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1. Introduction. Let ¥ be the complex vector space consisting of
all complex-valued functions of a non-negative real variable. For each
positive number u, let the shift operator I, be the mapping of X into
itself defined by the formula

La(t) = 0 (0=t<wu
at —u) (t=wu)

Evidently, I,,, = I,I,, for any positive numbers » and v.
A linear operator A which maps a subspace D of X into itself will
here be called a V-operator (after Volterra) if
(1.1) for each z in D, the conjugate function xz* belongs to D,
(1.2) both ® and X¥\D are invariant under the shift operators,
(1.3) every shift operator commutes with A.

Many operators that occur in mathematical physics are of this type. If
D is any subspace of ¥ having the properties (1.1) and (1.2), the rest-
riction to © of each shift operator is an example of a V-operator. All
‘perfect operators’ (of which a definition may be found in [5]') are
V-operators, on the space of perfect functions.

In this paper we obtain a representation theorem for V-operators
which are continuous in a certain sense. This result leads to characteri-
zations of two related classes of perfect operators, one of which has
been considered from a different point of view in [5]. The main repre-
sentation theorem (Theorem 4) is similar to a result obtained by R.E.
Edwards [2] for V-operators which are continuous in another sense; and
it closely resembles a theorem given recently by Konig and Meixner
([3], Satz 3).

2. Elementary properties of V-operators. An important property of
V-operators is given by

THEOREM 1. Let A be a V-operator, and let x, and x, be two of
its operands such that, for some positive number t, x,(t) = x,(t) when-
ever 0 =<t <t,, Then Ax,(t) = Ax,(t) whenever 0 <t < t,.

Proof. Let x = 2, — x,. Then, since x(f) =0 if 0 < ¢ < ¢,, there is
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a function y such that « = I, y; and y is an operand of A, by virtue of
the property (1.2). Consequently, by virtue of (1.3), Ax = I, Ay; so that
Ax(t) = 0 whenever 0 <t <t,, But Ax = Ax, — Auw,, since A is linear:
hence the conclusion of the theorem.

With products and linear combinations defined in the usual way, the
V-operators on a given space ® constitute a linear algebra (D). If A
belongs to A(*D) then so does the operator A* defined by

A*x = (Ax™*)*,

where z is any function in ©. We therefore have the unique decompo-
sition
A=B+1iC,

where B and C belong to A(D) and are ‘real’ in the sense that Bx and
Cx are real for every real function x in ©. (The property (1.1) ensures
that every function z in ® can be uniquely expressed as x, + ix,, where
2, and 2, are real functions in 9D.)

If A is a linear combination of shift operators, we have

n n
A = Zaquj = quaj-[uj~u )
J=1 J=1

where «,,---, «, are complex numbers, u is the least of the positive
numbers u,,---, u,, and I, is the unit operator (to be denoted henceforth
by ‘I’). From this it is apparent that A has no reciprocal in the algebra
A(X); however, I — A has a reciprocal in (%), as the following result
shows.

THEOREM 2. Let A be a V-operator on a space D, and let u be any
positive number. Then the formula

Ba(t) = alt) + SLnA"(t) ,

where x 18 any function in D, and t = 0, defines a linear transforma-
tion B, of D into X, which commutes with every shift operator and s
such that B(I — I, A)x = x for every x in D and (I — I,A)Bx = x if Bx
18 in D.

Proof. The series defining B certainly converges (pointwise): in fact,
if t,= 0 and m is a positive integer such that mu = t,, then, for any
z in D,

Ba(t) = x(t) + i I A a(t)
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whenever 0 < ¢ < t,, Hence if Bx is in ® then, by Theorem 1,
(I — I,A)Bua(t) = (t) — Ipi1yuA™ 'a(t) = x(t)

whenever 0 < t < ¢, so that (I — I,A)Bx = z, since t, is arbitrary. Also,
if zis in ® then (I — I,A)x is in D, so that

B(I — IL,A)x(t) = (I — I,A)x(t) + iInMA”(I — I,A)x(t)
= 3(t) — Lo uA™2(t) = 2(2)

whenever 0 <t <t, Thus B(I — I,A)x = x. It can be verified in a
similar way that B commutes with the shift operators and is linear.

If the transformation B of Theorem 2 maps D into itself, then I—I, A
has a reciprocal in (D), namely B. This is certainly the case if D con-
sists of all the functions « that have some purely local property (for
example, continuity, with 2(0) = 0, or differentiability, with x(0)=x'(0)=0,
or local integrability).? It is also the case with certain other choices of
®, provided that A is restricted to be a linear combination of shift
operators; for example, if ® consists of the perfect functions, then an
operator of the form

(2.1) ad +ad, + - +a,l,,

has a reciprocal in (D) if a, +# 0 (this can be seen at once on taking
Laplace transforms and using Theorem 6 of [5]).

If D contains more than the zero function, it is clear that (2.1) re-
presents the zero operator on D only if all the coefficients «,,---, «, are
zero; and since the product of two operators of this form is another such
operator, the reciprocal of (2.1) cannot be expressed in the same form
unless it is a scalar multiple of I. Thus it is usual for (D) to contain
operators other than those of the form (2.1). In general it seems to be
difficult to decide whether A(®) is commutative or not; but it is shown
in §4 that D can be chosen, of moderate size, so that A(D) is not com-
mutative.

The Laplace transformation is naturally associated with the idea of
a V-operator, because it converts the shift operators to exponential fac-
tors. A locally integrable function x has an absolutely convergent Lap-
lace integral if = is of exponential order at infinity, in the sense that
2(t) = O(e*) as t — oo, for some real number ¢ (depending on ). One
can consider V-operators on spaces consisting of such functions, and for
some of these spaces the following result is available.

THEOREM 3. Let A be a V-operator on a space D consisting of all

2 A property at infinity might be regarded as ‘local’, but this interpretation is to be
excluded here.
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the functions in X which satisfy some (possibly empty) set of local con-
ditions and are of exponential order at infinity. Then there are posi-
tive numbers b, ¢, and T such that | Ax(t)| < be® whenever t = T and
l2(t)| <1 for all ¢, with x in D.

Proof. Assuming the theorem to be false, we shall construct in-
ductively a sequence {z,} in ®, and a sequence {t,} of positive numbers,
such that, for each positive integer =,

(i) |x.(t)] < 2" for all values of ¢,

(i) t,=n,

(i) «,(t)=0 if 0=t=<t,,, where t, =0,

(v) | Spdwt,) | = emn,

In the first place, if the theorem is false, we can choose 2, so that
| 2,(t) | < % for all values of ¢t and | Ax,(t) | = ¢' for some value of ¢, say
t,, greater than 1. Suppose, then, that the first m — 1 terms of each
sequence have been chosen, where m > 1, so that (i)-(iv) hold when
n<m—1. Let

m=1
Y= >, A2, .
J=1

Since ¥, belongs to ©, there is a real number ¢, such that |y,(t)| =
e‘n when t is sufficiently large. We can choose z, so that |z,({) |<2 ™
for all ¢t,2,(()=0if 0<t=<t¢,.,, and

lem(tm) lg 2e(cm+m)nm ,

where ¢, is chosen so that ¢, = m and | ¥.({,.) | =< e‘»'». Then
|5 An(tn)| 2 | Avaltn) | — | Unlta) | 2 emimim 2 mom.
J=1

Thus (i)-(iv) hold when n = m.

Now let z, = >7_.x,. Then |2((t) | = 1 for all ¢, by virtue of (i); and
%, belongs to P since, by (iii), it has the appropriate local properties.
Hence there is a real number ¢, such that Ax(t) = O(e*’) as t — oo; so
that, by (ii), Ax(t,) = O(e%™?) as n — «. But, by (iii) and (iv), and Theo-
rem 1, | Ax(t,) | = e*» for each n. This contradiction proves the theorem.

3. Strong continuity. If the field of complex numbers is given ei-
ther the discrete topology or the usual topology, the space ¥ can be
given the corresponding topology of uniform convergence on finite closed
intervals. The first of these topologies for X has the property that every
V-operator is continuous with respect to it, as Theorem 1 shows; but it
does not make X a topological vector space (it has the defect that n-'x—0
as n — o only if x is the zero function). The second topology for X%
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is more interesting, and will be referred to as the strong topology.
In fact we shall consider this only in relation to the closed subspace, €,
consisting of all the continuous functions # for which x(0) = 0. For each
2z in €,, and each non-negative number ¢, we define ||z ||, to be the least
upper bound of |x(u)| with 0 < u <t. We can then give €, a metric,
“which determines the strong topology, by taking the distance between
functions « and ¥ to be

St la =yl + =yl

In this way €, becomes a Fréchet space.

In the case of €, which is an example of a space D satisfying (1.1)
and (1.2), a large class of V-operators, including those of the form (2.1),
can be defined in terms of Riemann-Stieltjes convolution integrals. If
v is a function which belongs to ¥ and has bounded variation in every
finite interval [0, t], then the formula

3.1) Ax(t) = S:x(t — wydy(u)

where 2« is any function in €, defines a V-operator A on €, (cf. [5],
Theorem 3). Moreover, if 0 < v <t then

| a) | = a0 —wlavw) | = (el a@ ], ¢=20),
so that
PRI YO

whence it follows that A is strongly continuous (continuous with respect
to the strong topology). The theorem we are about to prove shows that
every strongly continuous V-operator on a sufficiently large space ® of
continuous functions can be represented in this way (and can therefore
be extended from D to the whole of €,).

If A is a linear operator on a subspace ® of €,, and if ¢t = 0, we
denote by ‘|| A|],” the least upper bound of || Az ||, with # in © and
lzl]l, =1. It is clear that A is strongly continuous if and only if || A4 ||,
is finite for all values of ¢ (or, equivalently, for all sufficiently large values
of 1).

THEOREM 4. Let A be a strongly continuous V-operator on a strong-
ly demse subspace D of §,, and let t be any positive number. Then there
18 a function v in X, with v(0) = 0 and v(u—) = v(u) whenever 0<u=t,
such that Ax(t) is given by (3.1) for every x in D. This function v is
untiquely determined by A, and is independent of t; its total variation
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in the interval [0,t] is || A ..

Proof. For each function x in ®, and for each positive number ¢,
let x, be the restriction of x to the closed interval [0, ¢]. Then, for a
fixed value of ¢, the mapping « — x, is a linear transformation of ® on
to a subspace O, of the complex Banach space C[0, {], consisting of all
continuous functions on the interval [0, t]; moreover, ||z, || = || 2|,. If
2, = 0 then Ax(t) = 0, by Theorem 1; we can therefore define a linear
functional ¢ on D, by the formula

P(2,) = Ax(?) .

This functional is continuous, with ||@ || = || 4 ||,

An integral representation of @ can be found by adapting a const-
ruction used by Banach ([1], §9-60). By a well-known theorem®, ¢ can
be extended without change of norm to the complex Banach space M|[0, t],
which contains the characteristic functions of all the subintervals of
[0,t]. A function vy, can then be defined on [0, ¢t] so that v,(0) = 0 and

() [lanw = liell,
(i) #(f) = [ £t = wavw)

for every function f in C[O, t].

Without affecting the validity of (i) or (ii), we can adjust v, so that
it is continuous on the left at each interior point of the interval [0, £].
Moreover, if fis a continuous function such that f(0) = 0, then the jump
of v, at the point ¢ makes no contribution to the integral in (ii); there-
fore, as far as such functions f are concerned, we may suppose v, chosen
so that v, (t—) = v,(¢), giving left-hand continuity throughout the inter-
val (0, t], and retaining (i). Under these conditions, v, is uniquely de-
termined by A. For, if 0 < v <t and 0 < § < v, there is a function f;
in C[0, t] such that || f5]| =1 and

0 O=2ust—o)

fs(u):{l t—v+6=ust).

Thus
w59 = v + | fit — wav) ,
and therefore
R ED I YOI

3 The Hahn-Banach-Bohnenblust-Sobczyk extension theorem: see, for example, (8], 113.
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so that @(fs) — v,(v) as 6§ — 0.* But since D is strongly dense in €, f;
belongs to the closure of ¥, in C[0, t]; so that, ¢ being continuous,
@(f;) is uniquely determined by A, for each value of 8. This establishes

the uniqueness of v,.
Now suppose that t" > ¢. By what has been proved, we have, for

any « in 9,
Az(t) = S:x(t — Wdv,(u) .
But Ax(t) = I,,_,Ax(t'), and I, ,A = Al, ,; hence
Ax(t) = S:IIt,,tx(t’ — Wdy,(u) = S:x(t — Wy, (u) .

It follows that v,(u) = v,.(u) whenever 0 < uw < t; in particular, y,(f) =
v,(t). Hence if we define the function v by
y(t) = v,(t) (t=0)),
we obtain the required representation of A.
Finally, (i) shows that
| =11AlL,

and we have previously noted that, for any z in D,

t
1Azl < o) v |
Thus St| dv(u) | = || A ||,, and the proof is complete.’
0

As a corollary, we have
THEOREM 5. Suppose that the formula
Ax(t) = S‘K(t, wa(u)du (t = 0)
0

defines a V-operator A on €, the kernel K being such that gti K(t,u) |du
0

exists as a Lebesgue integral which is locally bounded with respect to
t. Then there is a function k in X such that, for each t, K(t, u)=k(t—u)
for almost all values of wu.

+ Here we use the fact that if a function of bounded variation is continuous on the left,
then so is its total variation.
5 In this proof we have not fully used the fact that A maps D into itself: it is enough

that A maps D into Co.
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Proof. For each t, let || K ||, be the least upper bound of Svl K(v,u)|du
0
with 0 < v £ t; this is finite, by hypothesis. Then, for each z in €,

Az, = [ K|l ][],
so that A is strongly continuous. But
Ax(t) = S:K(t, t — walt — w)du ,
so that if
L(u) = S:K(t, t — v)dv
then
Ax(t) = S:x(t — w)dLyuw) .

Hence, by Theorem 4, L, = v, a function which is independent of ¢. Since
v has bounded variation, there is a function %k such that

kw) = -Lu(w)

except when u is in a set E whose Lebesgue measure is 0. However,
for each value of %,

d _d _ .
Wy(u) = WL‘(H) = K(t,t —u)

except when % is in a set E, of measure 0. Thus
K(t, w) = k(t — u)
except when « is in the set ¢ — (E,UE), which has measure 0.
The functions in €, which are of exponential order at infinity form
a subspace &, The perfect functions form a smaller subspace, 9, (in

fact 9, is the largest subspace of &, which is invariant under the dif-
ferential operator, D).

THEOREM 6. 9, is strongly dense in €,.
Proof. It is easily seen that &, is strongly dense in €, in fact, if
z is in €, and 2, is defined by

at) (0=t=n)

0= oy ¢z,
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then 2z, belongs to &, for each n, and x, — x strongly as n — «. To

show that ®, is dense in &, let £ be any function in &, and, for each

positive number o, let g be a positive perfect function such that if
13

t = 8 then g, (tf) = 0 and ng(u)du =1 (for example, we could take g
0

to be Dhg, where h; is given by Lemma 1 of [5]). Let x; = x%g,.
Then 2 belongs to D, (‘xx’ is a perfect operator), and, if v = §,

2o(0) — a(v) = | ‘a0 — Wy (W)du — o(v)
= {0 — w) - 2@y du

Now let ¢t and ¢ be any positive numbers. Since x is uniformly
continuous in the interval [0, t], with 2(0) = 0, we can choose 8 so that

| (v —u) —a(v) | <e

whenever 8§ < v = ¢, and | 2(v) | < 3¢ whenever 0 < v < §; then
8
[26(0) — a(0) | < &] go(u)du = ¢

if6<v=<t andif 00 9,
| 25 (V) — 2(v) | = S:| x(v —u)| 9s @du + | x(v) |
= %egjg(s)(u)du +ide=c¢.
Thus || x5 — ||, <e. It follows that 9, is strongly dense in €,.

In [5] it is shown that any positive perfect operator has the repre-
sentation (8.1), with v a non-decreasing function (in fact this holds for
any positive V-operator on a space ® such that ®, = D = €,). It follows
that the linear combinations of positive perfect operators, which form
a linear algebra M(D,)°, are strongly continuous. On the other hand,
there are strongly continuous perfect operators which do not belong to
M(D,): for example, if v(t) = sin (¢ —1), and A is defined on D, accord-
ing to (3.1), then, as is shown in [5], A is a perfect operator which is
not in W(D,); but of course A is strongly continuous. However, it is
possible to characterize WY(D,) in terms of seminorms, as follows.

THEOREM 7. A V-operator A on D, is an element of M(D,) if and
only if there is a real number ¢ such that || All, = O(e*) as t — oo.

Proof. By Theorem 1 of [5], an operator A on D, is in M(D,) if

6 M(Dy) is denoted in [5] by “We’.
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and only if it admits the representation (3.1) with v a linear combination
of positive non-decreasing functions which are of exponential order at
infinity. This condition on v is equivalent to the existence of a real
13
number ¢ such thatg | dy(u) | = O(e*) as t — . Therefore, by Theorems
0
4 and 6 above, A is in WYD,) if and only if || A ||, = O(e*) as t — oo.
Each function v in €, determines a strongly continuous V-operator

A on €, according to the formula Ax = x*y; for, integration by parts
shows that this formula is equivalent to (3.1), with

Ut) = Dy(®) = | ywdu t=0).

An important property of convolution in €, is the fact that it obeys the
associative law (as well as the commutative law); more generally, we
have

THEOREM 8. Let A and B be strongly continuous V-operators, on
€, and on a subspace D of €, respectively. If x is any function in D
then Ax belongs to the strong closure of D; if Ax 1s in D itself, then
ABx = BAx. In particular, if y is a function in €, such that xxy s
m D, then B(xxy) = (Bx)*y.

Proof. Let A be represented by a function v in accordance with
Theorem 4. Then for any x in 9D, each value Ax(t) can be arbitrarily
approximated by sums of the form

Siuu) — v(u, a(t — u)

=

where 0 < u, =<---=<u, =t; and this approximation is locally uniform
with respect to . Now the above sum is the value at ¢ of the function

(i) Sl ,

j=1
where a; = v(u;) —v(u,_,). This function belongs to 9, since D satifies
(1.2). Thus Ax belongs to the strong closure of ©. Further, the points

u; can be chosen in such a way that, while Ax is strongly approximated
by (i), ABx is simultaneously approximated, in the same sense, by

(i) Sa,l, B .
j=1
But, since B is a V-operator, (ii) is the same as

Biajlujx .
=1
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Since B is strongly continuous, it follows that ABx = BAx if Ax is an
operand of B.

We can now prove a partial converse of Theorem 1, namely.

THEOREM 9. Let A be a non-zero strongly continuous V-operator on
C,. Then there is a non-negative number t such that (i) for any func-
tion x in C,, Ax(t) = 0 whenever 0 <t < 7, and (ii) if Ax(t) = 0 when-
ever 0 <t < t,, where x belongs to €, and t, = t, then x(t) = 0 whenever

0=s=t=st,—7. In particular, x =0 1f Ax = 0.

Proof. Let v be the function representing A according to Theorem
4, and let 7 be the greatest lower bound of the numbers ¢ for which
y(t) # 0. Obviously, = has the property (i) required by the theorem.
Suppose that z is a function in €, such that Ax(¢f) = 0 whenever 0=t<¢t,,
where ¢, = 7. Let g, be defined as in the proof of Theorem 6, and let

%3 = ®%g;. Then, for each value of 8, x; has a derivative xf; in €;
in fact x(5, = axgl;,. Also, if 0 <t < ¢,

| ot — wpu)du = Ao (©) = (Ayigis (b
= SLAx(t — u)g @ (w)du = 0.

Therefore, by a theorem of Titchmarsh [4, 327], «/;(t) =0 whenever
0<t=<t,— 7 (we cannot have v(t) = 0 for almost all ¢ in a neighbour-
hood of 7, since v is continuous on the left). Hence x/(t) = 0 whenever
0=t=t,— 7. Since x4(t) — x(t) as 6 — 0, the theorem follows.

It is a consequence of Theorem 8 that every strongly continuous
V-operator on 9, is a perfect operator (the converse is false; in fact it
is easy to see that the differential operator D is not strongly continu-
ous). Thus an operator A represented by (3.1) is a perfect operator if
and only if it maps D, into itself. An equivalent condition is given by

THEOREM 10. The formula (3.1), with x in D,, represents a perfect
operator A if and only if there is a positive integer n such that D "v
belongs to &, where

Dty = | o | Mg vduy, = w2 0).

Proof. For any perfect function x and any positive integer n, we
have from (3.1), after integration by parts,



1464 J. D. WESTON
Au(t) = Yx‘”“’(t — w)D-"y(u)du t=0).
0

Thus if D"y belongs to &, for some value of n, then 4 is a perfect
operator. On the other hand, suppose that A4, given by (3.1), is a per-
fect operator (when restricted to ®,). By a general representation theo-
rem for perfect operators [6], there is a function y in &, such that, for
some positive integer n, and every perfect function «,

Au(t) = S:x(”“’ (t — wyy(u)du t=0).

Hence x™+Vx(y — D~"v) = 0, so that, by Theorem 9,y = D"y,

If v(t) = e, the V-operator A given by (8.1) does not map D, into
itself, since v does not satisfy the condition of Theorem 10.

Every perfect operator A has a Laplace transform, A: if A is given
by (8.1), A may or may not be given by

(3.2) A(z) = S:e‘”dv(t) ,

the integral being convergent when Rz is sufficiently large. This repre-
sentation of A is certainly valid if A belongs to (D, (cf. [5], Theorem
4); and also if y(t) = sin(e" —1), for example. But if D~'u(t)=sin (9‘2——1)
the integral in (8.2) does not converge for any value of z (as can be
seen on integrating twice by parts). However, (3.2) holds whenever the
integral is convergent, as the following result shows.

THEOREM 11. Let A be any strongly continuous perfect operator,
and let v be a function such that A is represented by (3.1). Then the
Laplace transform A is represented by (3.2), with Rz sufficiently large,
1f the imfinite integral is interpreted im the sense of summability (C, n),
where n s any non-negative integer such that D"y belongs to &,

Proof. Let B be the perfect operator obtained on replacing v by
D~ in (8.1). Then, if x is any perfect function, and ¢ = 0,

DBa(t) = Br'(t) = S‘x'(t — wy)du = v(0)z(t) + S'x(t — wydv(u) .
0 0
Thus DB = v(0)] + A. If v belongs to &, then, since B is determined
by the function v in the sense that Bx = a*v, B has the same Laplace

transform as v; that is to say, when Rz is sufficiently large,

B(z) = S:e‘“v(t)dt .
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Therefore, in this case,

A(z) = 2B(z) — 1(0) = S:ze‘“{v(t) —(0))dt = re‘”du(t) ,

so that (3.2) holds, the integral being convergent.

We now proceed by induction. Suppose that, for some non-negative
integer m, (3.2) holds in the sense of summability (C, n) provided that
D"y belongs to &, and Rz is sufficiently large. If D-""'v belongs to &,
and ¢t > 0, then

g:(l— %Yﬂe‘”du(u) = —y(0) + zSZ(l— —%)nﬂe“”dD‘ly(u)
_|_

: 1 S:<1—%>ne‘”dD“v(u) .

n

+

But, by the induction hypothesis (with D~'v in place of v),

B(z) = lim S:<1—%>"“e~wd1)—1»(u) — lim S:(l—%)ne‘“‘dD‘lv(u)

t—oo t—o0

when Rz is sufficiently large; so that

lim Sc<1——l>n+le‘z"dv(u) = —1(0) + zB(z) = A(2) .

t—oo JO t

Thus
A(z) = re*"du(t) €, n+1),
0
and the theorem follows.

If ® is any subspace of €, satisfying (1.1) and (1.2), the strongly
continuous V-operators on ® form a subalgebra of (D), say N(D). If
D is strongly dense in €,, it follows from Theorem 4 that N(D) effectively
consists of those operators in N(€,) which leave D® invariant. In this
case, Theorems 8 and 9 show that N(D) is an integral domain (it is
commutative, and has no divisors of zero). The full algebra 9(¢,)" has
the further property that any operator which is inverse to an operator
in N(E,) is itself in N(C,): this is special case of

THEOREM 12. Let A and B be strongly continuous V-operators on
a strongly closed subspace D of €, and suppose that there is an ope-
rator C on D such that A = BC. Suppose also that Bx =0 only if
2=0. Then C is a strongly continuous V-operator.

7 N(Co) = M(Co), consisting of the linear combinations of positive V-operators on €.
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Proof. If w >0 and zis any function in ® then, since A and B
are V-operators,

B(I,Cx — ClLx) = ILAx — AlLx = 0;

so that, by the hypothesis concerning B, I,Cx = CI,x. In a similar way
it can be verified that C is linear, and is therefore a V-operator. To
show that C is strongly continuous, let {x,} be a strongly convergent
sequence in ® such that the sequence {Cx,} is also strongly convergent.
Since A and B are strongly continuous,

B(lim Cx, — Clim z,) = lim Az, — Alimz, =0,
so that lim,_..Cx, = Clim,_.x,; thus the graph of C is closed. Now D,
being strongly closed, is a Fréchet space relative to the strong topology;
hence, by Banach’s closed-graph theorem [1, 41}, C is strongly continuous.

4. Operators that commute with convolution. It is a consequence
of Theorem 8 that a subspace ® of €, satisfying (1.1) and (1.2), is
closed under convolution if it is strongly closed. On the other hand, ®,
is closed under convolution though it is not strongly closed. If ® is any
subspace of €, which is closed under convolution (so forming an integra]
domain with no unit element), an operator A on ®© will be said to com-
mute with convolution if

A(wxy) = (Ax)*y

for all » and y in ©. Such operators are necessarily linear (cf. [5], § 4),
and, for a given choice of D, they form an integral domain ©f in which
D is isomorphically embedded (by the correspondence x — ).

A shift operator belongs to ©* if it maps ® into itself. Hence if
D satisfies (1.1) and (1.2), in addition to being closed under convolution,
then all the operators in ©F are V-operators; in fact ®* is then a maxi-
mal commutative subalgebra of (D). In this case, Theorem 8 shows
that every strongly continuous V-operator commutes with convolution;
so that

ND) < D < AD) .

If, further, ® is strongly closed, then (D) = D*: for, if B is defined
by Bx = xxy, with ¥y in ®, and A = BC, where C is any operator in o,
then, for any « in 9,

Ax = (Cx)*xy = C(xxy) = C(yxx) = (Cy)*x;

thus the conditions of Theorem 12 are satisfied, so that C belongs to
N(D). In particular, the operators on €, that commute with convolution
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are precisely the strongly continuous V-operators on €, (and can there-
fore be represented according to Theorem 4).

An operator A on &, which commutes with convolution can be ex-
tended to the whole of €, so as to preserve this property. For, if x is
any function in €, let x, be defined, for each positive integer n, as in
the proof of Theorem 6: then z, belongs to &, and Theorem 1 shows
that Ax,(t) is independent of % provided that » = t; therefore, if {=0,
we can define Ax(t) to be Ax,(t), where n = t, without ambiguity. Since
convolution is defined locally this extension of A is an operator on €,
which commutes with convolution. It follows that A is strongly conti-
nuous, and that its extension to €, is unique (since &, is strongly dense
in €).

The integration operator, D~!, is an example of an operator on €,
which commutes with convolution. Since D, can be expressed as (n-.D ",
any operator on €, which commutes with convolution and leaves &, in-
variant must leave ®, invariant. The converse of this is false: for, if
A is defined by (3.1), v being such that D% belongs to & but D-'v
does not, and v(0) = 0, then A maps 9, into itself, by Theorem 10; how-
ever, if x(t) = ¢ then

Ax(t) = S:(t — wydv(w) = Du(t)

so that x is in &, but Az is not.

The operators on 9, that commute with convolution are the perfect
operators. These can be characterized as those V-operators on ®, which
are continuous in a sense defined in terms of Laplace transforms [7]°.
The strongly continuous perfect operators are the strongly continuous
V-operators on 9, constituting the algebra N(D,); this algebra, and also
its subalgebra YYD,), can be characterized in terms of convolution, as
follows.

THEOREM 13. A perfect operator belongs to N(D,) if and only if
it can be extended to the whole of €, so as to commute with convolution;
it belongs to M(D,) tf and only if this extension (necessary unique)
leaves &, invariant.

Proof. If an operator A on D, can be extended to €, so as to com-
mute with convolution, then its extension belongs to RN(€,), so that A
itself belongs to N(D,). On the other hand, any operator A in RN(D,)
admits the representation (3.1), which provides an extension of A to €,:
this extension, being strongly continuous, commutes with convolution;

8 It is not at present known whether there are any V-operators on ®, which are not

perfect; that is to say, it is not known whether (Do) is commutative or not (but there are
linear operators on ®, which commute with D and are not perfect [6]).
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it is also unique, since 9, is strongly dense in @,.

If a perfect operator A has a strongly continuous extension to €,
which leaves &, invariant, we can regard A as a V-operator on &, then,
by Theorem 3, there is a real number ¢ such that || A ||, = O(e®) as t—,
and this implies, by Theorem 7, that A belongs to M(D,). On the other
hand, if A belongs to M(D,) then the extension of A to €, given by
(3.1) leaves @, invariant, by Theorem 3 of [5].

Finally, we give an example of a V-operator, on a strongly dense
subspace of €, which does not commute with convolution. Let % be the
Heaviside unit function (k(¢) =1 if ¢ = 0), and let D, be the class of all
functions x given by

4.1) @ = DYy + Bh),

where y belongs to €, and B is an operator of the type (2.1). Then
DD €€, and D, satiyfies (1.1) and (1.2); moreover, D, is closed
under convolution. It is clear that y and B in (4.1) are uniquely deter-
mined by 2, and that the mapping # — y is a V-operator, say A, on 9,.
The operator D! maps D, into itself and commutes with convolution.
However, AD*x = 2 and D'Ax =y, so that AD'# D'A. Hence A
does not commute with convolution. It follows that the algebra (D)),
of all V-operators on ®,, is not commutative.
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