ON A COMMUTATOR RESULT OF TAUSKY AND ZASSENHAUS

MARVIN DAVID MARCUS AND N. A. KHAN
1. Introduction and results. Let M_n denote the set of n-square matrices over a field F. For A, B in M_n let $[A, B] = AB - BA'$, where A' is the transpose of A and define inductively

$$[A, B]_k = [A, [A, B]_{k-1}].$$

If $P^{-1}JP = A$, then

$$[A, X] = [P^{-1}JP, X] = P^{-1}[J, PXP'](P^{-1})',$n

and similarly

$$[A, X]_k = P^{-1}[J, PXP']_k(P^{-1})'.$n

Now for a fixed A let T be the linear map of M_n into itself defined by

$$T(Y) = [A, Y],$$

and (1.1) implies that

$$T^k(Y) = [A, Y]_k.$$

In a recent paper [1], Taussky and Zassenhaus showed that A is non-derogatory if and only if any nonsingular X in the null space of T is symmetric. In this note we investigate the structure of the null space of both T and T^2 for arbitrary A.

Enlarge the field F to include $\lambda_i, i = 1, \ldots, p$, the distinct eigenvalues of A, and let $(x - \lambda_i)^{r_{ij}}, j = 1, \ldots, n_i, e_{ij} > \cdots > e_{i_1}, i = 1, \ldots, p$ be the distinct elementary divisors of A where $(x - \lambda_i)^{r_{ij}}$ appears with multiplicity r_{ij}. Set $m_i = \sum_j r_{ij}e_{ij}$, the algebraic multiplicity of λ_i. Let $\gamma(T)$ denote the null space of T, $\sigma(T)$ denote the subspace of symmetric matrices in $\gamma(T)$, and $\eta(T)$ denote the subspace of skew-symmetric matrices in $\gamma(T)$. We show that

$$\dim \gamma(T) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \left(r_{ij}^2 e_{ij} + 2r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right) \right),$$

$$\dim \sigma(T) = \frac{1}{2} \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \left(r_{ij}(r_{ij} + 1)e_{ij} + 2r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right) \right).$$

Received December 17, 1959. The work of this author was supported by U. S. National Science Foundation Grant, NSF-G5416. The second author is a Postdoctorate Fellow of the National Research Council of Canada. The authors are grateful to Professor O. Taussky for her helpful suggestions.
(1.6) \[\dim \gamma(T) = \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \left(r_{ij}^2 (2e_{ij} - 1) + 4r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right) \right), \]

(1.7) \[\dim \sigma(T) = \frac{1}{2} \sum_{i=1}^{p} \left(\sum_{j=1}^{n_i} \left(r_{ij}^2 (2e_{ij} - 1) + r_{ij} + 4r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right) \right). \]

In case \(A \) is nonderogatory, \(n_i = 1, r_{ij} = 1, i = 1, \ldots, p \) and (1.4) and (1.5) reduce to

\[\dim \gamma(T) = n = \dim \sigma(T). \]

Thus every matrix \(X \) satisfying

(1.8) \[AX = XA' \]

where \(A \) is non-derogatory is symmetric, the result in [1]. Moreover, if every matrix \(X \) satisfying (1.8) is symmetric then \(\dim \gamma(T) = \dim \sigma(T) \). Using the formulas (1.4) and (1.5) we see that this condition implies that

\[\sum_{i=1}^{p} \sum_{j=1}^{n_i} (r_{ij}^2 - r_{ij})e_{ij} + 2 \sum_{i=1}^{p} r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} = 0. \]

Now since \(r_{ij}, e_{ij} \) and \(n_i \) are all positive integers we conclude that \(r_{ij} = 1, j = 1, \ldots, n_i \) and \(n_i = 1 \). That is, there is only one elementary divisor corresponding to each eigenvalue. Hence, if every matrix \(X \) satisfying (1.8) is symmetric then \(A \) is non-derogatory, a result also found in [1].

We also show in this case that \(\gamma(T) \) consists of matrices of the form \(PXP' \) where \(P \) is fixed (depending on \(A \)) and \(X \) is persymmetric, (i.e. all the entries of \(X \) on each line perpendicular to the main diagonal are equal).

We next note that \(\gamma(T) = \sigma(T) + \gamma(T) \) (direct) and \(\gamma(T') = \sigma(T') + \gamma(T') \) (direct). The first statement is easy to show; we indicate the brief proof of the second statement:

Since \(X = \frac{X + X'}{2} + \frac{X - X'}{2} \), if \(X \in \gamma(T) \), then

\[T'(X + X') = \left[A, [A, X + X'] \right] \]
\[= \left[A, [A, X] + [A, X'] \right] \]
\[= \left[A, [A, X] + [A, X'] \right] \]
\[= T'(X) - [A, [A, X']] \]
\[= \left[A, [A, X] \right]' \]
\[= (T'(X))' = 0. \]

Similarly, \(T'(X - X') = 0 \). Thus any \(X \in \gamma(T') \) is expressible uniquely as a sum of two elements, one in \(\sigma(T') \) and the other in \(\gamma(T') \). Hence
(1.9) \[\dim \gamma(T) = \dim \eta(T) - \dim \sigma(T) \]
\[= \frac{1}{2} \sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left\{ r_{ij} (r_{ij} - 1) e_{i,j} + 2 r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right], \]

(1.10) \[\dim \gamma(T^2) = \dim \eta(T^2) - \dim \sigma(T^2) \]
\[= \frac{1}{2} \sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left\{ r_{ij}^2 (2 e_{i,j} - 1) - r_{ij} + 4 r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right]. \]

In case \(A \) is non-derogatory, (1.6), (1.7) and (1.10) reduce to
\[\dim \gamma(T^2) = 2n - p, \]
\[\dim \sigma(T^2) = n, \]
\[\dim \gamma(T^2) = n - p. \]

We thus conclude that unless all the eigenvalues of \(A \) are distinct (\(p = n \)) there exist skew-symmetric matrices \(X \) satisfying

(1.11) \[A^2 X - 2AXA' + X(A')^2 = 0. \]

If \(p = n, \) and \(A \) is non-derogatory
\[\dim \gamma(T^2) = n = \dim \sigma(T^2) \]
and any matrix \(X \) satisfying (1.11) is symmetric.

On the other hand suppose
\[\dim \gamma(T^2) = \dim \sigma(T^2). \]

From (1.6) and (1.7) we conclude that
\[\sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left\{ r_{ij} (2 e_{i,j} - 1) - r_{ij} + 4 r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right] = 0. \]

Hence \(n_i = 1, \) \(r_{ij} = 1, \) \(e_{ik} = 1 \) and we conclude that \(p = n. \) That is, if every matrix \(X \) satisfying (1.11) is symmetric then the eigenvalues of \(A \) are distinct.

We show finally (Theorem 2) that if \(A \) is an \(n \)-square matrix with \(p \) distinct eigenvalues then both \(\dim \gamma(T) \) and \(\dim \gamma(T^2) \) are at most \(\frac{1}{2}(n - p)(n - p + 1). \) Moreover, for each \(p \) this bound is best possible.

Thus if there exists a skew-symmetric solution of (1.8) or (1.11), then \(A \) has multiple eigenvalues, without the assumption that \(A \) is non-derogatory.

II. Proofs. Let \(E_{ij} \in M_n \) be the matrix with 1 in position \(i, j \) and 0 elsewhere. With respect to this basis, ordered lexicographically, it may be checked that \(T \) has the matrix representatio

\[\cdots \]
(2.1) \[T = I \otimes A - A \otimes I \]
where \(\otimes \) indicates Kronecker product.

From (1.2) we may take \(A \) to be in Jordan canonical form \(J \), since \([A, X]_k = 0\) if and only if \([J, PXP']_k = 0\) and \(PXP' \) is symmetric if and only if \(X \) is. We write

(2.2) \[J = \sum_{s=1}^{p} J_s \]

where

(2.3) \[J_s = \lambda_s I_{m_s} + \sum_{t=1}^{r} \sum_{r_{st}} U_{st} \cdot \]

\(\sum' \) indicates direct sum, \(I_t \) is a \(t \)-square identity matrix, \(U_t \) is \(t \)-square auxiliary unit matrix (i.e. 1 in the superdiagonal and 0 elsewhere) and \(\sum_r U_{st} \) is the direct sum of \(U_{st} \) with itself \(r_{st} \) times.

By a routine computation we see that

(2.4) \[T^s(Y) = 0 \]

if and only if

(2.5) \[\sum_{s=0}^{k} \binom{k}{s} (-1)^s J_s^s - Y_{st}(J_t')^s = 0, \quad s, t = 1, \ldots, p, \]

where \(Y = (Y_{st}) \), \(s, t = 1, \ldots, p \) is a partitioning of \(Y \) conformal with the partitioning of \(J \) given by (2.2).

For \(s \neq t \), it is clear that the matrix representation of (2.4),

(2.6) \[(I_{m_s} \otimes J_s - J_t \otimes I_{m_t})^k \]

has the single nonzero eigenvalue \((\lambda_s - \lambda_t)^k\) and thus \(Y_{st} = 0 \). Hence we need only consider the equation (2.4) for \(s = t \). We may again partition \(Y_{ss} \) conformally with \(J_s \) in (2.3). We are thus led to consider the null space of the mapping

(2.7) \[\dim \gamma(T) = \begin{cases} 2 \min(m, n), & \text{if } m \neq n \\ 2n - 1, & \text{if } m = n. \end{cases} \]

Proof. Suppose \(n \leq m \) and that \(T(X) = 0 \). Let \(x_1, \ldots, x_m \) be the column \(n \)-vectors of \(X \). Then we have
For $r = 1, 2, \cdots, n - 1$ consider the $(r - j + 1)$ coordinate of (2.8) for $j = 1, \cdots, r$ and we conclude that

$$x_{r+1} = x_{r,2} = \cdots = x_{r,r+1} = e_{r+1}.$$

Next consider the $(n - j + 1)$ coordinate of (2.8) for $j = 1, \cdots, n$ to obtain

$$0 = x_{n^2} = x_{n-1,3} = \cdots = x_{1,n+1}.$$

Similarly we see that the remaining elements of X are zero. Hence we find that the jth column of the $n \times m$ matrix X is the transpose of the n-vector

$$[e_j, e_{j+1}, \cdots, e_n, 0, \cdots, 0]$$

for $j = 1, 2, \cdots, n$. The other $m - n$ columns are zero.

In case $n \geq m$, it is easy to check that the jth row of X is the m-vector

$$[e_j, e_{j+1}, \cdots, e_m, 0, \cdots, 0]$$

for $j = 1, 2, \cdots, m$. The other $n - m$ rows are zero.

This establishes (2.6). To prove (2.7) let $\Gamma(X) = 0$ and x_1, x_2, \cdots, x_m be the column n-vectors of X. Let us consider the following cases:

(i) $m = n.$

We have

$$U_n^2 x_n = 0, \quad U_n^2 x_{n-1} = 2U_n x_n$$

and

$$U_n^3 x_j - 2U_n x_{j+1} + x_{j+2} = 0, \quad j = 1, 2, \cdots, n - 2.$$

Solving these equations recursively we find that the 1st, 2nd and jth rows of X are respectively

$$[x_{11}, x_{12}, \cdots, x_{1,n-2}, x_{1,n-1}, x_{1,n}],$$

$$[x_{21}, x_{22}, \cdots, x_{2,n-2}, x_{2,n-1}, 0]$$

and

$$(j - 1)[x_{2,j-1}, x_{2,j}, \cdots, x_{2,n-1}, 0, \cdots, 0]$$

$$- (j - 2)[x_{1,j}, x_{1,j+1}, \cdots, x_{1,n}, 0, \cdots, 0],$$

for $j = 3, 4, \cdots, n$.

The number of arbitrary parameters in X is $2n - 1$.

(2.8) \quad U_n^2 x_j - x_{j+1} = 0, \quad j = 1, 2, \cdots, m - 1,

$$U_n x_m = 0.$$
(ii) \(n < m \).

Here we have the following equations:

\begin{align*}
U_{n}^{2}x_{j} - 2U_{n}x_{j+1} + x_{j+2} &= 0, \quad j = 1, 2, \ldots, m - 2 \\
U_{n}^{2}x_{m-1} - 2U_{n}x_{m} &= 0 \\
U_{n}^{2}x_{m} &= 0
\end{align*}

and by solving recursively again we find that the 1st, 2nd and \(j \)th rows of \(X \) are respectively the \(m \)-vectors

\begin{align*}
[x_{11}, \ldots, x_{1,n-1}, x_{1,n}, nx_{n,2}, 0, \ldots, 0], \\
[x_{21}, \ldots, x_{2,n-1}, (n-1)x_{n,2}, 0, \ldots, 0]
\end{align*}

and

\begin{align*}
[(j - 1)x_{2,j-1}, \ldots, (j - 1)x_{2,n-1}, (n - j + 1)x_{n,2}, 0, \ldots, 0] \\
- (j - 2)[x_{1,j}, \ldots, x_{1,n}, 0, \ldots, 0]
\end{align*}

for \(j = 3, 4, \ldots, n \).

In case \(n > m \), by similar computation we find that the 1st, 2nd and \(j \)th rows of \(X \) are respectively

\begin{align*}
[x_{11}, \ldots, x_{1,m-2}, x_{1,m-1}, x_{1m}], \\
[x_{21}, \ldots, x_{2,m-2}, x_{2,m-1}, x_{2m}]
\end{align*}

and

\begin{align*}
(j - 1)[x_{2,j-1}, \ldots, x_{2,m-2}, x_{2m}, 0, \ldots, 0] \\
- (j - 2)[x_{1,j}, \ldots, x_{1,m}, 0, \ldots, 0]
\end{align*}

for \(j = 3, 4, \ldots, m + 1 \). The remaining \(n - m - 1 \) rows are zero.

From case (ii), we observe that the number of parameters in \(X \) is \(2 \min (m, n) \).

We now state and prove the following

Lemma 2. Let \(A \) be an \(n \)-square matrix with the single eigenvalue \(\lambda \) and let \((x - \lambda)^{n_i} \) be an elementary divisor of \(A \) of multiplicity \(r_i \), \(i = 1, \ldots, p, n_1 > \cdots > n_p \). Then the most general matrix \(X \) satisfying (1.11) has

\begin{equation}
\sum_{i=1}^{p} r_i^2(2n_i - 1) + 4r_i \sum_{j=1}^{p} r_j e_j
\end{equation}

arbitrary parameters.

Moreover if \(X \) is symmetric it contains
\[
(2.11) \quad \frac{1}{2} \sum_{i=1}^{p} r_i^2 (2n_i - 1) + r_i + 4r_i \sum_{j=1}^{n} r_j n_j
\]
parameters.

Proof. Without any loss of generality we can assume that

\[
(2.12) \quad A = \sum_{i=1}^{r} \sum_{j=1}^{r_i} U_i
\]
where \(\sum_i U_i \) indicates the direct sum of \(U_i \) with itself \(r_i \) times. We partition \(X \) conformally with \(A \) in (2.12) and observe that the equation

\[
U_i X_{ij} - 2U_i X_{ij} U_j' + X_{ij}(U')^2 = 0
\]
determines the structure of any block \(X_{ij} \) in the partitioning of \(X \).

From case (i) of Lemma 1, we conclude that any block \(X_{ij} \) corresponding to equal \(U_i \)'s contains \(2n_i - 1 \) arbitrary parameters and there are \(r_i \) such blocks. Also from case (ii) any block in \(X \) that corresponds to \(U_i \) and \(U_j, i < j \), contains \(2n_j \) arbitrary parameters. Hence the total number of parameters in \(X \) is given by (2.10).

In order to find the number of parameters in a symmetric \(X \) we first consider a diagonal block. Its structure has been discussed in Lemma 1, case (i). We observe that if this matrix is symmetric, the number of parameters in it reduces from \(2n_i - 1 \) to \(n_i \).

Then we consider two symmetrically placed off-diagonal blocks \(X_{ij} \) and \(X_{ji} \) of orders \(n_i \times n_j \) and \(n_j \times n_i \) respectively. If \(X \) is to be symmetric then by equating the terms of \(X_{ij} \) and \(X_{ji} \), which are symmetrically placed about the main diagonal of \(X \), the number of arbitrary parameters in \(X_{ij} \) and \(X_{ji} \) reduces from \(2(2n_j) \) to \(2n_j \). If \(X_{ij} \) and \(X_{ji} \) are of order \(n_i \times n_j \) then the number of parameters reduces from \(2(2n_i - 1) \) to \(2n_i - 1 \).

We are now in a position to sum the number of parameters in \(X \) if it is symmetric and satisfies (1.11). There are \(r_i \) blocks in the main diagonal, each of order \(n_i, i = 1, \ldots, p \). The number of parameters in each of these blocks is \(n_i \). There are \(r_i(r_i - 1)/2 \) other square blocks of order \(n_i \). Each of them contains \((2n_i - 1) \) parameters. Thus

\[
\frac{1}{2} \sum_{i=1}^{p} \{r_i^2(2n_i - 1) + r_i\}
\]
is the number of parameters in all those blocks of \(X \) which are square. Since any block of order \(n_i \times n_j \) where \(n_i > n_j \) contains \(2n_j \) parameters, and since we are considering \(X \) to be symmetric, we conclude that the total number of arbitrary parameters in \(X \) is given by (2.11).

We can similarly prove the following

Lemma 3. Let \(A \) be the matrix given in Lemma 2. Then the most
general matrix X satisfying (1.8) has
\[\sum_{i=1}^{p} \left(r_i^2 n_i + 2r_i \sum_{j=i+1}^{p} r_j n_j \right) \]
arbitrary parameters.
Moreover if X is symmetric, it contains
\[\frac{1}{2} \sum_{i=1}^{p} \left[r_i(r_i + 1)n_i + 2r_i \sum_{j=i+1}^{p} r_j n_j \right] \]
parameters.

We now state and prove the following

Theorem 1. Let A be an n-square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ and let $(x - \lambda_i)^{n_{ij}}, j = 1, \ldots, n_{ii}, e_{ii} > \cdots > e_{iu}$ be the elementary divisors of A corresponding to λ_i, where each $(x - \lambda_i)^{n_{ij}}$ has been repeated r_{ij} times. Then (1.4), (1.5), (1.6) and (1.7) hold.

Proof. It was pointed out earlier that if $Y = (Y_{rs})$, $r, s = 1, \ldots, p$ is the partitioning of Y conformal with the partitioning of J in (2.2), then all the off-diagonal blocks are zero. Hence we have simply to find the number of parameters in $Y_{ii}, i = 1, \ldots, p$.

As proved in Lemma 2, the number of parameters in Y_{ii} is
\[\sum_{i=1}^{n_i} \left[r_i^2 (2e_{ij} - 1) + 4r_i \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right]. \]
Summing the above with respect to i we obtain the formula (1.6). In case Y is symmetric, the number of parameters in Y_{ii} is
\[\frac{1}{2} \sum_{j=1}^{n_i} \left[r_i^2 (2e_{ij} - 1) + r_{ij} + 4r_i \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right]. \]
Summing the above on i we obtain (1.7).

Similarly, we can make use of Lemma 3 in proving (1.4) and (1.5).

We now prove

Theorem 2. Let A be as given in Theorem 1. Then the maximum number of linearly independent skew-symmetric matrices satisfying (1.8) or (1.11) is
\[\frac{1}{2} (n - p)(n - p + 1). \]

Proof. In order to prove our result for $\dim \gamma(T^2)$, let $m_i = \sum_{j=1}^{n_i} r_{ij} e_{ij}$ and consider
Now, it is clear that \(r_i^2(e_{ij} - 1) \geq r_i(e_{ij} - 1) \). The last term in the above expression will be negative only when \(e_{ij} = 1 \). But we know that \(e_{i1} > e_{i2} > \cdots > e_{in_i} \), so that \(e_{ij} \) will be 1 only for \(j = n_i \). In that case \(\sum_{k=j+1}^{n_i} r_{ik} e_{ik} \) does not appear, and we have

\[
\frac{1}{2} \sum_{j=1}^{n_i} \left[r_i^2(2e_{ij} - 1) - r_i + 4r_i \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right] \leq \frac{1}{2}(m_i^2 - m_i).
\]

This holds for \(i = 1, \ldots, p \).

To determine a bound on \(\gamma(T) \), consider

\[
m_i^2 - m_i - \sum_{j=1}^{n_i} \left[r_i^2(r_{ij} - 1)e_{ij} + 2r_i \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right] \]

\[
= \sum_{j=1}^{n_i} \left[r_i^2(e_{ij} - 1) + 2r_i(e_{ij} - 1) \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right] \geq 0, \text{ since } e_{ij} \geq 1.
\]

Thus we have

\[
\frac{1}{2} \sum_{j=1}^{n_i} \left[r_i^2(2e_{ij} - 1) - r_i + 4r_i \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right] \leq \frac{1}{2}(m_i^2 - m_i).
\]

It may be observed that the upper bound is attained for \(r_{i1} = m_i, e_{i1} = 1 \) and the remaining \(e \)'s and \(r \)'s all zero.

We have thus proved that

\[
\dim \gamma(T^a) \leq \frac{1}{2} \sum_{i=1}^{n} (m_i^2 - m_i)
\]

and

\[
\dim \gamma(T) \leq \frac{1}{2} \sum_{i=1}^{n} (m_i^2 - m_i),
\]

where \(m_i \) is the multiplicity of the eigenvalue \(\lambda_i \) of \(A \).

Now we have to maximize \(\sum_{i=1}^{n} (m_i^2 - m_i) \) under the condition that
$m_1 + \cdots + m_p = n$, the order of A. Note that

$$m_i^2 - m_i = (m_i - 1)^2 + (m_i - 1)$$

and each $m_i - 1 \geq 0$. Hence, we have

$$\sum_{i=1}^{p} (m_i - 1)^2 \leq \left[\sum_{i=1}^{p} (m_i - 1) \right]^2 = (n - p)^2.$$

Thus the maximum value of both $\dim \gamma(T^2)$ and $\dim \gamma(T)$ is

$$\frac{1}{2} [(n - p)^2 + (n - p)].$$

The bounds are achieved when $m_1 = \cdots = m_{p-1} = 1$ and $m_p = n-p+1$.

Reference

M. Altman, An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space .. 1107
Nesmith Cornett Ankeny, Criterion for rth power residuacity 1115
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I 1125
Frank Featherstone Bonsall, Positive operators compact in an auxiliary topology 1131
Billy Joe Boyer, Summability of derived conjugate series 1139
Delmar L. Boyer, A note on a problem of Fuchs 1147
Hans-Joachim Bremermann, The envelopes of holomorphy of tube domains in infinite dimensional Banach spaces ... 1149
Andrew Michael Bruckner, Minimal superadditive extensions of superadditive functions ... 1155
Billy Finney Bryant, On expansive homeomorphisms 1163
Jean W. Butler, On complete and independent sets of operations in finite algebras 1169
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution 1181
Paul Civin, Involutions on locally compact rings ... 1199
Earl A. Coddington, Normal extensions of formally normal operators 1203
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval 1211
Shaul Foguel, Weak and strong convergence for Markov processes 1221
Martin Fox, Some zero sum two-person games with moves in the unit interval 1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic functions 1243
Branko Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes ... 1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces 1263
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigroup of integers modulo m ... 1291
Paul Daniel Hill, Relation of a direct limit group to associated vector groups 1309
Calvin Virgil Holmes, Commutator groups of monomial groups 1313
James Fredrik Jakobsen and W. R. Utz, The non-existence of expansive homeomorphisms on a closed 2-cell ... 1319
John William Jewett, Multiplication on classes of pseudo-analytic functions 1323
Helmut Klingen, Analytic automorphisms of bounded symmetric complex domains 1327
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups 1333
Marvin David Marcus and N. A. Khan, On a commutator result of Taussky and Zassenhaus ... 1337
John Glen Marica and Steve Jerome Bryant, Unary algebras 1347
Edward Peter Merkes and W. T. Scott, On univalence of a continued fraction 1361
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationary measures 1371
John William Neuberger, Concerning boundary value problems 1385
Edward C. Posner, Integral closure of differential rings 1393
Marian Reichaw-Reichbach, Some theorems on mappings onto 1397
Marvin Rosenblum and Harold Widom, Two extremal problems 1409
Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential-difference equations ... 1419
Charles Robson Storey, Jr., The structure of threads 1429
J. François Treves, An estimate for differential polynomials in ∂/∂z, ..., ∂/∂z_n 1447
J. D. Weston, On the representation of operators by convolutions integrals 1453
James Victor Whittaker, Normal subgroups of some homeomorphism groups 1469