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SOME THEOREMS ON MAPPINGS ONTO

M. REICHBACH

Introduction and summary. Let F: X —> Y be a continuous mapp-
ing of a topological space X into a space Y. An important problem is
to find conditions1 under which this mapping is a mapping onto: F(X)= Y.
In the present paper, the following consideration is used in proving
theorems on mappings onto.

Conditions are given under which the image F(X) is closed and
open in Y; hence for a connected Y, F(X) = Y.

This idea is not new. For instance C. Kuratowski2 showed that, i,
a subgroup G of a topological additive group X has the Baire propertyf
then either G is of the first category in X or G is both open and closed
in X, so that G = X if X is connected.

It was also used by the author in [10], to obtain some generaliza-
tions of the Fundamental Theorem of Algebra.

In this paper the results obtained in [10] are generalized to general
topological spaces.

In § I the notion of a "polynomial mapping" is introduced. Rough-
ly speaking, a mapping F: X —> Y is called a polynomial mapping if it
maps every sequence which does not contain a convergent subsequence
onto a sequence which also does not contain a convergent subsequence.
It is proved that a polynomial mapping F: X —> Y of a complete space
X into a space Y maps sets closed in X onto sets closed in Y.3

The role of the disconnection properties in the proofs of theorems
on mappings onto is discussed and a generalization of the Fundamental
Theorem of Algebra to ^-dimensional Euclidean spaces is obtained.

In § II some theorems on mappings onto are proved for the so-cal-
led generalized i^-spaces and the Fundamental Theorem of Algebra is
generalized to such spaces. Finally an application of this generalization
to an existence theorem in some class of functional equations is given.
For the sake of completeness, many known definitions are recalled.

I, 1. Let X be a space in which convergence satisfying the follow-
ing two conditions is defined:

(a0) if xn —» x and xn~^y then x = y
( a ) if xn —> x and kλ < k2 < , then xkjι —> x

The set of all convergent sequences {xn}aX will be denoted by L. Note
that

Received December 21, 1959.
1 For examples of such conditions see [2], chapter XI.
* See [6], P 38 and [7], p. 81. Also [4], p. 8.
3 According to the terminology used by Whyburn in [11], we can say that if F:X-

is a polynomial mapping, then it is a strongly closed mapping.
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( b ) if {xn} e L, k±< Jc2< and xkn —> x then xn —> x
Indeed, since {xn} e L, there exists a point x0 such that xn —• x0. Hence
by (a), xkn —> #0 and since α?,.n —> a? we obtain by (a0), x0 = x. Thus xn —> x.

In the usual way, we can introduce the notions of a subspace P of
X and closedness-and-openness in X (or in P ) . A set P c X is called
connected if it is not a union of two non-empty disjoint sets closed in P.

Let C be a set of sequences {#n} c X such that L c C . The set
C will be called the set of Cauchy (or fundamental) sequences. If L = C,
the space is called complete. Note that since the definition of C is
quite arbitrary (it is only needed that L c C ) we can put C — L and
the space will be a complete space.

I, 2. A mapping F: X—> Y of a space X into a space Y is called
continuous if for every sequence {xn}n=i.2.... c X the condition #w—>α?
implies .F(ίBn) —> i 7 ^) 4 - By "mappings" we shall, in the sequel understand
continuous mappings only. We introduce now the following

DEFINITION 1. A sequence {α?n}n=1,a,...; xneX is called a non-Cauchy
sequence or simply a NC sequence if it does not contain a subsequence
belonging to C

If the set of Cauchy sequences is defined as usual, then
(c) in a finite dimensional Banach space the set of NC sequences

is identical with the set of sequences {flcn}n=ii2i... with xn—>oo.
Indeed, if xn-+ oo, then by the completeness of the Banach space,

{xn} cannot contain a Cauchy sequence {xkn}, since otherwise, there
would be xkn~>x for some x, which is impossible, by xn-+<*>. On
the other hand if xn does not tend to oo, there exists a bounded
subsequence {x'n} of {xn} and since X is finite dimensional, {x'n} contains
a convergent subsequence {x'kn}, which is a Cauchy sequence.

DEFINITION 2. A mapping F:X—> Y is called a polynomial mapp-
ing5 if the condition

{xJ is a NC — sequence, #w 6 X

implies that

(#w)} is a M7 - sequence, F(xn) e Y".

By (c ) we obtain that
( d ) Polynomial mappings F: X —> Y of a jβmίe dimensional Banach

space X into a finite dimensional Banach space Y are identical with
4 In fact we should denote the convergence relation in Y by a symbol other than "-»"

used for convergence in X, but the meaning of " - > " will always be clear from the text.
5 The definition of a polynomial mapping was first introduced by the author in [10]

for metric spaces. The definition introduced here is a generalization of this definition to
general topological spaces.
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those which map sequences {#m}m=i,2f... tending to ©o onto sequences
{F(xm)}m=lt2t... also tending to oo.

In particular, a {Φ constant) complex polynomial in the complex
plane (2-dimensional Banach space) is a polynomial mapping of the plane
into itself. This justifies the notion "polynomial mapping".

We prove now the following

LEMMA 1. If F: X —> Y is a polynomial mapping of a complete
space X into a space F, then for every set A closed in X the image
F(A) is closed in Y. (In particular F(X) is closed in Y).

Proof. Let yneF(A) be points belonging to F(A) and let yn—>y.
We shall show that yeF(A). Indeed, there exist points xneA such
that yn = F(xn). Now {xn} cannot be a NC — sequence since {F(xn)}
would also be a NC sequence (F being polynomial mapping) and this is
impossible by L c C and yn~^y. Therefore, there exists a subsequence
{xkn} of {xn} which belongs to C. The space X being complete, there
is xkn —• x for some x and xeA since A is closed. Thus by the con-
tinuity of F, F(xkn) —> i*X#). But {F(xkJ} is a subsequence of {yn} and
therefore by (b) we have yn —> .F(x). Hence by yn —> ?/, F(x) — y and by
xeA, there is 2/e.F(A).

DEFINITION 3. A mapping F: X—> F is said to be open in the point
yQeF(X) if there exists an open (in Y) set Z7(y0) containing yQ, such
that U{yQ)(zF(X).

Evidently, F(X) is open in Y if and only if F: X—> F is open in
every point yoeF(X).

THEOREM 1. If F: X—* Y is a polynomial mapping of a complete
space X into a connected space F, which is open in every point y e F{X)y

then F(X) = F. (i.e. F: X—* Y is a mapping onto).

Proof. By Lemma 1, F(X) is closed in F and by the assumption,
F — i^(X) is closed in F. Hence by the connectedeness of F there is
F(X) = Y.

I, 3. We shall now investigate the role of the disconnection proper-
ties of subsets of F in the proofs of theorems on mappings onto. Through-
out § I, 3 we shall assume that our spaces satisfy the first countability
axiom and thus all the topological relations may be expressed in terms
of convergent sequences. The following Lemma is evident.

LEMMA 2. A mapping F:X—*Y is not open in the point y eF(X)
if and only if y e Fr(F(X)), where Fr(F(X)) denotes the boundary of
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F(X) in Y.6

We prove now the following

THEOREM 2. If F: X—> Y is a polynomial mapping of a complete
space X into a connected space Y which is open in every point y e F(X)—J,
ivhere JczF(X) is a set which does not disconnect the space Y and if
F: X—> Y is open in at least one point yoeF(X), then F(X) = YJ

Proof. Since F \ X -* Y is open in the point y0 e F{X) there exists
an open (in Y) set U(yo)aF(X). Denote by U the union of all sets
open in Y, which are contained in F(X). Evidently Fr(U)aFr(F(X)).
Now suppose, that there would exist a point oo0e Y — F(X) and let x
be any point belonging to U. Since the set J does not disconnect Y
there exists in F - J a connected set K containing x0 and x. But the
set Fr(U) disconnect the space Y between x0 and x.8 Therefore there
exists a point ye[Fr(U) — J]f]K and since Fr(U)aFr(F(X)) the point
y e [Fr(FX)) - J]f] KaFr(F(X)) - J.

By Lemma 1, F(X) is closed in Y and therefore yeF(X). But,
by assumption F: X —> Y is open in every point y e F{X) — J, which by
Lemma 2 contradicts the fact that y e Fr(F(X)) — J. Thus the assump-
tion that there exists a point xoeY— F(X) leads to a contradiction.

I, 4. We prove now the
First generalization of the Fundamental Theorem of Algebra. Let

F: X —> X be a mapping of the ^-dimensional Euclidean space X, with
n ^ 2 into itself defined by ηi = ηt(ξl9 , ξn) i = 1, 2, n, where the
real functions η% and their derivatives dηjdξk are continuous in X. If
then the Jacobian D = 00ft, %)/9(fi, , £„) =£ 0 in every point a? =
βdi ξn)

 e X — Joy where Jo is a countable set and if the condition
xm(ζ?> * ' l») —* °° implies ^ ( a O —• oo for every sequence of points
xm e X, then F : X—> X is a mapping onto: F(X) = X.

Proof. Since the condition xm —> oo implies F(xm) —• co we obtain
by (d) that ί 7: X-* X is a polynomial mapping. Now by the countability
of Jo the set J = F(J0) is also countable and therefore 0-dimensional.9

Hence, since the dimension n of X is ^ 2, J does not disconnect X.10

Further, if y = F(ίc) is any point of F(X) — /, the mapping F: X-+X
is open in y, because, by the assumption D Φ 0 for points x$J0, a
neighbourhood (in X) of y = F(x) is covered. Finally, since Jo is countable
there exists at least one point y0 in which F: X—• X is open. Thus put-

6 If X is a space and A a subset of X, the boundary Fr(A) = Af]X - A.
7 This Theorem was suggested to the author by H. Hanani.
s S. [3], p. 247, also [8], p. 80.
9 In the sense of Menger-Urysohn

io See [5], p. 48.
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ting Y = X in Theorem 2, we see that all the assumptions of this
theorem hold. Therefore F(X) = X.

REMARK 1. If F:X—> X is any (Φ constant) complex polynomial
defined on the complex plane X, then the mapping F: X —> X is defined
by two real functions rjγ = ηλ{ξ19 ξ2)9 η2 = η2(ξ19 ξ2)9 where Ύ]λ and % are
respectively, the real and imaginary parts of F(x) — rjλ + ίη2, x = ξx +
iξ2eX, i2 = - 1. Now for the Jacobian .D there is D = | F'(α) |2 ^ 0
except for a finite set of points (F'(x) denotes the derivative of F(x))
and therefore, by the above generalization of the Fundamental Theorem
of Algebra, F(X) = X.

REMARK 2. Our proof of the first generalization of the Fundamental
Theorem of Algebra is based on Theorem 2. An essential role in Theorem
2 is played by the assumption that the set J does not disconnect Y.
This assumption is satisfied because the dimension of the Euclidean
space X is assumed to be ^ 2. (A countable set does not disconnect
an Euclidean space with dimension ^ 2). This explains the role, for
the Fundamental Theorem of Algebra, of the fact that the dimension
of the Euclidean plane is Ξ> 2.

II, 1. Let now X be a space (in the sense of I, 1) which is simu-
ltaneously a linear space (with multiplication by real or complex numbers).
We introduce the following

DEFINITION 4. A mapping F:X—> X of a linear space into itself
is said to have a lower bounded rate of change in the point y0 e F(X)
if there exists a point ^ e ί 7 " 1 ^ ) , a number (may be complex) X(xo)φθ
and an open in X set U(y0) containing y0, such that for every y' e U(y0)
the sequence: x'\ Axf\ AAxf; where Ax — x — X(xo)(F(x) — yf) is a
C a u c h y s e q u e n c e for s o m e p o i n t x'eX ( t h e p o i n t xf d e p e n d s on y ' ) .

LEMMA 3. If F: X—> X is a mapping of a complete linear space
X into itself, having a lower bounded rate of change in the point
yoeF(X), then F:X—>X is open in the point y0.

Proof. Let x'\ x0, X(x0) Φ 0 and U(y0) be the points, the number
and the open (in X) set defined in the foregoing definition and let
y'e U(y0) be any point of U(y0). We shall show that yf eF(X). Indeed,
since the sequence x~; Ax'; AAxf; is a Cauchy sequence and X is
complete, it has a limit x'o. Now by the continuity of A, we have
Ax'o = x'O9 i .e . xf

0 — X(xo)(F(x'o) — yf) = x'o a n d h e n c e F(x'o) = yf.

II, 2. Here we shall introduce the notion of a generalized i^-space
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and prove some theorems on mappings onto in these spaces. We begin
with the definition of a generalized metric space.

DEFINITION 5. A set X of points is called a generalized metric
space with metric p if on the Cartesian product I x l a non-negative
real function p(x, y) is defined: 0 ^ p(x, y) ^ oo, χ9 y e X which satisfies
the usual axioms of any metric, i.e. p(x, y) = 0 if and only if x = y,
p{x, y) = p(y, x) and p(x, y) + p(y, z) ^ p(xf z); x, y, z, belong to X.

Thus the difference between the definitions of a metric space and of
the generalized metric space consists in the fact that the function
ρ(x,y) may assume the value of oo.

EXAMPLE 1. Take the set X of all real continuous functions x(t),
— oo < t < oo and define ρ{x, y) = supf | x(t) — y(t) |. Here, X is a gener-
alized metric space, but not a metric space.

Evidently every metric space is also a generalized metric space. In
generalized metric spaces we can define convergent sequences by saying
that xn —> x if p(xn, a?) —> 0 and this convergence satisfies (a0) and (a).
Thus every generalized space is a space in the sense of 1,1. If we
define, as usual, a Cauchy sequence in X by saying that {#w}w=1,2,... e C
if for every ε>0 there exists a N(ε) such that p{xn, xm)<e for n, m>N(ε)
then we have L c C . The set X in Example 1 is, as is easy to see, a
complete space. Let now X be a generalized metric space which is
simultaneously a linear space (with multiplication by real or complex
numbers) such that the following two conditions hold

( e ) p(x, y) = ρ(x - y, 0)
and

( f ) (hx, 0 ) ^ | h\. p(x,0) for every number h and every point
xeX.

In such a case we shall call X a generalized .P-space. For instance,
the space X in Example 1 is a generalized F-space. Another example
of a generalized F space is the set of all sequences x = (ξ1Jξ2, •••) of
real numbers ξu i = 1, 2, if we define ρ(x, y) = supέ | ξt — ηt \ where
y = (τjlf7]i9 •••). Note that on the set on which p is finite, it satisfies
the axioms of the so-called jP-spaces.11 This justifies the notion of
generalized j

Property T. Let F: X—> X be a mapping of a generalized F-space
into itself such that for the point y0 e F(X) there exists a point x0 e F-ι{y^,
a spherical region S(x0, r),12 a complex function X(x0) Φ 0 and a real
function a — a(x0): 0 < a < 1 such that for any two points x and y

11 See [1], p. 35.
1 2 A spherical region S(xo, r) with xQ as centre and r as radius is denned as the set of

all points xeX satisfying p(xo, x) < r.
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belonging to S(x0, r) there is
(g) p[x-y- X(xo)(F(x) - F(y)), 0] ^ ap(x, y) .

A mapping F: X —> X for which (g) holds is said to have the property
T in the point y0eF(X).13

We prove now

LEMMA 4. If F:X-^Xis a mapping of a generalized F-space
into itself having the property T in the point yoeF(X), then F: X—>X
has a lower bounded rate of change in the point yoeF(X).

Proof. Let S(x09 r), X(x0) Φ 0 and a — a(x0) be the spherical region
and the functions appearing in the definition of the property T and put
ro = [(^ — oί)l\X(x0)\] r. It suffices to show that for every yr eS(y0, r0)
the sequence xQ, Ax0, AAx0, where Ax = x — X(xo)(F(x) — y') is a
Cauchy sequence:14

We have for xτ = Ax0;

pfro, »i) = p(x(χo)(F(χQ) - y'), 0) - p[x(χo)(yo - v'), 0]

S I X(x0) I P(Vo, V') < I λ(ί»0) I r 0 = (1 - α ) r .

Thus p(xOf xd ^ (1 — cήr. Now for x, y eS(x0, r) we have by (g):

(g); p(Ax, Ay) = p(x - y - X(xo)(F(x) - F(y)), 0) ^ α^(a?, y)

and therefore ρ(Ax0, Ax^ ^ ap(x0, xλ) ^ (1 — α) α r. Denoting α?n = i4.a?n_1,
n = 1, 2, we obtain by induction />(#„, flJw+i) ̂  (1 — α)αwr, hence by
0 < a < 1 it is easily seen that x0, Ax0, AAxQ, is a Cauchy sequence.

From Lemmas 3 and 4, and from Theorem 2, we obtain the
Second generalization of the Fundamental Theorem of Algebra. If

F: X —> X is a polynomial mapping of a complete generalized jP-space X
into itself, having the property T in every point y e F(X) — J where
J c î ί-X") is a set which does not disconnect the space X, and if there
exists at least one point yQeF(X) in which F: X—> X has the property
Γ, then F(X) = X

Proof. By Lemma 4, i*7: X—> X has a lower bounded rate of change
in every point y e F(X) — J"; hence by Lemma 3 F: X —> X is open in
every point # e ̂ (X) — J where by assumption J does not disconnect
X. Also, by assumption F: X—> X is open in the point j / 0 e ̂ (X). Now,
since a generalized .F-space is connected (as a linear space) we see, by
putting Y = X in Theorem 2, that the assumptions of this theorem
hold. Hence F(X) - X.

1 3 For some ideas concerning this definition the author is indebted to D. Tamari.
1 4 The following part of the proof is analogous to the proof of Banach's so-called theorem

of contraction mappings, see [9] p. 47 and remark 2 p. 49.
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REMARK 3. We shall now show that the above theorem is in fact
a generalization of the Fundamental Theorem of Algebra. Let F: -3Γ—> X
be a ( ^ constant) polynomial, mapping the complex plane X into itself.
Since every Banach space is evidently a generalized .F-space, the complex
plane with the usual metric p(x, y) = | x — y | is a generalized F-space.
Now take any point xoe X such that the derivative F'(x0) Φ 0 and let
y0 = F(x0). P u t X(x0) = ll(F'(x0)) and a = 1/2. Since for x —> x0 we have

(F(x0) — F(x))l(xQ — x) —> F'(# o ) there exists a spherical region S(xQ, r) such

t h a t for x,yQ S(xQ, r), x Φ y there is

F(x) - F(y). 1

a? - 1/ (F'(α0)

and therefore \x-y- (l/(F'(αo))(F(x) - F(y)) \^a\x-y\. But this
inequality holds evidently also for x = y and therefore the mapping
F : X—>X, defined by the complex polynomial F(x), x e X, has the property
T in every point y0 = F(x0) for which F'(x0) Φ 0. Now the set J of
points y = F(x) for which F'(#) = 0 is finite and thus it does not discon-
nect the complex plane X. Hence by the above second generalization
of the Fundamental Theorem of Algebra there is F(X) = X, i.e., a
complex polynomial maps the complex plane onto itself.

II, 3. It is known that
( h ) a ^-dimensional set does not disconnect the n + 2-dimensional

Euclidean space.15

Thus

LEMMA 5. A finite dimensional subset J of an infinite dimensional
Banach space X does not disconnect X.

Proof. Let x0 e X — J be any fixed point and x any point of X — J.
Suppose that the dimension of J is n and take any (n + 2)-dimensional
plane En+2 (homeomorphic with the Euclidean plane En+2) containing the
points x0 and x: En+2(zX. Since the set En+2ΓιJ is at most ^-dimen-
sional it does not disconnect En+2 (by (h)) and therefore there exists a
connected set KaEn+2 — J c X — J which contains the points x0 and x.
Thus every point xeX — J may be joined with the point x0 e X — J by
a connected set KaX — J i.e., the set X — J is connected.

Let now |] || denote the norm in the Banach space X and define
ρ { x , y ) = \\x - y \ \ .

We prove the following

THEOREM 3. Let F : X—> X be a polynomial mapping of an infinite
1 5 S. [5], p. 48. The term "dimension" is used in the sense of Menger-Urysohn.
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dimensional Banach space X into itself, which maps finite dimensional
sets onto finite dimensional sets. If F:X—>X has the property T in
every point y e F(X — Jo) where Jo is a finite dimensional set, then
F(X) = X.

Proof. Since Jo has a finite dimension there exists a point x0 e X—Jo

and thus the mapping F: X —> X has the property T in the point y0 —
F(x0). Now, the set J of points in which the mapping does not have
the property T is contained in F(J0) and since F: X —> X maps finite
dimensional sets onto finite dimensional sets the set J does not disconnect
the space X (by Lemma 5). Hence by the second generalization of the
Fundamental Theorem of Algebra there is F(X) = X.

Analogously to Lemma 5 it can be proved that

LEMMA 6. A ^-dimensional set J does not disconnect a n-dimen-
sional Banach space for n ^ 2.16

Hence

THEOREM 4. Let F: X—> Xbe a polynomial mapping of a n-dimen-
sional Banach space X into itself, with n Ξ> 2. If F:X-^X has the
property T in every point y e F(X — Jo) where Jo is a countable set,
then F(X) = X.

Proof. For the proof, it suffices to note that the set F(J0) is countable
and thus, by Lemma 6, does not disconnect the space X. The rest of
the proof is analogous to that of Theorem 3 and may be left to the
reader.

II, 4. An application. Let X be the generalized .P-space of all
real continuous functions x(t) defined on the real line — co < t < oo with
metric ρ(x, y) = sup{ | x(t) — y{t) \ and let ψ(t, u) be a real continuous
function defined for — ^ < t <^, — OD< u < co satisfying the conditions:

(i ) There exists a real number m > 0 such that for every pair
uγ ^ u2 of numbers there is φ(t, uλ) — φ(t, u2) ̂  m{uλ — u2).

( j ) For each function xo(t) e X there exist numbers r > 0 and M
(depending on xo(t) and r) such that for x(t) and y(t) e S(x0, r) there is
I φ(t, x(t)) - φ(t, y(t) I ̂ M\ x(t) - y(t) \ for every t: -oo < t <σo.

Then, the mapping F(x(t)) = φ(t, x(t)) maps X onto X.

Proof. We shall first show that F: X—> Xis a polynomial mapping.
Indeed, we have by (i) ρ(F(xn), F(xm)) ^ m-p(xn, xm) for every pair xn(t)
and xm(t) of functions. Therefore, if the sequence {F(xn)} would contain

16 This Lemma and Theorem 4 were suggested to the author by H. Hanani.
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Cauchy subsequence {F(xkn)} the sequence {xkj would be a Cauchy
subsequence of the sequence {xn}. Thus F : X - + X m a p s NC sequences
onto NC sequences, i.e., it is a polynomial mapping.

Since our space is complete it suffices, by the second generalization
of the Fundamental Theorem of Algebra, to prove that F:X-+X has
the property T in every point y0 = F(xo)eF(X). Indeed, take any two
points x(t) and y(t) belonging to S(xQ, r). Then for t such that x(t) ̂  y(t)
we have by (i) and (j) m(x(t) - y(t)) ^ F(x(t)) - F(y(t)) ^ M(x(t) - y(t)),
hence - (mlM)[x(t) - y(t)] :> - (1/ikΓ). [F(x(t)) - F(y(t))] ^ - [x(t) - y(t)].
Thus (1 - m/M) [x(t) - y(t)] ^ x(t) - y(t) - 1/ilf [F(a?(t)) - F(y(t))] ^ 0.
Therefore for any t such that x(t) ̂  y(t) we have

(k) (1 - m\M) V\x(t)-y(t)\ ^ \x(t)-y(t) -(llM)[F(x(t))-F(y(t))] |.
Analogously, for any t such that y(t) :> χ(t), (k) holds and therefore

(k) holds for every t. Thus assuming that M> m and putting λ=l/Λf
and a — I — m/M we see by (k) that F:X-^X has the property T in
the point yQ = F(x0).

EXAMPLE 2. If φ(ί, u) is a real continuous function defined for
— oo<ί<oo and — oo<iί,<c» having a continuous derivative Φu(t,u)
such that there exist constants m and M: M > m > 0 for which

m ^ φu(t, u)^M

for every ί and u, then evidently (i) and (j) hold and hence the
function F(x(t)) — φ{t, x(t)) maps X onto X Such a function Φ(t, u) is
for instance the function φ(t, u) = 2u + St + sin (u + t).

REMARK 4. An analogous theorem to the above application was
proved in [10] for the space X of all real continuous functions x(t)
defined in a finite interval a St S b17.
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