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ASYMPTOTIC PROPERTIES OF DERIVATIVES

OF STATIONARY MEASURES

SHU-TEH C. MOY

1Φ Introduction* Let X be a non-empty set and S^ be a σ-algebra
of subsets of X. Consider the infinite product space Ω = Hn=-ooXn where
Xn = X for n — 0, ± 1 , ± 2 , and the infinite product σ-algebra j ^ —
Hn=-~^ζ where άζ = ^ for w = 0, ± 1, ± 2, . Elements of β are
bilateral infinite sequences {• , #_i, #0> #i> •} with #w e X. Let us
denote the elements of Ω by w. If w = {• , x_i, xo> %i, •••}<&» is called
the wth coordinate of w and shall be considered as a function on Ω to
X Let T be the shift transformation on Ω to β: the nth. coordinate
of Tw is equal to the n + l th coordinate of w. For any function g on
Ω, Tg is the function defined by Tg(w) = g(Tw) so that ^Txn = xn+1 for
any integer n. We shall consider two probability measures μ, v defined
on J C For w = 1, 2, let βw = Π ?=i-X* where X, - X, ΐ = 1, 2 , n
and ^ n = Π l i Λ where ^ έ = .5f i = 1, 2, , n. Then Ω± = X and
j?"1=zS^ Let J^™n, m ^ w, w = 0, ± 1 , ± 2 , , be the σ-algebra of
subsets of Ω consisting of sets of the form

[w = {••-, «;_!, xq, xλ •••}: (xm, xm+1, •••, xn)eE]

Where £ e / " M + , Then ^ n a ^Qn+1c: <βC Let μm w, 2^mw be the con-
tractions of μ,v, respectively to J ^ n . If vm n is absolutely continuous
with respect to μm n, the derivative of vm n with respect to μm n is a func-
tion of xm, ' ,xn and shall be designated b y / w n ( # w , •••, #n). Since
/m n(ffm, > a«) is positive with j -probability one l//mn(a;Λ, a!n) is
well defined with ^-probability one. We shall let the function
Vim!®™,, •••,&») take on the value 0 when fmn(xm, , xn) ^ 0. Thus
Vfmnfrmf - -', %n) ™ well defined everywhere. In fact llfmn(xm, ••-,»„)
is the derivative of vw ^-continuous part of μmn with respect to vmn.
According to the celebrated theorem of E. S. Anderson and B. Jessen
[1] and J. L. Doob ([2]), pp. 343) llfmn(xm, •••,#„) converges with im-
probability one as n—> oo. If we assume that μ, v are stationary, i.e.,
μ, v are T invariant, more precise results may be expected. A funda-
mental theorem of Information Theory, first proved by C. Shannon for
stationary Markovian measures [5] and later generalized to any stationa-
ry measure by B. McMillan [4], may be considered as a theorem of this
sort. In their theorem X is assumed to be a finite set. In this paper
we shall first treat Markovian stationary measures μ, v with X being
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1372 SHU-TEH C. MOY

any set, finite or infinite, and <5f any σ-algebra of subsets of X. It
will be proved that rr1logfmn(xm, •••,#„) converges as n —• oo with
^-probability one and also in Lx(v) under some integrability conditions.
The case that v is only stationary is also treated. Similar convergence
theorem is proved under the assumption that X is countable.

2. Asymptotic properties of derivatives of a Marikovian measure with
stationary transition probabilities with respect to another such measure*

L e t X, <9?Ω, J^Ωn, J?~n, j r n 9 μmnf Vmnfmn(χmy ...,χn) b e a s i n § 1 .

xnf n = 0, ± 1 , ± 2 , •••, are considered as functions or random variables
on Ω to X. Notations for conditional prababilities and conditional ex-
pectations relative to one or several random variables will be as in [2],
chapter 1, §7. Since we have two probability measures we shall use
subscripts μ, v to indicate conditional probabilities and conditional ex-
pectations taken under measures μ, v respectively. In this section μ, v
are assumed to be Markovian i.e., for any Ae S/fm < n, n = 0 ± 1 ,
± 2 , •••,

( 1 ) Pμ[xn e A I xm9 , a?n_J = Pμ[xn e A \ xn_^\ with /^-probability one and

(2 ) Pv[xn e A I xm, , xn-τ] = Pv[xn e A \ a?n_J with ^-probability one. For
any set E c Ω let IE be the real valued function on Ω defined by

IE(w) = 1 if w e E

= 0 if wφE .

LEMMA 1. // vn^ln is absolutely continuous with respect to μn-ln

then for any i e y

( 3 ) Pv[Xn β A I Xn-^fn-λ n-i&n-d

= ^μ[4Λei)/n-in(*n-i, »n) I V i ] with //-probability one.

Proof. For any i ,

v[xn e A, xn^ e B]

= I Py[xn e AI Xn-J

= I P,[xn e AI v J

On the other hand

v[xn e A, xn^ e B]

= \ IχneAfn-i tfan-if »«) I Xn-i
Jlxn-l€B]
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Hence for any

= 1 E^I eAfn-i n(xn-i, O I ̂ - i
J[»w_iej5]

therefore (3) is true with //-probability one. Dividing both sides of (3)

by fn-i n-ifan-i) we then have

/Λ\ P Γ / v ^ / l l / v . 1 — Eμ.[IXneAfn-i n(Xn-i> xn)

J W - l W—lV ^W — 1 /

With //-probability one on the set [fn-! n-i(%n-i) > 0]. Since y[/»-i n-i(ίcn_i) >
0] = 1, (4) is true with v-probability one.

THEOREM 1. If vn-ln is absolutely continuous with respect to μn^ n

for n = 0, + 1 , ±2, then vmn is absolutely continuous with respect
to Pmn f°r w = 0, ± 1 , ±2, and m ^ n with

( K \ f (<r . . Ύ \ -f (v v V r

\ u ) J m nx^mi f ^n) — J m m+lK^m) ^m+l) ~~ Jm+l m+l (^m+l)

•F (Ύ v \

% , m J n-l nK^n-lf *"n.)

J n-l n—iK^n—i/

with μ-probability one.

Proof. We shall prove the theorem for the case that m = 1, n —
2, 3, . The proof for the general case that m is any integer is
similar. Since vλ 2 is absolutely continuous with respect to μλ 2 by hypo-
thesis, (5) is trivially true for m = 1, n = 2. Suppose vlk(k^ 2) is ab-
solutely continuous with respect to μ1 k and fλ k(xlf , xk) is given by
(5) with //-probability one. For any Ae SζBe ^ k

v[xk+1 e A, (x19 , xk) e B]

= \ PV[%JC+I € A I a?i, , xk]dv .
JCίaJi. .Xfcjejs]

Since v is Markovian and by (4)

v[xk+1 e A, (xlf , χk) e B]

=
JC(x1.....x
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)uχv....χk)eBi fkki%k)

Since μ is Markovian

jc+x^ΛJk k+ix^ki %k

k* Xjc+l) I *̂ 1> * * * 9 %k

with /^-probability one. Hence

v[xk+1 e A, (a?!, , xk) e B]

= \ E\l Aj^iψlf11c(Xu ...,χk)\χu..., xk]dμ
J(χv....χti)eB I k+1 fkk(xk) J

— \ T f (r r \ *k fc+^^fc* xk+i) /I*.
J ( x 1 , . . . , % ) e 5

 n+1 fkki%k)

Hence

v[^fc+1 e A, (xlf , xk) 6 J5]

for any i e ^ f ΰ e ^ f c . Hence for any

Therefore vlfc+1 is absolutely continuous with respect to μlk+1 and

V Ό j J1 fc+iV^i, , Jyjc+i) — / l fcV^l> * > xk) —-. r
Jk k\Xk)

with /^-probability one. (6) together with the supposition that (5) holds
true for m = 1, n — k implies that (5) holds true for m = 1, w = fc + 1.
Thus the theorem for the case that m = 1 is proved.

Any Markovian probability measure on J?~ is said to have stationary
transition probabilities if E being a set of probability one implies that
TE, T~XE are also of probability one and for any i e y and any n

P[xn+1 eA\xn] = TP[xne A\ a?n_J

with probability one. Thus for a Markovian probability measure with
stationary transition probabilities we have for any pair of integers m,
n and any A e y
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(7 ) P[xn e A I xn_λ] = Tn~mP[xm e A | xm_^ with probability one and

(8 ) E[g(xn_lf xn) I xn^] = Tn-mE[g(xm_lt xm) \ xm^] wtih probability one
for any real valued ^Vmeasurable function g on Ω2.

THEOREM 2. Let both μ, v have stationary transition probabilities.
If vn n is absolutely continuous with respect to μn n for n — 0, ± 1 , ± 2 ,
and v12 is absolutely continuous with respect to μ12 then vmn is absolutely
continuous with respect to μm n for m g n, n = 0, ± 1 , ± 2 , and

( Q\ f (r v \ — f W 1

J\

with μ-probability one.

Proof. By Lemma 1, for any

(10) Pv[x2e,

with ^-probability one. For any A, Be .

v[xn e A, a?Λ^ e 5]

= Pv[a?n e A I

e A I x±]dv

2 e A ] ajJlΛ

Hence by (10) and (8)

v[xn e A, xn^ e 5]

- f T»-« J
— \ -̂  1

^w-l> ^w) I Xn-l]
Jn-l n-

- i€B] w /π(Vi)

— \ Jn-l n-A^n-l)

Thus for any £7 e ^Γ_! „
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(11)

Hence for any integer n, vn-x n is absolutely continuous with respect to
μn-ln and Theorem 1 is applicable. (11) also implies that

with //-probability one. Hence

J n—\ n\Xn—l? %n) __ J\ 2v^n—l? «̂ w)/IQ\

Jn-i n-i\%n-i) Ji i\%n-i

with //-probability one on the set [fn-i n-i(&n-i) > 0]. However, except
that w belongs to a set of //-probability 0, n > 1,/n-in-i0&n-i(w)) = 0
imply that /2 n-i(«i(w), , xn^{w)) = 0, hence

/* (φ /y
Jn-l n-i\ftn-l) /l

with /^-probability one. Thus by (6)

(r . . . r \ — f (r . . r λ /i 2\xn-i> %n)

}\ lV ^w-l/

with //-probability one. Combining (12) (13) and by induction, if n > 1

-P (rψ . . . /y \ -F (rψ\ / 1 2V̂ 1> ^2) . . . / 1 2(^^-1? ^w)
J\ n\άi, j Λn) — J1 !{&!) — — — — —

/life) /llfe-l)
with //-probability one. Thus we have proved the theorem for the case
that m = 1. For the general case the proof is similar.

THEOREM 3. If μ has stationary transition probabilities and v is
stationary and if

j I Iogfmm+1(xm, xn+1) I dv < oo then

J I log/w n(xm, , xn) I dv < oo for n = m, m + 1, m + 2,

and n~λ \ogfmn{xm, '"fxn) converges as n-^ oo with v-probability one

and also in Lx(v) to a function g with \ g dv = a where

a = J [log/12fe, x2) - logf^ix^dv ^ 0

In particular, if v is ergodic, g = a with v-probability one.
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Proof. We shall first prove the theorem for the case that m = 1.
Since for any

φ i e A] = I fx 1(x1)dμ, = I fλ 2(xly x2)dμ ,

hence

Since I | log/Ί ^α^, #2) | c£v < 00 hence

J i /12(^1, »2) log/i 2(&x, x2)\dμ = y log/; 2 (^ , ̂ 2) I cίy < 00 .

The real valued function L(|) = ξ log | defined for all real ξ ^ 0[L(0) is
taken to be 0] is convex. By Jensen's inequality for conditional ex-
pectations ([2], pp. 33)

<15) Eμ[L{A 2{xλx2)} I xλ] ^ L{fλ &,)} .

By (15) and the fact that L(ξ) is a function bounded below by a con-
stant, we have

J I L{f, .(x,)} I dμ = j I log/, xfe) I dv < co

and

1 log/ 1 2(^, x2)cίv - log/nί^Odv = a ^ 0 .

Now by Theorem 2

log/i»(a?i, , xn) = log/nίajO + Σ{log/;,(&,_!, »ι)

Since v is stationary, l o g / ^ ^ , •••,«?„) is v-integrable. Applying the
ergodic theorem w"1 log/!„(»!, * ,α?n) converges with ^-probability one
and also in Lx{v) to a function g with

j ^ = J N / n ( ^ υ O - log/n(^)]ώv = α ^ 0 .

For m being any integer, we only need to mentioned that by (13),

logfmm+1(xm, xm+1) — logfmm(xm) = Iogf12(x19 x2) -

with ^-probability one and therefore the same conclusion follows with
a similar proof.
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COROLLARY 1. Suppose μ, v satisfy the hypothesis of Theorem 3
for m = 1. If v is ergodic and if there is an AeS^ such that

(16) v{Pv[x2 eA\xx]Φ Pμ[x2 e A \ x,]} > 0

then v is singular with respect to μ.

Proof. First we shall show that follows from (16)

(17)

For, if fλ jfai) = /i 2(xlf x2) with //-probability one then by Lemma 1
P. [x2 e A I xλ]fλ iίaji) = Pμ[x2 e A | xλ]fλ ^xj with /^-probability one. Thus

Py\x2 e A | scj — Pμ[x2 e AI a?!] with ^-probability one for every A e 5 f Now
the function L{ξ) = ξ log £ is strictly convex, hence it follows from (17)
that

a = J 0

Applying Theorem 3 fln(x19 •••,»„)—>oo with v-probability one as w—>oo#

Hence llfn(xlf , »„) —> 0 with ^-probability one as n —> oo. Let
_ ^ ' be the cr-algebra generated by U»=i-^ί» a n ( i ^ Ί ^' b e ^he contrac-
tions of μ,ι> to ^ ^ ' respectively. Since llfln(xlf •• ,xn) is the deriva-
tive of vx^-continuous part of μln with respect to vlnjl/fln(xf « ,xw)
converges with ^-probability one as n —> oo to the derivative of y'-con-
tinuous part of μr with respect to vf ([2], pp. 343). Now llfln(x19 , xn)
converges to 0 with ^-probability one, hence the ^'-continuous part of
μ' is 0 and μ\ v' are mutually singular. Hence μ, v are mutually singular.

3. Extension to ά-Markovian measures^ The results of the pre-
ceding section can be extended to fc-Markovian measures immediately.
We shall state the theorems only since the proofs in the preceding sec-
tion with obvious modifications apply as well.

THEOREM 4. Let μ, v be any two k-Markovian measures on ̂ Γ If
vn-kn is absolutely continuous with respect to μn-kJ n for n — 0, ± 1 , ± 2 ,
• , then vm n is absolutely continuous with respect to μm n for n — Q,
± 1 , ± 2 , and m <, n with

f (v . , , /y \ - / (v . . . T \ fm+l,m+l+k\%
7 Z Γ

Jn-k n-i\

with μ-probability one.
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THEOREM 5. Let μ> v be two k-Markovian measures on ^ with
stationary transition probabilities. If vn-k+ltn is absolutely continuous
with respect to μn^k+1>n for n = 0, ± 1 , ± 2 , ••• and vlk+1 is absolutely
continuous with respect to μx k+1 then vm n is absolutely continuous with
respect to μmn for n = 0, ± 1 , ± 2 , , m <; n and

•f (Ύ . . . ^ ^ f ί v . . . ^ r ^ J i k+i\Xm+l> * * * i Xm+k+i)
J m n\™mf J ™n) J m m + k—lK^m* f ^m+k—l/ J? / \

with μ-probability one.

THEOREM 6. Let μ, v be two k-Markovian measures such that v is
stationary and μ has stationary transition probabilities. If

J I log/™ m+k(xm, , xm+k) I dv <

then \ I \ogfm n(xm, , xn) \ dv < oo for n = m, m + 1, m + 2, and

wΠog/ronίa?™, m ,%n) converges as n—> oo with v-probability one to a

function g with I gdv = a ^ 0 where

In particular, if v is ergodic, g — a with v-probability one.

COROLLARY 2. Suppose μ, v satisfy the hypothesis of Theorem 6
for m — 1. If v is ergodic and if there is a set Ae S^ such that

(20) v {[P v fe + 1 e A I α?!, , α J =£ Pμ[a?Λ+1 e A] \ x19 . . , ^fc]} > 0

Then v is singular with respect to μ.

4» A generalization of McMillan's theorem* In the setting of this
paper, McMillan's Theorem may be stated as the following. Let X be
a finite set ,of K points and £f be the σ-algebra of all subsets of X.
Let v be any stationary probability measure on ^ and μ be the
measure on ^ such that μ[Xm = α0, Xw + i = αx, , Xn = α n _ J ! = i?:-^-^+1)
for any intergers m, w and α0, αx αw_m in X. jW may be described as
the equally distributed independent measure on ^ Γ Then nrfln(xly ,xw)
converges as w —> oo in Lx{v). In particular, if v is ergodic, the limit
function is equal to log K — H with v-probability one where H is the
entropy of v measure [4], We shall generalize this theorem to the
case that X is countable and μ is Markovian with stationary transition
probabilities.
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THEOREM 7. Let the totality of elements of X be alf α2, and v

be a stationary probability measure on j ^ ~ such that I — log v^x^dv < oo

where vλ is the function defined on X by vλ{a^) — v[xλ — α j . Let μ be

a Markovian measure on j ^ ~ with stationary transition probabilities.

Let p(at, a5) be the value of P μ |X = a5 \xQ] when x0 = at. Let vln be

absolutely continuous with respect to μln for n = 1, 2, •••. //

\ —logp(x19 x2)dv < oo

and \ I logΛ ^x,) \ dv < oo then \ | \ogfx n(xlf , xn) \ dv < oo for n =

1, 2, and n~Ύ log/x n(x19 •••,»„) converges as n —> oo in Lλ(v), In par-

ticular, if v is ergodic, the limit is equal to a constant with v-prob-

ability one.

Proof. Let

Vffaiv α*2> , α * J = v[%i = «*!> ^2 = ah, •••,»« = α « J

a n d

^ ( α ^ , α < 2 , , α < n ) = μ[xx =; α 4 l , ̂  = α v , x n = ain] .

T h e n

with /i-probal .3 and

with ^-probability one and

with //-probability one. Hence

ί\ n\&i9 * * * f ffin) _ . >r̂

with ^-probability one and

(21) log / i rc- i (^ '••><> = I

- l o g i)(a?n_!, α?n)
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with ^-probability one where

(22) gn = Σ logpA%o = at I ff-i, , a?_(n_1)]IBo = α t

We know t h a t Pv[#o = α * l#-i> " •> # - ( » - D ] converges with ^-probability

one as n—*co to Pv[α?0 = α j α ? ^ , a?_2, •••] by Doob's Martingale Con-

vergence Theorem. Hence L{P^[x0 = α41 x-l9 , #_<„_!)]} converges with

^-probability one to L{PJx0 = ai\x-1, x-2f •••]}. But L{ξ) is a bounded

function for 0 ^ ξ <£ 1, hence L{Pv[x0 = α t | £c_lf £c_(n_1}} are uniformly

bounded with ^-probability one. Hence L{Pv[x0 = flj41 x^19 , »_(„_!,]} also

converges in Lx(v) to L{PJ[xQ = at\x-.l9X-2f •••]} as ^—> oo. Now by
rr

Jensen's inequality I — L{Pv[x0 = α̂  | x_l9 , ίc.^.DJjeίv ^ —L{Pv[x0 = α,]}.

Since

Σ —
1 = 1

= α*]} = — log ^(ίCoJίZv
J

Σ {[ = αg I x_2, , »_(„_!
ί = l

converges in Lx(v)9 as m—> oo, to

CO

Σ -
ί = l

uniformly in tι. Hence

Σ -

converges in Lx(y) to

oo

Σ ~~ L{PJ[xQ = ai I x_19 x__2> * •]} &s n —> oo. N o w

\ - Σ
J i—1

= I - Σ •i'î vt^o = α« I ί»-i, , x-(w-i)]}d^ and
J ί=l

j - Σ log Pv[%o = α« I ^-i, B-2, ]JΓ

aSo=αίrf^

= I — Σ L{P*[xQ = at I ̂ _2, X-2, ]}dv, hence
J ί=l

(23) lim - Σ
n-*o° J i=l

= \ — Σ
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(23) together with the facts that the sequence

{ - Σ log P^[x0 = x i I x-lf , 8_ ( n _ 1 ) ]/ X o = α i |

is also convergent with v-probability one and that the functions

oo

___ X ' l/*\rγ "P Γ'ϊ /yι I /yι • Ύ» IT
j_ι l u g ± VL ^O — *^ί I t*/—1> > dj— (n-l)\-Lx0=ai

are non negative with ^-probability one imply that

oo

Σ Pf/y. ft I rγ> . . . / y 1 Γ
•*• vL ̂ O — Wi I | Λ / —1> > t Λ / — ( w — 1 ) J - t a ; o = a i

converges as n —> oo in Lχ(v) to

oo

ί = 1 * ' x0 α ι

Thus we have {gn} to be an Lλ(v) convergent sequence. Let the limit

of the sequence be h. Let h be the Lλ{v) limit of l/n(h + Th H h Tw/z)
as n —> oo. Now by (21)

, xn) = log/n^) + Σ Γ ^ ί T h u s

•, 8 n) -( I — lθg/ l f > (8 l f

J I %

^ l | l o !

<iυ

+ f | i (Σ Γ'flr. - Σ Γ λ

dv

n «=2
civ —> 0 as n

COROLLARY 3. Under the hypothesis of Theorem 7, i/ v is ergodie
and not Markovian then v is singular to μ.

Proof. If v is ergodie then the Lλ{v) limit, h, of {Ijn logf± n(xl9 •••,.
xn)} is equal with v probability one to

1 Σ L{Pil%o = Uί 18-i, a?_2, -]}dv — I logpίa?-!, ^ 0 ) ^ ^

which is greater or equal to



ASYMPTOTIC PROPERTIES OF DERIVATIVES 1383

1 Σ L{PA%o = α«I x-i, x-2]}dv — j log p(x-lf xQ)dv .

Hence by (21)

^ = ] Σ logPv[^o = at I x-i, X-2]IXQ=Hdv - j logp(x-lf xo)dv

= \ log/isfe, %2, xϊ)dv - \ \ogf12(x19 x2)dv .

However I Iogf13(xly x2, x3)dv — I Iogf12(x19 x2)dv = 0 if and only if

(24) μ[fi*{Xi, X2) Φ fAxu %2, x*)] = 0 .

(24) implies that

JΓ\\X-3, Q Jx \ Xif X2\
 =~ ±μ\X% β J\. \ Xιf X2]

with ^-probability one for any i e 5 f This is impossible since μ is
Markovian and v is not. Hence h > 0 with ^-probability one. Hence
/1 n(Xi, , xn) —> °° with v probability one and v is singular to μ by the
same argument used in the proof in Corollary 1.

The extensions of Theorem 7 and Corollary 3 to Λ -Markovian μ is
obvious.

REFERENCES

1. Erik Sparre Anderson and Borge Jessen, Some limit theorems in an abstract set, Danske
Vid. Selsk. Nat.-Fys. Medd. 22, no. 14 (1946). 22, No. 14 (1946).
2. J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York.
3. Amiel Feinstein, Foundations of Information Theory, McGraw-Hill Inc. New York,
Toronto, London.
4. B. McMillan, The basic theorems of information theory, Annals of Math. Statistics, 24
(1953), 196-219.
5. C. E. Shannon, The mathematical theory of communication, Bell Syst. Techn. Journ.
27 (1948), 379-423, 623-456.

WAYNE STATE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DAVID GILBARG

Stanford University
Stanford, California

F. H. BROWNELL

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

L. J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH
T. M. CHERRY
D. DERRY

ASSOCIATE EDITORS
E. HEWITT
A. HORN
L. NACHBIN

M. OHTSUKA
H. L. ROYDEN
M. M. SCHIFFER

E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of inverting a linear
bounded operator in Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

Nesmith Cornett Ankeny, Criterion for rth power residuacity . . . . . . . . . . . . . . . . . . . . . . . . . 1115
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I . . . . . . . . . 1125
Frank Featherstone Bonsall, Positive operators compact in an auxiliary topology . . . . . . . 1131
Billy Joe Boyer, Summability of derived conjugate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Delmar L. Boyer, A note on a problem of Fuchs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
Hans-Joachim Bremermann, The envelopes of holomorphy of tube domains in infinite

dimensional Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
Andrew Michael Bruckner, Minimal superadditive extensions of superadditive

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
Billy Finney Bryant, On expansive homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
Jean W. Butler, On complete and independent sets of operations in finite algebras . . . . . . . 1169
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution . . . . . . . 1181
Paul Civin, Involutions on locally compact rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
Earl A. Coddington, Normal extensions of formally normal operators . . . . . . . . . . . . . . . . . . 1203
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval . . . . . . . . . . 1211
Shaul Foguel, Weak and strong convergence for Markov processes . . . . . . . . . . . . . . . . . . . . . 1221
Martin Fox, Some zero sum two-person games with moves in the unit interval . . . . . . . . . . . 1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic functions . . . . . . . . . . 1243
Branko Grünbaum, Partitions of mass-distributions and of convex bodies by

hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces . . . . . . . . . . . . . . . . 1263
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigroup of integers

modulo m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
Paul Daniel Hill, Relation of a direct limit group to associated vector groups . . . . . . . . . . . 1309
Calvin Virgil Holmes, Commutator groups of monomial groups . . . . . . . . . . . . . . . . . . . . . . . 1313
James Fredrik Jakobsen and W. R. Utz, The non-existence of expansive homeomorphisms

on a closed 2-cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
John William Jewett, Multiplication on classes of pseudo-analytic functions . . . . . . . . . . . . 1323
Helmut Klingen, Analytic automorphisms of bounded symmetric complex domains . . . . . . 1327
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups . . . . . . . . . . . . . . . 1333
Marvin David Marcus and N. A. Khan, On a commutator result of Taussky and

Zassenhaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337
John Glen Marica and Steve Jerome Bryant, Unary algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 1347
Edward Peter Merkes and W. T. Scott, On univalence of a continued fraction . . . . . . . . . . . 1361
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationary measures . . . . . . . . 1371
John William Neuberger, Concerning boundary value problems . . . . . . . . . . . . . . . . . . . . . . . 1385
Edward C. Posner, Integral closure of differential rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393
Marian Reichaw-Reichbach, Some theorems on mappings onto . . . . . . . . . . . . . . . . . . . . . . . . 1397
Marvin Rosenblum and Harold Widom, Two extremal problems . . . . . . . . . . . . . . . . . . . . . . . 1409
Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential-difference

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419
Charles Robson Storey, Jr., The structure of threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
J. François Treves, An estimate for differential polynomials in ∂/∂z1, , · · · , ∂/∂z_n . . . . . 1447
J. D. Weston, On the representation of operators by convolutions integrals . . . . . . . . . . . . . 1453
James Victor Whittaker, Normal subgroups of some homeomorphism groups . . . . . . . . . . . 1469

Pacific
JournalofM

athem
atics

1960
Vol.10,N

o.4


	
	
	

