term “unstable” is used in place of “expansive”.

Received August 24, 1959, and in revised form March 15, 1960. This research was supported by the United States Air Force through the Air Force Office of Scientific Research and Development Command under Contract No. AF 18 (600) 1108.
T, T must be expansive on the simple closed curve forming the boundary of the 2-cell. Since T is an expansive self-homeomorphism of a simple closed curve, there must be an expansive self-homeomorphism of a circle since it is known [1] that if T is an expansive self-homeomorphism of a metric space X and $g(X) = Y$ is a homeomorphism onto the metric space Y such that g^{-1} is uniformly continuous, then $g T g^{-1}$ is an expansive self-homeomorphism of Y.

Hereafter we assume that T is an expansive self-homeomorphism of a circle, C. We first show that T cannot have a periodic point. If T has at least two distinct periodic points on C, then for some integer m, $T^m = \phi$ has at least two fixed points on C and it is easy to see that either ϕ or ϕ^2 leaves an arc invariant. Powers of an expansive homeomorphism are expansive [3] and hence either ϕ or ϕ^2 is an expansive self-homeomorphism of an arc in violation of the cited result of Bryant.

If T has exactly one periodic point on C, then the point must be fixed under T and the orbit of every other point is doubly asymptotic to the fixed point. There are uncountably many such orbits contrary to the fact that when X is compact and T is an expansive self-homeomorphism of X, then the number of distinct orbits doubly asymptotic to any fixed point is at most countably infinite.

Since we have shown that T has no periodic point on C, C is either a minimal set under T, or [4] there is a minimal set which is a Cantor set and which consists of the common cluster points of orbits. In the first instance T is topologically equivalent to a rotation and is therefore not expansive. In the second instance, a component, A, of the complement of the minimal set is chosen. Now, $T^n(A)$ is an open arc and its diameter goes to zero with increasing or decreasing n. Taking two distinct points of A which are sufficiently close, they remain close for all n by virtue of the continuity of T. This contradicts the hypothesis that T is expansive and the theorem is proved.

3. An example of Williams. R. F. Williams [5] has given two examples of non-degenerate continua and self-homeomorphisms of them which are said to be expansive. One example, where the continuum is the inverse limit space of the unit circle in the complex plane under the bonding map $g(z) = z^2$ and with the shift homeomorphism, is expansive. The other example contains an error which we now explain.

Using the notation of Williams' example, let
\[a = \frac{10^n - 1}{10^n} , \quad b = \frac{10^n + 1}{10^n} \]
and consider the points
\[x = (a, a/2, a/2^2, a/2^3, \ldots) , \]
\[y = (a, b/2, b/2^2, b/2^3, \ldots) \]
for an arbitrary but fixed positive integer n. It is not difficult to see that the maximum value of $\rho(f^j(x), f^j(y))$ occurs for $j = -1$. Since

$$\rho(f^{-1}(x), f^{-1}(y)) = 1/10^n(1 + 1/2^2 + 1/2^4 + \cdots)$$

this maximum can be made arbitrarily small by taking n sufficiently large. Thus the homeomorphism f is not expansive.

The failure of this example suggests seeking another continuous function on $[0, 1]$ such that the shift homeomorphism of the inverse limit space onto itself is expansive. However, such an example is impossible. The authors can prove that the shift homeomorphism on the inverse limit space of any continuous transformation of an arc onto itself cannot be expansive. The proof of the theorem is long and will not be given here.

REFERENCES

STATE UNIVERSITY OF IOWA
AND
UNIVERSITY OF MISSOURI
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
M. Altman, *An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space* ... 1107
Nesmith Cornett Ankeny, *Criterion for rth power residuacity* 1115
Julius Rubin Blum and David Lee Hanson, *On invariant probability measures I* 1125
Frank Featherstone Bonsall, *Positive operators compact in an auxiliary topology* 1131
Billy Joe Boyer, *Summability of derived conjugate series* 1139
Delmar L. Boyer, *A note on a problem of Fuchs* 1147
Hans-Joachim Bremermann, *The envelopes of holomorphy of tube domains in infinite dimensional Banach spaces* .. 1149
Andrew Michael Bruckner, *Minimal superadditive extensions of superadditive functions* .. 1155
Billy Finney Bryant, *On expansive homeomorphisms* 1163
Jean W. Butler, *On complete and independent sets of operations in finite algebras* 1169
Lucien Le Cam, *An approximation theorem for the Poisson binomial distribution* 1181
Paul Civin, *Involutions on locally compact rings* .. 1199
Earl A. Coddington, *Normal extensions of formally normal operators* 1203
Jacob Feldman, *Some classes of equivalent Gaussian processes on an interval* 1211
Shaun Foguel, *Weak and strong convergence for Markov processes* 1221
Martin Fox, *Some zero sum two-person games with moves in the unit interval* 1235
Robert Pertsch Gilbert, *Singularities of three-dimensional harmonic functions* 1243
Branko Grünbaum, *Partitions of mass-distributions and of convex bodies by hyperplanes* .. 1257
Sidney Morris Harmon, *Regular covering surfaces of Riemann surfaces* 1263
Edwin Hewitt and Herbert S. Zuckerman, *The multiplicative semigroup of integers modulo m* .. 1291
Paul Daniel Hill, *Relation of a direct limit group to associated vector groups* 1309
Calvin Virgil Holmes, *Commutator groups of monomial groups* 1313
James Fredrik Jakobsen and W. R. Utz, *The non-existence of expansive homeomorphisms on a closed 2-cell* .. 1319
John William Jewett, *Multiplication on classes of pseudo-analytic functions* 1323
Helmut Klingen, *Analytic automorphisms of bounded symmetric complex domains* 1327
Robert Jacob Koch, *Ordered semigroups in partially ordered semigroups* 1333
Marvin David Marcus and N. A. Khan, *On a commutator result of Taussky and Zassenhaus* .. 1337
John Glen Marica and Steve Jerome Bryant, *Unary algebras* 1347
Shu-Teh Chen Moy, *Asymptotic properties of derivatives of stationary measures* 1371
John William Neuberger, *Concerning boundary value problems* 1385
Marian Reichaw-Reichbach, *Some theorems on mappings onto* 1397
Marvin Rosenblum and Harold Widom, *Two extremal problems* 1409
Morton Lincoln Slater and Herbert S. Wilf, *A class of linear differential-difference equations* .. 1419
Charles Robson Storey, Jr., *The structure of threads* 1429
J. François Treves, *An estimate for differential polynomials in ∂/∂z, ..., ∂/∂z_n* 1447
J. D. Weston, *On the representation of operators by convolutions integrals* 1453
James Victor Whittaker, *Normal subgroups of some homeomorphism groups* 1469