ANALYTIC AUTOMORPHISMS OF BOUNDED SYMMETRIC COMPLEX DOMAINS

Helmuth Klingen
ANALYTIC AUTOMORPHISMS OF BOUNDED
SYMMETRIC COMPLEX DOMAINS

HELMUT KLINGEN

In a former paper [2] I determined the full group of one-to-one analytic mappings of a bounded symmetric Cartan domain [1]. Those investigations were incomplete, because it was impossible to treat the second Cartan-type of \(n(n-1)/2\) complex dimensions for odd \(n\) by this method. The present note is devoted to a new shorter proof of the former result (\(n\) even), which furthermore covers the remaining case of odd \(n\).

Take the complex \(n(n-1)/2\)-dimensional space of skew symmetric \(n\)-rowed matrices \(Z\). The irreducible bounded symmetric Cartan space in question is the set \(\mathcal{E}_n\) of those matrices \(Z\), for which

\[I + ZZ^* > 0, \quad Z' = -Z,
\]

is positive definite. Here \(I\) is the \(n\) by \(n\) unit matrix. Obviously \(\mathcal{E}_2\) is the unit circle. It is easy to see that analytic automorphisms of \(\mathcal{E}_n\) are described by the group \(\phi\) of the mappings

\[(1) \quad W = (AZ + B)(-BZ + A)^{-1},\]

where the \(n\)-rowed matrices \(A, B\) fulfill

\[M^*KM = K \quad \text{with} \quad M = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}, \quad K = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.
\]

Here \(M^*\) denotes the conjugate transpose of \(M\). For \(n = 4\)

\[W = \bar{Z},
\]

is a further analytic automorphism, where \(\bar{Z}\) arises from \(Z\) by interchanging the elements \(z_{14}\) and \(z_{33}\),

\[
\bar{Z} = \begin{pmatrix}
0 & z_{12} & z_{13} & z_{23} \\
-z_{12} & 0 & z_{14} & z_{24} \\
-z_{13} & -z_{14} & 0 & z_{34} \\
-z_{23} & -z_{24} & -z_{34} & 0
\end{pmatrix}.
\]

For \(W\bar{W}\) and \(\bar{Z}Z\) have the same characteristic roots. But this mapping is not contained in \(\phi\), since \(CZ = \bar{Z}D\) cannot be satisfied identically in \(Z\) by non-singular constant matrices \(C, D\). On the other hand the following theorem holds.

Received October 13, 1959.

1327
THEOREM. Each analytic automorphism of \mathcal{E}_n can be written as $W = f(Z)$ or $W = f(\bar{Z})$ (only for $n = 4$) with $f \in \phi$.

Therefore the group ϕ is already the full group of analytic automorphisms for $n \neq 4$. Only in the exceptional case $n = 4$ there are the further mappings $W = f(\bar{Z})$, which together with ϕ form the full group of analytic automorphisms. The proof of this theorem consists of two parts. The first analytic part is a reproduction of my former proof [2], which will be given here again for completeness, the second part is of algebraic character.

The group ϕ acts transitively on \mathcal{E}_n. For take an arbitrary point Z_i of \mathcal{E}_n, choose the matrix A such that

$$A(I + Z_i \bar{Z}_i)A^* = I$$

and define $B = -AZ_i$. Then (1) maps Z into 0. Therefore it is sufficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping $W = W(Z)$ of \mathcal{E}_n with the fixed point 0 is linear. For an arbitrary point $Z_1 \in \mathcal{E}_n$ let $r_1, \ldots, r_n, 0 \leq r_1 \leq \cdots \leq r_n < 1$, be the characteristic roots of $Z_1 Z_1^*$. Then also tZ_1 belongs to \mathcal{E}_n, if t is a complex number with $t \bar{t} r_n < 1$. Consequently there exists a power series expansion

$$W(tZ_1) = \sum_{k=1}^{\infty} t^k W_k(Z_1), \quad t \bar{t} r_n < 1.$$

The elements of the skew-symmetric matrices $W_k(Z_1)$ are homogeneous polynomials of degree k in the independent elements of Z_1. Because of $I + W(tZ_1) \bar{W}(tZ_1) > 0$ for $t \bar{t} = 1$, one obtains from (2)

$$\frac{1}{2 \pi i} \int_{t \bar{t} = 1} (I + W(tZ_1) \bar{W}(tZ_1)) \frac{dt}{t} = I + \sum_{k=1}^{\infty} W_k(Z_1) \bar{W}_k(Z_1) > 0$$

and in particular $I + \bar{W}_1(Z_1) W_1(Z_1) > 0$. Therefore the linear function $W_1(Z)$ is an analytic mapping of \mathcal{E}_n into itself. Its determinant D is at the same time the Jacobian of the function $W(Z)$ with respect to Z. By interchanging Z and W it can be assumed $DD^* \geq 1$. Consequently $W(Z)$ is an analytic automorphism of \mathcal{E}_n and even maps the boundary onto itself. Take now in particular

$$Z_1 = U^*PU, \quad P = [(0, p_1 F, \ldots, p_m F), \quad F = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

with an unitary matrix U, $m = \lceil n/2 \rceil$. P shall be the matrix, which is built up by the two-rowed blocks $p_1 F, \ldots, p_m F$ and possibly by the element 0 along the main diagonal. Z_1 belongs to the interior of \mathcal{E}_n, if $-1 < p_k < 1$ ($k = 1, \ldots, m$), and to the boundary, if $-1 \leq p_k \leq 1$ ($k = \ldots, m$).
1, \cdots, m) and \(p_k = \pm 1 \) for at least one \(k \). Now \(| I + W_1(Z_1)\bar{W}_1 |\) is a polynomial in \(p_1, \cdots, p_m \) of total degree \(4m \) and on the other hand (see [2], Lemma 4) the square of a polynomial. As \(| I + W_1(Z_1)\bar{W}_1 |\) vanishes on the boundary of \(\mathcal{E}_n \), this polynomial is divisible by

\[
| I + Z_1\bar{Z}_1 | = \prod_{k=1}^{m} (1 - p_k^2) \, .
\]

Because the constant terms and the degrees of both polynomials are equal, one obtains

\[
| I + W_1(Z_1)\bar{W}_1 | = | I + Z_1\bar{Z}_1 |
\]
even identically in \(Z_1 \); for each skew-symmetric matrix \(Z \), permits a representation (4) (see [2], Lemma 3). On account of (5) and the linearity of \(W_1 \) the matrices \(W_1\bar{W}_1 \) and \(ZZ \) always have the same characteristic roots and this implies

\[
W_1(Z) = U'ZU
\]
with unitary \(U \), which for the present still depends on \(Z \).

Put now

\[
Z = uX, \quad X = U', [e^{i\xi_1 F}, \cdots, e^{i\xi_r F}, (0)]U, \quad 0 \leq u \leq 1,
\]
with real variables \(\xi_1, \cdots, \xi_r \). Then \(Z \in \mathcal{E}_n \) and by (6)

\[
W_1W_1^* = u^2U'U'\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}U_1U
\]
for all \(u \) between 0 and 1. Because of (3) one obtains

\[
\bar{U}_1\bar{U}(I + W_1\bar{W}_1 + W_k\bar{W}_k)U'U' > 0 \quad (k = 2, 3, \cdots)
\]
If \(u \) tends to 1, one gets

\[
\begin{pmatrix} 0 & 0 \\ 0 & (1) \end{pmatrix} U_1\bar{U}W_k\bar{W}_kU'U' > 0,
\]
hence \(W_k(X) = 0 \). As \(W_k \) is a polynomial, \(W_k(Z) \) even vanishes identically in \(Z \). Therefore the stability group of \(\mathcal{E}_n \) is linear.

The investigation of \(W = W_1(Z) \) is now a purely algebraic problem. The representation (6) shows that rank \(W = \text{rank} Z \) and beyond this the equality of the characteristic roots of \(WW \) and \(ZZ \). These properties will be used in order to determine \(W(Z) \) explicitly. We have to prove

\[
W(Z) = U'ZU \quad \text{or} \quad W(Z) = U'\bar{Z}U
\]
with unitary constant U, where the second type only occurs for $n = 4$. The proof of this fact will be given by induction. The assertion (7) is trivial for the unit circle ($n = 2$). Let us assume its correctness for $2, 3, \ldots, n - 1$ and consider E_n. Write the linear mapping $W(Z)$ of E_n onto itself as

$$W = \sum_{k<l} z_{kl} A_{kl}$$

with constant skew-symmetric n by n matrices A_{kl}. Because of the equality of the characteristic roots of WW^* and ZZ^* the hermitian matrix $A_{kl} A_{kl}^*$ has $1, 1, 0, \ldots, 0$ as characteristic roots. Therefore after unitary transformation of W we can assume $A_{12} = E_{12}$, where in general E_{kl} denotes the skew-symmetric matrix the elements of which are all zero besides the element in the kth row and lth column and the element in the lth row and kth column, which are 1 respectively -1. Since $\text{tr}(A_{12} \bar{A}_{kl}) = 0$ for $(k, l) \neq (1, 2)$, one obtains

$$A_{kl} = \begin{pmatrix} 0 & * \\ * & * \end{pmatrix}$$

$(k, l) \neq (1, 2)$.

$A_{12} = E_{12}$ does not change, if W is transformed by

$$\begin{pmatrix} U^{(2)} & 0 \\ 0 & V \end{pmatrix}$$

with unitary $U, V, |U| = 1$. Therefore

$$A_{13} = \begin{pmatrix} 0 & B' \\ -B & C \end{pmatrix}, \quad B = \begin{pmatrix} b_1 & 0 & 0 \\ 0 & b_2 & 0 \end{pmatrix}$$

can be assumed. From rank $W = \text{rank } Z$ identically in Z one obtains possibly after unitary transformation $A_{13} = E_{13}$.

For $A_{14} = (a_{kl})$ we get two possibilities. First the equation $\text{tr}(A_{12} \bar{A}_{14}) = \text{tr}(A_{13} \bar{A}_{14}) = 0$ implies $a_{13} = a_{14} = 0$. After unitary transformation all the elements of the first row besides a_{14} are zero. Then take only the elements z_{12}, z_{13}, z_{14} of Z distinct from zero; from rank $W = \text{rank } Z = 2$ one sees

$$A_{14} = E_{14} \quad \text{or} \quad A_{14} = E_{23}.$$
Let us summarize our results. After a suitable unitary transformation \(W \) can be written as
\[
W = \begin{pmatrix} 0 & z' \\ -z & L(QZ_0) \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & z' \\ -z & Z_0 \end{pmatrix},
\]
besides the exceptional case \(n = 4, \ A_{14} = E_{23} \). Now \(L(Z_0) \) is an analytic automorphism of \(E_{n-1} \) with the fixed point 0. For \(n = 3 \) we know \(L(Z_0) = e^{i\xi}Z_1 \) with a real constant \(\xi \). Therefore \(W = U'ZU \) with a constant unitary matrix \(U \), which is the theorem for \(n = 3 \). For \(n > 5 \) the induction hypothesis shows
\[
W = \begin{pmatrix} 0 & z'U' \\ -U_z & Z_0 \end{pmatrix}
\]
with constant unitary \(U \). From the equality
\[
\text{rank } W = \text{rank } Z
\]
\(U \) turns out to be a diagonal matrix. Finally consider the sum of the two-rowed principal minors of \(WW \) and \(ZZ \). These two quantities are equal identically in \(Z \) because of the fact that \(WW \) and \(ZZ \) have the same characteristic roots. By this identity one obtains \(U = aI \) with a complex number \(a \) of absolute value 1, which again proves our theorem.

There still remain the cases \(n = 4 \) and 5. For \(n = 4, \ A_{14} = E_{14} \) we can use the reasoning above. Let \(A_{41} = E_{23} \); since
\[
\text{tr} (A_{1\nu}A_{23}) = \text{tr} (A_{1\nu}A_{31}) = \text{tr} (A_{1\nu}A_{34}) = 0 \quad (\nu = 2, 3, 4)
\]
\(W \) only differs from \(Z \) in the last row, where a linear combination of \(z_{23}, z_{24}, z_{34} \) appears. The identity between the ranks of \(Z \) and \(W \) shows \(w_{14} = a_2z_{23}, w_{24} = a_3z_{24}, w_{34} = a_4z_{34} \). Now it is easy to compute the sum of the two-rowed principal minors of \(WW \) and \(ZZ \). This computation shows again the assertion for \(n = 4 \).

For \(n = 5 \) we know by the induction hypothesis
\[
L(Z_0) = U'Z_0U \quad \text{or} \quad L(Z_0) = U'\bar{Z}_0U
\]
with constant unitary \(U \). The first case can be treated as above. In the second case one obtains
\[
W = \begin{pmatrix} 0 & z'U' \\ -U_z & Z_0 \end{pmatrix}.
\]
Choose once only \(z_{11}, z_{24} \neq 0 \), then only \(z_{11}, z_{24}, z_{13} \neq 0 \). In any case \(\text{rank } Z = 2 \), hence \(\text{rank } W = 2 \). But this implies that all the elements of the third column of \(U \) vanish, which is a contradiction to the unitary character of \(U \). This final remark completes the proof.

Mathematisches Institut der Universität

Göttingen, Germany
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG
Stanford University
Stanford, California

A. L. WHITEMAN
University of Southern California
Los Angeles 7, California

F. H. BROWNELL
University of Washington
Seattle 5, Washington

L. J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH E. HEWITT M. OHTSUKE E. SPANIER
T. M. CHERRY A. HORN H. L. ROYDEN E. G. STRAUS
D. DERRY L. NACHBIN M. M. SCHIFFER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
M. Altman, An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space ... 1107
Nesmith Cornett Ankeny, Criterion for rth power residuacity 1115
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I ... 1125
Frank Featherstone Bonsall, Positive operators compact in an auxiliary topology 1131
Billy Joe Boyer, Summability of derived conjugate series 1139
Delmar L. Boyer, A note on a problem of Fuchs .. 1147
Hans-Joachim Bremermann, The envelopes of holomorphy of tube domains in infinite dimensional Banach spaces ... 1149
Andrew Michael Bruckner, Minimal superadditive extensions of superadditive functions .. 1155
Billy Finney Bryant, On expansive homeomorphisms ... 1163
Jean W. Butler, On complete and independent sets of operations in finite algebras 1169
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution 1181
Paul Civin, Involutions on locally compact rings .. 1199
Earl A. Coddington, Normal extensions of formally normal operators 1203
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval 1211
Shaul Foguel, Weak and strong convergence for Markov processes 1221
Martin Fox, Some zero sum two-person games with moves in the unit interval 1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic functions 1243
Branko Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes .. 1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces 1263
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigroup of integers modulo m .. 1291
Paul Daniel Hill, Relation of a direct limit group to associated vector groups 1309
Calvin Virgil Holmes, Commutator groups of monomial groups 1313
James Fredrik Jakobsen and W. R. Utz, The non-existence of expansive homeomorphisms on a closed 2-cell .. 1319
John William Jewett, Multiplication on classes of pseudo-analytic functions 1323
Helmut Klingen, Analytic automorphisms of bounded symmetric complex domains 1327
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups 1333
Marvin David Marcus and N. A. Khan, On a commutator result of Taussky and Zassenhaus .. 1337
John Glen Marica and Steve Jerome Bryant, Unary algebras 1347
Edward Peter Merkes and W. T. Scott, On univalence of a continued fraction 1361
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationary measures 1371
John William Neuberger, Concerning boundary value problems 1385
Edward C. Posner, Integral closure of differential rings .. 1393
Marian Reichaw-Reichbach, Some theorems on mappings onto 1397
Marvin Rosenblum and Harold Widom, Two extremal problems 1409
Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential-difference equations .. 1419
Charles Robson Storey, Jr., The structure of threads ... 1429
J. François Treves, An estimate for differential polynomials in ∂/∂z, · · · , ∂/∂zn 1447
J. D. Weston, On the representation of operators by convolutions integrals 1453
James Victor Whittaker, Normal subgroups of some homeomorphism groups 1469