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AN OPTIMUM CUBICALLY CONVERGENT ITERATIVE
METHOD OF INVERTING A LINEAR BOUNDED

OPERATOR IN HILBERT SPACE

M. ALTMAN

l In paper [1] we considered a power series method of inverting
a linear bounded operator in Hubert space. This method is actually
an iterative method with the same speed of convergence as a geometric
progression. A product of two linear operators we shall call briefly
a multiplication. Thus, in general, a power series approximative method
has the following two properties:

(1) at each iteration we use one multiplication;
(2) the convergence is linear.

In paper [2] we considered an iterative method of inverting an arbitrary
linear bounded operator in a Hubert space. This method requires two
multiplications at each iteration step, and the convergence is quadratic.
In the present paper we give an iterative method of inverting an
arbitrary linear bounded operator in a Hubert space. This method
requires three multiplications at each iteration step and is cubically
convergent. Thus, the quadratically convergent method which requires
two multiplications at each iteration step may be called the iterative
hyperpower method of order two. Analogously, the cubically convergent
iterative method which requires three multiplications at each iteration
step may be called the iterative hyperpower method of order three. The
following two problems arise now in a natural way:

(1) Is it possible to construct an iterative hyperpower method of
any degree?

(2) To give a comparison of the hyperpower methods of different
degrees, and to answer the question whether there exists an optimum
method. As a criterion for a hyperpower method to be better we can
assume the following:

The method / is better than the method / / if after some iteration
steps using the same amount of multiplications for both methods, the
method / gives better accuracy. In this paper we construct a certain
class of iterative hyperpower methods and for this class the answers to
both questions mentioned above is positive. It turns out that the opti-
mum method of this class is the iterative hyperpower method of degree
three.

Let A be a linear (i.e. additive and homogeneous) bounded operator
with the domain and the range in a Banach space X.

Let us assume that the operator A is non-singular, i.e. A has an
Received October 5, 1959. Based on research supported by O.N.R., U.S.A.
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1108 M. ALTMAN

inverse A"1 defined on the space X. Let us suppose that the linear
bounded operator Rx is an approximate reciprocal of A. Suppose also
that Rx satisfies the following condition

(1) | | I - ABxIl =a < 1 ,

where / is the identity mapping of X
Let p be any positive integer such that p Ξ> 2. We shall construct

an iterative hyperpower method of degree p with the following property

(2) I-ARn+1=(I-ARn)*,

where (Rn) is the sequence of the approximate inverses of A. It is easy
to see that this sequence can be defined as follows

(3) Rn+1 = Rn(i+ τn + τ\ + . . . + r r 1 ) ,

where

(4) Tn = I-ARn, w = l , 2 , . . . .

Multiplying both sides in (3) by A we get by (4)

ARn+1 = (I- Tn)(I+ Tn + Tl + . . . + TV) = I - Tl .

Hence we obtain the relationship (2).

Thus, we have the following theorem.

THEOREM 1. The sequence of the approximate inverses Rn defined
by formula (3) converges in the norm of operators toward the inverse
of the non-singular operator A, provided that Rλ satisfies condition (1).
The error estimate is given by the formula

(5 ) || A'1 — Rn+11| ^ || A'1 \\ap

or

(6) WA-'-R^W^WJ
1 I-a

Proof. Formula (2) gives by induction

(7)

Hence we get by (7)

(8) R-Rn+1 =

or

(9) Λ-Λ f ( + 1 = .R1(/-
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Formula (5) follows from (8) and formula (6) follows from (9).
For p = 2 formula (3) yields

(10) Rn+1 = Rn(2I-ARn).

This case was considered in [23], For p. = 3 we get

(11) Rn+1 = Rn(I +(I- ARn) + (I- ARnY)

or

(12) Rn+1 = Rn(SI- SARn + (ARnf)

Thus, we have a class of methods with the property (2).
The question is now if there is an optimum method in this class of

methods. To compare two methods we shall use the criterion mentioned
above, i.e. the method is better if using the same number of multipli-
cations gives a better accuracy.

Let p and q be two different positive integers. Consider the corre-
spondings methods Mp and Mq defined by the formula (3). At each itera-
tion step the method Mp takes p multiplications and the method Mp

takes q multiplications in the sense defined above. Suppose that after
a certain number of iteration steps which is different for both methods
we get the same number of multiplications which is equal to

(13) mp = nq .

Then in virtue of (5) the accuracy of the methods Mp and Ma is given
by the exponents pm and qn respectively. Suppose that

pm > qn .

Then we have by (13)

pm > qs ,

where

Hence,

(14)

we have

Q
o

mp
q

> q l l q

The inequality (14) shows that we obtain the optimum method Mp for
p such that the function pllP(p = 2, 3, •••) achieves its maximum. This
is the case when p — 3 since the maximum of the function

y — xllx , x > 0

is attained at x = e.
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2. We shall now apply Theorem 1 in order to find the approximate
inverse of a linear bounded operator in a Hubert space. Thus, we sup-
pose that X is a Hubert space H and A is a non-singular linear bounded
operator with the domain and the range in H.

Let us begin with the case when A is a self-adjoint and positive
definite operator, or, more precisely

where A* is the adjoint of A, and A satisfies the condition

m(x, x) ̂  (Ax, x) ̂  M(x, x) ,

where 0 < m < M, and m, M are the minimum and maximum eigen-
values of A respectively.

Consider the linear operator.

Ta = I- aA , 0 < α < 2/Λf .

In virtue of the critical value theorem1 we have

(13) ^ZL2?L^| |r β | |=α β <l if 0<α<2/M.
M + m

The minimum of the norm || Ta\\ is equal to

c M + m

and is reached precisely at the critical value ac of A, i.e. for

a = ac = — .
M + m

Thus, we get the following theorem.

THEOREM 2. Let us suppose that A is a self-adjoint positive de-
fined linear operator. If

(15) R, = al for 0 < a < 2/Jlf ,

then the sequence of operators Rn determined by the iterative process
in (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the following formula

(16) \\A-i-Rn\\^±aln

m
1 See [1], [2]
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or

(17)

where aa = || Ta | |. 27&e convergence is best for the critical value of
A, i.e. for a~aG — 21M + m. Jw ίfeis case aa in formulae (16) and
(17) should be replaced by ac defined in (14).

Putting p = 3 in Theorem 2 we get the theorem for the optimum
method. Thus, we have

COROLLARY 1. The iterative process defined by the formula (11) or
(12) converges cubically toward the inverse of A provided that Rx is de-
fined by (14). The error estimate is given by formula (16) or (17),
where p = 3. The convergence is best for the critical value of A, i.e.
for a = ac = 2jM + m. In this case aa in formulae (16) and (17) should
be replaced by ac defined in (14).

REMARK 1. The convergence of the iterative process is uniform with
respect to a for any closed interval contained in the interval 0 < a < 2/Λf.
Let us observe that a in (15) can be replaced by any number 1/iΓ, where
K is greater than || A| | . However, the convergence is faster when K
is smaller. If the operator A is defined by a matrix

(18) A = (atJ) i,j = 1,2, -- ,k

satisfying the conditions of Theorem 2, then K can be replaced by any
of the following numbers

Tc Tc / Ίc \ l/2

(19) m a x Σ I a υ I m a x Σ I % I ( Σ I «w I2)

However, the convergence is faster when K is smaller.

3. We shall now consider the general case when A is an arbitrary
non-singular linear bounded operator in H.

Since the operator A A* is self-adjoint and positive definite, we have
the following inequalities

m\x, x) ^ (AA*x, x) ^ M\x, x) ,

where 0 < m2 < M2 and m2, M2 are the minimum and the maximum
eigenvalues of AA* respectively.

Let us consider the linear operator

TΛ = I- aAA* , 0 < a < 2/M2 .

Using the same argument as in §2, we get the following inequalities;
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instead of (13).

(20) ΐ~m[ ^ l l Γ , | | = α , < l if 0 < α < 2 / M 2 .
M2 + m2

The minimum of the norm || Ta\\ is reached at

a — ac —
M2 + m2

and is equal to

(21)

Thus we obtain the following theorem.

THEOREM 3. / /

(22) R, = αA* for 0 < a < 2/M2 ,

the sequence of operators Rn determined by the iterative process
in (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the formulae (16) or (17), where aa

should be replaced by the expression in (18). The convergence is best
for

a = ac =

For the error estimate in this case aΛ in formulae (16) and (17) should
be replaced by ac defined in (21).

Putting p — 3 in Theorem 3 we get the theorem for the optimum
method in general case. Thus we have

COROLLARY 2. If R1 is determined by (22) then the iterative
process defined in (11) or (12) converges cubically toward the inverse of
A. For the error estimate we have the formulae (16) or (17), where
p = 3. The convergence is best for the critical value of AA*, i.e. for

a = ar =

In this case aΛ in formulae (16) and (17) should be replaced by ac de-
termined in (21).

REMARK 2. The convergence of the iterative process defined by-
Theorem 3 is uniform with respect to a for any closed interval contained
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in the interval 0 < a < 2/M2. Let us remark that a in (22) can be re-
placed by any number 1/iΓ, where K is greater than ||^4.||2. However,
the convergence is faster when K is smaller.

If the operator A is defined by the non-singular matrix in (18), then
for K we can take any of the numbers in (19) with the matrix AA*
replacing the matrix A. We can also take for K any of the squared
numbers in (19).

The table below shows the difference in rate of convergence between
the following three method: I, II, III, where

I is the power series method considered in [1] (see page 52)
II is the quadratically convergent defined in (10)

III is the cubically convergent optimum method defined in (11) or (12).

Number

I

6

12

18

24

of

II

3

6

9

12

Iterations

III

2

4

6

8

Number

I

6

12

18

24

of Multiplication

II III

6 6
12 12
18 18
24 24

REFERENCES

Accuracy (a

I

α6

α 1 2

α 1 8

α 2 4

II

α 8

α4096

<D
III

α 9

α 8 1

α 7 2 9

α6561

1. M. Altman, Inversion of non-singular linear bounded operators in Hilbert space with
application to matrix calculus.
2. , Inversion of linear bounded operators in Hilbert space with application to
matrix calculus.

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA,

ACADEMY OF SCIENCES, WARSAW.





CRITERION FOR rTH POWER RESIDUACITY

N. C. ANKENY

The Law of Quadratic Reciprocity in the rational integers states:
If p, q are two distinct odd primes, then q is a square (modp) if and
only if ( — l){p-1)l2p is a square (modg).

One of the classical generalizations of the law of reciprocity is of
the following type. Let r be a fixed positive integer, φ(r) denotes the
number of positive integers <£ r which are relatively prime to r; p, q
are two distinct primes and p == 1 (mod r). Then can we find rational
integers aλ(p)f a2(p), , ah{p) determined by p, such that q is an r th
power (modp) if and only if ajjή, •• ,α/i(;p) satisfy certain conditions
(mod q).

The Law of Quadratic Reciprocity states that for r = 2, we may
take aλ{p) = (-l)(2J~1)/2p.

Jacobi and Gauss solved this problem for r = 3 and r = 4, respective-
ly. Mrs. E. Lehmer gave another solution recently [2].

In this paper I would like to develop the theory when r is a prime
and q = 1 (modr). I then show that q is an r th power (modp) if and
only if a certain linear combination of aλ{p), , αr-i(p) is an r th power
(mod q). a1(p)f , αΓ_x(p) are determined by solving several simultaneous
Diophantine equations. This determination appears mildly formidable
and to make the actual numerical computations would certainly be so
for a large r. (See Theorem B below.) Also given is a criterion for
when r is an r th power (mod p) in terms of a linear combination of
Gi(p), * >αr-i(p) (modr2). (See Theorem A below.)

It is possible by the methods developed in this paper to eliminate
the conditions that r is a prime and q = 1 (mod r). This would com-
plicate the paper a great deal, and the cases given clearly indicate the
underlying theory.

Consider the following Diophantine equations in the rational integers:

r Σ
5=1

~ ( § ^ ) 2 = (r -
M=l /

V (1

where Xl f c ) denotes the sum over all j l f , j k + 1 — 1, 2, , r — 1, with

t h e condition jx+ + j k — kjk+1 = i (mod r ) .

Received April 24, 1959; in revised form January, 1960. This research was supported
by the United States Air Force through the Air Force Office of Scientific Research of the
Air Research and Development Command, under contract No. AF 18 (603)-90. Reproduc-
tion in whole or in part is permitted for any purpose of the United States Government.
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(3) H-ΣI jH Σ J Z , S 0 (mod r)
5=ι 5=1

(4) not all of the Xj = 0 (mod p) and

- 0 (mod

for & = 2, , r - 2; ί = 1, 2, , r — 1.
We shall prove in § II that there exist exactly r — 1 distinct in-

tegral solutions of the equations (1) through (4). In particular let {X5 =
aJf j = 1, , r — 1} be a solution. Then we prove that the a^p) = a3

satisfy our residuacity criterion, namely

THEOREM A. r is an r th power (mod p) if and only if

r-i 1

Σ Ja5 + — rar-i — 0 (mod r2) .
5=i 2

THEOREM B. If q = 1 (mod r) and h is any integer such that hr

is the least power of h which is = 1 (mod q), then q is an r th power
(modg) if and only if Σ^Zlaft is an r t h power (mod^).

At the end of § II various special cases are considered.
In particular, for q — 2, r = 5, then 2 is a quintic power (mod p)

if and only if a5 = a5-j (mod 2), j = 1, 2.
For q = 2, r = 7, then 2 is a 7th power (mod p) if and only if a5 = 1

(mod2), £ = 1, . . . , 6 .
Let r = 3. Then the solutions to the Diophantine equations (1) to

(4) are (α^ a2) and (α2, α j , where

( 5 ) p — α2 — αjC&a + αl, ^ Ξ α2 = 1 (mod 3) .

Multiplying (5) by 4 and grouping terms gives

4p = (αx + α2)
2 + 3(αx - α2)

2 .

Let L — —aλ — α2, M — {aλ — α2)/3. This gives the representation
which Lehmer employs:

4p = L2 + 27Λf2, L = 1 (mod 3) .

Theorem A states that 3 is a cubic residue (mod p) if and only if
aγ = a2 (mod 9). This, in turn, is equivalent to M being divisible by 3,
the condition quoted by Lehmer.

I. Notation, r denotes a prime number, ξr a primitive r th root of
unity, Q the rational numbers, Q(ζr) the cyclotomic field over Q generat-
ed by ξr. For j = 1, 2, , r — 1, σ5 are the automorphisms of Q(ζr)IQ
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such that σό{ζr) = ζ3

r. σ~\ζr) = ζζ, where jj' = 1 (mod r) . p denotes a
positive rational prime Ξ= 1 (mod r), and Xp = X will be any primitive r th
power character (modp).

will be the Gaussian sum associated with χp. <α> denotes the fractional
part of a; i.e., <α> — a — [a].

LEMMA 1. ( i)

(ϋ)

(iii) g(X)reQ(ζr), and

(iv) σfc(flr(χr) - g(X«Y

for jfe = 1, 2, •••, r — 1.

Proof, (i) is the classical result about the absolute value of
and can easily be deduced from the definition of g(X). (ii), (iii) and (iv)
follow from Galois Theory using the relation Σl~AX{n)ζf = χ(ί)"^(Z) for
any integer t prime to p.

LEMMA 2. There exists a prime ideal p in Q(ζr) dividing p such

that (g(χ«Y) - Σra<r7Ywlry.
Conversely, given any prime ideal ρ1 in Q(ξr) dividing p, there

exists a k such that

Proof. Lemma 2 is a result of Stickelberger. For a proof see Daven-
port and Hasse [1]. See especially the elegant proof on page 181-2.
In Q(ξr), the ideal (r) - (1 - ζrγ-\

LEMMA 3. (1 - #)(1 - t ,)" 1 = < (mod (1 - ζr)) and r ( l - ξi)-r+1 =
- 1 (mod (1 - ζr)) for (t, r) = 1.

Proo/. The first fact follows as

(1 - ζ *)(1 - ξ',)"1 = Σ ? } = Σ l Ξ ί (mod (1 - ξV)) .

The second follows from Wilson's Theorem as

= Π (1 - r?)(l - ? ' ) " = (r - 1)! = -l(mod (1 - ζr)) .
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THEOREM 1. For any t not divisible by r,

g(XΎ + 1 = r(l - χ(r)-0 (mod (1

and consequently, χ(r) = 1 if and only if

g(TY + 1 = 0 (mod (1 - ζrY

Proof. As

Σ

the binomial theorem yields

-ff(Z)r = ( - Σ S + Σ (1 ~ Un))ζ;)r = (1 + Σ (1 - l{n))ζl)r

= 1 + r Σ (1 - Z(n))Sί + Σ (1 - Z(^))rr7 (mod (1 - £r)"+1) ,
n n

as all other terms are divisible by at least r(l — ξrf. By Lemma 3, if
X(n) Φ 1, (1 - Z(w)Γ: s - r (mod (1 - ζr)

r), and clearly, if χ(n) = 1,

(1 - χ(n))r = - r ( l - χ(Λ» (mod (1 - ^ Γ 1 ) .

Thus,

g(X)r = 1 +

s 1 + r Σ (1 - Z(«))« - (1 ~

= 1 + r(l - χ(r)-1) (mod (1 - ^ + 1 ) .

By (iv) of Lemma 1,

~9(XΎ - -^(^(Z) r) s 1 + r(l - χ(r)- ) (mod (1 -

which completes the first statement of Theorem 1. The second state-
ment in Theorem 1 then follows immediately.

Let q denote any positive rational prime other than r,f the least
positive integer such that qf = 1 (mod r), and ef = r — 1. Then in Q(ζr)
the ideal (q) = S ί ^ 2Ie, where the 21̂  are prime ideals and

( 6 ) Norm (%) = qf .
Q(ζr),Q

In the following let Si be any of the e prime divisors %3, j = 1, , e.

THEOREM 2. Let q, p, and r be distinct.
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Then

( 7 ) gixf-1 = x(q)-f (mod q).

Consequently χ(q) = 1 if and only if

( 8 ) g(χ)r = βr (mod SI) for some β e Q(ζΛ) .

Proof. g{χγ = (£#%)

^ΣχinY'ζ"/ (mod?)

= Σ X(n)ζn/ (mod g), as r | g' - 1 ,
n

= X(Q)~f9(X) (mod q) .

Multiplying both sides of the above congruence by g(χ), and noting
(i) of Lemma 1, yields

^ (mod g) or ^(χ) 9 ^ 1 = χ(q)~f (mod g) ,

as p and g are distinct primes. Hence, we have proved (7).
Note that as r \ qf — 1, (7) becomes a congruence in Q(ζr). As

/1 r - 1, (/, r) = 1, we have by (7) that χ(g) = 1 if and only if giχ)^-1 =
1 (mod SI).

(Note that 1 - fί ΐ 0 (mod 51) unless # = 1.)
If g(χγ = βr (mod 21) for some β e Q(ζr), then

giχy'-1 = β^-1 = 1 (mod 21)

by (6).
Conversely, if gilΫ'1 = 1 (mod2X) then (α(Z)r)(g/~1)/r = 1 (mod 21).

By Lemma 1, #(χ)r e Q(ζr). By (6) this implies g(χ)r = /3r (mod 81).
(Euler's Criterion for r th powers.)

In the above argument we must bear in mind that g(χ) $ Q{ζr).

II. In the last section we have developed a criterion for r th power
residuacity in Q(ξr). From this we derive a criterion in the rational
numbers Q, which is the purpose of Theorems A and B.

First let us assume that there is a rational integral solution X3 =
dj of equations (1), (2), (3) and (4). In Q(ζr) define the algebraic integer
a — Σ*rj=lajζi- We shall prove that a satisfies

( 9 ) I <**((*) I2 = Pr~2 , fc = l , 2 , . . . , r - l .

( 1 0 ) (pafa^pa)-1

is also an algebraic integer in Q(ξr), for k = 1, 2, , r — 1.
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To prove (9) we note that

\<x\* =

By (2) all of the coefficients of ζ\ are equal, since for any i, the
sums corresponding to ί and r — ί are identical. Thus

Z I

r—\

= r(r - I ) - Σ«5 - (r - l ) " 1 ^ Σί" « ^
J ΐ — 0

= r(r - I)-1 Σ α? - (r - l )" l (t ^
ji Vi /

by (1). Similarly | σk(a) |2 = pτ~\ Thus (1) and (2) imply (9).
Let A; be a fixed integer 2 ^ k ^ r — 1. Then

(11) {pa)kσk{paγx — φp-WσJa)-1

= p - W M a ) I σ,(α) | "2

by (10). Now

(12)

Σ

Condition (4) implies that each coefficient of f* in (12) is divisible
by jf"*"1. Placing this information in (11) states that (pαj^ίpα)"" 1 is
an integer; thus proving (10).

(4) also tells us that p, but not p2, divides pa, as not all the coef-
ficients of ζ{ in a = Σij=l<ijζjr are divisible by p.

If we restate the above facts in terms of ideals, we have that (pec)
is an integral ideal in Q(ζr) divisible only by the prime ideals which
divide p.

There exists one prime ideal, say p, dividing p, which divides pa
but p2 does not divide pa. All other prime factors of p in Q(ξr) are of
the form σ^p. Hence,
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(13) (pa) = Σ σϊY* where dx == 1, dt > 0 .

By (9)

= (pa I α |2) = p1"

= Π <7Γ1

or

(14) d4 + dr-t = r .

By (10), (pa^σ^pa)-1 is integral, or

(pa)\a,{pa))-1 = Π ffΓV* Π o^rH
i i

= Π σΐYίίc-dik

is an integral ideal. (The index of dίJc is interpreted mod r.) Hence,

As di = 1, k ^ 4 for k = 2, 3, , r - 2. By (14) this yields that
dk — k. By Lemma 2, we arrive at the fact that in terms of ideals

(15) (pa) = (g(t)r) for some 1 ^ ί < r .

In proving (15) we have used (1), (2) and (4). We wish to prove
that pa = g(χι)r. To do this we now utilize (3). By (15) we have that
for some unit η e Q(ξr), g{χι)r = rjpay or

(16) g(χtkY = σ^ηpa) = σ^σ^pa) .

Taking the absolute value of both sides of (16) and utilizing (i) of
Lemma 1 and (9) gives pr = \σk(η)\2pr, or | σk(η) |2 = 1. By a Theorem
of Dirichlet on units (See [3] Theorem IV 9, A pp. 174), any unit which
has all of its conjugates with absolute value 1 is then a root of unity.
As yeQ(ζr),7]= ±ζs

r.
Now

a - ±a£i = Σ ^ - Σ ^ (l - ζΐ)
3=1 3 3

= Σ ^ - Σ i α / l - ξr) (mod (1 - ξrY) ,

by Lemma 3. As p = 1 (mod r), p = 1 (mod (1 - ξrf). By (3),

1 + Σ,a} = Σ i « j = 0 (modr) .

Hence, p α s - 1 (mod(1 - £r)
2). By Theorem 1, sr(χt)r = - 1 (mod 1 - £ r ) 2 .

Therefore, J ? S 1 (mod(l-f,.)2) But y=±ζs

r= ± ( l + β ( l - ? r ) ) (mod(l-ξ- r)
2);

i.e., s = 0 (mod r) and the + sign holds. Hence, η = 1.
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Therefore, if the a5 are any integral solution of (1), (2), (3) and (4),
there exists an integer H ί ^ r - 1 such that

(17) pΣa& = g{lΎ -
3 = 1

C o n v e r s e l y , g i v e n a n y i n t e g e r ί, l ^ ί ^ r — 1, a n d w r i t i n g

we can prove that the a5 are rational integers which satisfy (1), (2),
(3), and (4). The proof is merely reversing the above steps we used in
proving (17). By Lemma 2 the prime factorizations of (g(χs)r) and (^(χc)r)>
l S s < t ^ r — 1, are distinct, and thus g(χs)r Φ gixΎ- Hence, we have
shown that there are precisely r — 1 rational integral solutions of (1),
(2), (3), and (4).

We are now in a position to prove Theorems A and B. First for
Theorem A.

Let dj be an integral solution of (1) through (4). Then we have
shown that p ΣrjZlcLjζ3

r = gWT for some integer t relatively prime to r.
By Theorem 1, the above states that %(r) — 1 if and only if p Σjajζjr —

( ( r , ) )
Define b8, s = 0,1, , r - 2, by bo= — par-lf bs = p(as - αr_x), s

1,2, « , r - 2. Then

Further let

where ( •) is the binomial coefficient. Then

P Σ a£l = Σ b& = Σ 6.(1 - (1 - ζr)Y
3=1 S=0 S

r—2

Σ
ί=0

= ΣQi-rr)4.

The first statement in Theorem 1 states that g(χι)r + l = 0 (mod (l-ξr)
r).

Hence,

Σ c,(i - ζry +1 s (c0 +1) + Σ Q I - rΓ)«

= 0 (mod(l-?Γ)')
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This implies that Co + 1 = 0 (mod r2). Hence,

Σ C4(l - ζrY = Cx(l - f r) (mod (1 - f r r
+ 1 )

i=0

or that χ(r) = 1 if and only if

(18) d = 0 (mod r2) .

Now

(19) ^ = ( - 1 ) 2 5,= - Σ « * .
r - 2

r - 2

S = l

= - p Σ«α, + A-p(r - 2)(r - 1 ) ^
S = l 2

s -p(j£8a, + Y ^ r - i ) (modr2) .

Equations (18) and (19) complete the proof of Theorem A.
Theorem B is also derived immediately from Theorem 2. If q = 1

(mod r), q a positive rational prime, then in Q(ξr), (q) = 2Ix2I2 2tr-i»
where 21̂  are prime ideals and N o r m ρ ( ^ ) ρ 2 ^ = q.

We may take 0,1, 2, , q — 1 as a set of residues (mod 2t2). Hence,
as 1 - f * =£ 0 (mod 210, unless ζ\ = 1, ζr = h (mod 2I2), where λ is a ra-
tional integer such that hr = 1 (mod g).

Thus by Theorem 2, χ(g) = 1 if and only if there is a β e Q(ξr) such

that g(χ*γ =' p Σ i ^ ? ί = P Σ J *fi = /5r (mod 21,).
We may take β = beQ by the above remarks.
Hence, χp(?) = 1 if and only if χq(p Σ J a A3) = 1 where χq is a primi-

tive r th power character (modg).

If we had chosen another hλ whose order was r (mod q), then hλ =

hι (modSίj), and

p Σ ^ ^ ί s p Σ α ^ ? s fl(χ )' (mod 2ί2) .

Thus, any Λ whose order (mod q) is r works equally well in Theorem B.
There are several special cases one can derive when q Φ 1 (mod r),

in particular, when q = 2, and r = 5, 7.
If # = 2, r = 5, then in Q(ζr), 2 remains a prime because 24 is the

least power of 2 congruent to 1 (mod 5). One can easily compute that
the only elements in Q(ζδ) which are fifth powers (mod 2) are 1 =
-Σ5=i? j

δ, f5 + ζϊ\ and ζl + £5-
2 (mod 2). Hence, for r = 5, χp(2) = 1 if

and only if aό Ξ α5_^ (mod 2).
For ? - 2, r = 7, then 23 = 1 (mod 7). Hence, in Q(ξ7), (2) - 2 1 ^

where Norm 2ί, = 8. For a = β7 (mod 2IJ, β & 0 (mod 2ίx), and /5 e Q(ζ7)
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implies a = 1 (mod S^). Hence, for r = 7, χp (2) = 1 if and only if a} =
1 (mod2) for j = 1, . . . , 6 .

One could easily generalize this to the case when r .= 2s — 1. Then
χp (2) = 1 if and only if α, = 1 (mod 2) for j = 1, , r - 1.
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ON INVARIANT PROBABILITY MEASURES I

J. R. BLUM1 AND D. L. HANSON2

1* Introduction* Let Ω be a set and let Sf be a σ-algebra of
subsets of Ω. Let T be a one-to-one bimeasurable transformation map-
ping Ω onto itself. T then induces the group of transformations {T\
i = 0, ± 1 , •} defined in the usual way. If A e s/, TιA is defined to
be the set of images of the elements of A under the transformation T\

Let & be the class of probability measures defined on j y for
which T is invariant, i.e. if P is a probability measure defined on s/
then Pe^ if and only if PA = PTA for every i e j / . Let S>/x be
the subclass of s/ which is invariant under T; a set A ε j y belongs
to S/x if and only if A — TA. It is trivial to verify that Ssζ is sub-σ-
algebra of S/. Finally let &{ be the subclass of & for which T is
ergodic, i.e. if Pe^ then Pe &* if and only if PA = 0 or PA = 1 for
every A e J3£

In § 2. several results are proved, concerning the structure of the
class ^? These are not new, although several of them do not seem to
have appeared in the literature. The main theorem of this paper is in
§ 3 where it is shown that each element of & can be represented as
a convex combination of the extreme points of ^ Several consequences
of this theorem are pointed out.

2» Some properties of the class &t

THEOREM 1. Let P and Q be elements of &i Suppose PA = QA
for Aes/X Then P=Q.

Proof. Let μ = P — Q. Then μ is a completely additive set function
defined on s/. If μ is not identically zero, there exists A e jy such
μ(A) > 0 and μ(A) ^ μ(B) for all B e s^ζ This follows from the Hahn
decomposition theorem. Write μ(A) = a + β, where a = μ(A — An TA)
and β = μ(A f] TA). Since μ(A - AΠ TA) = μ(TA - A Π 2ΓA) we have
μ(A U TA) = 2α + β. Now if α < 0, then μ(A Π TA) > //(A) and A is
not maximal, and if β < 0 then μ(A — Af] TA) > //(A) and A is not
maximal. Consequently a ^ 0 and /3 ̂  0. But if A is maximal then
α + β ^ 2α + β. Hence α = 0 and //(AU TA) = //(A). By the same
argument we show that ^(T^AUAU TA) = //(A) and it follows by in-
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1 Supported in part by the Office of Ordnance Research, U. S. Army, under Contract
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duction that μ(Bn)=μ(A) for every positive integer n, where Bn = (J?=-n
TιA. Now Bn is an increasing sequence of sets. Let B = l i m ^ Bn.
Then μ{B) = μ(A) > 0. But clearly B = UΓ=-oo TιA e Ssζ and μ is zero on
Jfcf. Consequently we have a contradiction and the theorem is proved.

Suppose now that Pe ^ and Q e& and suppose also that Q is
absolutely continuous with respect to P. Then if A e jfcf we have
PA = 0 or PA = 1 and hence Q agrees with P on Ĵ f. Thus the theorem
applies and we have

COROLLARY 1. If Pe^,Qe^, and Q is absolutely continuous
with respect to P then Q == P.

Theorem 1 also furnishes an elegant proof of a result which was
proved by Lamperti [3], and in a special situation by Harris [1]. Suppose
P and Q are both ergodic, i.e. P e ^ and Qe^. Then either P and
Q are orthogonal or for each A e s/ for which PA = lwe have Q(A) > 0.
Now suppose A e j % and PA = 1. Then if Q is not orthogonal to P
and since Q e &[ we must have Q(A) = 1 and it follows that P = Q on

We have

COROLLARY 2. If Pe ^t,Qe ^19 then either P=Q or P is orthogonal
to Q.

In § 3, we shall show that this result can be considerably generalized.

THEOREM 2. & is a convex set. Pe^if and only if P is an
extreme point of £P.

Proof. The first statement is obvious. Suppose P e ^ and suppose
we may represent P in the form P = aP1 + (1 — a)P2 where 0 < a < 1
and Pi e &*i = 1,2. Then clearly Px and P2 are absolutely continuous
with respect to P and it follows from Corollary 1 that Pλ = P2 = P-
Thus if P e ĵf it is an extreme point of ^? Conversely if P0 ^ there
exists a set Bes^ζ with 0 < PJ5 < 1. Then we may write P =
aPλ + (1 — α)P2 where a = PB, and for A e j / we have PX{A) =
P(Af]B)IP(B) and Pf(A) = P(AnBC)IP(BC). It is easily verified that
Pi and P2 are invariant probability measures and it follows that P is
not an extreme point of ^?

Theorem 2 strongly suggests that it may be possible to obtain the
elements of & as convex combinations of the extreme points of f̂.
Under a rather mild assumption this is in fact true, as will be shown
in the next section. Examples of the kind of theorem we have in mind
were proved by Hewitt and Savage [2].

3. The representation theorem. Throughout part of this section
we shall assume that if Ae J% and if PA = 0 for every P e ^ then
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PA = 0 for every P e ^ ! Clearly such a condition is necessary for a
convex representation theorem and the condition can actually be verified
in many examples of interest.

Suppose now that Pe 3f. Theorem 1 tells us that P has a unique
invariant extension from J^f to J^f This suggests that if A e s/ we
should be able to determine PA by knowing only the values of P on
J f̂. A proof of this statement follows from the individual ergodic
theorem.

THEOREM 3. Let A e J^Γ For every a with 0 fg a ^ 1 there exists
a set A'Λe s&ί such that if Pe &{ then PA — a if and only if PA'Λ = 1.

Proof. Let fs(x) be the set characteristic function of the set S.
Let A e s$ζ and a be given. For every positive integer n define gn>A(x) =
Vn ΣfΓίΛίΓ'α), and define A'Λ = {x\ l i m ^ flfB(i(a;) = a). Clearly A^ e J*f
and the individual ergodic theorem implies that PA = a if and only if
PA'a — 1, whenever P e ^ .

Using the same technique we can prove

THEOREM 4. Lei A e sf. For every a with 0 ^ α ^ 1 there exists
a set AaeJ^ζ such that if Pe ^ then PA ^ a if and only if PAa = 1.

Let A e J K Define πA by πA = {P e &* \ PA = 1}. Let /7 be the
collection of all such sets πA i.e. 77 = {π^ | A e j*f}. The following facts
are easily verified:

( i ) τrΩ = ^
(ii) [7Γjc-7Γc

(iii) 7Γ U w An = Un ^ »
where A and each Aw is an element of J ^ Since S/x is a σ-algebra it
follows that 77 is a er-algebra. Now let Q e 3?. We define a set function
μQ on 77 by μQ(πA) = Q(A).

We shall show that under the assumption at the beginning of this
section μQ is in fact a probability measure defined on 77. Clearly μQ(πA)^>0
for each πA, and μQ(^) = μQ(τcΩ) = Q(β) = 1. Now suppose {TΓ^J is a
sequence of disjoint elements of π. It is easily verified that this is the
case if and only if PAn Π Am = 0 for every pair of sets Anf Am in Ssζ
with n Φ m and for every P e ^ f . It follows from the assumption that
Q(An n AJ = 0 for rc =£ m. Hence μρ{(Jw πAn} - Q(U» An) - Σ ^ Q(An) =
Σw /^Q{^J

 a n ( i w e have shown that μρ is a probability measure defined
on 77. We summarize in

THEOREM 5. If Π and μQ are defined as above then Π is a σ-algebra
of subsets of ^ . Under the assumption at the beginning of this section
μQ is a probability measure defined on 77,
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THEOREM 6. Let A e S^. Consider the function fA(P) defined on
^ and with values fA(P) — PA. Then fA(P) is measurable with respect
to 77.

Proof. We must show that for every a with 0 ^ a ^ 1 we have
{P e &{ I fA(P) ̂ a} = {Pe^\PA^a}eΠ. But it follows from Theorem
4 that {P e &l I PA ^ α} = π ^ ^ where AaeStζ is the set guaranteed
by Theorem 4, and the theorem follows.

Since fA{P) is bounded and measurable it is clearly integrable with
respect to any probability measure defined on 77. Now let Qe ^ and
μQ be the corresponding probability measure defined on 77. For each
Aessf define Q\A) by

Q\A) = \ fA(P)dμQ = \ PAdμQ .

It follows immediately from this definition that Qf is an invariant prob-
ability measure defined on S/. But if A e Ssζ we have Q'(A) = μQ{πA} =
Q(A). Hence Q' = Q on J ^ and it follows from Theorem 1 that Qf = Q.

Furthermore suppose we know that Q(A) = \ PAdμ, where μ is some

probability measure defined on 77. Then if A e J*f we have Q(A) =

\ PAdμ = μ{πA} = ρ̂{7τ }̂, i.e. μ = //ρ. We state these results in

THEOREM 7. Suppose the assumption at the beginning of the section
holds. Then for every Q e & there exists a unique probability measure
μQ defined on 77 such that

Q(A) = l P(A)dμQ for every

We shall refer to Theorem 7 as the representation theorem, and
the rest of this section is devoted to exploring some consequences of
this theorem. One immediate consequence is a generalization of Corollary
2 to Theorem 1.

THEOREM 8. Let Qt e&*, i = 1, 2. Then Q± and Q2 are orthogonal
if and only if the corresponding measured μQl and μq<λ are orthogonal.

Proof. Suppose Q1 and Q2 are orthogonal. Let B be a set such
that Q^B) = 1 = Q2(BC) and let A = Ur=-~ T*B. Then A e S^ and QX(A) =
1 = Q2(AC) and we obtain 1 = μQl{πA} = μQ2{(πA)

G}. Thus μQl and μQi are
orthogonal. Conversely if μQl and μQ2 are orthogonal there is a set
A 6 JK such that 1 = /^{TΓ^} = Qi(A) and 0 = μQ2{πA} = Q2(A) and the
theorem^isyproved.
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Another interesting consequence of the theorem is the obvious fact
that if A e Stf and if PA = 1 for each P e g* then Q(A) = 1 for each
Q e ^? Thus the individual ergodic theorem for arbitrary invariant
measures is an immediate consequence of that theorem for ergodic
measures. Furthermore Theorem 7 throws some light on the evaluation
of the limiting function in the individual ergodic theorem. Let Q e ^
and let f(x) be defined on Ω and measurable with respect to s& Let
fn(<β) = llnΣιt=of(T*x). Then if feLλ(Q) the ergodic theorem states
that lim^oo fn(x) =/*(#) say, exists on a set of Q-measure one. It is
clear t h a t / * is invariant i.e. f*(Tx)=f*(x) for all x for which / *
exists. If / is also integrable with respect to Pe ^ then / * is constant
on a set of P-measure one, and we have

Q{x\f*(x) ^ u} = \ Px{\f*(x) £ u}dμQ =

In particular we conclude / * is a constant, say c, on a set of Q-measure
one if and only if μP[Pe &> \ P{x\f*(x) = c}] = 1.

Finally, suppose / is again measurable with respect to j^Γ Let

Qe^ and suppose μQP< e ^ | l | / | dP < col = l . Then we can easily

prove

THEOREM 8. If \ \f\dP is an integrable function of P (with respect
JΩ

to μQ) then f e Lλ(Q) and

ί f d Q -
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POSITIVE OPERATORS COMPACT IN

AN AUXILIARY TOPOLOGY

F . F . BONSALL

Of the several generalizations to infinite dimensional spaces of the
Perron-Frobenius theorem on matrices with non-negative elements, two
are outstanding for their freedom from ad hoc conditions.

THEOREM A (Krein and Rutman [3] Theorem 6.1). If the positive
cone K in a partially ordered Banach space E is closed and funda-
mental, and if T is a compact linear operator in E that is positive
(i.e., TK c K) and has non-zero spectral radius p, then p is an eigen-
value corresponding to positive eigenvectors of T and of T*.

THEOREM B ([4] p. 749 [1] p. 134). // the positive cone K in a partial-
ly ordered normed space E is normal1 and has interior points, and if
T is a positive linear operator in E, then the spectral radius is an
eigenvalue of T* corresponding to a positive eigenvector.

In [2], we have proved the following generalization of Theorem A.

THEOREM C. Let the positive cone K in a normed and partially
ordered space E be complete, and let T be a positive linear operator
in E that is continuous and compact in K. If the partial spectral
radius μof T is non-zero, then μ is an eigenvalue of T corresponding
to a positive eigenvector.

Also in [2], we have developed a single method of proof of Theo-
rems A, B, C which exploits the fact that the resolvent operator is a
geometric series, and thus avoids the use of complex analysis or any
other deep method.

In [5] (Theorems (10.4), (10.5)), Schaefer has further extended these
results by showing that (A) and (C) remain valid for operators in locally
convex spaces, with suitable definitions of spectral radius and partial
spectral radius.

Our aim in the present article is to unify these theorems still fur-
ther. We prove a single theorem (Theorem 1) that contains Theorem C
(and hence A), and also contains Theorem B except in the case p = 0,
for which an extra gloss is needed (Theorem 2). The central idea is
that instead of being compact in K in the norm topology, T maps the
part of the unit ball in K into a set that is compact with respect to a

Received February 19, 1960.
1 K is said to be a normal cone if there exists a positive constant K such that

lla + lίll ^ * | | a | | (x,V β K) .
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second linear topology, this topology being related to the norm topology
in a certain way. This idea is, in essence, derived from the recent
paper [6] of Schaefer, though his conditions are too restrictive for our
purpose. Again we use only elementary real analysis of the kind used
in [2]. After proving our two main theorems, we exhibit a number of
examples of situations in which these theorems are applicable.

NOTATION. We suppose that E is a normed and partially ordered
real linear space with norm || ||, norm topology τN9 and positive cone
K) i.e., JKΓ is a non-empty set satisfying the axiom:

( i ) x, y e K, a >̂ 0 imply x + y, ax e K,
(ii) x, —x e K imply x = 0.

We write x rg y or y ^ x to denote that y — x e K.
We suppose that K is complete with respect to the norm. How-

ever, we do not require that E be complete, so that there is no real
loss of generality in supposing that E = K — K, and we shall therefore
suppose that this is the case. We exclude the trivial case in which
K=(0).

We denote by B the intersection of K with the closed unit ball in
E, i.e., B = {x : x e K and || x \\ <Ξ 1}, and suppose that T is a linear
operator in E that is positive (TK c K) and partially bounded (i.e.,
|| Tx\\ is bounded on B). We denote the partial bound of T by p(T)
i.e.,

p(T) =sup{ | | Tx\\ :x e B} ,

and by μ the partial spectral radius

μ = lim{p(Tn)Y'n .

We are indebted to H. H Schaefer for several helpful suggestions,
and in particular for pointing out that substantial simplification can be
obtained by introducing a second norm q into E defined as follows. Let
BQ denote the convex symmetric hull of B, i.e.,

Bo = {ax + βy: x, y e B, \ a \ + | β \ = 1} ,

and let q be the gauge functional of Bo,

q(x) = inf {λ: λ > 0 and λ"1^ e Bo} .

It is easily verified that q is a norm in E, that q(x) ^ | | # | | (x e E),
and that q(x) = || x || (x e K). Also the completeness of K with respect
to the given norm implies that E and K are complete with respect to q.

Given a positive operator T, the partial bound and the partial
spectral radius are the usual operator norm and spectral radius for the
operator T in the Banach space {E, q). For λ > μ, the resolvent operator
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Rλ = (XI — T)1 is given by t h e series

R I + hτ+hTi +

which converges in the operator norm for (E, q), and is a partially
bounded positive operator.

We suppose that we are given a second linear topology τ in E,
such that K is (r)-closed and T is (τ)-continuous in K.

DEFINITION. Given a subset A of K, we say that τ is sequentially
stronger than τN at 0 relative to A if 0 is a (r^)-cluster point of each
sequence of points of A of which it is a (τ)-cluster point.

THEOREM 1. // TB is contained in a (τ)-compact set, τ is sequential-
ly stronger than τN at 0 relative to TB, and μ > 0, then there exists
a non-zero vector u in K with Tu = μu.

THEOREM 2. // B is contained in a (τ)-compact set, and τ is
sequentially stronger than τN at 0 relative to B, then there exists a
non-zero vector u in K with Tu = μu.

Since TB c p(T)B, Theorem 2 is contained in Theorem 1 except
when μ = 0.

The proofs of these theorems will depend on the following two
lemmas. Lemma 1, which is needed in the proof of Lemma 2, is repeated
from [2] in order to make the present paper self-contained.

LEMMA 1. Let {an} be an unbounded sequence of non-negative real
numbers. Then there exists a subsequence {anjc} such that

( i ) anh>k (fc = l , 2 , • • • ) ,

( i i ) a>nk>a,3 U < nk, k = 1, 2, •).

Proof. By induction. With n19 , wfc_x chosen to satisfy (i) and
(ii), let nh be the smallest positive integer r with ar > ank_λ + k.

LEMMA 2. If TB is contained in a (τ)-compact set, and τ is
sequentially stronger than τN at 0 relative to TB, then

lim p{Rλ) — co .
λ->μ-j-0

Proof. Suppose that the conditions of the lemma are satisfied, but
that p(Rλ) does not tend to infinity as λ decreases to μ. Then there
exists a positive constant M such that p(Rv) ̂  M for some v greater
than and arbitrarily close to μ.
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The case μ — 0 is easily settled. For if μ = 0, then

XRλx ^x (X > 0, x e K),

and letting λ tend to zero through values for which p(Rλ) ^ M, we
obtain — x e K, K = (0). This is the trivial case that we have excluded.

Suppose now that μ > 0. Then we may choose λ, v with

0 <X < μ <v <X + M'1

and with p(i?v) ^ M. With this choice of λ, v the series

R^ + {v - X)Rl + (v - X)2Rl + . . •

converges in operator norm for the Banach space (E, q) to a partially
bounded positive operator S with

Sx = X~xx + χ-τTSx (x 6 K).

Thus

Sx ^ X-*TSx {x e K),

and therefore

(1) Sx ^ X~{n+1)Tnx (x e K, n = 1, 2, •).

Since lim^^piX'^^ Tn) = oo, and since the partial bound of a positive
operator coincides with its operator norm in (E, q), the principle of
uniform boundedness implies that there exists a point x e E with
q(χ-{n+1)Tnx) unbounded. Since E = K — K, it follows that there exists
w e Kfor which the sequence (\\X~{n+1)Tnw ||) is unbounded. Therefore,
by Lemma 1, there exists a subsequence such that

( 2 ) l im | | X-{nk+1)Tnicw | | = oo ,

( 3 ) || X-{n^Tn^w || ^ Ilλ-^Γ^-1^ || .

Since

we also have

(4) limllλ-^T^wH = oo .
fc->oo

Let yt = || Γ - wH^Γ"*-^. Then, by (1), there exists zft € K with

(5) || λ - ' Γ *-1^ H^Sw = \-χTyk + zk (k = 1, 2,

By (4) and (5), we have

(6) λ- ϊty*+ **-»<> (τ) .
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Since yk e B and TB is contained in a (τ)-compact set, the sequence
(X^Tyx) has a (τ)-cluster point y in K. By (6), — y is a (τ)-cluster point
of (zk), and since zk e K and K is (τ)-closed, —j/ e K. Thus # = 0, and
0 is a (τ)-cluster point of (Tyk). But τ is sequentially stronger than τN

at 0 relative to TB, and so 0 is a (τJV)-cluster point of (Tyk). But this
is absurd, for, by (3),

Proofs of Theorems 1 and 2. Since TB c p(T)B, Lemma 2 is
available under the conditions of each theorem, and gives

lim p(Rλ) = oo .
λ->μ,+0

Then, applying the principle of uniform boundedness as in the proof of
Lemma 2, we see that there exists a sequence (λn) converging decreas-
ingly to μ, and a point w in K with | |w | | = 1 and

\\m\\Rλw\\ = oo ,

and we may suppose that Rχnw Φ 0 (n = 1, 2, •). Let α n = || i2 λ w ^ H"1,
and un = anRλnw. Then

( 8 ) μun- Tun = (μ- Xn)un + anw .

Under the conditions of Theorem 2, the proof is easily completed.
For, since un e B and B is contained in a (τ)-compact set, it follows
from (8) that

μun - Tun -> 0 (τ) .

Also (un) has a (τ)-cluster point u in K, and since T is (τ)-continuous
in K, we have

/m - Tu = 0 .

We have % =£ 0, for otherwise 0 is a (zv)-cluster point of (un), which
is absurd, since \\un\\ = 1.

Finally, suppose that the conditions of Theorem 1 are satisfied.
Then, by (8),

(μl- T)Tun = T(μl- T)un = (μ - Xn)Tun + anTw .

Since TB is contained in a (τ)-compact set, it follows that

(μI-T)Tun-+0 (τ),

and (Tun) has a (τ)-cluster point v in K. Therefore, by the (τ)-continuity

of T,
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(μl - T)v = 0 .

If v = 0, then 0 is a (τ^)-cluster point of (Tun). But, by (8),

μun - Tun — 0 (τN) ,

and so 0 is a (τ^)-cluster point of (μun). Since μφO and \\un\\ = 1,
this is absurd. Hence v φ 0, and the proof is complete.

It will be noticed that the preceding theorems and lemmas remain
true if compactness is replaced by countable compactness, no change in
the proofs being required. It may be of interest to remark that under
the conditions of Theorem 2, if is a normal cone. However, since this
fact is not needed for our main purpose, we omit its proof.

EXAMPLE 1. Taking τ = τN in Theorem 1, we obtain Theorem C,
and hence, as we have seen in [2], Theorem A also.

EXAMPLE 2. Suppose that there exists a subset A oί K with the
following properties:

( i ) Given x e E with \\x\\ ^ 1, there exists a e A with — a ^ x ^ a.
(ii) TA is contained in a (τv)-compact set.2

Let E* denote the usual dual space of continuous linear functional
on the normed space E, and let if* denote the dual cone of all elements
of E* that are non-negative on if. Then if* is a norm complete positive
cone in E*, and we denote by B* the intersection of if* with the
closed unit ball in E*.

For each φ in E*, let T*φ be defined as usual by

(T*φ)(x) = φ(Tx) (x e E).

Since T is not necessarily a bounded operator in E, T*φ may fail to
belong to E*. However, Γ * ^ * c K*, and T * is a partially bounded
operator in K * — K*. For, given ψ e B* and xeE with | | α ? | | ^ l ,
there exists a e A with — a ^ x ^ α, and therefore

-φ(Ta) ^ φ(Tx) ^ φ(Ta) .

Since 7M. is contained in a (τv)-compact set, the set { | | T α | | : α e A }
has a finite upper bound M and so \φ(Tx)\^M,\\ T*φ \\ ̂  M, T * £ * c
MB*, T* is partially bounded. It is easily seen that T* is weak*-
continuous in if* and that if* is weak*-closed.

We shall show that if the partial spectral radius μ* of Γ* is not
zero, then Theorem 1 is applicable to the operator T* in the space
K* — K* with the weak* topology as the auxiliary topology τ. This
will prove the existence of a non-zero element ψ of if * with

2 In Examples 2, 3 no auxiliary topology is needed in E, but an auxiliary topology will
appear in the dual space.
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Since Γ* maps B* into the weak*-compact set MB*, we need only
prove that the weak* topology is sequentially stronger than the norm
topology at 0 relative to T*B*. To prove this, let φn e JB* (n = 1, 2, •),
and suppose that 0 is a weak*-cluster point of the sequence (T*φn).
Since TA is contained in a (τ^)-compact set, given ε > 0, there exist
alf , ar in A such that for each point a in A there is some k (1 fg
k ^ r) with

(9) | | Γ α - Γ α Λ | | < e / 2 .

Since 0 is a weak*-cluster point of (T*φn), there exists an infinite set
/i of positive integers such that

(10)
i.e.,

By (9)

(11)

and (10),

\(T*φn)(alc) | <

<P»(Tat) | <

we have

\Ψn(Ta)\<

:ε/2
:ε/2

ε

= 1
= i

y

y

(a

,r;
,r;

n
n

n

e
e

e

A),
A).

A).

Given x e E with \\x\\ <Ξ 1, there exists a e A with —α g x ^ α, and
so, by (11),

I (T*φn)(x) I - I φn(Tx) I ̂  φn(Ta) <S (n β A),

\\T*φn\\^e (neA).

Therefore 0 is a norm-cluster point of (T*φn), and we have proved that
Theorem 1 is applicable.

EXAMPLE 3. Suppose that there exists a subset A of if with the
following properties:

( i ) Given x e E with \\x\\ ̂  1, there exists a e A with — a ^ x ^ a.
(ii) A is contained in a (r^)-compact set.
Let K*, J5*, T* be defined as in Example 2. Given φ e J5* and

x e E with || a; || ^ 1, there exists a e A with —α ̂  a; ̂  α, and therefore

Since A is contained in a (τv)-compact set, | | α | | is bounded on A, and
T* is a partially bounded mapping of K* into itself.

We show that Theorem 2 is applicable to the operator Γ*. Since
K* is weak*-closed, B* is weak*-compact, and Γ* is weak*-continuous
in K*, we need only prove that the weak* topology is sequentially
stronger than the norm topology at 0 relative to B*. This is proved
by an argument similar to that in Example 2, but using A in place of
TA.
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It follows that there exists a non-zero element f of ίΓ* with
T*ψ = μ*ψ, where μ* is the partial spectral radius of T*.

In particular, the conditions of this example are satisfied with A
consisting of a single point if K contains an interior point in the normed
space E. Thus Theorem B is contained in this example, and hence in
Theorem 2.

EXAMPLE 4. Theorem 1 of Schaefer [6] is a case of our Theorem
2. In this case the topology τ is given, and Schaefer constructs a norm
in K — K in such a way that

IMI=/(aO (xeK),

where / is a certain (τ)-continuous linear functional. Since / is (τ)-
continuous, it is easily verified that r is sequentially stronger than τN

at 0 relative to B.
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SUMMABILITY OF DERIVED CONJUGATE SERIES

B. J. BOYER

l Introduction. In a recent paper ([3] it was shown that the
summability of the successively derived Fourier series of a CP integrable
function could be characterized by that of the Fourier series of another
CP integrable function. It is the purpose of the present paper to give
analogous theorems for the successively derived conjugate series of a
Fourier series.

2. Definitions* The terminology used in [3] will be continued in
this paper. In addition let us define:

(1) ψ(t) = ψ(t, r, x) = \[f{x + t) + {-iγ-'fix - t)]
Li

( 2 ) Q{t) = S (r - 1 - 2i)lt

(3) g(t) = rlt'r[ψ(t) -

The rth derived conjugate series of the Fourier series of f(t) at
t = x will be denoted by DrCFSf(x), and the nth mean of order {a, β)
of DrCFSf(x) by Sr

Λtβ(f, x, n).

3 Lemmas.

LEMMA 1. For a = 0, β > 1 or a > 0, β ^ 0, and r ^ 0,

λίϊ .β(α) = -π~ιr\{-xγ+1 + Oflal^-log-* \x\)

+ Q{\x\-r~2) as | B | - > co .

This is a result due to Bosanquet and Linfoot [2].

LEMMA 2. For a > 0, β ^ 0 or a = 0, β > 0 and

r ^ 0, αjrλί?Λ+r>β(a?) = Σ B«(α, /3)λ1+α+r_ ί iβ+j(α?) ,
iJ-0

where the Br

i5 are independent from x and have the properties:
( i ) BUa,0) =
(ii) BU(a,β)^

(iii) ±BUa,β)
iJ-0

Received January 19, I960.

1139



1140 B. J. BOYER

The proofs of (i) and (ii) will be found in [3], Lemma 2, taking the
imaginary parts of the equations there. Part (iii) follows immediately
from the first part of the lemma and Lemma 1.

LEMMA 3. For n > 0, a == 0, β > 1 or a > 0, β ^ 0, and r ^ 0,

C-) sin vt\

fn

Proof. Smith ([6], Lemma 6) has shown that for every odd, Lebes-
gue integrable function, Z(t), of period 2ττ,

Sa,β(Z, 0, n) - - 2

Since the right side of this equation can be written

-2n[z(t) Σ \+»β[n(t + 2kπ)]dt

for every such Z(t), the lemma is true for r = 0. For r ^ 1 the inter-
change of (d/dty and Σ-~ is justified by uniform convergence.

The following lemma is a direct consequence of Lemma 3:

LEMMA 4. Let f(x) e CP[—π, π] and be of period 2π. For n > 0
and a = 0, β > 1 or a > 0, β ^ 0,

S;,β(/, a, rc) = 2(-nY+1['φ(t) Σ λfΛ.βWί + 2^)]dt .

LEMMA 5. For α ^ 0 , /9^0, ^ > 0 and r Ξ> 0,

nr+1[~Q(t)^Λ+r,β(nt)dt = 0 ,
Jo

where Q(ί) is defined by (2).

Proo/. If r = 0, then Q(ί) = 0. For r ^ 1 and i = 0,1, [r-1/2],
the truth of the lemma follows from the equation:

f °° -1-2 ~ r
Jθ l+Λ+r,β

which is easily verified by means of r — 1 — 2% integrations by parts.
The final two lemmas of this section give the appropriate representa-

tion of the nth mean of DrCFSf(x).
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LEMMA 6. Let f(x) e CλP[—π, π] and be of period 2π. Let m , 0 ^
m g λ + 1, be an integer for which Ψm(t)eL[0, π]. Then, for a = m,
β >1 or a> m, β ^ 0 and r ^ 0,

Sr

a+r.β(f> %> n) = 2(-nγA\ψ(t) - Q(t)]\$a+r,β(nt)dt + Cr + o(l)
Jo

as n —» Co, where

( 4 )

Proof. It follows from Lemmas 4 and 5 that

Sr

a+T.β(f, * . «>) = 2(-n)r+1\"[ψ(t) - Q(t)]XίrUr,β(nt)dt
JO

%+r!β[n(t + 2kπ)]dt

= Ix + Ja + J3 .

Since the degree of Q(ί) is r — 1, Lemma 1 shows that

( 6 ) J3 =

Let us define:

J(n, t) = 2(-nY+1±{X^Λ+r,β[n(t + 2kπ)]

- {-iγr\π-\n{t + 2kπ)]-r'1} .

Again appealing to Lemma 1, we see that lim^oo (θldt)3J(n, t) — 0 uni-
formly for 16 [0, π] and j — 0, 1, , m.

With the aid of the well-known cotangent expansion I2 may be
written:

I2 = \πψ(t)J(n, t)dt + (-l)r+12π-1[V(ί)(^-)Γ

Jo jo \ a t /

\l_ctn—t - t~Λdt .
L2 2 J

But after m integrations by parts, it is seen that

8 ) [*Ψ(t)J(n, t)dt = o(l) .
Jo
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The lemma now follows from equations (5), (6), (7), and (8).
A particular, but useful, case of Lemma 6 is

LEMMA 7. Let f(x)e CλP[—π, π] and be of period 2π. If g(t)e
CμP[0, π], where g(t) is defined by (3), then

Λ.β(ff> °> n ) = -2n\πg(t)X1+cύ>β(nt)dt
Jo

-2π-1[πg(t)(—ctn^-t - t~
Jo \2 2

for a = 1 + ξ, β > 1 or a > 1 + ξ, β ^ 0, where ξ = min [μ, max (r, λ)]..
The hypothese of Lemma 6 are fulfilled, because trg{t) e CλP[0,7rJ

implies G1+ζ(t) e L[0, π] by Lemma 6 of [3].

4 Theorems*

THEOREM 1. Let f(x)eCλP[—π, π] and be of period 2π. If there
exist constants αr_!_2ί, i = 0,1, [r — 1/2], such that

(i) g(t) e CμP[0, π] for some integer μ;
(ii) CFSg(0) = s(α, £) /or α = 1 + f, /3 > 1 or a > 1 + f, /3 ^ 0,

where ξ = min [//, max (r, λ)];

DrCFSf(x) = S(a + r,β),s =

S= - ί
Jo

where Cr is defined by equation (4).

THEOREM 2. Le£ / ( x ) e C λ P [ - T Γ , TΓ] αtic? δe o/ period 2π. If
DrCFSf(x) = S(α + r, /3) /or α = l + λ , / 9 > l or α > 1 + λ, /3 ^ 0,
then there exist constants ar-λ^2if i = 0,1, [r — 1/2], suc/z, £&α£

(i) ^(ί) e CμP[0, TΓ] /or some integer μ:
(ii) CFSg(0) = s(<x', /3'), where

a' = 1 + ξ, β' > 1 if l + λ ^ α < l + l or α = 1 + I, /? ^ 1 α f = α,
8̂f = /8 i/ α = 1 + I, 8̂ > 1 or α > 1 + £, /9 ^ 0, α^d | , s and S have

the values given in Theorem 1.
Before passing to the proofs of these theorems, let us observe that

the existence of the constants a,.-^^ implies their uniqueness from the
definition of g(t). In fact, it can be shown that the ar^x^2i are given by

i = 0f 1,

1 Bosanquet ([1], Theorem 1) has shown this for f(x) Lebesgue integrable and (C) re-
placed by Abel summability.
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In addition it can be shown that when f(x)eL, the sum, S, of
DrCFSf(x) may be written

S = -2π-Λ t-χg(t)dt .2

J->o«7)

Proo/ 0/ Theorem 1. That s = -πA*g{t)ctn{l!2)tdt follows from
Jo

the consistency of (a, β) summability and a result due to Sargent ([4],
Theorem 3). Therefore, both g(t)ctn(l/2)t and t~ιg(t) are CP integrable
over [0, π\.

From Lemma 7 we have

( 9 ) SΛιβ(g, 0, n) - s = - ί

The left side of (9) is o(l) by hypothesis. By consistency equation (9)
remains valid if a is replaced by a + r — i and β by β + i, i, j =
0, 1, r. Therefore,

[π r

Jo ίj=o j

With the aid of Lemmas 2 and 6, the last equation becomes

S;+r>β(/, a?, rc) = -2^-1[ V^ίQdί + Cr + o(l) .
Jo

This completes the proof of Theorem 1.

Proof of Theorem 2. Due to the length of this proof and its simi-
larity to the proof of Theorem 2, ([3]), only a brief outline of the proof
will be given.

Putting Q(t) — 0, β = 0 and p > a + r in Lemma 6 and integrating
the right-hand side of the resulting equation λ + 1 times, one can show
that

Dr+λ+1CFS(Ψλ+1, 0, n) is summable (C, p) .

A result due to Bosanquet ([1], Theorem 1) and the stepwise pro-
cedure employed in the proof of Theorem 2 ([3], equations 18 through
22) lead to the conclusion: £~r~1[ψ(£) — Q(t)] e CP[0, π] for an appropriate
polynomial Q(t), i.e., t~τg(t) e CP[0, π]. From this statement and a results
due to Sargent ([4], Theorem 3), g(t) e CμP[0, π] for some integer μ and

CFSg(0) = s(C), where s = πA*g(t)ctn(ll2)tdt .3

2 Ibid. The difference in sign is due to the distinction between allied and conjugate
series.

3 The CP integrability of g(f)ctn(lβ)t is equivalent to that of t^gif).
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That S, the (a + r, β) sum of DrCFSf(x), has the value

-2π~1\πt-1g(t)dt + Cr

Jo

follows immediately from Theorem 1 and the consistency of the sum-
mability scale.

Thus, it remains to prove only the order relations (a'f βr) in (ii) of
the theorem. A straightforward calculation using the representations
in Lemmas 6 and 7, the properties of the Br

υ(a, β) in Lemma 2, and
the consistency of the summability scale applied to DrCFSf(x), leads to
the following equations:

Σ
ίj=o

' + k, β')\sΛ,+k+r-itβ,+J(g, 0, n)

-πAπg{t)ctn—tdt\ = o(l) ,
Jo 2 J

for k = 0, 1,2, •••.
The expression in brackets may be considered t h e nth mean of order

(a' + k + r — i, βf + j) of a series formed from CFSg(0) by altering t h e
first t e r m . Since this series is summable (C) to 0, then Lemma 8 [3]
shows t h a t CFSg(0) = s(a', βr).

The following theorem gives a sufficient condition for t h e (a, β)
summability of CFSg(0) for β Φ 0. Since the proof follows the usual
lines for Riesz summability, it is omitted.

THEOREM 3. Let g(t) be an odd function of period 2π. If
C f cP[0, TΓ], where k is a non-negative integer, then

CFSg(0) - -πA*g(t)ctn—tdt(l + k, β), β > 1 .
Jo 2

As an application of these theorems it can be shown t h a t

DrCFSf(0, m) - S( l + m + 2r, β), β > 1 ,

where f(x; m) is either x~m sin x~x or x~m cos x"1, m — 0,1, 2,
The following results may be deduced from Theorems 1 and 2. I t

is assumed that f(x) e CλP [—π, π] and is of period 2π. The values of
S and 8, when either exists, and ξ are given in Theorem 1.

(A). If g(t) 6 CμP[0, π], then for a = l + ξ,β>l or a > 1 + ξr

β^0, DrCFSf(x) - S(a + r, β) if and only if CFSg(0) = β(α, β).

(B). For a = 1 + max (r, λ), /3 > 1 or α > 1 + max (r, λ), /3 ^ 0,
DrCFSf(x) = S(a + r,β) if and only if g(t) e CP[0, π] and CFSg(0) =
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These results generalize, to various degrees, results obtained by
Takahashi and Wang [7] and Bosanquet [1].

A weak, but none the less interesting, form of these results is

(C). If f(x) e CP[—π, π] and is of period 2π, then in order that
DrCFSf(x) be summable (C), it is necessary and sufficient that
g(t)eCP[0, π] and CFSg(0) be summable (C).
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A NOTE ON A PROBLEM OF FUCHS

D. L. BOYER

In [1] Fuchs has asked (problem 3) the cardinality of the set of all
pure subgroups of an Abelian group. The purpose of this paper is to
settle the question for nondenumerable Abelian groups. | A | will denote
the cardinality of the set A.

THEOREM. Let G be a nondenumerable Abelian group, and let &>

be the collection of all pure subgroups, P, of G with \P\ = \G\. Then

\&\ = 2 |G1.

Proof. Let T be the torsion subgroup of G. If | T\ < \'G\, then
\GjT\ = \G\ and by a result of Walker [3, Theorem 4], G/Γ, and hence
G, has 2m pure subgroups of order \G\.

If I Γ | = | G | , then we write Tin the form T = Σ i . θ ^ ( P Γ ) Θ Σ p θ # i »
where the Rp are reduced primary groups and Σι,* Θ ^Λvΐ) is the
maximal divisible subgroup of T.

If the above decomposition of T has | G | summands then the theorem
follows.

If the above decomposition has fewer than | G | summands, then

I Σ P Θ ^ P I = \G\>

We first consider the case that there exists a prime, p, such that
Ep\ = \G\. Let B be a basic subgroup of Rp. If \B\ < \RP\, then
RJBI = I G I and RJB = Σ . e i θ Z«(v°°) with | A | = | G |. Thus the

theorem holds for RJB, and hence also for G. If \B\ = \RP\, then
since B is the direct sum of cyclic groups, B = Σ^e^ 0 Ca, it follows
that \A\ = \G\. Thus the theorem follows for B and hence for G.
Finally, if \RP\ <\G\ for all p, we let1 Rr = Σ* 4 θ RPtf where the sum
is taken over all primes, pi9 such that | RH \ > fc$0. Then | Rr \ = | G | =
Σ l ^ p J We have proved above that for each pi9 Rp. has 2lRPil pure
subgroups, P(i) of order | i ? p J . For each i, choose P(i) c RPi with
\P(i)\ = \RPt\. Then P = Σ Θ - P ( ί ) is a pure subgroup of Rr with
IJPI = | i2 ' | , and the number of subgroups formed in this way is 2m.
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THE ENVELOPES OF HOLOMORPHY OF TUBE DOMAINS

IN INFINITE DIMENSIONAL BANACH SPACES

H. J. BREMERMANN

1. Introduction* Let B be a Banach space with the strong topology
generated by the norm. An open and connected set is called a domain.
Let / be a complex valued functional defined in a domain D of a complex
Banach space Bc. Let L be a finite dimensional translated complex
linear subspace of Bc: L = {z \ z = z0 + τxax + τnan} where z0, aly , an

are fixed elements τ19 •• , τ w complex parameters. (In the following we
will call L an "affine subspace"). / is called "G-holomorphic" (=Gateaux-
holomorphic) if and only if the restriction of / to the intersection D n L
of D with any finite dimensional affine subspace L of Bc is holomorphic
(in the ordinary sense). (Compare Hille-Phillips [7], Soeder [9], Bremer-
mann [5].)

A functional that is G-holomorphic and locally bounded is called
"F-holomorphic" (Frechet-holomorphic). For finite dimension the notions
(ordinary) "holomorphic function" and "G- and i^-holomorphic functional"
coincide. (The theory of holomorphic functionals in finite dimensional
Banach spaces is equivalent to the theory of n complex variables.) For
infinite dimension, in general, there exist already linear (and hence
G-holomorphic) functionals that are not locally bounded (and hence not
i^-holomorphic).

In Bremermann [5] it has been shown that the phenomenon of
"simultaneous holomorphic continuation," well known for n complex
variables, persists for infinite dimension even for the very general
G-holomorphic functionals: There exist domains such that all G-holo-
morphic functionals can be continued into a larger domain.

A domain for which a G-holomorphic functional exists that cannot
be continued is called (in analogy to finite dimension) a "domain of
G-holomorphy." In Bremermann [5] it has been shown that a domain
of G-holomorphy is "pseudo-convex" (in a sense which is a natural ex-
tension from finite dimension).

We will apply these notions in the following to infinite dimensional
tube domains and moreover we will show that it is possible to define
and to determine the envelope of holomorphy of tube domains.

Finite dimensional tube domains and their envelopes of holomorphy
have been studied by Bochner [1], Bochner-Martin [2], Hitotumatu [8],
and Bremermann [3], [4]. It has been shown that a tube domain is
pseudo-convex if and only if it is convex, and that the envelope of

Received January 11, 1960. This research has in part been supported by the Office of
Naval Research under Contract Nonr 447 (17).
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1150 H. J. BREMERMANN

holomorphy of any tube domain is its convex envelope. The former
property has been extended to infinite dimension in [5]. We extend
here the latter. To the author's knowledge this is the first time that
the envelope of holomorphy of a class of infinite dimensional domains
has been determined. At the same time the proof given in the following
is simpler than some previous proofs for finite dimension.

2 Tube domains, envelopes of holomorphy* Let Bc be a complex
Banach space that is split into a real and imaginary part, such that
every ze Bc is written

z = x + iy, where xeBr, yeBr ,

where Br is a real Banach space. Then a domain Tx is called a tube
domain with basis X if and only if it is of the form Tx — {z\xe X,y

arbitrary}, where X is a domain in Br.

Obviously, Tx is convex if and only if X is convex, and X is convex
if and only if the intersection of X with every finite dimensional affine
subspace Lr of Br is convex. (Lr = {x\x = x0 + t1a1 + , tn an}, where
x0, alf , an are fixed elements in Br, and tlf , tn real parameters).

It is somewhat difficult to define the envelope of holomorphy for
arbitrary domains. Already for finite dimension it may not be schlicht.
(Comp. [3], [6]). However, for finite dimension the following is true.
Let D be a given domain. Suppose we have a domain E(D) with the
following properties:

(I) Every function holomorphic in D can be continued as a (single-
valued) holomorphic function to E(D).

(II) To every finite boundary point z0 of E(D) there exists a function
that is holomorphic throughout E(D) and is singular at z0. If E(D) has
these properties, then E(D) is the envelope of holomorphy of D.

Analogously, if we have an infinite dimensional domain D and a
domain E(D) with the properties (I) and (II) (with respect to G-holo-
morphic functionals), then we call E(D) the envelope of G-holomorphy
of D.

3. Proof of the main theorem. Let Tx be a tube domain that is
not convex. Then, there exists an affine subspace

Lr = {x I x = x0 + tγ aλ + tnan)

(x0, alf , an e Br, tlf •••,*» real parameters) such that XΓ\Lr is not
convex.

Now it would be possible that XθLr is not connected and each
connected component is convex (for instance if Lr is one-dimensional).
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If X is not convex, then there exist two points xx and x2 that cannot
be connected by a straight line segment in X. However, X is connected,
and even arc wise connected. Hence we can connect xx and x2 by an
arc in X, and even by a "polygon" that is by finitely many straight
line segments. The polygonal arc spans a finite dimensional affine sub-
space Lr and the connected component of Lrf]X that contains xx and
x2 is not convex since xx and x2 cannot be connected by a straight line.

Thus Lr Π X has a connected component that is not convex. Hence
there exists a point xs on the boundary of Lrf]X and a line segment s
containing x3 such that s is locally a supporting line segment of the
complement of Lr Π X. In particular, xd and s can be chosen such that
in a neighborhood of x3 the line segment s has with the boundary
d(XPιLr) only the point x3 in common.

Let the equation of the line containing s be

s = {x ] x = x3 + bt) ,

where b is a fixed element in j?y., t a real parameter. Let b be normalized
such that || 6 || = 1. This real line lies in the analytic plane:

A = {z I z = x3 + δτ} ,

where τ is a complex parameter.
Let Sp be a disc on A with center at x3, radius p:

Sp = {z\z = x3 + 6τ, I τ I < p} .

If p is small enough, then Sp will lie entirely in TΣ, except for the
points

{z I z = #3 + ΐ&£, I £ I < jθ, £ real} .

We now apply the following lemma (which is an immediate conse-
quence of the "fundamental Lemma" 3.1 (and 3.2) of [5] and Theorem
6.3 of [6]).

To formulate the lemma we need the distance function dD(z) which
is defined as follows: Given a domain D, then

dD(z) = sup r 9 {z'\ || z — z'\\ < r} c D ,

in other words dD{z) is the distance of the points z from the boundary
of Dy measured in the norm of J5C.

LEMMA. Let h(z) be the solution of the boundary value problem

h{τ) = log dFχ(xs + bτ) for \ τ \ - p ,

h(τ) harmonic for \ τ \ < p .
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Then any function that is G-holomorphic in TΣ can he continued G-
holomorphically into the point set:

C = {z I z' = xz + τ6, IT | < p, || z - z' | | < eΛ(τ)} .

(We note that even though log dTχ(x) becomes infinite at the two points
z = x3 ± ήofr, the solution of the boundary value problem exists and is
finite for all | r | < p).

The point set C is a neighborhood of the point z = xz. In particular
it contains the points \\z — x3\\ < eM0), and eM0) =£ 0. This continuation
procedure can be repeated at any point z — x3 + ίy, where y is arbitrary.
We always get the same neighborhood, independently of y, because the
function dTχ(x3 + iy) and hence h does not depend upon y. Hence any
function G-holomorphic in Tx can not only be continued into a larger
domain but into a larger tube domain Tx,, that means X c X', X Φ X'.

We have to observe however one difficulty: If the intersection
Xf]{X\ || x — αs311 < em)) consists of more than one component, then
continuation into Tx, with X1 = X\J{x\\\x — xs\\ < eh{0)} could possibly be
such that the continued function would no longer be single-valued in
Tx,. In order to keep the continuation single-valued we remove from
Xf all components of X[\{x \\\ x — cc8|| < ehm] except the one that
intersects Sp. In this way the continuation remains single-valued.

Thus we have the result: If Tx is a tube domain such that X is
not convex, then any function that is G-holomorphic can be continued
G-holomorphically (and single-valued) into a larger tube domain with
basis X\ Then we can apply the same result to Tx,, and obviously
the process can be iterated as long as the enlarged tube is not yet
convex. Thus we have proved:

Given a tube domain Tx, then any function that is G-holomorphic
in Tx can be continued G-holomorphically into the convex envelope of Tx.

(The convex envelope of Tx equals Tmx), where C(X) is the convex
envelope of X.)

On the other hand there exists to every boundary point z0 of Tϋ{X)

a supporting affine subspace of Bc and a linear functional l{z) that be-
comes zero exactly on the affine subspace. (This is an immediate con-
sequence of the Hahn-Banach theorem.) The functional lβ(z) is then
G-holomorphic in TC{X) and becomes singular at zQ. Hence we have shown:

To every boundary point z0 of a convex tube domain there exists a
functional that is G-holomorphic in the domain and singular at z0. The
two statements combined give:

THEOREM. Let Tx be a tube domain in a complex Banach space
{of arbitrary dimension). Then the envelope of G-holomorphy of Tx

is the convex envelope of Tx, which equals TC{X), where C(X) is the
convex envelope of X.
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MINIMAL SUPERADDITIVE EXTENSIONS OF

SUPERADDITIVE FUNCTIONS

ANDREW BRUCKNER

Introduction* A real valued function / is said to be superad-
ditive on an inverval I — [0, a] if it satisfies the inequality f(x + y) i>
f{x) + f(y) whenever x, y and x + y are in I. Such functions have been
studied in detail by E. Hille and R. Phillips [1] and R. A. Rosenbaum
[2]. In this paper we show that any superadditive function/ on I has
a minimal superadditive extension F to the non-negative real line E, and
then proceed to show that F inherits much of its behavior from the be-
havior of / . We deal primarily with superadditive functions which are
continuous and non-negative.

A simple example of a superadditive function on [0, a] is furnished
by a convex function / with /(0) ^ 0. Also, if / is convex and /(0) = 0,
then it is easy to verify that its minimal superadditive extension F is
given by

F(x) = nf(a) +f(x — no)

for na ^ x < (n + l)α. In general, the minimal superadditive extension
F is not easily computed. In the sequel we shall discuss two methods
for obtaining F. For brevity we shall use the notation f*F to mean
"F is the minimal superadditive extension of / " .

l The decomposition method. DEFINITION. LetxeE. The num-
bers x1, , xn are said to form an a-partition for x if x1 -\ h%n = x
and for each i = 1, , n we have 0 ^ xι ^ a.

THEOREM 1. Let f be a superadditive function on / = [0, α]. Then
the function F defined on E by the equation

F(x) = sup Σf{uι) ,

the supremum being taken over all a-partitions of x, is the minimal
superadditive extension of f.

Proof. We will show that F is superadditive. The minimality of F
will then follow from the fact that any superadditive extension / of /
must satisfy f(x) ^ Σf{xι) for all xeE and all α-partitions x1, , xn of
x. Let x,yeE,s>0. Choose α-partitions x\ , xm and y\---,yn for

Received November 6, 1959. This paper is part of the author's doctoral thesis, and the
author is indebted to Professor John Green for his guidance in its preparation. Thanks are
also due the National Science Foundation for their support.

1155



1156 ANDREW BRUCKNER

x and y respectively such that f(xτ) + + f(xm) ^ F(x) - ε/2 and
/(y1) + + f { y n ) ^ F { y ) - ε / 2 . T h e n t h e n u m b e r s x 1 , - - - , x n , y \ - - - , y n

form an α-partition for x + y and we have

F(x + y)^ fix1) + + /(^m) + At)

Suppose we have an approximation for F(x): that is, a number ε > 0
and an α-partition x1, , xn for x such that F(x) — Σf(xι) < ε. If among
the members of this α-partition there are two, say xj and xk such that
u = χj + xk ^ α, then since f(u) ^f(x3) + f{xk), we have

F(χ) - [f(u) + Σ/fa*)] ^ ^fa) - Σ/(#*) < e -

In other words, replacing two numbers used in the approximation by
their sum u ^ a yields an approximation at least as good as the origin-
al. It follows that if x satisfies the inequality (M — 2)α/2 ̂  x g (M — l)α/2,
where M is a positive integer, then there exist arbitrarily good approx-
imations for F(x) using only M terms in the α-partition. If / is con-
tinuous, then a simple compactness argument results in the following
theorem:

THEOREM 2. Let f be a continuous superadditive function on [0, α],
and let F be its minimal superadditive extension. Let x satisfy the
inequality (M — 2)α/2 g x ^ (M — l)α/2. Then 3 an a-partition %ι, ,xM

for x such that

Σf(x<) = F(x) .

Such an α-partition for x will be called a decomposition of x, for
which we shall use the notation <X> whenever convenient. We will de-
note by N(x) a number so large that for any continuous superadditive
function on [0, a], 3 a decomposition <#> of x with at most N(x) mem-
bers. It follows from the above that we can always let N(x) — 2x1 a+ 2,
for example.

Henceforth we shall be concerned primarily with continuous non-
negative superadditive functions for which we shall use the abbreviation
csa. It is readily verified that such functions are non-decreasing and
vanish at the origin.

2. Combinations of extensions* One might expect that if the mem-
bers of a family / of csa functions are combined in a linear fashion to
give another csa function h, then combining the members of the family/
of minimal superadditive extensions of functions in / in the same way
would give rise to a function H which is the minimal superadditive
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extension of h. However this is not always the case. Consider, for
example, the functions / and g defined on [0, 3] as follows: /(0) — 0,
/(I) = 0,/(2) - 0,/(3) = 1 and g(0) = 0, g(l) = 0, g(2) = 2, g(S) = 3,/ and
g linear on [n, n+1], n = 0,1, 2. Simple computations show that whereas
(F + G)(4) = 5 and FG(i) = 4, the minimal superadditive extensions of
f + g and/# take on the values 4 and 3 respectively at x = 4. The mi-
nimal superadditive extension of a sum (product) of superadditive func-
tions is thus not necessarily the sum (product) of the minimal superadditive
extensions. However, some processes do commute with taking minimal
superadditive extensions.

THEOREM 3. Let {fn} be a sequence of csa functions converging to
the continuous function f on /— [0, a]. Let fn*Fn. Then f is csa and
/ * lim^oo Fn.

Proof. That / is superadditive and non-negative is clear. Since for
each positive integer n the function fn is non-decreasing, the conver-
gence of {fn} to / is uniform on L Given ε > 0 and x e E, let M be
such that n ^ M =^> max ί e J \fn(t) — f(t) | < ejN(x) where N(x) is a number
chosen as in § 1. Let k > M and let (x*y =• x\, , xζ{x) and <V> = x1,
• , xN{x) be decompositions for x relative to Fk and F respectively. We
have

Nix) Nix)

F(x) =
1 = 1

and
Nix)

F,(x) =
ί=l ΐ = l

It follows from these two inequalities that

F(x) - Fk(x) | < ε ,

for n ^ M.

3. Behavior of the minimal superadditive extension. It seems rea-
sonable to expect that the minimal superadditive extension F of a csa
function / will enjoy many of the properties of /. To a certain extent
this is true and we are able to predict much about the behavior of F
by examining the behavior of /.

THEOREM 4. Let f be csa on [0, a]. If f*F, then F is csa on E.

Proof. Clearly F is non-negative. To prove that F is continuous
let ε > 0 and choose δ < α/2 9 if u, v ^ a and | u — v \ < δ then
\f(u) — f(v) I < ε. Now let x and y be points of E for which j y — x\<8,
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say y — x + h. Let <j/> = y1,* , yN be a decomposition for y with, say,
2/1, ^ α/2. We have

and F(α) ^ Σ/(/) + /(y1 - h) .
2

Hence 0 g F(y) - F(x) S fit) - Λv1 - h)< e.
In a similar manner one can establish the following theorem, which

is stated without proof.

THEOREM 5. Let f be csa on [0, a]. If f*F, then the following

statements hold:

(a) // / satisfies a Lipschitz condition with coefficient M, then so

does F;

(b) // <2/> = y1, , yM is a decomposition for y and f is differen-

tiable at yι and y\ then f\yι) = f'{yj). If, in addition, F is differen-

tiable at y, then F'{y) = f'(y%
One might expect that the differentiability of / o n [0, a] would

imply the differentiability of F, except possibly at integral multiples of
α. Although this turns out not to be the case, we do have the follow-
ing theorem:

THEOREM 6. Let f be a csa function on the interval [0, α], with / '
continuous on (0, a). For x not an integral multiple of a, let X be the
set of points of [0, a] which can be used in a decomposition for x. Then
F has a right hand derivative F+(x) and a left hand derivative F_(x)
at x with

F+(x) = sup/'(ί) =s S
extex

and
F-(x) = inf/'(ί) = / .

tex

Proof. We will prove only the upper equality. The lower can be
proved in a similar manner. It suffices to show D+F(x) = D+F(x) = S
where D+F and D+F are the upper and lower right hand derivatives of
F. Suppose 3ε > 0 3 D+F(x) > S + 2ε. Then a sequence %} of num-
bers approaching 0 such that

(1) F{x) < F(x + ht) - (S + ε)ht

for i = 1, 2, . For each positive integer i, let {u\ v\ , wι) be a de-
composition for x + ht. Without loss of generality, we assume that the
sequence (t&*, i;*, , w*) converges to, say, (u, i;, ,w); otherwise we
consider a convergent subsequence. Since x is not an integral multiple
of a, one of the numbers u,v, ",w is not equal to 0 or a. Denote
such a one by u. From (1) we have
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( 2 ) F(x) < fin') + f{vι) + +f(w*) - (S + e)ht .

Choose Nx 9 i > Nλ implies that

( 3 ) fiu*) < /(u* - ht) + [fin' - ht) + εl2]ht .

That Nx can be so chosen follows from the continuity of / ' . In fact,
let δ be such that \u — v\<δ=$\ f'{u) -f\v) | < ε/4. Now choose Nx such
that i > Nx =φu - δ < uι - h% < uι < u + δ. lί ye[ul - hiy u% with
ί> Nl9 then f\uι - ht) + ε/2 > f\y). Hence (3) is a valid inequality.
For i > Nx we have from (2) and (3),

( 4 ) F(x) < /(%' - fe{) + /(*<)+ . +/(w') +[/'(%' - λ,) - (S + ε/2)]λt.

Now the sequence (V — ̂ , v% , w*) converges to (t6, v, , w) and
^. Thus, since

') - F(x + Λc) > F{x) ,

and i*7 is a superadditive function, we have

f(u)+f(v)+ --+f(w) = F(x)

and % e X Therefore f'(u)^S. By the continuity of/', lim£^0O/'(^i-Λ<) =
f'(u). Hence 3 a positive number N2 such that ί>iV2 ==>/'(^—ht)<S+εl2.
Let i = maxtZVi, iV2). For this i we have from (4),

Fix) < f(u* - hd + fiy*)+ +f(w%

This is impossible, for nι — hi + vι -\ \-wι — x for each i = 1, 2,
and ί7 is superadditive. We have shown D+F(x) ^ S.

It remains to show D+F(x) ^ S. Let ε > 0, and let (u,v, , w) be
a decomposition for x such that u Φ a, and /'(%) > S — ε/4. Choose
δ > 0 a h < δ =Φ/(u + h) > f(u) + (S - ε/2)ht. For h < δ,

F(x + h)> fin + h)+ f(v)+ +f(w) > F(x) + (S - e/2)h .

The first and third members of this inequality give

F(χ + h)-F(x) > ) g + 5 / 2 .
h

Since ε was arbitrary, D+F(x) ^ S, and the proof of the theorem is
complete.

We now proceed to obtain a linear upper bound for F. If / is csa
on [0, α], then the function g defined by g(x) ~ f{χ)jχ is continuous on
[0, a] and satisfies g(nx) ^ g(x), n = 1, 2, , whenever nx ^ α. It fol-
lows that g attains a maximum at some point of (0, a].

THEOREM 7. Let f be csa on [0, α], f*F, and let g be defined as
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above. Let t be a point of (0, a] at which g attains its maximum M.
Then

(a) F(x)/x < M for all x > 0,
(b) F(x)/x = M if x is an integral multiple of t,
(c) lim F(x)lx = M,

(d) max [Mx — f(x)] = max [Mx — F(x)] ,
i6[0,α] xeE

(e) lim \F(x) — Mx] = 0 if f is differentiate at t.
X—>oo

Proof. The proofs of (a), (b), (c) and (d) are straightforward and
will be omitted. Let us then turn to (e). For each xeE, write x in
the form x = nt + y, where n is an integer and 0 ^ y < t. Define a
function F* by F*(nt + y) = nf(t + y/n), n = 1, 2, . Clearly ί 7 * ^ ) ^
jP(ί») ^ Mx for all α; e E. We will show that lim x_ [Mx - F*(»)] = 0. By
the definition of F* we have

Mx - F*(x) = Λf(wί + 2/) - w/(ί + 2//̂ )

Noting that f(t) — Mt, we see that the right hand member of this last
equation can be written in the form

( i ) J M _ / < * + */*)-/<*)]
L y\n J

Now let x —• CXD . Then /̂ is bounded between 0 and t and w •—> oo. The
expression (1) approaches 0, since /'(£) = M.

We observe that the function F* of the preceding theorem is asymp-
totic to F with F* ^ F. Hence F(x) is bounded between F*(x) and Mx,
two functions which are easy to calculate, and whose difference is small
when x is large.

4. The polygonal method* The minimal superadditive extension of
a csa function may also be obtained as the limit of a sequence of poly-
gonal functions. A function p is said to be polygonal if p is continuous
and piecewise linear. The point x e [0, a] is called a vertex of p if (x,
p{x)) is a vertex of the polygon forming the graph of p.

THEOREM 8. Let p be polygonal on [0, a] with equally spaced ver-
tices. Then p is superadditive if and only if p is superadditive on
its vertices.

Proof. If p is superadditive, then p is clearly superadditive on its
vertices. To prove the converse consider the function g defined on the
set

D ==5 {(x, y): 0 g x, y ^ a and x + y ^ a}
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by the equation g(x, y) = p(x + y) — p(x) — p(y). It is easy to verify
that g is planar on any triangle T of the form

T = {0», V): ux ^ x < u2) vλ ^ y S v2, x + y ^ (or ^ ) u2 + v2} ,

where {uλ, vτ) and (u2, ^2)
 a r e pairs of successive vertices of p. Hence

g attains its minimum on T at one of the points (ut, vt) and therefore
its minimum on ΰ at a point (u, v) where both u and v are vertices of
p. Thus, if g is anywhere negative then g is negative at a point whose
two coordinates are vertices of p. This proves the theorem.

Now let p be a polygonal function on [0, a] with vertices at 0, v, 2v,
. . . , mv = α. We define a function P on i? as follows:

P(x) ~ p(χ) for x ^ α

P(Mv) = max [P(&v) + P(Mi; — /cv)] M an integer ^ m + 1

and

P linear on [Mv, (M + 1)^], M = m, m + 1, .

P will be called the function associated with p. It is easy to see that
if p is csa, then P is

DEFINITION. A sequence {pn} of functions defined on [0, a] is called
a p-sequence if

(i) each pn is a polygonal function
(ii) the vertices of pn are Kaβn, K = 0, 1, , T

(iii) Pn(Kal2T) = pm(Ka/2m) iί m ^ n.
In terms of this concept we have

THEOREM 9. Let {pn} be a p-sequence coverging to the csa function
f on [0, a]. For each positive integer n let Pn be the function associated
with pn. Then, if f*F, {Pn} converges to F on E.

Proof. It suffices to show that Pn approaches F on [0, 2α]. Let
F*(x) = limw_ooPn(ίc). It is easy to check that F* is superadditive. Let
if* be the set of vertices of Pfc in [α, 2α], and let V = [JTV^. If v e V,
then l i m ^ P ^ ) exists since the sequence {Pn(v)} is ultimately non-de-
creasing and Pn(v) ^ F(v) for all n. We have \imn^Pn(v) ^ F{v). Rut
since F* is superadditive, we have F* ^ F. Hence F* = ί7 on F. By
standard arguments involving the continuity of i77, the density of V
in [α, 2a], and the monotonicity of each Pn and F*, it follows that F^
F* and that F* = limΛ^Pn(a?).

5, Superadditive functions in ^-dimensions. It turns out that many
of the ϊesλilts obtained in one dimension have their analogues in n-di-
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mensions. The interval I = [0, a] is replaced by a fundamental region
R defined by the inequalities 0 ^ xt ^ aίy ί — 1, , n, where the a% are
arbitrary positive numbers. The decomposition method works, just as it
does on the line, and we can prove with little difficulty that to any
superadditive function f on R there corresponds a minimal superadditive
extension F to Ei = {{xx, , xn): 0 ^ xt, i = 1, , , n}. We can
also prove a theorem corresponding to Theorem 5, the derivatives here
being directional derivatives. In Theorem 7 a certain line l(x) — Mx
played an important role. In ^-dimensions, for each direction θ we have
a plane Ps which plays the role of I in some direction, and when the
function P, defined on the fundamental region R by the equation

P(z) = mfPθ(z),
Θ

is extended to Ei by homogeneity it is the minimal concave superad-
ditive function which bounds F from above. It can be proved, at least
in Ei, that

[P(z) -f(z)] ^ max [P(z) - F(z)] .
t
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ON EXPANSIVE HOMEOMORPHISMS

B. F. BRYANT

1. Introduction* A homeomorphism Φ of a compact metric space
X onto X is said to be expansive provided there exists d > 0 such that
if x, y e Xwith xΦy, then there exists an integer n such that p(xψn, yφn)>d
(see [1] and [3]). The question arises as to the possibility of extending
the results concerning expansive homeomorphisms to compact uniform
spaces. The extension is possible, although trivial in light of the corol-
lary to Theorem 1.

In §§ 3 and 4 the setting is a compact metric space X. Theorem 2
is stronger than Theorem 10.36 of [1] in that we do not require X to be
self-dense. Also, the lemmas of which Theorem 2 is a consequence are
perhaps of some interest in themselves. In § 4 we show that if X is
self-dense, then for each x e X and each ε > 0 there exists y e U(e, x)
such that x and y are not doubly asymptotic.

2 A homeomorphism φ of a compact uniform space (X, ^/) onto
(X, ^ ) is said to be expansive provided there exists Ue^/ such that
U φ Δ (the diagonal) and if x, y e X with x Φ y, then there exists an in-
teger n such that (xφn, yφn) 0 U. For uniform spaces we use the notation
of [2], but following Weil [4] we suppose (X,<%/) is Hausdorff; i.e.,
Π{U: Ue^/} = Δ. We also suppose that each Ue^/ is symmetric.

THEOREM 1. Let (X, <%/) be a compact uniform space which is not
metrizable and let φbe a homeomorphism of X onto X. If Ue^/, then
there exist x, y e X with x Φ y such that (xφn, yφn) e U for each integer
n. (Compare with Theorem 10.30 of [1].)

Proof. Select Ve^/ such that VoVoVaU and VaU (see [2], p.
180). Since φn, for each integer n, is uniformly continuous, we may
choose U1 e ^/ with U^V such that (p, q) e Ux implies (pφfc, qφk) e V for
k = ± 1. For i > 1, choose Ut e <%/ with Z74c Ui-1 such that {p, q) e Ut

implies (pφk, qφ*) e V ΐor k = ± i. Since (X, ^ ) is not metrizable, the
countable set {Ut \ i = 1, 2, •} is not a base for the uniformity ^([4],
p. 16). Thus there exists Weψ/ with W a U such that i ^ 1 implies
Ui Π comp W Φ 0. Choose, for each i,{xif yd e ί74 Π comp W. Since Xx X
is a compact Hausdorff space, there exists (x, y) such that each neigh-
borhood of (x, y) contains (xif yt) for an infinite number of positive in-
tegers i. Let n be an arbitrary positive integer, then there exists m>n
such that (xm, ym) e Un(x) x Un(y). Hence (x, xm) e Un and (y, ym) e Un;
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therefore (xφk, xmφk) e V and (yφk, ymφk) e V for k = ± n. Also (xm, ym) e
Uma Un so that (xmφk, ymφk) e Ffor k= ± n. Hence (xφk, yφk) e Vo Vo F c U
for k = ± n. Each (xi9 yt) e ^ c F and Vc U; hence (x, y) e U. Finally,
xΦy. For otherwise we could choose Sef/ such that SoSc W; then
(%kf Vic) € S(x) x S(x) for some k, and hence (cc, #fc) e S, (a?, j/fc) e S so that
(#fc> I/*) e Ί^ This completes the proof.

An immediate consequent of the theorem is the following

COROLLARY. // (X, W) is a compact uniform space on which it is
possible to define an expansive homeomorphism, then (X, f/) is metriz-
able.

3. The author is indebted to the referee for suggesting the ar-
rangement of the material in this section. In the original version, Lemma
2 had a slightly stronger hypothesis and Lemma 3 was essentially con-
tained in the proof of Theorem 2. In this section we suppose that X
is an infinite compact metric space and (with the exception of Lemma 3)
that φ is an expansive homeomorphism (with expansive constant d) of
X onto X.

LEMMA 1. If x φ y and if there is an integer N such that n>N
{n < N} implies ρ(xφn, yφn) ^ d, then x and y are positively {negatively}
asymptotic under φ.

Proof. If x and y are not positively asymptotic under φ, then there
exist ε > 0 and positive integers nλ < n2 < such that p(xφnί, yφni) ^ ε
with lim^+ooίcφ71* = u and lim^+^yφ711 — v. Obviously uΦv. Let m be an
arbitrary integer. For all i sufficiently large nt + m > N; hence
ρ(xφnt+m, yφni+m) ^ d. Since lim^+OQxψnί+m = uφm and \imί^+ooyφni+m = vφm

J

it is clear that p(uφm, vφm) ίg d for each integer m. This contradicts
the hypothesis that φ is expansive. The alternative statement may be
proved by a similar argument.

LEMMA 2. If ω{x){a(x)} contains a periodic point p and ω(x){a(x)}
is not identical with the orbit of p, then there exist w and z in ω(x)
{α(x)} such that w and p are positively asymptotic and z and p are
negatively asymptotic.

Proof. Suppose p is of period k. There exist positive integers
nλ < n2 < such that lim^+^xφ711 = p. Let ki be the smallest non-
negative integer such that ni + k% is a multiple of k. Since 0 ̂  k% < k,
there exists m such that ki — m for an infinite number of integers i.
Thus there are positive integers m1 < m2 < such that
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lim xψmι+m = lim xpkji = pφm .
i-»+oo i-»+oo

Denote φfc by θ (with expansive constant dλ) and p£m by q (see [1], p.
86). Thus \imi^+ΰOxθJi = q and qθ = g. We can assume that p(xθji, q)<dx

for each i.
The points a? and q are not positively asymptotic under θ, since other-

wise ω(x) under φ would consist of the k points in the orbit of p. Hence,
by Lemma 1, there exist arbitrarily large integers r such that p(xθr, q)>dλ.
Therefore we can assume that sx < s2 are positive integers where st is
the smallest positive integer such that p(xθji+s\ q) > dλ andlim^+ o ox#^+ S ί =
ueω(x). Let — a be an arbitrary negative integer, then for all i suffi-
ciently large 0 < st — a < st. Hence ρ(xθH+Si~a, q) ^ dlr and therefore
p{uθ~a, q) <£ dλ for each negative integer — a. Thus, by Lemma 1, u is
negatively asymptotic to q under θ and hence under Φ([l], p. 85). We
can assume j \ < j \ + st < j i + 1 and hence that there exist positive integers
t2<t3<*» where ίt is the smallest positive integer such that p(xθ5i~H, q) > dλ

and lim^+ooa;̂ *-** = v 6 ω(£c). By an argument similar to the above, v
is positively asymptotic to q under φ. Since a(x) under φ coincides with
ω(x) under φ"1, this completes the proof.

In the following lemma we do not require φ to be expansive.

LEMMA 3. If x is not periodic and ω(x){a(x)} is the orbit of a
periodic point p, then there exists a point q in the orbit of p such that
q and x are positively {negatively} asymptotic.

Proof. Let peω(x) and, as in the first paragraph of the proof of
Lemma 2, select positive integers j \ < j 2 < such that lim^+ooίc^* =
q = pφ,m and qθ = q, θ — φk. If x and q are not positively asymptotic
under θ, then there exists a positive constant a and a sequence ^ 1 <?ι 2 <
of integers such that p(xθn\ q) > a. Let ε > 0 and choose β > 0 such
that β < ε, β < a, and p(z, w) ^ β implies p(zθ, wθ) < ε. We can assume
that p(xθji, q) < β. Let st be the smallest positive integer such that
ρ(xθJ*+sι, q) > β. Then for each i, β < ρ(xθ^+s\ q) < ε. But the sequence
{xθii+Si} has a convergent subsequence. Let s be the limit of such a
convergent subsequence, then s Φ q, s e ω(x) and p(s, q) ^ ε. Thus ω{x)
is not finite, contrary to hypothesis. It follows that x and q are posi-
tively asymptotic under θ, and hence under φ.

Similarly, if a(x) is the orbit of a periodic point p, then there exists
a point q in the orbit of p such that q and x are negatively asymptotic
under φ.

THEOREM 2. 77^r£ exist a, b, c, d e X such that a and b are posi-
tively asymptotic under φ and c and d are negatively asymptotic under
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Proof. There exists a minimal set NczX([l], p. 15). If N is infinite,
then N is self-dense and the conclusion follows from Theorem 10.36 of
[1]. Henceforth, suppose each minimal set in X is finite and thus is a
periodic orbit.

Since X is compact and infinite, there exists a non-isolated point r.
If r is not periodic, let r = p. If r is periodic, then there exists x Φ r
such that x and r are asymptotic ([1], p. 87). But then x is not periodic
and we let x = p.

There exists a minimal set N<z.ω(p), and a minimal set Maa(p).
Both N and M are periodic orbits. If N Φ ω(p) or M Φ a(p) the con-
clusion of the theorem follows from Lemma 2. If N = ω(p) and M=a(p),
the conclusion of the theorem follows from Lemma 3.

4. In addition to the standing hypothesis of § 3 we require X to
be self-dense.

LEMMA 4. If y e Z7(ε, x) implies that each neighborhood of y con-
tains z such that p(yφn, zφn) > d/2 for some positive {negative} n, then
there exists w e U(e, x) such that w and x are not positively {negatively}
asymptotic.

Proof. Let 0 < a < ε, then there exist xλ e U(a, x) and a positive
integer nλ such that p(xxφ

nχ, xφnι) > d/2. Suppose xλ and x are positively
asymptotic (otherwise the lemma holds); hence there exists m1 > nx such
that n > m1 implies p(x^n, xφn)<d/8. Choose a^X) such that U(alf xj c
U(a, x) and p(p, q) < ax implies ρ{pφn, pφn) < dβ for 0 g n ^ mx. For
i > 1 we select xu nt, mif and at > 0 such that ^ e [/(α^, cc4_x), n^m^^
ρ(xtφ

ni, Xι-ιΦni) > d\2y mi >niyn> m% implies p(x$n, xφn)<dβ, U(aif aj4) c
U(at^19 oJί-J, and />(p, g) < α^ implies p(pφn, qφn) < d/8 for 0 ^ w ^ m i e

We can suppose lim^+oo^ = we U(a, x)aU(ε, x) and w Φ x. If i > 1,
then ^ > m^! and hence p{x^ΛΦ

n\ xφnή < d/8. But p{x$ni, ^i_1φ
720>^/2,

and the triangle inequality implies p{XiΦn\ xφnή > 3d/8. If j > i,
then Xj e ί7(α4, £c4) and, since mt > wt, p(xjφn\ x$ni) < cZ/8. Therefore
p{x$ni

y xφnή > a/A for j ^ i. If ί > 1 is fixed, then ρ(xjφn\ wφnή is
arbitrarily small for j sufficiently large. Hence p(xφn\ wφni) ^ cZ/4. Since
{tij is an increasing sequence of positive integers, w and x are not
positively asymptotic. This proof establishes the alternative statement
by using φ"1 rather than </>.

THEOREM 3. For each x e X and each ε > 0 there exists y e U(ε, x)
such that x and y are not doubly asymptotic.

Proof. Suppose there exist xeX and ε > 0 such t h a t zeU(ε, x)

implies x and z are positively asymptotic. Suppose ε < d/2, then, by
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the above lemma, there exist y e U(e, x) and a > 0 such that U(a, y) c
Z7(ε, x) and t e U{a, y) implies that ρ(tφn, yφn) ^ d/2 for n^O. Therefore
u, v e U(a, y) implies p(uφn, vφn) ^ d for w ^ 0. Thus, since φ is ex-
pansive, u, v e Z7(α, ̂ /) implies ρ(uφn, vφn) > c£ for some negative w. By
the alternative form of the lemma above, there exists w e U{a, y) such
that w and y are not negatively asymptotic. Therefore either w and x
are not negatively asymptotic or y and x are not negatively asymptotic,
which establishes the theorem.

If X is an infinite minimal set, then a stronger statement can be
made. Since X is pointwise almost periodic under Φ([l], p. 31), ε > 0
implies p(x, xφn) < ε for some n Φ 0. It is easy to show that x and xφn

are neither positively nor negatively asymptotic.
If X is not self-dense, then, as shown by the following example,

each pair of distinct points may be both positively and negatively asymp-
totic. Let X consist of the real numbers 0, l/n{n = ± 1, ± 2, •}, and
let

jΌ if x = 0 .

xφ = \ l/(n + 1) if x — 1/n and n Φ — 1 .

(l if x = - 1 .
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ON COMPLETE AND INDEPENDENT SETS OF

OPERATIONS IN FINITE ALGEBRAS

JEAN W. BUTLER

In [4] Post obtained a variety of results about truth functions in
2-valued sentential calculus. He studied sets of truth functions which
could be used as primitive notions for various systems of 2-valued logics.
In particular, he was interested in complete sets of truth functions, i.e.,
sets having the property that every truth function with an arbitrary
finite number of arguments is definable in terms of the truth functions
belonging to the set. Among other results Post established a computable
criterion for a set of truth functions to be complete. Using this criterion
he showed that there is a finite upper bound for the number of ele-
ments in any complete and independent set of primitive notions for the
2-valued sentential calculus (and that actually the number 4 is the least
upper bound). Alfred Tarski has asked to what extent these results
can be extended to ^-valued sentential calculus, for any finite n. It
will be seen from this note that those results of Post concerning com-
plete sets of truth functions can actually be extended. On the other
hand it has been shown recently by A. Ehrenfeucht that the result
concerning arbitrary sets of functions cannot be extended.

Both the results of Post and those of this note can be formulated
in terms of truth functions of the 2-valued (w-valued) sentential calculus
or in terms of finitary operations in arbitrary 2 element (n element)
algebras. We choose the second alternative since the many-valued
sentential calculi have a rather restricted significance in logic and
mathematics.

Thus we shall concern ourselves with finitary operations under which
a given set A with n elements is closed. For simplicity we restrict our
attention to the case when A is the set N of all natural numbers less
than n. This restriction implies no loss of generality, since all the results
can be extended by isomorphism to any finite set with n elements. For
convenience we will identify N with nf as is frequently done in modern
set theory.

For any given natural number fc, let nk be the set of all /c-termed
sequences x = ζx0, xlf , xk-ϊ) with terms in n. Denote by FnιJC the
set of all fc-ary operations on and to elements of n, i.e., of all function

Received December 15, 1959. This is the text of a talk given by the author at the
Summer Institute of Symbolic Logic held in 1957 at Cornell University; it appeared in
condensed form in ' 'Summaries of talks presented at the Summer Institute of Symbolic
Logic in 1957 at Cornell University" (mimeographed), 1957, pp. 78-80. The results were
first communicated to the American Mathematical Society in [1]. The author thanks Professor
Alfred Tarski for his guidance and encouragement.
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on nk to n. Let Fn = {Jjc<^Fn:Jci i.e., Fn is the set of all finitary opera-
tions on and to elements of n.

For any subset X of Fn we will denote by X the smallest set Y
which includes X and satisfies the following conditions:

( i ) if / e Y and h is obtained from / by exchanging or identifying
two arguments, then h e Y;

(ii) if / e Y, g e Y, and h is obtained from / by replacing an
argument by g, then h e Y. A function / is said to be generated by
a set X if / e X The set X is called closed if X = X, it is called
complete if X = Fn, it is called independent if there is no proper subset
X' of X for which X' = X A set Γ is called a basis for a set X if
Y c; X and Ϋ = X. A function / e i^,& is called reducible or reducible
to first order if its values depend on at most one argument; i.e., if
there is an i < k and an h e FnΛ such that for every sequence x e nk

we have f(x) = h(xt). Hence / is not reducible if and only if for every
q < k there are x,y e nk with xq = yq and f(x) Φ f(y). We will denote
by &(f) the range of /. We single out two functions in Fn. \[n is
the function of two arguments defined by the formula:

x\/ny = max(x,y) .

r^n is the function of one argument defined by:

r^nχ — x + l(mod n) .

In the following few lemmas we will establish some properties of
the notions just defined:

LEMMA 1. If f e FnιJc, n ^ 3, / not reducible and &{f) = n, then
{/} U FnΛ generates a function g e Fnt2, g not reducible and &(g) = n.

Proof. We first establish that there exist q < k and u, v e nk such
t h a t / 0 0 Φ f{v) and ut = v< for all i φ q, i < w. Since &{f) contains
more than one element there exist a,b e n* such that/(α) Φ f(b). There
are k + 1 sequences c(0), c(1), , c(fc) € n* with c(0) = α, c(fc) = 6, and such
that for any i < h, c{w) is obtained from c{ί) by replacing ciί] by clfc).
Hence c( ί) and c(^+1) differ only in the ith coordinate, moreover
c™ = at for i^j and c^ = 64 for i < y. Since f{a) = /(c(0)) =
/(cΓ,c{0), -. ,4°11), /(6)=,/(c ( f c )) and /(α) Φ f(b) it cannot be the case
that f(c{ί)) = f(c{ί+1)) for all i < k. Therefore there is some q < k such
that f(c{q)) Φ /(c(Q+1)) and cίq) = ciq+1) for all i Φ q, i < fe. Take c{q) for
^ and c(α+]) for v.

Since &(f) = w, we can choose w sequences τ/(0), i/(1), , y{n~ι) e n
such that f(y{0)) = f(u), f(y{1)) =f(v), and each value in n is taken on
by / for some y{i). There also exist w, z e n70 for which wq = zq and

k
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f(w) Φ f(z), since if this were not the case / would depend only on its
qth argument and thus be reducible.

There are two possible cases: (i) there exist w, z e n16, with wq — zq,
and f(w) Φ f(z), f(w) Φ f(u), f(w) Φ f(v); (ii) for every w, z e n% with
wq = zq and f(w) Φ f(z) neither f(w) nor f(z) is different from both f(u)
and f(v).

If case (i) holds there exist w, z e n* for which wq = zqy and
f(w) φf(z), f(w) φf(u), f(w) φf(v). With no loss of generality we
may assume f(y{2)) = f(w). We define k functions h0, hlf , h^λ e FnΛ

separately for hq and for hj9 j Φq,

hq(x) =

yϊ

x = 0

x = 1

a? = 2

x > 2

fc,(aθ =

yf

a? = 0

x = l

x = 2

x > 2 .

), ftβ(i/), ftβ+1(αθ, , ftfc-i(x)) .

We define g e Fn>2 as follows:

( 1 ) 0(α, y) = f(ho(x), ftx(x), , hq

Notice that y appears only in the qth coordinate of / . &(g) = n since
9(0, 0) = f(u) = fW*), 0(0,1) = /(*) = f(y{1)), g(2, 2) = /(w) - f(y™), and
0(i, ί) = f(y{i)) for i > 2. Moreover g is not reducible, since g(0, 0) ^
0(0,1) and 0(1, 2) Φ 0(2, 2).

If case (ii) holds we take for hq the identity function in FnΛ and
using any w, z e nk for which wq = j?β and /(w) Φf(z) we choose & — 1
functions h3 e Fn>1 for j Φ q, satisfying

Uj

w3

X

X

X

= 0

= 1

= 2

and then define g by (1). Now for any sen10 with sq = yq

ί], 2 < i ^ w,
condition (ii) guarantees that f(s)=f(y{ί)) since f{y{i))Φf{u) and
/(»«>) ^=/(t;). Therefore ff(0, wβ) =/(w) =/(^/ ( 0 )), flf(l, vβ) =f(v) =f{y[1)),
g(m, yq

l)) =f(y{i)) for m < n and 2 ^ ί < n. Hence ^?(#) = w. The
function g is not reducible, since #(0, uq) Φ g(Q, vq) and g(l, wq) φ g{2, wq).

LEMMA 2. If f e Fn>2 is not reducible and &(f) has p elements
p ^ 3, then there exist i, j , k,l < n such that among the function values
f(iy )̂> f(i> ΐ)> f{j> k), f(j, I) at least three distinct values are represented.

Proof. There are two possibilities;
( i ) in the table of / all value in ^ ( / ) are taken on across some

row, i.e., there is an i < n such that the set of all values f(ί,j) with
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j < n coincides with
(ii) in no row are all values in ^ ( / ) taken on.
If (i) holds, since / is not reducible there must be j , I < n for which

f(if I) Φf(j, I). Since p ^ 3 and all values in &(f) are taken on in
the ith row there must be a k < n such that f(i,k) is distinct from
both f(i, I) and f(j, I).

If (ii) holds, since / is not reducible there is some non-constant row,
i.e., some i,j',j" such that f{i,jr) Φ f{i>j"). However, by assumption
there is a w e &(f) which does not appear in this row, i.e., for all
® < Pf f(i> χ) =£ w- Since w e &(f) there are j,l < n for which
f(j91) = w. Hence f(i, I) Φf(j, I). Since w does not appear in the ith
row and the ith row is not constant there is some k < n such that the
value f{iyk) is different from both f(i, I) and f(j, I).

LEMMA 3. If f e Fn>2 is not reducible and &(f) has exactly p
elements, 3 t^p ^ n, then there exist two functions hlf h2 e FnΛ with
&{h^, &{h2) each consisting of at most p — 1 elements, and such that
for every x e ^ ( / ) we have f{hλ{x), h2(x)) = x.

Proof. By Lemma 2 we can find i, j , k,l < n such that f(i, k),
f(ίt l)> fU> k)f f(j, I) represent at least three distinct values. Assume
f(i9 k) — u, f(i, I) — v, f(j, k) — w are all different. Functions hlf h2 e
FnΛ can be found such that

h^u)
K(v)

h±(w)

= i
= i
— j

h2(u) = k

h2(v) = I

h2(w) = Jk

hλ(x) — i , h2(x) = k for x $

f{hλ{x), h2(x)) = x for x e &(f) ~ {u, v, w} .

and

Clearly, hλ and h2 satisfy the requirements of the Lemma. The proof
in the other cases is analogous.

LEMMA 4. If f e Fn<2 and 2 g p ^ n, and there exist i, j , k < n
such that for all y < p

f(h y) = V and ftf, y) = k

then f together with the functions in FnΛ generate a function g e Fn>2

such that g(x, y) = x\/ny for x,y < p.

Proof. We shall prove, by induction on p, a slightly weakened form
of the theorem, replacing the condition i, j , k < n by i,j,k< p. The
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theorem as stated then follows, since {/} U ̂ j generates a function
satisfying the strengthened hypothesis.

For p = 2, since ί,j<p the function / must agree on {0,1} with
one of the following four tables:

( i )

0
1

0

0
1

1

1
1

(ϋ) 0

0
0

1

1
0

(iii)

0
1

0

0
0

1

0
1

(iv)

0
1

0

1
0

1

1
1

In case (i) / itself may be taken for g. In the other cases using any
homomorphism h e FnΛ which exchanges 0 and 1, g may be constructed
as (ii) h(f(x, h(y)))f (iii) h(f(h(x), h(y))), (iv) f(h(x), y).

Assume the theorem is true for p — 1. From {f}l)FnΛ we can
construct a function satisfying the induction hypothesis for p — 1. Thus
we can generate a function gf such that

g'(x, y) = x\fny for x, y < p — 1 .

Now choose functions hlf h2 e FnΛ such that

'p — 1 if x = k

k if x = p — 1

otherwise

and construct / ' e Fn>2 as follows:

f'(χ, v) = Uf(H*), Πv)))

It can be seen that

if x < p — 1

if x = p — 1

f'(x, y) =

Now we define # 6 J

y if x < P - 1 and y < p

p — 1 if # = p — 1 and y < p .

For x,y < p - 1, #(&, #) = #'(&, T/) = 05 V»2/; for a; = p - 1, 2/ < p,
0(®, 1/) = / ' (P - 1, Q'(P -l,y)) = p-l; for x < p - 1 and y = p - 1,
g(x, y) =f'(p — 1, flf'(«, p — 1)) = p — 1. Therefore gf agrees with V^
for x,y < p, which estalishes the Lemma.

LEMMA 5. If f e Fn>2 is not reducible and &(f) = p, 3 ^ p ^ n,
then f together with the functions in FnΛ generate a function g e Fn>2

such that g(x, y) — x\fny for all x,y < p.

Proof. The proof is by induction on p. For p = 3, using the i, j ,
.k, I of Lemma 3 and appropriate homomorphisms from Fn>1 we can
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generate a function h e Fn>2 such that the values of h on {0,1} agree
with one of the two tables:

( i) 0 1 (ii)

0 I 0 1 0
1 I 2 2 1

We then choose five functions hlf h2, hS9 h4, h5 e FnΛ such that

hλ{ϋ) = 0 h2(0) = 0 h3(0) = 0 h(0) = 0 hδ(0) = 0

^(1) = 0 ^(1) - 1 Λs(l) - 0 Λ4(l) - 1 Λβ(l) - 2

Λχ(2) = 1 h2(2) = 1 Λ8(2) = 0 A4(2) = 0 hδ(2) = 2 .

In case (i) # can be constructed as

g(x, y) = h(h(x, hλ{y)), h(x, h2(y))) .

To construct g in case (ii) we define gf, g" e Fn>2

g'(x, y) - h(h(h(x), UV)), hMh(x), h(y))))

g"{χ, y) - k(g'(x, hδ(y)))

and then

g(χ, v) = g'(g"(χ, y), g\χ, y)).

Assuming the theorem true for p — 1, we prove it for p, 3 < p ^ n.
First we construct a function / " satisfying the induction hypothesis for
p — 1. To do this we apply Lemma 2, taking an i, y, &, ϊ such that
/(ί> ^), /(i> l)> fU>k), f(j, I) represent at least 3 distinct values, u, v, w.
Since p > 3 there is a value z e &(f) ~ {u, v, w). Let h e FnΛ such
that

(^ x — z
h(x) =

I a? otherwise.

Then the function h(f(x, y)) is not reducible and has p — 1 elements in
its range. The application of an appropriate isomorphism from FnΛ will
produce a function / " e Fn>2 with &(f") = p — I and / " not reducible.
Then by the induction assumption we can generate a function g" e Fn>2:

such that

g"{x, y) = xyny for x, y < p — 1 .

Next by Lemma 3 there exist hλ, h2 e FnΛ with ^?(/?Ί), &(h2) each
consisting of at most p — 1 elements and such that

fQφ), h2(x)) = x

for x < p.
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Let h3, K € FnΛ be isomorphisms such that

h(%) < V — 1 for x e

Λ4(a0 < p — 1 for a? e

and define / ' e F w > 2 , ft8, feβ 6 FnΛ:

h5(x) = h^h^x)) , x < n

h6(x) = h4(h2(x)) , x < w

/'(» , 1/) = f(hτ\x)9 K\y)) , x,y <n .

Then

f'(hb(x), h6(x)) = x for x < p

and ^(Λ β ), ^(/^ 6) g p - 1 .
We can now define a function g' e Fn>2 as follows:

*'(*, w) =f'(g"(χ, Uv))> g"(χ,

Then

and

g'(p-2,y)=f'(p-2,p-2) for y < p .

Therefore by Lemma 4 we can generate a function g e Fn>2 such t h a t
0(α, i/) = α?Vni/ for x,y < p.

LEMMA 6. If f e Fn, n ̂  3, / is not reducible, and &(f) = n
then FnΛ U {/} is complete.

Proof. By definition ~n e i^Λfl. By Lemma 1 there is a # e

J*»,i U {/} Π Ί?nΛ s u c ^ ̂ a t &(g) — n and ̂  is not reducible. Using
Lemma 5 with p = n we see that V« e FnΛ U {/}. It is known1 that
the set {V«, ~»} is complete. Clearly, if XgΞ F and X is complete
then Y is complete. Therefore FnΛ U {/} is complete.

In [4] Post established a necessary and sufficient condition for a
set X S JP2 to be complete. In order to extend this result to n > 2 we
use his method. This consists in constructing a finite family ^fn of
proper closed subsets of Fn satisfying the condition that every proper
closed subset of Fn is included in some set of the family. The existence
of such a finite family of maximal sets is an important property of the
lattice of all closed subsets of Fn.

By our definition FnΛ is closed. Moreover FnΛ is finite, containing

i Post [3].
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exactly nn elements; therefore the family of all closed subsets of FnΛ is
finite. For each closed S S FnΛ, n Ξ> 3, we define a set M(S) as follows:

(i) if S = FnΛ then M(S) is the set of all functions f e Fn such
that either / is reducible or &(f) is a proper subset of n;

(ii) if S Φ FnΛ9 then M(S) is the set of all functions / e Fn satis-
fying the following condition: if in / we replace zero or more argu-
ments by functions in S and then identify all arguments, the resulting
function is in S.

Finally, we take as ^//ny n ^ 3, the family of all sets M(S) where
S is any closed subset of FnΛ.

2 That this family ^//n actually has the
property mentioned above is seen from the following.

LEMMA 7. Let S is a closed subset of FnΛ, (n ̂  3). Then
(i) M(S) is closed.
(ii) M(S) is a proper subset of Fn.
(iii) M(S)ΠFnΛ = S.
(iv) If Y is a proper closed subset of Fn with Y (Ί FnΛ = S then

Proof. We establish Lemma 7 first for the case S Φ FnΛ. M(S)
is closed, since the defining property for M(S) is preserved under ex-
change or identification of variables and also under substitution. Since
S is a proper subset of Fn>1, M(S) does not contain all functions of FnΛ.
Therefore M(S) is a proper subset of Fn. S s M(S) Π FnΛ S S, hence
M(S) Π FnΛ = S. The fourth property can be verified directly from
the definition of M(S): Let Y be any proper closed subset of Fn with
Y n FnΛ = S, / e Y, and h a function obtained by replacing zero or more
arguments of / by functions in S and then identifying all arguments.
Since S g Γ a n d Y is closed, h e Y. But YΠ FnΛ £ S and h e FnΛ, so
he S. Thus every function / e Y is in M(S). Therefore Y g M(S).

We turn now to the case S — FnΛ. That M(FnΛ) is closed follows
from its definition: Both reducibility and range different from n are
preserved under exchange or identification of variables. Let/, g e M(FnΛ),
h a function obtained by replacing an argument of / by the function g.
If &(g) Φ n then &(h) φ n and h e M(FnΛ). If g is reducible, either
h is reducible or h =f, so h e M(FnΛ). Clearly M(Fn>1) is a proper sub-
set of Fn since there exist functions in Fn with full range n which are
not reducible. M(FnΛ) Π FnΛ = FΛ ι l, since every function in FW i l is
reducible. The proof of the fourth property follows from Lemma 6:

2 The corresponding family for n = 2 contains nine elements since F2,i has exactly nine
closed subsets. In [4] Post defined these nine sets individually: d, Rλf R3, Rg, C2, C3, Di,
Ai, Li. Our definition of M(S) is directly applicable to the eight proper closed subsets of
Fz.i. However, it is of interest to note that in the case S= Fn,\ the structure of M(S)
is essentially different for n > 2.



ON COMPLETE AND INDEPENDENT SETS OF OPERATIONS 1177

Let Y be any proper closed subset of Fn with Y Π FnΛ = FnΛ. Clearly,
Y cannot be complete. By Lemma 6, since FnΛ £ Y, Y cannot contain
any function /, with ^ ( / ) = n, which is not reducible. Hence Y £
M(Fn>1). This completes the proof.

Thus we see that the family ^/n of all sets M(S) where S is any
closed subset of FnΛ consists of finitely many proper closed subsets of
Fn. Moreover, if X is any proper closed subset of Fn by property (iv)
of Lemma 7 I g M(Xn FnΛ) e ^ , since I n FnΛ is a closed subset of
FnΛ.

We now state the main result of the note:

THEOREM 1. A necessary and sufficient condition for a set X £ Fn,
n ^ 3, to be complete is that for every closed subset S of F1>n there is
an f e X such that f <£ M(S).3

The proof of this theorem follows directly from Lemma 7. If there
were any closed subset S of F1<n such that X £ M(S) then ϊ g Ι ( S )
since M(S) is closed and hence X would not be complete. On the other
hand if for every closed subset S of F1>n there is an / e X ^ M(S) then
ΐ ^ I ( S ) for any closed subset S of FlιU. By Lemma 7, X cannot
be a proper subset of Fn. Therefore X must be complete.

COROLLARY 1. A set X ^ Fn is complete if and only if FnΛ £ X,
n ^ 3, and there is an f e X such that &(f) = n, and f is not
reducible.

Proof. If X is complete then FnΛ £ X; and by Theorem 1, I g
M(FnΛ). Therefore there is a n / e X~M(FnΛ); i.e., / e X, &(f) = n,
and / not reducible. On the other hand if FnΛ £ X, then X is not
included in M(S) for any proper closed subset S of FnΛ. If, in addition,
there is an / e X with ^ ( / ) = n and/ not reducible, then X gΞ M(FnΛ).
Therefore by Theorem 1, X must be complete.

We now state two further results, Theorems 2 and 3,4 which follow
easily from Theorem 1;

THEOREM 2. There exist finite decision procedures to determine
3 An analogous result for n = 2 with the family ^ n replaced by the set {D3, C2, C3, Aίf Li}

was obtained by Post in [4]. It may be noted that our theorem can be sharpened to include
this result by adding the restriction: S contains the identity function and at least one
other element.

4 Yablonskiΐ in [5] states without proof Theorem 2, which he attributes to A. V.
Kuznecov. He also attributes to Kuznecov another result which he states (again without
proof) as follows: Every complete set (included in Fn) contains a finite complete subset
(i.e., a finite basis). In this form the result is rather obvious and follows directly from the
results of Post [3]; compare the first part of the proof of Corollary 2. The subsequent
remarks of Yablonskiϊ make it likely, however, that Kuznecov obtained a stronger result
established here as Corollary 2.
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whether or not any finite subset of Fn, n ^ 3, is complete and if
complete whether independent.5

This theorem depends essentially on the computable character of
our definition of the sets M(S). This means that for any f e Fn and
any closed subset S of FnΛ we can tell by a finite procedure whether
or not / e M(S). Therefore if X is a finite set, Theorem 1 provides a
finite method for determining whether or not X is complete. This part
of the proof can also be based on Corollary 1. The only thing to be
shown is that all functions belonging to FnΛ Π X can be obtained by
means of a well determined finite procedure.

If X is complete then X is independent if and only if no proper
subset of X is complete. For a finite complete X, therefore, we can
determine in finitely many steps whether or not X is independent.

THEOREM 3. For any natural number n, n^2, there is a natural
number p such that every complete and independent subset of Fn has
at most p elements.6

For n = 2 this theorem was proved by Post in [4]. For n ^ 3 it
can be derived directly from Theorem 1. Let p be the number of ele-
ments in the family ^ n of all sets M(S) for S any proper closed subset
of FnΛ. By Theorem 1, any set which contains an / 0 M(S) for each
M(S) in ^/ίn is complete. Thus any complete set with more than p
elements would contain a proper subset which is complete.

COROLLARY 2. For any number n, n ^ 2, there is a natural number
p such that every complete set included in Fn has a finite basis with
at most p element.

If I F M £ is complete, then \/n, ~n e X. Hence {\/n, ~n} can be
generated by a finite subset Y of X. Since {\/n, ~n} is complete Y must
be complete. Let Z be any complete independent subset of Y. Z is a
finite basis of X and by Theorem 3, Z has at most p elements.

By modifying the proof of this result (and in fact making the
argument independent of Theorem 1) A. Tarski has obtained the following
generalization of Theorem 3.

THEOREM 4. For any closed set X £j Fn which has a finite basis
there is a natural number q such that every independent basis of X
has at most q elements.

The method of proof is similar to the proof of Theorem 3. We
replace the family ^ n by a finite family £fx — {Lo, Llf , L^} of
closed proper subsets of X with the property that for any closed proper

5 By Post's results in [4], this theorem is also valid for n = 2 since the conditions
defining the sets A , C2, C3, Ai and L\ are finitely computable.

6 For n = 3, Yablonskiϊ in [5] found p = 18.
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subset Y of X there is a set Li9 i < q, in J9J such that Y g Li# ^
is constructed as follows. Let J5 be any finite basis of X. Since B is
finite there is a natural number & such that B gΞ Ui< ] f cF l i n. For each
A satisfying

i Λ , A^X, and InUiΛ = A

we define the set L(A) in the same manner as the sets M(S) were de-
fined for S Φ Fn>1. The proof that the sets L(A) are closed proper sets
with the required property in the lattice all closed subsets of X is
entirely analogous to the proof of Lemma 7.

For complete sets the upper bound q of Theorem 4 is much larger
than the p of Theorem 3.

For n = 2, Post in [4] computed an upper bound p = 5 in Theorem
3, and then showed that actually 4 was the least upper bound. He also
proved that every closed subset of F2 has a finite basis. Therefore,
two further questions arise for n ^ 3:

(1) does every closed system of functions in Fn have a finite basis;
(2) (proposed by A. Tarski) is there any finite procedure to deter-

mine the least upper bound for the number of elements in any inde-
pendent basis of the complete system Fn.

The solutions of these two problems have been communicated to me
by A. Ehrenfeucht. He has shown that the solution of problem (2) is
positive, while that of problem (1) is negative. Ehrenfeucht exhibits a
very simple closed subset of Fn, n ^ 3, which has no finite basis.

(Added in proof.) It has been communicated to me by Professor
C. C. Chang that Lemma 5 was obtained by Jerzy Slupecki in "A
criterion of fullness of many-valued systems of propositional logic'',
Comptes Rendues des seances de la Societe des Sciences et des lettres
de Varsovie 33, 1939, Classe III, pp 102-109. Slupecki proves the
following extension of Lemma 5: If FnΛ g X then X is complete if
and only if there is an / e l , feFUt2,f not reducible and &(f) = n.
Note that Lemma 6 and Corollary 1 extend this result by using Lemmas
1 and 7 to remove the condition feFn>2, which is necessary for the main
results of this note.
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AN APPROXIMATION THEOREM FOR THE
POISSON BINOMIAL DISTRIBUTION

LUCIEN LE CAM

l Introduction. Let xό] j = 1, 2, be independent random varia-
bles such that Prob {Xό = 1) = 1 - Prob (Xj = 0) = p3. Let Q = £f(ΣX})
be the distribution of their sum. This kind of distribution is often re-
ferred to as a Poisson binomial distribution. For any finite measure μ
on the real line let | | μ | | be the norm defined by

μ\\ = sup \fdμ\}.

the supremum being taken over all measurable functions / such that
I/I ^ 1. Let λ = Σpj9 let Σp) = Xvr and let a — supip3. Finally let P
be the Poisson distribution whose expectation is equal to λ.

The purpose of the present paper is to show that there exist ab-
solute constants Dx and D2 such that 11 Q — P \ \ <; Dλa for all values of
t h e p/s a n d \\Q - P\\ ^ D2vf if Aa ^ 1.

The constant D1 is not larger than 9 and the constant D2 is not
larger than 16.

Such a result can be considered a generalization of a theorem of
Yu. V. Prohorov [9] according to which such constants exist when all
the probabilities p5 are equal.

The norm \\Q -~ P\\ is always larger than the maximum distance
p(P, Q) between the cumulative distributions. For this distance p a very
general theorem of A. N. Kolmogorov [6] implies that p(P, Q) is at
most of order α1/δ. The improvement obtained here is made possible by
the smaller scope of our assumptions.

The method of proof used in the present paper is not quite ele-
mentary, since it uses both operator theoretic methods and characteristic
functions. The relevant concepts are described in §2.

A completely elementary approach, described in [4] leads to bounds
of the order of 3α1/3 for the distance p. Unfortunately, the elementary
method does not seem to be able to provide the more precise result of
the present paper.

The developments given here were prompted by discussions with
J. H. Hodges, Jr. in connection with the writing of [4].

2. Measures as operators. Let {ξ>, 31} be a measurable Abelian
group, that is, an Abelian group on which a σ-field 51 has been selected
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in such a way that the map (x, y) —• x + y from X x £ to 36 is measura-
ble for the <7-fields 2ί x SI and 21.

Let & denote the set of bounded measurable numerical functions
on {£, 31}. A finite signed measure μ on 21 defines an operator, also
denoted μ, from & to itself. To the function / e ^ the operator μ
makes correspond the element μf whose value at the point x is (μf)(x) =
\f(% + ξ)μ(dξ). Linear combinations of two operators are defined by
the equality

(μμ + βv)f = a(μf) + β(vf) .

The product of two operators will be defined by composition: {μv)f =
μiyf). In other words,

[(M/Ί0*0 = j μidy) \f(χ + ξ + v

It follows from Fubini's theorem that μv — vμ. The product μv cor-
responds to the convolution of the two measures.

For any element / of & let \f | be the norm \f\ = sup \f(x) |. De-
fine the operator norm 11 μ \ \ by

The norm || μ \\ is equal to the total mass of μ considered as a measure.
It is an immediate consequence of the operator representation of μv that
\\μv\\^\\μ\\\\v\\.

Let SDΐ be the system of operators obtained from all the finite signed
measures. What precedes can be summarized by saying that 9Dΐ is
a normed commutative algebra having for identity the operator I which
is the probability measure whose mass is entirely concentrated at the
point x = 0. It is not difficult to show that 3Jί is complete for the
norm, so that 3Jί is in fact a real commutative Banach algebra.

Let φ be a complex-valued function of a complex variable z. Sup-
pose that for I z \ < α, the function φ has a convergent power series
expansion. It is then possible to define φ{A) for every A e 2Jϊ such that
II A || < a by simple formal substitution in the power series expansion
Of φ.

The entity φ(A) is then of the form φ{A) = B + iC where both B
and C belong to 501. Other possible definitions can be found in [3], [2], [8].
If μ is the Fourier transform μ(t) — 1 eitx μ(dx) of the measure μ then

φ(μ) is the measure where the Fourier transform is φ(μ).
In most cases of statistical interest, the space X is either the real

line, or the additive group of integers, or the circle, or a Euclidean
space. In those circumstances, as well as in the case where K is an ar-
bitrary Abelian locally compact group, we may replace & by the space
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of continuous functions which tend to zero at infinity without affecting
any of the above properties.

Let M be an arbitrary finite positive measure on X. Then exp (M) =
eM = 1+ M+ ••• + {ljk)\M« + •-.. It follows that exp [M - \\M\\I] =
exp[—1| M ||] exp(ikf) is always a probability measure.

If a random variable X is equal to the origin of X with probability
(1 - p) the distribution £?(X) can be written £f(X) = I + p{M - 1)
where M is a probability measure.

The following theorem, essentially due to Khintchin [5] and Doeblin
[1] is concerned with the distribution Q of a sum ΣX3 of independent
variables having distributions G3 = I + P3(M3 — I) where M3 is a prob-
ability measure. The product T[3G3 is always convergent when λ =
ΣJPJ is finite. Conversely finiteness of λ is necessary to the convergence
of ΊljGj when X is the additive group of integers. More generally,
suppose that 96 is the real line and that there exists an ε > 0 such that
λ, = Σp3M3{[—ε, e]c} = oo. Then TljGj cannot be convergent. This fol-
lows for instance from a result of Paul Levy [7] according to which
any interval containing the sum ΣXό with probability a > 0 must have
a length of the order of εχ/λ7.

A refinement of Paul Levy's theorem can be found in [6], Lemma 1.
However, the finiteness of λ is not generally necessary to the conver-
gence of ΐljGj, This is quite obvious if X is the circle and G± is the
Haar measure of the circle, but the condition is not even necessary on
the line.

THEOREM 1. Let X3\ j = 1, 2, be independent random variables
taking their values in the measurable Abelian group X. Assume that
Jέf(X3) = I + Pj(Mj — I) where M3 is a probability measure and as-
sume that λ = Σp3 < OD. Let p3 = \cjf let τr = Σc3p3 and finally let
M = ΣCJMJ. Then

|| Q - P\\ ̂  2\vf

for P = e x p [ λ ( M - /)].

Proof. The proof is essentially the same as the proof of Theorem 1
in [4], given there in terms of random variables. In terms of operators
one can proceed as follows.

Let Fj = exppjiMj - I) and let R, = Π ^ 2 G > For k > 1 let Rk =
j). Then R.F, = Rk+1Gk+1 so that

Since R3 is a probability measure, this implies
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The difference F3 — G3 can be written

F3-G3 = [e"j - (1 - Pj)]I + Pj(e-*j - 1)M3

Hence || F3 - G3 || ^ 2p3{l - e~*j) ̂  2 $ .
Noting that ΐl3F3 = exp[λ(Λf — /)], this proves the desired result.

REMARK. The literature does not seem to contain any reference to
the fact that Theorem 1 can be proved as in [4] and coupled with
Lindeberg's proof of the normal approximation theorem to obtain a com-
pletely elementary proof of the general Central Limit theorem.

3, Sums of indicator variables and binomial distributions• In all
the subsequent sections of this paper 36 will be the additive group of
integers and {X/,1, 2, ••«} will be a family of independent random
variables such that Prob(X j = 1) = 1 - ?γob(X3 = 0) = P3. The distri-
bution J*f(Xj) can then be written either as I + Pjd or (1 — p5)I + PjH
where Δ is the difference operator Δ — H — I and H is the probability
measure whose mass is entirely concentrated at the point x = 1. The
Poisson distribution whose expectation is λ can be written P = exp(λJ).

Letting Xc3 = p3 and τf = Σc3p3, Theorem 1 implies that if Q —
then the following inequality holds.

PROPOSITION 1. \\Q — exp (XΔ) \\ ^ 2Xvr.

From now on we shall assume that X < °o and that a = sup p3

does not exceed 1/4.
It may be expected that Q would be approximable by a binomial

distribution much more closely than by a Poisson distribution. Letting
X = yτ2r,.a binomial distribution with v trials and probability of success
vf can be written

B = (I+ -&Δf - (1 - vf)\I + pH)v

with p = Tar/I — vf, at least when v is an integer. If v is not an in-
teger the expression

B = (1 - vr

where
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still possesses a precise meaning as long as p < 1. However, B is not

a probability measure even though I ldB = 1. Let n be the integer such

that (n — 1) < v ^ n. The coefficients (jΛ of order k = (n + 1), (n + 2)

are alternately positive and negative.

Let S = (1 - Όf)v £ f ̂ V ^ The norm of S is equal to

S\\=(l-vry Σ

The term inside the absolute value symbol is simply the remainder of
the expansion of (1 — p)v. By Taylor's formula | | S | | is equal to the
absolute value of

φ l ) ( y )(

n\

Therefore, since n — 1 < v <

fp/i-p

A (-ιytn(
Jo

S II ^ (1 - ^ ) v ( l - p)λPll'Ptn(l + t)-χdt
J

1 / n \n+1

(i vf)\\ - py I ^ >n + l \l-p.
λ

n ~ 1 <(1 2vry
n+l ~ v + 1

In the cases considered here v — (Σp^Σp^)'1 is always larger than or
equal to unity. In all cases where v is large and τar is small \\S\\ will
be rather negligible.

Note that λ = vτrf = \ xdB and vτrr(l — vf) = \ (α? — X)2dB. How-

ever, this last quantity may not be treated as a variance, since 5 pos-

sesses negative terms.
In spite of this it will be convenient to bound the remainder term

for large values of m, by Chebyshev's inequality. Assuming λ < m ^ n

the terms

Therefore

the terms (1 - ^)v(jc)p1c are smaller than (1 - vt)v-n (1

» Σ (1 -
fcl

| | ( ) | |^^ + ( ) Σ
V + 1 fc-m+l

Finally, by Chebyshev's inequality applied to the binomial [1 + τϊJ]n,
•one obtains



1186 LUCIEN LE CAM

II S(m) || £ i 5 £ l + (1 v)
v + 1 [m

In particular, if m ^ 2w©' < m + 1

^ [4tD-v+2 + 1] — .

To show that Q can be approximated by the Poisson distribution P
in the cases where λ is too large for Proposition 1 to have any significance,
we shall first show that Q can be approximated by B and then show
that B is very close to P. The argument will be divided into three
parts according to the values of λ and λα2 for a2 = Σc3{pό — vf)2. If X
is large but λα2 is small, bounds will be obtained through operator
theoretic methods. If λ is so large that λα2 becomes large, bounds will
be obtained through computations on characteristic functions.

4 Approximations by binomial distributions• In this section, it will
be assumed throughout that λ Ξ> 3 and that a ^ 1/4.

For the distributions Q and B defined in the preceding section we
can write

logQ - logB = Σ l o g ( / + V5Δ) - vlog(I+ -&Δ)

\— log (/ + P3Δ) - — log (I + vrJ)\

with

fc=2 k + 1

a n d βt = ΣIJCJPJ - tErs ^ 0.

Since (—l)kΔ*= Σ ( o )("~ 1)SHS, the measureM assigns negative masses
s =0 \*> /

to the odd positive integers and positive masses to the even nonnegative
integers.

The norm of M is precisely equal to

Letting u = 2vr and v3 = 2{pό — vf) this can also be written
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= [ΣcM - - ~\}dt .
Jo JIL1 -t(u + v}) 1-tujf

Since ΣCJVJ = 0 and Σc}v) = 4α2 while

[1 - t(u + Vj)]-1 - (1 - tu)-1 = (1 - tuf{l + (tv})[l -t(u + v3)Yx}tv}

one can write

rlf

"J [1 - t(u + Vj)] / (1 - tu)2

< > ' Γ ^2 ^
~ l - 2 α J β (1 - ""

<

ίu);

4α2

3(1 - 2a)

Hence | | M | | = ha2 with

< 4

~3(l-2α) I
+

One can also write M = z/il̂  = J2M2 with || M \\ = 2|| Mx || = 4|| M21|.
It results from these equalities that

Q = Bexp[λJM] .

For every measure //, Taylor's formula gives

ê  = /+ μ\
Jo

Hence

Jo

Finally

\\Q-B\\ ^

and

One can also note that there exist probability measures F and G such
that if ε = || M\\ then

Q exp [λε(i^ - J)] = B exp [Xε(G - 2)] .
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According to the foregoing expressions, to obtain bounds on || Q — B \\
it will be sufficient to evaluate | |ΛI?| | and ||zfJB||.

Let fix) = (ϋWx(l — Ήy-χ and consider only values x such that
\x/

x ^ n — 1. In this range/ achieves its maximum at a value x such that
X + vr — 1 < x ^X + vr. It follows that (Δf){x') is positive for xf g x
and negative for xr > x. Finally

Let x = vξ. An application of Stirling's formula leads to the inequality

with

Since vr(l + Ifv) — 1/v < ξ ^ ^ ( 1 + 1/v) the quantity f/τεr(l — f) is larger
than

Consequently,

0 \ i / 2

and

\\ΔB
' Vx x

Thus, we have shown the validity of the following proposition.

PROPOSITION 2. Let X ^ 3 and a ^ 1/4, then

|| Q - B | | ^ 2 k V λ

with
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h <±(-±-)h + 8 * 1 < -82
~ 3 V1 - 2a /L (1 - 2-&Y -1 ~ 3

and

357Γ/ - τ/3

A computation using the fact that AM — J 2 ^ and the bounds for
Δ2B\\ can be carried out as follows.

Let u = x + 1 — vτcr and let /(%) be the probability of x =
+ ^ — 1 f or the binomial J3. Let δ"1 = vτsr(l — tcr) and let β = tεrδ

and γ = (1 - tar)δ. Then

+ 1) = 1 - yβ(̂  - 1)

The second differences of the function / f o r x ^ n are equal to some
positive quantity multiplied by

g(μ) = u2 - (2tar - l)u - (v + 2)tar(l - tar) .

Let rx and r2, rx < r2 be the roots of this polynomial. The second
differences (Δ2f)(u) are negative for u e (r19 r2) and positive otherwise.
Letting φ(u) = (Δf)(v) it follows that

11 A2B 11 ^ φ(U\) + I ̂ (^2) ~ Φ(W>I — 1) I + φ(u — λ + 1) — φ(u2 — 1)

The values ut are determined by the condition that the correspond-

ing x values, say xλ and x2, are respectively the largest integer not

exceeding rλ + λ and the smallest integer as large as r2 + λ. The roots

τx and r2 are given by the expression

(v + l)α>(l - ω) + i j .

If λ ^ 3 the value ux is negative while u2 — 1 is positive.
In this case

~ τ/λ ' λ(l - •or)
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Similarly,

1 + yu2 J

— tar

Note that 1 ^ - 1 1 ^ 1 + 1/2 + y W ( l - vr) + 1/6 ^ 5/3 + τ/λ(l - vf).
Hence

= 4λ

The other terms can be bounded in a similar manner giving

II J2B || < 9— + ϋ wv+2 < A l

Finally the following result holds.

PROPOSITION 3. J / λ ^ 3 and a <; 1/4 then

|| Q - B || ^ (2.7)ft exp [2/̂ λα2]α2

^iίfe fc ^ 32/3.
It is possible to obtain bounds on the third difference ||Λ3.B|| by

similar procedures. The algebra becomes somewhat more cumbersome..
Nevertheless, it is not difficult to see that bounds of the type

Q - £ || ^ C-^pAexp [2λα%]α2

Λ

can be obtained in this manner.
The bounds given in Propositions 2 and 3 will be of value if λα2 is

small. When λ is so large that λα2 is large, better inequalities than
the preceding may be obtained through the use of Fourier transforms.

Let μ be the Fourier transform of the measure μ. For instance

Q(t) = \eίtxQ(dx). Note the following inequalities.

First

11 + p(eu — 1) I2 = 1 — 2p(l - p)(l - cosί) .

Hence, if 11 \ ̂  ττ/2
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1 + p{elt - 1 ) |2 ^ 1 - 2 p ( l - p ) — \t\ .
π

If I ί I ̂  π/2 then

with I ξ I ̂  1.
Consequently, for 11 | fg π/2

and for | ί | ^ ττ/4

- 2p(l - p) | .
Δ

2 V 192
η.

It follows that | B(t) \ ̂  1 and
(1) For π/2 ^ 11 | ^ π

max {\B(t) I, | Q(ί) |} ^ exp — {λ(l — tar)(2/ττ)| ί |}.
(2) For π/4 ^ | ί | ^ π/2

max {| B(t) |, | Q(ί) |} <̂  exp [ — (&2/2) λί2]
with b2 = (1 - tar) - π2/48.

(3) For | ί I ̂  π/4 ̂

max {| B(ί) I, I Q(ί) |} ^ exp [-(/32/2) λί2]
with /S2 = (1 - τf)(l - π2/192).

In addition, for 11 \ S ^/4 and for z — eιt — 1 one can write

logQ - logB - XΣc\— log(1 + pόz) - — log(1 + ^2)Ί
i-Pj τf J

with Cj = pjX and δj =
This gives

— -©'.

where

= sup sup Jo
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I2 = I (1 - ξvf) + ξvfeu I2

= 1 - 2fτzr(l - ξvr)(l - cos t)

1 + ξvrz |2 ^ 1 - (2 - i/2")—
4

V 9 V 9

Hence

llogQ - logJ3| ^

with

= ~3 V" 2 / V" 2

It follows that, for | ί | 5Ϊ π/4 one can write

- JB(ί) I Xa2K2 \ 113 exp [XaK2| 113]

^ λα2iP I ί |3 exp Γ-i-λγ 2ί 2 l
L £ -I

with γ2 = /92-α2iί27r/4^ 0.
Let V = (Q — B). The individual terms of V are given by the

formula

Applying to this formula the above inequalities one obtains:

2π I V(fc) I ̂  2λα2jK:2(O°f sup Γ - — λ γ v l i t
Jo L 2 J

Γ ί 2 1
exp — λo 2 — dί

/4 L ^ —I

expΓ-λ(l - tar)—Ίdί .

Therefore,
o 7Γ e χ p [ _ ( 1 _
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Noting that xe~x <̂  e~x for x ^ 0, this gives

5x32 , 2π 11

r3c64 (1 — τcr)2e J λ

Let m be an integer such that m ̂  2̂ τcr < m + 1 with n — 1 < v ^ n.
The sum of the first m terms of | V(k) \ is inferior to

16x32

From this and Chebyshev's inequality it follows that

, 16x32 , 2π

π

+ + [ + ]

As a summary, one can state the following.

PROPOSITION 4. Assume λ ^ 3 and a ^ 1/4. Then, there exist con-
stants Cλ and C2 such that

5 Approximation of the binomial by a Poisson distribution. A
theorem of Yu. V. Prohorov [9] states that the binomial B = [I + vfJf
and the Poisson P —exp(λJ) differ little. Explicitly, there is a con-
stant Co such that || P - B \\ ^ C o ^.

Prohorov's result is proved in [9] only for integer values of v. For
this reason we shall give here a complete proof which happens to be
somewhat simpler than Prohorov's original argument. This proof leads
to an evaluation of the constant Co which may not be the best availa-
ble but will serve our purposes.

Let R(x) be the ratio of the binomial probability B[{x}] to the
Poisson probability P[{x}]

R(x) = v{v - 1) . (y - x

Let us restrict ourselves to the interval 0 rg x ^ n. Since

R(x + 1) _ v — x
R(x) ~ v(l - tar)

the ratio R achieves in this interval a maximum at the point x such
that x — 1 g.λ < x.

For this particular value of x, Stirling's formula leads to the ine-
quality
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logΛφ^--ίlog(l-f)
Lt

with

v < ξ ̂  w( l + —)

Finally for λ ̂  3 and 4w ^ 1,

VI-ξ - 2 i / l -

1/2

Let / be a nonnegative function such that 0 ̂ / ^ 1. The above ine-
qualities imply that

[fdB rg i ^ l H
J v + 1

~ v + 1 V3

Similarly,

J (1 - f)dB = l-\fdBφ- f)dP

Consequently:

PROPOSITION 5. If λ ̂  3 α^d 4tar <: 1,

Collecting the inequalities established in the preceding sections one
obtains the following statement.

THEOREM 2. Let {XJ;j = l92f •••} be a family of independent
random variables. Assume that jSf(X3) = I + p3Δ and that X = Σpt is
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finite. Let pό = Xcό and vf — ΣCJPJ and a = swβjPj. Denote by Q the
distribution Q = J5f(ΣXj) and P the Poisson distribution P = exp (XJ).

There exist constants Dλ and D2 such that
(1) For all values of the p3 one has

\\P - Q\\ ^

and

(2) // 4α ^ 1 then

The constant Dx is inferior to 9 and the constant D2 is in-

ferior to 16.

Proof. The proof of Theorem 2 consists essentially of an evaluation
of the constants involved in the bounds given by Propositions 2, 3 and
4. To these propositions one must add the following remarks.

The quantity α2 = Σcj(p3 — vrf can be written

Hence

a* <L avfil - ^ U (±

In particular a2 <; avf and a ^ α/2 ^ 1/8 for a ^ 1/4. The bound
|| Q — P || ίg D-fiί is operative only when Da ^ 2 . It is therefore sufficient
to prove that \\Q - P\\ ^ Dλa for a ^ 2A"1 and 2λ ^ A A constant
Dλ can then be obtained through application of Proposition 2 for Xa2 ^
/̂2 and Proposition 4 for λα2 Ξ> τ/2, the quantity ?/2 being adjusted to give

the best value available.
Similarly, the second inequality can be proved by use of Proposi-

tions 3 and 4, assuming 2λ ^ 16 and tar <£ 1/8.
Note that the constants 9 and 16 are certainly much too large.

For very small values of a or tεr one can obtain much better values of
Dλ and D2.

Statement 2 of Theorem 2 implies that the approximation by a Pois-
son distribution will be good even though a few of the probabilities P3

may be close to the bound α ^ 1/4. This will happen provided only that
these large values contribute relatively little to the value of λ, the bulk
of λ being due to very small values of the p3.
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6 Concluding remarks •

REMARK 1. It would be highly desirable for the applications to
lower the values of the coefficients A and D2 to a more reasonable level.
When a is fixed, this can be achieved for D2 by restricting the range
of values of vf to which the inequalities apply. For instance, taking
4α = 1 but vf — 10~2, the coefficient D2 can be taken approximately
equal to 8. Such a value being still too large one may inquire whether
there is a lower bound to the acceptable values of D2.

In this connection the following remarks may be of interest. When
λ becomes very large the distance (1/tar) \\Q — B\\ becomes rapidly negligi-
ble. This can be seen for instance by using the inequalities which led
to Proposition 4 and the bounds in α2logλ/τ/λ" obtained through the
use of third differences.

The main contribution to (1/τcr) || — P\\ is then attributable to the
difference between the binomial B and the Poisson measure P.

Prohorov's theorem implies that (1/vr) \\ B — P || cannot be much
smaller than (.483). Therefore, one cannot expect to obtain a result
of the type \\Q — P\\ ^ D2τf where D2 would be substantially smaller
than 1/2.

REMARK 2. The result of Theorem 1 cannot be materially improv-
ed unless one is willing to restrict further the measures M3 or the
group 36.

A slight modification of the proof given here leads to the inequality

where β3 is taken equal to p3(l — e pή. The bound so obtained is
actually reached for certain choices of the measures M3. An example
of this can be constructed when 36 is the real line. It is sufficient to
take Mj to be the probability measure giving all its mass to a point
Xj and select the values {x3;j = 1, 2, •••} to be rationally independent.
For any fixed ε>0 one may find values p3 < e such that 2[1 — Π ( l — βj)] >
2 — ε and such that λ = Σ3p3 be finite.
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INVOLUTIONS ON LOCALLY COMPACT RINGS

PAUL CIVIN

By a proper involution * on a ring R we mean a mapping x —> x*
defined on R with the following properties:

( i ) (x + y)* = x* + y*,
(ii) (xy)* = #*£*,
(iii) (x*)* = x and
(iv) xx* = 0 if and only if a? = 0. If (iv) is not assumed, the

mapping is simply termed an involution. If F is a field with an involu-
tion # and R is an algebra over F, we say that an involution on R is
an algebra involution if in addition to (i)-(iv) above the following holds:

(v) (ax)* = α%* for all x e R and a e F.
We are concerned principally with involutions on two types of

locally compact semi-simple rings, namely those which are compact or
connected. The main result is that involutions on such rings are auto-
matically continuous. As a byproduct we determine the form of any
proper involution on a total matric ring R over a division ring. If in
addition R is topological and the division ring admits only continuous
involutions, then we note that R has only continuous involutions.

LEMMA Let D be a division ring with center Z. Let R be a total
matric ring over D. Any ring involution * on R induces an involu-
tion # on Z, and * is an algebra involution on R with respect to the
involution # on Z.

Direct calculation shows that the center of R consists of the totality
of elements of the form al where a e Z and I is the identity of R.
Suppose x is in the center of R and y e R, then x*y = (y*x)* — (xy*)* =
yx*9 so x* is in the center of R, Since I* = / is immediate, it follows
that for any a e Z, there is a β e Z such that (al)* = βl. Denote β
by α*. It is clear that # is an involution on Z. Moreover, if a e Z
and x e R, (ax)* = [(al)x]* = x*a*I = a*x, so * is an algebra involution
on R with respect to the involution # on Z.

THEOREM 2. Let R be a total matric ring over D, where D is a
division ring with center Z. Let * be a proper ring involution on R,
and let % be the induced involution on Z. Then there exist a set of
matrix units {gi3} in R such that g% — git and a set of non-zero elements
% of Z such that γf = γt such that the involution * has the following
form: If x = Σ ai3eiό, with ai3 e D, then x* = Σ ΎTlaijΎteH'

Received August 31, 1959, and in revised form January 28, I960. This research was
supported in part by the National Science Foundation, under grant NSF-G5865.
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Let eiJf i,j = l,-* ,n be a set of matric units for R. The right
ideal enR is minimal, so by a theorem of Rickart [7] there is a unique
idempotent ux e enR such that u* = ux Φ 0. Let Lx — Ruly and Lk —
Relk = Rekk, k = 2, ,n. The Lk are minimal left ideals so by the
Rickart theorem there are unique idempotents uk e Lk such that uk =
uk Φ 0, k = 1, , n.

We denote by [A, B, , C] the smallest left ideal containing A, B,
• , C. The linear independence of uλ and the elk, k — 2, , n, implies
that Lk ςt [Llf , L ^ ] for 1 < k ^ n. It is readily verified that R =
[Llf...,Ln].

Let g± = ^ and suppose that &, , gk-ι have been defined so that
9j = 92j = 9* Φ 0, gj e [L l f , L J and gigj = 0 for i =£ i , i, i = 1, 2, ,
fc — 1. We next show that βrfc may be defined with the corresponding
properties.

Let v = uk - Σ3=lu*9j Since Lk qL [Llf , Lfc_J, uk 0 [Llf , Lfc_J
and thus v Φ 0. Since Lfc = jB f̂c is a minimal left ideal ukRuk is a
division ring with unit uk. The propriety of the involution then yields
vv* Φ 0. Since vv* e ukRuk, there is an element s e ukRuk such that
8(vv*) — (vv*)s = uk. If we apply the involution to the prior relation
(vv*)s* = 8*(vv*) = uk, and the uniqueness of inverses in a division ring
yields s = s*.

It is claimed that gk = Έ ; * ^ has the desired properties. Since
vgkv* = ^t;*s7;t;* = ^fc^v* = v-z;* Φ 0, it follows that gk Φ 0. Clearly
ί/fc = g* and ^ | = v*svv*sv = v*uksv = 'ŷ s'y = flrfc. If i = 1, , fc — 1,
r̂.̂ * = ^.(^fc — ^*=i9juk) — 0 by the inductive hypothesis, thus ^ ^ —

gtv*sv — 0. By applying the involution we obtain gkgι— 0. The induction
is thus complete and we may suppose that gu , gn have been defined.

Clearly [gλ] = [LJ. Suppose that for 1 < k ^ n, [glf , gk-^\ —
[L19 , Lfc_i]. The defining property for gk yields [glf , gk] c
[L l f , Lk] = [[glf , gk^]f Lk]. Thus srfc = xxgx + + x^g^ + xkelk.
Right multiplication of the last relation by gk shows that xkelk Φ 0.
Since Lk is a minimal left ideal, there is a 2 e R such that 2#fceifc = elk.
This may be expressed as z[gk — aαSΊ — xk-λgk-^\ = elk. Thus Lk c
[Λ, >9JC] and hence [^, , gk] = [Llf ., Lk] for k = 1, , n. In
particular R = [glf , gn].

The spaces Rgk must be irreducible over R, otherwise we would
have R decomposed into sums of irreducible iϋ-spaces of different lengths.
Thus the ideals Rgk are minimal. Furthermore if we denote the unit
element of R by β, we have e = yλgτ + + yngn. Right multiplication
by g5 shows that gό = yόg3 and thus e — g1 + + gn.

The form of an idempotent in enR and Rekky k = 2, , n, together
with the fact that Xeυ = e^X yields Xuk = ukX — ukXuk, k = 1, , n for
any X e D. The inductive method of defining gk then permits one to
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deduce that λ ^ = gkX — gkXgk. For suppose that λ ^ = ̂ λ for j = 1,
• , k — 1. From the way in which v and v* were defined Xv = vX and
Xv* = v*X. Since Xgk = v*Xsv = v*ukXsukv, and gkX = t>*sλΐ; = v*uksXukv,

it is sufficient if we show that ukXsuk = uksXuk for all X e D. But
(̂ sλWfcXOT*) = sw*λ = ukX = Xuk = Xsvv* = wfcλswfc(OT*). Since ukRuk is
a division ring, uksXuk = ukXsuk as desired. Hence Xgk = #fcλ for all
X e D and fc = 1, , w.

Since (0) Φ RgtR is a two sided ideal of R, RgtRgk = i?#fc =£ (0), and
thus flr4/?flrfc 7̂  (0). Suppose ί <ky and ^ r ^ Φ 0. Then, by the propriety
of the involution, 0 Φ {g%rgk){g%rgky — gtrgkr*gt. Since the left ideal
Rgt is minimal, g^Rg^ is a division ring, and there exists t e R such that
(9ii9i)(9iWic^9i) — Qί- If we take ad joints of the expressions in the
preceding equation, we see that gitgi — g^g^ Let gik = gίtgίrgk and
β*i = 0*r*gt. Then gikgki = gl9 and consequently (gίkgkί)(gίkgkί) = gt9 so

0 Φ guΰih € gkRgk, which is a division ring. Also gkigίk is idempotent so
Qjciffiic — Qk- Finally if we define gu = glf we obtain a set of matrix
units {gtj} for R such that g*t = ̂ H. The form of the involution * on
R is then an immediate consequence of a theorem of Jacobson and
Rickart [2].

We are now in a position in which we may discuss the continuity
of involutions.

THEOREM 3. Let D be a topological division ring such that any
involution on D is continuous. If R is a total matric ring over D,
then any proper ring involution on R is continuous.

The result is immediate by virtue of the representation of the
involution given in Theorem 2, together with the fact that convergence
in 12, when it is regarded as a finite dimensional vector space, involves
[1] convergence of the coefficients of the representation in terms of a
given basis.

We turn now to locally compact semi-simple rings which are either
connected or compact. The first item needed concerns their topological
algebraic structure.

LEMMA, (a) A compact semi-simple ring is the topological direct
sum of total matric algebras over finite fields.

(b) A locally compact connected semi-simple ring is the topological
direct sum of a finite number of total matric rings over locally com-
pact division rings.

Statement (a) is immediate from Theorem 16 of Kaplansky [4]. In
the second statement, the semi-simplicity allows the use of Theorem 2
of Kaplansky [5], which shows that the ring is the direct sum of a
semi-simple algebra over the reals with a unit and a totally disconnected
ring. Since the decomposition is the Peirce decomposition relative to
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the algebra unit, it is easily seen that one has a topological direct sum.
The connectedness then forces the second summand to be zero. The
conclusion of the lemmas then follows from Theorem 10 of [5].

It might further be noted that the division rings involved must be
connected. Consequently, since the only connected locally compact di-
vision rings are the reals, the complexes and the quaternions [3], [6],
these are the only rings involved in the conclusion of (6).

LEMMA 5. If * is a proper involution on a direct sum of total
matric rings over division rings, then each matric ring is invariant
under *. Thus * restricted to an individual matric ring is a proper
involution on that ring.

Let R be the direct sum of rings R3. Let e° be the unit of a
summand R°. Say e° = e1 + ••• + en is the decomposition of e° in
terms of the vector units of R°. The right ideal etR — e^0 is a minimal
right ideal of R. Hence, by the theorem of Rickart used previously,
there exists a unique idempotent fk in etR such that 0 Φ /«—/«*. Thus
ei — fiei and ef — efft. Consequently if x e R°, x = eλx + + enx =
f&x + +fnenx, and x* = x*eff1 + + x*elfn is in R°.

We are now in a position to establish the continuity of proper
involutions on the class of semisimple rings under discussion.

THEOREM 6. If R is a semi-simple locally compact ring which is
either compact or connected then any proper involution * on R is
continuous.

In view of Lemmas 4 and 5, it is sufficient to prove the continuity
of * on an individual matric ring. Thus the proof is complete for the
compact ring. For the connected ring, all we need note is that the
only involutions on the reals, complexes and quaternions are automati-
cally continuous. Hence Theorem 3 applies and the proof is complete.
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NORMAL EXTENSIONS OF FORMALLY

NORMAL OPERATORS

EARL A. CODDINGTON

1. Introduction. Let ξ> be a Hubert space. If T is any operator
in ξ> its domain will be denoted by ©(ϊ7), its null space by %l(T).
A formally normal operator N in ξ> is a densely defined closed operator
such that ®(ΛΓ) c ®(ΛΓ*), and \\Nf\\ = ||ΛΓ*/|| for all / e ®(iSΓ). Inti-
mately associated with such an ΛΓ is the operator N which is the
restriction of ΛΓ* to 2D(JV). The operator N is formally normal if and
only if N is. A normal operator N in ξ> is a formally normal operator
for which SE(JV) = SD(i\Γ*); in this case JV=JV*. A densely defined
closed operator JV is normal if and only if N*N = NN*.1

Let JV be formally normal in φ. Since NaN* we have NaN*,
where iV* = (JV)*. Thus we see that a closed symmetric operator is a
formally normal operator such that N = N, and a self-adjoint operator
is a normal operator such that N = N ( = AT*). If a closed symmetric
operator has a normal extension in ξ), this extension is self-adjoint. It
is known that a closed symmetric operator may not have a self-adjoint
extension in ξ>. Necessary and sufficient conditions for such extensions
were given by von Neumann.2 However, until recently, conditions under
which a formally normal operator N can be extended to a normal one
in ξ> were known only for certain special cases.3'4 Kilpi5 considered the
problem in terms of the real and imaginary parts of N. It is the pur-
pose of this note to characterize the normal extensions of N in a manner
similar to the von Neumann solution for the symmetric case.

If Ni is a normal extension of a formally normal operator N in ξ>,
then it is easy to see that NaNxa N*, and NaN? <zN*. In Theorem
1 we describe ®(iV*) and ®(ΛΓ*) for any two operators N, N satisfying
N c N*, iVciV*. With the aid of this result a characterization of the
normal extensions iVΊ of a formally normal N in φ is given in Theorem
2. It is indicated in Theorem 3 how the domains of normal extensions

Received January 13, 1960. This work was supported in part by the National Science
Foundation and the Office of Naval Research.
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can be described by abstract boundary conditions.
I would like to thank Ralph Phillips for instructive conversations

during this work.

2. Domains.

THEOREM 1. Let N, N be two closed densely defined operators in
a Hilbert space £> such that ΛΓc JV*, ΛΓciV*. Then

2ft , ®(ΛΓ*) = ®(ΛΓ) + 2ft ,

where 2ft = 31(1 + JV*JV*), 2R = 5R(J + iV*ΛΓ*). flere I is tfcβ identity
operator, and £/&e s%ms are direct sums.

Proof. Let JV, ΛΓ be any two closed densely defined operators in £
such that NczN*, N c iV*. Then (ΛΓ/, 0) - (/, Λfc) for all / e ®(ΛΓ),
g € ®(JV). Define an operator ^f" in the Hilbert space ξ>2 = § 0 ξ> with
domain ® ( ^ ) the set of all / = {flf f2} with Λ e S)(iV), /2 e ®(JV), and
such that ^ f / = {ΛΓ/2, iV/Ί}. Then ^ ^ is closed symmetric. Indeed
® ( ^ ) is dense in ξ> © ξ), and, if / = {/lτ /2}, 9 = {glf g2} are in
we have

/ f 9) = (iV/2, ft) + (iV/i, ft) = (/1, % 2 ) + (Λ,

Since iV and N are closed, so is ΛT. The adjoint ^//^* of ^r has
domain ®(^/^*) the set of all g = {g19 g2} such that gx e S)(JV*), flf2 e ®(iV*);
and ^r*g = {N*g2, N*gx}.

We now show that the defect spaces of ^ Λ namely,

g ( - i ) = {ψ e

have the same dimension. We have φ = {φ1? φ2} e ®( + i) if and only if
φx e ®(iV*), φ2 e ^(N*), iV*φ2 = iφlf N*ψ± = iφ2. The latter is true if
and only if iV*(—φ2) = —iφi, JV*^ = —i(—φ2). Thus we see that the
unitary map ^ of ξ>2 onto itself given by ^{f19 f2} = {/1, —/2} carries
6f(—i) onto @( + i) in an isometric way. This proves dim @( + i) = dim @(—i).

We note that {&, φ2} e ®( + ί) if and only if & e © ( # * # * ) ,
(/ + N*N*^ = 0, and φ2 - -iJV*φ lβ Alternatively {̂ , φ2} 6 ®(+i) if
and only of φ2 e ®(iV*iV*), (7 + iV*iV*)φ2 = 0, and & = -iN*φ2. Thus
we see that the algebraic dimensions of the spaces 2ft = $1(1 + iV*JV*),
TO = 5ft(7+ iV*ΛΓ*), @( + i), and @(-i) are all the same. Further it is
easy to see that ΛΓ* maps 9Ji one-to-one onto 2K, the inverse mapping
being — iV* restricted to 2ft.

Since dimC^ + i) = dim©(—i) the operator Λr has self-ad joint
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extensions in ξ>2. They are in a one-to-one correspondence with the iso-
metries of Qf( —i) onto Gf( + i). If & is a self-ad joint extension of Λ"
there is a unique isometry ^ of G?( — i) onto G?( + ΐ) such that ®(,9^) =
®(^//) + ( ^ — ^")@( —i), where ^ is the identity operator on £>2.
Let us consider that self-adjoint extension £f of ^ determined in this
way by the isometry — <%/ restricted to G?(—i). Then we have fe e © ( ^ )
if and only if ft = / + ψ + <̂ Λ/r, for some / e ©C^K*), ^ e ®(-ί) . If
ft = {Λi, h), f = {/i, /2}, ^ = WΊ> Ψ̂ K this means hλ = /x + 2 ^ , ft2 = /2,
where Λ e ©(JV), ^ e 501, f2 e ©(JV)._ Thus © ( ^ ) is the set of all
{hlf h2) with ftx e ®(ΛΓ) + 9Dΐ, fe2 e ®(iV). Now the operator ά{ with
domain all {̂ , h2} with ^ e ®(iV*), h2 e S)(JV), and such that £ζ{h19 h2} =
{iV/ι2, N*^}, is readily seen to be a self-ad joint operator in £>2 satisfying
j / ^ c y c ί f c ΛΓ*. Hence ^ = ,£f, and we see that ®(N*) =
®(ΛΓ) + SίJί. The sum is a direct one, for if / e ®(JV) Π 501, 0 =
(/ + ΛΓ*iV*)/ - / + iV*ΛΓ/implying 0 - (/ + ΛΓ*iV/, /) - | | / | | 2 + || iV/||2,
or / - 0.

A similar argument shows that the self-adjoint extension Sf of ^r
determined by the isometry 5^ equal to <%s restricted to ©( — i) has
domain the set of all {h19 h2} with h, e ®(iV), fea e SD(JV) + SK. This
operator is equal to the self-adjoint extension of ^K having domain the
set of all {h19 h2} with hx e ®(JV), h2 e Φ(iV*), implying that ®(ΛΓ*) =
®(iV) + 50Ϊ, a direct sum. This completes the proof of Theorem 1.

Note added in proof. The results of Theorem 1 can be obtained
more directly, although some of the discussion given in the proof above
is required for our proof of Theorem 2. Let ®(T) denote the graph of
an operator T. If A, B are any two closed operators with dense domain,
and Ad B, then it is easy to see that @(2?)Q®(A) is the set of all
{u, Bu} e ®(B) such that ue%l(I+ A*B). Since

®(B) = ®(A) 0 [®(B) θ ©(A)],

we have ® ( £ ) = ® ( A ) + 9 Ϊ ( / + A * J S ) , a direct sum. This implies Theorem 1.

3 Normal extensions.

THEOREM 2. If Nλ is a normal extension of a formally normal
operator N in a Hubert space ξ>, then there exists a unique linear
map W of 9Ji onto itself satisfying

( i ) W* = I,
(ii) HΦII2 + II JV*φ| | 2 - II Wφ\\> + \\N*Wφ\\\ (φ e 501),
(iii) (I - WW - N*(I + WβJl,
(iv) || JSΓ*(J - W)φ || - || N * ( I - W)φ II, (φ e 501).

In terms of W we have

NJ = N*f , (/
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Conversely, if W is any linear map of 2ft onto 2ft satisfying (i)—
(iv) above, then the operator Nx defined by (1) is a normal extension of
N in ξ>.

REMARKS. Condition (i) implies that Px = (l/2)(7 + W) and P2 =
(l/2)(/ — T7) are projections (not necessarily orthogonal) in 3ft, and 2JΪ
is the direct sum of 3ftx = Px3ft and 2Ji2 = P22J£. If φ e 3ft, then φ e 23^
if and only if Wφ — φ, and φ e 2ft2 if and only if Wφ = — φ.

Condition (ii) implies that if φ, φ' e 2ft then

(φ, φ') + (N*φ, N*φ') = (PFφ, W ) + (iV*PFφ, iV* W ) .

If Φ e mif Φ' e 2Jΐ2 we see that (φ, φ') + (N*φ, N*φ') = 0, which means

that the graph of iV* restricted to SD̂  is orthogonal to the graph of N*

restricted to 5ϋl2.

Since iV* is one-to-one from 5tJl onto 2JΪ, condition (iii) implies that

3Ji2 == ^*5Πi1 c 9JΪ Π Sϊ, and 9Ji2 has the same algebraic dimension as 3Wle

In particular the dimension of 2Jί must be even.

Proof of Theorem 2. Let Nλ be a normal extension of the formally
normal operator JV in £>. Then we have iVcΛΓxCiV*, N a N? c N*.
Let the operator ^ in ξ)2 be defined with domain all {h19 h2} such that
hx e ®(iV0, h2 e ®(N?), and so that Λ\{K h} = {iVf^, JVΆ}. Then it is
easily seen that Λζ is a self-adjoint extension of the operator ^ ^ de-
fined in the proof of Theorem 1.

Let *Λ<[ be any self-ad joint extension of ^A^, and let 5^ be the
unique isometry of @( — i) onto @( + i) such that S ( ^ ί ' ) = S ( ^ ^ ) +
(J 2" — ^")@( —i). Then we may write ^ " = *WW, where ^ is the
isometry defined on G?( —ΐ) to @( + i) by ^{ψlfψ2} = (ΨΊ, — ψ ah a n d ^ ^
is a unitary map of ®( + i) onto itself. For {Φi, φ2} e @( + i) let
3P~{Φi, Φ*} = {Xi, L}. Then φu χx e 3Jί and φ2 = -iJSΓ*^, χ2 = -iN*Xx.

Define the map W of 9Jί into 9Jί by TΓΦx = χlβ Then W is linear, and
since <W~ is unitary, W is onto, and

|| {φ, -iN*φ} ||2 = !| {T7φ, -iN*Wφ} | | 2 , (φ e 2K) ,

or

( 2 ) I I Φ I Γ + | | i V * φ | | 2 = II WΦIΓ + | | J V * W φ | | 2 , (φ

Conversely, suppose W is a linear map of 3ΪΪ onto'3ft satisfying (2).
Then for φ = {φ, -ίiV*φ} e (ϊ( + i) define <Wφ = {Wφ, -iN*Wφ}. Then
W maps @( + i) onto ®( + i) and (2) implies that W" is unitary. Thus
we see that the self-ad joint extensions ^4\ of Λ" are in a one-to-one
correspondence with the linear maps W of 3Jί onto 9Jί satisfying (2).
We have h — {hlf h2} e ®(^Γ) if and only if h can be represented in
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the form K = f + ( ^ - W~?/)ψ, where / - {flf f2} e S ( , f ) , ψ =
{φ, iN*φ} e ©(-i). This means h,= f1 + (I-W)φf h2 = f2 + iN*(I+W)φ,
where fx e ® ( t , r ) , /, e £>(iV), φ e TO.

The self-adjoint extension <Λζ arising from the normal extension
Ni of N has the property that if h = {hlf h2) e ®( /f) then so does
^h = {hlf 0}. It will now be shown that a self-adjoint extension Λ\
of isir has this property if and only if the W corresponding to <s\ζ
satisfies W2 == /. First suppose &{h e ®(^Γ) for all h e ®(^/f). Letting
hί=f1 + (I - W)φ, h2= f2 + iN*(I + W)φ as above, we see that this
implies that there exist elements f[ e ®(iV), f'2 e ®(JV), Φf e TO, such
that

fl + (I- W)φf ,

0 = /; + iN*(I + W)φ' .

Since ®(iV) + -3JΪ and ®(iV) + Φί are direct sums these equations imply
that fx - //, (/ - W)φ = (I - T W , // - 0, and N*(I + W)φ' = 0. The
last equation implies (/ + W)φ' = 0 since iV* is one-to-one from 3Jί to 3Dΐ.
Thus we have

( 3 } Φr + Wφf = 0 ,

φ' - Wφf - Φ - WΦ ,

from which results 2φ' — {I — W)φ. Returning to the first equation in
(3) we obtain (/ + W)(I - W)φ = (/ - W2)φ = 0 for all φ e 9Jί, showing
that l^2 = /. Conversely, suppose W2 = / on TO. Then if fe = {̂ , /̂ 2} 6
Φ(^Γ), ^ - /, + (I - W)φ, h2=f2 + iN*(I + W)φ, define φ' -
(l/2)(/— W)φ. Then equations (3) will be valid, implying that

f1 + (I~ W)φ\

0 - 0 + iN*(I + W)φf ,

which shows that ^{h = {fcx, 0} e ® M f ) .
If ^//^ is any self-adjoint extension of ^//^ for which W2 = /, then

® ( ^ ί ) consists of those {hlf h2} such that K = fλ + (I — W)φ, h2 = /2 +
iJV*(/ + ΐΓ)φ', for some Λ 6 ®(iSΓ), /2 e ®(iV), and φ, φ' e TO. The point
is that φ and φf need not now be the same element. Indeed, if h19 h2

have such representations let φ" = (1/2)(I - ίΓ)φ + (l/2)(ί + W)φr. Then
(7 - W)φ = (/ - TDΦ", and (/ + W > ' = (/ + WΓ)φ", which implies that
{fei, h2} e ®(>1) . For such an ^ ί define ^ to be the operator in § with
®(JVΊ) = S5(JV) + (/ - TF)TO, and ΛΓA = JSΓ*^ for hλ e ^(N,). Similarly
define N2 on 25(ΛΓ2) = ®(iV) + JV*(/ + TF)TO by NJι2 = ΛΓ*̂ 2 for h2 e
S)(iV2). In terms of Nx and AΓ2 we have {hl9 h2} e ® ( ^ " ) if and only if
fex e ©(JVi), fe2 e £(ΛΓ2), and ^ { ^ , /̂ 2} = {N2h21 NJi^. A short computation
shows that ®p/Γ*) is the set of all {g19 g2} such that gx e S(iV2*),
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g2 e S)(iVί), and Λf*{glf g2} = {N*g2, NfgJ. But since Λl = <sK* we
obtain N2 = Nf. Hence ®(-^Γ) consists of all {hlf h2} with hλ e
A2 6 ©(JV;*), and ^ f {Aj, A2} = { N ^ , JVA}. Here

- N*(I ~\

and NaNiCzN*, NaN? aN*. Thus any self-ad joint extension ^ς
of Λ ^ having the property that W2 = I determines a unique operator
Ni in φ as above, which is easily seen to be closed. In particular, if
# ! is a normal extension of N, then the equalities (4) hold.

It remains to characterize those ^Ϋ{ such that W2 = I for which
Nx is normal, that is ©(JVj) = ^S)(N*) and || AΓ̂ H == || iV̂ /z, ||, k e
We claim that this is true if and only if

( 5 ) (/ - W)m = N*(I + W)$Sl ,

and

(6) || N*(I - W)φ || = || N*(I - W)φ \\ , (φ

If (5) is valid then (4) implies that ©(iVO = ©(i^*), since ®(iV) =
Let h e ©CNi), Λ = / + (/ - TΓ)ψ, / e Φ(AΓ), Φ e SίJί. Then (/ -

3ϊί n 2R, and we have ΛΓΛ = Nf + N*(I- W)φ, N*h = Nf+N*(I- W)φ.
Thus

|| ΛΓΛ ||» = II iV/ll2 + (ΛΓ/f N*(I - W)φ) + (N*(I - W)φ, Nf)

+ \\N*(I- W)φ\\\

and

\\N*h ||2 = || iV/1|2 + (#/, N*(I - W)φ) + (N*(I - W)φ, Nf)
+ \\N*(I- W)φ\\>.

Since N is formally normal \\ Nf \\ = \\ Nf \\. Moreover N*(I - W)φ e
implies that (NfLN*(I - W)φ) = (/, N*N*(I - W)φ) = - ( / , ( / -
and similarly (Nf,N*(I- W)φ) = - ( / , ( / - W » . Using (6) we see
that \\NJi\\ = \\Nfh\\ for all h e ©(iVΊ), proving that Nx is normal.

Conversely, suppose iVj is normal. Then (6) is clearly valid, for
(/ - W)Φ € ©(iVJ by (4). Suppose h e ®(M) = ®(N*) and h = f +
(I - TF> = / ' + iV*(/ + W)Φ' with /, / ' e ©(iV), Φ, φ' e TO. We show
that / = / ' and (/ - W)φ_= N*(I + W)φ'. Applying this to / = 0
we obtain (/ - W)W c N*(I + W)ϊΰl, and with / ' = 0 we get
N*(I + W)Tt c (/ - Wβϊl, proving (5). Now for any g e ®(iV) we have

= (N*h, N*g), or

, Ng) + (N*{I - TΓ)Φ, Ng) =
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Since (Nf, Ng) = (Nf, Ng) and (if*(I - W)φ, Ng) = -((I - W)φ, g),
this yields

(Nf, Ng) - ((I - W)φ, g) = (Nf, Ng) - (if* (I + W)φ\ g) ,

or

(N(f - f)f Ng) + (N*(I + W)φ> -(I- W)φ, g) = 0 .

But N*(I + W)φ' - (I - W)φ =f-f, and hence

(N(f-f),Ng) + (f-f,g) = 0

for all g e S(iV). Letting g = / - / ' we obtain / = / ' as desired. This
completes the proof of Theorem 2.

4«. Abstract boundary conditions. For u e ®(iV*), v e ®(iV*) de-
fine (uvy = (if*u9 v) — (u, N*v).

THEOREM 3. If Nt is a normal extension of the formally normal
operator N such that ©(Λ )̂ = ®(iV) + (I - W)Sΰl, then Φ(JVX) may be
described as the set of all u e ®(iV*) satisfying (uay = 0 for all
ae(I

REMARK. For differential operators the conditions (uay — 0 become
boundary conditions. They are self-ad joint ones, that is, (aafy = 0 for
all a, a' e (I - W)m. Indeed a, a! e ®(N,) = S)^*) and for any
a e ©(iVO, a! e X(Nλ*) we have (ΛΓ*α, a') = (Nτa, a') == (α, ΛΓ^α') =
(α, ΛPO.

Proo/ o/ Theorem 3. If u e ©(ΛΓO, α e (I - WW c 3 W ) , the
above argument shows that <uα> = 0. Conversely suppose u e ®(iV*)
and (uay = 0 for all a e (I - W)m. Let u = f + (I - T7)φ + (/ + W)φ,
where / e ®(ΛΓ), φ e Wl. We note that < > is linear in the first spot,
and / + (I - W)φ e ®(Nλ). Thus <(I + W)φ ay = 0 for all α_e (I -
Let a = iV*(/ + TΓ)φ e (/ - ΐ^)3Ji, since (/ - W)m = iV*(/ +
Then

0 = <(/ + W)φ N*(I + T7)Φ> = (N*(I + W)φ, N*(I + W)φ)

which proves that (I + W)φ = 0, and hence u e ®(Λ/Ί) as desired.

UNIVERSITY OF CALIFORNIA,

Los ANGELES

6 A result similar to Theorem 3 appears in the report by Davis (4) for the case when

dim (Φ(ΪV*)/Φ(iV)) < oo.





SOME CLASSES OF EQUIVALENT GAUSSIAN

PROCESSES ON AN INTERVAL

JACOB FELDMAN

l Introduction. Let T be an index set, Ry S real-valued nonnega-
tive definite functions of two variables in T, and m, n real-valued functions
on T. Let Ω be the set of all real-valued functions on T, and £/" the
Borel field of cylinder sets. There are then unique measures μ, v on Sf
such that the functions xt on Ω defined by xt(oή = ω(t) form Gaussian
stochastic processes, with means respectively m and n, and covariances
respectively R and S. It is shown in [2] that μ and v are either mu-
tually absolutely continuous or totally singular, and a necessary and suf-
ficient condition for equivalence is given.

Suppose now that T is a subset of the real line, and R(s, t) = t (s — £),
S(s, ί) =^(s — ί), where t. and ά are continuous nonnegative-definite
functions, and hence can be written as inverse Fourier transforms of
finite measures dp, dσ. Thus, using respectively the measures μ and v
on Ω, xt — m(t) and xt — n(t) are the restrictions to T of stationary
Gaussian processes on the real line. For simplicity, only the case m =
n — 0 will be considered.

When T is the entire real line, then it is easy to see, by looking at
dp and dσ, exactly when μ^v, as is essentially known (see [3]). The
precise conditions are:

a. p and a must have identical non-atomic parts.
b. Their points of positive mass be the same, and if the masses

are a% and bt at xif then Σ{(αi/&0 — I}2 must be finite.
Now suppose T is a finite interval. The problem of determining

from knowledge of p and σ whether μ and v are equivalent becomes
much more difficult. We here discuss only a certain class of cases.
Because of stationarity, one need only consider an interval symmetric
about 0. Continuity of t and ά implies that the Gaussian process is
continuous with probability one at any given point, so that it makes no
difference whether the interval is open or closed. There is no essential
loss of generality, then, in considering only the closed interval [ — π, π\.
The followingLfacts will then be proven:

THEOREM. Let dp(x) = {dxftL + x2)u}> where u is an integer ^ 1,
and let\a he some other finite nonnegative measure on the real line.
Write τ — G — p. The following conditions are necessary and sufficient
that the Gaussian processes induced on [ — π, π] by the Fourier trans-

Received December 21, 1959, Research partly supported by Contract NONR-222 (60).
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forms of p and σ have equivalent measures on path space:

(a) if kn is a sequence of CL functions with support in ] — π, π[

and Kn is the Fourier transform of kny then I \Kn\
2dσ-+ 0 implies

J l X I ' d O
(b) The Fourier transform {in the sense of Schwartz distributions)

of (1 + xΐ)udτ{x) agrees on ] — 2τr, 2π[ with a function ψ such that

Γ Γ \ψ{s-t)\2dsdt
J-πJ-π

<

REMARK 1. It will be seen that sufficiency still holds if (a) is
weakened to:

(a') I \Kn\
2dσ—+ 0 and Kn—*Kin ^ζ{p) implies that K=0 on some

set of positive p-measure.

REMARK 2. As a consequence of Remark 1, it is clear that if σ
has a component which is absolutely continuous with respect to p, then
Condition (a) automatically satisfied.

Retaining the notation of the theorem:

COROLLARY 1. If dσ — Φdp, where Φ is a function such that Φ—l
is a finite linear combination of functions in various La{— <χ>, oo)
classes, 1 :g a rg 2, then the Gaussian processes induced by p and σ have
equivalent measures on path space.

One direction of the following corollary was proven by D. Slepian
in [5], using techniques of G. Baxter in [1]:

COROLLARY 2. If A5 and B3 are polynomials, with degrees re-
spectively a5 and bjfj = 1, 2, and bό> ajy then the Gaussian processes
whose spectral measures are \ A5{x)lBό{x) \2 dx have equivalent measures
on path space if and only if

(a) bλ — a1 = b2 — a2

(b) the ratio of the leading coefficients of Aλ and Bλ has the same
absolute value as the ratio of the leading coefficients of A2 and B2.

The author wishes to thank J. F. Treves for several useful discus-
sions about distributions.

2» Some preliminaries on functions of exponential type. First, some
notation. Functions will be complex-valued functions of a real variable,
unless otherwise stated. F will mean the Fourier transform of F (in
various degrees of generalization, depending on context), and F the con-
jugate Fourier transform, sup (/) will mean the points where fφO. &a=
{F\F extends to an entire function of exponential type ^ aπ}.
iζ Π -£^(— °°, °°), or, by the Payley-Wiener theorem,
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= {/|/e -SSK-oo, co), sup(/) c [-aπ, aπ]} .

u will be a fixed integer ^ 1, and p{x) = (i + x)u. p is the measure
dp(x) = {1/1 p(#) |2}cte. ^ ^ will denote the completion of £^ in the inner

product <F, G> = [FGdp.

Naturally, 3ίΓ really consists of equivalence classes of functions; but
it will turn out that there is a continuous, in fact entire, member in
each class. Hx will denote a fixed function of &x such that hλ = Hx is
nonnegative and has integral 1. For a > 0, ha(s) will be (llcήh^s/a),
Ha{x) = H^ax), so that ha = H<*, and Hae 2?ra. Then Ha vanishes faster
than any polynomial, | Ha(x) | ^ 1 for all x, and \ima^0Ha(x) = 1 uniformly
on any finite interval.

LEMMA 1. // Fe<g'1 and [\F\2dρ < co, then F e

Proof. If (1/2) < c < 1, then

( j | F(cx) - F(x) Vdp(x))112 £ ( j J F(cx) - F(x)

G \l/2 /f \l/2

| F ( c ί κ ) | ^ ( x ) ) + ( l ) ! ^ ^ ) )
l x | > 6 / \J | a : |>6

Now,

\F(ex)\*dρ(x) = —[
G JU p

c

Choosing 6 large, and then choosing c close enough to 1 to make \F(cx)—F(x)\
small on [ — 6, 6], we see that it suffices to show that the function G: x—>
F(cx) is in 3tΓ. Notice that G e g ^ , as c < 1.

HaG is square-integrable, since Ha vanishes faster than (1/| p |2).
So HaG is in J ^ α + C , its Fourier transform being some g' in ^ 2 ( — co, co)
with support in [ — (a + c)π, (α + c)π]. Thus ha*g' e ^2a+c, and H2

aG e &2a+c.
Choosing a small causes R\G to be in ^ Ί , and simultaneously causes

1| H2

aG — G \2dp to get small. This proves the lemma.

Let ^ ={pF\Fe^1}, and & = {pF\ Fe ^f1}. Lemma 1 tells us

LEMMA 2. Sίf is precisely the closure of £& in
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Proof. First, we see that ^f is closed. If Fne^fx and

f I pFn-G\ 2dp — 0, then f | Fn(x) - Fm(x) \ 2dx — 0 .

Since 3ffx is complete, there is some Fe 3(fx with l| Fn(x) — F(x) \2dx—>0.

So some subsequence of the pFn converges almost everywhere to pF.
Thus pF = G almost everywhere.

To approximate elements pF in Sίf* by elements in &, just approx-
imate F in J 2 ^ 2 ( — co, oo) by elements in £^\, using the technique of
Lemma 1.

LEMMA 3. j ^ θ £ίf is precisely the finite-dimensional space £f
of functions of the form x—*eixπq(i — x), where q is a polynomial of
degree ^ u — 1.

Proof. Suppose Fe J T θ ^ Then [FpGdp = 0 for all G in &r19 i.e.

[{F(x)lp(x)}G(x)dx = 0 for all G in ̂ . Now, (F/p) is in j ^ 2 ( - o o , oo),

so it has a Fourier transform A: which is likewise square-integrable, and,

by PlanchereΓs theorem, \k(s)g(s)ds = 0 for all g in ώλ. So k vanishes

in ] — π, π[.

Since Fe Sf9 F can be approximated in JίΓ by functions Fn in ^ 1 #

Each F w is in £^α^ for some an < 1, since sup(i^)c:] — π, π[, and hence
c]—a nπ, anπ[ for some an < 1. Let fcw be the Fourier transform of FJp.
Then kn—>k in S^2{— ̂ , oo), and few is in the domain of the «S^2—differ-
ential operator p{ — iD) — iu(I—D)u. So p( — iD)kn=fn, where/ n is the Fou-
rier transform of Fn. Since/„ vanishes outside some [—αnπ:, αwπ], an<l,
kn must be of the form Σjaϊn)s3e8 in ] —oo, —π[ and ̂ jbjn)sjes in ]π , oo[,
where j ranges between 0 and u — 1. Since kn is in -Sf(— oo, oo), the
bjn) are zero, and, letting φ be the indicator of ] — oo, — π[, we get
φkn = φ^ιjajn)sjes. This converges in J^2(— oo, oo), so the limit is of the
form ^ / i ^ . Then /bw —> 0 in ]τr, oo[, 0 in [ — π, π], and Σfl)Sjes in
] — oo, — τr[, so A; = Ψ^Σjβ^e8. Fjp is then a linear combination of terms

e~ίxssjesds, 0 ̂  j ^u — lf which is a linear combination of terms

like eίxπ(i + #)~J, 1 ̂  i ^ ^. Multiplying by p gives the result.
Combining information from lemmas 1, 2, 3 we get a description of

PROPOSITION. 3ίΓ is the orthogonal direct sum of ^ and

LEMMA 4. ^

Proof. S^c^tf, by definition, since ^ Ί C ^ . Also ̂ c ^ ^
since ^ Ί is closed under multiplication by polynomials (because ^ i is
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closed under differentiation). So ^ c ^ Π ^ Ί , and it remains to show

Suppose G e Sίf. Then G is a < , > limit of elements Gw in £^, by Lem-
ma 2. Gw then has the form pFn, Fn in ^ Ί . Thus Fn is an _$ 2̂( — oo, oo)
Cauchy sequence, hence has a limit F. Then pF = G.

Suppose G is also in ^ 1 # Then G is infinitely differentiate. Since
G = p # = p(—iD)F, we conclude that F is infinitely differentiate. Now
it must be shown that F vanishes outsides some interval [—aπ, aπ],
0 < a < 1. But G = p(—iD)F vanishes outside such on interval, so F
is analytic outside [—aπ,aπ\. Also, F vanishes outside [ — π,π], since
each Fn has support in ] — π, π[. Therefore, F vanishes outside [—απ,
aπ]. So F is in £grl9 and F is in £^Ί.

LEMMA 5. £&x\3i is finite dimensional.

Proof, ^rj&r = 3Jx\3ί1 Π ^ ^ ( ^ +

3. Proof of theorem. In [2] it is shown that a necessary and suf-
ficient condition for equivalence of μ and v is that there be an equiva-
lence operator from the closed linear span of {xt\te T] in ^f2(μ) to their
closed linear span in £?2{v), sending the /^-equivalence class of xt to the
^-equivalence class of xt for each te T. (An equivalence operator, as
defined in [2], is a linear homeomorphism H between two Hubert spaces
such that I— H*H is Hubert Schmidt). Actually, we shall want the
condition in complex ^ 2 , while the proof in [2] is for real i^Y, however,
the transition from the one to the other is immediate.

Under this condition, if would map \ f(xt)dt as an j£?2{μ)— valued
f(t)xtdt as an jSfa(v)-valued integral, for each / e £ ^ γ ,

-π Cπ

and conversely, if H had this effect on all such I f(t)xtdt, then by choosing
J — *

a sequence of / approximating a delta function, one could verify that H
sent the equivalence class of xt in J*f2(μ) to the equivalence class of xt in
jδ^aίv). Therefore, putting inner products (,) and (, )# on &λ by the rules

, g) = \*\['(8 - t)f{s)g(t)dsdt,

/(s - t)f(s)g(t)dsdt ,

and noting that (/, g) — \[\ f(s)xsds)[\ g(t)xtdt)dμ and
/

\ /Cic \

f(s)xsds g(t)xtdt )dv,
•π / \J—π /

it follows that a necessary and sufficient condition for the equivalence
of μ and v is the existence of an equivalence operator from the (,) com-
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pletion of Qϊλ to its (, )• completion, and sending the (, )-equivalence class
of / to its (, )*-equivalence class.

Now let (Fj G>* = I FGdσ, where F and G are in 2$Ύ (and hence con-

tinuous and bounded, so that the integral exists). Let J%Γ be the closure

of ϋ?Ί in ^f2{σ). Let J be the map assigning to F in £^Ί its equivalence

class in ^ t . Since <F, G> = (F, G), and <F, G> = (F, G)', the necessary

and sufficient condition for the equivalence of μ and v in the theorem

is that J be the restriction to ̂ Ί of an equivalence map from 3fΓ to JΓ~.

To prove sufficiency of the conditions in the theorem, suppose first

that I p(x) 12 dτ(x) has a generalized Fourier transform (see [4]) which

agrees on ]—2π, 2π[ with a function ψ such that 1 I | ψ(s—t) | 2 dsdt —

a2 < oo. We extend ψ by making it 0 outside ]—2π, 2π[.

LEMMA 6. If Fe &, then <F, F> ^ (1 + a) <F9 F>.

Proof. W r i t e i T = p G , G e ^ 1 . Thenf| F | 2 d σ = ί | F l 2 ^ + f | G | 2 | p | 2 d r .

Now, G is in £&if so G*G is infinitely differentiate with support in
]—2π,2π[. Then, by Schwartz's definition of generalized Fourier trans-

form, we get | G |21 p | 2 dτ = G*G(s)ψ(s) ds = G(s - t)G(l-t)
J J-27Γ J-2π}a(s)

ψ(s)dtds, where a(s) = max (—π, s — π) and b(s) = min (7Γ, s + π). Let-

ting s - t = s', and ί = - t f gives Γ Γ G(s')G(t')ψ(s' - t')ds'dt', whose

absolute value, by the Schwartz inequality, is

Q π Cπ ^ -z. Γπ Cπ "11/2

I G(s)G(t) 12 dsdt \ψ(s-t)\ 2dsdt
-πj-π J—πJ-π J

w

Pick a complete orthonormal set (c.o.n.s.) / i , / 2 , for -S^2(—TΓ, π)
out of the dense subset ^ 1 # Let Fn =fn, and Gw — pFn. Then the G
form a c.o.n.s. for ^ ( i n < , » consisting of elements of £^, because the
Fn are a c.o.n.s. for Sίfx consisting of elements of j ^ .

LEMMA 7. Σϊ.«=i I <G». Gm> - <GW, Gm> | 2 = a\

Proof. [Gn(x)Gm(x)dτ(x) = Γ^ Fn*Fm(s)ψ(s)ds. By using a change of
J J-2π Γπ Γπ

variable as in the previous lemma, this equals I I fn(s)fm(t)ψ(s — t)dsdt.
J — π J — π

But the functions (s, t)-+(fns)fm(t) form a c.o.n.s. in =£^2([—π, 7r] x [—7Γ,τr]),
( , )(fn)fm() ([

so that Σϊ.«=i|(* j * fn(8)fm(t)ψ(8-t)d8dt 2 is exactly j * j * ^ ψ(β-t) dsdt.

Now consider the map J from ^ Ί to ̂ " . Lemma 6 implies that its
restriction to & is bounded, and, since £$λ\3ϊ is finite-dimensional (Lem-
ma 5), J is bounded as an operator from *&x to ̂  (a finite-dimensional
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extension of a bounded operator is bounded, as is readily seen). So J
extends uniquely to a bounded operator A from 3Γ to JΓ\

LEMMA 8. I— A*A is a Hilbert-Schmίdt operator.

Proof. Complete the o.n.s. GlfG2,' - by adding to it a c.o.n.s.
G^u in £f. Then, letting k = u - 1,, G_!,

+ 2ΣSU-* l</ - A*A)Gn, (I - A*A)Gny |2 ,

using ParsevaΓs equality. But (AGn, AGm)>' = (Gn, Gm>* for n, m > 0,
since such GM are in <gfx, so that the sum is exactly

In order to complete the proof, it must be shown that A is a ho-
meomorphism from 3ίΓ onto J3Γ. Since / — A*̂ L is completely continu-
ous, it will suffice to show

(1) that the range of A is dense in 3ίΓ.
(2) that A sends no nonzero element to zero.

(1) is clear, since the range of A contains the range of J, which

is dense by the very definition of Jf.
We now make use of (a), or rather of the weaker (a'), to prove

(2). Suppose, in fact, that A(K) is zero in ^ for some K in
Let Kn be a sequence of members of ^ converging to K in
Then Kn converges to zero in K, since A(Kn) — J(Kn). Then, by (a'),
K = 0 on a set of positive p measure. But the Proposition of the
previous section tells us that K is analytic. Thus K— 0.

To show the necessity of condition (a), suppose J has an extension
to an equivalence operator from SΓ to j%r9 which we call A. Then
(a) is immediate from the fact that A is continuously invertible.

Since / — A*A is an equivalence operator, Σ»,TO=i I <Gn, GTO> —
<GnGmy I2 < oo, where Glf G2, -is the c.o.n.s. in &t for ^f previously
constructed. Define an operator Z on ^ 2 ( [ — π, π] x [ — π, π\) as follows:
let /n>TO(8, t) =fn(s)fm(t), where Gw = p/n- For Q = Σn.»α».m/n.«, Let

= Σ».mα».» «Gn.GTO> - <GW, Gm> ). Then
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So Z(Q) has the form Γ \* Q(s,t)Ψ (s,t)dsdt for some Ψ such that

ί
π Cπ J-πJ-π

l I Ψ(s, t) \2dsdt < Co. In particular, consider/, ge 2$1, and let / =

Σ A Λ ,9 = Σbnfm. Let Q(β, t) =f(s)gW Then Z(Q) = Σ».«α A.«G», Gm>

-<<?„, Gmy) = Σ , , Λ ^ J ( P ^ ) ( Λ ) ^ = J/£ I V V dt.
Let 0 < r < 2π, and let /, 0 have the closure of their supports in

in ]-π+r9 π[. Let f'(s) = f(s + r), g'(s) = g(s + r). Then / ' , g' are in &rlf

and their inverse Fourier transforms satisfy f'(x) = eίrxf(x) = eίrxg(x). Then

p

= \fg\vVdt = J* j r f(s)WW(s,t)dsdt.

But

Γ Γ /(s + r)fl(t + r)^(s, t)dsdt = Γ Γ f(s)W)Ψ(s - r, t-r)dsdt.
J - π j -π J-πJ-π

in view of the restrictions on the support of / and g. Since this
holds for all such /, g, the equality Ψ(s — r,t — r) — Ψ(s, t) holds for
almost all (s, ί) for which s,t, s — r,t — r are in ] — π, π[ (r being fixed).
T h u s , {(r, s, ί ) I s, t, s - r, a r e in ] — π, π[ a n d Ψ(s - r,t - r) Φ Ψ(s, t)}
has measure zero.

Applying Fubini's theorem, we get: for almost all pairs s, t in ] — π,π[
the set {r \ s — r, t — r lie in ] — π, 7r[ and Ψ(s — r,t — r) Φ Ψ(s, r)} has
measure 0. Denote by Δ the exceptional set of pairs (s, t).

Now let Γ s be the line of slope 1 which passes through (s, — s),
where — π < s < π. Let Γ be the set of s for which Γsf]A is ^oί a
set of measure 0. Then Γ has measure 0, again by Fubini's theorem,
and by rotation-invariance of Lebesgue measure. If s is in ]—π, π[ but
not in Γ, then almost all points on that portion of Ls which lies in
] — π, π[ x ] — π, π[ assign to Ψ a common value; thus, if the function

S δ(s . ί )

Ψ{s — r, t — r)dr, where a(s, t) =
a(s,t)

max (s — π, t — π) and δ(s, t) — min (s + π,t + π), then, for (s, t) on Γ r,
^'(s, ί) has this common value. Thus, for almost all r, Ψr{s, t) = Ψ(s,t)
for almost all (in linear measure) points (s, t) with — π < s, £ < π and s,
i o n / " , . . Then Ψ'(s,t) is equal almost everywhere to Ψ(s,t). Now
set ψ(r) = SF( — r/2,r/2), - 2 π < r < 27Γ.
Then

r ( s , ί) - SΓ'(β-(β + t)/2, ί - (s + ί)/2)

= r ( _ ( i _ 8)/2, (« - 8)/2) - ψ (ί - β),

for 8, t in ] — 7Γ, π[. This completes the proof.
Corollary 1 is just a consequence of the fact (proven in [4]) that if
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Φ is as in the statement, then (Φ — l)dx has a generalized Fourier
transform which is a function φ square-summable in any finite interval,
so that

S π Cπ 2 I ΓJΓ C2π 2 Ciπ

\ φ(s -1) dsdt g 1 \ φ(r) dr ^ 2π \

φ(T) dr .

To prove corollary 2: let c5 be the absolute value of the ratio of the
leading terms of A3 and B3, and let u3 = b3 — a3 = degCB )̂ — deg(A^).
It is clear in general that equivalence of the Gaussian processes induced
by given covariances is unaffected if both covariances are multiplied by
the same constant. Thus, we find that the process whose spectral mea-
sure is

A / - . \ 2

dx

has measure on path space equivalent to that whose spectral measure
is

-dx,
(l +

because the quotient of

A3{x)

Bj(x)
by

(1 +

is of the form: 1 plus a function in -Sf(— °o, °o). So the problem is re-
duced to whether or not the processes with spectral measures

dx and • dx
(1 + x2)^ (1 +

are equivalent. The criterion is that

(l ^ )dχ

have a generalized Fourier transform which agrees with a function on
]—2π, 2π[ having certain properties. But this generalized Fourier trans-
form is explicitly calculated (see [4]), and is of the required form when
and only when c2 — cx and u2 = uλ.
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WEAK AND STRONG CONVERGENCE FOR

MARKOV PROCESSES

S. R. FOGUEL

l Introduction* Let (Ω, Σ, P) be a probability space and xt{o)) a
Markov process defined on it. For every Borel set on the real line
Pt(o), A) is the conditional probability that xte A given x0. The purpose
of this paper is to study the limiting behavior, of the family of functions,
pt{ω, A), for t —> oo and A fixed.

In § 3 we investigate conditions for the weak convergence, in the
sense of L2(Ω, Σ, P), of pt{o), A). The classical result on Markov processes,
as presented in [2] p. 353, is generalized to functions xt(ω) with nondis-
crete ranges. Under the additional assumption of existence of finite
stationary measures.

It should be noted that

v(n) = (Pn(ft>, {j}), XXQ = ί)

P(x0 = i)

where the parenthesis stand for scalar product and χXQ = i is the charac-
teristic function of the set xo(ω) = ί. Thus weak convergence of pn(ω, {j})
implies ordinary convergence of p$\

In § 4 the strong convergence in L2(Ω, Σ, P) is studied. Our results
are similiar to Theorem 11 of [4] though the exact relation between the
two theories is not clear to us.

The paper deals with real processes and L2 is the real Hubert space.
Throughout the paper a weak form of the definition of Markov pro-

cesses is used. We do not assume any of the regularity properties which
are usually imposed.

2. Notation and general background. Let xt(ω) be a set of mea-
surable functions, defined on Ω, where t runs over [0, oo) or the positive
integers. This set of functions, will be called a Markov process if when-
ever *! < ί2 < t3 then conditional probability that xH e A given xh and
xh, is equal to the conditional probability that xh e A given xh.

In order to simplify this condition let us observe the following:
If Σ1 is a sub σ algebra of Σ and fe L2(Ωf Σ, P) then the conditional

expectation of f with respect to Σx is equal a.e. to Eλ f where Ex is the
self adjoint projection on the subspace of L2 generated by characteristic
functions of sets in Σλ.

With the Markov process, xt(ω), associate a collection of subspaces,

Received November, 23, 1959, and in revised from March 2, 1960.
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Bt of L2{Ω, Σ, P), where Bt is the closed subspace spanned by characte-
ristic functions of sets of the form %τ\A), A a Borel set on the line.
Let Et be the self adjoint projection on Bt.

THEOREM 2.1. If the set of functions xt(ω) is a Markov process,
then

(2.1) EhEtEH = EhEH for tx < t2 < t3 .

Proof. Let tx < t2 < t3. If g e Bh then g — EHg is orthogonal to
Bh. Thus

DEFINITION. A Collection of spaces Bt c L2(Ω), is a Markov class
if equation 2.1 holds.

From the above definition follows:

THEOREM 2.2. Let Bt be a Markov class. IffeBhf]Bh and t±<t<t2

then feBt.

Proof. Iΐf = Ehf - EHf then

= (Etf,f) = {EtEHf, Ehf) = (EhEtEhf,f)

Thus f = EJeBt.

DEFINITION. A Markov process is called stationary if

(2.2) P(xh+« eA1Π Xt2+« e A2) = P(xh e A, Π xh e A2) .

In particular for a stationary Markov process

(2.3) P(xteA) = P(xQeA) .

Let Tt be the transformation from Bo to Bt defined for characteris-
tic functions in Bo by

(2.4)

LEMMA 2.4. Let xt(ω) be a stationary Markov process. The trans-
formation Tt can be extended in a unique way to all of BQ such that

(a) || Ttx\\ = || a? || if xeB0

(b) TtB0 = Bt

(c) (Th+ax, Th+ay) = (Thx, Thy)
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for every xeBQ,yeBQ and a > 0.

Proof. In order to consider Tt as a transformation in Bo we have
to show that:

If A1 and A2 are two Borel sets and %x-iUl), χx-i Ua> differ by a set
of measure zero, then

XxΓι(ω)Ul) = Xx-t\A2){ω) a.e.

Now by assumption

But by 2.3

II Xχ~ιUx) II =

which means

Let us extend JΓC to linear combinations of characteristic functions
by additivity. If conditions a and c are satisfied for this dense set, we
will be able to extend Tt by continuity to all of Bo and Tt will satisfy
α, b and c. It is enough to show that the extension of Tt to linear com-
binations is unique. For then c follows from 2.2, and a holds because
every linear combination of characteristic functions in BQ, can be writ-
ten with disjoint characteristic functions. Let us assume, then, that
there exists numbers ai and Borel sets At such that

ΣaiXx-hAj = 0 but ΣaJC^Λo Φ 0 .

Thus there are k integers ί19 , ίk with

Xx^iBnA^ — 0 a .e . , % Φ ij

where

and

ΣfH Φ o .

But then, by 2.3,

Z —i — 0 5} P

X (BΓ\A.) — " c* v!5

if i ^ ^ and for ω e x^\
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Σaiχx-hΛl)(o)) = ΣAh^0.

This contradicts our assumption for

P(χΛB)) = P{χΛB)) Φ 0 .

REMARK. From a follows that Tt preserves inner products.

DEFINITION. A Markov class is called stationary if there exist
transformations Tt from Bo to Bt satisfying α, b and c of Lemma 2.4.

In the rest of the paper we will use the notation

Xt,A = jίχ~λ{A)

3. Weak convergence* The main tool in this section is:

LEMMA 3.1. Let Bt be a stationary Markov class. If Γ\ζ=0Bn = 0
then

weak lim Tnx0 = 0

for every xoeBQ.
For the proof we need the following.

LEMMA 3.2. Let Bt be a stationary Markow class, and Γ\n=oBn=O'
If for some subsequence nt, of the integers,

weak lim Tn.x0 = x Φ 0

then

and the terms of the sum are mutually orthogonal.

Proof. Let n < m then

(*) EnEmx = weak lim EnEmTnxQ = weak lim EnTnx0 = Enx

by Equation 2.1 Thus

(**) En(Emx - Em_xx) - Enx - Enx - 0 .

Now

Σ
n=i

= || Eox + Σ.(En- E^x | |2 = || Eox
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hence the sum converges. Let

If z = Enz e Bn then by (**)

(y, z) = (Eny, z) = (Enx, z) = (x, z) .

Also if z is orthogonal to all the spaces Bn then

(Vr z) = (&, 2) = 0 .

Thus y = x.

LEMMA 3.3. Under the same conditions, there exists a subsequence
n'i, of nt, such that if zn e Bo is defined by

(***\ rp _ rp in ιι

weak lim ŵ/ = 0 .

Proof. Let snj converges weakly to z. Such subsequence exists be-
cause a Hubert space is weakly sequentially compact. Now zeB0, we
shall prove that zeBk, for all k, and thus z — 0. Now, by equations
(***) and 2.2

( Γ A + * , 2 . ) = (Tn+kzn+k, Tnzn) = ( 2 W / I I & II. JS7»«/II » II) i ^ r !

H e n c e

|| TA+k - zn ||2 ^ 2 - 2(Tkzn+k, zn) - 0 .

If u 6 L2(β) then

( Γ Λ [ + * ^ ) = ((2\.3n/+Jfc - «„/), %) + (znfifu) -> (z, u)

or

weak lim Tkzn'i+k — z

and by Hahn Banach Theorem zeBk.

Proof of Lemma 3.1. It is enough to show that for any subsequence
nt, there exists a subsequence n'i9 of nif such that

weak lim Tn>.x0 = 0 .
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We may assume that Tn.x0 converges weakly to x. Let n\ be chosen by
Lemma 4.3. Then

0 = lim (zψ x0) = lim (Tn/sn/, Tn'.x0)
£->oo ί—>oo

= lim(Enlxl\\x\\, Tnίx0) = \\x\\

For En%x tends strongly to x, by Lemma 3.2, and by assumption
Tnix0 converges weakly to x.

COROLLARY. Let xt be a stationary Markov process. If ΓίZ=0Bn=
{1} then

i m χ , , ^ - \\X0,A\\21 .

Proof. The Markov class Bt — {1} satisfies the conditions of Lemma
3.1, hence

In the rest of this section let xt be a given stationary Markov pro-
cess. Let

C0 = f \ B n .

By Theorem 2.2

Co = ή BH
ί=0 *

wherever ί0 = 0 and ίβ —> oo. Let

Cm = f\Bn and Dm = Bm-Cm.
n=τn

REMARK. {1} stands for the space of constants. Also if B and C
are subspaces B — C is the orthogonal complement of C in B.

LEMMA 3.4. For every integer n

TnC0 = Cn , TnD0 = Dn

and

Cn c Cw+1 .

Proof. Let a? = ΓTOfl50. The vector x belongs to Cm, if and only if,
for every integer k there exists a vector xk e Bo such that

x = lm+Jcxk .
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But then

II x | | 2 = (Tm+kxk, Tmx0) = (Tkxk,x0)

and || xQ | | = || x \\ = \\ Tkxk | | . Hence xQ = Tkxk and x0 e Bk for all k: xQ e Co.

Now yeDm if and only if y = Tmy0 and

(y,x) = 0 if xeCm.

This is equivalent to

(Tmy0, Tmx0) = 0 if xoeCo, or (y0, x0) •= 0 .

Thus yeDm if and only if yoeDQ.

LEMMA 3.5. Both Cm and Dm are stationary Markov classes.

Proof. The class Cm is Markov because Cm c Cm+1. Now let Fm be
the projection on Cm and Gm the projection on Dm. Then

Gm — Em(I — Fm)

If n ^ m then -E^i^ = Fm hence ^ and / — Fm commute. Let
m1 < m2 < m3 then

GmiGmpm^ — Emi(I — Fmi)Em2(I — Fm2)Em3(I — Fm)

= EmEmβm{J — Fmi) (I — Fm2) (I — F m 3 )

= EmiEm3(I — Fm){I—Fm) = GmiGm3 .

We used Equation 2.1 and the fact that I — Fm decreases with m.

THEOREM 3.6. If xe Do then Tnx tends weakly to zero.

Proof. The Markov class Dm satisfies the conditions of Theorem 3.1
for

n Dm c A, n ή Bn - o.

It remains to study the monotone stationary Markov class Cm.
Define

REMARK. If Co is finite dimensional then Co c Cm and both have same
dimension:

C0 = Cm and H=C0.

THEOREM 3.7. If xeC0 is orthogonal to H then
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weak lim Tnx = 0
W->oo

Proof. If m > k then C^mdC^k: if x e C_TO then Tmx e Co. Let
y0 e Co and Tm-ky0 = Tmx then

II Tmx | | 2 - ( 7 > , Γ , . ι ϊ o ) = (Ttx, y0)

Thus ί/0 = TkxeC0.
Now if ί7-^ is the projection of Co on C_m then for each xeC0 F_mx

converges to the projection of x on H (See [3] p. 266). Thus

x =

or x is the limit of vectors orthogonal to C_TO.
Let us prove that

weak lim Tnx = 0

if x is orthogonal to C_m, and because this is a dense set the theorem
will follow.

The vector x is orthogonal to C_m, and hence to C_m_p for all p.
Now

( T r m + Λ 7 » = {Trmx, x)

but x e Co and for some yoeCo, x = Trmy0 thus

(Trm+dx, Tdx) = (Trmx, Trmy0) - (x, yQ) - 0

for y0 e C_rm. Thus the m sequences

consist of mutually orthogonal elements and thus converge weakly to
zero.

It remains to study T on H.

THEOREM 3.8. On the space H, T is a unitary operator and Tn= Tn.

Proof. If xeH then TnxeCo for all n and it is possible to take
Tm(Tnx). But then

(Tn+mx, Tn(Tmx)) = \\Tmx\\>

thus Tn+mx = Tn(Tmx), or Tnx = Tnx. Thus if y = TxeC0 then Tny =
Tn+1x e Co and y e H.

In order to show that T is unitary we have to show that it is onto.

Let x 6 H then for some x0 e Co Tx0 = x. But then Tnx0 = Γn_iθ? 6 Co and
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In general the powers of a unitary operator do not converge. How-
ever the operator T has some special properties.

LEMMA 3.9. // feL2{Ω) and feH then χf-i{A) eH for every Borel
set A.

Proof. In order to prove this we have to go back to the definitions
of H and T. Now, if feBn and A is a Borel set, then f-\A) = χ-\An)
for some An and thus χf-ι{A)eBn. Thus feC0 implies that χ Γ i U ) 6 C 0 .
But feH so TnfeH. The Lemma will be proved if we show that

If M ίg / g N then M rg Tnf ̂  N, thus it is enough to prove the above
equation under the assumption that A is a bounded set and / a bounded
function. If / is bounded (hence Tnf is bounded also) it defines a self
adjoint operator on L2(β),: the multiplication operator. Thus as an ope-
rator

== γτnf)-l{dλ)

Now Ύn transforms characteristic functions to characteristic functions
and Tnχf-i(A),χ{τ,nf)-iu) are both the spectral measure of Tnf. Thus

This lemma shows that H is generated by characteristic functions.
Let us study the limits of Tnx when x is a characteristic function.

LEMMA 3.10. Let H be generated by a countable number of disjoint
characteristic functions χt. For a given χ4 there is an integer m:
TmXi = Xι and then

•* rm+dXi = •*• dXί

Proof. For every n Tnχt is a characteristic function, hence either

TnXi = Xι or

If (TnXi, χt) = 0 for all n then (Tnχt, Tnχt) = (T^χ^χ,) = 0 thus
there exist infinitely many disjoint sets of equal measure which is im-
possible.

Now if for some m, Tmχt = χl9 let m be the smallest integer that
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this happens. Then

rm+dLi — 1 -L Li ~ L Li ~ λ dJίί

THEOREM 3.11. Let xt be a stationary Markov process. If H is
generated by a countable collection of disjoint characteristic functions
{it} then for every y eB0 such that {y, χ^ Φ 0 for finitely many i's (y
has a "finite" support), there exists an integer m such that the m se-
quences

{Tkm+dy} d = l , 2 . . , m

converge weakly.

Proof. From Theorems 3.6 and 3.7 it follows that

weaklim Tn(y - Σ(y, χ,) | | χ4 {{-%) = 0 .

Let Xh, χh, , χίn be those functions for which (y, χ j Φ 0. Now

Tm*χi3 = χtj. Choose m to be the product of this m5. Thus

km+dJCij — -L JCίj

Hence

(3.1) weaklim Tkm+ay = weaklim Tkm+dΣ(y, χ,) \\ χt \\~%

— <zκy> Li) II Li II L Li'

COROLLARY 1. Equation 3.1 holds if the function xQ has countable
range.

This is a classical theorem see [2] p. 353.

COROLLARY 2. // there exists a finite measure φ, on the line, such
that, for some e > 0, <p(A) ^ ε implies that

oXn.A Φ Xn,A

for some n, then the space H is generated by a finite number of dis-
joint characteristic functions. Thus an integer m exists, such that
Equation 3.1 holds for all yeB0.

Proof. Let k be an integer greater or equal to φ(Ω)e. If χ0, Aι e H
i = 1, , k where the At are disjoint then

φ(Ω) ^ Σφ(At) ^ min (φ(At))k

or φ(AlQ) ^ φ{Ω)jk ^ ε for some i0. But then, for some n, χn>Ai $ H hence
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Thus there are at most k — 1 disjoint characteristic functions that
generate H.

REMARK. This last corollary is similiar to Doeblin's condition as
given in [1] page 192.

4 Strong convergence. Throughout this section we assume:
4.1. There exists a real number t0 > 0 such that the space Bo Π Bt

o

is finite dimensional and there is a positive angle between BtQ — Bo Π BtQ

and BQ - Bo Π Bto.
Two subspaces, Z?* and Z?**, are said to have a positive angle be-

tween them if
sup {(6*, &**) 11| &* || = || &** || = 1 and &* e £ * , &** e B**} < 1 .

CONDITION 4.1. Is equivalent to each of the following.
(a) The point 1 is not in the essential spectrum of E0EtQE0(ox EtQE0EtQ).
(b) The operator EoEtoEo(or EtQEQEt) is quasi compact.
(c) The operator E0EtQE0(or EtQE0Et) is a sum of a compact opera-

tor and an operator of norm less than 1.
(d) The norm of Eo restricted to Bh — Bo Π Bh is less than one.

LEMMA 4.1. If t > t0 then Condition 4.1 is satisfied when BtQ is
replaced by Bt.

Proof. Let us use the form given in c for 4.1. Now

EtE0Et = Et(EtQE0EtQ)Et

by Equation 2.1, hence it is a sum of a compact and an operator of norm
less than 1.

Now from Theorem 2.2 it follows that Bo Π Bt decreases with t. Let
tλ be such that

dim (Bo fΊ Bei) ^ dimCBoΠJBί) f o r a 1 1 *•

It is easy to see that B0Γ\Bh is generated by a finite number of
disjoint characteristic functions. Let them be %!,•••,%&, thus

h = Bof]Bt = span{χ1,. ,χfc}

because by Theorem 2.2

Bof]BhZ)Bof]Bt

and they have the same dimension.
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LEMMA 4.2. Ift>0 then

and

Tt(B0 - B0ΠBh) = Bt- B0ΠBtl = Bt - BQf]Bt .

Proof. A vector x e Bo Π Bh, if and only if, x e Bo and x = Ttiy for
some yeB0. But then

( 7 > , Γ ί + ί l y) - (x, Γ t l») = || x | | 2 - || > ||

or

Ttx=Tι+hy: TtxeBtΓ\Bt+tl.

Thus

r((B, n B ( I ) = Btn Bt+ιpB0 n B t+(1 = B0 n s ( l

by Theorem 2.2 and the remark above. This shows that

Let xe Bo be orthogonal to l?0 Π Bh. If 1/ e Bo Π -Btl, then y = Ttz where
z e B o n 5 v Thus

(Ttx,y) = (Ttx, Ttz) = (x, z) = 0 .

THEOREM 4.3. Let xeBo and let c = norm of Eo restricted to
Bti-B0Γ\Bh.

Then c < 1 and

(4.2) II E0Ttx - Σ(x, χt) II χ 4 1 | ->TtXt || ^ c» || x ||

where n is an integer such that ntλ < £.

Proo/. The vector x'- Σ£=i(x, id II X* II~2X* is orthogonal to
and hence so is

y

Thus

II Eoy II - II E 0 E t y \\ = H l i

Now the norm 2 ^ restricted to Bij+1)ti — BoπBh is,equal to c hence

It becomes now interesting to study Ttχt.
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THEOREM 4.4. For each given t there is a permutation of the in-
teger 1,2, , k, πt, such that

Also there exists an integer m such that

TmtXi = Z(*t*>w = %i f o r a 1 1 i '

Proof. Let us use induction on k. Let χh, %Ϊ2, , χi) be a subset
of Z«, i = 1, , k, with minimum norm: || χίr || g || χi ||. Then jΓtχv is a
characteristic function in l?0 Π Bh with norm smaller or equal to the norm

of χi ,χ a , ••-,%*: Γ tχ* re(χ4 l > •• ,χ, J ) .
This shows that Γf maps the set (χ ί χ, , χί}c) into, therefore onto,

itself. If Xi is not in this set then T^ will be also, orthogonal to χ v

In the remaining set there are less than k functions and by induction
the first part of the theorem is proved. The second part is an easy re-
sult on permutations.

The last two theorems include the classical result on Markov pro-
cesses with a finite number of states. There might be a connection to
Theorem 11 of [4].

If dim .Bo Π B t l = 1 then

II T T (Ύ Λ\Λ II < on II r II| | ltX — \Jϋj L)L | | ^ 6 | | X | |

where ntx < t and 1 is χΩ. This is a similiar to the case of independent
functions. Let us conclude this section by studying this case. Thus let
Bx and ί?2 be two subspaces of L2(Ω) generated by characteristic func-
tions χA and χA,, where A and A! belong to some σ subalgebras of Σ.
The cosine of the angle between Bλ — {1} and B2 — {1}, c, is given by

(*) c = supίCSα^, Σa[χA[) \ 1 = ΣalPiA,) = Ia\P(A\)

and

ΣatP(At) = Σaf

tP(Al) - 0} .

THEOREM 4.5. The number c is smaller than

1. sup I (P(A n A') - P{A)P{A'))P{A n A')-1 \ = cx .

2. sup I (P(AΠ A') - P{A)P{Af){P{A)P{Af)Y11 = c, .

Where A and A' belong to the σ subalgebras generating Bx and B2

respectively.

Proof. Let us show that c ^ cί9 the other inequality is proved in
a similiar way. Now let ai9 α , At and A[ satisfy the conditions of equa-
tion (*). Then
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Σ..jiAj) 2 > 4 J ( ( t J ) ( Λ ) ( ^ ) ) Σ

The second term is equal to zero. Thus

j Π A'}) \ ̂  c, g I αtαj | P( A n AJ)

Σ

A more convenient form of the conditions of Lemma 3.2 is

1. cx is the largest number for which

(1 + c,)-1 ^ P(An Ar)(P(A)P(Af))-1 ^ (1 - c,)-1 .

2. c2 is the largest number for which

1 - c2 ^ P(Af]Af)(P(A)P(Ar))-1 ^ 1 + c2 .
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SOME ZERO SUM TWO-PERSON GAMES WITH
MOVES IN THE UNIT INTERVAL

MARTIN FOX

Introduction. Consider the following zero sum two person game.
The players alternately choose points tt e [0,1] for i = 1, 2, •• ,n, the
choice being made by player I if i is odd and by player II if i is even.
After the ith move the player who is to make the (i + l)st move ob-
serves the value of φt(t19 t21 , tt) where φt is some function on the i-
dimensional closed unit cube to some set At. The payoff is f(t19t2, , tn)
where / is a continuous, real-valued function.

If all the φi are constant we have the case of no information. Ville
[1] showed that in this case such a game has a value. At the other
extreme, if the φt are all one-to-one we have the case of perfect infor-
mation so the game has a value.

The purpose of the present paper is to show that, in general, games
of the form introduced in the first paragraph do not have values and
to consider two cases in which they do. The counter-examples to be
presented will be compared with Ville's classical example of a game on
the unit square which has no value.

It is shown in §2 that the games considered always have values
when n — 2.

An example of a game with no value is presented in § 3. In this
example n = 3 and the φt take only a finite number of values.

In § 4 it is shown that the additional hypothesis of continuity of
the φt is not sufficient to guarantee existence of a value. In that ex-
ample n = 4. The case n = 3 with continuous φt remains unsolved.

Section 5 deals with a special case for which n is arbitrary and
yet the game has a value. In this case the φt each take only a finite
number of values and each is constant on sets which are finite unions
of ί-dimensional generalized intervals.

1. Preliminary remarks* In this section the notation to be used
in this paper will be introduced. This will be facilitated by the intro-
duction of the normal forms of the games under consideration.

A pure strategy for player I is a vector x = (x19 x2, , £t?[(n+1)/2])
where xλ e [0, 1] and the x% for i — 2, 3, , [(n + l)/2] are functions on
A2i-2 to [0,1]. If moves t19t2, •• ,ί 2 t- 2 have been made, then the i th
move made by player I (the (2ΐ — l)st move in the game) will be
MίiΦzi-ϊitu U> # ^2ί-2)). His first move will be xx.

Received November 16, 1959. Excerpt from dissertation for the degree of Doctor of
Philosophy, University of California, 1959. Partial support was given by Office of Ordnance
Research, 'U.S. Army under Contract DA-04-200-ORD-171, Task Order 3.
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A pure strategy for player II is a vector y = (y19 y2, , yίnii]) where
each j/4 is a function on A2ί^ to [0,1], If moves t19t2, , ίSi-i have
been made, then the ith move made by player II (the (2i)th move in
t h e g a m e ) w i l l b e y i ( Φ 2 i - 1 ( t l f t2, • ••, t 2 i ^ ) ) .

When player I uses the pure strategy x and player II uses the pure
strategy y let tt(x, y) be the ith move made in the game. The tt are
defined recursively as follows:

tnix, y) = j/iW>2i-i(*i(a, v), Ux, i/), , ί2i_i(a?, y)))

for i = l , 2 , « , N 2 ]

ί-i0&, 2/) = XtiΦn-ϊfoix, y), t2(x, y), , ί2i_2(a?, 2/)))

for ϊ = 2 ,3 , . . . , [ ( w

The payoff function is given by M(x, y) = f(tλ(x, y), t2(x, 2/), , tn(x, y)).
The payoff as a function of mixed strategies will also be denoted by M.

In our case, since the moves are points in [0,1], the strategy spaces
X and Y are products, usually infinite dimensional, each coordinate space
being [0,1], Hence, the choice of a strategy by player I is equivalent
to the choice of a distribution function F on X. It will be convenient
to let the space P of mixed strategies for player I be the family of all
distribution functions on X which assign probability 1 to a finite subset
of X. The same will be done for Q, the space of mixed strategies for
player II.

If H is a distribution function on the real line and S is any subset
of the real line which is Borel measurable, we will let HS be the
probability assigned to S by H.

For FeP we let FitOύ denote the marginal distribution function of
the coordinate of player Γs strategy which corresponds to his ith move
when φ2ί_2 = a. Similar notation will be used for GeQ.

2. The case n = 2Φ In this section it will be shown that any game
^ of the type given in the introduction for which n = 2 has a value.
It is not even necessary to assume that φx is a measurable function.

For any aeA1 let &(a) = (Φϊ\a), [0,1], Ma) where M* is/ restricted
to Φϊ\a) x [0,1]. It follows by the proof used for Ville's minimax theorem
that each &(a) has a value v(a). Let

v = sup v(ά) .

Fix ε > 0 and let α* be such that v(a*) > v — ε. For each a e Ax let
F{cύ) and G(oύ) be ε-good strategies for players I and II, respectively, in
2^(α). The distribution function Fw assigns probability 1 to a finite
subset of Φϊι{a). Since F^ is a distribution function on [0,1] which
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is the strategy space for player I in 2^ it can also be used as a strategy
in K Let y be any pure strategy for player II in K Since ^(α*) e [0,1],
it follows that y^a*) is a pure strategy for player II in ^(α*) . Hence,

> v(a*) - ε > v - 2ε .

Let Cr be any strategy for player II in %? such that Glta=G{a>) for all
aeA±. Let a? be any pure strategy for player I in K For some aeA±

it must be true that x e Φϊ1^) so that x is also a pure strategy for
player I in g^(α). Then,

- f MΛ(x, t)Gw{dt)

< v(a) + ε <^ v + e .

From the two inequalities obtained above it follows that the value of
*& is v.

3. A counter-example for n = 3. In this section the counter-
example for n = 3 will be given. The functions φt (i = 1, 2) each take
only a finite number of values. The similarity of this example to Ville's
example will be discussed.

For this example let

φ1(t1) = 0

' - 1 if tλ = 0 or 0 < min (ί2, 1 - ί2) ^ ίx

ί2 if ί2 = 0 or 1 and ^ ψ 0

2 if 0 < tx < t2 < —

_ 2

3 if 0 < ίx < 1 - ί2 < —

f(t1,t2,t3)= - | ί s - ί a | .

Let ί7 be any strategy for player I. Fix ε > 0 and let δ e (0, ε) be
sufficiently small so that i^(0, δ) < ε. Let G{S} = G{1 - δ} = 1/2. Then,
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M(F, G) <; - 1 (FH8, ί, - δ

+ j I ί, - (1 - δ) IJV-^ί,)

— ε

so that

Let G be any strategy for player II. Fix ε > 0 and let xx e (0,1/2)
be sufficiently small so that G(0, xλ] + G[l — x191) < ε.
Let

α if α = 0 or 1

A if α = 3
4

Let x = (*!, *a) so that x is a pure strategy for player I. Then,

M(G, x)^-\ ( i - φ(dί2) - ( (ί, - -i-)
J ( ] \ 2 / J B - ^ , 1 ) V 2 /

(o,ϊ1]

J [0,1/2]
1 - t,
4 J (1/2,1]

> - ε -

so that

inf sup M(F,G) ^ - —
G F 4

and the game has no value.
In Ville's example the payoff function is such as to force each

player to attempt to choose a point closer to 1 than does his opponent
without actually choosing 1. It is impossible for either player to
guarantee he will achieve this with any preassigned positive probability
no matter what pure strategy his opponent may use. In the example
just presented a similar situation arises on the first two moves. In Ville's
example the competition to choose a point close to the endpoint is.
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a direct competition over payoff. In the present example this competi-
tion is over the information player I will receive, which, of course, helps
determine the payoff. If on his first move player I chooses a point
closer to 0 (but not 0) than the choice of his opponent is to both 0 and
1, then he will obtain more accurate information about the location of
his opponent's choice than would be the case otherwise. Player II is
prevented from choosing an endpoint since to do so would be to give
his opponent perfect information.

4 A counterexample with continuous Φ4 In this section a coun-
ter-example will be presented in which the functions φt are all con-
tinuous. In this example n = 4. Again a comparison will be made with
Ville's example.

Let

Φi(ίi) - 0

0 if min (tlf 1 — ίx) ^ t2 ^ max (tly 1 — tλ)

1
- *2>(*1 ~ U)

^2)1^1 ( 1

f(t1912, ί8, ί4) = I *χ - ί41 - 10 I ίa - ί81 .

if ί2 < t, < ±

or - ί < tx < t2
Δ

if -i- ^ ίx < 1 - ί,
£1

or 1 - ί, < ίx ^-±-
Li

Assume t2ΦQ or 1. Then, φ3(ί1, ί2, ί8) > 0 for min(ί2, 1 — ί3) < tx < 1/2
while φs(t1912, t3) < 0 for 1/2 < ^ < max(ί 2 ,1 — t2). On the other hand,
Φs(*i> *a» *β) = 0 otherwise.

Let .F be any strategy for player I. Fix ε > 0 and let δ e (0, ε) be
sufficiently small so that ^ ( 0 , δ] + F^l - δ, 1) < ε. Let

4 if a > 0
4

— if a < 0 .
4

Let G assign probability 1/2 to each of the pure strategies (δ, 2/3) and
(1 - δ, 2/2). Then,
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M(F, G)^[ (—- tλF^dt,) + [ U-

J ( δ , l |
1-1

4

- 10̂ (0} + ™i[γjl δ -

i . j 11 - δ - ί, I F2,0(dt3)]

+ ^{l}][(γ - δ) + (l - δ - i-)]

- 2δ) - i

+ llε

so that sup*. inίθM(F, G) ^ 1/4.
Let G be any strategy for player II. Fix ε > 0 and let δ e (0, ε) Π (0,1/2)

be sufficiently small so that Gli0(0, 8) + Gli0(l — δ, 1) < ε. Let x2(a) =
α/[δ(l — δ)] and let F assign probability 1/2 to each of the pure strategies
(δ, »„) and (1 — δ, x2). When player I uses the strategy F the value of
the nonpositive term in / will always be zero. Thus,

M(F, G) ^ [ l - G1>0(0, δ) - G U I - δ, 1)]

x [γ\ I δ - U I G2,0(dQ + i - j 11 - δ - u I G2,0(cίί4)]

so that inίG sup FM(F, G) Ξ> 1/2 and the game has no value.
Here again the primary competition between the players is to make

their first moves as close to the endpoints as possible without actually
choosing the endpoints. If player I is successful in choosing a point tλ

at least as close to one of the endpoints as is player IPs choice, then
player II will have less information about tx than would be the case
otherwise. Player I is prevented from choosing an endpoint by the fact
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that if he does so he will get no information about his opponent's first
move so that he cannot guarantee that he can keep the negative term
close to zero. Player II is prevented from choosing an endpoint by the
fact that when he does so the function φ3 will take the value zero no
matter what his opponent does so that he will have no information about
player Γs first move.

5* The case of information sets which are unions of generalized
intervals* The case to be considered here is that in which each φt takes
only a finite number of values and each is constant only on sets which
are finite unions of ί-dimensional generalized intervals. This is the only
case considered in this paper in which n remains arbitrary.

Let the values of φt be 1, 2, , m4. Let P3φι\k) be the projection
on the jth coordinate of Φi\k) where j = 1, 2, , i. The interval [0, 1]
can be subdivided into disjoint sets Bn, Bj2, •' ,BJlj such that for each
B3l there exist i19 ί2, , ir and klf k2, , kUJ all integers, such that
t e B3l if, and only if, t e P3φι\k) whenever i e {ilf i2, , ίr) and
k e {klf k2, , ku) while t $ P3Φι\k) otherwise. Suppose j is even so that
player II makes the jth move. Let y = (y19 y2, ,yίnm) and y' =
(vΊ* Vί, , yrίnm) be any strategies for player II such that yt = y\ for
i Φ j/2 and if ym(k) e Bn, then yrjί2{k) e Bn. For any pure strategy x for
player I we have ίt(#, y) = tt(x, y') for i = 1, 2, , j — 1 since for these
values of i player IΓs moves are unchanged. If tj(x,y)eBJl, then
tj(x, yf)eBn. Hence,

ΦAUx, y), t2{x, y), , tj(x, y)) = ΦάUx, y'), t2(x, y'), , tj(x, y'))

so that tJ+1(x, y) = tJ+1(x, y'). Suppose that tt(x, y) = tt(x, yr) for i =
j + 1, j + 2, , v Then, Φh(tx{x, y), t2(x, ί/), , th(x, y)) = Φφ^x, y')y

Ux, y')9 ' •» tio(x> V')) so t h a t ίίo+1(a;, y) = ίίo+i(a;, y'). Thus, tt(x, y) =
tt(x, yf) for all i φ j .

For each j = 1,2, , n — 1 fix 8j > 0 and select points tjlf tj2, , tjΌ

such that for any t3 e Bn there exists tjΌ e B3l such that for any t1912, ,
tj-lf tj.hl, •••, tn w e h a v e

I f\yi> t2, , ίj-i, tj, tj+1, , tn)

f it'll ^2) " ' * y tj-19 ^jυi tj+li ' * f in) I ^ Vj

Select the tjυ in such a way t h a t as δ̂  [ the set of all the tjυ increases
monotonically.

Let the game 5f (Sx, δ2, . . , δ4) = (X(S19 δa, , δ,), Γ(δ l f δ2, . . . , δt),
-M81,82,....8<) be our original game with the jth move for j = 1, 2, « , i
restricted to ^ , ίJ2, , ί^. In S^(δx, δ2, , δn_i) the player who makes
the (n — l ) s t move has only a finite number of strategies so t h a t

δi, δ2, •••, δn_χ) has a value (see Wald [2]).
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Suppose &(819 δ2, , δ,-!, δ4) has a value for all St > 0. It follows,
by a proof similar to Ville's, that &(819 S29 , 8^) has a value. Thus,
by induction, gf will also have a value.

Acknowledgment. The author wishes to express his gratitude to
Professor David Blackwell for suggesting the problem treated here and
for his continued interest in its solution.
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SINGULARITIES OF THREE-DIMENSIONAL
HARMONIC FUNCTIONS

R. P. GILBERT

Introduction* Recently G. Szego [9] and Z. Nehari [8] have obtained
some interesting results connecting the singularities of axially symmetric
harmonic functions with those of analytic functions. In this paper we
shall show that a similar connection also exists between the singulari-
ties of a three-dimensional harmonic function and a function of two
complex variables. We may do this by considering the Whittaker-
Bergman operator [10] [1] B3(fy «9f Xo) which transforms functions of
two complex variables f(t,u), into harmonic functions of three variables.

H(X) = BΛ(f, J^X0), Bs(f, -2f-Xo) = irArffr ^)—

t = [_(x _ iy)Ά. + z + (x + iy)

X - Xo I < ε, X=(x,y, z), Xo = (x09 Vo, z0) ,

where Jέf is a closed diίferentiable arc1 in the w-plane, and ε > 0 is suf-
ficiently small. We may see how this operator maps the functions
f(t,u) into harmonic functions by considering the homogeneous polyno-
mials of degree n in x, y, z, which are defined by

-(x-iy)Ά + z + (X + iy)JL-\ = Σ K.m(x, y, z)u~m .
£ Δ ) m=—n

The hUιm(x, y, z) are linearly independent polynomials, which form a com-
plete system [4]. Now, any harmonic function regular in a neighborhood
of the origin \X\ < ε, may be expanded into a series

H(X) = H(x, y, z) =ΣΓ=o Σί=-» αn.iλn.ι(», y, z),

which converges inside the smallest sphere on whose surface there is a
singularity of H(X).

From the definition of the harmonic polynomials we see that

f t V ^ = hnm(x,y,z),tV
2π% J£ u

where Jίf is, say, the unit circle. In spherical coordinates this result
may be recognized as one of Heine's [7] integral representations for the

Received January 19, 1960. This work has been submitted to Carnegie Institute of
Technology in partial fulfillment of the requirement for the degree of Doctor of Philosophy.

1 We shall usually consider <£ to be closed; however there is nothing preventing us
from considering open arcs also.
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associated Legendre functions.2

It follows then that if H(X) is regular for \X\ < ε it may be gen-
erated by an integral operator

u

where

oo -\-n

n—0 m=—n

The harmonic functions which are regular at infinity, |X| > 1/ε,
are of the form

H°°(X) = —iϊf— ^ —}

and may also be generated by the Whittaker operator; however, in this
case we use the functions

How the functions G(ί, u) transform may be seen from Heine's other
representation

2π% )& tu

7 n'm\ r2 W'^

n\

where, as before, ^f is the unit circle.
Occasionally it is convenient to continue the arguments x, y, z to

complex values in order to study the behavior of H(X). For instance,
if we introduce, as a particular continuation, the complex spherical co-
ordinates

T - + (x2 + y2 + z2),1/2

2 By introducing spherical coordinates

x — r sin θ cos ψ ,

y — r sin θ sin φ ,

z — r cos θ ,

the polynomials may be written in the form hn,m(x,y,z) = (n\/(n + m!)) r w P?(cos0)e i m * >

Integrals of terms tnum, where \m\ > \n\ > 0, vanish; consequently, we may restrict

ourselves to just those functions where \m\ ^ \n\.
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x + iy V/2

x — iy J

which reduce to ζ = eiφ, ξ = cos 0, for real #, y, z, we may obtain an
inverse Whittaker operator.

LEMMA. Let V(r, cos θ9 e
ίφ), be a harmonic function regular at in-

finity; i.e.

V{r, cos θ, e«*) = iΓ~(X) = - M G(t, w)— ,
2πi )£ u

where

G(ί, tt) = ( Σ 2 α^ί-""1^™) ,

and £f is the unit circle.
Then G(s, u) may be generated by the integral transform

The integration path in the ξ-plane is the linear segment — 1 ^ ξ ^ 1,
the path in ζ-plane is the unit circle.

Proof. Let us define

s Σ Σ (2n + l)-^!
o (^ + m)

r \t ζ ( )

it follows then, directly from the orthogonality relation

that

(where the integration paths are those mentioned in the hypothesis).
Recalling the generating function for the spherical harmonics

Σ Σ (g)(
n=0 n=0 m=-n (n + m)\ \ %U
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we see that K may be formally summed to

JL9 ξ, * t ) = f 1 - 2 s ± X ± ( I ) 9 = rss

(s - tγ

providing (|ί/s|) < 1. In this case, K is an analytic function of t, and
hence also analytic in r, ξ, and ξ. The harmonic functions H°°(x, y, z),
which are regular at infinity, have a Taylor series expansion of the form
y°° A x~^v~Jcz~ι

If this series converges for x2 + y2 + z2 > (1/β2), then the series

j,Λ,l=0

if rewritten in the form

V 7? r-aΎ-rηj-bη.-S/γ-c7-t
/ J - f-/αδc? s ί ' Λ / Ί tΛ/2 ί/l ί/2 ^ l ^2 >

α,6,c
r,s,t

will converge for x\ + y\ + z\> (2/ε2), and x\ + y\ + z\> (2/ε2). Hence,
H°°(x, y, z) is an analytic function of the complex variable x, y, z, in some
neighborhqpd of infinity. The harmonic function V(r, ξ, ξ) obtained by
replacing x,y,z in H°°(x, y, z) by

+

- r ,

consequently is an analytic function of r, | , f, except of course at f = ± l ,
and ζ = 0.

It may be concluded, therefore, that the integrals involved in our
representation for G(s, u) are Cauchy-integrals, since the integrand is a
single-valued analytic function of ξ and ζ.

II Singularities of harmonic functions generated by the Whittaker*
Bergman operator* Bergman [2] has considered a special class of har-
monic functions generated by the Whittaker operator and has given a
simple procedure for finding their singularities. He does this as follows:

Suppose that (llu)f(t, u) has the form P(t, u)IQ(t, u), where P and
Q are polynomials in t and u. In order to study the harmonic function

H(X) = Bs(f, J^X0) = ^\j{, )

we consider the singularity manifold of P/Q, i.e.
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(x + iy)(2u)-\ w] = θ} .(£ iy) +

The manifold Z3 may also be written in the form

ZB = E{u = Φ,(X), v - 1, 2, 3, n} ,

where the Φ.(X) are algebraic functions of x, /̂, 2;, and the degree of u
in Q is n. At every point (as, y, z), except those which satisfy the equa-
tion

Π [φκ(X) - φs(X)] = 0 ,

there are n distinct branches of Z\ = E{u = Φυ(X), v = 1, 2, 3, , n}9

of Z\ We choose the contours j£f, t; — 1, 2, 3, , n, so that one and
only one u = φy(X) lies inside ~Sf. It follows from the residue theorem
that

where H^X) is the corresponding branch of

(x - iy)(2u)-\ u]
d{Q[-(x - iy)u/2 + z + (x - iy){2u)~\ u]}ldu '

with

Q[-(» - ii/)-|. + z + (x - iy)(2u)-\ u^ = 0 .

We notice that H(X) becomes singular for those values of (x, y, z) which
satisfy the equations

j + z + (x-~ iy)(2u)-\ w] = 0 ,

-(a? - iy)— + z + (x- iy)(2u)~\ u^/du = 0 .

We shall now show that Bergman's result does not depend on the
fact that (llu)f(t, u) is an algebraic function, but holds under more
general conditions. The only restriction we will impose is that the
singularities of (l/u)f(t, u) can be written in the implicit form
S(x, y, z, u) = 0.

THEOREM 1. If Zz — E{S(x, y, z, u) — 0} is an implicit representa-
tion of the singularities of
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•l/(ί, u), then H(X) = -5M /(*, * ) — ,
u 2π% J £ u

(where £? is the unit circle) is regular at X— (x, y, z), providing this
point does not lie simultaneously on the two surfaces

S(x, y, z, u) = 0 ,

and

~S(x, y, z, u) = 0 .
du

Proof. The proof of Theorem 1 will be based on a modified form
of an idea employed by Hadamard in the proof of his theorem on the
multiplication of singularities [8] [5]. The integral representation of
H{X) is valid for all points (x,y, z) which can be reached from an in-
itial point by continuation along a curve Γ(X) (in three dimensional
real-space, i23), provided no point of Γ(X) corresponds to a singularity
of (lfu)f(t9 u) on the integration path. This initial domain of definition
of H(X) can now be enlarged by continuously deforming the integration
path provided, again, that in this process of deformation the integration
path at no time crosses a singularity of {lju)f{t, u). Accordingly, we
may now write H(X) as

2πi)zf" w ' u '

where jg*' is now a new integration path obtained by observing the
above precautions.

Since t is dependent o n l = (x, y, z)9 the singularities of the integral
move in the w-plane as we continue H{X) along Γ(X). Now, as long as
we can avoid crossing such a singularity by deforming the contour ^fr

we are still able to continue H{X). Let us assume we have been able
to continue H(X) to the point X1 = (x19 y19 zλ), and let us consider the
singularities of the integral for X = Xx. The singularities of {lju)f{t9 u)
are those values of u satisfying S(x19 y19 z19 u) = 0. From Taylor's theo"
rem we may describe the local properties of S about some point u = a,
for which S = 0, by

iΛ^/y 01 v li\ — (ΊI /Ύ\ S\ (w ii <y /Ύ\ _J_ ^ /
KJ I «Λ/]_, t / i , Λ/ ,̂ M/l IM/ Otl^ λ_/\vθi, tf i . Λ-ι IΛ.I ~ ] ~

Unless dSjdu — 0 at u = α, in a neighborhood of u = a we may ap-
proximate S by

S(xu y» zlt u) = (u- )
du
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Therefore in some neighborhood of u — a, say | u — a | < ε, S does
not vanish save at u — a. Clearly, then, by deforming J5f' we can avoid
crossing u — α, or any other point u = β for which S(xlf y19 z19 β) = 0,
if we follow an arc of the circle | u — a \ = ε/2 about u = a. This com-
pletes our proof.

Using the language of real geometry we may say that unless we
are in the neighborhood of the envelope %?(x, y, z) — 0 to S(x, y, z,u) = 0
(in which case there are an infinite number of such surfaces tangent to
£?(#, y> z) = 0 we may avoid crossing these singularities by deforming

THEOREM 2. Let r = Φ(ξ, ξ) be a representation of the singularities
of V(r, ξ, ξ) = H°°{X), X e C3. The function of two complex variables

is then regular at (s,u) providing (s,u) does not lie on the "envelope"
of the two parameter family

ψ(s,u\ξ, ξ) = Φ(ξ, ζ)\ξ + ±VT=ψ(^ + X ) l - s = 0 .
L 2 \ζ uJΛ

Proof. The proof of this theorem closely parallels the one for
Theorem 1. As before, we consider the analytic continuation of G(s, u)
along an arc Γ4(s~\ u), beginning at s'1 = 0, u = 1. The integral rep-
resentation of

G(s, u) = J ^ ί T f Λ±trV(r, ξ, ξ)*f\dξ
iπi J-iLJ ζ (s — tf ζ J

will remain the same if either integration path (in ξ oτ ζ planes) is
continuously deformed in such a manner so that at no time they cross
a singularity of the integrand. Therefore, we may write G(s, u) as

where JSf and =Sf are new integration paths obtained by observing the
above precautions. Now, the kernel in our integral representation is
singular whenever

* - . =

and the harmonic function is singular for Φ(ξ, ζ) — r = 0. We notice a
significant difference in these two singularity manifolds; as G(s, u) is
continued along Γ\s~τ, u) the singularities of the kernel move in the
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ξ, f-planes, while those of the harmonic function remain fixed. By us-
ing the Hadamard idea we realize that we may always avoid an advanc-
ing singularity by deforming one of our contours with the possible
exception occur ing when the two manifolds coincide. Therefore, unless
r = Φ(ξ, ζ) as a function of ξ, and ξ also satisfies t — s — 0, G(s, u)
must be regular. This leads us to consider the two parameter family,

ψ(s, u\ξ,ζ) = Φ{ξ, ξ)[ξ + ±VT=F(± + X)] - s = 0 ,

as the only possible singularities of G(s, u).
Let us assume that we have been able to continue G(s, u) to (s0, u0)

and let us consider those values of f, ξ satisfying ψ(s0, uQ \ξ,ξ) = 0.
These values are singularities of the integrand which must be investigated
to determine whether they are avoidable by deforming the paths of in-
tegration. Let ξ — a, and ξ = β be singularities which may cross either
Jδf or -£f respectively if G(s, u) is continued further along Γ^s"1, u).
In a bicylindrical neighborhood \ξ — a\ < ε19 \ξ — β\ < ε2, we may expand
ψ(so, wo | | , ζ) in a double Taylor series as

ψ(βo, Wolf, ?) = ( ! - α)-^-ψ(«o, Wo|α, /3) + (f - β)^ψ(809 uo\a, β)

; dξ2 dξdζ • } dζ2 J

Now, unless the first variation of ^(s0, ^olf, f) vanishes at (a, β), ψ may
be approximated as

ψ(s0, uo\ξ, ζ) = {ξ- a)^-ψ(s0, uo\a, β) + (ξ - β)~ψ(s0, u,\a, β) .

In this case it is always possible to choose a secant to the circle
| | — a I = εJ2 not passing through ξ = a, and a secant to the circle
Iζ — βI = ε2/2 not passing through ξ = β, such that ψ(s0, uQ\ξ,ζ)Φθ on
those portions of the secants inside the respective circles. It follows
that, in this case, we may deform the paths Jδf, and -£f so that they
follow the secants about the singular point (α, β) and thereby continue
G(8, u) still further. The only possible singularities of G(s, u) are there-
fore those values of s and u satisfying simultaneously

and
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where ζ = π(ξ) is an arbitrary relationship between ξ and ζ. This com-
pletes our proof.

We notice here, that a particular class of singularities of G(s, u)
may occur for s and u satisfying simultaneously

dψ =

dξ

and

dζ

We have reduced the problem of locating the singularities of G(s,u)
to obtaining the envelope of a three parameter family of complex sur-
faces

φ(s, u r, ξ, ζ) = 0 ,

where the parameters r, ξ, ζ are subject to the condition

A(r, ξ,ζ) = O.

It was most natural, because of the Cauchy integrals involved, to con-
sider ξ and ζ as independent parameters, and r the dependent parameter.
However, unless we are in the neighborhood of a "singular point'' of
A = 0, it is no longer necessary to make this distinction.

For a point (s, u) to lie on the envelope E(s, u) = 0, the first varia-
tion,

dr dξ dζ

must vanish. If we proceed as before, and consider r dependent, we
obtain

dA dψ _ dA dψ\*t , {dA dψ dA dψ\^ _ Λ
dr dξ dξ dr ) \ dr dζ dr dr )

which implies that an arbitrary functional relationship exists between ξ-
and ζ, or more generally a relationship B(r, ξ, ζ) = 0, such that

dB^dψ^ _ ®B_dψι\zt i (dB dΨ _ dB ^ W - 0
dr dξ dξ dr ) \ dr dζ dζ dr ) '

where
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dA

w
dB

dr

dψ

~W
dψ

dξ

dA

dξ

dB

dξ

R.

dψ

dr

dψ
dr
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dA dψ
dr dξ

dB dψ
dr dξ

dA

dξ

dB
dξ

dψ
dr

dψ
dr

= 0

Let us consider the envelope of ψ(s, u\r, ξ, ζ) = 0 [subject to A(ry ξ, ζ) — 0]
under the transformation of parameters

r = + (χ2 + y2 + z 2

ς =

iy V

J

/2

χ — iy J

We realize that, for X = (x, y, z) z R\ the Jacobian cannot vanish and
hence the transformation is one-to-one. However, as may be confirmed
by direct computation

d( ξ ^ Φ 0, for all X e C\
d(x, y, z)

which are a finite distance from the origin.
Under this transformation our family of complex surfaces becomes

{ψ(8,u\r, ξ, ζ) = 0 } - ^ { χ ( β , u \ x , y , z ) = 0 } ,

with the auxiliary condition

{A(r, ξ, ξ) = 0} - {P(x, y, z) = 0} .

Now, for a point (s, u) to lie on the envelope to X = 0, the first varia-
tion must vanish, i.e.

δχ = ®Lδx + 2Lsy + ̂ -δz = 0
dx dy dz

+ +

dr dx dξ dx dζ dx
ίd±dr_ d±dξ_ dψ_ dζ\
V dr dy dξ dy dζ dy J
ίd±dr_ d±dξ_ d± dζ\δz

V dr dz dξ dz dζ dz J

(
dr \ dx dy dz

dξ\dx

dξ V dy

dy

dy

dz

®Lδz) = o
dz I
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From our auxiliary condition we have

8 y +

dy dz

dξ ldx dy dz M dr

dζ ldx dy dz M dr

which, together with δχ = 0, yields

VdA dψ _ d_A_ ̂ 1 VdAdψ_dA e±
Idr dξ dξ dr J '"' n Idr dζ dζ drdζ dζ

We conclude that under a one-to-one, continuous transformation of
parameters the envelope is invariant and we have the following corol-
lary to Theorem 2. Let F(x, y, z) = 0 be a representation of the sing-
ularities of H°°(X), X e C\ Then the function G(s, u), which generates
H°°(X) under the Whittaker operator, can only have singularities on the
envelope, E(s, u) = 0, to the family of complex surfaces

χ(s, u\x9yyz) = [-(x - iy)^- + z + (x^ + + (x + W)^] ~ s =

where the parameters (x,y, z) are subject to the auxiliary condition
F(x9 y, z) - 0.

To illustrate the use of Theorem 1, we consider the case where
{Hu)f(t, u) has the particular form

-!/(*, U) = FMu - -1
u L V U

F(x) is an arbitrary function of x singular at x = β. This choice of
(l/i&)/(ί, u) generates an H(X) having a simple type of singularity.
Since the singularities of (l/u)/(ί, u) satisfy u — (1/u) = t/3, we represent
the singularity manifold as

S(x, y, z,u)= - u[β(x - iy) + 2] + 2βz +—\β(x + iy) + 2] .
u

Eliminating u between S = 0, and Ŝ/9% = 0, we obtain the locus
(a? + 2/β)2 + y2 + z2 = 0, for the singularities of Jff(X).

When /3 is real this reduces to a point singularity in R\ However,
if β is complex the singularities in R3 are given by
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We note that these are only the possible singularities of H(X). To find
the actual singularities we make use of our inverse Whittaker operator
to find which of the possible singularities of H{X) correspond to singul-
arities of (llu)f(t, u).

Let us consider the locus of

x + - | T + y2 + z2 = 0 in R\ that is

2 3fte/9 ,
\β\

and

Ψ
l/5|4

If we wish to find which singularities of (llu)f(t, u) correspond to
this real locus, we eliminate two parameters from χ and consider the
first variation with respect to the remaining parameter. Doing this,

χ = _ Ξ-(u - —) + -^-(u + — ) + z - s = 0, becomes

The first variation is then

9Ύ

Eliminating z, between χ and dχ/dz yields

+ Y + (3ϊe£)(tt

By choosing suitable signs this is recognized readily as

u
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REMARK. In concluding we note, that as in the case of harmonic
functions regular at the origin, a connection will exist between the
coefficients of the series development for f(t,u) and the singularities of
H(Xy. Hence, it would be of interest to investigate whether a relation
exists between singularities as predicted by Theorem 1 of this paper,
and the corresponding coefficients of the series development for f(t,u).
Such an investigation should lead to a classification of harmonic functions
in terms of their pole-like singularities in three-dimensional complex
space.
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PARTITIONS OF MASS-DISTRIBUTIONS AND

OF CONVEX BODIES BY HYPERPLANES

B. GRUNBAUM

1. Introduction, The following results are well-known (Neumann
[7]; Eggleston [3], [4, p. 125-126], [5, p. 118]; Newman [8]:

(A) For any mass-distribution in the plane, such that the total
mass contained in every half-plane is finite and depends continuously on
the position of the half-plane, there exists a point P such that each
half-plane which contains P, contains at least 1/3 of the total mass.

(B) For any convex body K in the plane there exists a point P
such that for each half-plane H containing P the area of H f] K is at
least 4/9 of the area of K.

The main object of the present note is to generalize (A) and (B) to
higher-dimensional Euclidean spaces.

In the following m shall denote a fixed (non-negative) finite measure
on the ring of subsets of En generated by the closed half-spaces in En.
(For the terminology and results on measures see, e.g., Halmos [6].)

For a real λ, 0 ^ λ ^ 1/2, we define <^(m, λ) as the subset of En

consisting of those points P e En which satisfy the condition: For any
closed half-space H c En

y with P e H, the relation m(H) ^ λ . m(En)
holds.

Obviously, ^ ( m , λ) is a compact, convex (possibly empty) set.
Using the notation of ^ ( m , λ), Theorem (A) may be extended as

follows:

THEOREM 1. ^ ( m , l/(n + 1)) Φ φ for any measure m in En.
Let V(S) denote the volume (^-dimensional Lebesgue measure) of

the set S a En. For any convex body K c En, we denote by mκ the
measure (defined for all Lebesgue measurable subsets S of En) ob-
tained by taking mκ(S) = V(S Π K). We denote ^{mK9 λ) by cέ\K, λ).

Theorem (B) may now be generalized as follows:

THEOREM 2. If K is any convex body in En then

Φ .

We shall prove Theorems 1 and 2 in the following two sections.

Received January 22, 1960. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under contract No. AF49(638)-253. Reproduction in whole or in part is permitted
for any purpose of the United States Government.
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The last section contains remarks and comments.

2. Proof of Theorem I.1 If v is a unit vector (in En) and a is a
real number, let H(v, a) be the closed half-space

H(v, a) = {x e En; (x, v) ^ a}.

Let a(v) be defined by

a(v) = min {α; m(£Γ(t;, α)) ^ — - — m(En)\ ,
I w- + 1 J

(the minimum is attained since m(H(v, a)) is continuous to the right as
a function of a). Let H(v) = fZ"(v, α(v)) and

jyty) = {# e En; (x, v) ^ α(t;)} .

(Without loss of generality we shall in the sequel assume m(En) — 1.)
Obviously,

)
{n + 1)/

hence, if f]υH(v) Φ φ the proof is complete. On the other hand, if
f\υH(v) = φ, we shall show that

in the following way. The half-spaces H(v) are closed convex sets, and
it is easily seen that a finite number of them may be found such that
their intersection is compact. By Helly's theorem on intersections of
convex sets (see, e.g., Rademacher-Schoenberg [9]) the assumption
f\υH(v) = φ implies the existence of an n + 1 membered family of unit
vectors vi9 0 <£ i g n, such that Π?=o-ff(̂ *) = Φ Using an inductive
argument it is easily seen that we may assume that every n of the
vectors vt are linearly independent. Therefore (denoting Ht = H{v^ and
H? — H*(vt)) the set S = Γ\t=oHt is a non-degenerate simplex whose
faces are contained in the hyperplanes Hι Π H*, 0 g i ^ n. By the
definition of a(v) we have m(£r4*) ^ l/(n + 1) and m(Int if**) ^ l/(w + 1)
for all i. Therefore m{H3 Π Int Ht*) ^ l/(w + 1), and thus m(H3 Π H,) ^
(w — l)l(n + 1) for all i Φ j . Now, since Γ)?=o#i = Φ, we have

^ mΪH, Π ( U

— 1 w + 1 n + 1
1 The author is indebted to Professor B. M. Stewart for the correction of an error in

the original proof.
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Thus, for all i9 equality signs hold throughout. In particular,

m( fl Hλ = —-—
\0SJ^n J U + 1

for all i (i.e., the support of m is contained in the ''vertex-regions'' of
the simplex S = f\tH*)9

 a n ( * it i s immediately verified that

This ends the proof of Theorem 1.

3. Proof of Theorem 2. Let Gk denote the centroid of the convex
body K c En. We shall prove Theorem 2 by establishing the stronger
statement Gκ e <^(K, an), where an = (nftn + l))n. Assuming, to the
contrary, that Gk $ r^{K, an), there exists a hyper plane L containing
Gκ such that the volume of the part of K contained in one of the half-
spaces determined by L is less than an V{K). We shall obtain a
contradiction from this assumption.

Let Gκ be the origin of an orthogonal system of coordinates (x19

• ••, xn) of En, such that L is the hyperplane determined by xx = 0.
Let H+ be the half-space {(xl9 , xn); xx >̂ 0} and H~ the other

closed half-space determined by L. We may assume that V(K Π H~) <
an V(K). For any set S cz En we shall use the notations S~ = S Π H'
and S + — *S Π J&Γ+. Let K be the set obtained from K by spherical
symmetrization ("Schwarzsche Abrundung", Bonnesen-Fenchel [1, p. 71];
"Schwarz rotation process", Eggleston [5, p. 100]) with respect to the
αJi-axis (i.e., K is the union of the (n — l)-dimensional spheres obtained
by taking in each hyperplane Lt = {(x19 . , χn); xλ = t} an (n — 1)-
dimensional sphere with center (ί, 0, , 0) and (n — l)-dimensional
volume equal to that of K n Lt). It is well known that K is a convex
body, and obviously V(K~) = V(K~), V(K+) = V{K+) and G^ = Gκ.
Therefore V(K~) < an . V(K) and Gj <£ &(K9 an). Let C~ denote the
(orthogonal) hypercone with base K Γ\ L and vertex (c, 0, , 0) e if",
where c is chosen in such a way that V(C~) = V(K~). Let C be the
hypercone obtained by extending C~ (along its generators) into H+ in
such a way that V(C+) = V(K+). With C thus defined, it is easily
verified that the ^-coordinate of Go- (resp. Go+) is not greater than
that of Gk- (resp. G&+). Therefore, Gΰ e H~, and thus the hyperplane
L*, parallel to L and passing through Go, divides C into two parts in
such a way that the part contained in H~ has a volume smaller than
«n V(C). But by a simple computation we find (since the centroid of
a hypercone divides its height in the ratio 1: n) that the volume in
question equals an V(C). The contradiction reached proves the theorem.
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4 Remarks* ( i ) It is very easy to find examples which show
that the bounds in Theorems 1 and 2 are the best possible. From the
proofs given, it is also easy to deduce that if ^(K, an + ε) = φ for all
ε > 0 then K is a simplex, and that ^ ( m , lj(n + 1) + ε) = φ for all
ε > 0 only if the support of m is contained in the " vertex-regions" of
some (possibly degenerate) simplex, and all the "vertex-regions" have
the same measure.

(ii) The proof of Theorem 1 may be somewhat simplified if the
measure m is assumed to be continuous (as in Theorem (A)). The
advantage of the more general form is that it includes, e.g., measures
generated by finite point-sets, surface-area etc.

(iii) The following obvious corollary of Theorem 2 is interesting
because of its independence on the dimension:

For any convex body K c En we have

Gκ e ςf(K, e-1) = C{K, 0.3678-. •) .

(iv) It would be interesting to find the analogue of Theorem 2
obtained by substituting the (n — l)-dimensional surface area A(K) for
the volume V(K) of K c En. The problem seems to be unsolved even
for n = 2.

(v) It is easily proved that for any continuous mass-distribution in
the plane there exists a pair of orthogonal lines such that each ' 'quad-
rant' ' determined by them contains 1/4 of the total mass. The analo-
gous statement is not true for n mutually orthogonal hyperplanes in En\
does it become true if the condition of orthogonality is omitted?

(vi) It is well known (Buck and Buck [2]) that for any continuous
mass-distribution in the plane there exist three concurrent straight lines
such that each of the six '"wedges" determined by them contains 1/6 of
the total mass. Does this fact generalize to £ n when the three lines
are replaced by n + 1 hyperplanes with a common (n — 2)-dimensional
intersection?

Added in proof. After submitting the present note for publication,
the following facts came to our attention:

( i ) Theorems (A) and B are proved, and Theorem 1 suggested, in
I. M. Jaglom—W. G. Boltjanski, Konvexe Figuren, Berlin, 1956, pp. 16,
18, 27, 104-106, 116, 135-136 (this is a translation of the Russian origi-
nal, which appeared in 1951); Theorem (b) is there attributed (without
references) to A. Winternitz.

(ii) A proof of Theorem 1 (using Brouwer's fixed-point theorem),
together with some related results, was given in B. J. Birch, On 3N
points in a plane, Proc. Cambridge Philos. Soc, 55 (1959), 289-293.

(iii) A proof of Theorem 2, very similar to the one given in the
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present paper, was found independently by P. C. Hammer; it is contained
in a paper ''Volumes cut from convex bodies by planes", submitted to
"Mathematika".

(iv) The relation ^ (m, —) φ φ (resp. %~Yκ, — J Φ φ holds for

any distribution of masses (resp. convex body) with a center of sym-

metry. Obviously, r^{m, —j Φ ψ is possible also for mass-distributions

without a center. The conjecture (trivial for the plane) that r^ίκ, — ) Φ Φ

characterizes centrally symmetric convex bodies was first established
Professor F. J. Dyson; it is hoped that a proof will be published soon,

(v) Results generalizing Theorem 1 were established by R. Rado
in the paper, "A theorem on general measure", J. London Math. Soc,
21 (1946), 291-300. Rado's proof also uses Helley's theorem, but in a
fashion different from the one used in the present paper.

REFERENCES

1. T. Bonnesen and W. Fenchel, Theorie der konvexen Kb'rper, Springer, 1934.
2. R. C. Buck and E. F. Buck, Equipartition of convex sets, Mathematics Magazine, 22
(1949), 195-198.
3. H. G. Eggleston, Some properties of triangles as extremal convex curves, Journ. London
Math. Soc, 2 8 (1953), 32-36.
4. , Problems in Euclidean space: Application of Convexity, Pergamon Press
1957.
5. , Convexity, Cambridge Tracts in Math, and Math. Phys., No. 47, Cambridge
1958.
6. P. Halmos, Measure theory, Van Nostrand 1950.
7. B. H. Neumann, On an invariant of plane regions and mass distributions, Journ.
London Math. Soc, 20 (1945), 226-237.
8. D. J. Newman, Partitioning of areas by straight lines, Abstract 548-108. Notices
Amer. Math. Soc, 5 (1958), 510.
9. H. Rademacher and I. J. Schoenberg, Kelly's theorems on convex domains and
Tchebycheff's approximation problem, Canad. Journ. Math., 2 (1950), 245-256.

INSTITUTE FOR ADVANCED STUDY





REGULAR COVERING SURFACES OF RIEMANN SURFACES

SIDNEY M. HARMON

Introduction. The homotopy and homology groups of a given arc-
wise connected surface are topological invariants. A smooth covering
surface F * is a locally-topological equivalent of its base surface F. Con-
sequently, it is natural that the fundamental and homology groups of
F*, T(F*) and H{F*) respectively, should be related to those of F,
T(F) and H(F) respectively. In this paper the term homology is always
used for the 1-dimensional case. The cover transformations of a covering
surface F* are topological self-mappings such that corresponding points
have the same projection on F. These cover transformations form a
group which we will denote by Γ(F*). The homology properties of F
should influence Γ(F*) by means of the composition of the self-topologi-
cal mapping and the locally-topological mapping F* —> F.

Section 1 considers the general class of smooth covering surfaces on
which there exists a continuation along every arc of the base surface.
We refer to such a covering surface as a regular covering surface F*.
A number of results are collected and put into the form in which they
are needed to derive the main theorems. The class {F*} is shown to
form a complete lattice. Next there is shown a one to one correspondence
between all subgroups Nt c T(F), such that Nt contains the commutator
subgroup Nc of T(F), and the set of all subgroups Ht c H(F). This
correspondence leads to isomorphisms which relate the associated sub-
groups.

Section 2 considers a special class of regular covering surfaces {F£}
in which F* is characterized by the properties that it corresponds to a
normal subgroup of T(F) and Γ(F*) is Abelian. In our notation these
covering surfaces form the class of homology covering surfaces (cf.
Kerekjarto [5]). An equivalent characterization of the property that
F* corresponds to a normal subgroup is the assumption that above any
closed curve on F there never lie two curves on F* one of which is
closed and the other open. There are derived here for {F*} an isomor-
phism and correspondence theorem which relates subgroups Γt c Γ(F*)
to quotient groups of H(F) and T{F). The class {F£} is shown to
form a complete and modular lattice. If the base surface F is an
orientable or non-orientable closed surface, with covering surface JPΛ*,

the rank of Γ(F*) is determined in terms of the genus of F and the

Received December 3, 1958. This paper contains a part of the author's doctoral thesis
which was completed at the University of California at Los Angeles, together with some
extensions. The author is indebted to Professor Leo Sario for his guidance in its prepa-
ration.
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rank of an associated subgroup Hi c H(F).
Section 3 considers the Schottky covering surface F£ of a closed

orientable surface. We denote the boundary of the conf ormal equivalent
of Fs in the plane by Es. There is obtained here a criterion for the
vanishing of the linear measure of Es.

We will refer to functions defined on a Riemann surface by an ab-
breviated notation as follows: Green's functions by G, nonconstant ana-
lytic functions with finite Dirichlet integral by AD and non-constant
analytic bounded functions by AB. We denote the class of Riemann
surfaces on which there does not exist any G, AD and AB functions
respectively by OG, OAD and OAB. If W is an open (non-compact) Riemann
surface we are led to the problem of studying it from the following
comparative viewpoint (Sario [13]). Suppose that P is a property of all
closed (compact) Riemann surfaces, determine open Riemann surfaces
which possess the same property. Recently Mori [8] established a con-
nection between homology covering surfaces and the classes Oβ9 OAD and
OAB.

Section 4 applies the results of the previous three sections to the
classification of Riemann surfaces. It considers regular covering surfaces
of a closed Riemann surface F of genus p. We refer to the covering
surface of F which corresponds to Nc c T(F) as the commutator covering
surface F*. It is shown that the results obtained in [8] for homology
covering surfaces F£ with respect to OAD, OG and OAB may be applied
to any regular covering surface Ft which is weaker than F*. In the
case of OAB this yields for F* a criterion in terms of the generators of
quotient groups of T(F) and H(F). A generalization of Painleve's
problem for an open Riemann surface is proved, and there is also ob-
tained a criterion based on vanishing linear measure of a plane point
set which determines that a Schottky covering surface is in OAB.

1. Regular Covering Surfaces*

1.1. DEFINITIONS. A surface is a connected Hausdorff space on
which there exists an open covering by sets which are homeomorphic
with open sets of the 2-dimensional Euclidean space.

A surface F* is a smooth covering surface of a base surface F if
there exists a mapping / : F* —> F such that for every p* e F* a neigh-
borhood F* of p* is mapped topologically onto a neighborhood V of
p = f(p*) e F.

F* is a regular covering surface of F if it is smooth and if every
arc γ on F can be continued along γ from any point over the initial
point of γ. [2] (The term "unramified and unbounded" also appears in
the literature instead of the term "regular" used here.)
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1.2. FUNDAMENTAL GROUP. The results in this subsection are
needed for the later treatment and may be found or are implied in the
literature; and the development closely parallels that of Ahlfors and
Sario [2]. The following result is well-known.

LEMMA 1. Let {7} be the homotopic classes of those curves from 0
on F which have a closed continuation {γ*} from 0* € F*. Then D = {γ}
is a subgroup of the fundamental group T(F) with origin at 0.

Let the notation (F*,f) and F represent a regular covering surface
F* of F with topological mapping / : F * —* F and homotopic classes
originating at 0* where /(0*) = 0. We will identify (F^/i) and (F*,f2)
if there exists a topological mapping φ : F* —+ F* such that fλ= f2° Φ
and φ(0*) = 0*. It is clear that this identification is defined by means of
an equivalence relation.

The proofs of the following proposition and of the subsequent
Lemmas 2 through 4 may be obtained from reference [2] or [9].

PROPOSITION 1. The mapping φ in the identification of(F*,f) and
{F*, /2) with Φ(0*) — 0* is uniquely determined.

With the foregoing identification, we obtain

LEMMA 2. There exists a one to one correspondence between identi-
fied pairs (F*,f) and the subgroups D of T(F). Two pairs can be
represented by means of the same (F*,f) if and only if the corre-
sponding subgroups are conjugate.

LEMMA 3. The fundamental group T{F*) of (F*,f) is isomorphic
with the corresponding subgroup D of T(F).

If {F*,f) covers F* and {F*,f^ covers F, then it is clear that
(F2*,/i°/) covers F where fx o/(02*) = 0. If two pairs (F2*,f2) and
{F*,fd cover F, we say that the former is stronger than the latter if
and only if there exists an / such that (F2*,f) covers F* and/2 = fx°f.
This relation is clearly transitive.

Let A and D2 be the subgroups of T(F) which correspond respec-
tively to (-Fi*,/i) and (F2*,f2), then we have

LEMMA 4. The pair (F*,f2) is stronger than (F*,f) if and only
if A c A.

1.3. COMPLETE LATTICE THEOREM. By means of Lemmas 2 and 4,
we obtain an ordering of the regular covering surfaces according to
relative strength which is isomorphic with the ordering of the corre-
sponding subgroups of T(F) by inclusion.

Let {Da} with a in the index set A be a finite or infinite subset of
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a lattice L. Then L is complete if for all {Da} c L, there exists in L
a least upper bound Uαê -Dα and a greatest lower bound Γ\aeADa.

THEOREM 1. The system of regular covering surfaces of F is a
complete lattice.

Proof. The system of subgroups {Da} of T(F) with a e A is
partially ordered by inclusion. Also the union of any number of sub-
groups {Da.} for ai e A is a subgroup Uα4e J9 α | which is the least upper
bound for {-Dα.} Similarly, the intersection of any number of subgroups
{Da.} is a subgroup \JaieADa. which is the greatest lower bound for {Da.}.
Consequently the system of subgroups {Da} is a complete lattice. Be-
cause of the isomorphy obtained from Lemmas 2 and 4, the correspond-
ing regular covering surfaces form a complete lattice.

It can be shown that any complete lattice has a zero and a universal
element. The weakest covering surface of F corresponds to T(F) and
is F itself or (F*, e), where e is the identity; the strongest covering
surface corresponds to the unit element of T(F) and is the universal
covering surface of F.

1.4. RELATIONS BETWEEN FUNDAMENTAL AND HOMOLOGY GROUPS.

The commutator subgroup of T(F) will be denoted by Nc. The covering
surface F* which corresponds to Nc will be referred to as the com-
mutator covering surface. (Uberlagerungsflache der Integralflunktionen,
Weyl [17])

LEMMA 5. (Nevanlinna [9; 61-63]) There exists a homomorphism
from the elements of T(F) onto the elements of H(F) for which the
kernel is the commutator subgroup.

If θ is a homomorphism from T to H with kernel K, the fundamental
theorem for group homomorphisms yields the isomorphism TjK = H.
A second fundamental theorem for group homomorphisms may be stated
in the following form (Kurosh [6]).

LEMMA 6. Let θ : F—+H be a homomorphism with kernel K. Then
( i ) There is a one to one correspondence between subgroups Nt of

T such that T 3 Nt 3 K and all subgroups Hi of H. In this corre-
spondence Hi consists of all images of elements of Nt and Nt consists
of all inverse images of elements of Ht.

(ii) // Nt is normal in T then Hi is normal in H and conversely.
(iii) If Ni and K are normal in T then T/iV, =

THEOREM 2. Let {N^ be the set of all subgroups such that T(F) 3
Nt 3 Nc and let {Ht} be the set of all subgroups Ht c H(F). Then
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(i) There exists a one to one correspondence between {iVJ and
{Hi}. In this correspondence Ή% consists of all images of elements of
Nt and Nt consists of all inverse images of elements of Ht.

(ii)

Proof. To prove the first part, we use the homomorphism of Lemma 5
θ : T(F) -* H(F) with kernal Nc. Part (i) of the theorem is then an
immediate consequence of Lemma 6 (i).

To obtain the isomorphism (ii) we note that Nc is normal in Nt and
that the restricted homomorphism θ :, Nt —*Ht is onto. We apply the
fundamental theorem for group homomorphisms which yields the required
isomorphism.

If in Theorem 2 we set Nt = T(F), we obtain T(F)INC = H(F) as
a special case.

1.5. RELATIONS BETWEEN THE FUNDAMENTAL GROUP AND THE GROUP

OF COVER TRANSFORMATIONS.

DEFINITION. A cover transformation of a regular covering surface
(JF7*, /) is a topological self-mapping φ such that, for every p* e F*,
Φ(P*) a n ( i P* have the same projection.

The totality of cover transformations on F * clearly form a group.
We will denote this group by Γ(F*).

In the sequel, unless otherwise indicated, D or Dt will refer to the
subgroup of T(F) which corresponds to the covering surface F * or Ft
respectively, according to the specifications of Lemma 2. We note that
Γ(F*) and the normalizer of D are unaffected by the choice of 0 and 0*.

LEMMA 7. [9; 83] Let M be the normalizer of D in T{F). Then
there exists a homomorphism φ: M—> Γ(F*) with the kernel D.

THEOREM 3. Let {Z)J be the set of all subgroups Dt such that
Mz) DtZ) D and let {ΓJ be the set of all subgroups of Γ(F*). Then

( i) There exists a one to one correspondence between {Z>J and
{Γi\. In this correspondence Γt consists of all images of elements of
Dίf and Dέ consists of all inverse images of elements of Γ%.

(ii) Γ^DJD.

Proof. We use the homomorphism φ of Lemma 7 with kernel D»
Part (i) of the theorem is then an immediate consequence of Lemma 6
(i). To obtain the isomorphism (ii), we note that D is the kernel of φ
and D is normal in M and, therefore, normal in Dt c M. By (i), φ map&
Dt onto Γt. The restriction of φ to Όi in conjunction with the funda-
mental theorem for group homomorphisms yields the required isomorphism.
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If in Theorem 3 we set Dt = M, we find from part (i) of the theo-
rem that M is mapped onto Γ(F*). Consequently, we obtain from (ii),

(1) Γ(F*) = MID ,

as a special case.

COROLLARY. If D is normal in T(F), then the one to one corre-
spondence and isomorphism specified in Theorem 3 holds for all sub-
groups Diy such that T(F) 3 DtZ) D.

Proof. If D is normal in T(F), then the normalizer of D is T(F).
We replace M in Theorem 3 by T(F) and obtain the required result.

A special case of the corollary is obtained if in Theorem 3 (ii) we
set A = T(F). We then find that

( 2 ) Γ(F*) = T{F)jD .

2 Homology Covering Surfaces.

2.1. DEFINITIONS AND BASIC RESULT. Δ regular covering surface
of F is normal if it corresponds to a normal subgroup of T(F) [2].
(The term "unramified, unbounded and regular" also appears in the
literature instead of the single term "normal" used here.)

PROPOSITION 2. (Seifert-Threlfall [16; 196]) If (F*, f) is a normal
covering surface of F, then there exists a unique cover transformation
which carries any given point p* e (ί7*, /) into a prescribed point pj*
with the same projection.

A regular covering surface is referred to as a commutative covering
surface if its group of cover transformations is Abelian.

A homology covering surface is a covering surface which is simul-
taneously normal and commutative.

2.2. CRITERION THEOREM.

THEOREM 4. A regular covering surface Ft is a homology covering
surface of F if and only if it is weaker than the commutator covering
surface F*, or equivalently, if and only if Nt D NC, where Ft and
Ft correspond respectively to the subgroups Nt and Nc of T(F).

Proof. To prove the sufficiency of the condition, we first consider
Ft which corresponds to Nc which is clearly normal in T{F). By the
isomorphism (2), we obtain Γ(F*) = T(F)jNc. The latter quotient group
is Abelian; for if α, b e T(F), abφa)-1 = aba~ιb~x e Nc; hence Ncab = Ncba.
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By hypothesis, F* is weaker than Ft; consequently by Lemma 4,
Nt z> Nc. From the fact that T(F)/NC is Abelian and Nt z) Nc in con-
junction with Lemma 6 (ii), it follows that any subgroup Nt which
contains Nc is normal. We conclude from Lemma 6 (iii) that T{F)jNi
is Abelian. The latter quotient group is isomorphic to Γ(F*) by the
special case (2). We conclude that Ft is simultaneously a normal and
commutative covering surface and therefore a homology covering surface.

Conversely, we suppose that Ft is a homology covering surface.
From the special case (2), we obtain Γ(Ft) = T(F)/Nt. By hypothesis,
the left member of the isomorphism is Abelian; consequently T(F)jNi

is Abelian. Because of the commutativity of T{F)jNi and the normality
of Nif we obtain for α, b e T(F)9 N.aba-'b'1 = Nt; therefore, Nt 3 NG.
We conclude, by Lemma 4, that Ft is weaker than F*.

The last statement of the theorem is an immediate consequence of
Lemma 4.

2.3. ISOMORPHISM AND CORRESPONDENCE THEOREM.

THEOREM 5. Let {F*t} be the set of all homology covering surfaces
of F under the identification of Lemma 2, and let {Nhi} be the set of
all corresponding subgroups of T(F) under the isomorphy of Lemma
3; such that T(JFΛ*) = Nhi. Let {Ht} be the set of all subgroups of
H(F) under the correspondence indicated in Theorem 2, such that
NJNe = Ht. Then

( i ) Γ(F£) = H(F)IHt ~ T{F)INht = [T(F)/NC]I(NJNC).
(ii) There exists a one-to-one correspondence between the identified

sets {FM} and the sets {Nhί} and {Hi}.

Proof. To derive the first and second isomorphisms of (i), we note
that because of the commutativity of the homology groups, Ht is normal
in H(F). We consider the composite mapping φ o θ,

φ o Θ[T(F)] = φ[H(F)] = ff(F)/JΪ4 ,

Φ o θ[a e T(F)] = Φ(a') = Hid' .

This mapping is composed of the homomorphism θ of Lemma 5 and
the natural homomorphism φ; consequently the composition is a homo-
morphism. The kernel of φ o θ consists of all a e T(F) such that
ίζα/ = Ή%. We note that by Theorem 4, NM ZD NC) hence Theorem 2 (i)
is applicable. From the specifications in Theorem 2 (i) for Θ:NM-+Hif

we find that the kernel of φ o θ is precisely NM. The fundamental
theorem of group homomorphism, together with the special case (2), now
yield

Γ(Ft) = T(F)INM = H(F)/Ht .
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To derive the third isomorphism of (i), we note that NM and Nc

are normal in T(F). Hence an application of the fundamental theorem
for group homomorphisms yields the result.

For the proof of (ii), we note that by Theorem 4, any homology
covering surface F*i satisfies NM D Nc. Hence Theorem 2 is applicable.
We apply Theorem 2 (i) to obtain a one-to-one correspondence between
{NM} and {H"J. The one-to-one correspondence obtained is carried
through {NM} to {ί7^}, under the postulated identification, by means of
Lemma 2. This completes the proof of the theorem.

2.4. COMPLETE AND MODULAR LATTICE THEOREM. A lattice is called
modular (Dedekind structure) if it satisfies the following weak form of
the distributive law:

If α D 6, then a Π (b U c) = (a Π 6) U (α Π c).

LEMMA 8. (Kurosh [7]). The lattice of normal subgroups of any
group is modular.

THEOREM 6. The system of homology covering surfaces {FΛ*} of F
is a complete and modular lattice.

Proof. Let {NM} correspond to the collection {F*t}. In the course
of the proof of Theorem 1, it was shown that the system af subgroups
{JDJ of T(F) is a complete lattice. {NM} is therefore a subset of a
complete lattice. From the definition of a homology covering surface
and from Theorem 4 every NM is normal in T(F) and NM ZD Nc. The
union or intersection of any number of normal subgroups of {NM} is a
normal subgroup containing Nc. Consequently, {NM} is a sublattice and
a complete lattice. By the normality of Nhί and Lemma 8, {NM} is also
a modular lattice. We conclude from Theorem 5 (ii) and Lemma 4 that
{F*i} is a complete and modular lattice.

2.5. RANK OF THE GROUP OF COVER TRANSFORMATIONS. We consider
the rank of the group of cover transformations for homology covering
surfaces for which the base surface F is closed. In this case, T(F)
and H(F) are finitely generated. We have

LEMMA 9. (Seifert-Threlfall [16; 145]). Let F be a closed surface
of genus p. If F is orientable, H(F) is a free Abelian group of 2p
generators; if F is nonorientable, H(F) is the direct product of a free
Abelian group ofp — 1 generators and a group of order 2.

Because the homology group of a closed surface is finitely generated,
it always has a finite rank.

The following lemma is fundamental in the theory of Abelian groups.
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LEMMA 10. Let H be an Abelian group of finite rank r, and let
Ht be a subgroup of H. Then Ht and H\Hi are also of finite rank and
r(H) = r(fli) +

THEOREM 7. Let F be a closed surface of genus p, and let {F^
be the class of homology covering surfaces of F such that

T(Fh*) s NM c T(F) , NJNe sHta H{F) .

If F is orientable, then

r[Γ(F&)] = 2p- r(Ht)

and

0 S r[Γ{Fm ^ 2p .

If F is nonorientable f then

r[Γ(F&)] = p - l - r{Ht)

and

0 :S r[Γ(F&)] ^p-1.

In either case, τ[Γ(F*i)] assumes all integral values in the indicated
ranges.

Proof. We note that the rank of a free Abelian group is equal to
the number of its generators, that the rank of an Abelian group in
which all elements have finite order is zero, and that the rank of an
Abelian group equals the sum of the ranks of the factors in the direct
product decomposition of the group. Consequently, it follows from Lemma
9, that if F is orientable, r[H(F)] — 2p, and that if F i s nonorientable,
r[H(F)] = p — 1. By use of Theorem 5 (i) and Lemma 10, and by sub-
stituting for r[H(F)] the values just deduced we find that if F is
orientable

] = 2p- r(Ht) ,

and that if F is nonorientable,

r[Γ(F£j\ = p - 1 - r(fli) .

Because H% is a subgroup of H(F)

0 £ r{H,) £ r[H(F)] .

For each integer n such that 0 ^ n ^ r[H(F)], there exists a sub-
group Ht which is generated by n linearly independent elements; therefore
r(Hi) = n. We conclude that if F is orientable,
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0 rg r[Γ(F£)] ^ r[H(F)] = 2p ,

and that if F is nonorientable,

0 ^ r[Γ(Fft)] ^ r[H(F)] = p - l .

In both cases r[(F*i)] assumes all integral values in the indicated ranges.
In connection with Theorem 7 it is of interest to note that the

quantities 2p and p — 1 are the 1-dimensional Betti numbers for a closed
orientable and a closed nonorientable surface respectively.

3* Schottky Covering Surface of a Riemann. Surface*

3.1. DEFINITIONS FOR RIEMANN SURFACES. We shall define a Rie-
mann surface topologically as a Hausdorff space with certain restrictive
properties.

DEFINITION. A Riemann surface F is a surface together with a
collection of local homeomorphisms {h} from open sets of F onto open
sets of the complex plane which satisfy the following conditions.

( i ) The totality of domains of {h} form a covering of F.
(ii) The images of every nonnull common domain of ht and h5 e {h}

are directly conformally equivalent in the complex plane through the
composite homeomorphism ht o hj1.

We denote the domain of ht e {h} by At. If p e Δif then z = h^p)
is uniquely determined. Because of condition (ii), the conformally in-
variant properties of F are independent of the choice of Λ4 e {h}. Con-
sequently in considering such properties we may regard z in the complex
plane as a local variable instead of p e F. In this paper we shall be
concerned exclusively with conformally invariant properties of F; there-
fore we will resort to the local variable notation z whenever it is
convenient.

DEFINITION. A complex-valued function / is analytic on F if and
only if / o hi1 is analytic on ht (4t) for every ht e {h} with domain Ait

DEFINITION. A real-valued function u is harmonic on F if u o hi1 is
harmonic on ht (Δ^ for every h% e {h} with domain Δt.

The Riemann surface as defined here is an orientable surface because
the composite mapping ht © hy1 is directly conformal and consequently
sense-preserving. It can be shown that the Riemann surface is topologi-
cally a countable space.

3.2. BASIC CONSIDERATIONS. In this section the base surface F is
assumed to be a closed Riemann surface of finite genus p. By suitably
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cutting F, we can obtain a planar region FQ'S, such that an infinite
number of copies of F0's, when put together under special identi-
fications of their boundaries, will generate the Schottky covering surface
Fs of F. The surface F£ is a planar, open Riemann surface. We will
study the boundary of the conformal equivalent of F$ in the complex
plane by means of a Schottky group.

3.3. GENERATORS OF SCHOTTKY GROUP. The conformal equivalent
of the initial copy Fis is an infinite region i?0, where RQ is bounded by
2p disjoint circles Qi9 Q[ (i = 1, 2, , p), lying in the finite plane. We
will refer to this set of circles which bound Ro as {Qo}. The p pairs of
circles {Qo} correspond to a system of p hyperbolic or loxodromic linear
transformations which generate a group of linear transformations G
called the Schottky group (Schottky [15]). The group G can be shown
to be denumerably infinite and is properly discontinuous up to a set of
discrete points Es, called the singular set of the Schottky group. The
transforms of Ro converge for p > 1 to a nondenumerable discrete set
of points Es which is the boundary of the conformal image of F£ in
the plane.

A set has zero linear measure if it can be covered by a sequence
of disks {Kf} with radii {rj such that Σ ri is arbitrarily small. We
will denote the linear measure of the singular set of the Schottky group
by m(Es).

We consider a configuration of the bounding circles {Qo} correspond-
ing to a Schottky group G, in order to obtain a criterion for the vanishing
of m(Es).

Let the 2p> circles {Qo} be paired in such a manner that a set of p
hyperbolic or loxodromic linear transformations Slf , Sp operate on the
extended complex plane and yield

( 3 ) £ & = & ' , S2QΛ = Q'2, •-., SPQP = Q'P,

with the exterior of each Qt mapped into the interior of Q . The set
of such generators will be designated as {So}. A general form for the
transformation St is

( 4 ) St=
az + b

cz + d

St and other linear transformations in the sequel will be normalized by
the condition ad — be — 1. The circles {Qo} have the general equations

( 5 ) Q * : | s - ? , l = r < ; Q\:\z-q't\ = r't.

A general normalized transformation of {So} corresponding to the
circles (5) may be written as
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in which qt + rφiQ transforms into q\ — r\emπ~θ).
The set {So} corresponding to the form (6) will generate a Schottky

group.
Let ξ± and ξ2 denote the fixed points of a generator St, where ξλ

and | 2 are finite. Then

/ 7 v £ fc _ α - d ± i/(q + eg)2 - 4
( 7 ) f l f & .

Since St(oo) = g , S4(2;) = «' may be expressed in terms of a cross-ratio
as

where if is a multiplier such that

jr — &
a' —

By simplification, this reduces to

We note that K is independent of z and that the fixed points are
independent of the power of z. Consequently, S?(z) — z{n) may be ex-
pressed as

This yields

To normalize SiM)(z) we divide through by

and obtain

_

g 2 - g - g ,
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3.4. ISOMETRIC CIRCLES. Because of the mappings StQt = Q[ in the
generation of the Schottky group, there is a particular convenience in
utilizing the concept of isometric circle under a linear transformation
(e.g., Ford [4]).

Let S be a linear transformation expressed in the general form (4).
Then length and area are unaltered in magnitude in the neighborhood
of a point z if and only if | cz + d | = 1. The locus of such points for
c φ 0 may be written as the circle | z + djc \ = 1/| c |, with center — djc
and radius l/|c |.

DEFINITION. Let S be the linear transformation

S(z) = (az + b)l(cz + d) .

Then the circle

I:\cz + d\ = 1 , c φ 0 ,

which is the complete locus of points in the neighborhood of which
length and area are unaltered in magnitude by S is called the isometric
circle of S.

LEMMA 11. Let the linear transformations S have I as its iso-
metric circle, and let S(I) = /'. Then S"1 has Γ as its isometric circle.

Proof. By definition S carries / into a circle T without alteration
of lengths in the neighborhood of any point of I. Consequently S"1

carries Γ — S(I) back to /without alteration of lengths. By the unique-
ness of /', we conclude that /' is the isometric circle of S~\

LEMMA 12. (Ford [4]). Let I and Γ be the isometric circles of S
and S"1 respectively and let L be the perpendicular bisector of the line
joining the centers of I and V. If S is a hyperbolic, elliptic or para-
bolic linear transformation, S is equivalent to the composition of an
inversion in I followed by a reflection in the line L; if S is loxodromic,
there is in addition a rotation about the center of V through the angle
—2arg(α + d).

THEOREM 8. Let S be a linear transformation. Suppose that S
and S'1 have the isometric circles I and Γ respectively. Then for
every n

( i) The circles S~n(I) and Sn(Γ) are equal in magnitude and
S-n(I)czI, Sn(Γ)aΓ.

(ii) S~n(I) is the isometric circle of S2n+1.
(iii) The radii of the circles S~n(I) and Sn(Γ) are each equal to



1276 SIDNEY M. HARMON

1/1 c I, where c is the coefficient in the general expression for a linear
transformation corresponding to S2n+1.

Proof. Because S and S"1 have the respective isometric circles /
and /', we conclude from Lemma 11 that S(I) = /'. Let L be the
perpendicular bisector of the line joining the centers of I and /'. We
first consider the case where S is nonloxodromic. Then by Lemma 12,
S~n(I) is obtained by successive compositions of an inversion in /' fol-
lowed by a reflection in L, and Sn(I') is obtained by successive com-
positions of an inversion in / followed by a reflection in L. We note
that for all linear transformations the size of the circle is influenced
only by the inversion. The circles S~k(I) and Sk(I') are symmetrical
with respect to L for all k < n. Because of the symmetry of the
inversion with respect to the equal circles Γ and /, we conclude that
S~n(I) and Sn(I') are equal. Further, from the geometrical interpretation
of Sn and S~n as expressed by Lemma 12, it follows that S~n(I) c I
and Sn(I') c Γ.

If S is loxodromic, there is in addition, in the foregoing com-
positions a rotation. For S~k(I) and k < n the required rotation is
— 2k arg [ — (a + d)] = —2kπ — 2k arg (a + d) about the center of 7, and
for Sk(Γ) the required rotation is — 2&arg (a+d) about the center of/'.
The circles S~k(I) and Sk(Γ) are therefore symmetrical with respect to
the intersection of L and the line joining the centers of Γ and I. This
symmetry yields equal circles in the successive inversions with respect
to the circles Γ and /. We conclude again that S~n(I) and Sn(I) are equal
and that S~w(/)c/and Sn(Γ)aΓ. This completes the proof of part (i).

To prove part (ii) we consider S2n+1 o S~n(I). The first n operations
by S transform S~n(I) to /. The inversions associated with these
transformation are all in I and are of the type S~{n~j)(I) inverts to
Sn'J-\If)9 where j = 0,1, , n — 1. The n + 1st operation transforms
/ to V and involves the identity inversion, i.e., I inverts to /. The last
n operations by S transform V to Sn(Γ). The inversions associated with
these transformations are all in / and are of the type Sn""J"1(J') inverts
to S~{n~3)(I). The latter n inversions are thus inverses of the afore-
mentioned n inversions. Hence the resulting inversions associated with
S2n+1 preserve infinitesimal lengths on S~n(I). The reflection and rota-
tion components of S2n+1 clearly preserve infinitesimal lengths. Therefore
S~n(I) is the isometric circle of S2n+\

Part (iii) of the theorem is a consequence of the fact that an iso-
metric circle may be written in the form \z + d\c\ = l/ |c | .

We collect here some results on the inversion of one circle into
another circle which will be needed subsequently. In the sequel, the
circles Qλ and Q2 are always disjoint. If a circle Qx is inverted into a
circle Q2, we will designate the image circle by Q12 and a corresponding
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subscript notation will be used for the radii r and centers q of the
respective circles.

Let Qx and Q2 be given by

Qi: I z - qλ I = n ,

Q2: I z - q2 | = r2 .

We denote by Z the line which passes through the centers of Ql9 Q2

and we take the points α, β e Qi Π i. Suppose that Qx is inverted into
Q2 with α, /3 transforming into au βt respectively. Then

- q21 I at - q2 | = r2 ,

We denote the distance between q± and q2 by e and obtain

(11) r i a =
- tf21 I /5 - q21 β2 - r2

(12) ki2 - ft I = 2 ^ 2 ,

LEMMA 13. Le£ Qx, Q2 6e disjoint circles with centers q19 q2 and
radii r19 r2 respectively. Then

( i ) r12 increases with increasing rλ and fixed e and also with
decreasing e and fixed rλ.

(ii) If Qx is enlarged to Qv in such a manner that Q± c Qv and
Qv is disjoint from Q2, then rV2 > r12 and r2V > r21.

(iii) qu lies on the line joining q1 and q2, and \ q2 — q12 \ decreases
with increasing e.

Proof. To prove (i) we note that because Qx and Q2 are disjoint,
e > rx. The result then follows from equation (11).

For the proof of (ii), we denote the line passing through q1 and q2

by I. It is sufficient to consider the case in which the center qv lies on
I and one of the two points in Qλ Π I is fixed during the enlargement
of Qλ. We use the first equation in (11) to find the total derivative
with respect to rv. We obtain the result that if Qv is inverted into
Q2, άrV2ldrv > 0; and if Q2 is inverted into Qv, dr2V\drv > 0. Because
rv is steadily nondecreasing, we conclude that rV2 > r12 and r21, > r21.

The first part of (iii) follows from elementary geometrical consider-
ations of inversions. The second part of (iii) is obtained by differentiat-
ing, in equation (12), | q2 — q12 \ with respect to e and noting that the
derivative is negative.

3.5. CRITERION FOR VANISHING LINEAR MEASURE. In the sequence
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of circles which bound the successive generations of mapped regions in
the conformal mapping of F$, the size of the circles is influenced only
by the inversions associated with the elements of G in the Schottky
group. Suppose we enlarge any circle θt e {Qo} to Qv in such a manner
that Qi (zQif and Qv are disjoint from all other circles in {Qo}. Then
by repeated applications of Lemma 13 (i) and (ii) it follows that in the
limit m(E's) for the new configuration will be greater than m{Es). Con-
sequently, for establishing a criterion for the vanishing of m(Es), we
may modify the configuration {Qo} to one in which all circles Q* are of
equal unit size, subject to the conditions just mentioned. We will refer
to this modified configuration of {Qo} as {Q0}A.

We consider the configuration {QQ}A. Let et be the distance between
the centers of the pair Qt and Q[ (i = 1, 2, •••,#), and let ιdj be the
distance between the centers of two arbitrary circles Qt and Q3 e {Q0}A.
We denote by e the minimum et and by d the minimum i d j . If

(B) d^e,

we will say that {Q0}A satisfies condition (B) and denote the configuration
by {QO}AB- The modified configuration {Q0}ΛB will have a corresponding
group of hyperbolic or loxodromic linear transformations G' which is as-
sociated with the Schottky group G corresponding to {Qo}. In the
sequel, we will use the same notation for the circles in {QQ}AB and for
the generators of G' as used previously for those in {Qo} and in {So}
respectively.

THEOREM 9. Let G be a Schottky group with p generators. Suppose
that there exists a configuration {Q0}AB which is associated with G.
Then the linear measure of the singular set of G vanishes if

(C) p < Ue + V^T) .
4

Proof. Because of equations (3) and (6) in subsection 3.3 and because
Qt and Qif are equal for all i, Qt and Qt, are the isometric circles of the
hyperbolic or loxodromic linear transformations St and S^1 respectively.
Consequently, an arbitrary element of the group generated by {So} is
by Lemma 12 equivalent to a succession of compositions. Each of these
compositions is an inversion in one of the circles {Q0}AB followed by a
reflection in the perpendicular bisector of the line joining the center of
this circle to the center of its paired circle and a rotation about the
center of some Qt. We note that in the compositions, the size of the
image circles is influenced only by the inversions.

Let Qλ and Q[ with centers at qx and q[ respectively be that pair
of circles in {Q0}AB which has the minimum distance e between their
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centers, and let S1 be the corresponding generator. We may take qλ at
the origin and q[ to be positive and real. Thus

(13) Q1: I z I = 1 Qί:\z-qi\ =

With this choice, we find from equation (6) that a + d is real and
I a + d I > 2; hence Sλ is hyperbolic.

By hypothesis, the distance between q1 and q[ is smallest for the
circles Q1 and Q[ in comparison with any other two circles in {Qo} ;̂
also, all of the circles in {QQ}AB are equal. Consequently, we conclude
from Lemma 13 (i) that the circle S^Ql) c Q[ has the maximal radius
for all circles of the first generation. We denote by qSχ the center of
Si(QJ). By noting that Sx is hyperbolic, it follows from Lemma 13 (iii)
together with simple geometrical considerations that the distance between
qSl and q1 is minimal in comparison with the distance between the center
of any other circles S^Qj) c Q[ of the first generation and the center
of any circle in {Q0}AB exterior to Q . Consequently, if we apply Lemma
13 (i) again, we find that SftQl) c Q[ has the maximal radius for all
circles of the second generation.

Another application of Lemma 13 (iii) shows that the distance be-
tween qs2 and qλ is minimal in comparison with the distance between
the center of any other circle Sλ o S^Qj) c Q[ of the second generation
and the center of any circle in {Q0}ΛB exterior to Q[. Similarly we ob-
tain a corresponding result for the wth generation. We conclude by
induction that the circle SΓ(Qί) c Q[ has the maximal radius for all
circles of the nϊh generation for all n.

Let rn denote the radius of Sf(Q[) c Q[. We note that Sλ and Sr1

have the isometric circles Qx and Q[ respectively. Consequently Theorem
8 (iii) is applicable and we obtain

where c refers to the coefficient of the linear transformation correspond-
ing to Sίw+1. By utilizing this equation and equations (9), (13), (6), (7)
and (8) and replacing q[ by β, we obtain

W-4
f-e-1
V

rV
2

e 2 - 4 y»+

Ve%

ι-(
\

- 4

- e J
h i /

2
e2 - 4

)

, l/V - 4
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The total number of circles in the nth generation is 2p(2p — l)n.
We denote the total length of these circles by Ln. Then

Aπp(2p - l ) V e 2 - 4

-e + τ / β 2 - 4 Y w + 1

 + (e + Ve2

9 /

We find that

lim. Ln = 0
n—»oo

if

2>< (e + τ/e2 - 4)2 + 4 _
8 4

Because m(E8) S limn_»ooLn, this is the required criterion.

COROLLARY. Suppose that the Schottky covering surface F$ corre-
sponds to a Schottky group G with p generators. Let G be associated
with a configuration {Q0}ΛB which satisfies Condition C of Theorem 9.
Then the boundary of the conformal equivalent of F$ in the plane has
zero linear measure.

Proof. By definition the boundary of the conformal equivalent of
Fs in the plane is the singular set of G. The conclusion then follows
immediately from Theorem "9.

4 Classification of Riemann Surfaces*

4.1. EXHAUSTIONS AND HARMONIC MODULI. An arc is analytic if
it is the conformal image of a closed interval in the complex plane.

By virtue of the countability of a Riemann surface there always
exists on such a surface an exhaustion which may be described as follows.

DEFINITION. A nested sequence {wn} of compact regions is an ex-
haustion of an open Riemann surface W if

( i ) Wn is interior to Wn+1.
(ii) The boundary βn of Wn consists of a finite number of closed

disjoint piecewise analytic curves.
(iii) Each complement Wn — Wn_λ consists of a finite number of

disjoint noncompact regions.
(IV) \Jn^Wn= W.
For every n (n — 0, 1, •), the complement Wn — Wn-i consists of

a finite number k(n) of disjoint subregions Enί (i = l,2, •• ,/c(^)) of
finite genus. The boundary of Eni consists of two or more closed disjoint
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piece wise analytic curves which are subsets of βn_λ and βn. We denote
the intersections of the boundary of Eni with βn_λ and βn, by βni and
β'm respectively. There exists on Eni a unique harmonic function uni

which is continuous on the closure of Eni, vanishes on βni and is con-
stantly equal to unity on β'ni. The function unl is called the harmonic
measure of β'nt with respect to Eni.

If Eni is planar and βni and β'nt each consist of one component, then
Eni is doubly connected. In this case, the function U = eUni+ίu*ni maps
Eni conformally onto an annulus, where ult represents the conjugate
harmonic function of uni.

Let Eni (i = 1, 2, , k(n) < oo, n = 0,1, •) be a collection of
doubly-connected subregions of the open Riemann surface W, which may
be represented as annuli and which satisfy the following conditions:

( i ) Each annulus Eni is bounded by two closed, disjoint and piece-
wise analytic curves βni and β'nt.

(ii) Any two of the annuli have no points in common.
(iii) The complementary set of \JίLnιEni with respect to W has

precisely one compact component Wn.
(iv) Wn is bounded by the k(n) curves and contains the annuli Enli

with n' < n.
We define the harmonic modulus μni of Eni as

μnt = 2π

4.2. GENERAL CONCEPT. The classification problem will be studied
from the viewpoint of Sario [13] which classifies open Riemann surfaces
according to their possession or nonpossession of a given property P
shared by all closed Riemann surfaces. If W has the property P, we
say that W has a removable boundary with respect to P. Thus the
behavior of the open surface with respect to P is the same as if it were
closed, that is, had no boundary. We will consider three properties
shared by all closed Riemann surfaces, namely, they possess no G, AD
or AB functions.

4.3. THE CLASS 0G. The Green's function g(z, ξ) of a relatively
compact Jordan region R is defined as the unique harmonic function on
R which possesses the singularity — \og\z — ξ\ at a point ξ e R and
which vanishes continuously on the boundary β of R.

In order to generalize this definition to an arbitrary open Riemann
surface, we will require the well-known Harnack's Principle which we
state in the following form [2].

LEMMA 14. Suppose that a family <%/ of harmonic functions on a
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Rίemann surface W satisfies the following condition.
To any ui9Uj e ^ there exists a uk e <%s with % >̂ max (ul9 u3) on W.
Then the function

U(z) = sup ut(z)

is either harmonic or constantly equal to oo.
We consider an open Riemann surface W and an exhaustion of the

type described in subsection 4.1. If Wn is one of the compact elements
of the sequence {Wn} in the exhaustion, its Green's function gn(z, ξ)
has the usual interpretation. By the maximum principle gn(z, ξ) is a
monotone increasing sequence of harmonic functions on W. Consequently
by Harnack's principle, the sequence has a limiting function g(z, ξ) on
W which is either harmonic with the exclusion of the pole —\og\z — ξ\
or else is identically infinite. In the first case we define g(z, ξ) to be
Green's function for W with a pole at ζ. It can be shown that if the
Green's function g exists it is the smallest positive harmonic func-
tion with the singularity —\og\z — ζ\. Also it satisfies the equality
inf g = 0. If a harmonic function with the same singularity as g tends
to 0 as z approaches the boundary of W, then it is identical with g.
We conclude that the Green's function is independent of the exhaustion.

LEMMA 15. Mori [8]. Let F* be a homology covering surf ace of a
closed Rίemann surface F and let r[Γ(F£)] be the rank of the group of
cover transformations of F*. Then F£ e 0G if and only if r[Γ(Ff)] ^ 2.

THEOREM 10. Let Ft be a regular covering surface of a closed
Riemann surface F such that Ft is weaker than the commutator cover-
ing surface of F, or equivalently

T{Ft) = Ntcz T(F) , Nt^NCf NJNC = Ht c H(F) .

Then Ft e 0G if and only if

or equivalently

(ii) 2p - 2 S r(ίζ) ^ 2p .

Proof. To prove (i) we note that by Theorem 4, Ft is a homology
covering surface. The conclusion then follows from Lemma 15 and
Theorem 5 (i).

To prove (ii), we note that Ft is a homology covering surface and
F is orientable. Consequently, Theorem 7 for the orientable case is
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applicable. We obtain

r[Γ(Ft*)] = 2p - r(Ht) ,

in which

0 ^ r(Ht) ^ r[H(F)] .

If Ft* satisfies (i),

r[Γ(Ft*)] ^ 2 .

Therefore,

2p - 2 ^ r(fζ) ^ r[ff(F)] .

Conversely, we suppose that F* satisfies (ii). Then

r[Γ(Ft*)] = 2p- r(Ht) ^ 2p - (2p - 2) - 2 .

Hence, (i) and (ii) are equivalent.

4.4. THE CLASS 0^. If f(z) is an analytic function on a Riemann
surface W, the Euclidean area of the image W is given by the Dirichlet
integral

where z = x + ίy is the local variable. It follows that the existence
on W of an AD function implies the existence of a conformal equiva-
lent of W with finite Euclidean area. For simply-connected regions, the
possibility of conformal equivalence with a finite or infinite disk is pre-
cisely the classical type problem. Hence the classification according to
®AD is a generalization to arbitrary Riemann surfaces of this classical
problem.

LEMMA 16. Mori [8]. If F* is a homology covering surface of a
closed Riemann surface, then F* e 0AD.

THEOREM 11. // F* is a regular covering surface of a closed
Riemann surface F such that F* is weaker than the commutator
covering surface of F, or equivalently

= N,c: T(F) , Nt D NG

then

F* e 0AΌ .



1284 SIDNEY M. HARMON

Proof By Theorem 4, F* is a homology covering surface. The
result is then a consequence of Lemma 16.

4.5. THE CLASS 0^. If we consider an AB function f(z) defined
in a region W, of the extended complex plane, which is complementary
to a finite set of isolated points {pj, it is well known from the classi-
cal theory that the singularities {p^ can be removed by appropriately
defining f(z) at the points pt. Painleve [10] generalized this concept by
investigating the analytic continuation of AB functions across arbitrary
point set boundaries of regions in the extended complex plane. This is
the classical Painleve's problem.

The connection of the classification according to 0AB with Painleve's
problem is shown by the following lemma.

LEMMA 17. [10], [1]. Suppose E is a compact set in the extended
plane and W is its complement. Let G be a relatively compact region
in the plane with analytic boundary a and JScG. If Go = G — E,
then every AB function, defined in Go, possesses an analytic continuation
to all of G, if and only if W e 0AB.

Proof. Suppose that W e 0AB. Let F(z) e AB be defined in GQ.
By the compactness of E we can enclose the points of E in a finite
number of piecewise analytic closed curves {CJ. We apply Cauchy's
integral formula to the region contained in G but exterior to {CJ.
Then we can write

f(z)=Λ(z)+A(z),

where fx(z) is analytic in G, and f2(z) is analytic in the region exterior
to {Q. We have for /2(z),

where M is the supremum of f(z), I is a finite length and p > 0. Con-
sequently f2(z) is an AB function in W. Because W e 0AB, f2(z) is
constant. Consequently fx{z) + constant is an analytic continuation of
f(z) across E.

Conversely, we suppose that the analytical continuation across E is
possible for every AB function defined in Go. If f(z) is an AB function
on W, then the analytic continuation of f(z) across E is an AB function
in the extended plane. Therefore/(#) must reduce to a constant. Hence
we conclude that W e 0AB.

The lemma just proved shows that Painleve's problem is the special
case of the classification according to 0AB, where the surface is restricted
to plane regions.
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The following lemma is implicit in the works of Painleve [10].

LEMMA 18. Let E be a compact set in the extended plane and let
W be the complement of E. If the linear measure of E is zero, then
WeOAB.

The following is a generalization of Lemma 18.

THEOREM 12. Let W be an open Riemann surface with boundary
β. Suppose that there exists a planar neighborhood N of β such that
the relative boundary of N is a single contour a. If the boundary of
the conformal equivalent of N in the plane has zero linear measure,
then W e 0AB.

Proof. N is planar by hypothesis; therefore it can be mapped con-
formally onto a region Nf of a disk K: \z\ < 1. In this mapping β
appears as a closed point set E interior to K. The linear measure of
E vanishes by hypothesis; therefore by Lemma 18, We 0AB.

If W is of finite genus p with boundary β, then the postulated
planar neighborhood of β in Theorem 12 is assured. For in this case,
we can find a compact region Wo c W, with genus p, bounded by a
single contour a, with a lying entirely in W. The complement N =
W — WQ is then a planar neighborhood of β and has a single contour a
as its relative boundary. The following corollary is then an immediate
consequence of Theorem 12.

COROLLARY. // W is of finite genus and if the linear measure of
β vanishes under the conformal mapping of N in the plane, then
WeOAB.

THEOREM 13. Let F be a closed Riemann surface of finite genus
p. Suppose that there exists for the Schottky covering surface F$ of
F a modified configuration {Q0}ABJ in the sense of subsection 3.5 such
that p < (e/4)(e + Ve2 - 4). Then F£ e 0AB.

Proof. By the corollary to Theorem 9, the boundary of the con-
formal equivalent of Fs in the plane has zero linear measure. We note
that Fs is an open Riemann surface of zero genus. The conclusion
then follows from the corollary to Theorem 12.

We consider an open Riemann surface W on which the domains of
the homeomorphism ht e {h} are denoted by Δt. Let X(z) be a continuous
and positive (except for isolated points) function on each domain Δi of
W. If two domains Δ3 and Δk overlap, let λ(z) satisfy the covariance
relation
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dz
Zj) = X(zk)

at corresponding points Zj and zk in Δj Π Δk. We further require that
all points in W have an infinite distance from the ideal boundary of W.
We say that the differential

ds = X(z) I dz I

defines a conformal metric on ΫF, if it satisfies all the conditions just
indicated.

Suppose that a conformal metric is defined on W. We fix a point
0 in W and let Dp be the domain formed by those points whose distance
from 0 is less than p, where 0 < p < oo. For p < oo, we assume that
the domains are compact and that they generate W as p —* oo. Each
domain Dp is bounded by βp, where βp consists of a finite number k(p)
of closed disjoint piece wise analytic curves, βpl, βp2, , /5p[fc(p)]. Let

li=\ ds, i = l ,2 , •• ,fc(/o),

./!(/>) = max \ cίs ,

ίΓ(iV) - max k{p') .

Then we have

LEMMA 19. (Pfluger [11]). If

Πϊn Γ 4 π Γ - ^ - - logK(N)] = ™
iv̂ -oo L Jo A(p) J

on W, then W e 0AB.
In [8], Mori states without proof a modification of Lemma 19 which

does not involve the assumption of a conformal metric on the surface.
For the modified version of the lemma, we assume an exhaustion of W
and obtain as in subsection 4.1 the corresponding collection of annuli
{Enί}. We set

μn = minμw i = 2πl\ du*t ,

K(N) = max k(n) .

Then we prove

LEMMA 20. / /
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then

WeOAB

Proof. We consider the postulated exhaustion of W and the corre-
sponding annuli {Enί}. Let Enί be one such annulus which is bounded
by βni and β*t and let uni(z) be the harmonic measure of β*% with re-
spect to Eni. By the maximum principle, 0 < uni(z) < 1 in Enί. We
define the function uni(z) to be the distance of the point z from βni.
Then the function | grad uni(z) | defines a conformal metric on the annulus
Ent, for which

ds = I g r a d u n i ( z ) \ \ d z \ .

Let βPi denote the set of points on Eni which have the distance p
from βni. Then

lt = ί ds = ( ^ 2 i I dz I ( d <
μn

where dn is normal to ds.
The result then follows from Lemma 19.
In [8], Mori utilized Lemma 20 to prove

LEMMA 21. Let F* be a homology covering surface of a closed
Riemann surface F. Suppose that the group of cover transformation
Γ(F*) has the system of 2p generators C2t-lf C2ί (i = 1, 2, •••,#>). If
there exists for each i a relation of the form

^i-lCu-l + ΓΪ2iC2i = 0

where r/2i-1 and γ2i are integers and do not vanish simultaneously, then
F: e 0AB.

Let F be a closed Riemann surface of genus p. Suppose that F is
cut along p disjoint nondividing cycles to produce a planar surface Fj.
Following Royden [12], we shall refer to a regular covering surface F*
of F as a covering surface of type S, if it consists of a finite or infinite
number of copies of Fo\

COROLLARY. [8]. A homology covering surface F* of type S of a
closed Riemann surface F is in 0AB.

Proof. Let the 2p nondividing cycles C2i-19 C2i (i = 1, 2, , p) cor-
respond to the 2p generators of Γ(F*). If we cut F along the non-
dividing cycles Cu-X (i = 1, 2, , p), then the cycles C2ί_i correspond to
the identity element in Γ(F*). Hence we may take j 2 i ^ x — 1 and y2i = 0
and obtain
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72ι-iC2 <-i + Ύ2iC2t = 0 , (i = 1, 2, , p) .

The conclusion then follows from Lemma 21.

THEOREM 14. Let Ft be a regular covering surface of a closed
Rίemann surface F of genus p such that Ft is weaker than the com-
mutator covering surface of F, or equivalently,

T{F?) -N.cz T{F) , N, =) Nc , (NJNC) ~ Ht c H(F) .

Suppose that
( i ) Γ(Ft*) has the 2p generators C2i-i, C2i (i = 1, 2, , p) such

that C2ί_i, C2i correspond respectively to a2i-19 a2i under the isomorphisms
of Theorem 5 (i). // there exists for each i = 1,2, , p a relation of
the form

Ύ2t-1^2i-l + Ύϊi^i = 0

where γ2i_! and y2i are integers and do not vanish simultaneously, and
α2ί_i, a2i (i = 1, 2, , p) refer to the 2p generators of the Abelian
groups

H(F) T(F) d T(F)INC

or
(ii) Ff is of type S,

then Ft e 0AB.

Proof. By Theorem 4, Ft is a homology covering surface. The
conclusion then follows from Lemma 21 and its corollary in conjunction
with Theorem 5 (i).
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THE MULTIPLICATIVE SEMIGROUP OF

INTEGERS MODULO m

EDWIN HEWITT AND H. S. ZUCKERMAN

l Introduction* Throughout this paper, m denotes a fixed
integer >1 . The set of all residue classes modulo m is denoted by Sm.
For an integer x, [x] denotes the residue class containing x. Under the
usual multiplication [#] [2/] = [xy], Sm is a semigroup. The subgroup of
Sm consisting of all residue classes [x] such that (x, m) = 1 is denoted
by Gm.

We write m = Πί=i V*3> where the Pj are distinct primes and the
aj are positive integers. Following the usual conventions, we take void
products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups
is discussed. In § 2, we work out this structure for Sm. In § 3, we
give a construction based on [2], 3.2 and 3.3, for all of the semicharacters
of Sm. In § 4, we prove that if % is a semicharacter of Sm assuming a
value different from 0 and 1, then Σ[aαesTO %([#]) = 0 I n § 5, we compute
X([x]) explicitly in terms of the integer x, for an arbitrary semicharacter
X of Sm. In § 6, we discuss the structure of the semigroup of all semi-
characters of Sm.

Our interest in Sm arose from seeing the interesting paper [4] of
Parίzek and Schwarz. Some of their results appear in somewhat dif-
ferent form in § 2. Other writers ([1], [5], [6], [7]) have also dealt with
Sm from various points of view. In particular, a number of the results
of §2 appear in [6] and in more detail in [7]. We have also benefitted
from conversations with R. S. Pierce.

2. The structure of Sm. Let G be any finite commutative semigroup,
and let a denote an idempotent of G. The sets Ta = {x : x e G, xm = a
for some positive integer m} are pairwise disjoint subsemigroups of G
whose union is G. The set Ua = {x : x e Ta, x

ι = x for some positive
integer 1} is a subgroup of G and is the largest subgroup of G that
contains a. For a complete discussion, see [2], 2.6-2.11. In the present
section, we identify the idempotents a of Sm and the sets Ta and Ua.
We first prove a lemma.

2.1 LEMMA. Let x be any non-zero integer, written in the form

α, & ^ 0 , ( α , m ) = 1 .
3 = 1

Received January 9, 1960. The authors gratefully acknowledge financial support from
the National Science Foundation, under Grant NSF—G 5439.
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Then there is an integer c prime to m such that

r

x = Π pft c (mod m),

where X3 = min (aj9 β3) (j = 1, , r). If
r

x ΞΞ Π Pp d (mod m) ,

0 ^ μ3 ^ a3 (j = l, , r) and (d, m) = 1, then μ3 — \3 (j = l, , r).
However, it may happen that d ^ c (mod m).

Proof. Let b = Π Pj Then we have

x -f. 6m = p î . . . p^α + p"1 p*r6

= npf n ( ^^- (Aα + β) ,

where

r
A = z TΊ /vjmax(0, (βj—OOJ))

and

B = Π p ^ ^ ' ^ - ^ ^.δ .

Then it is easy to see that (Aa + B, m) = 1, so that

# — Π p ^ ^ ̂  c (mod m) ,
J=i

where c = Aα + 5 is prime to m. The last two statements of the
lemma are also easily checked.

2.2 THEOREM. Consider the 2r sequences {Slf •••, δr}, where δ3 = 0
or a3(j = 1, , r) . Corresponding to each such sequence, there is ex-
actly one idempotent of the semigroup Sm, and different sequences give
different idempotents. The idempotent corresponding to {δlf , δr} can
be written as

where d is any solution of the congruence

ΠpJ'-cZsl (mod ΠPΠ
5=1
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Proof. An element [x] of Sm is idempotent if and only if
x2 = x (mod m). If x is written as in 2.1, this congruence becomes
~Ώu=ιΊ>Tuc2 — Π J = I P J J C (mod m), which is equivalent to

(1) Π ? N = 1 (mod Π P?'-
5 = 1 \ 5 = 1

The congruence (1) has a solution c if and only if Πϊ=i P^ * s relatively
prime to Πί=i PP~λj> that is, if and only if λ̂  = 0 or <x5 (j — 1, , r).
If c0 is a solution of (1), then all solutions of (1) are given by

c = c0 + y Π PP~ λ j ,

where 2/ is an integer. Plainly

for all such c.
We have thus proved the existence of a unique idempotent

corresponding to a sequence {819 , δr}, where δj = 0 or α̂  (j — 1, , r).
If {δi, * ,δr} and {δj, -- ,δί} are distinct such sequences, the corre-
sponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

and

δe idempotents in Sm, written as in 2.2. Then their product is the
idempotent

as in Theorem 2.2.
This follows directly from 2.1 and the obvious fact that products

of idempotents are idempotent.
We next determine the sets Ta and Ua defined above.

2.3 THEOREM. Let
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LJ=I

be any element of Sm, where 0 ^ X3 ̂  a3 (j — 1, , r) and (c, m) = 1.
[#] e Γa, where the idempotent

α = Π V*u

λj>0

and d is as in 2.2.

Proof. The idempotent a such that [#] e Ta has the property that
[x]n1c = α for some positive integer fc and all integers n ^ some fixed
positive integer n0 (see [2], 2.6.2). For n = no ma,x(a19 •• ,ar), 2.1
implies that

a = [x\nΊc = [xnk] = Γ π py*\>.cn*l = Γ π PfΏ{nkλJ•^)

where δ, = 0 if λ, — 0 and 8̂  = a5 if λ̂  > 0, and d' and d are relatively-
prime to m.

2.4 THEOREM. Let

6e α/m/ idempotent of Smf written as in 2.2. T7ιe group Ua consists of
all elements of Sm of the form

where (c,m) = 1.

Proof. Let [x] e £7α. Then for some integers I > 1 and k >̂ 1 and
all integers w ̂  no» we have [a;]z = [x] and [#]wfc = a. This implies that

ί . Writing x as in 2.1 and using 2.1, we now have

Π ^ C = f[ j^<»*+«c»*+i = JJ p ? j . ^ ( m o d m ) ,
J=i 1=1 lίlZ

provided that n is sufRciently large; here {h, m) — 1. From 2.1 we infer
that Xj = 0 or a3 (j = 1, , r) . Since [x] e Z7αc Γα, 2.3 now implies that
Xj = δj O' = l, -- , r ) .

Now let # = Πjf=iPjJ#c> where (c, m) — 1. Then 2.3 shows that
[x] e Γα. To prove that [x] e Ua, we need to find an integer I > 1 such
that [x]1 = [a?]. This is equivalent to finding an I such that
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r \l r

JJ p]) c) = Π P]j c (mod m) ,
•5=1 / 5=i

and this congruence is equivalent to the congruence

(τiPΪ-c)1'1^! (mod f[pV

Since

is relatively prime to the modulus, such an I exists.
We now identify the groups Ua.

2.5 THEOREM. Let

be any ίdempotent of Sm, written as in 2.2. Let

5=1

The group Ua is isomorphic to the group GA,

Proof. For every integer x, let [x]' be the residue class modulo A
to which x belongs. For [x] e Sm, let τ([x]) = [x]r. Plainly τ is single-
valued and is a homomorphism of Sm onto SA. We need only show that
r is one-to-one on Ua. If (c, m) = (c*, m) = 1 and

then

Π lή'-c = Π P5j c* (mod A) ,
5=1 5=1

which implies that c == c* (mod ^L), because (Πϊ=i ^ J ^ A) = 1. Since
IK=i £>5J ^. = m, we can multiply the last congruence by Π J U v)j to obtain

Π Pji#c = Π p^ c* (mod m) .

3 A construction of the semicharacters of Sm. A semicharacter
of Sm is a complex-valued multiplicative function defined on Sm that is
not identically zero. The set Xm of all semicharacters of Sm forms a
semigroup under pointwise multiplication, since [1] is the unit of Sm
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and X([l]) = 1 for all X e Xm. In this section, we apply the construction
of [2], 3.2 and 3.3, to obtain the semicharacters of Sm. In § 5, we will
give a second construction of the semicharacters of Sm, more explicit
than the present one, and independent of [2], This construction will
enable us to identify Xm as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters
of Sm in terms of the groups Ua. Let χa be any character of the group
Ua. We extend χa to a function on all of Sm in the following way:

/ .. x γ(\xi\ _ ίθ if ab ^ a for the idempotent b such that [x] e Tb;

Xa([%\ά) iΐ ab — a for the idempotent b such that [x] e Tb.

The set of all such functions X is the set Xm.

3.1 THEOREM. The semigroup Xm has exactly

Π(i + W - W-1)

elements.

Proof. For each idempotent a — [pi1 p^c] as in 2.2, (1) yields
as many distinct semicharacters of Sm as there are characters of the
group Ua. The group Ua has just as many characters as elements. By
2.5, Ua consists of

<p(iL Pjj~8j) = Π {pp-'iPj - i)}

elements. Also, distinct idempotents a and b of Sm yield distinct semi-
characters of Sm under the definition (1). Therefore the number of
elements in Xm is

(2) Σ ψ(fί PP'BJ) = Σ Ψ[ Π Pp) = Σ ( Π Ψ{PV)

= Π (l + Ψ(PV)) = Π (l + Ί>V - W'1)

The sums in (2) are taken over all sequences {8lf , δr} where each δ,
is 0 or a3.

3.2 THEOREM. Let X be a semicharacter of Sm as given in (1) with
the idempotent a = [pi1 pl^d], and let χr be a semicharacter with the
idempotent a — {pξί ••• pfrd']. Then the semicharacter χχr is given by
(1) with the idempotent a" = [pj»ln<«i.«ί> . . . p^ in(δr δPcί].

This theorem follows at once from 2.21 and the definition (1).
We now prove two facts needed in § 4.



THE MULTIPLICATIVE SEMIGROUP OF INTEGERS MODULO m 1297

3.3 THEOREM. Let X be a semicharacter of Sm that assumes some-
where a value different from 0 and 1. Then X assumes a value different
from 1 somewhere on Gm.

Proof. Definition (1) implies that the character χa of Ua assumes
a value different from 1. It is also easy to see that Gm — ULll. For
[x]eGm, definition (1) implies that X([x]) — Xa(a[x]) We need therefore
only show that the mapping [x] —> a[x] carries Gm onto Ua.

Write a = [pi1 plrd\. Every element of Ua can be written as
[pi1 p8

rrc] where (c, m) = 1, by 2.4. We must produce an [x] e Gm

such that a[x] — [pi1 ••• pfo]. That is, we must produce an integer x
such that

{ 3) Π Pjj dx = Π v)uc (mod m)
3=1 0=1

and (xy m) ~ 1. The congruence (3) is equivalent to

(4) ώ - c ί mod Π Pp'*

Since d is relatively prime to the modulus in (4), the congruence (4)
has a solution x0. We determine x as a number

where I is an integer for which

Xo + lή PV~δj = 1 (mod Π
3=1 \ 3=1

Clearly

3 = 1

satisfies (3) and the condition (x, m) = 1.

3.4. Let {X19 , λr} be a sequence of integers such that 0 ^ λ̂  ^ aό

(jf = i ? . . , r), and consider the set V(X19 , λr) of all [p]:1 p^χ\ e Sm

with (x, m) — 1. It is easy to see that this set is contained in Ta,
where a is the idempotent

Γ Π W'd\ .

3.5 THEOREM. Given Xlf « ,λ r, there is a positive integer k such
that the mapping [x] —> [pi1 p^χ] of Gm onto V(Xlf , λr) is exactly
Jk to one.
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Proof. Let u be any integer such that (u, m) = 1, and let [αjj,
• , [χkj be the distinct elements of Gm such that [pϊ1 pfrxj] —
[Pi1 ••• p)ru\. That is,

pϊ1 PrτXj = pi1 2>rr^ (mod m) (i = 1, , ku) .

Let u* be any solution of uu* = 1 (mod m). If (v, m) = 1, then we
have

p ^ p$ru*vxj Ξ= j£i pjto; (mod m) .

Since (u*vxj9 m) = 1 (j = 1, , &w) and the elements [u*vx& , [M*MCJ ]
are distinct in GTO, it follows that ku fg fc,,. Similarly, we have kυ ^ fcM.

4 A property of semicharacters of Sm. It is well known and
obvious that if H is a finite group and % is a character of H, then
ΊjχeiiX(%) = 0 or o(H) according as X Φ 1 or X = 1. This result does
not hold in general for finite commutative semigroups. As a simple
example, consider the cyclic finite semigroup T= {x, x\ , x\ , c^+fc~1},
where xι+7c = x\ and I and I + & are the first pair of positive integers-
m,n,m < n, for which xm = xn. The following facts are easy to show,
and follow from the general theory in [2]. The subset {x\ xι+1, , α?z+fc~1}
is the largest subgroup of T. Its unit is the element xUJC, where the
integer u is defined by I ^ uk < I + k. The general semicharacter of
T is the function X whose value at xh is exp (2πihj/k), where j = 0,,
1, , k - 1. For j = 1, 2, . , k - 1, the sum Σ^iί" 1 XO*̂ ) is equal to

1 - exp

which is 0 if and only if &/(&, i) divides i . Hence the sum of a semi-
character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for
the semigroup Sm.

4.1 THEOREM. Let X be a semicharacter of Sm that assumes some-
where a value different from 0 and 1. Then ^ M e s Z([^]) = 0.

Proof. It is obvious from 2.1 that the sets V(\, * ,λ r) of 3.4
are pairwise disjoint and that their union is Sm. We therefore need
only show that Σcχ]eF(λl, ,v X([x]) = 0 for all {Xlf « ,λ r}. By 3.3, %
assumes a value different from 1 somewhere on the group Gm, so that
ΣMec7mZ(M) = 0. (Note that X on Gm is a character of the group Gm.)
Thus we have 0 = Σ M € * m Zίbϊ 1 P>])X([x]) - Σ M e ^ m Z(biλl P>x]) =

where [y] runs through F(λ2, * ,λ r ) .
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5 A second construction of semicharacters of Sm. In this section,
we compute explicitly all of the semicharacters of Sm. The case m even
is a little different from the case m odd. When m is even, we will
take Pi = 2. To compute the semicharacters of Sm9 we need to examine
the structure of Sm in more detail than was done in §3. For this
purpose, we fix once and for all the following numbers.

5.1 DEFINITION. For j = 1, , r, let

g3 — a primitive root modulo pp if p3 is odd;
& = 5 if p1 = 2;
hj = g3 + i/jP^ where y3 is such that h3 Ξ= 1 (mod m/pp);
h0 = — 1 + 7/oPf1 where y0 is such that h0 = 1 (mod m/pf1);
q̂  — p̂ . + ^.pp where z3 is such that q3 ΞΞ 1 (mod m/pp);

For j = 1, , r, Z = 1, •• ,r9 j Φl9 and pτ oddf let kn be a positive
integer such that p3 Έ= ghi (mod p*0.
i^or j = 2, , r αmZ ί?i = 2 Zeί

&,! δe α positive integer such that p3 = ( — l){pj-1)l2g*ji (mod pf1)-
Plainly τ/0»1/iy '",Vr and ^, * ,^ r exist. For pτ odd, the integers

feji exist because gz is a primitive root modulo pp. For px — 2, the
integers kn exist for ^ ^ 3 by [3], p. 82, Satz 126. For <xx = 1 or 2,
k31 can be any positive integer.

5.2. Let a? be any integer ^ 0 . Then x = Tlrj=iP$j{xKa(x), where
βj(x) ^ 0 and {a{x), m) — 1. Plainly the numbers β3 = /3j(ίc) and α = a(x)
are uniquely determined by x. For i = 1, , r and p3 odd, let
e j = e3(x) be any positive integer such that

a(x) = 0^(x) (mod ^ ) .

The number e,(x) is uniquely determined modulo <p(pp). For px = 2, let

ex — ex(x) be any positive integer such that

a(x) = (-i)^^)-!)/^!^) (mod pfi) .

For «! ^ 3, ex{x) exists and is uniquely determined modulo p*1'2 (see [3],
p. 82, Satz 126). For aλ = 1 or 2, e^aj) can be any positive integer.

If m is even, let

) π
If m is odd, let

do) A(x) = ( Π Π

jl /\j=l
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If m is even, it is easy to see from 5.1 that

( 2 ) A(x) s ( ή ( - l ) ( » r V ) ( j j flrf^pfl(_1)(β-i,/,flfβ1 ( m o d p f l

= Π P / P?1^ = & (mod p-i) ,
j = 2

and, if w — 2, , r,

= Π &3*Jn-Pίn9βnn = Π Pp-P^a = % (mod #J») .
.7=1 )=1

Therefore A(x) = x (mod m) if m is even.
If m is odd, then for w = 1, , r, we have

A(X) = Π 9njkjnmPnn9%n = Π PjUPnnU = % (mod p%") .

Therefore A(x) = x (mod m) if m is even or odd.

5.3. Suppose that X is any semicharacter of Sm. Let ψ be the
function defined for all integers x by the relation ψ(x) = Z([#]). Then
ψ is obviously a semicharacter of the integers under multiplication, and
ψ(x) = ψ»(y) if x = ?/ (mod m). We will construct the semicharacters
of Sm by finding all of the functions ψ with these properties. As 5.2
shows, ψ is determined by its values on ho,hlf ' *,hr and q19 •• ,g r.
We now set down relations involving the h's and q's which restrict the
values that ψ can assume on these integers.

5.4. If pj is odd, then

hppjj) = 1 (mod pV) , hfpj3) = 1 mod - ^ )
V ppJ

hence

h?p*j) = 1 (mod m) .

Also,

hi = 1 (mod pf 0 , hi Ξ= 1 (mod — )

hence fcj = 1 (mod m).
If PJ_ = 2 and a^ = 1, then Λ,o = 1 (mod 2), Λo = 1 (mod m/2); hence
h0 = 1 (mod m).
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If px = 2 and aλ = 1 or 2, then
hx = 5 = 1 (mod p?1), ^ = 1 (mod m/pf1); hence hλ = l (mod m).
If Pi = 2 and αx ^ 3, then

hfλ~2 = 1 (mod pp), Λ?*1"2 = 1 (mod m/p?); hence λfx"2 = 1 (mod m).
(The first congruence on the line above is proved in [3], p. 81, Satz 125.)

For j = l, , r, we have

qp E= 0 , qphj = 0 , gp+ 1 = 0 (mod vV) ,

gp = 1 , ? J ^ = 1 , qp^ = 1 (mod ^ t ) .

Therefore we have

qp = g^fcj = g^'+1 (mod m) .

Also, if pλ = 2, we have

??i = 0 , q*% = 0 (mod pΓ) ,

ff?1 = 1 , βf^o = 1 (mod -™Λ .(

Therefore we have

q^ Ξ qfihQ (mod m) .

5.5 If ψ is to be a function on the integers such that ψ(x) = χ([^])
for some semicharacter % of Sm, then the choices of the values of ψ at
the h's and g?s are restricted by the congruences modulo m derived in
5.4. Thus, since %([1]) = 1, we have

ψQι3Y
{pJj) = 1 if pj is odd;

ψ{h0) = ± 1, and ψ(hQ) = 1 if aλ = 1 and px = 2;

) = 1 if px = 2 and' ax = 1 or 2;

'2 = 1 if px = 2 and ^ ^ 3.

Also we have

ψ(g.)^ = ψiq^ψihj) - ^ ( g ^ + 1 for i = 1, ., r .

If px = 2, we have

The last two equalities give us:

ψ(qj) Φ 0 implies ψ(hj) = ψ(q3) = 1;

and



1302 EDWIN HEWITT AND H. S. ZUCKERMAN

ψ{?1) φ 0 implies ψ(h0) = 1 if px = 2.

5.6. To construct our functions ψ, we now choose numbers ω0,
<£>i, •• >ωr a n ( i fa* •• >£*r which are to be ψ(h0), ψ(hj, Λ"9ψ(hr) and

ψ(Qi)y φ ,ψ(Qr)' The relations in 5.5 show that we must take these
numbers such that:

ωppjj) = 1 if j = 1, , r and p3 is odd;

ύ>0 = ± 1; o)0 — 1 if Vi — 2 and αx = 1, or if m is odd1;

tϋj = 1 if Pi = 2 and αx = 1 or 2;

ωf 1~2 = 1 if p1 = 2 and aλ ^ 3;

/t, = 0 or 1 if j = 1, -- , r ;

α>j = 1 if μ3 = l , i = 1, « , r ;

α)0 = 1 if Pi = 2 and /^ = 1.

Formulas (le) and (l0) of 5.2 now require us to define ψ(x) for non-
zero integers x as follows:

v - / \i=i 3=1

. ω (αω-Wij ^ j(x)N) if w is even2;

\ / r \ / r \

(30) ψ(x) = ( Π Π ω^{x)Ίcn) Π ^ ( x ) ) ( Π ^>?(:c)) if m is odd.
l=l j=l

Finally, we define ψ(0) = ψ(m).

The q's, Λ's, and it's appearing in (1) and (3) were fixed once and

for all in terms of m. The α>'s and μ's are at our disposal and serve

to define ψ. The β's are determined uniquely from x; but the e's are

not. As noted in 5.2, ê  is determined modulo φ(pfj) if p3 is odd, and

ex is determined modulo pf1"2 if pλ = 2 and αx ^ 3. Since α>f (1>*J) = 1 if

Pj is odd, ωf1'2 = 1 if px = 2 and αx ^ 3, and ^ = 1 if p± = 2 and

αx ^ 2, we see that ψ is uniquely defined by the formulas (3e) and (30).

5.7. We now prove that ψ(xy) = ψ(x)ψ(y). Since ψ is obviously
bounded and not identically zero, this will show that ψ is a semicharacter.

Suppose first that x Φ 0, y Φ 0. Then we have

•Us\Jϋ) , y — \_\_ Pj UKv) J άy — J[χ PjJ ^J U/\Jί/)U/\y) .
J = i 3=1 3=1

1 We take ωo = 1 when m is odd merely as a matter of convenience. Actually, as will
shortly be apparent, ωo does not appear in the definition of ψ if m is odd.

2 We take 0<> = 1.
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Therefore a(xy) = a(x)a(y) and βj(xy) = βj(x) + βό{y) for j = 1, , r.
Also we have

i/) = ge/x)ge/y) == ̂ ω + ^ w ( m o d ^

if Pj is odd. Since gό is a primitive root modulo pp and ωfvV] = 1, it
follows that βj(cc3/) = e^a;) + e/^/) (mod φ{vV)) and α>^(X2/) = ωe/x)ωe/v) if
p^ is odd (i = 1, •••, r ) . If pλ — 2, then α(x) and a(y) are odd, and
plainly

(χy) 1 (^) 1 ^ ) 1 (mod 2)+
2 2 2

Therefore we have

^ (o(x2/)-l)/2 _ ^ (α(x)-l)/2α) (α(2/)-l)

for both admissible values of ω0. Furthermore,

if pλ = 2. Therefore we have

if px = 2.
Hence, if ax ^ 3 and ̂  = 2, we have ex{xy) s βx(x) + βx(?/) (mod p^~2),
as follows from [3], p. 82, Satz 126 (recall that gx = 5, px = 2). Hence

α>Ji(a:v) = tϋ;i(aj)α>flίv) if «! ^ 3,2?χ = 2 .

The last equality also holds if ax ^ 2 and px = 2, since ωx = 1 in this
case.

The foregoing computations, together with (3), now show that
ψ(xy) = ψ(x)ψ(y) if xy Φ 0.

We next show that ψ(xy) = ψ(x)ψ(y) iί xy = 0. We compute ψ(m).
Since /3j(m) = ̂  > 0 for j = 1, , r, we have

J = 1 0̂ otherwise0 otherwise.

If μ1 = . . . = μr = 1, then by 5.6, we have ω0 = cOi = = ωr — 1, so
that ψ(x) = 1 for all x. In this case, we have ψ(xy) = ψ(x)ψ(y) for
all a? and /̂. If some μ3 = 0, then ψ(m) = 0, and hence ψ(0) = 0. In
this case, ψ(xy) = ψ(x)ψ{y) if #2/ = 0.

5.8. We now prove that ψ(x) = ^(1/) if a? = /̂ (mod m). Suppose
first that xy Φ 0 and # = 2/ (mod m). Then
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Π pp{x)-a(x) = Π pp{y)-a(y) (mod m) .
Ji 313=1

From this, we see that β3{x) > 0 if and only if βό{y) > 0. If, for some
j , we have β3(x) > 0 and μ3 = 0, then β3(y) > 0 and ψ(x) = 0 = ψ(y).

Now we can suppose that μ3 = 1 for all j such that β3(x) > 0*
Then ω3 = 1 if &(&) > 0 (j = 1, , r) and ω0 = 1 if /Ŝ a?) > 0. If m
is odd, or if m is even and βx{x) > 0, we have

(4) ψ(x) = ( Π
\ ι=i 3=1 J\ 3=i

{)Q j¥Ί βj(x)=0

(5) ψ(y) = ( Π
\ 1=1

If m is even and ^(OJ) = 0, we have

( 6 ) ψ(x) = (f[ωo

{^-1)^{x)l2)( Π Π ωp{x)kAω0

{a{x)-1)i%( f[ ωe/x)) ,
V? 2 / \ ί = l 3 = 1 / \ j /

) O β ( ) > 0

( 7 ) ψ.(y) = (ή_ ίD0<»j-«pjw/»V f[ Π Π
βjU)=o βj(χ)>o βj(χ)=o

Since a? = y (mod m), we see from 5.2 that A(a?) = A(y) (mod m)
and hence

(8 ) A(x) = A(y) (mod ptn) for n = 1, , r .

The congruence

( 9 ) A(x) = Π h^{x)k^.qβn^hyx) (mod p;»)

holds if pw is odd. To verify this, use (le) and (l0) together with 5.1.
Notice that for n = 1, we use only (l0).

The congruences (8) and (9), together with the fact that βn(x) = 0
if and only if βn(y) = 0, now show that

3=1
3Ψ

yy) (mod p;»)

if pn is odd and βn(x) = 0. This implies that

Σ βj(%)kjn + en(%) — Σ β3(V)k3n + ^n{V) (mod
3=1 3=1

and
r r

\J-\J j 1 1 "^w *-̂ w x ± n v*-"n >
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if pn is odd and βn{x) = 0.
Similarly, if px = 2 and βx(x) = 0, in which case g1 — 5, (2) implies

that

(11) A(x) =

The congruences (8) and (11), together with the fact that βλ(y) = 0,
now show that

Σ ^(Pj-l)βj(x) +~
(_iy=2 2 2

Σ 7 ( p j - l ) W l / ) + ^ ( α ( i / ) ) Σ j(l/) ,{y)

^(-l)j=22 2 5j=* (mod 2"i

From this congruence, we find that

y f e - l)/8Xy) + |^α(») - 1) (mod 2)

if «! ̂  2, and

if aλ ^ 3. Since ω0 = 1 if αx = 1 and α^ = 1 if αx = 1 or 2, we now
have

(12) Π ω0

{pJ-1)βJlx)l2 ω0

{a{x)-1)l2 = Π

if aλ ^ 1, and

(13) Π ωfJ(a;)*^.ωfi(x) =
j=2 j=2

if «! ^ 1. Multiplying (10) over the relevant values of n, we have

(14) ( Π ή<ofr™*»)( Π ωZ»™) = ( Π Π ^ ( ^ 4 Π
n=l j=i

βn(x)=0 j^n

If m is odd, or if m is even and ^(a?) > 0, (14), (4), and (5) show that
ψ(x) = ψ(y). If m is even and β^x) — 0, we multiply (12), (13), and
(14) together. Comparing the result with (6) and (7), we find that
ψ(x) — ψ(y) in this case also.

We have therefore proved that ψ(x) = ψ(y) if x = y (mod m) and
xy φ 0. If x = 0 (mod m) and a? =£ 0, then ψ(x) = ψ(m). Since
ψ(m) by definition, the proof is complete.
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5.9. The foregoing construction of the functions ψ, and from these
the semicharacters X of Sm, X([x]) = ψ(x), clearly gives us all of the
semicharacters of Sm. As the ω's and μ's of 5.6 run through all admissi-
ble values, each semicharacter X appears exactly once. We could show
this by exhibiting, for each pair ψ and ψ', a number x such that
ψ(x) ψ ψr(χ). Rather than do this, we prefer to count the ψ's and
compare their number with the number obtained in 3.1.

For pj odd, the number of possible values of ω3 is <p(pp) if /̂ ^ = 0
and 1 if μ3 = 1. Hence this number is φ{pp{1~^)). For p1 — 2, there
are several cases to consider (μ1 = 0 or 1, aλ = 1, aλ = 2, aλ Ξ> 3). In
each case, it is easy to see that the number of admissible pairs {ω0, ωx}
is φ(2aia~μ'l)). Thus, for each sequence {μly •• ,jwr}, the total number of
sequences {ω0, ωlf , α>,.} is equal to

Summing this number over all possible {μ19 , μr}, we obtain

ILU(1 + VV - W~λ), as in Theorem 3.1.

6* The structure of Xm.

6.1. Let X and Xr be any semicharacters of Smf and let (μ19 , μr;
ω0, ωly , ωr) and (μ[, , μ'r; β)'o, o)[, , ωf

r) be the parameters as in
5.6 that determine X and %', respectively. The product XXr then has
as its parameters

( 1 ) G"i/4, , μrμ'r; ^oωί, ω X , , ωrω'r) .

Thus, all of the %'s in XOT for which the μ's are a fixed sequence of
0's and Γs form a group, plainly the direct product of cyclic groups,
one corresponding to each zero value of μ. These are maximal subgroups
of Xm9 and Xm is the union of these subgroups. The multiplication rule
(1) shows clearly how elements of different subgroups are multiplied.
The rule (1) shows also that Xm resembles a direct product of groups
and {0,1} semigroups. It fails to be one because of the condition in
5.6 that μό = 1 implies ωό = 1.

6.2. The characters modulo m of number theory (see [3], p. 83)
are of course among the semicharacters that we have computed. They
are exactly those for which μ1 — μ2 = = μr = 0. In the description
of § 3, they are the semicharacters that are characters on the group
Gm and are 0 elsewhere on Sm.

6.3. We can also map Xm into Sm9 and represent Xm as a subset
of Sm with a new definition of multiplication. Let X be in Xm and let
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X have parameters (μlf , μr; ω0, ωlf , ωr). For m odd and j = 0,1,
• , r or m even and j = 0, 2, 3, , r, let w, be any integer such that
ω3 — exp (2πiwjlφ(pp)). For m even and aλ = 1 or 2, let wx = 0; for
m even and a± ̂  3, let ̂  be any integer such that ωλ = exp (2πiwJ2ai~2)Λ

We now define the mapping

(2) χ — r(χ) - [/co(1~μi) π (hy^-^qpv) ] ,

which carries Xm into Sm. Evidently τ is single-valued.

6.4 THEOREM. The mapping τ is one-to-one.

Proof. Suppose that X and Xr are semicharacters of Sm with para-
meters as in 6.1. Suppose that τ(χ) = τ(χ')> that is,

( 3 ) /#od-μi> f[ (hy^-^qpv) = /^ό ( 1-^ Π (hlfj{1-^]qp^) (mod m) .

This congruence, along with 5.1, implies that

i = hfι(1-μί)pΐM (mod pγι)

for I = 1, , r and pz odd. Since (/̂ , p )̂ = 1, and μτ and //J are 0 or
1, it is obvious that μι — μ[. If μτ — μ[ = 1, then from 5.6, we have
ωι = ω[ = 1. If μz = /̂ ί = 0, then /#* = fej°ί (mod p?ί)> s o that ^j Ξ W[
(mod φ(pΐ1)) and hence ω^ = ω[.

If px = 2, (2) implies that

( 4 ) /^ou-^)/^iίi-μi>p^i == ̂ δ^-^^ί^-K^fiK (mod pί1) .

Again, we have μλ — μ[. If μx — μ[ — 1, then 5.6 states that ω0 = ωj —
£«! = α>ί = 1. If «! = 1, then ω0 = ω[ = 1, also by 5.6. If αx = 2 and
μ1 = μ[ = 0, then (3), along with 5.1, shows that (-l)w° = (~l)wό (mod 4),
and hence ωQ = ωj. If αx ̂  3 and μ1 = μ[ = 0, then we have ( —l)w°5Wl Ξ=
( —l)^65wi (mod 2Λl). Once again, [3], p. 82, Satz 126 shows that ( - l p =
( —l)wό and that wλ = w[ (mod 2Λl-2). Hence ω0 = ωj and α>! = coj.
Therefore τ is one-to-one.

6.5. The set τ(Xm) consists of all the elements [pi1 p^α] of Sm

for which δ̂  = 0 or aj9 and (α, m) = 1. It is evident from (2) that
τ(Xm) is contained in the set {[pi1 p8

rra]}. The reverse inclusion is
established by a routine examination of cases, which we omit.

6.6. The mapping τ plainly defines a new multiplication in τ(Xm):
τ(X)*τ(χ') = τ(χf). Every residue class τ(χ) contains a number

x =
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If x' is another number of this form, then it can be shown that [#]*[#']
is equal to [xx'IYl qp], where the product Π Q.V is taken over all j ,
j = 1, , r, for which Pj | xx'. We omit the details.
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RELATION OF A DIRECT LIMIT GROUP TO

ASSOCIATED VECTOR GROUPS

PAUL D. HILL

A set M with a binary, transitive relation < is said to be directed
if for each pair α, b in M, there is a c in M such that a < c, b < c. Let
{GJαeM be a collection of groups indexed by a directed set M = {α, δ, •;
<}, and for each <x < 6 in M let Λ," be a homomorphism of Gα into Gδ.
The homomorphisms are assumed to satisfy the relations

(i) h\h% = ha

c \ί a <b <c
and

(ii) if a < α, then /&£ is the identity.
We call such a system a direct system of groups and define a direct

limit group of this system in the following manner. Two elements
ga e Ga and gb e gb are said to be equivalent if there is a c > a, b such
that h%ga) = h\{gb). Let #* denote the collection of elements which are
equivalent to ga. Now given any two equivalence classes g* and gb,
there exists a c and elements gc, gc in Gc such that gt — gt and gt — g*.
We define #* c/* = (gcgc)* This multiplication is a well defined binary
operation on the set, G*, of equivalence classes. And it may be shown
that G* is a (multiplicative) group, which we define to be the direct limit
group of the given system.

Let G = ΐ[Ga be the restricted direct product of the given groups
Ga, and consider the groups Gα as subgroups of G. An element in G of
the form g^KiQa) is called a relation. Let H be the subgroup generated
by the relations of G. Note that the inverse of a relation is a relation.
By a " last" element of M we mean an element b such that α < b for
all α in M. If Λf contains no last element, it is immediate that given
alf a2, , αΛ in M, there exists a b e M with the property α2 <C b, at Φ
b for i = 1, 2, , k.

LEMMA 1. If M contains no last element, the commutator group
K of G is contained in H.

Proof. Let x = gaiga2 gaja and y = ^δlg&2 <?δj be arbitrary ele-
ments of G, where am — an or bm = 6W implies t h a t m = n. First choose
α with the property t h a t at < a,a^ a, and bt Φ a for all i . Then
choose 6 such t h a t bt <bfbtΦ δ, αέ =£ &, and a Φ b. We have

xyx-'y-1 = f[gai ίlgH ίlΰal

Received September 8, 1959, and in revised form September 11, 1959.
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= Π flfϊ Π ΛS ίflΓβ.) Π m

Thus xyx-ty-1 e H. Since i ϊ is a group, the lemma follows.

COROLLARY 1. If M contains no last element, then H is a normal
subgroup of G.

The following example shows that H may not be normal in G if M
contains a last element.

EXAMPLE. Suppose that M is {1,2; ^}. Let G2 be the symmetric
group on the set {1, 2, 3}, and let Gλ be the subgroup of G2 of those
elements fixing 3. Define h\ to be the identity isomorphism of Gλ into
G2. Then H, a cyclic group of order 2, is generated by ((1, 2), (1, 2)).
It is, therefore, not normal in G.

LEMMA 2. If ga in Ga is in H, then there exists a b such that
ha

b(ga)eKb, the commutator group of Gb.

Proof. In general, if xa in Ga is the product xaκa2 %an where
xa. 6 Ga. and if b > a, at for i = 1, 2, , n, then hb(xa) can be written
as the product of the elements Kι(xai), hρ(xa), '"fhb

n(xan) in some or-
der. This fact is easily proved by induction on n. If n > 1, by the
induction hypothesis we may as well assume that the factors xH are
nontrivial. Thus two of the factors must be contained in a single group
Gα.. And the product xaxa^ %an can be contracted to a product of the
same form with one less factor by taking one of the new factors to be
the product of two of the old and letting the other factors remain un-
changed (except, possibly, for the order in which they appear).

Since ga is in H, it can be written in the form Π t i ^ 1 ^ ^ ) -
Choose b such that b > a, bt for i = 1, 2, , k. Then

k

K(ga)Kb = ΐlhpigalW^hlKga.)^
4 = 1

k

— ΐίhb

ί{g^)hli(ga.)Kb — lbKb = Kb
ί = l * l

which proves the lemma.

THEOREM 1. If H is a normal subgroup of G, then GjHis a homo-
morphism image of G*, where the kernel of the homomorphism is con-
tained in the commutator subgroup, K*
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REMARKS. The theorem is well known [1] in case the groups Ga are
abelian. In this case H is necessarily normal and K* — 1 is the identi-
ty. Thus G* = G\H, and we have two equivalent definitions for the
direct limit.

Proof of theorem. Let / be the mapping of G* into G/H, defined
by: gt —> gaH. In order to show that / is single-valued, let g* = g*.
There exists c>a, b such that ha

c(ga) = hh

c(gb). Thus g~λgb = gά^ig^h^g^g^
Since /^(fi^)"1^ = gbh\{gb

ι), we have g^g^eH, which implies that / is
independent of the representative of #*. The multiplicative property of
/ is immediate. We next show that / is onto. Let gHeG/H and let
g = gajga2 gajc, where the αέ's are distinct. Choose 6 such that a% <b
for i = 1, 2, , k. If at = b for some i, we may as well assume that
i — k since the ga.'s commute. For each i, gaffiKQa) € H. Thus

is in iϊ, which implies that ggH = gH. But ^^ = Π i=» fe?4^) ί s ί n Gb.
Hence f{{gg)*) — gH, and / is onto. Since ga e Ka, the commutator group
of Ga, implies that g% e K*, it follows from Lemma 2 that the kernel
of / is contained in K*.

THEOREM 2. If M contains no last element, then G*/iί* ~ G/H.

Proof. By Corollary 1, H is normal in G. Thus by Theorem 1,
we need only show that the kernel of / is the whole commutator group,
K*. However, if #* is a commutator of G*, then there exist a b and
a commutator gbeKb such that gt = gt. Since iΓ& c if, by Lemma 1
gb e H. Thus f(g*) = IT, and the theorem folllows.

The limit group G* is abelian if and only if for every a in M and
for every commutator ga of the group Gα, there exists a b > <x (depend-
ing on ga) such that Λ?(flfα) = lδ. Also, under this condition the commu-
tator subgroups, Kaj of the groups Ga are contained in H, and H is
normal in G since the conjugate of a generator of H transformed by
a general element of G

remains in if.

COROLLARY 2. If the limit group G* is abelian, then G* = G/fl".
Moreover, the converse holds if M contains no last element.
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A directed set M = {α, δ, •; <} is said to be completely directed
if for every a in M all but a finite number of δ's in M satisfy the
relation a < 6. In particular, the positive integers are completely direct-
ed by <.

Letting G' = U'Ga be the complete direct product of the given
groups Gα, we have

LEMMA 3. If M is completely directed and has no last element,
then G* is contained (in the sense of isomorphism) in the factor group
GΊG.

Proof. Define a mapping h of G* into G'jG by: g*
where xa = ga and a < b implies that xb = K(ga). The coordinate #6

may be chosen as an arbitrary element of G6 if & fails to satisfy a S b.
It may be shown that h is a homomorphism with trivial kernel, which
proves the lemma.

Letting F be the inverse image of h(G*) under the natural homo-
morphism of G' onto G'lG, we observe

COROLLARY 3. Let M satisfy the conditions of Lemma 3, and let
G* be abelian. Then in the chain

we have F/G = GjH^G*.

REFERENCE

1. S. Lefschetz, Algebraic Topology, New York, American Mathematical Society Colloquium
Publications, 1942.

AUBURN UNIVERSITY



COMMUTATOR GROUPS OF MONOMIAL GROUPS

C. V. HOLMES

This paper is a study of the commutator groups of certain general-
ized permutation groups called complete monomial groups. In [2] Ore
has shown that every element of the infinite permutation group is itsself
a commutator of this group. Here it is shown that every element of
the infinite complete monomial group is the product of at most two
commutators of the infinite complete monomial group. The commutator
subgroup of the infinite complete monomial group is itself, as is the case
in the infinite symmetric group, [2]. The derived series is determined
for a wide class of monomial groups.

Let H be an arbitrary group, and S a set of order B, B ^ d, cZ = ^ 0 .
Then one obtains a monomial group after the manner described in [1],
A monomial substitution over H is a linear transformation mapping each
element x of S in a one-to-one manner onto some element of S multi-
plied by an element h of H, the multiplication being formal. The ele-
ment h is termed a factor of the substitution. If substitution u maps
xi into hjXj, while substitution v maps xό into htxt, then the substitution
uv maps xt into hόhtxt. A substitution all of whose factor are the iden-
tity β of H is called a permutation and the set of all permutations is a
subgroup which is isomorphic to the symmetric group on B objects. A
substitution which maps each element of S into itself multiplied by an
element of H is called a multiplication. The set of all multiplications
form a subgroup which is the strong direct product of groups H^ each
Ha isomorphic to H. Hereafter monomial substitutions which are per-
mutations will be denoted by s, while those that are multiplications will
be denoted by v. The monomial group whose elements are the monomial
substitutions, restricted by the definitions of C and D as given below,
will be denoted by Σ(2ϊ; B, C, D), where the symbols in the name are
to be interpreted as follows, H the given arbitrary group, B the order
of the given set S , C a cardinal number such that the number of non-
identity factors of any substitution of the group is less than C, D a
cardinal number such that the number of elements of S being mapped
into elements of S distinct from themselves by any substitution of the
group is less than D. In the event C — D — B+,B+ the successor of
B, the resulting monomial group is termed the complete monamial group
generated by the given group H and the given set S. S(B, M), d^M^D,
will denote the subgroup of permutations which map fewer than M
elements of S onto elements of S distinct from themselves, while V(B, N),
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d ίg N g C, will denote the subgroup of multiplications which have fewer
than N nonidentity factors. In particular S(B, d) denotes the subgroup
of finite permutations and V(B, d) the subgroup consisting of those
multiplications which have finitely many nonidentity factors. The con-
cept of alternating as associated with permutation groups may be ex-
tended in an obvious manner to monomial groups. A(B, d) will denote
the alternating subgroup of the permutation group S(B, d), while
ΣA(H; B, d, d) will denote the alternating subgroup of the monomial
group Σ(iΓ; B> d, d). Any substitution may be written as the product of
a multiplication and a permutation. Hence we may write Σ(£Γ; B, C, D) =
V{B, C){jS(B, D), where (J here and throughout will mean group ge-
nerated by the set. G' will be used to denote the commutator subgroup
of the group G.

THEOREM 1. The commutator subgroup V'(B, C),d ^ C ^ B+, of

V(B, C) is the set of all elements

where there exists an integer N such that each h\ is the product of N
or fewer commutators of H.

Proof. The theorem follows from the fact that V(B, C) is the
strong direct product, each of whose summands is isomorphic to H, to-
gether with the remark following the lemma page 308 of [2].

THEOREM 2. The commutator subgroup S'(B, C),d <C ^ B+, of
S(B, C) is S(B, C). The commutator subgroup S'(B, d) of S{B, d) is
A{B, d).

The proof is contained in [2].

THEOREM 3. The commutator subgroup Σ'(iϊ; B, d, d) ofΣfJK; B, d, d)
is A(B, d) U V+(B, d) where V+(B, d) is the set of all elements of V(B, d)
whose product of factors is a member of Hr.

Proof. By reason of Theorem 2 we have
Σ/(H; B, d, d) 3 A(B, d), and that
Σi'(H;B,d,d) DV+(B,d)

will now be demonstrated.
If ^ is the only nonidentity factor of the multiplication vif then

the commutator v^v^s, where s = (xt9 Xj), is a multiplication whose only
nonidentity factors are h% and hi1. It then follows that any multiplication
v of V+(B, d) with n nonidentity factors can be written as the product
of n + 1 multiplications, n of which are of the type of the commutator
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described above, and the remaining member having as its only noniden-
tity factor the product of the factors of v. But the first n members
of the product belong to Σ'(iT; B, d, d), while the other member of the
product is an element of V\B, d), by reason of Theorem 1, and hence

Σ'(jff; B, d, d)z> V+(B, d), since V'(B, ώ ) c Σ ' ( # ; B, d, d).

Then

Σ ' ( # ; B, d, d)iD V+(B, d){jA(B, d).

Since G\Gf is abelian for any group G, and Gf is the smallest group
for which this is true, to demonstrate that

Σ (H; B, d, d)/ V+(B, d) U A(B, d)

is abelian will imply that

Σ'Cff; B, d, d)c V+(B, d)\jA(B, d) ,

and the conclusion of the theorem will follow.
That V+(B, d) D V'(B,d) follows from the definition of V+(B, d), and

hence V(B, d)l V+(B, d) is abelian. Therefore any two multiplications
commute mod V+(B, d)\J A(B, d). Since A(B, d) consists of all even
permutations there are but two cosets of A{B, d) in S(B, d), namely,
A(B, d) and (x19x2)A(B,d). Thus any element of the factor group
Σ(iϊ; B, d, d)IV+(B, d)UA(B, d) has one of the forms

v[V+(B,d)ΌA{B,d)]

or

v{x,, x2) [ V+(B, d) U A(B, d)], v e V(B, d) .

B u t v(xx, x2)v~1(x1, x2) is t h e c o m m u t a t o r (hfa1, hjkϊ1, e, •••) w h i c h b e -
longs to V+(B, d). That is, (xlf x3) and v commute mod [V+(B, d)\jA(B, d)],
and hence Σ (H; B, d, d)j V+(B, d) U A{B, d) is abelian, which implies
Σ'(H;B,d,d)c:V+(B,d)ljA(B,d), and we have

Σ'(#; B, d, d) = V+(B, d) U A(Bf d) .

The following theorem asserts that the derived series for YJβ\ B, d, d)
consists of but two distinct terms.

THEOREM 4. The commutator subgroup Σ " (H; B,d,d) of Σ ' (#; B, d, d)
is Σ ' (#; B> d, d).

Proof. A(B, d) = A'(B, d), as was demonstrated in Theorem 7 of
[2], and hence Σ " ( # ; #> d> d) contains A{B, d).
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Consider elements vλ and v2 of Σ'(iϊ; B, d, d), where the factors of
vλ are all e except the first two and they are inverses of one another,
and the factors of v2 are all e except the first and third and they are
inverses of one another. The commutator v1v2v^1v2~\ which is an element
of Σ"(H'> B> d, d), has as its first factor a commutator of H and all
other factors e. It then follows that any element of V'(B, d) is the
product of elements of ]>]"(H; B, d, d) and hence is an element of
Σ/'(H; B, d, d). That is Σ ' W ; B, d, d)z> V'(B, d). Then one can in the
manner described in the first part of Theorem 3 write any element v
of V+(B, d) as the product of n + 1 elements, each member of the pro-
duct being an element of Σ"(i ί ; B, d, d). That is Σ " ( # ; B> d> d) con-
tains V+(B, d), and hence Σ/'(H; B, d, d) contains V+(B, d)ΌA(B, d) =
Σ/(H; B, d, d).

THEOREM 5. The commutator subgroup

ΣΆiH; B, d, d) of ΣXff; B, d, d) is V+(B, d) U A(B, d) .

This theorem together with Theorem 3 states that ^(H; B, d, d) has
for its commutator subgroup ΣA(H; B, d, d). This is the analogue for
monomial groups of the result Ore obtains for permutation groups in
[2], and as stated in the second part of Theorem 2.

Proof. We have

Σ'(H; B, d, d)cΣi(ff; B, d, d)a^(H; B, d, d) ,

hence,

Σ " ( # ; B, d, d)cz^A(H; B, d, d)czΣ'(H; B, d, d).

Then by reason of Theorem 4,

Σ'(ff; B, d, d) = Σ " ( # ; B, d, d) = v+(B, d) u A(B, d).

Hence ΣιΆ(H; B, d, d) = V+(B, d)[jA(B, d).

THEOREM 6. The commutator subgroup Σ/(H; B, C, D),
of Σ(ff; B> C> D) is Σ(H; B, C, D).

This theorem is also an analogue of a result Ore obtains in [2] for
permutation groups as stated in the first part of Theorem 2.

Proof. It is shown in [2] that the commutator subgroup S'(B, D)
of S(B, D) is S(B, D). Hence Σ'(ff; B> C> D) contains S(B, D). The
conclusion of the theorem will then follow if it can be demonstrated that
Σ/(H;B9CfD)^V(BfC). Let

s = ( , x-ly x0, a?!, )
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and

be elements of ^(H; B, C, D). Then the commutator svs^v1 an element
of Σ/(H; B, C, D) has the form

(•••, hokz{, hjiό1, h2hϊ\ . . - ) .

Let

c_i, c 0 ,

be an arbitrary element of V(B, C), and consider the following set of
equations.

• , hohz[ = c-i, hjio1 = c0, ĵ fe"1 = cλ,

This set of equations has solutions,

[ n η-i

π C-*J
Then if the factors of v be represented in terms of the factors of vc as
indicated above, we see that

svs-'v-1 = vce Σ ' (#; B, C, D) ,

and henca Σ/(H; B, C, D) contains V(B, C), and therefore

, c, D) = Σ'(ίί; β, c, D).

COROLLARY 1. Any element u of Σ ( # ; B, C, D), d < C ^ D ^ B+,
•is the product of at most two commutators.

Proof. Every element of S(B,D) is a commutator of S(B,D), as
was shown in [2], Every element of V(B, C) is a commutator of

; B, C, D), as was shown in Theorem 6. Therefore any element of
ϊ; B, C, D) which is either a multiplication or a permutation is a

commutator. But every element of ^(H; B, C, D) maybe written as the
product of a multiplication and a permutation and consequently may be
written as the product of two commutators.

To see that the assertion that every element of Σ(H; B, C, D) is
the product of at most two commutators is the strongest possible, sup-
pose every element of ^(H; B, C, D) is a commutator. Let

u e Σ(ff; B, d} d)aΣ(H; B, C, D) .

Then u — u^u^u^1, uλ and u2 elements of Σ(iί; B, C, D). But since u
belongs to ΣΛ(H; B, d, d) we can choose a uf and u* in Σ(H; B, d, d) by
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causing ux and u2 to become the map of xt into ext except for those
maps which yield the permutation and nonidentity factors of u. It then
follows that u is an element of Σ/(H; B, d, d), and hence Σ(.ff; B, d, d) =
Σ'CEΓ; Bf dy d). But this is a contradiction to Theorem 3.
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THE NONEXISTENCE OF EXPANSIVE HOMEOMOR-

PHISMS ON A CLOSED 2-CELL

J. F. JAKOBSEN AND W. R. UTZ

1. Introduction* If X is a metric space with metric p and T(X) = X
is a self-homeomorphism of X, then T is said to be expansive1 provided
there exists a δ > 0 depending only upon X and T such that corre-
sponding to each distinct pair x, y e X there exists an integer n(x, y) for
which p(Tn(x), Tn(y)) > S. W. H. Gottschalk [2] has asked if the rc-cell
can carry an expansive homeomorphism. B. F. Bryant [1] obtained a
partial answer to this question when he essentially showed that there
are no expansive self-homeomorphisms of a closed 1-cell, that is, of an
arc. In this paper we show that there are no expansive self-homeomor-
phisms of a closed 2-cell and, in the final section, point out an error in
a paper of R. F. Williams. The authors wish to acknowledge the re-
feree's assistance in condensing the paper.

Throughout the paper, X will denote a metric space with metric p
and T(X) — X will denote a self-homeomorphism of X. The set 0(x) =
\Jnei{Tn(x)}, where /denotes the integers, is called the orbit of x under
T. A set MdX is said to be minimal under T if, and only if, M is
non-vacuous and M is the closure of the orbit of each of its points. If
x,yeX, then 0(x) and 0(y) are said to be positively (negatively) asymp-
totic if corresponding to ε > 0, there exists an integer N such that

ρ(Tn(x), Tn{y)) < ε for all n > N(n < N).

If Q(x) and 0(y) are both positively and negatively asymptotic, then the
orbits are said to be doubly asymptotic.

2 Self-homeomorphisms of the 2-celL In this section we show
with the aid of results of van Kampen that there is no expansive self-
homeomorphism of a circle, and from this obtain the same result for a
simple closed curve and a closed 2-cell.

THEOREM. If T is a homeomorphism of a closed 2-cell onto itself,
then T is not expansive.

Proof. If there is an expansive homeomorphism, Γ, of a closed 2-
cell onto itself then, since the boundary of the 2-cell is invariant under

Received August 24, 1959, and in revised form March 15, I960. This research was
supported by the United States Air Force through the Air Force Office of Scientific Research
and Development Command under Contract No. AF 18 (600) 1108.

1 In most of the literature cited, the term ''unstable" is used in place of "expansive".
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T, T must be expansive on the simple closed curve forming the boundary
of the 2-cell. Since T is an expansive self-homeomorphism of a simple
closed curve, there must be an expansive self-homeomorphism of a circle
since it is known [1] that if T is an expansive self-homeomorphism of
a metric space X and g{X) — Y is a homeomorphism onto the metric
space Y such that g~ι is uniformly continuous, then gTg'1 is an expan-
sive self-homeomorphism of Y.

Hereafter we assume that T is an expansive self-homeomorphism
of a circle, C. We first show that T cannot have a periodic point. If
T has at least two distinct periodic points on C, then for some integer
m, Tm = Φ has at least two fixed points on C and it is easy to see that
either Φ or Φ2 leaves an arc invariant. Powers of an expansive homeo-
morphism are expansive [3] and hence either Φ or Φ2 is an expansive
self-homeomorphism of an arc in violation of the cited result of Bryant.

If T has exactly one periodic point on C, then the point must be
fixed under T and the orbit of every other point is doubly asymptotic
to the fixed point. There are uncountably many such orbits contrary to
the fact that when X is compact and T is an expansive self-homeomor-
phism of X, then the number of distinct orbits doubly asymptotic to any
fixed point is at most countably infinite.

Since we have shown that T has no periodic point on C, C is either
a minimal set under T, or [4] there is a minimal set which is a Cantor
set and which consists of the common cluster points of orbits. In the
first instance T is topologically equivalent to a rotation and is therefore
not expansive. In the second instance, a component, A, of the comple-
ment of the minimal set is chosen. Now, Tn(A) is an open arc and its
diameter goes to zero with increasing or decreasing n. Taking two dis-
tinct points of A which are sufficiently close, they remain close for all
n by virtue of the continuity of T. This contradicts the hypothesis that
T is expansive and the theorem is proved.

3 An example of Williams* R. F. Williams [5] has given two
examples of non-degenerate continua and self-homeomorphisms of them
which are said to be expansive. One example, where the continuum is
the inverse limit space of the unit circle in the complex plane under the
bonding map g(z) = z2 and with the shift homeomorphism, is expansive.
The other example contains an error which we now explain.

Using the notation of Williams' example, let

10" 10M

and consider the points

x = (a, α/2, α/22, α/23, ) ,

2/ = (α,δ/2,δ/22,δ/2V .)
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for an arbitrary but fixed positive integer n. It is not difficult to see
that the maximum value of p(fj(x),fj(y)) occurs for j = — 1. Since

p{f-\χ)J-\y)) = i/iow(i + i/22 + i/2 4 +...)

this maximum can be made arbitrarily small by taking n sufficiently
large. Thus the homeomorphism / is not expansive.

The failure of this example suggests seeking another continuous
function on [0, 1] such that the shift homeomorphism of the inverse limit
space onto itself is expansive. However, such an example is impossi-
ble. The authors can prove that the shift homeomorphism on the inverse
limit space of any continuous transformation of an arc onto itself
cannot be expansive. The proof of the theorem is long and will not be
given here.
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MULTIPLICATION ON CLASSES OF
PSUEDO-ANALYTIC FUNCTIONS

JOHN JEWETT

Lipman Bers [1, 2] has formulated a theory of solutions of linear
elliptic partial differential equations in terms of classes of psuedo-analy-
tic functions on a plane domain D. The theory for each class of psuedo-
analytic functions is based on the notion of a generating pair of Holder
continuous complex valued functions F and G defined on D and satisfy-
ing $m [F(z)G(z)] > 0 in D.

If w is any function defined on D, then there exist two real valued
functions φ and ψ such that w can be written uniquely as

(1) w(z) = Φ(z)F(z) + ψ(z)G(z) .

A function w defined on D is said to be {F, G)-psuedo-analytic (of
the first kind) if a certain generalized derivative exists or equivalently
if the equations

( 2 } ΦxFλ - φyF2 + ψxG, - ψyG2 = 0

ΦVF1 + ΦXF2 + ψyGλ + ψxG2 = 0

are satisfied in D, where the subscripts x and y refer to partial deri-
vatives with respect to x and y and the subscripts 1 and 2 refer to the
real and imaginary parts of the functions F and G. If F — 1 and
G = ί, these equations reduce to the Cauchy-Riemann equations.

Given a generating pair (F, G) let B denote the class of all func-
tions which are (F, G)-psuedo-analytic. If F = 1 and G = i, then B is
the class of analytic functions on D, which will be referred to in this
paper as A.

Any B has many of the properties of the ring of analytic functions.
In particular very close analogues of the identity theorem, the Cauchy
theorem, the Cauchy integral formula, the standard convergence theorems,
and power series expansions have been proved.

With each class B is associated a class Bf of psuedo-analytic func-
tions of the second kind. This association is made by a mapping η of
B into Bf defined by

η{φF + ψG) = Φ + iψ .

On the class A of analytic functions this mapping is clearly the
identity.

Each class B is a vector space with the usual definition of addition

Received October 13, 1959.
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of functions and multiplication by scalars and η is a vector space isomor-
phism of B onto Br. The class A is a ring under the usual point wise
multiplication of functions. Since the classes of psuedo analytic func-
tions each bear such marked resemblances to the class A of analytic
functions, the question arises as to whether there exist for other classes
appropriate generalizations of the ordinary multiplications of function.
We shall prove that if such a multiplication bears a certain slight re-
semblance to the point wise multiplication, then B is multiplicatively
isomorphic to A under the mapping rj and conversely.

We denote the ordinary multiplication of functions by juxtaposition.
Let m denote any mapping from B x B to the set of all functions from
D to the plane. In particular let mp be the mapping defined as follows:
if w = φF+ ψG and w' = ΦfF + ψ'G, let

mp(w, w') = (φφf - ψψ)F + (Φψr + ψ'Φ)G .

THEOREM. Let B be a system of psuedo-analytic functions on the
plane domain D and let m be a multiplication on B (any mapping from
B x B to the set of all functions from D to the plane). Let m be as-
sociative and bilinear with respect to addition in B. Then a necessary
and sufficient condition for the mapping η to be a multiplicative iso-
morphism of B onto the ring A of all analytic functions on D is that
there exists a non-constant w in B such that m(w, G) = mp(w, G) and
mp(w, G) e B.

The proof of this theorem will be preceded by a lemma.

LEMMA. Suppose that for all w and wf in B, m{w, wf) = mp(w, wr).
Then the mapping Ϊ] defined above is an isomorphism of B onto the ring
A of analytic functions on D if and only if Fx = G2 and F2 = —Gx.

Proof of Lemma. A simple calculation shows that ΎJ is an isomor-
phism of B onto Bf if and only if m = mp. So the condition concerning
isomorphism in the lemma is that B' — A.

By adding and subtracting terms involving ψ the system (2) is seen
to be equivalent to

- φy) - F2(φy + ψx) + ψyiF, - G2) + ψx(F2 + GJ - 0

F1(ΦV + ψx) + F2(φx - ψv) + ψy(F2 + Gd - ψx(F± -G2) = 0.

First suppose F1 = G2 and F2 = —Gλ. Then this system becomes

- ψv) - F2(φy + ψx) = 0

+ ψx) + F2(φx - ψv) = 0 .

It is clear that if w* = φ + iψ is analytic, then Ύ]-\W*) satisfies
the system (4). Therefore A c J S '
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Suppose then that B' contains a function w = φ + iψ which at some
point z of D does not satisfy the Cauchy-Riemann equations. For this
point the system (4) is a system of homogeneous algebraic equations
with a non zero determinant whose value is

Hence the only solution at z is the zero solution and thus

&G(z)] = Fl(z) + F\{z) = 0

which contradicts the definition of generating pair. Thus B* c A and
we have proved that A — Br.

Conversely suppose that Ύ] is an isomorphism onto A so that A — Bf'.
Let w% — φ + iψ be a non constant analytic function in B'. Then the
system (3) becomes for this w*

( 5 } ψv(F1 - G2) + ψx(F2 + GL) = 0

ψy(F2 + G1) - ψx(F± - G2) = 0 .

If for some z the equations Fx(z) = G2(z) and F2(z) = —Gx(z) do not
both hold, then the determinant of this system is non-zero at z and
hence by continuity of F and G the determinant is non-zero in some
neighborhood of z and hence ψx = ψy = 0 on this neighborhood. By the
identity theorem for harmonic functions ψx and ψy must then be zero
everywhere so that ψ is constant. A similar argument demonstrates
the constancy of φ so that w* is constant contrary to assumption. This
completes the proof of the lemma.

Proof of Theorem. Suppose first that η is a multiplicative isomor-
phism of B onto the ring A of analytic functions in D. Then as before
m is identically equal to mp so that for w = φF + ψG e B we have
m(w, G) = — ψF + φG. Substituting this function for φF + ψG in the
system (1) yields that m(w, G) is in B if and only if

( 6 ) -ψ*Fi + ψyF2 + ΦXG, - φ,yG2 - 0

-ψyFx - ψxF2 + φyGλ + φxG2 - 0 .

By the lemma Fx = G2 and F2 = —Gx. Using this to substitute for
the G?s in the system (6) we obtain the system (4) and this system must
be satisfied because φ + iψ is analytic. Thus if w is in B then so is
m(w, G) and the condition of the theorem is necessary.

Conversely suppose that there exists a non-constant w in B such
that m(w, G) = mp(w, G) — —ψF + φG and this function is in B. Then
Φ and ψ satisfy both (1) and (6) and since w is non-constant there must
exist a z such that this system of four equations has a non-zero solu-
tion, i.e., the determinant of this system must be zero.
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The determinant of this system is

Gx)
2 + (F2 +

Now $m (FG) = F±G2 — F2Gλ which must be everywhere positive since
F and G form a generating pair. If the second factor of (7) is zero,
then it follows that

$m(FG) = -Fl-FKO .

Hence the first factor must be zero and the lemma implies that η is
an isomorphism of B onto A.
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ANALYTIC AUTOMORPHISMS OF BOUNDED
SYMMETRIC COMPLEX DOMAINS

HELMUT KLINGEN

In a former paper [2] I determined the full group of one-to-one
analytic mappings of a bounded symmetric Cartan domain [1]. Those
investigations were incomplete, because it was impossible to treat the
second Cartan-type of n(n — l)/2 complex dimensions for odd n by this
method. The present note is devoted to a new shorter proof of the
former result (n even), which furthermore covers the remaining case of
odd n.

Take the complex n(n — l)/2-dimensional space of skew symmetric
w-rowed matrices Z. The irreducible bounded symmetric Cartan space
in question is the set 8n of those matrices Z, for which

1+ ZZ>0 , Z' = -Z,

is positive definite. Here I is the n by n unit matrix. Obviously 62 is
the unit circle. It is easy to see that analytic automorphisms of 6n are
described by the group φ of the mappings

(1) W = (AZ + B)(-BZ + A)'1 ,

where the n-rowed matrices A, B fulfill

M*KM=K with M ={_%%, K=yQ_L

Here Λf * denotes the conjugate transpose of M. For n = 4

W= Z

is a further analytic automorphism, where Z arises from Z by inter-
changing the elements zu and z23,

I ^ ^12 ^13 ^ 2 3 \

^ ^12 ^ ^14 ^24

Z ^ —« — z 0 z
<vi3 ^14 v ^34

\ ^23 ^24 ^34 "

For T^ΐΓ and ZZ have the same characteristic roots. But this mapping
is not contained in φ, since CZ — ZD cannot be satisfied identically in
Z by non-singular constant matrices C, D. On the other hand the fol-
lowing theorem holds.

Received October 13, 1959.
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THEOREM. Each analytic automorphism of 6n can be written as
W = f(Z) or W = f(Z) (only for n = 4) with feφ.

Therefore the group φ is already the full group of analytic auto-
morphisms for n Φ 4. Only in the exceptional case n = 4 there are
the further mappings W = f(Z), which together with φ form the full
group of analytic automorphisms. The proof of this theorem consists
of two parts. The first analytic part is a reproduction of my former
proof [2], which will be given here again for completeness, the second
part is of algebraic character.

The group φ acts transitively on <Sn. For take an arbitrary point
Zλ of <?„, choose the matrix A such that

and define B = —AZX. Then (1) maps Z into 0. Therefore it is suf-
ficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping W = W(Z) of
6n with the fixed point 0 is linear. For an arbitrary point Zx e <Sn let
fi> , f», 0 ί§ rx ^ ^ rn < 1, be the characteristic roots of ZXZ*.
Then also tZλ belongs to 6n, if ί is a complex number with ttrn < 1.
Consequently there exists a power series expansion

(2 ) W(tZλ) = Σ ** Wk(Z,) , ttrn < 1 .

The elements of the skew-symmetric matrices W^ZJ are homogeneous
polynomials of degree k in the independent elements of Z±. Because of
1 + WitZJWitZJ > 0 for tt = 1, one obtains from (2)

t
Σ W>(ZJ Wt(Zd > 0Σ

and in particular I + W^ZJW^ZJ > 0. Therefore the linear function
Wλ(Z) is an analytic mapping of £n into itself. Its determinant D is
at the same time the Jacobian of the function W(Z) with respect to Z.
By interchanging Z and W it can be assumed DD ^ 1. Consequently
W(Z) is an analytic automorphism of 6n and even maps the boundary
onto itself. Take now in particular

(4) Z^

with an unitary matrix U, m = [n/2], P shall be the matrix, which is
built up by the two-rowed blocks p1F, , pmF and possibly by the ele-
ment 0 along the main diagonal. Zx belongs to the interior of 6n, if
— 1 < pk < 1 (k — 1, , m), and to the boundary, if — 1 ^ pk g 1 (k =
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1, , m) and pfc = ± 1 for at least one k. Now 11 + W1(Z1)W1| is a
polynomial in pu , pm of total degree 4 m and on the other hand (see
[2], Lemma 4) the square of a polynomial. As 11 + W1(Z1)W1 | vanishes
on the boundary of βn, this polynomial is divisible by

Because the constant terms and the degrees of both polynomials are
equal, one obtains

(5) | / + W1(Z1)W1\ = \I+Z1Z1\

even identically in Zλ\ for each skew-symmetric matrix Zλ permits a rep-
resentation (4) (see [2], Lemma 3). On account of (5) and the linearity
of W1 the matrices W1Wι and ZZ always have the same characteristic
roots and this implies

( 6 ) Wλ{Z) = U'ZU

with unitary U, which for the present still depends on Z.
Put now

X= U[, [e^F, , e'SrF, (0)] Ulf O^u^l,

with real variables ξlf « ,fr. Then Ze£n and by (6)

for all u between 0 and 1. Because of (3) one obtains

UMI+ W1W1+ WtWJU'UlX) (fc = 2 , 3 , . . . ) -

If u tends to 1, one gets

+ UXUW,W,U'U[ > 0 ,

hence W^X) — 0. As Wk is a polynomial, Wk(Z) even vanishes iden-
tically in Z. Therefore the stability group of Sn is linear.

The investigation of W = WX{Z) is now a purely algebraic problem.
The representation (6) shows that rank W = rank Z and beyond this
the equality of the characteristic roots of WW and ZZ. These proper-
ties will be used in order to determine W(Z) explicitly. We have to
prove

( 7) W(Z) = U'ZU or W(Z) = ί/'ZEf
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with unitary constant U, where the second type only occurs for n = 4.
The proof of this fact will be given by induction. The assertion (7) is
trivial for the unit circle (n = 2). Let us assume its correctness for
2, 3, , n — 1 and consider 6n. Write the linear mapping W(Z) of 6n

onto itself as

W = Σ £ A
Tc<l

with constant skew-symmetric n by n matrices Akl. Because of the
equality of the characteristic roots of WW* and ZZ* the hermitian
matrix AklAkl has 1,1, 0, , 0 as characteristic roots. Therefore after
unitary transformation of W we can assume A12 = E12J where in general
Ekl denotes the skew-symmetric matrix the elements of which are all
zero besides the element in the fcth row and ίth column and the ele-
ment in the ίth row and fcth column, which are 1 respectively •—1.
Since tr(A12Akl) = 0 for (h, I) Φ (1, 2), one obtains

Λ(2) * \
λ "", I) Φ (1, 2) .

A12 = E12 does not change, if W is transformed by

vo v)

with unitary U, V, \ U\ = 1. Therefore

°(2) •B^ B = (hί °

can be assumed. From rank W = rank Z identically in ^ one obtains
possibly after unitary transformation A18 = £713.

For A14 = (akl) we get two possibilities. First the equation tr(A12A14) =
tr (AUAU) = 0 implies α12 = α13 = 0. After unitary transformation all the
elements of the first row besides α14 are zero. Then take only the ele-
ments 212, 213, J?14 of ^ distinct from zero; from rank W = rank Z = 2 one
sees

A14 = Eu or A14 = £723 .

By a similar consideration Alv turns out to be 2£lv or JE?23. But actually
for v > 4 the second possibility Alv = E2d may not occur. For Au = Λlv =
^ is impossible because of tr (A14A1V) = 0. If A14 = Eu, Alv = J^a3, choose
only the elements 21V, ^i4 ^ 0, then rank Z = 2 but rank W = 4. Therefore
Alv = JE71V (y ^ 4), A14 = !EΊ4 or E23. Furthermore A14 = E23 may only hap-
pen if n = 4. For assume A14 = ΐ723, A15 = E15 and take only the elements
zu, z15 Φ 0. This implies rank Z = 2 but rank W = A.
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Let us summarize our results. After a suitable unitary transforma-
tion W can be written as

-( ° z'\
\-z Zj '

) Z(
-z L(QZ0)J ' \-z Z

besides the exceptional case n = 4, Au = 2?23. Now L(Z0) is an analytic
automorphism of Gn^ with the fixed point 0. For % = 3we know L{Z^) =
e^ί/i with a real constant ξ. Therefore W — U'ZU with a constant
unitary matrix U, which is the theorem for n — 3. For n > 5 the in-
duction hypothesis shows

0 z'U'

with constant unitary U. From the equality

rank W — rank Z

U turns out to be a diagonal matrix. Finally consider the sum of the
two-rowed principal minors of WW and ZZ. These two quantities are
equal identically in Z because of the fact that WW and ZZ have the
same characteristic roots. By this identity one obtains U = a I with
a complex number a of absolute value 1, which again proves our theorem.

There still remain the cases n = 4 and 5. For n = 4, A14 = Eu we
can use the reasoning above. Let Au = E23; since

tr (A1VA23) = tr (A1VA24) = tr (A1VAM) = 0 (u = 2, 3, 4)

W only differs from Z in the last row, where a linear combination of
223> £24, ̂ 34 appears. The identity between the ranks of Z and W shows
wu = aλz2Zy wM = α2 zM, wu = α3^34. Now it is easy to compute the sum
of the two-rowed principal minors of WW and ZZ. This computation
shows again the assertion for n = 4.

For w = 5 we know by the induction hypothesis

L(ZQ) = 17% tf or L(Z0) = 1^%^

with constant unitary U. The first case can be treated as above. In
the second case one obtains

Choose once only zu, z2i Φ 0, then only zu, z34, zi5 Φ 0. In any case
rank Z = 2, hence rank T7 = 2. But this implies that all the elements
of the third column of U vanish, which is a contradiction to the unitary
character of U. This final remark completes the proof.
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ORDERED SEMIGROUPS IN PARTIALLY
ORDERED SEMIGROUPS

R. J. KOCH

In this note we establish a local version of the following result:
a locally compact connected partially ordered non-degenerate semigroup
S with unit contains a non-degenerate linearly ordered local subsemi-
group (containing the unit). This is an extension of a result of Gleason
[2; 664] who proved a similar theorem under the additional hypotheses
that

(1) S is a semigroup with right invariant uniform structure and
(2) for any compact neighborhood U of the identity there are nets

{ccj in S and {nt} integers such that x,t —> e and xfι 0 U. A consequence
of our theorem is the fact that a nondegenerate compact connected
partially ordered semigroup with unit contains a standard thread join-
ing the unit to the minimal ideal.

By a local semigroup S we mean a Hausdorff space with an open
subset U and a multiplication m: U x U—>S which is continuous and
associative insofar as is meaningful. A unit is an (unique, if it exists)
element u of U satisfying ux = xu — x for all x e U. A local subsemi-
group of S is a subset L containing the unit such that for some open
set V about the unit, (Ffl L)2 a L. We say that the local semigroup
S is partially ordered if the relation ^ defined by a g b if and only if
a = be is reflexive and antisymmetric. In case S is a semigroup, S is
partially ordered if and only if each principal right ideal has a unique
generator, i.e. (assuming a unit) that aS — bS implies a — b. In this
case, ^ is also transitive.

Closure is denoted by *, the null set by D, the boundary of V by
F(V), and the complement of B in A by A\B.

As in [4] we use the following topolopy for the space S^(X) of non-
empty closed subsets of the space X: for open sets U and V of X, let
N(U,V) = {A\Ae^(X),AaU,AnVΦ •}; take {N( U, V) \ U, V open}
for a sub-basis for the open sets of S^(X). It is easy to see that if
X is compact Hausdorff, so is

THEOREM 1. Let S be a locally compact partially ordered local
semigroup with unit u, and let UQ be a non-degenerate open connected
set about u with U6

Q defined. Then S contains a non-degenerate com-
pact connected linearly ordered local sub-semigroup L with ueLaU0.

Received December 7, 1959. This work was supported by the United States Air Force
through the Air Force Office of Scientific Research, Air Research and Development Com-
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Proof. Let U1 be an open set containing u with U* compact and
Ut c Uo. Define g on Uf x Z7? by: α ^ 6 if and only if α = be for
some ce U*. From the compactness of U* it is easily seen that Graph
(^) is closed in U* x Z7*. We show first that ^ is transitive on some
neighborhood of u. Let U2 be an open set about u with Ϊ72. c Uλ. We
claim there is an open set U containing u, U c C/2, such that if α, 6 e J7*
with a = be for some ce Uf, then ce ί72. If this is false, then for any
open set U with ue U c £/2, there are elements a and 6 of E7* with
a — be for some ce U*\U2. Hence there are nets α^ and 6* converging
to u with αΛ = ba cΛ where eae U*\U2. It follows that eΛ must also
converge to u, a contradiction. Since U\ c 27Ί it follows that ^ is
transitive on U*. Also the restriction of ^ on £7* x Z7* is closed and
hence Ϊ7* is locally convex [6], We show next that there exists an
open set Vx with ue VΊ a Usuch that β2 = ee V1 implies eUoe Φ e. Sup-
pose the contrary; we can then find a net of idempotents ea —> u with
βa>UQea = eΛ. Let # e C/o; then eΛ = ^ e * converges to î α;̂  = x, so that
a? = u and Z70 is degenerate, a contradiction. Let F be a convex open
set with u e V c 7 * c (F*) 2 c F x . Then e2 = β e 7 implies eUQe Φ e.

Let ^ denote the collection of all closed chains C in Z7* with %eC,
C Π S \ F ^ D, and (C n F) 2 c C. Note that ^ Φ D, for if α6.F(F),
then the elements u and α constitute an element of c^.

(i) ^ is closed in S^(U*). We will show that c^ is an intersec-
tion of closed set. Since the collection of all closed chains which con-
tain u and meet S\V is closed [4], it remains to show that the collection
of closed chains C satisfying (C Π F) 2 c C is closed. Suppose A is a
closed chain with (̂ 4. Π F) 2 ζz! A; then there are elements a and b of
A Π F with α& e S\A. Hence there exist open sets Ua, Ub, and W con-
taining α, 6, and A respectively, with Ua Ub Π W = D Now iV(TΓ, ί7α) Π
iV(PΓ, Ub) is an open set about A, and contains no chain C with (C Π
Vf(zC. This establishes (i).

A s i n [ 4 ] , w e d e f i n e L(x) = { y \ y ^ x } f M(x) = { y \ χ <^ y } , a n d (x, y) =
{z I x < z < y}. Let δ be an open cover of £7*, and define a subset Mδ

of ^ ( Ϊ 7 * ) by: C e M8 if and only if C is a closed chain in J7*, and for
any x and # in C with a? < 7/ and (x, y) Π C = Π> there exists D e δ
such that D* meets both L(x) Π C.

(ii) Mδ Π c<^ Φ Π /^^ any open cover δ of U*. Let δ be an open
cover of ί/*, and let ^ be the collection of all closed chains C with
ueC a Uy Ce M5, and ( F Π C)2 c C. Let τ be a maximal tower in ^ ,
and let T= Uτ. Then Γ* is a closed chain, % e f c 17*, and (FίΊ ϊ 7*) 2 c
ϊ 7*. As in [4], T*eikfδ, and it remains to show that Γ ^ e ^ 7 , i.e., that
T* n S\V Φ •• Suppose Γ* c F; (note then that Γ = Γ*) then since
(T Π F) 2 c T, T is a compact chain and a semigroup. Let e = inf T.
Since e2 g e and e2 e Γ we have e2 = e. We show next that e is a zero
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for T. Let yeT, then eyeT and ey <̂  e, so ey = e and e is a left zero
for T. Hence the minimal ideal K oi T consists of left zeros for T
[1], Let / e i ί ; then e ^f so there exists c e ί7f with e = / c . There-
fore f = fe = e, and e is the unique left zero, and hence a zero for T.
Let We δ with e e W. If eUQe f] W f] V contains an idempotent g Φ e,
then T U g is a semigroup: for if a? e Γ then x# = x(eg) = eg — g and
## — (ge)x — g(ex) — ge — g. Also T U 0 is a chain, so by the maximali-
ty of τ, Γ = T lj 0, a contradiction.

Hence we may assume that e Uoe Π W Π F has a unique idempotent
e. Since ^ is antisymmetric, the maximal subgroup of S containing e
is e. Also eUoe is a local semigroup with unit e, eUoe Φ e, and e is not
isolated in eUoe which is the continuous image of Uo and hence con-
nected. Hence [5; 122] there is a non-degenerate one parameter local
semigroup A with e e A c eUoe Π W Π F; let α e A with a Φ e and α2 e A.
Define α° = e and let ί?fc = ( J L Φ , #]> B^ = \Jζ=oa

n[a, e] where [α, β]
denotes the sub-arc of A from α t o e . We assume temporarily that all
products involved in forming Bh and B^ are defined. Each of the sets
an[a, e] is a compact connected chain (hence an arc) with minimal ele-
ment an+1 and maximal element an. Hence J5fc is a compact connected
chain from αfc+1 to e. Also B^ is a connected chain, hence Bt is a closed
connected chain. Using the easily established commutativity of Bk and
Bί it follows that for x e T and b e Bk (or £*) then cc6 = φί>) = (xe)b =
e6 = δ, and similarly δx = b. Hence [(Γ U J5D Π F f c Γ u (B£ Π F) 2

and similarly with Bk replaced by JB*. We distinguish two cases:

Case 1: For some k ^ 0, α*+16 F and ak+2 0 F. Then since V is con-
vex, α°, α, , αfc+1 are in F and all products involved in forming Bfc are
defined, so that BkaV and Bk+1 <£ V. We show first that BlΠVa
Bk. Let ze Bl Pi F; then z — xy with a?, 2/ € 1?̂ , so x = α/V and /̂ = αmi/'
with a?' and y' in [α, e]. Hence xy = am+nx'y'. If x'y'e A, then since
2: e F it follows that m + ^ fg ^. If ^V' 0 A, then # V = αί for some
teA, so a?2/ = am+n+1t and m + n + 1 ^ ifc. In either case, then, z e Bk.
Note that (T U Bky e M8 since B\ is a connected chain. Also [(T U 5|) Π
F] 2 c T u (J5J n F) 2 c T U BL so that T\j B2

ke&r. This contradicts
the maximality of τ.

Case 2: afc e F for each k ^ 0. Using the convexity of F we see
that all products involved in forming B^ are defined, and B^ = Bi a V,
hence Bt = Bί2. Since J5* is a connected chain, it follows that T U
# * e M8. Also [(ϊ7 U Bί) Π F ] 2 c T U -Bί, so that Γ u K e ^ , a con-
tradiction to the maximality of τ. The proof of (ii) is now complete.

(iii) Mδ n r<έ? is closed for each finite open cover 8 of U*.
This proof is similar to that in [4], and is omitted.

For any finite open cover δ of [/*, let P δ = M8 Π ^ . The collec-
tion of sets {Pδ} is a descending family, so f\Pδ φ •• If Cef)Pδ,
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then as shown in [4], C is an arc. Clearly C is a local semigroup, and
the proof is complete.

In what follows, a standard thread is a compact connected semi-
group irreducibly connected between a zero and a unit. The structure
of standard threads is known [5; 130]. The example in [4] shows that
a compact connected semigroup with zero and unit need not contain
a standard thread joining the zero to the unit. The problem of finding
standard threads joining zero to unit has an affirmative solution in case
either

(1) S is compact, connected, and one-dimensional [3], or
(2) S is compact, connected, and each element is idempotent [4].

A third solution is given by the following corollary.

COROLLARY 1. If S is a non-degenerate compact connected par-
tially ordered semigroup with unit u, then the minimal ideal K con-
sists of left zeros for S, K consists of the set of minimal elements,
and some elements of K can be joined by a standard thread to the
unit.

Proof. Note that Graph (^) is closed since S is compact. Let G
be a compact group in S, with unit e. Since x2 ^ x for each xe S,
then for xeG we have e ^ x ^ x2 ^ , and {xn} clusters at an
idempotent, which must be e. We conclude that x = e, and hence that
each compact group in S is trivial. From this fact it is clear that K
is proper, for otherwise K — S would be a compact group [1]. From
the fact that aS = bS implies a = b we conclude that each minimal
right ideal is a single element, hence each element of K is a left zero
for S [1]. Since a minimal element x of S is characterized by the
equality xS = x, it is clear that K consists of the set of minimal ele-
ments of S, and hence that S\K is convex. In the proof of the Theorem,
we take S = UQ = Ux — U2 = Z7, and V — S\K. Hence there is a com-
pact connected linearly ordered local semigroup L containing u, with
L Π S\V Φ Π Since the elements of K are minimal it follows that L
is a semigroup, and hence a standard thread.
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ON A COMMUTATOR RESULT OF

TAUSSKY AND ZASSENHAUS

MARVIN MARCUS1 AND N. A. KHAN2

1. Introduction and results. Let Mn denote the set of w-square
matrices over a field F. For A, B in Mn let [A, B] = AB — BA', where
A' is the transpose of A and define inductively

(1.1) [A, B\ = [A, [A, B]k-t] .

If P-VP = A, then

[A, X] = [P-'JP, X] = P-'[J, PXP'KP-1)',

and similarly

(1.2) [A, X]k = P-*[J, PXP'UP-1)' .

Now for a fixed A let T be the linear map of Mn into itself defined

by

(1.3) T(Y) = [A, Y]

and (1.1) implies that

In a recent paper [1], Taussky and Zassenhaus showed that A is non-
derogatory if and only if any nonsingular X in the null space of T
is symmetric. In this note we investigate the structure of the null
space of both T and T2 for arbitrary A.

Enlarge the field F to include λ4, i = 1, , p, the distinct eigenvalues
of A, and let (x — Xt)

βtj, j = 1, , nt, etl > > eiUi, i = 1, , p be
the distinct elementary divisors of A where (x — \)eu appears with
multiplicity rυ. Set m4 = Σ"=i^«βw, the algebraic multiplicity of λ̂ .
Let f]{T) denote the null space of T, σ(T) denote the subspace of sym-
metric matrices in ?](T), and y(T) denote the subspace of skew-symmetric
matrices in η(T). We show that

(1.4) dim rj{T) = Σ [~Σ (rlfia + *rl3 Σ rikeΔ] ,
ί=i U=i \ k=j+i / J

(1.5) dim σ(T) = \ ± ("Σ \rt)(rtl + ί)etet) + 2rιs Σ rαe

Received December 17, 1959. The work of this author was supported by U. S. National
Science Foundation Grant, NSF-G5416. The second author is a Postdoctorate Fellow of the
National Research Council of Canada. The authors are grateful to Professor O. Taussky
for her helpful suggestions.
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(1.6) dim v(T') = Σ ΓΣ ίrM2βtJ - 1) + 4rtJ Σ ruelk\] ,
i=l U = l I fc=j + l J J

(1.7) dim σ(ϊ") = 1 ± [~Σ {r|j(2eί, - 1) + r4J + 4rw Σ n
2 «=i U=i I fc=m

In case A is nonderogatory, nt = 1, ri5 = 1, i = l, , p and (1.4) and
(1.5) reduce to

dim>7(T) = n = dimσ(T) .

TTms every matrix X satisfying

(1.8) ,4X - XA!

where A is non-derogatory is symmetric, the result in [1]. Moreover,
if every matrix X satisfying (1.8) is symmetric then dim η(T) = dim σ(T).
Using the formulas (1.4) and (1.5) we see that this condition implies that

Σ Σ (iϊj ~ ri3)ei} + 2 Σ n, Σ riteik = 0 .
ίl ji ii fcj+l

Now since riJf ei5 and % are all positive integers we conclude that
r4 j = 1, j = 1, , nt and nt = 1. That is, there is only one elementary
divisor corresponding to each eigenvalue. Hence, if every matrix X
satisfying (1.8) is symmetric then A is non-derogatory, a result also
found in [1].

We also show in this case that η{T) consists of matrices of the form
PXPf where P is fixed (depending on A) and X is per'symmetric, (i.e. all
the entries of X on each line perpendicular to the main diagonal are
equal).

We next note that η{T) = σ(T) + γ(Γ) (direct) and η(T2) = σ(T2) +
γ(Γ2) (direct). The first statement is easy to show; we indicate the
brief proof of the second statement:

Since X = X + χ t + X ~ X \ if Xeη(T2), then
Δ Δ

T\X+X') = [A,[A,X+X']]

= [A, [A, X] + [A, X']]

= [A, [A, X]] + [A, [A, X']]

= T\X) - [A, [A, X]']

= [A, [A, X]]'

= (T\X))' = 0 .

Similarly, T\X— X') = 0. Thus any Xeη(T2) is expressible uniquely
as a sum of two elements, one in σ(Γ2) and the other in 7(T2). Hence
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(1.9) dim γ(T) = dim η{T) - dim σ(T)

= \ Σ ΓΣ \rl}(rl} - l)et) + 2ri} Σ rιlceΛ] ,

(1.10) dim γ( Γ2) = dim η{ T2) - dim σ( T2)

= \ Σ ΓΣ {rϊX2βw - 1) - rx, + 4rt] "± rue

In case A is non-derogatory, (1.6), (1.7) and (1.10) reduce to

= 2n - p ,

dimγ(T2) = n — p .

We thus conclude that unless all the eigenvalues of A are distinct
(p = n) there exist skew-symmetric matrices X satisfying

(1.11) A2X - 2AXA' + X(A')2 - 0 .

If p = %, α ĉί A is non-derogatory

dim ^(T2) = w - dim

matrix X satisfying (1.11) is symmetric.
On the other hand suppose

ά\mη{T2) = dimσ(Γ2) .

From (1.6) and (1.7) we conclude that

Σ ΓΣ \rU2etJ - 1) - rtj + 4rtJ Σ rikeΛ] = 0 .
ί-i U=i I fc-j+i J J

Hence % = 1, rtJ = 1, eίfc = 1 and we conclude that p = n. That
is, i/ every matrix X satisfying (1.11) is symmetric then the eigenvalues
of A are distinct.

We show finally (Theorem 2) that if A is an n-square matrix with
p distinct eigenvalues then both dim.7(T) and dimγ(Γ2) are at most
\(n — p)(n — p + 1). Moreover, for each p this bound is best possible.

Thus if there exists a skew-symmetric solution of (1.8) or (1.11),
then A has multiple eigenvalues, without the assumption that A is non-
derogatory.

II. Proofs. Let Ei3 e Mn be the matrix with 1 in position i, j and
0 elsewhere. With respect to this basis, ordered lexicographically, it
may be checked that T has the matrix representaion
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(2.1) T=I®A-A®I

where ® indicates Kronecker product.
From (1.2) we may take A to be in Jordan canonical form /, since

[A, X]k = 0 if and only if [J, PXP% = 0 and PXPf is symmetric if and
only if X is. We write

(2.2) J = ±JS
s—i

where

(2.3) Js = \Ls + Σ/ΣUest;

Σ ' indicates direct sum, It is a ί-square identity matrix, Ut is ί-square
auxiliary unit matrix (i.e. 1 in the superdiagonal and 0 elsewhere) and
rjί

Σ * Ue is the direct sum of Ue with itself rtJ times.

By a routine computation we see that

T\Y) = 0

if and only if

(2.4)

where Y = (Y8t), s, t = 1, , p is a partitioning of F conformal with
the partitioning of J given by (2.2).

For s Φ t, it is clear that the matrix representation of (2.4),

has the single nonzero eigenvalue (λs — Xt)
k and thus Yst = 0. Hence

we need only consider the equation (2.4) for s = £. We may again parti-
tion Yss conformally with Js in (2.3). We are thus led to consider the
null space of the mapping

LEMMA 1. Let T= Im®Un- Um(g) In. Then

(2.6) dim η{T) = min (m, n) ,

(2 min (m, n) , ifmφn
(2.7)

Proof. Suppose n ^ m and that Γ(X) = 0. Let a?x, * ,xm be the
column ^-vectors of X Then we have
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(2.8) Unx3 - xj+1 = 0 , j = 1, 2, , m - 1 ,

Unxm - 0 .

For r = 1, 2, , n — 1 consider the (r — j + 1) coordinate of (2.8)
for j — 1, , r and we conclude that

Next consider the (n — j + 1) coordinate of (2.8) for j = 1, , w
to obtain

Similarly we see that the remaining elements of X are zero. Hence
we find that the jth column of the n x m matrix X is the transpose
of the n-vector

[Cj, Cj+l9 , cn9 0, , u |

for j = 1, 2, , w. The other m — n columns are zero.
In case n ^ m, it is easy to check that the jth row of X is the

m-vector

for 3 — 1,2, , m. The other n — m rows are zero.
This establishes (2.6). To prove (2.7) let Γ2(X) = 0 and x19 x2, , xm

be the column n-vectors of X. Let us consider the following cases:
( i ) m — n.

We have

U nXn = U, U nXn-1 = ΔUnXn

and

ί/^ - 2C/na?J+1 + x j + 2 = 0, i = 1,2, • - . , % - 2 .

Solving these equations recursively we find that the 1st, 2nd and
th rows of X are respectively

[# ! ! , X12, , Xi,n-2f %i,n-i> ^ml J

and

W l)L ^2,i-l> ^2J> * ' ' t %2,n~l> V, , 0J

\3 "/L fil.jt %l,j+l9 * * * ? $1,719 V, ' * * , ϋ | ,

for j = 3, 4, , n.
The number of arbitrary parameters in X is 2w — 1.
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(ii) n < m.
Here we have the following equations:

(2.9) UlXj - 2UnxJ+1 + xj+2 = 0, i = 1, 2, , m - 2

Ulxm_λ - 2Unxm = 0

Ulxm = 0

and by solving recursively again we find that the 1st, 2nd and ith rows
of X are respectively the m-vectors

[̂ 21, , &2.Λ-1, (W - 1)^,2, 0, 0, , 0]

and

[(j - l)x2J-lf , (j - I)x2.n-if (n-j + l)xn,39 0, , 0]

-(j-2)[x1J, •••,&!,„, 0,0, . . . ,0]

for i = 3, 4, •••,%.
In case n > m, by similar computation we find that the 1st, 2nd

and jth rows of X are respectively

and

y-i)KH, ',^-i,^o,...,o]

for j — 3, 4, , m + 1. The remaining n — m — 1 rows are zero.
From case (ii), we observe that the number of parameters in X is

2 min (m, w).
We now state and prove the following

LEMMA 2. Let A be an n-square matrix with the single eigenvalue
λ and let (x — X)nι be an elementary divisor of A of multiplicity rif

i — 1, , p, nx > > np. Then the most general matrix X satisfy-
ing (1.11) has

(2.10) Σ \rK2n, - 1) + 4r, Σ rfiλ

arbitrary parameters.
Moreover if X is symmetric it contains
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(2.11) -ί £ \rU2n, - 1) + r , + 4r4 £ rμλ

parameters.

Proof. Without any loss of generality we can assume that

P ri

(9 Λ9\ J _ V'V'ίί
ί = l j=l

where Σ'^Λ indicates the direct sum of Ut with itself r% times. We
partition X conformally with A in (2.12) and observe that the equation

determines the structure of any block Xi3 in the partitioning of X.
From case (i) of Lemma 1, we conclude that any block Xi3 cor-

responding to equal Ut

9s contains 2nΛ — 1 arbitrary parameters and there
are r\ such blocks. Also from case (ii) any block in Xthat corresponds
to Ui and Ujfί<j, contains 2n3 arbitrary parameters. Hence the total
number of parameters in X is given by (2.10).

In order to find the number of parameters in a symmetric X we
first consider a diagonal block. Its structure has been discussed in
Lemma 1, case (i). We observe that if this matrix is symmetric, the
number of parameters in it reduces from 2ni — 1 to nt.

Then we consider two symmetrically placed off-diagonal blocks Xί3

and X3i of orders n% x n3 and n3 x n% respectively. If X is to be sym-
metric then by equating the terms of Xi3 and Xn which are symmetrically
placed about the main diagonal of X, the number of arbitrary parameters
in XtJ and Xn reduces from 2(2n3) to 2n3. If Xtj and X5i are of order
nt x n% then the number of parameters reduces from 2(2w4 — 1) to 2nt—l.

We are now in a position to sum the number of parameters in X
if it is symmetric and satisfies (1.11). There are rt blocks in the main
diagonal, each of order nu ί = 1, , p. The number of parameters in
each of these blocks is nt. There are r ^ — l)/2 other square blocks
of order nt. Each of them contains (2% — 1) parameters. Thus

is the number of parameters in all those blocks of X which are square.
Since any block of order nt x n3 where % > n3 contains 2n3 parameters,
and since we are considering X to be symmetric, we conclude that the
total number of arbitrary parameters in X is given by (2.11).

We can similarly prove the following

LEMMA 3. Let A be the matrix given in Lemma 2. Then the most
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general matrix X satisfying (1.8) has

Σ (rlUi + 2rέ Σ
 rJnj

arbitrary parameters.
Moreover if X is symmetric, it contains

\ p Y p ~]

2 i=i L J=i+l J

parameters.
We now state and prove the following

THEOREM 1. Let A be an n-square matrix with distinct eigenvalues
\f * f \> and let (x — Xt)

ei3, j = 1, , ntf en > > ein. be the elementary
divisors of A corresponding to λέ, where each (x — \)e*j has been repeated
ri3 times. Then (1.4), (1.5), (1.6) and (1.7) hold.

Proof. It was pointed out earlier that if Y = (Yrs), r, s = 1, , p
is the partitioning of Y conformal with the partitioning of J in (2.2),
then all the off-diagonal blocks are zero. Hence we have simply to find
the number of parameters in Yiif i = 1, •••,#.

As proved in Lemma 2, the number of parameters in Yu is

Σ frij(2etJ - 1) + Ari3 Σ riheΔ .
3=1 L k=3+i J

Summing the above with respect to i we obtain the formula (1.6). In
case Y is symmetric, the number of parameters in Ytt is

— Σ ^ij(2β4j — 1) + r4 j + 4r4j Σ τntenc
2 J=i L Jc=3+i J

Summing the above on i we obtain (1.7).
Similarly, we can make use of Lemma 3 in proving (1.4) and (1.5).
We now prove

THEOREM 2. Let A be as given in Theorem 1. Then the maximum
number of linearly independent skew-symmetric matrices satisfying
(1.8) or (1.11) is

—(n - p){n - p + 1) .

Proof. In order to prove our result for dim γ(Γ2), let mt = ^ίιTijei}

and consider
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"i r nί -i

m^ — ΎYI — \ Λ I /y»2 / O Λ __^ "1 \ ^ ^ ΛΛ I , /I η/t \ ^ ty* o I
i ' ' ^ i x J I ' ίj\^^ij -1-/ ' i j i ^ϊ ij 2-1 ' ikPiΊc I

— v Γ v Ί
J=iL * * k=j+i l l J

- Σ ^u(2e4i - 1) - ri3 + ίrυ % rίIceik

nι r ni -Λ

j=^i L fc=j+l J

Now, it is clear that r\3(ei3 — 1) ^ r4 J(e4 J — 1). The last term in the
above expression will be negative only when ei3 = 1. But we know that
e« > βi2 > > e4jl4, so that ei3 will be 1 only for j = nt. In that case
Σ*=J+I does not appear, and we have

2 £ί

This holds for i = 1, , p.
To determine a bound on 7(Γ), consider

ni r w i η
fγγι —_ ŷw ^s I 'y* •/y* ——. "I ι^? —I— s/y* ^s /y* /̂  I

j i L *J * j u a<7fc=-j+i *fc i f c J

= Σ ^ije<j(βu - 1) + 2r 4 j (e 4 J - 1) Σ n*β ί f c
j=i L fc=-j+i J

^ 0, since e4J ^ 1.
Thus we have

1 Ui Γ Wi 1 1 ,
2 j=i L " ι3 %i %jJc=3+i ιlc * f c J = 2

It may be observed that the upper bound is attained for
r41 = mi9 en = 1 and the remaining e's and r 's all zero.

We have thus proved that

dim γ(T2) ^ — Σ (mj - m4)

and

2 *=i

where m4 is the multiplicity of the eigenvalue λ4 of A.
Now we have to maximize Σ3U (mϊ ~~ m«) under the condition that
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m ! + + mp — n, the order of A. Note that

mj - m4 = (mi - I)2 + (m, - 1)

and each m4 — 1 ^ 0. Hence, we have

Σ (m, - I)2 <g [ g (m, - I)]' = (n - p)2 .

Thus the maximum value of both dim7(Γ2) and dimγ(Γ) is

\[{n - vf + {n- p)] .

The bounds are achieved when m1 = = mp_! = 1 and m p = w—p+1.
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UNARY ALGEBRAS

JOHN G. MARICA AND STEVEN J. BRYANT

This paper is concerned with algebraic systems composed of a non-
empty set A and a single unary operation on A; i.e., a function on A
into A, usually denoted by '. Such a system is called a unary algebra.

Our main objective is to give a proof of the following theorem:
If A and B are two finite unary algebras and A2 is isomorphic to B2

f

then A is isomorphic to B.1 In this statement, A2 means the Cartesian
product of the algebra A with itself. In addition to this result, we
prove some basic structure theorems for unary algebras, and cancella-
tion theorems for some classes of unary algebras. In §7 we list some
counter examples which indicate limitations on the generalization of
these results to infinite algebras.

Most of the definitions and theorems were suggested by the graphs
of unary algebras and should be easily understood in this context. The
graphs are obtained by joining each element to its "prime" or ' 'suc-
cessor' ' by a directed line segment. Theorems, equations, definitions,
etc. are numbered consecutively in each section.

l Notation and general theorems. We shall not distinguish nota-
tionally between an algebra and the set of elements of the algebra, and
unless it is essential to do otherwise, we shall use ' to denote the opera-
tion in all of the algebras discussed. In general, upper case letters will
denote algebras, lower case letters will denote elements. Brackets and
parentheses are used in several senses, but for p, q integers (p, q) and
[p, q] will always denote the g.c.d. and l.c.m., respectively, of p and q.

1.1. DEFINITION. If A c B, A Φ 0, B a unary algebra, and A is
closed under ', i.e., A' c A, then A will be called a subalgebra of B.

1.2. LEMMA. If F is a family of subalgebras of A, then [J F is
a subalgebra of A, and if f)F Φ φ, then Π F is a subalgebra of A.

The proof is immediate.

1.3. DEFINITION. If A and B are unary algebras and A Π B = ψ
then A U B is the algebra formed from A U B by applying the opera-
tion of A to elements of A and the operation in B to elements of B.

Received April 7, 1959, in revised form February 2, 1960. To be presented before the
Amer. Math. Soc, Monterey, California, April 18, 1959

1 This problem was mentioned by Tarski in a course taken by one of the authors dur-
ing 1951.
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1.4. DEFINITION. A x B is the Cartesian product of A and B, i.e.,
the algebra formed from the Cartesian product of the sets A and B by-
defining the operation componentwise.

1.5. T H E O R E M . Ax(B{jC)~AxB{jAxC.
The proof is immediate.

1.6. DEFINITION. If x e A we define x° = x, and for n > 0, xn =
(x*1-1)'. Thus, x1 = x\ x2 = (xry, etc.

1.7. DEFINITION, X is called a cyclic element of A if xa — x for
some n > 0.

1.8. DEFINITION. A\k — {x : x e A and xk is cyclic}. In particular,
A/0 is the set of all cyclic elements of A.

It is easily seen that unless A\k is empty it is a subalgebra of A.

1.9. DEFINITION. If x, y are in A then we say x is connected to
y if and only if for some n,m xn — ym.

This relation is an equivalence relation (in fact, a congruence rela-
tion) and we have:

1.10. DEFINITION. The equivalence classes with respect to the re-
lation of 1.9 are called the components of A, the class to which x be-
longs being written C(x).

If an algebra has only one component we call it connected. The
components are disjoint subalgebras and an algebra is completely cha-
racterized by the set of its components. Formally, we have

1.11. THEOREM. If A,B are unary algebras then A~B if and
only if the components of A are pair wise isomorphic to the components
of B.

The proof is obtained by defining the isomorphism / : A~B as the
union of the isomorphisms on the components; and conversely, given
/ , / restricted to each of the components of A yields an isomorphism
onto a component of B. In general, if a sequence of algebras is pair-
wise isomorphic with another sequence, in some order, we shall write
{A} -TO

Suppose that A and B are unary algebras, x e A and y e B,
f:A~B, (that is, / i s an isomorphism of A onto B) and f(x) — y. If
xr is cyclic, and hence for some p xr+p = of, then y satisfies the same
equation. It follows from this that the image of A\k under / must be
B/k, the result holding for all k.

If C and D are unary algebras, z e C,w e D, zr+p = zr, and wr+t =
wr, then in C x D, with q = [p, t] we have (z, w)r+q = (z, w)r. We col-
lect these results in
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1.12. THEOREM. Iff: A~ B then f: A/k ~ Bjk. Moreover, for any
C, D C/k x Ώ\k ~ (C x D)lk.

In particular, this shows that isomorphisms send the cyclic part of
one algebra onto the cyclic part of the image. This fact will be used
frequently in the remainder of the paper

2. The cyclic case. Let us now restrict our attention to finite al-
gebras and, in fact, to those finite algebras in which every element is
cyclic. We call these cyclic algebras, and a component of a cyclic al-
gebra, a cycle.

It is evident that a cyclic is characterized by the number of its
elements, one with p elements being called a p-cycle. It is also clear
that a cyclic algebra is determined up to isomorphism by the number
of p-cycles for p = 1, 2, •••. We now want to show directly that for
cyclic algebras A2 ~ B2 implies A ~ B.

If x is cyclic then by Definition 1.7 xn = x for some n, let us write
o(x) for the smallest such n and call this the order of x. With A and
B cyclic let aif bif cίf and di be the number of elements of order i in
A, Bf A2 and B2 respectively. Then Lemma 2.1, which follows, is evi-
dent, and Lemma 2.2 is quickly obtained by counting, using the fact
that o(x) = r and o(y) = s implies o(x, y) = [r, s].

2.1. LEMMA. A~B if and only if for each i a% == bt.

2.2. LEMMA. CW = 2 Σ a i a j + a2

n, in which the sum is extended
over all pairs (i, j) with i < j and [i, j] = n.

Suppose now that A2 ~ B2 and hence for each i, ct = dt. If A is
not isomorphic to B then there is a smallest n for which anΦbn. We
have always:

cn = 2 Σ a^j + a2

n = 2 Σ a^j + 2 Σ α*α» + a\
i<j i<j<k i\n

and similarly for dny since j — n and [i, j] = n implies i \ n. From this
we obtain

2 Σ Wn + < = 2 Σ bfin + b2

ni\n t\n
i=n iφn

since at = bt for any i < n. Hence

an[2 Σ at] + a\ = bn[2 Σ δ*] + K .
i\n i\n

But the expressions in brackets are the same since i < n and from this
it follows readily that an = bn which is a contradiction. We have shown
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2.3. THEOREM. // A and B are finite cyclic algebras and A2~ B2

then A~ B.
We do not have cancellation even for finite cyclic algebras (see § 7).

3, Ordering* In § 2 we have seen that the cyclic part of an al-
gebra is well behaved, with respect to the square root problem, and we
now turn to the noncyclic part. Consider the class of unary algebras
defined by:

3.1. DEFINITION. A unary algebra A will be called basic if it is
connected, has exactly one cyclic element, and for each k ^ 0 A/k is
finite. B denotes the class of basic algebra.

Notice that in a basic algebra there is an idempotent element,
namely the single cyclic element. The rest of this section is devoted
to the ordering of B in a useful way; the procedure is somewhat com-
plicated and we have several preliminary definitions.

Suppose A e B and x e A, let P(x) be the set of all elements of
A which precede x; i.e.,

3.2. DEFINITION. P(X) = {y :y e A and for some n, yn = x}.
This set of elements can be turned into a basic algebra by chang-

ing the definition of x\ setting xf = x, and leaving everything else un-
changed. The resulting algebra will also be called P(x), and if x is the
cyclic element of A, P(x) = A.

If x e A, A e B, and a is the cyclic element of A then in view of
the connectivity of A we may make

3.3 DEFINITION, deg (x) = the smallest integer n such that xn = α.
Notice that for A e B, A\k is the subalgebra of A consisting of

elements with degree less than or equal to k.

3.4. DEFINITION. If A is finite h(A) = max {deg (x): x e A}.

3.5. DEFINITION. For A e B, the width of A = w(a) = the num-
ber of elements of degree 1.

3.6. DEFINITION. [A] = {P(x): deg (x) = 1 and x e A.
[A] is a collection of basic algebras and as mentioned after 1.11 we

shall write [A] **> [B] when the elements of these sets are pair wise
isomorphic.

3.7. THEOREM. A ~ B if and only if [A] ~ [B].
The proof of this should offer no difficulty since the members of

[A] are disjoint.
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If A and B are in B then A/0 ~ B/0 since each has only a single
element. The proof of the following theorem is included in § 8, but
the theorem is probably not surprising.

3.8. THEOREM. If A and B are in B and for each k ^ 0 A\k ~ B\k
then A~B.

In view of 3.7 we may make the following

3.9. DEFINITION. If A is not isomorphic to B, e(A, B) is the largest
integer for which A/e ~ B/e.

If A is not isomorphic to B and e(A,B) = 0 then w(A) < w(B) or
conversely; we order A, B accordingly. If e(A, B) = 1 then w(A) = w(i?)
and [A] and [B] have the same length, but [A/2] η^ [B/2], Each mem-
ber of these sets is an algebra of height ^ 1 and the collection of al-
gebras of height ^ 1 is ordered as above. We may then arrange the
collections [A/2], [B/2] in nondecreasing order and compare them lexi-
cographically. Continuing this process yields an ordering of B.

The following lemma, together with 3.12 and 3.13 is devoted to
a precise statement and proof of the preceding remarks. In the lemma,
A and B are in B and the members of [A] and [B] will be assumed
ordered by a relation R. We write [A][iτ!][ί?] to mean that [A] is length-
jβ-lexicographically less than [B] in the following sense:

(i) [A] is shorter than [JS], or
(ii) length [A] — length [B] and [A] is lexicographically less that

[B] when both are regarded as nondecreasing sequences relative to R
(i.e., the members of [A] are indexed so that At ~ Ai+1 or AtRAi+1 for
A, e [A]).
To simplify matters we write = instead of ~ .

3.10. LEMMA. Let Rk, k ^ 0, be a relation satisfying:
(i) (A,B) e Rk implies e(A, B) ^ k.
(ii) If e(A, B) ^ k then either (A, B) e Rk or (B, A) e Rk and not

both.
(iii) (A, B) e Rk and (B, C) e Rk implies (A, C) e Rk.
(iv) If e(A, B) ^ fc, (A, B) e Rk if and only if

[AMA, B) + l][Rk][Ble(A, B) + 1] .

Then there is a unique relation Rk+1 satisfying the same conditions
(with k replaced by k + 1) and containing Rk.

Proof. We show first that such an extension is unique. Let (A, B)
be in Rk+1; then e(A, B) ^ k + 1, and by (iv),

[Ale(A, B) + l][Rk+1][Ble(A, B) + 1] .
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If A, is in [A/e(A, B) + 1] then h(At) ^ k + 1, so if At Φ AJf e(Aif A3) g k
and similarly for e(Bif B5) and e(Aif Bj). This means that [Rk] can be
applied. But Rk+1 contains Rk hence [Rk+i] and [Rk] must agree for
these sequences and it follows that RΛ+1 is unique.

We now define Rk+1 by:

3.11. DEFINITION. Rk+1 = {(A, B): e(A, B)=k + 1 and [A/e(A, B) + l]
[Rk][Ble(A, B) + l)}\JRk.

Properties (i) and (ii) are easily checked. In order to check (iv),
suppose that e(A, B) ^ k + 1. If (A, B) e Rk+1 then

[Ale(A, B) + l][Rk][Ble(A, B) + 1] ,

but [Rk+1] agrees with [Rk] whenever both are defined. Conversely, if
e{A, B) ^ k + 1 then [Rk+1] agrees with [Rk] and the definition implies
that {A, B) e Rk+1. Finally, to prove (iii) take e = e(A, B) < e(B, C) and
hence < k + 1. Then A/e = B/e = C/e while [Aje + l][Rk][Ble + 1] =
[C/β + 1] and (A, C) e Rk s Λfc+1. A similar proof is obtained if e(A, C) >
e(B, C) or e(A, C) = e(JB, C ) < fc + 1. If e(A, C) = e(B, C) = fc + 1 then
(A, C) e i^ + 1 because of the transitivity of [Rk]. This completes the
proof of the lemma.

3.12. DEFINITION. RO = {(A, B): e(A, B) = 0 and w(A) <

It is readily seen that i?0 satisfies the conditions of 3.10 For each
k > 0 let Rk+1 be the extension of Rk given in 3.10 and let R — \JRif

k^O.

3.13. DEFINITION. A ^ B if and only if Ai?S or A = 5 .
It can be shown, using § 3.8, that ^ is a simple ordering of B (strictly

speaking, of the isomorphism types of members of B). Two properties
of < obtained from sections 3.10-3.13 which we shall use are

3.14. If w(A) < w(B) then A < B.

3.15. A < B if and only if A/e(A, B) + 1 < Bje{A, B) + 1.

4. Dot product*

4.1. DEFINITION. If A and JS are basic algebras then A B is
defined to be the subalgebra of A x B consisting of all pairs (a?, 2/) for
which degO) (in A) = άeg(y) (in B).

The following facts are easily derived.

4.2. A/fc B/fc =f (A β)/fc (see 1.12).

4.3. &(A -5) = min [h(A), h(B)].

4.4. w(A - B) = w(A)w{B).
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The main theorem on the dot product is the following one and in
it the properties of lexicographic order are used without mention. The
order between the algebras is the one given in 3.13.

4.5. T H E O R E M , ( i ) If A<B and h(C) g e(A, B) then A-C = B-C.

(ii) If A<B and h(C) > e(A, B) then A-C < B-C.

Proof, ( i ) i s e a s y , f o r i n t h i s c a s e A-C = (Alh(C)) - C = (Blh(C))-C=
B - C. (ii) is proved by induction on e = e(A, B). If e = 0 then A < B
if and only if w(A) < w(B), but w(A - C) = w(A)w(C) < w(B)w(C) =
w(B - C) and hence A- C < B C. Now take e > 0, assuming (ii) for
smaller values of e. If A < B then [A/e + 1] < \B\e + 1] and [A/e] =
[B/e], Let [C/e + 1] = {C19 , Cp}; fc(C4) ̂  e, the same holding for the
members of [A/e + 1] and [B/e + 1]. If fc(C4) ^ e - 1 then [A/e + 1]. C4 =
[S/e + 1 Cίβ If Λ(Cί) = e, then let Am < Bm be the first pair in which
[Aje + 1] and [B/e + 1] differ; then Am C4 < Bm. C4 by the inductive
hypothesis, while for i < m, A^ C4 = B5 C4. Thus [A/e + 1] C, < [5/e +1]
• Ct lexicographically. For any Ct in [C/e + 1] then, either [A/e + 1 Ct =
[B/e + 1] C4 or [A/e + 1] C, < [S/e + 1] C4. But [A/e + 1]. [C/e + 1]
is just the ordered union of [A/e + 1] C4, Ct e [C/e + 1], and at least
one strict inequality must hold. Hence, [A/e + 1] [C/e + 1] < [B/e + 1]
[C/e + 1] lexicographically, and A/e + 1 C/e + 1 < B\e + 1 C/e + 1, while
A/e C/e = B/e-Cle( = B- C/e) and A C < J5. C, by definition of < .

4.6. COROLLARY. // A, B, C are infinite and A<B then A-C<B C.

4.7. COROLLARY. // A, B, C are basic algebras and A S B then
A-C ^B-C.

Up to isomorphism, the collection of infinite basic unary algebras
with forms a commutative semigroup which by 4.6 is ordered. This
is the semigroup to which we apply the following lemma.

4.8. LEMMA. If <S, , ^ > if an ordered semigroup2, S* denotes
the set of all finite nonempty, nondecreasing sequences in S; for {#$}
and {y3) in S*, {̂ ί}*{̂ /j} is defined as the nondecreasing sequence formed
from {xt yj}; and ^ * is the length lexicographic order; then <S*, *, ^ * >
is an ordered semigroup.

Proof. Suppose x = {as4}, y = 0/j}, 2 = {zm} are in S* and x <* y.
If length α; < length j/ then length xz < length yz and xz <* yz. If
length a? = length y there is a ί > 0 with xi — yi for any i < ί and
xt <yt. Let as = {α?4: i < ί}, » = {a?4: i ^ ί} and similarly for y and ?/.
The smallest elements in y*z and ?/*are formed from xt,yt, and zλ.

2 We use ordered in the sense of Clifford [2], i.e., a <b implies a c < δ c.
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Therefore, x * z < y * z . Now x — y, %*z = y *z and we have x*z =

(x u x)*z < (y[Jy)*z = y*z. The reason is: inserting equal sequences

in two ordered sequences cannot change their order.

5. Unraveled algebras. Let A be a finite unary algebra, x a cyclic
element of A and X — C(x) (1.10). We associate with x an infinite basic
algebra which we think of as "X unraveled backwards, starting at x",
and call W(x).

5.1. DEFINITION. W(X) = <X x I, *> with J = {0,1, •}

(x, 0)* = (x, 0)

(x, k)* = (&', fc - 1) for k > 0

(V, Ψ = (ϊΛ fc) for » =̂ a? .

It is not difficult to see that W(x) is a basic algebra, the only cyclic
element being (x, 0). (#, m) e W(a?) we still use deg(y, vi) as in 3.3.
If x is any cyclic element in a connected algebra A and y 6 A then for
some n, yn = x; in this context we need

5.2. DEFINITION. degx(#) = m if and only if m is the least non-
negative integer for which ym = x. If y is not in C(x) then dega. y is
not defined.

If the cyclic part of a connected algebra is a p-cycle we say the
algebra is p-cyclic. Lemma 5.3 follows immediately from the definitions.

5.3. If {y,m)e W{x) and C(x) is p-cyclic, then άeg(y,m) —

degx (y) + mp.

5.4. LEMMA. If a and x are in A, b and y are in B, C(a) is p-

cyclic, and C(b) is q-cyclic; then in A x B; (x, y) e C(α, b) if and only
if άega x = deg6 y mod (p, q).

Proof, (x, y) e C(a, b) if and, only if for some m, (x, y)m = (α, 6),
which is equivalent to xm = a and ym — b. Such an m exists if and
only if there are nonnegative integers r, s with

5.5. m = άegax + rp = degby + sq.
The necessary and sufficient condition for the existence of r, s is

that degax = degbymoά(p, q). This completes the proof.
If (x, y) e C(α, b) and m = deg(α,6) (x, y) then the integers satisfying

5.5 are unique and will be denoted by

5.6. r 0 = (deg(α>&) (x, y) - degax)lp, s0 = (deg(α>&) (x, y) - degby)/q.
A result on which the rest of the development depends is
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5.7. THEOREM. If A, B are finite unary algebras, a e A/0 and
b e B/0; then W(a) W(b) ~ W(a, b) in A x B.

Proof. Let C(a) be p-cyclic and C(b) be g-cyclic. Take an element
((x, k), (y, m)) in W{a) W(b) and using the definition of , and 5.3 obtain:

5.8. degα x + kp = deg (a?, k) = deg (y, m) = degb y + mq.
We have then degα x = deg& y mod (p, q) and can apply 5.4; yielding:

(x9 y) e C(a, b) and

5.9. deg(α>&) (x, y) = degα x + rop = deg& y + soq.
Subtracting equation 5.9 from equation 5.8 and dividing by [p, q],

it is easily seen that the result is an integer h,

5.10. h = h((x,k), (y, m)) = (deg (x, k) - deg(α,δ) (x, y))l[p, q]

= (deg (y, m) - deg(α,δ) (x, y))l[p, q\.

Clearly, h is a well defined function and we can now define a func-
tion / which we shall show is the required isomorphism,

5.11. f((x, k), (y, m)) = ((a?, y), h).
To see that / is one-to-one and onto one need only take ((x, y), h)

in W(a, b) and solve equation 5.10 for k and m, using 5.8, the solution
being unique. It remains to be shown that / commutes with the opera-
tions involved. Using * for the operations in the W algebras, and
recalling that on W(a) W(b), * is defined componentwise, let z — ((x, k)f

(y, m)). We want to show that /(«*) = [/(«)]* and we need to consider
three cases:

(1) x Φ a;
(2) x = α, y — by neither k nor m = 0; and
(3) x — α, y = 6, k — m = 0. No other cases are needed, for if

(yf m) = (δ, 0) then (x, k) — (α, 0), otherwise z would not be in W(a) W(b).
All other possible cases are taken care of by symmetry.

Case 1. [/Ml* = [(«, V), h\* = [(«', 2/')» Λ] since (a?, T/) Φ (α, 6), ^* =
[(%', k), (yf, m)] the value of m being unimportant, and f(z*) = [(ίc', 2/'), fc]
in which Λ is calculated from 5.10; h = (deg (a;', ft) — deg(α>6) (a;', y'))l[p, ?].
But deg (a?', fc) = deg (a;, fe) — 1 and deg ( α δ ) (a?', 2/') = deg(α(&) (a?, 2/) — 1,
hence h — h and this case is complete.

Case 2. [/(*)]* = [(α, δ), h]* - [(α', δr), Λ - 1] and ^* - [(αf, fc - 1),

(δ', m - l)] f/(«*) - [(α'f δ'), λ]. We calculate A and Λ:

(α, Jk), (δ, m)] = (deg (α, k) - deg(α>&) (α, δ))/[p, q]

= (deg α α + &p - 0)/[>, g] = fcp/[p, q] .
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h[(a', k - 1), (&', m - 1)] = (degaa' + (k - l)p - [pf g])/[pf q]

This completes the proof of the theorem, since Case 3 is trivial.
We now associate with any unary algebra the collection of its W

algebras by

5.12. DEFINITION. If A is a unary algebra W(A) = {W(a): a e
Since A/0xB/Q^AxB/0 it follows that W(AxB) = {W(a, b): (α, 6}e

(A x B)/0} which is naturally pairwise isomorphic to {Wa Wb :a e A/0,
b e B/0}. This last expression we write W(A) W(B) instead of * as in
Lemma 4.8 This proves

5.13. THEOREM. W(A X B) ~ W(A) W(B).

5.14. THEOREM. // A, B are connected, finite, and A is p-cyclicr

B is q-cyclic, then A^Bif and only if p — q and for some a e AOf

b e Bo, W(a) ~ Wφ).

Proof. One of the implications is clear; for the other, let / be an
isomorphism / : W(a) ~ Wφ) for some a e A/0, b e BjO. We have seen
that isomorphisms preserve degree and they certainly preserve number
of predecessors. Thus, /(α, 0) = (6, 0) and since (α, 1) may be charac-
terized as the only element of degree p with infinitely many predeces-
sors /(α, 1) must be the corresponding element of Wφ). But p = q so
that this element is (6,1). Moreover, / i x O ^ ΰ x O since these are
the sets of elements which do not precede (α, 1) and (6, 1) respectively.
It then follows immediately that the first coordinate of / is an isomor-
phism of A onto B.

Notice that in the connected case, the existence of an isomorphism
between any W(a) and Wφ) is sufficient, (with p = q), to insure the
isomorphism of A and B. If the two sequences W(A) and W(B) have
the same number of elements, then we must have p = q and conversely.
This yields

5.15. COROLLARY. If A, B are finite and connected then A^B
if and only if W(A) ~ W(B).

6. Cancellation. We can now apply the preceding results to the
cancellation problem for finite unary algebras.

It is readily seen that in any ordered semigroup either of x x —
y*y or x z = y z implies x = y. The system of infinite basic algebras
with and ^ is (up to isomorphism) such a semigroup. This system in-
cludes W algebras and we apply Lemma 4.8 to the system of finite
sequences of W algebras. From these considerations we obtain for finite
unary algebras A, B, C,
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6.1. LEMMA. W(A) W(A) ~ W(B) W(B) or W(A) W(C) ~ W(B)

W(C) implies W(A) ~ W(B).

6.2. LEMMA. // A, B, and C are finite unary algebras and A2 ~
B2orAxC~BxC, then W(A) is pair wise isomorphic to W(B).

Proof. From 5.13 W(A). W(A) ~ W(A2) ~ W(B2) ~ W(B) W(B), and
similarly f o r i x C ^ ΰ x C . The lemma follows by applying 6.1.

6.3. THEOREM. If A, B, C, are connected finite unary algebras and
A2 ~ B2 or A x C ~ B x C, then A^B.

Proof. The theorem follows from 6.1 and 5.15.
If an algebra is not connected let us say that it is pure if all the

components are p-cyclic for some fixed p and use the term p-cyclic for
pure algebras as well as connected algebras.

6.4. THEOREM. If A, B, and C are pure finite unary algebras and
A2~B2; or Ax C~B x C and A/0 ~ B/0, then A~B.

Proof. From 6.2 we obtain W(A) ~ W(B). Since we have unique
square roots for cyclic algebras (2.3) and from the hypothesis in the
other case we see that the cyclic structure of both A and B is the same.
They are both pure and consequently there is an integer p such that
all of the cycles of A and B are p-cycles. Given W(A) and W(B) and
p we can put each of the elements of W(A) and W(B) back together
again—see 5.14 and its proof. This will yield the components of A and
B each repeated p times, hence A and B must be isomorphic.

If A is a finite algebra we can write A = Aλ [j A2 [j >* \J An in
which each At is a pure subalgebra (a collection of components) and the
decomposition is maximal in the sense that At U A3 is not pure. This
decomposition is clearly unique up to order and the integer n is called
the length of A. We can now complete the solution of the square root
problem with

6.5. THEOREM. If A and B are finite unary algebras and A2 ~ B2

then A~ B.
The proof is by induction on n, the length of A (and in view of

2.3, also the length of B). For n = 1 the conclusion is part of § 6.4.
For n > 1, assuming the result for smaller n, we know from 2.3 that
the cyclic structure of A and B is the same. Hence, in the decomposi-
tion into pure subalgebras, A = Ax U A2 U U An, B = Bλ U B2 U U Bn,
we may assume that both At and B% consist of pΓcyclic algebras with
AJO ~ J5J0, and pλ < p2 < < pn.

It is not possible for At to be isomorphic to B% for all i Φ j and
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Aj φ Bj. For we know that W(A) ~ W(B) and if the above condition
were to hold then there would be a one-to-one correspondence between
the W algebras obtained from At ί Φ j and Bt i Φ j and hence between
those obtained from A3 and B3. But this and the fact that A3 and B3

have the same cyclic structure implies that A3 ~ B3.
Hence, if A ^ B then for some smallest j < n Aj Φ B3. If J is the

set of indices for which piy i e I divides p3; let P = \J {APi: i e /}, Q =
U {BH\ i e 1} and define A", B" so that A = P \J A", B = Q \j B". Then
A2 = P2 U PA" U A"P U A"2. But for integers ra, p, q; [p, q] divides m
if and only if p divides m and q divides m. Hence the components of
P2 are those which are Λ -cyclic with k dividing p3. From this it follows
that when the isomorphism. given between A2 and B2 is restricted to
P2, it maps P 2 isomorphically onto Q2. Hence P ~ Q since P and Q are
shorter than A and B. This implies that A3 ^ B3 which is a contradic-
tion and completes the proof.

7 Summary• We have seen that all finite unary algebras have
unique (if any) square roots, and that in some cases A x C ^ B x C im-
plies A^ B. This last implication does not hold in general for finite
algebras. The simplest example of its failure is: A a 2-cycle and B two
1-cycles. In this case i x i ^ ί x i and A η^ B.z It is easy to see
that if A is a fc-cycle and B is any collection of pΓcycles with pt \ k and
Y_ipi = k then the same situation obtains.

In view of 6.2 it would be reasonable to conjecture that if the cyclic
structure of A and B is the same then A x C ~ B x C implies A ^ B.
Whenever there is only one way of putting the W algebras back toge-
ther, as in the pure case when the size of the cyclic parts is determin-
ed, we can obtain cancellation.

In the infinite case, it is known that an algebra need not have
a unique square root, a simple example being: A and B free unary al-
gebras with k and I generators, k Φ I. Then A2 ~ B2 but Aη^B. It
seems likely that the results of this paper could be generalized to suita-
ble classes of infinite algebras such as basic algebras, locally finite con-
nected algebras, or algebras satisfying some kind of descending chain
condition. We have not as yet attempted such generalizations.

8. Proof of Theorem 3.8

THEOREM. If A, B are basic algebras with A\k ~ Bjk for all k ^ 0,
then A~ B.

Proof. If A, B are finite the theorem is trivial; we assume that
they are infinite. For each k let Jfc be the set of isomorphisms of A\k

3 This example is attributed to B. Jόnsson by Birkhoff [1], p. 96, ex. 4.
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onto B/k. Ik is not empty, and since Ak is finite, so is Ik. If m > k
and φ e I™ then (φ)Alk(φ restricted to Ajk) e Ik; hence, some members
of Ik must be the restrictions of infinitely many isomorphisms of greatet
degree, and in fact of arbitrarily great degree. Let Ek be the subser
of Ik consisting of isomorphisms of this type. If φ e Ek there is a
member of Ek+U ψ, with (ψ)Ajk — φ, let Eφ be the subset of Ek+1 satis-
fying this condition. By the axiom of choice there is a function /
which selects for each φ in Ek an f(φ) in Eφ.

We now define φ0: A/0 ~ B/Q by φo(α) = b (this is the only member
of Jo); and for k > 0 φk — /(Φfc_i). We show that φ = \J φk is an isomor-
phism, φ : A~ B. In the sequence φ0, φx, each φ is the restriction
of φi+1 to A/i so that φ is a function. Since JJ A\i and each A\i is the
domain of φi the domain of φ is A. If α? e A then a; e A\i for some
i φ(aj') = Φι(xf) — Φi(x)r = Φ{x)f. It is equally easy to see that φ is one-
to-one and onto B, and consequently is an isomorphism.
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ON UNIVALENCE OF A CONTINUED FRACTION

E. P. MERKES AND W. T. SCOTT

1. Introduction* For a fixed positive integer a let KΛ denote the
class of functions f(z) which are regular at z = 0 and which have in-
fraction expansions of the form

(1.1) /(z)~JL + ^ l + ^ l + . . . + ^ ! + . . . , | α J ^ l / 4 .

From an elementary convergence theorem for continued fractions [4, p.42]*
it follows that each function of the class Kω is regular for | z | < 1.
This and the one-to-one correspondence between C-fractions and power
series [4, p. 400] permit a replacement of the correspondence symbol in
(1.1) by equality for | z | < 1.

The purpose of this paper is to determine for Ka the radius of
univalence, U(a), and bounds for the starlike radius, S{a)y and the radius
of convexity, C(a). In the case of ^-fractions it was shown by Thale
[3] that £7(1) ^ 12 i / ^ l θ and Perron [2] established the fact that actual
equality holds. This result is a special case of Theorem 2.1 whose proof
employs value region techniques similar to those used by Thale and
Perron. Moreover, the result S(l) ^ 8/9 in [3] is improved in Theorem
4.2.

The developments in this depend on the following value region
theorem which is an immediate consequence of a result of Paydon and
Wall [1]:

THEOREM 1.1. If f(z) e KΛ and \ z | " = ρ« S 4r(l - r), 0 ^ r ^ 1/2,

then

<1.2)
1-r2 1 - r 2

Moreover, for z = V&ril — r) elmπlcύ, (m = 1, 2, , a), there is a value
of f(z)/z on the boundary of the disc (1.2) if and only if there exists
a φ, 0 ^ φ < 2π, such that f(z) = f(z; φ), where

2. Determination of U(a). For f(z)eKΰύ and for a fixed positive
integer n put
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(p = 0,1, , n - D ,

where the numbers aό are the coefficients in the C-fraction expansion
(1.1) of f(z). It is easily seen that fn,n(z) is the approximant of (1.1)
of order n + 1, and that fp,Jz) e KΛ for each p.

For non-negative integers s, t, and for non-zero numbers z19 z2, (2.1)
may be used to show that

(2.2)

(P = 0,1, , n - 1) .

This identity plays a fundamental role in the proof of the following
theorem.

THEOREM 2.1. The radius of univalence of Ka is given by

U(2) - 21/2/3 ,
(2 3)

There is no larger region, containing the disc \z\< U(a), in which all

functions of Ka are unίvalent.

Proof. For f(z)eKΛ and for a fixed positive odd integer n—2m+1
it follows from (2.2) that

^i Z2 — a1\Z1 Z2Jn-l,n\zl) ~~~ zlZ2 Jn-l,n\Z2)\ί

Repeated application of (2.2) yields

(2.5) =

 lg1^Ajϋ_i,β+1^j>-i _ ^_!j *jj>
J = l P = l

- Σ (ZiZ2)j*(Zi - z2) Π a/*-*'"

For zx and ^2 in the disc | z \ < 1, r can be chosen with 0 < r < 1/2 such
that Iz< \« ^ 4 r ( l - r), (i - 1, 2), and by Theorem 1.1, | ftMfa \ ^ l/( l-r) ,
(i = l ,2;p = 0,l, * ,w). When the triangle inequality is applied to
the right member of (2.5) and the indicated bounds are used, there
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results

This

(2.6)

,yθύ — \~ f

"l 62Jn

- » 1 7

inequality and (2.4)

-* \fn.n
zxz21

(α

Γ(Ύ

2r[Λ

give

)l \*
1 ^ 3

/ /

\1 -

- 1 -

2

Λ—1 r

r N

- r *

-{a

h

I

r+
- 2 ) r ]

r ί α

1
Σ

-

VI

1 -
1 -

r
ry

(a

-2r

VI

- 2 ) r ]

Since Theorem 1.1 shows that neither of the factors \fn,n{
zi)lz% l> (̂  = 1> 2),

is zero, it follows from (2.6) that fn>n{zd Φ fnΛz^ for î ^ ^2 if ^ is such
that 1 — 2r > r[α: — 1 — (α — 2)r]. This is equivalent to the condition
r < ro(a) where

ro(2) = 1/3

and it is easily seen that /2m+i,2TO+i(z) i s univalent for | z \ω < [U(a)Y =
4ro(α)[l - ro(α)].

If the function f(z) has a non-terminating C-fraction (1.1), the uni-
valence of f(z) for | z \ < U(a) is an immediate consequence of the fact
that f(z) is the uniform limit of its sequence of even approximants,
f2m+i,2m+ι(z), for I z I ̂  p < 1. The case where f(z) has a C-fraction ex-
pansion (1.1) terminating with an odd number of partial quotients may
be reduced to the previously considered case for even approximants by
adding a partial quotient, a2mz*ll with α2m = 0, and noting that /2m-i,2m-i(^) =
/am.2m(«) in this case.

In order to complete the proof that the radius of univalence of K&
is the value U(a) given in (2.3), it suffices to exhibit a function of KΛ

which is not univalent in | z \ < p for any p > U(ά). Such a function
is the function f(z, π) of (1.3), that is,

" ^' ' 3 - l/l + s* 7

where the branch of the radical with positive real part f or | z | < 1 is
used. This function is not univalent at the points eίmπlc*U(ά), (m =
1, 2, ,α), where its derivative vanishes.

The final statement in Theorem 2.1 may be verified by applying to
the function f(z, π) the observation that, for every real θ, e~ίθf(eiθz) e K^
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whenever f(z) e K«.

3. A covering theorem* The value region inequality (1.2) can be
rewritten as

(3.1) fM
z 2 + p» + 2τ/l - ρa

2(1 - Vl - p«)
+ p» + 2λ/\ - f

where \z\ = p and f(z) e Ka. Thus for | z | = p the following inequalities,
which provide a means of comparison between Ka and various classes
of univalent functions, are obtained:

(3.2)

(3.3)

(3.4)

(3.5)

3 - VI - ρ« l + τ/i -

2(1 - τ/1 - jQ")

/ - p«

3-α/l-

arg^? arc sin

Each of the inequalities (3.2)-(3.5) is sharp. This fact follows at
once from Theorem 1.1 since equality in any one of (3.2)-(3.5) depends
on the attainment by f(z)/z of a suitable boundary value for the disc
(3.1) or (1.2).

The following theorem is an immediate consequence of (3.4) and
Theorem 2.1:

THEOREM 3.1. If f(z) e Ka, then the image of\z\< U(a) by w = f(z)

contains the disc

(3.6) w I <
2U(a)

3-Vl-[U(a)]a '

and is contained in the disc

(3.7) w
1 - Vl -

These results are sharp.

4. A lower bound for S(a). An upper bound for S(α), the starlike
radius for the class Ka, is evidently the value U(a) determined in §2.
In this section a lower bound for S(a) is found by determining a number
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pjfiί) s u c h t h a t e v e r y f u n c t i o n o f KΛ i s s t a r l i k e i n t h e d i s c \ z \ < p^oc).

L E M M A 4 . 1 . If f(z) e Ka and \a\^ 1/4, then

(4.1) w(z) = - az"~™
1 } K) l + az«-f(z)
satisfies

(4.2) w -
1 - r 2

whenever \ z \* ^ 4r(l — r), 0 ^ r ^ 1/2.

Proof. The lemma is obvious when a = 0. For 0 < | α | ^ 1/4, (4.1)
yields

1 , -w(z)

z az" 1 + w(z)

and the desired result is easily obtained by applying the inequality
\f(z)lz I ̂  1/(1 — r), which is a consequence of Theorem 1.1.

LEMMA 4.2. If a is a positive integer and if for fixed r, 0<r<l/2,
c and d are numbers such that

.(4.8) Q < . <
~ ~ 1 - 2r2 1 - 2r

o — l satisfies

(4.4) I (7 - c I ̂  d .

Moreover, if w is a parameter satisfying (4.2) and if σQ satisfies (4.4),
then σ1 satisfies (4.4) where

(4.5) tfi = 1 + w(σ0 + a - 1) .

Proof. It is obvious that 1 — c ^ d holds for all r, 0 < r < 1/2,
and that — d ^ 1 — c holds provided

^ 2 + (or - 4)r
~ 2(1 - 2r) *

The fact that σ = 1 satisfies (4.4) may be verified by noting that the
upper bound of c in this last inequality exceeds the upper bound on c
in (4.3) for all r, 0 < r < 1/2.

The proof of the second statement is obtained by using (4.2), (4.3),



1366 E. P. MERKES AND W. T. SCOTT

(4.4), (4.5), and the triangle inequality to show that

l - r 2

(c + a - 1) w —
l - r 2 + I w II σ0 - c

1 + (a — 2)r2 - (1 — 2r2)c (c + a — l ) r , rd
1 _ r2 i _ r2 i _ r ^

= d.

LEMMA 4.3. If (4.3) holds for 0 < r < 1/2, there is a value of e
satisfying c 2: d if and only if 0 < r ^ r^oc), where r^a) is the smal-
lest positive root of

(4.6) 1 - (α + 2)r + 2(α - l)r 2 - 2(α - 2)r3 = 0 .

Proof. By (4.3) the inequality c ^ c? holds if and only if

1 + (a - 2)r2 ^ 1 + (a - 2)r
1 - 2r2 ~ 2(1 - 2r) '

which is equivalent to the statement that the left member of (4.6) is
nonnegative. Clearly r^a) < 1/2.

THEOREM 4.1. If f(z) e KΛ and c, d satisfy (4.3), where \ z \* =
p* ^ 4r(l — r), then

(4.7) < d .

Proof. For the functions fp,n{z) of (2.1) put

%>" J p+i,n

Jϊ>,n -l "T" Mn—pZ Jp+i,n

and note by differentiation that <7p+lin = 1 + wp>n(σPιn + a — 1). For
I « I = /O inductive application of Lemmas 4.1 and 4.2 shows that (4.7)
holds for fn>n, and the validity of (4.7) in this case for \z\ ^ p follows
from the maximum property for harmonic functions. Inasmuch as fn>n

is the (n + l)th approximant of (1.1) the theorem holds for functions
of KΛ having terminating C-fraction expansions. The validity of the
theorem in the case of non-terminating C-fractions (1.1) is an immediate
consequence of the uniform convergence of fn>n t o / on any closed subset
of \z | < 1.

THEOREM 4.2. The starlike radius of Ka satisfies S(a) ̂  pjjx) where
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[pi(a)Y = 4ri(α)[l — r^a)] and where rλ{a) is the smallest positive root
of (4.6).

Proof. For r <s r^a) Lemma 4.3 shows that Theorem 4.1 can be
applied to any function f(z) e Ka with c ^ d, and hence that

Since this inequality insures that f(z) is starlike for | z | < pλ{a) the proof
is complete.

In particular, rx(l) = {VY- l)/2 and S(l) ̂  4 i / Ί Γ - 6 which im-
proves the lower bound of 8/9 obtained for S(l) in [3].

5 A lower bound for C(a). It is clear that S(a) and £7(α) are
upper bounds for C(a), the radius of convexity of Ka. In this section
a lower bound for C(a) is found by determining a number p2(a) such
that every function of Ka is convex for \z\ < p2(cή.

LEMMA 5.1. Let a denote a positive integer and let r2(a) be the
smallest positive root of the equation:

(5.1) 1 - (a2 + 2a + 6)r + 6(α2 + a + 2)r2 - 4(3α2 + 2)r3

+ 12(α - l)αr 4 - Aa(a - 2)r5 = 0 .

If for fixed r, 0 < r fg r2(α), σ0 α?ιcί σx are numbers which satisfy

(5.2) I σ0 - c I ̂  d, \σλ-

where

(5.3) l + ( « ~ 2 ) r < c < l + ( « - 2 ) r tf = 1 + (a - 2)r _
2(1 - 2r) ~ ~ 1 - 2r2 1 - 2r

(5.4) Ύl = 2 K -
σx I σQ + a — I σ0 + a - 1 J

then I 701 ̂  1 implies \ rγ1 \ ̂  1.

Proof. For 0 < r < rx{a), where r^a) is as determined in Theorem
4.2, 0 < d < c and

C2 _ d 2 _ c < αr2[(α - 1) - 2(α - 2)r + 2(α - 2)r2]
(1 - 2r)2(l - 2r2)

Thus by (5.2)
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σΛ
c2 — d2 — c

c2-d2

d

c2-d2

and it follows that

c — d

Similarly, (5.2) can be used to show that

- 1 .

(α-1)

σ0 + a - 1

2σ0 + a — 2
σ0 + a - 1

c + d
c + d + a - 1

\(c + d) + a - 2
c + d + a - 1

For I γ01 5g 1 application to (5.4) of the triangle inequality, (5.2) and the
bounds determined above lead to the inequality

(5.5) £ 2(c
c — d

- 2 )

The desired inequality, | ix \ g 1, will hold for those values of r < r^α)
for which the right member of (5.5) does not exceed 1, or equivalently,
for which

(5.6) c-d

(2a - - 2)
(2α - l)(c + d) + (α - l)(α - 2) + [3 - 2(e + + d + a - 1]

Since 2c = (c + d) + (c — d), (5.3) shows that the existence of a value
of c satisfying (5.6) is insured for all r < rx(α) for which

(5.7) 2:
1 - 2r2

This last inequality is equivalent to the requirement that the polynomial
in the left member of (5.1) be non-negative.

The proof of the lemma will be completed by establishing the existence
of a smallest positive zero, r2(a) of (5.1) for which r2(a) < r^a). Since
the equation (4.7) determining r^a) is equivalent to

= c

— 2r2

and since D > 0 for r = r^α), it follows that (5.7) fails to hold for
r = r^α). The desired conclusion about r2(α) is then easily obtained by
noting that (5.7) holds with strict inequality for r = 0.
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THOREM 5.1. The radius of convexity of Ka satisfies

(5.8) [C(a)}« ̂  4r2(α)[l - r2(a)] = [p2{a)γ

where r2(a) is the smallest positive root of (5.1)

Proof. For the functions fpjz) of (2.1) put

rt — /y./ P,n_ rv — r,J g.rc
up,n — 6— , ϊp>n < c — .

Sp.n J p,n

It is easily verified from (2.1) that

**>*> 1 + (α -
+ ^ l σ, + α - 1

where the subscript n has been omitted. Theorem 4.1 and the fact that
70>n = 0 show that the hypotheses of Lemma 5.1 are satisfied, and
inductive application of the lemma yields | 7WlTO I ̂  1. It follows that

3te[l + %•.»] ^ 0 , I s I ̂  ft(α) ,

which insures the convexity of the (w + l)th approximant of any C-ΐrac-
tion (1.1) for | z \ < ρ2(a), and the proof of the theorem may be completed,
as in Theorem 4.1, by reference to uniform convergence.

It is found that p2(l) > .641. An upper bound for C(a) can be
obtained by finding for the function f(z, π) of (1.3) the zeros of zf"(z, π) +
f'(z, π) with smallest modulus. For a — 1 this smallest modulus is ap-
proximately .707.
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ASYMPTOTIC PROPERTIES OF DERIVATIVES

OF STATIONARY MEASURES

SHU-TEH C. MOY

1Φ Introduction* Let X be a non-empty set and S^ be a σ-algebra
of subsets of X. Consider the infinite product space Ω = Hn=-ooXn where
Xn = X for n — 0, ± 1 , ± 2 , and the infinite product σ-algebra j ^ —
Hn=-~^ζ where άζ = ^ for w = 0, ± 1, ± 2, . Elements of β are
bilateral infinite sequences {• , #_i, #0> #i> •} with #w e X. Let us
denote the elements of Ω by w. If w = {• , x_i, xo> %i, •••}<&» is called
the wth coordinate of w and shall be considered as a function on Ω to
X Let T be the shift transformation on Ω to β: the nth. coordinate
of Tw is equal to the n + l th coordinate of w. For any function g on
Ω, Tg is the function defined by Tg(w) = g(Tw) so that ^Txn = xn+1 for
any integer n. We shall consider two probability measures μ, v defined
on J C For w = 1, 2, let βw = Π ?=i-X* where X, - X, ΐ = 1, 2 , n
and ^ n = Π l i Λ where ^ έ = .5f i = 1, 2, , n. Then Ω± = X and
j?"1=zS^ Let J^™n, m ^ w, w = 0, ± 1 , ± 2 , , be the σ-algebra of
subsets of Ω consisting of sets of the form

[w = {••-, «;_!, xq, xλ •••}: (xm, xm+1, •••, xn)eE]

Where £ e / " M + , Then ^ n a ^Qn+1c: <βC Let μm w, 2^mw be the con-
tractions of μ,v, respectively to J ^ n . If vm n is absolutely continuous
with respect to μm n, the derivative of vm n with respect to μm n is a func-
tion of xm, ' ,xn and shall be designated b y / w n ( # w , •••, #n). Since
/m n(ffm, > a«) is positive with j -probability one l//mn(a;Λ, a!n) is
well defined with ^-probability one. We shall let the function
Vim!®™,, •••,&») take on the value 0 when fmn(xm, , xn) ^ 0. Thus
Vfmnfrmf - -', %n) ™ well defined everywhere. In fact llfmn(xm, ••-,»„)
is the derivative of vw ^-continuous part of μmn with respect to vmn.
According to the celebrated theorem of E. S. Anderson and B. Jessen
[1] and J. L. Doob ([2]), pp. 343) llfmn(xm, •••,#„) converges with im-
probability one as n—> oo. If we assume that μ, v are stationary, i.e.,
μ, v are T invariant, more precise results may be expected. A funda-
mental theorem of Information Theory, first proved by C. Shannon for
stationary Markovian measures [5] and later generalized to any stationa-
ry measure by B. McMillan [4], may be considered as a theorem of this
sort. In their theorem X is assumed to be a finite set. In this paper
we shall first treat Markovian stationary measures μ, v with X being

Received September 2, 1959, and in revised form January 18, 1960. The author is
very much indebted to the referee for his suggestions which have been of substantial bene-
fit to this paper.
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any set, finite or infinite, and <5f any σ-algebra of subsets of X. It
will be proved that rr1logfmn(xm, •••,#„) converges as n —• oo with
^-probability one and also in Lx(v) under some integrability conditions.
The case that v is only stationary is also treated. Similar convergence
theorem is proved under the assumption that X is countable.

2. Asymptotic properties of derivatives of a Marikovian measure with
stationary transition probabilities with respect to another such measure*

L e t X, <9?Ω, J^Ωn, J?~n, j r n 9 μmnf Vmnfmn(χmy ...,χn) b e a s i n § 1 .

xnf n = 0, ± 1 , ± 2 , •••, are considered as functions or random variables
on Ω to X. Notations for conditional prababilities and conditional ex-
pectations relative to one or several random variables will be as in [2],
chapter 1, §7. Since we have two probability measures we shall use
subscripts μ, v to indicate conditional probabilities and conditional ex-
pectations taken under measures μ, v respectively. In this section μ, v
are assumed to be Markovian i.e., for any Ae S/fm < n, n = 0 ± 1 ,
± 2 , •••,

( 1 ) Pμ[xn e A I xm9 , a?n_J = Pμ[xn e A \ xn_^\ with /^-probability one and

(2 ) Pv[xn e A I xm, , xn-τ] = Pv[xn e A \ a?n_J with ^-probability one. For
any set E c Ω let IE be the real valued function on Ω defined by

IE(w) = 1 if w e E

= 0 if wφE .

LEMMA 1. // vn^ln is absolutely continuous with respect to μn-ln

then for any i e y

( 3 ) Pv[Xn β A I Xn-^fn-λ n-i&n-d

= ^μ[4Λei)/n-in(*n-i, »n) I V i ] with //-probability one.

Proof. For any i ,

v[xn e A, xn^ e B]

= I Py[xn e AI Xn-J

= I P,[xn e AI v J

On the other hand

v[xn e A, xn^ e B]

= \ IχneAfn-i tfan-if »«) I Xn-i
Jlxn-l€B]
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Hence for any

= 1 E^I eAfn-i n(xn-i, O I ̂ - i
J[»w_iej5]

therefore (3) is true with //-probability one. Dividing both sides of (3)

by fn-i n-ifan-i) we then have

/Λ\ P Γ / v ^ / l l / v . 1 — Eμ.[IXneAfn-i n(Xn-i> xn)

J W - l W—lV ^W — 1 /

With //-probability one on the set [fn-! n-i(%n-i) > 0]. Since y[/»-i n-i(ίcn_i) >
0] = 1, (4) is true with v-probability one.

THEOREM 1. If vn-ln is absolutely continuous with respect to μn^ n

for n = 0, + 1 , ±2, then vmn is absolutely continuous with respect
to Pmn f°r w = 0, ± 1 , ±2, and m ^ n with

( K \ f (<r . . Ύ \ -f (v v V r

\ u ) J m nx^mi f ^n) — J m m+lK^m) ^m+l) ~~ Jm+l m+l (^m+l)

•F (Ύ v \

% , m J n-l nK^n-lf *"n.)

J n-l n—iK^n—i/

with μ-probability one.

Proof. We shall prove the theorem for the case that m = 1, n —
2, 3, . The proof for the general case that m is any integer is
similar. Since vλ 2 is absolutely continuous with respect to μλ 2 by hypo-
thesis, (5) is trivially true for m = 1, n = 2. Suppose vlk(k^ 2) is ab-
solutely continuous with respect to μ1 k and fλ k(xlf , xk) is given by
(5) with //-probability one. For any Ae SζBe ^ k

v[xk+1 e A, (x19 , xk) e B]

= \ PV[%JC+I € A I a?i, , xk]dv .
JCίaJi. .Xfcjejs]

Since v is Markovian and by (4)

v[xk+1 e A, (xlf , χk) e B]

=
JC(x1.....x
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)uχv....χk)eBi fkki%k)

Since μ is Markovian

jc+x^ΛJk k+ix^ki %k

k* Xjc+l) I *̂ 1> * * * 9 %k

with /^-probability one. Hence

v[xk+1 e A, (a?!, , xk) e B]

= \ E\l Aj^iψlf11c(Xu ...,χk)\χu..., xk]dμ
J(χv....χti)eB I k+1 fkk(xk) J

— \ T f (r r \ *k fc+^^fc* xk+i) /I*.
J ( x 1 , . . . , % ) e 5

 n+1 fkki%k)

Hence

v[^fc+1 e A, (xlf , xk) 6 J5]

for any i e ^ f ΰ e ^ f c . Hence for any

Therefore vlfc+1 is absolutely continuous with respect to μlk+1 and

V Ό j J1 fc+iV^i, , Jyjc+i) — / l fcV^l> * > xk) —-. r
Jk k\Xk)

with /^-probability one. (6) together with the supposition that (5) holds
true for m = 1, n — k implies that (5) holds true for m = 1, w = fc + 1.
Thus the theorem for the case that m = 1 is proved.

Any Markovian probability measure on J?~ is said to have stationary
transition probabilities if E being a set of probability one implies that
TE, T~XE are also of probability one and for any i e y and any n

P[xn+1 eA\xn] = TP[xne A\ a?n_J

with probability one. Thus for a Markovian probability measure with
stationary transition probabilities we have for any pair of integers m,
n and any A e y
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(7 ) P[xn e A I xn_λ] = Tn~mP[xm e A | xm_^ with probability one and

(8 ) E[g(xn_lf xn) I xn^] = Tn-mE[g(xm_lt xm) \ xm^] wtih probability one
for any real valued ^Vmeasurable function g on Ω2.

THEOREM 2. Let both μ, v have stationary transition probabilities.
If vn n is absolutely continuous with respect to μn n for n — 0, ± 1 , ± 2 ,
and v12 is absolutely continuous with respect to μ12 then vmn is absolutely
continuous with respect to μm n for m g n, n = 0, ± 1 , ± 2 , and

( Q\ f (r v \ — f W 1

J\

with μ-probability one.

Proof. By Lemma 1, for any

(10) Pv[x2e,

with ^-probability one. For any A, Be .

v[xn e A, a?Λ^ e 5]

= Pv[a?n e A I

e A I x±]dv

2 e A ] ajJlΛ

Hence by (10) and (8)

v[xn e A, xn^ e 5]

- f T»-« J
— \ -̂  1

^w-l> ^w) I Xn-l]
Jn-l n-

- i€B] w /π(Vi)

— \ Jn-l n-A^n-l)

Thus for any £7 e ^Γ_! „
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(11)

Hence for any integer n, vn-x n is absolutely continuous with respect to
μn-ln and Theorem 1 is applicable. (11) also implies that

with //-probability one. Hence

J n—\ n\Xn—l? %n) __ J\ 2v^n—l? «̂ w)/IQ\

Jn-i n-i\%n-i) Ji i\%n-i

with //-probability one on the set [fn-i n-i(&n-i) > 0]. However, except
that w belongs to a set of //-probability 0, n > 1,/n-in-i0&n-i(w)) = 0
imply that /2 n-i(«i(w), , xn^{w)) = 0, hence

/* (φ /y
Jn-l n-i\ftn-l) /l

with /^-probability one. Thus by (6)

(r . . . r \ — f (r . . r λ /i 2\xn-i> %n)

}\ lV ^w-l/

with //-probability one. Combining (12) (13) and by induction, if n > 1

-P (rψ . . . /y \ -F (rψ\ / 1 2V̂ 1> ^2) . . . / 1 2(^^-1? ^w)
J\ n\άi, j Λn) — J1 !{&!) — — — — —

/life) /llfe-l)
with //-probability one. Thus we have proved the theorem for the case
that m = 1. For the general case the proof is similar.

THEOREM 3. If μ has stationary transition probabilities and v is
stationary and if

j I Iogfmm+1(xm, xn+1) I dv < oo then

J I log/w n(xm, , xn) I dv < oo for n = m, m + 1, m + 2,

and n~λ \ogfmn{xm, '"fxn) converges as n-^ oo with v-probability one

and also in Lx(v) to a function g with \ g dv = a where

a = J [log/12fe, x2) - logf^ix^dv ^ 0

In particular, if v is ergodic, g = a with v-probability one.
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Proof. We shall first prove the theorem for the case that m = 1.
Since for any

φ i e A] = I fx 1(x1)dμ, = I fλ 2(xly x2)dμ ,

hence

Since I | log/Ί ^α^, #2) | c£v < 00 hence

J i /12(^1, »2) log/i 2(&x, x2)\dμ = y log/; 2 (^ , ̂ 2) I cίy < 00 .

The real valued function L(|) = ξ log | defined for all real ξ ^ 0[L(0) is
taken to be 0] is convex. By Jensen's inequality for conditional ex-
pectations ([2], pp. 33)

<15) Eμ[L{A 2{xλx2)} I xλ] ^ L{fλ &,)} .

By (15) and the fact that L(ξ) is a function bounded below by a con-
stant, we have

J I L{f, .(x,)} I dμ = j I log/, xfe) I dv < co

and

1 log/ 1 2(^, x2)cίv - log/nί^Odv = a ^ 0 .

Now by Theorem 2

log/i»(a?i, , xn) = log/nίajO + Σ{log/;,(&,_!, »ι)

Since v is stationary, l o g / ^ ^ , •••,«?„) is v-integrable. Applying the
ergodic theorem w"1 log/!„(»!, * ,α?n) converges with ^-probability one
and also in Lx{v) to a function g with

j ^ = J N / n ( ^ υ O - log/n(^)]ώv = α ^ 0 .

For m being any integer, we only need to mentioned that by (13),

logfmm+1(xm, xm+1) — logfmm(xm) = Iogf12(x19 x2) -

with ^-probability one and therefore the same conclusion follows with
a similar proof.
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COROLLARY 1. Suppose μ, v satisfy the hypothesis of Theorem 3
for m = 1. If v is ergodic and if there is an AeS^ such that

(16) v{Pv[x2 eA\xx]Φ Pμ[x2 e A \ x,]} > 0

then v is singular with respect to μ.

Proof. First we shall show that follows from (16)

(17)

For, if fλ jfai) = /i 2(xlf x2) with //-probability one then by Lemma 1
P. [x2 e A I xλ]fλ iίaji) = Pμ[x2 e A | xλ]fλ ^xj with /^-probability one. Thus

Py\x2 e A | scj — Pμ[x2 e AI a?!] with ^-probability one for every A e 5 f Now
the function L{ξ) = ξ log £ is strictly convex, hence it follows from (17)
that

a = J 0

Applying Theorem 3 fln(x19 •••,»„)—>oo with v-probability one as w—>oo#

Hence llfn(xlf , »„) —> 0 with ^-probability one as n —> oo. Let
_ ^ ' be the cr-algebra generated by U»=i-^ί» a n ( i ^ Ί ^' b e ^he contrac-
tions of μ,ι> to ^ ^ ' respectively. Since llfln(xlf •• ,xn) is the deriva-
tive of vx^-continuous part of μln with respect to vlnjl/fln(xf « ,xw)
converges with ^-probability one as n —> oo to the derivative of y'-con-
tinuous part of μr with respect to vf ([2], pp. 343). Now llfln(x19 , xn)
converges to 0 with ^-probability one, hence the ^'-continuous part of
μ' is 0 and μ\ v' are mutually singular. Hence μ, v are mutually singular.

3. Extension to ά-Markovian measures^ The results of the pre-
ceding section can be extended to fc-Markovian measures immediately.
We shall state the theorems only since the proofs in the preceding sec-
tion with obvious modifications apply as well.

THEOREM 4. Let μ, v be any two k-Markovian measures on ̂ Γ If
vn-kn is absolutely continuous with respect to μn-kJ n for n — 0, ± 1 , ± 2 ,
• , then vm n is absolutely continuous with respect to μm n for n — Q,
± 1 , ± 2 , and m <, n with

f (v . , , /y \ - / (v . . . T \ fm+l,m+l+k\%
7 Z Γ

Jn-k n-i\

with μ-probability one.
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THEOREM 5. Let μ> v be two k-Markovian measures on ^ with
stationary transition probabilities. If vn-k+ltn is absolutely continuous
with respect to μn^k+1>n for n = 0, ± 1 , ± 2 , ••• and vlk+1 is absolutely
continuous with respect to μx k+1 then vm n is absolutely continuous with
respect to μmn for n = 0, ± 1 , ± 2 , , m <; n and

•f (Ύ . . . ^ ^ f ί v . . . ^ r ^ J i k+i\Xm+l> * * * i Xm+k+i)
J m n\™mf J ™n) J m m + k—lK^m* f ^m+k—l/ J? / \

with μ-probability one.

THEOREM 6. Let μ, v be two k-Markovian measures such that v is
stationary and μ has stationary transition probabilities. If

J I log/™ m+k(xm, , xm+k) I dv <

then \ I \ogfm n(xm, , xn) \ dv < oo for n = m, m + 1, m + 2, and

wΠog/ronίa?™, m ,%n) converges as n—> oo with v-probability one to a

function g with I gdv = a ^ 0 where

In particular, if v is ergodic, g — a with v-probability one.

COROLLARY 2. Suppose μ, v satisfy the hypothesis of Theorem 6
for m — 1. If v is ergodic and if there is a set Ae S^ such that

(20) v {[P v fe + 1 e A I α?!, , α J =£ Pμ[a?Λ+1 e A] \ x19 . . , ^fc]} > 0

Then v is singular with respect to μ.

4» A generalization of McMillan's theorem* In the setting of this
paper, McMillan's Theorem may be stated as the following. Let X be
a finite set ,of K points and £f be the σ-algebra of all subsets of X.
Let v be any stationary probability measure on ^ and μ be the
measure on ^ such that μ[Xm = α0, Xw + i = αx, , Xn = α n _ J ! = i?:-^-^+1)
for any intergers m, w and α0, αx αw_m in X. jW may be described as
the equally distributed independent measure on ^ Γ Then nrfln(xly ,xw)
converges as w —> oo in Lx{v). In particular, if v is ergodic, the limit
function is equal to log K — H with v-probability one where H is the
entropy of v measure [4], We shall generalize this theorem to the
case that X is countable and μ is Markovian with stationary transition
probabilities.
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THEOREM 7. Let the totality of elements of X be alf α2, and v

be a stationary probability measure on j ^ ~ such that I — log v^x^dv < oo

where vλ is the function defined on X by vλ{a^) — v[xλ — α j . Let μ be

a Markovian measure on j ^ ~ with stationary transition probabilities.

Let p(at, a5) be the value of P μ |X = a5 \xQ] when x0 = at. Let vln be

absolutely continuous with respect to μln for n = 1, 2, •••. //

\ —logp(x19 x2)dv < oo

and \ I logΛ ^x,) \ dv < oo then \ | \ogfx n(xlf , xn) \ dv < oo for n =

1, 2, and n~Ύ log/x n(x19 •••,»„) converges as n —> oo in Lλ(v), In par-

ticular, if v is ergodic, the limit is equal to a constant with v-prob-

ability one.

Proof. Let

Vffaiv α*2> , α * J = v[%i = «*!> ^2 = ah, •••,»« = α « J

a n d

^ ( α ^ , α < 2 , , α < n ) = μ[xx =; α 4 l , ̂  = α v , x n = ain] .

T h e n

with /i-probal .3 and

with ^-probability one and

with //-probability one. Hence

ί\ n\&i9 * * * f ffin) _ . >r̂

with ^-probability one and

(21) log / i rc- i (^ '••><> = I

- l o g i)(a?n_!, α?n)
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with ^-probability one where

(22) gn = Σ logpA%o = at I ff-i, , a?_(n_1)]IBo = α t

We know t h a t Pv[#o = α * l#-i> " •> # - ( » - D ] converges with ^-probability

one as n—*co to Pv[α?0 = α j α ? ^ , a?_2, •••] by Doob's Martingale Con-

vergence Theorem. Hence L{P^[x0 = α41 x-l9 , #_<„_!)]} converges with

^-probability one to L{PJx0 = ai\x-1, x-2f •••]}. But L{ξ) is a bounded

function for 0 ^ ξ <£ 1, hence L{Pv[x0 = α t | £c_lf £c_(n_1}} are uniformly

bounded with ^-probability one. Hence L{Pv[x0 = flj41 x^19 , »_(„_!,]} also

converges in Lx(v) to L{PJ[xQ = at\x-.l9X-2f •••]} as ^—> oo. Now by
rr

Jensen's inequality I — L{Pv[x0 = α̂  | x_l9 , ίc.^.DJjeίv ^ —L{Pv[x0 = α,]}.

Since

Σ —
1 = 1

= α*]} = — log ^(ίCoJίZv
J

Σ {[ = αg I x_2, , »_(„_!
ί = l

converges in Lx(v)9 as m—> oo, to

CO

Σ -
ί = l

uniformly in tι. Hence

Σ -

converges in Lx(y) to

oo

Σ ~~ L{PJ[xQ = ai I x_19 x__2> * •]} &s n —> oo. N o w

\ - Σ
J i—1

= I - Σ •i'î vt^o = α« I ί»-i, , x-(w-i)]}d^ and
J ί=l

j - Σ log Pv[%o = α« I ^-i, B-2, ]JΓ

aSo=αίrf^

= I — Σ L{P*[xQ = at I ̂ _2, X-2, ]}dv, hence
J ί=l

(23) lim - Σ
n-*o° J i=l

= \ — Σ
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(23) together with the facts that the sequence

{ - Σ log P^[x0 = x i I x-lf , 8_ ( n _ 1 ) ]/ X o = α i |

is also convergent with v-probability one and that the functions

oo

___ X ' l/*\rγ "P Γ'ϊ /yι I /yι • Ύ» IT
j_ι l u g ± VL ^O — *^ί I t*/—1> > dj— (n-l)\-Lx0=ai

are non negative with ^-probability one imply that

oo

Σ Pf/y. ft I rγ> . . . / y 1 Γ
•*• vL ̂ O — Wi I | Λ / —1> > t Λ / — ( w — 1 ) J - t a ; o = a i

converges as n —> oo in Lχ(v) to

oo

ί = 1 * ' x0 α ι

Thus we have {gn} to be an Lλ(v) convergent sequence. Let the limit

of the sequence be h. Let h be the Lλ{v) limit of l/n(h + Th H h Tw/z)
as n —> oo. Now by (21)

, xn) = log/n^) + Σ Γ ^ ί T h u s

•, 8 n) -( I — lθg/ l f > (8 l f

J I %

^ l | l o !

<iυ

+ f | i (Σ Γ'flr. - Σ Γ λ

dv

n «=2
civ —> 0 as n

COROLLARY 3. Under the hypothesis of Theorem 7, i/ v is ergodie
and not Markovian then v is singular to μ.

Proof. If v is ergodie then the Lλ{v) limit, h, of {Ijn logf± n(xl9 •••,.
xn)} is equal with v probability one to

1 Σ L{Pil%o = Uί 18-i, a?_2, -]}dv — I logpίa?-!, ^ 0 ) ^ ^

which is greater or equal to
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1 Σ L{PA%o = α«I x-i, x-2]}dv — j log p(x-lf xQ)dv .

Hence by (21)

^ = ] Σ logPv[^o = at I x-i, X-2]IXQ=Hdv - j logp(x-lf xo)dv

= \ log/isfe, %2, xϊ)dv - \ \ogf12(x19 x2)dv .

However I Iogf13(xly x2, x3)dv — I Iogf12(x19 x2)dv = 0 if and only if

(24) μ[fi*{Xi, X2) Φ fAxu %2, x*)] = 0 .

(24) implies that

JΓ\\X-3, Q Jx \ Xif X2\
 =~ ±μ\X% β J\. \ Xιf X2]

with ^-probability one for any i e 5 f This is impossible since μ is
Markovian and v is not. Hence h > 0 with ^-probability one. Hence
/1 n(Xi, , xn) —> °° with v probability one and v is singular to μ by the
same argument used in the proof in Corollary 1.

The extensions of Theorem 7 and Corollary 3 to Λ -Markovian μ is
obvious.
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CONCERNING BOUNDARY VALUE PROBLEMS1

J. W. NEUBERGER

1. Introduction, This paper follows work on integral equations by
H. S. Wall [4], [5], J. S. MacNerney [1], [2] and the present author [3].
Some results of these papers are used here to investigate certain boundary
value problems.

In § 2, results of Wall and MacNerney are used to study a linear
boundary value problem which includes problems of the following kind:
Suppose that each of aij9 i, j = 1, , n is a continuous function, a and
b are numbers and each of bυ, ci3 and di9 ί, j = 1, , n is a number.
Is there a unique function w-tuple f19 •• ,fn such that

// = Σ dufj and Σ VKfM) + CuΛ(δ)] = dif i = 1, , nΊ
7 7

Σ
.7 = 1

Section 3 contains some observations concerning a nonlinear boundary
value problem which includes the problem of solving a certain system of
nonlinear first order differential equations together with a nonlinear
boundary condition. An example is given in the final section.

S denotes a normed, complete, abelian group (norms are denoted by
|| ||). B denotes the normed, complete, abelian group of all bounded
endomorphisms from S to S (the norm of an element T of B is the
g.l.b. of the set of all M such that || Tx || ^ M\\ x || for all x in S). £*
denotes the set to which T belongs only if T is a continuous function
from S to S. If [α, b] denotes a number interval, then C[α>6] denotes
the set to which / belongs only if / is a continuous function from [α, b]
to S. The identity function on the numbers is denoted by j .

The reader is referred to [1] for a definition of the integral of a
function from a number interval [α, 6] to B with respect to a function
from [α, b] to B and to [3] for a definition of the integral of a function
from [α, b] to S with respect to a function from [α, b] to B*. [1] and
[3] contain existence theorems for these integrals and a discussion of
some of their properties.

2* A linear boundary value problem* Suppose that [α, 6] is a
number interval and F is a continuous function from [α, b] to B which
is of bounded variation on [α, 6]. The following are theorems:

( i ) There is a unique continuous function M from [α, b] x [α, b] to

S t
dF Λf(i, u) for each of ί and u in [α, 6].

u

(I denotes the identity element in JB)
Received March 25, 1959, and in revised form January 22, I960.
1 Presented to the Society in part, August, 1958, and in part, January, 1959.
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(ii) M(t, u)M(u, v) — M(t, v) if each of t, u and v is in [a, δ],
(iii) If h is a continuous function from [α, δ] to S and c is in [α, 6],

then the only element X of C[α 6 ] such that X{t) = fc(£) + I dF X for

S i Jc

M{t, j)dh for each t
in [α, δ]. 2

THEOREM A. Suppose that H is a function from [α, b] to B which
is of bounded variation on [α, δ]. A necessary and sufficient condition
that there be a unique element Y of C[α>&] such that

(*) Y(t) = Y(u) + g(t) - g(u) + [ dF - Y and Γ dH. Y = C for

each C in S and each g in C[α&] is that \ dH M(j, a) have an inverse

which is from S onto S.

Proof. Consider first the following lemma. If Y is in C[α,6] and
satisfies (*) for each of u and t in [α, δ], then

- C -

Suppose Y is in C[α>&] and satisfies (*) for each of u and t in [α, δ].

By (iii), Y(t) = M(t, a)Y(a) + [M(t,j)dg for each t in [a, b] and thus
Ja

C = ^dH Γ = [\[dH M(j, a)]Y{a) + \[dH(s) [\[M(8, j)dg]

[\[ (j, a)]γ(a) + j*[J/^(β) M(s, j)

Hence,

[|*dH M(j, a)]Y(a) .= C - ^JJdH(s) Λf(β,

S δ

ώiί M(j, a) by Q. Suppose that (*) has a unique solution
a

for each g in C [ α & ] and each C in SL
Denote by W a point of S, by g an element of C[α>6],

2 Certain essential ideas for Theorems (i) and (ii) were given by Wall in [4]. In [5,]
Wall gave these theorems for S an n-dimensional Euclidean space or suitable infinite di-
mensional space. In [1], MacNerney extended Wall's theory in proving these theorems for
any normed, linear and complete space. Modifications of MacNerney's proofs to the case
of S a normed, complete, abelian group are so slight that the proofs are omitted. Discussion
concerning the properties and computation of M can be found in each paper listed as
reference to this paper.

3 A proof that P dH(s) Γί* Jkf(s, j)dg\ = ΓΓΓdflζβ) M(s, j)]dg which follows closely

a similar argument for ordinary integrals, is ommitted.
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W + ^dH(s) M(8, j)\dg

by C and by X the unique element of C[α>δ] satisfying (*) for this g and

C. By the above lemma, QX(a) = C - ( T Γ d i ϊ ( s ) . Jlf(β, j)]dflf = PP.

Thus each point of S is the image of some point of S under Q, that

is, Q takes S onto S.
Suppose that Q is not reversible and denote by each of W, U and

V a point in S such that QU = W, QV = W and Uψ V. Denote by

Y and Z two elements of C[α>δ] such that Y(t) — U + g(t) — g{a) +

ΫdF Y and Z(t) = V + g(t) - g(a) + ['dF Z for each t in [α, 6].

Thus, Y(t) = Γ(w) + flf(ί) - flf(w) + Γ dF - Y and Z(t) - Z(u) + flf(ί) -

djp7 ^ , for each of u and t in [α, δ]. Since Y(a) — U and

Z(a) = F, it follows that F ^ ^ . As in the proof of the lemma,

Y= QU+

and

Γdff Z - Q7 + ΓΓΓdiϊ(s) M(8, j)jdg

and so

diϊ Γ = \ dH Z ,

a Ja

which means that there is a boundary value problem of the type (*)
which has two solutions, which contradicts the above assumption. Thus
if (*) has a unique solution for each g in CiaM and each C in S, Q takes
5 onto S reversibly.

Suppose that Q takes S onto S reversibly. Denote by g an element
of C[α>&] and by C a point in S. Denote

by U and denote by X the element of C[α,b] such that JΓ(ί) = Ϊ7 + g(t) —

g(a) + ^dH-X for each t in [α, δ]. Noting that X(t) = X(u) +

ΰ(t) -g(u)+[dH-X and that X(t) = M(ί, α)ί/ + ί* Λf(ί, i)c^ for each

of w and ί in [α, δ] and substituting for X in I ώH X, it is seen that

S b Ja

dH X = C. Thus X satisfies (*) for this gr and C. Suppose Y" is in
a

C[α>&] and satisfies (*). Then, by the above lemma,
gQY(a) = C- \b

a[\]dH(s) . M(s, j)]d
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and so Y(a) = U which means that Y(t) = U + g(t) - g(u) + [ dF Y
Ja

and hence by (iii), X — Y. Thus if Q takes S onto S reversibly, there
is a unique solution to (*) for each g in C[α,δ] and C in S.

ί δ

diϊ M(i, a) has a bounded inverse which takes
a ΓΓb "1-1

S onto S, that is, if \ dH M(j, a) is in B, then there is a
function R from [α, b] to B and a function K from [α, b] x [α, 6] to B
such that if g is in C[β(&] and C is in S, then the only element Y of
C[α>&] satisfying (*) for each of t and u in [α, b] is given by Y(t) —

S b

K(t,j)dg for each t in [α, 6]. Moreover, such a pair of
a ΓΓb Π-1

functions R and K is given by R(t) = \ dH M(j, t) and

K(t, u) =
-ΓΓdff Mtf, ί)l ΎdH- M(j, u) + M(t, u) if

[[bdH-M(j,t)Y\bdH.MU,u>) if t^

Proof. Suppose that g is in C[α&] and C is in S. From Theorem
A, (*) has a unique solution Y for this C and g, and from the lemma
in the proof of Theorem A,

[J W M(j\ a)]x{a) = C- j*[JW(s) M(s, j)\dg

and so

X(a) = \^dH M(i, a)Y\c - ^dH(s) Jlf (s, j)

Using (iii) and the fact that

M(t, a)[\[dH M(j, a)Y - [£dH M(j, t)]""1 ,

] " ^ £{[] Y^ M(8,j)}dff

= R{t)C+ [κ(t,j)dg
Ja

where R and K are defined as in the statement of the theorem.

3. A nonlinear boundary value problem* Here a problem is con-
sidered which includes the one in the preceding section. Essentially,
the requirements of § 2 that each of F(t) and H(t) be an element of B
for every t in [α, b] and that F and H be of bounded variation are
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replaced by considerably weaker conditions. Theorem D gives a neces-
sary and sufficient condition for the nonlinear problem considered to have
a unique solution. First a fundamental theorem for a certain type of
integral equation is given.

THEOREM C. Suppose that [α, δ] is a number interval and F is a
function from [α, δ] to B* such that if A is in S and r > 0, there is
a variation function U on [a, b] and a variation function V on [α, b]
such that

\\[F(p)-F(q)]x\\^ U(p,q)

and

|| [F(p) - F(q)]x - [F(p) - F(q)]y \\ £ V(p, q)\\x-y\\

if each of p and q is in [α, 6], || A — x \\ <Ξ r and || A — y \\ ^ r. Then,
if c is in [a, δ], there is a segment Q' containing c such that if Q is
the common part of Qf and [α, δ], there is only one continuous function

Y from Q to S such that Y(t) == A + Ϋ dF Y if t is in Q.

This follows from Theorem F of [3].

DEFINITION. Suppose F is a function from [α, 6] to 5* and c is in
[α, δ]. If there is a point A in S and an element Y of Cίa &] such that

F(ί) = A + 1 CZJF7 F for each t in [α, δ], then the set which contains
Jc

only each such point A is denoted by Fc.[a>bl.

LEMMA 4.1. Suppose that F satisfies the hypothesis of Theorem C
and for some number c in [α, δ] and that there is a segment Q' as in
the theorem which has [α, δ] as subset. Then, for each number u in
[a, δ], there is a set Fu,ίaM.

Proof. Given such a number c and segment Q', then Q = [a, δ]

and there is a point A in S and an element Y of C[α>&] such that

Y(t) = A + ['dF Y for each t in [a, b]. Thus if u is in [a, δ], Y(u) =

A + ("dP. Γ and Y(t) = Y(u) + [ dF - Y for each t in [α, δ]. Thus
Jc Ju

there is a set JF^.^.^.

DEFINITION. Suppose the hypothesis of Lemma 4.1 holds. M de-

notes a function from [a, δ] x [α, δ] such that if each of t and u is in

[α, δ], M(t, u) is the function from Fu,ίa>^ to i77^^,^ such that if A is in

Fu,laM, M(t, u)A is y(ί) where Y is the element of C[α>&] satisfying

γ( s ) = A + Γ di7- Γ for each s in [α, δ].
Ju
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LEMMA 4.2. Under the hypothesis of Lemma 4.1, M(s, t)M(t, u) =
M(s, u) for each of s, t and u in [α, b].

Proof. Suppose that each of s, t and u is in [α, b] and A is in

Fu.laM. Then, F(β) = A + ['dF F and Y(t) = A + Γ dF . F so that

F(β) = r(ί) + f'rfiP. Γ, F(ί) = Af(ί, w)A and F(β) - M(s, w)A. There-

fore, F(β) = M(t, u)A + ['dF Y and F(β) = M(s, t)[M(t, u)A] =

[Λf(β, t)M(t, u)]A. Thus, Λf(β, w) - M(s, t)M(t, u).

THEOREM D. Suppose that in addition to the hypothesis of Theorem
C, it is true that for some c in [α, 6], there is a set Fc,la>by Suppose
furthermore that T is a function from Cίa>bl to S and that C is in S.
The following two statements are equivalent:

( i ) There is only one element Y of C[ϋ(δ] such that

(**) TY = C and F(ί) = Y(u) + Γ dF F for each of t and u in

[α, 6],
(ii) For some u in [α, b], the function R from Fu.ίaιbl, defined by

RA = T[M(j, u)A] for each A in Fu,ίa>bl takes only one element of
Fu-iaM into C.

Proof. Suppose that for some u in [α, 6], the function R as defined
in Theorem D takes only the point U of Fu,iaM into C. Denote by Y
the element of C [ α δ ] such that Y(t) = U + \ dF Ffor each t in [α, 6],
Thus, Y(t) = Y(s) + ['dF F and F(ί) - M(t, u)U for each of t and

s in [α, b] and ΓF=*Γ[Λf(i, w)F(w)] = C. Suppose X is in C[α,δ] and
satisfies (**). Then, X(t) = M(t, s)X(s) for each of t and s in [α, 6] and
so TX = Γ[M(i, ^)X(^)] which means that i?[X(^)] = C which in turn

dî 7 X for each ί in [α, 6],

By Theorem B, X — F. Thus the existence of such a w in [α, 6] and
such a function i2 implies that (**) has a unique solution.

Suppose that (**) has a unique solution Y which is in C[α>6]. Denote

by u a number in [α, 6]. Thus F(ί) - F(w) + ί ' d F F and F(ί) =
M(t,u)Y(u) for each ί in [α, b] and so TY= Γ[M(i, M)F(W)1. Denote
by iZ the function from î ;[α>&] to S so that i?A = T[M(j, u)A] for each
A in F t t : [ β i 6 ] . Thus i?[Γ(^)] = C. Suppose that V Φ Y{u) and RV = C.
Denote by X the element of C[α,w so that X(t) = V + Γ dF X for each
ί in [α, b]. XψY as X(u) Φ Y(u). But X(ί) = X{s) + ΓrfF X for

each of ί and s in [α, 6] and Γ X = [M(j, u)X(u)] = T[M(j, UW] =
J2F= C, a contradiction. Thus there is not such a point V in -F^α,*]
and so the existence of a unique element of C[α,6] satisfying (**) implies
the existence of the required function R.
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4. An example. Suppose that [α, b] is a number interval, S the
number plane, each of p and q a continuous function from [α, b] to a
number set such that p(t) > 0 for each t in [α, b] and each of α^, bi3

and c«, i, j = 1, 2, a number. The problem of solving

(Δ) (py')'QV = G

b12p(b)y'(b) = cx

b22p{b)y\b) = c2

for each continuous function G from [α, 6] to a number set and each
ordered number pair (cu c2) is equivalent to the problem of finding a
function pair f19 f2 each of which is from [α, b] to a number set such
that

_/2'J Iq 0 JL/2J l_G

and

Lα21 α22JL/2(α)J L621 b2jlf2(bμ LcJ '

i.e., the problem of finding a continuous function / from |α, b] to S
such that

and

for each of u and ί in [α, 6] where flr(ί) = Q,JΛ I F(t) is the linear

transformation from S to S associated with

0 \\llp)dj
Ja

qdj

for each t in [α, 6], each of A± and A2 is a linear transformation from

S to S with A associated with Γ^11 M and A2 associated with Γ?11 ?1211 L^2i α 2 2 j L&21 δ 2 2 j

and if is defined in the following way: H(a) — Nb, the transformation

which takes each point of S into \ QU H(U) — AX if a < u <b and

JHΓ(δ) = Ax + A2. Suppose that M satisfies M(t, u) = I + \ dF ikf(i, w)

for each of t and u in [α, 6]. From §2, for (δ) to have a unique con-
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tinuous solution for each g and each C it is necessary and sufficient

S b

dH M(j, a) = Ax + M(b, a)A2 have an inverse which is from S
a Cb

onto Sr. Here is 1 dH M(j, a) has an inverse, it is from S to S and
Ja

is bounded
dίf M(j, a) has an inverse, G is a continuous func-

a ΓQ-|

tion from [a, b] to a number set, C is in S and g = g . By Theorem

B, there is a function iΓ from [α, b] x [α, 6] to B and a function iϋ from

[α, 6] to 5 such that f(t) = R(t)C+ [* K(t,j)dg for each ί in [α, 6].

Denote by each of Rij9 Kijf i,j = l,2 a function from [α, b] to a number

set such that if each of t and u is in [α, &], i?(ί) is associated with
ΓJBu(ί) Ru(t)
lR21(t) β ( ί )

and ίΓ(ί, tt) is associated with

\KJt,u) KJt,u)Ί
LKJt, u) KJt, u)λ '

Thus, fx{t) = Rniφ, + R12(t)c2 + \bKJt,j)dG for each t in [α, 6] and / x

Jα

is the unique solution to (Δ).
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INTEGRAL CLOSURE OF DIFFERENTIAL RINGS

EDWARD C. POSNER

We prove that a commutative differentiably simple ring of charac-
teristic zero finitely generated over its field of constants is integrally
closed in its field of quotients. (A ring is differentiably simple if it has
non-trivial multiplication and has no ideal invariant under a given family
of derivations; i.e., has no differential ideals other than (0). The field
of constants is the subring of the ring annihilated by each derivation
of the family of derivations.) The result of the first sentence is used
to obtain a condition that the powers of an element of a function field
in one variable form an integral basis. The following results from [1]
will be used: A commutative differentiably simple ring of characteristic
zero is an integral domain whose ring of constants is a field. Crucial
is the following lemma:

LEMMA. Let F be a field of characteristic zero; x19 —-,xn be n
independent transcendentals over F; y19 , yq be integral over x19 ,
xn; and d an F-derivation of F[x, y] into itself. Then d (or rather
its natural extension to F(x, y)) sends Ox (the set of elements of F(x} y)
integral over x19 , xn) into itself.

Proof. In general any F-derivation of F(x, y) into itself can be
written as

<=i dXt

Ai elements of F(x, y)f 1 ̂  i <£ n9 Further, d maps F[x9 y] into itself
if and only if d(xt) is in F[x9 y] for each i and d(y3) is in F[x9 y] for
each j . The first set of conditions is equivalent to the condition that
Ai be in F[x9y] for each i.

In order to be able to use power series, we assume that F is
algebraically closed. For if not, let F be its algebraic closure. Let d
also be the extension of d to F(x9 y). Since d sends F[x9 y] into itself,
d send Ox into itself, where Ox denotes the ring of integral functions
of F(x9 y). A fortiori, d sends Ox into Oz. But Ox ΓΊ F[x9 y] = Ox so
actually d sends Ox into itself as required.

Let P be a place of F(xf y) over F which has residue field F and
which is finnite on x19 * 9xn. We will prove that if g, in F(x,y), is
finite at P, d(g) is finite at P. Let at denote the residue of xt at P;
then there exist uniformizing parameters t19 , tn at P such that

Received August 13, 1959, and in revised form January 23, 1960.
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xt — a% is a positive integral power of ti9 say x% — ai — tf*. Every ele-
ment B of F(x9 y) finite at P has a power series in t19 , ίw with
coefficients in i*\ We call the smallest power of tt occurring in this
series the ί-order of B at P, and denote it by oτάFΛB; the definition
of ordjp.i B extends to arbitrary elements B of F(x, y) in an obvious
way. Fixing i, we see that if ordP ) i d(B) Ξ> o r d P ί B for every B finite
at P then orάPΛ d(B) ^ 0 for every such B. Suppose there exists some
B finite at P with ordP > ίd(B) < o r d P i ί B . Then at — pi < 0, where
^ = o r d P ί A o so that rt = j>« — α< > 0, and ordP i ί J? = r4 + ord P ί ώl? for
every (B) in F(#, #) with o r d P ί B Φ 0. Since rf maps ^[α?, #] into itself,
the only values which ordP i ί B can have when B is in F[x, y] are integral
multiples of rlf for otherwise some element of F[x, y] would have
negative i-order. Since t19 •••,*« are uniformizing parameters, it follows
that r% — 1, for otherwise we could replace ί4 by t\\ Thus, d drops
positive i-orders by 1, so that ordPiίd(JB) ^ 0 for every B finite at P
Since this holds for every i, d(B) is finite at P whenever B is. Since
this holds for every P, we conclude that d maps Ox into itself.

THEOREM 1. Let Fbe afield of characteristic zero, A=F[z19 z2, ,zk]
a commutative finitely generated ring extension of F. Let D be a
(finite or infinite) family of derivations of A into itself over F. Let
A be differentiably simple under D. Then A is integrally closed in its
quotient field K.

Proof. A is an integral domain by (1). By Noether's Normalization
Lemma, we can write A = F[xlf •• 9xn;ylf •••,?/<,], with n the trans-
cendence degree of K\F and ylf * ,yq interal over xlf , xn. To prove
A — Ox, let / denote the conductor of Ox, that is, the set of elements
u of F[x, y] such that u Oxd F[x, y]; by [3], pp. 271-2, prop. 6, / is
a non-zero ideal of F[xf y]. To prove / differential under D, let d be
in D, h be in /, g be in Ox. Then h g is in F[xy y]t d(h g) is in
F[x, y], d(h)g + hd(g) is in F[x, y]. Now d(g) is in Ox by the lemma
so hd(g) is in F[x, y] since h is in I. Then d(h)g is in F[x9 y]f I is
differential under D. Then I = F[x9 y] so 1 Ox c i^[^, y]9Ox = F[x9 y]
as promised.

REMARK. D can always be taken to be finite since the derivations
of F[x9 y] into itself form a finite F[x9 y]-modu\e.

The converse of Theorem 1 is false, i.e., there are integrally closed
finitely generated domains which are not differentiably simple under any
family of .F-derivations. For example, let y2 = x\ + x\. Then F[x9 y] = Ox

but is not differentiably simple over F. In fact, the ideal (x19 x29 y) of
F[x9 y] is differential for any derivation, as is easy to see. But when
n = 1, we do have the converse. (For background material, see
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pp. 83-88.)

THEOREM 2. Let K be a function field in one variable over a field
F of characteristic zero, and let x be an element of K transcendental
over F. Let Ox denote the set of elements of K integral over x. Then
Ox is differentiably simple with field of constants F under a family
of two or fewer derivations.

Proof. First we shall specify the derivations. Ox is a Dedekind
ring, i.e., every ideal of Ox is invertible. Let K = F(x,y) with y
integral over x and let f(x, y) = 0 be the irreducible monic for y. Define
d on K by

d(g(x,v)) = &-&—&-&-.
dx dy dy dx

This is well-defined, and d sends Ox into itself by the lemma. Let J
be the ideal of Ox generated by the values of d of integral elements.
/ is invertible, so there exist ht{x, y) in if, 1 ̂  i ^ q, such that htd
sends Ox into itself and such that there exist ut in Ox, 1 rg i ^ q, with
^Uihtd(ut) = 1. (q can be taken to be 2. For J is generated by fx

and fy9 since d(M(x, y)) = fyMx — fxMy for M in K. q can be taken to
be 1 if and only if / is principal, which need not occur.) The family
D is {hλd, " ,hqd}. To prove Ox differentiably simple under A suppose
the contrary. As in the preceding and following theorems, F may be
assumed to be algebraically closed. If Ox has a non-zero differential
ideal, it has a maximal differential ideal /, since Ox has a unit. OJ is
not contained in /, so by Theorem 4 of [1], /is prime. But every prime
ideal of Ox is maximal; in fact, if w belongs to Ox, there is a λ in F
with w — λ in I. Since I is differential for D, hid{w) — /^d(λ) is in I,
1 <: i <; q, hid(w) is in 7, 1 <£ i ^ q. That is, h^w) is in I for all w
in Ox. Then Σ?=A^(%) = 1> 1 is in J, I = 0^. This contradiction proves
that Oa has no differential ideals. Its field of constants is F. For if
u is in F(x, y) and d(u) = 0 then (dldx)(u) = 0, so that % belongs to ΐ\

THEOREM 3. Lei iΓ, F, x, Ox be as in the hypothesis of Theorem 2.
Let R be an order of Ox and let y be an element of K integral over x
with irreducible monic f such that K = F(x, y). Then R = Ox if and
only if y belongs to R and the ideal J in R generated by fx and fy is
invertible.

Proof. If R = Ox, then y belongs to R and every ideal in R is
invertible. Conversely, suppose that y belongs to R and that J, the
ideal generated in R by the values of cί, is invertible. (Here d is the
same derivation as in Theorem 2.) That is, assume that there exist ht
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in K, 1 g i ^ q, with htd sending R into itself, and elements vt in R,
1 ^ ί ^ <Z, with 1 = Σi=iW(v«) We shall prove it! differentiably simple
under D = {ftt(Z, •• ,feβ<Z}. It is known that every prime ideal of i2 is
maximal; it fact, if I is a prime ideal of R, and w is an element of R,
there is a λ in i*7 with w — λ in /. If iϋ has a differential ideal, it has
a maximal differential ideal, and one proceeds as in Theorem 2. So R
is differentiably simple under D. By Theorem 1, R is integrally closed
in K, i.e., iϋ = 0 x as required.

As an illustration, let K = i*\£, #) with /(a?, y) = yn — P(x) = 0,
w ^ 1, P a polynomial in x with no repeated roots. Here R — F[x, y].
Let us examine the ideal in F[x, y] generated by fx and fy, i.e., by
P'{x) and yn~\ This ideal contains yn-χy = yn = P(cc) and p'(a?). P(#)
and P'(x) have no common factor, so there are polynomials Q(x) and
S(x) with QP + SP' = 1. Then the ideal generated by / x and /„ is
.P[^, y] and so is trivially invertible. We conclude F[x, y] = Ox.
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SOME THEOREMS ON MAPPINGS ONTO

M. REICHBACH

Introduction and summary. Let F: X —> Y be a continuous mapp-
ing of a topological space X into a space Y. An important problem is
to find conditions1 under which this mapping is a mapping onto: F(X)= Y.
In the present paper, the following consideration is used in proving
theorems on mappings onto.

Conditions are given under which the image F(X) is closed and
open in Y; hence for a connected Y, F(X) = Y.

This idea is not new. For instance C. Kuratowski2 showed that, i,
a subgroup G of a topological additive group X has the Baire propertyf
then either G is of the first category in X or G is both open and closed
in X, so that G = X if X is connected.

It was also used by the author in [10], to obtain some generaliza-
tions of the Fundamental Theorem of Algebra.

In this paper the results obtained in [10] are generalized to general
topological spaces.

In § I the notion of a "polynomial mapping" is introduced. Rough-
ly speaking, a mapping F: X —> Y is called a polynomial mapping if it
maps every sequence which does not contain a convergent subsequence
onto a sequence which also does not contain a convergent subsequence.
It is proved that a polynomial mapping F: X —> Y of a complete space
X into a space Y maps sets closed in X onto sets closed in Y.3

The role of the disconnection properties in the proofs of theorems
on mappings onto is discussed and a generalization of the Fundamental
Theorem of Algebra to ^-dimensional Euclidean spaces is obtained.

In § II some theorems on mappings onto are proved for the so-cal-
led generalized i^-spaces and the Fundamental Theorem of Algebra is
generalized to such spaces. Finally an application of this generalization
to an existence theorem in some class of functional equations is given.
For the sake of completeness, many known definitions are recalled.

I, 1. Let X be a space in which convergence satisfying the follow-
ing two conditions is defined:

(a0) if xn —» x and xn~^y then x = y
( a ) if xn —> x and kλ < k2 < , then xkjι —> x

The set of all convergent sequences {xn}aX will be denoted by L. Note
that

Received December 21, 1959.
1 For examples of such conditions see [2], chapter XI.
* See [6], P 38 and [7], p. 81. Also [4], p. 8.
3 According to the terminology used by Whyburn in [11], we can say that if F:X-

is a polynomial mapping, then it is a strongly closed mapping.
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( b ) if {xn} e L, k±< Jc2< and xkn —> x then xn —> x
Indeed, since {xn} e L, there exists a point x0 such that xn —• x0. Hence
by (a), xkn —> #0 and since α?,.n —> a? we obtain by (a0), x0 = x. Thus xn —> x.

In the usual way, we can introduce the notions of a subspace P of
X and closedness-and-openness in X (or in P ) . A set P c X is called
connected if it is not a union of two non-empty disjoint sets closed in P.

Let C be a set of sequences {#n} c X such that L c C . The set
C will be called the set of Cauchy (or fundamental) sequences. If L = C,
the space is called complete. Note that since the definition of C is
quite arbitrary (it is only needed that L c C ) we can put C — L and
the space will be a complete space.

I, 2. A mapping F: X—> Y of a space X into a space Y is called
continuous if for every sequence {xn}n=i.2.... c X the condition #w—>α?
implies .F(ίBn) —> i 7 ^) 4 - By "mappings" we shall, in the sequel understand
continuous mappings only. We introduce now the following

DEFINITION 1. A sequence {α?n}n=1,a,...; xneX is called a non-Cauchy
sequence or simply a NC sequence if it does not contain a subsequence
belonging to C

If the set of Cauchy sequences is defined as usual, then
(c) in a finite dimensional Banach space the set of NC sequences

is identical with the set of sequences {flcn}n=ii2i... with xn—>oo.
Indeed, if xn-+ oo, then by the completeness of the Banach space,

{xn} cannot contain a Cauchy sequence {xkn}, since otherwise, there
would be xkn~>x for some x, which is impossible, by xn-+<*>. On
the other hand if xn does not tend to oo, there exists a bounded
subsequence {x'n} of {xn} and since X is finite dimensional, {x'n} contains
a convergent subsequence {x'kn}, which is a Cauchy sequence.

DEFINITION 2. A mapping F:X—> Y is called a polynomial mapp-
ing5 if the condition

{xJ is a NC — sequence, #w 6 X

implies that

(#w)} is a M7 - sequence, F(xn) e Y".

By (c ) we obtain that
( d ) Polynomial mappings F: X —> Y of a jβmίe dimensional Banach

space X into a finite dimensional Banach space Y are identical with
4 In fact we should denote the convergence relation in Y by a symbol other than "-»"

used for convergence in X, but the meaning of " - > " will always be clear from the text.
5 The definition of a polynomial mapping was first introduced by the author in [10]

for metric spaces. The definition introduced here is a generalization of this definition to
general topological spaces.
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those which map sequences {#m}m=i,2f... tending to ©o onto sequences
{F(xm)}m=lt2t... also tending to oo.

In particular, a {Φ constant) complex polynomial in the complex
plane (2-dimensional Banach space) is a polynomial mapping of the plane
into itself. This justifies the notion "polynomial mapping".

We prove now the following

LEMMA 1. If F: X —> Y is a polynomial mapping of a complete
space X into a space F, then for every set A closed in X the image
F(A) is closed in Y. (In particular F(X) is closed in Y).

Proof. Let yneF(A) be points belonging to F(A) and let yn—>y.
We shall show that yeF(A). Indeed, there exist points xneA such
that yn = F(xn). Now {xn} cannot be a NC — sequence since {F(xn)}
would also be a NC sequence (F being polynomial mapping) and this is
impossible by L c C and yn~^y. Therefore, there exists a subsequence
{xkn} of {xn} which belongs to C. The space X being complete, there
is xkn —• x for some x and xeA since A is closed. Thus by the con-
tinuity of F, F(xkn) —> i*X#). But {F(xkJ} is a subsequence of {yn} and
therefore by (b) we have yn —> .F(x). Hence by yn —> ?/, F(x) — y and by
xeA, there is 2/e.F(A).

DEFINITION 3. A mapping F: X—> F is said to be open in the point
yQeF(X) if there exists an open (in Y) set Z7(y0) containing yQ, such
that U{yQ)(zF(X).

Evidently, F(X) is open in Y if and only if F: X—> F is open in
every point yoeF(X).

THEOREM 1. If F: X—* Y is a polynomial mapping of a complete
space X into a connected space F, which is open in every point y e F{X)y

then F(X) = F. (i.e. F: X—* Y is a mapping onto).

Proof. By Lemma 1, F(X) is closed in F and by the assumption,
F — i^(X) is closed in F. Hence by the connectedeness of F there is
F(X) = Y.

I, 3. We shall now investigate the role of the disconnection proper-
ties of subsets of F in the proofs of theorems on mappings onto. Through-
out § I, 3 we shall assume that our spaces satisfy the first countability
axiom and thus all the topological relations may be expressed in terms
of convergent sequences. The following Lemma is evident.

LEMMA 2. A mapping F:X—*Y is not open in the point y eF(X)
if and only if y e Fr(F(X)), where Fr(F(X)) denotes the boundary of
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F(X) in Y.6

We prove now the following

THEOREM 2. If F: X—> Y is a polynomial mapping of a complete
space X into a connected space Y which is open in every point y e F(X)—J,
ivhere JczF(X) is a set which does not disconnect the space Y and if
F: X—> Y is open in at least one point yoeF(X), then F(X) = YJ

Proof. Since F \ X -* Y is open in the point y0 e F{X) there exists
an open (in Y) set U(yo)aF(X). Denote by U the union of all sets
open in Y, which are contained in F(X). Evidently Fr(U)aFr(F(X)).
Now suppose, that there would exist a point oo0e Y — F(X) and let x
be any point belonging to U. Since the set J does not disconnect Y
there exists in F - J a connected set K containing x0 and x. But the
set Fr(U) disconnect the space Y between x0 and x.8 Therefore there
exists a point ye[Fr(U) — J]f]K and since Fr(U)aFr(F(X)) the point
y e [Fr(FX)) - J]f] KaFr(F(X)) - J.

By Lemma 1, F(X) is closed in Y and therefore yeF(X). But,
by assumption F: X —> Y is open in every point y e F{X) — J, which by
Lemma 2 contradicts the fact that y e Fr(F(X)) — J. Thus the assump-
tion that there exists a point xoeY— F(X) leads to a contradiction.

I, 4. We prove now the
First generalization of the Fundamental Theorem of Algebra. Let

F: X —> X be a mapping of the ^-dimensional Euclidean space X, with
n ^ 2 into itself defined by ηi = ηt(ξl9 , ξn) i = 1, 2, n, where the
real functions η% and their derivatives dηjdξk are continuous in X. If
then the Jacobian D = 00ft, %)/9(fi, , £„) =£ 0 in every point a? =
βdi ξn)

 e X — Joy where Jo is a countable set and if the condition
xm(ζ?> * ' l») —* °° implies ^ ( a O —• oo for every sequence of points
xm e X, then F : X—> X is a mapping onto: F(X) = X.

Proof. Since the condition xm —> oo implies F(xm) —• co we obtain
by (d) that ί 7: X-* X is a polynomial mapping. Now by the countability
of Jo the set J = F(J0) is also countable and therefore 0-dimensional.9

Hence, since the dimension n of X is ^ 2, J does not disconnect X.10

Further, if y = F(ίc) is any point of F(X) — /, the mapping F: X-+X
is open in y, because, by the assumption D Φ 0 for points x$J0, a
neighbourhood (in X) of y = F(x) is covered. Finally, since Jo is countable
there exists at least one point y0 in which F: X—• X is open. Thus put-

6 If X is a space and A a subset of X, the boundary Fr(A) = Af]X - A.
7 This Theorem was suggested to the author by H. Hanani.
s S. [3], p. 247, also [8], p. 80.
9 In the sense of Menger-Urysohn

io See [5], p. 48.
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ting Y = X in Theorem 2, we see that all the assumptions of this
theorem hold. Therefore F(X) = X.

REMARK 1. If F:X—> X is any (Φ constant) complex polynomial
defined on the complex plane X, then the mapping F: X —> X is defined
by two real functions rjγ = ηλ{ξ19 ξ2)9 η2 = η2(ξ19 ξ2)9 where Ύ]λ and % are
respectively, the real and imaginary parts of F(x) — rjλ + ίη2, x = ξx +
iξ2eX, i2 = - 1. Now for the Jacobian .D there is D = | F'(α) |2 ^ 0
except for a finite set of points (F'(x) denotes the derivative of F(x))
and therefore, by the above generalization of the Fundamental Theorem
of Algebra, F(X) = X.

REMARK 2. Our proof of the first generalization of the Fundamental
Theorem of Algebra is based on Theorem 2. An essential role in Theorem
2 is played by the assumption that the set J does not disconnect Y.
This assumption is satisfied because the dimension of the Euclidean
space X is assumed to be ^ 2. (A countable set does not disconnect
an Euclidean space with dimension ^ 2). This explains the role, for
the Fundamental Theorem of Algebra, of the fact that the dimension
of the Euclidean plane is Ξ> 2.

II, 1. Let now X be a space (in the sense of I, 1) which is simu-
ltaneously a linear space (with multiplication by real or complex numbers).
We introduce the following

DEFINITION 4. A mapping F:X—> X of a linear space into itself
is said to have a lower bounded rate of change in the point y0 e F(X)
if there exists a point ^ e ί 7 " 1 ^ ) , a number (may be complex) X(xo)φθ
and an open in X set U(y0) containing y0, such that for every y' e U(y0)
the sequence: x'\ Axf\ AAxf; where Ax — x — X(xo)(F(x) — yf) is a
C a u c h y s e q u e n c e for s o m e p o i n t x'eX ( t h e p o i n t xf d e p e n d s on y ' ) .

LEMMA 3. If F: X—> X is a mapping of a complete linear space
X into itself, having a lower bounded rate of change in the point
yoeF(X), then F:X—>X is open in the point y0.

Proof. Let x'\ x0, X(x0) Φ 0 and U(y0) be the points, the number
and the open (in X) set defined in the foregoing definition and let
y'e U(y0) be any point of U(y0). We shall show that yf eF(X). Indeed,
since the sequence x~; Ax'; AAxf; is a Cauchy sequence and X is
complete, it has a limit x'o. Now by the continuity of A, we have
Ax'o = x'O9 i .e . xf

0 — X(xo)(F(x'o) — yf) = x'o a n d h e n c e F(x'o) = yf.

II, 2. Here we shall introduce the notion of a generalized i^-space
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and prove some theorems on mappings onto in these spaces. We begin
with the definition of a generalized metric space.

DEFINITION 5. A set X of points is called a generalized metric
space with metric p if on the Cartesian product I x l a non-negative
real function p(x, y) is defined: 0 ^ p(x, y) ^ oo, χ9 y e X which satisfies
the usual axioms of any metric, i.e. p(x, y) = 0 if and only if x = y,
p{x, y) = p(y, x) and p(x, y) + p(y, z) ^ p(xf z); x, y, z, belong to X.

Thus the difference between the definitions of a metric space and of
the generalized metric space consists in the fact that the function
ρ(x,y) may assume the value of oo.

EXAMPLE 1. Take the set X of all real continuous functions x(t),
— oo < t < oo and define ρ{x, y) = supf | x(t) — y(t) |. Here, X is a gener-
alized metric space, but not a metric space.

Evidently every metric space is also a generalized metric space. In
generalized metric spaces we can define convergent sequences by saying
that xn —> x if p(xn, a?) —> 0 and this convergence satisfies (a0) and (a).
Thus every generalized space is a space in the sense of 1,1. If we
define, as usual, a Cauchy sequence in X by saying that {#w}w=1,2,... e C
if for every ε>0 there exists a N(ε) such that p{xn, xm)<e for n, m>N(ε)
then we have L c C . The set X in Example 1 is, as is easy to see, a
complete space. Let now X be a generalized metric space which is
simultaneously a linear space (with multiplication by real or complex
numbers) such that the following two conditions hold

( e ) p(x, y) = ρ(x - y, 0)
and

( f ) (hx, 0 ) ^ | h\. p(x,0) for every number h and every point
xeX.

In such a case we shall call X a generalized .P-space. For instance,
the space X in Example 1 is a generalized F-space. Another example
of a generalized F space is the set of all sequences x = (ξ1Jξ2, •••) of
real numbers ξu i = 1, 2, if we define ρ(x, y) = supέ | ξt — ηt \ where
y = (τjlf7]i9 •••). Note that on the set on which p is finite, it satisfies
the axioms of the so-called jP-spaces.11 This justifies the notion of
generalized j

Property T. Let F: X—> X be a mapping of a generalized F-space
into itself such that for the point y0 e F(X) there exists a point x0 e F-ι{y^,
a spherical region S(x0, r),12 a complex function X(x0) Φ 0 and a real
function a — a(x0): 0 < a < 1 such that for any two points x and y

11 See [1], p. 35.
1 2 A spherical region S(xo, r) with xQ as centre and r as radius is denned as the set of

all points xeX satisfying p(xo, x) < r.
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belonging to S(x0, r) there is
(g) p[x-y- X(xo)(F(x) - F(y)), 0] ^ ap(x, y) .

A mapping F: X —> X for which (g) holds is said to have the property
T in the point y0eF(X).13

We prove now

LEMMA 4. If F:X-^Xis a mapping of a generalized F-space
into itself having the property T in the point yoeF(X), then F: X—>X
has a lower bounded rate of change in the point yoeF(X).

Proof. Let S(x09 r), X(x0) Φ 0 and a — a(x0) be the spherical region
and the functions appearing in the definition of the property T and put
ro = [(^ — oί)l\X(x0)\] r. It suffices to show that for every yr eS(y0, r0)
the sequence xQ, Ax0, AAx0, where Ax = x — X(xo)(F(x) — y') is a
Cauchy sequence:14

We have for xτ = Ax0;

pfro, »i) = p(x(χo)(F(χQ) - y'), 0) - p[x(χo)(yo - v'), 0]

S I X(x0) I P(Vo, V') < I λ(ί»0) I r 0 = (1 - α ) r .

Thus p(xOf xd ^ (1 — cήr. Now for x, y eS(x0, r) we have by (g):

(g); p(Ax, Ay) = p(x - y - X(xo)(F(x) - F(y)), 0) ^ α^(a?, y)

and therefore ρ(Ax0, Ax^ ^ ap(x0, xλ) ^ (1 — α) α r. Denoting α?n = i4.a?n_1,
n = 1, 2, we obtain by induction />(#„, flJw+i) ̂  (1 — α)αwr, hence by
0 < a < 1 it is easily seen that x0, Ax0, AAxQ, is a Cauchy sequence.

From Lemmas 3 and 4, and from Theorem 2, we obtain the
Second generalization of the Fundamental Theorem of Algebra. If

F: X —> X is a polynomial mapping of a complete generalized jP-space X
into itself, having the property T in every point y e F(X) — J where
J c î ί-X") is a set which does not disconnect the space X, and if there
exists at least one point yQeF(X) in which F: X—> X has the property
Γ, then F(X) = X

Proof. By Lemma 4, i*7: X—> X has a lower bounded rate of change
in every point y e F(X) — J"; hence by Lemma 3 F: X —> X is open in
every point # e ̂ (X) — J where by assumption J does not disconnect
X. Also, by assumption F: X—> X is open in the point j / 0 e ̂ (X). Now,
since a generalized .F-space is connected (as a linear space) we see, by
putting Y = X in Theorem 2, that the assumptions of this theorem
hold. Hence F(X) - X.

1 3 For some ideas concerning this definition the author is indebted to D. Tamari.
1 4 The following part of the proof is analogous to the proof of Banach's so-called theorem

of contraction mappings, see [9] p. 47 and remark 2 p. 49.
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REMARK 3. We shall now show that the above theorem is in fact
a generalization of the Fundamental Theorem of Algebra. Let F: -3Γ—> X
be a ( ^ constant) polynomial, mapping the complex plane X into itself.
Since every Banach space is evidently a generalized .F-space, the complex
plane with the usual metric p(x, y) = | x — y | is a generalized F-space.
Now take any point xoe X such that the derivative F'(x0) Φ 0 and let
y0 = F(x0). P u t X(x0) = ll(F'(x0)) and a = 1/2. Since for x —> x0 we have

(F(x0) — F(x))l(xQ — x) —> F'(# o ) there exists a spherical region S(xQ, r) such

t h a t for x,yQ S(xQ, r), x Φ y there is

F(x) - F(y). 1

a? - 1/ (F'(α0)

and therefore \x-y- (l/(F'(αo))(F(x) - F(y)) \^a\x-y\. But this
inequality holds evidently also for x = y and therefore the mapping
F : X—>X, defined by the complex polynomial F(x), x e X, has the property
T in every point y0 = F(x0) for which F'(x0) Φ 0. Now the set J of
points y = F(x) for which F'(#) = 0 is finite and thus it does not discon-
nect the complex plane X. Hence by the above second generalization
of the Fundamental Theorem of Algebra there is F(X) = X, i.e., a
complex polynomial maps the complex plane onto itself.

II, 3. It is known that
( h ) a ^-dimensional set does not disconnect the n + 2-dimensional

Euclidean space.15

Thus

LEMMA 5. A finite dimensional subset J of an infinite dimensional
Banach space X does not disconnect X.

Proof. Let x0 e X — J be any fixed point and x any point of X — J.
Suppose that the dimension of J is n and take any (n + 2)-dimensional
plane En+2 (homeomorphic with the Euclidean plane En+2) containing the
points x0 and x: En+2(zX. Since the set En+2ΓιJ is at most ^-dimen-
sional it does not disconnect En+2 (by (h)) and therefore there exists a
connected set KaEn+2 — J c X — J which contains the points x0 and x.
Thus every point xeX — J may be joined with the point x0 e X — J by
a connected set KaX — J i.e., the set X — J is connected.

Let now |] || denote the norm in the Banach space X and define
ρ { x , y ) = \\x - y \ \ .

We prove the following

THEOREM 3. Let F : X—> X be a polynomial mapping of an infinite
1 5 S. [5], p. 48. The term "dimension" is used in the sense of Menger-Urysohn.
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dimensional Banach space X into itself, which maps finite dimensional
sets onto finite dimensional sets. If F:X—>X has the property T in
every point y e F(X — Jo) where Jo is a finite dimensional set, then
F(X) = X.

Proof. Since Jo has a finite dimension there exists a point x0 e X—Jo

and thus the mapping F: X —> X has the property T in the point y0 —
F(x0). Now, the set J of points in which the mapping does not have
the property T is contained in F(J0) and since F: X —> X maps finite
dimensional sets onto finite dimensional sets the set J does not disconnect
the space X (by Lemma 5). Hence by the second generalization of the
Fundamental Theorem of Algebra there is F(X) = X.

Analogously to Lemma 5 it can be proved that

LEMMA 6. A ^-dimensional set J does not disconnect a n-dimen-
sional Banach space for n ^ 2.16

Hence

THEOREM 4. Let F: X—> Xbe a polynomial mapping of a n-dimen-
sional Banach space X into itself, with n Ξ> 2. If F:X-^X has the
property T in every point y e F(X — Jo) where Jo is a countable set,
then F(X) = X.

Proof. For the proof, it suffices to note that the set F(J0) is countable
and thus, by Lemma 6, does not disconnect the space X. The rest of
the proof is analogous to that of Theorem 3 and may be left to the
reader.

II, 4. An application. Let X be the generalized .P-space of all
real continuous functions x(t) defined on the real line — co < t < oo with
metric ρ(x, y) = sup{ | x(t) — y{t) \ and let ψ(t, u) be a real continuous
function defined for — ^ < t <^, — OD< u < co satisfying the conditions:

(i ) There exists a real number m > 0 such that for every pair
uγ ^ u2 of numbers there is φ(t, uλ) — φ(t, u2) ̂  m{uλ — u2).

( j ) For each function xo(t) e X there exist numbers r > 0 and M
(depending on xo(t) and r) such that for x(t) and y(t) e S(x0, r) there is
I φ(t, x(t)) - φ(t, y(t) I ̂ M\ x(t) - y(t) \ for every t: -oo < t <σo.

Then, the mapping F(x(t)) = φ(t, x(t)) maps X onto X.

Proof. We shall first show that F: X—> Xis a polynomial mapping.
Indeed, we have by (i) ρ(F(xn), F(xm)) ^ m-p(xn, xm) for every pair xn(t)
and xm(t) of functions. Therefore, if the sequence {F(xn)} would contain

16 This Lemma and Theorem 4 were suggested to the author by H. Hanani.
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Cauchy subsequence {F(xkn)} the sequence {xkj would be a Cauchy
subsequence of the sequence {xn}. Thus F : X - + X m a p s NC sequences
onto NC sequences, i.e., it is a polynomial mapping.

Since our space is complete it suffices, by the second generalization
of the Fundamental Theorem of Algebra, to prove that F:X-+X has
the property T in every point y0 = F(xo)eF(X). Indeed, take any two
points x(t) and y(t) belonging to S(xQ, r). Then for t such that x(t) ̂  y(t)
we have by (i) and (j) m(x(t) - y(t)) ^ F(x(t)) - F(y(t)) ^ M(x(t) - y(t)),
hence - (mlM)[x(t) - y(t)] :> - (1/ikΓ). [F(x(t)) - F(y(t))] ^ - [x(t) - y(t)].
Thus (1 - m/M) [x(t) - y(t)] ^ x(t) - y(t) - 1/ilf [F(a?(t)) - F(y(t))] ^ 0.
Therefore for any t such that x(t) ̂  y(t) we have

(k) (1 - m\M) V\x(t)-y(t)\ ^ \x(t)-y(t) -(llM)[F(x(t))-F(y(t))] |.
Analogously, for any t such that y(t) :> χ(t), (k) holds and therefore

(k) holds for every t. Thus assuming that M> m and putting λ=l/Λf
and a — I — m/M we see by (k) that F:X-^X has the property T in
the point yQ = F(x0).

EXAMPLE 2. If φ(ί, u) is a real continuous function defined for
— oo<ί<oo and — oo<iί,<c» having a continuous derivative Φu(t,u)
such that there exist constants m and M: M > m > 0 for which

m ^ φu(t, u)^M

for every ί and u, then evidently (i) and (j) hold and hence the
function F(x(t)) — φ{t, x(t)) maps X onto X Such a function Φ(t, u) is
for instance the function φ(t, u) = 2u + St + sin (u + t).

REMARK 4. An analogous theorem to the above application was
proved in [10] for the space X of all real continuous functions x(t)
defined in a finite interval a St S b17.
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TWO EXTREMAL PROBLEMS

MARVIN ROSENBLUM AND HAROLD WIDOM

l Introduction* Let ^ 0 be the class of all complex trigonometric
polynomials P of the form Po + Pxe

iφ + P2e
2ίφ + . Let σ and μ be,

respectively normalized Lebesgue measure and any finite non-negative
Borel measure on the real interval ( — π, π]. Suppose μ — μA + μs, with
dμA(φ) = f(Φ)dσ(φ), is the Lebesgue decomposition of μ into absolutely
continuous and singular measures. In this note we shall be concerned
with two generalizations of the problem Qo: Find

Uμ) = inf Π I 1 + e'*P(e'*) |2 dμ(φ)f .

Qo was solved by Szego for the case μ — μA and in general by M. G.

Krein and Kolmogorov. They showed that Uμ) = exp i \ logfdσ if log/

is integrable and Uμ) = 0 otherwise. (See [3], pp. 44, 231.)

We shall consider:

Problem Qλ: Suppose I | g \2 dμ < oo. Find

and

Problem Q2: S u p p o s e \ \ h \ d σ <oo. Find

I2(h, μ) = sup Phdσ jj |P|2c^] έ}.

Clearly I^e-'*, μ) = I0(μ). Also

[1,(1, μ)Γ = mί ([\ I P I Pdσ

so Qo is a particularization of both Qx and Q2. There are other special
cases of Qλ and Q2 that can be found in the work of Szego [5] and
Grenander and Szego [3]. Of particular interest are the following:

( i ) Let g(φ) — e~iίfc+1)φ, where & is a positive integer. Then Qx is
the problem of linear prediction k units ahead of time ([3], p. 184).

(ii) Let h(φ) = 1/(1 - ae~iφ)y \ a | < 1. Then

μ) = sup

Received October 20, 1959, in revised form February 2, I960. This work was done
while both authors held National Science Foundation postdoctoral fellowships.
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See [3], p. 48.
Throughout we shall indulge in the following notational conveniences:

We shall write I^g, f) and I2(h, f) for Iλ(g, μA) and I2(h, μA) respectively,
and, in certain contexts, consider two functions identical that are equal
everywhere except for a set of Lebesgue measure zero.

We have divided this note into six sections. First we indicate an
interesting duality between I1{e~iφg(φ)1 f) and I2(g, 1//) that relates the
problems Qx and Q2 under certain restrictive hypotheses. In section
three we fashion the theory that will handle Qτ and Q2. This is the
solution of a Riemann-Hilbert problem (which we call problem Q3), which
is applied in §§ 4, 5 and 6 to Qx and Q2.

2. Duality of Iλ and I2 This will fall out of the following Banach
space lemma:

Let ^o be a subspace of a Banach space £f and let ^ L be the
annihίlator of ^ in the dual space £f*. If ge^, then

inf{ | | 9 + P\\ : Pe &ά = sup {| l(g)\: I e &0\ \\l \\ ̂  1} .

For a proof see Bonsall [2].

THEOREM 1. Suppose f and 1// are in L\—πf π) and \ \g\2fdσ<co.

Then

Sketch of proof. By the above lemma

Ue- +giΦ), f) = sup {| j e-**g(φ)h(φ)f(φ)dσ | / [ j | h |2 fdσf } ,

where the supremum is taken over all h such that \ eίnφh(φ)f(φ)dσ = 0

for n = 0,1, 2, . Through the substitution e~iφhf = P if follows that

= sup P \2j

where now the supremum is taken over all P such that I einφP(φ)dσ = 0

for n = 1, 2, . It can be shown that it is sufficient merely to con-
sider suprema for Pe ^ 0 , which proves the theorem.

The restrictive condition llfeU{—π,π) seems essential to the for-
mulation of the preceding duality relation, but at least this relation
indicates that there exist close tie-ins between Qx and Q2. We shall
solve a Riemann-Hilbert problem for the unit circle that, when applied
to Qx and Q2, solves both.
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3* The Riemann-Hilbert problem Q3. Let / be a non-negative func-
tion in L1 = U(—π, π), and suppose that & is the closure of ^ 0 in the
Hubert space L\f) of functions square integrable with respect to the
measure fdσ. Thus, for example, & in L\l) = L2 can be identified
with the Hardy space H2. The problem Q3 is:

Given keL1, find functions P e ^ and q satisfying

( 1 ) Pf = k + q , and

( 2 ) ί qe~inφ dσ = 0 , w = 0, 1,

(Note that since \ | P\2fdσ < oo, we have PfeL1 and so g= Pf—keL1.

We first list some pref actory material. We associate with any non-
negative feL1 such that log feL1 the analytic functions

F+(z) = exp i - ί e* + z log f(φ) dσ(φ), \ z
2 J eiφ — z

( 3 )
F-{z) = exp i ( g + 6<* log/(0) ώσ(φ), \z\>l.

2 J « — eιφ

F+ and F " belong to H2 and if2 respectively, and F~(z) = F+(l/^) if
I« I > 1. (A function ί 7^) is said to belong to Kp if F(l/z) belongs to
Hp.) Since the boundary functions in H2 and K2 exist in mean square,
we can define

f+(φ) = lim F+ire**) ,
r-»i—

( 4 ) /"(</>) = lim F-ίre1*) .

These functions satisfy

( 5 ) f(Φ) = f~(Φ)f+(Φ) = I f+(Φ) |2 - I f-(φ) |2.
For any non-negative feL1 and ε > 0 we define F*(z), fHΦ) by (3)

and (4) with / replaced by fs = / + ε. Here we need not assume that
log/e IΛ Note that since / + ε ^ ε > 0 , we have IIFt e £Γ°° and 1/Fτ e iί0 0.
Moreover \ft(Φ) |2 = /(Φ) + ε, so |/β-(φ) | - |/ε

+(φ) | ^ [/(φ)]1/2.
Next we define an operator ( )+ as follows. Its domain D consists

of all L1 functions k with Fourier series Σ - ~ cne
ίnφ such that Σ ~ I cw |2 < oo,

and k+ is the function with Fourier series ^cne
inφ. We define the

operator ( )_ by k- — k — k+. Notice that k+ e H2 and fc_ e K1 with

Λa = 0 .

Our discussion of Q3 proceeds in the following order. First we prove
uniqueness. Then we solve Q3 in certain special cases (these being suf-
ficient, it will turn out, to handle Qx), and finally find the solution in
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the general case.
We are indebted to the referee for the proof of the next lemma.

LEMMA 2. Q3 has at most one solution.

Proof. Suppose Pf — q where P e ^ and q satisfies (2). Then P
is orthogonal, in L\f), to all exponentials einφ (n ̂  0). Since P belongs
to the closed manifold & spanned by these exponentials we conclude
P = 0 .

One can formally solve Q3 by means of the usual factorization methods
(see [4], for example). Write / = / + / " , so Pf=k + q implies

Applying ( )+ to both sides we obtain Pf+ = (&//")+, P =
The following theorem justifies this procedure in certain cases.

THEOREM 3. ( i ) Suppose logfeL1 and k/f~eD. Then Q3 has
the solution

(ii) Suppose logfφL1 and WjfeL1. Then Q3 has the solution

P q 0

Proof. ( i ) Let ε > 0. Since the function / + is outer, it follows
from a theorem of Beurling [1] that there exists a Po e ̂ 0 such that

— P f+

Therefore by (5)

1 / k

do < ε .

fdσ < ε ,

so P as defined in (6) belongs to ^. Furthermore, with q as defined
in (6),

It remains to show that qe K1. Certainly q belongs to K112 since it is
the product of the two K1 functions —/" and (fc//~)_. But since also
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q = Pf- k, it belongs to L\ Therefore ([6], p. 163) qeK1.
(ii) If log/0L1, the space & is identical with L\f) ([3], §33)

and so k/fe &.
We now give the complete solution of Q3.

THEOREM 4. ( i ) The limit

2

dσ

exists either finitely or infinitely,
(ii) A necessary and sufficient condition that Q3 have a solution

P, q is that the limit be finite.
(iii) If the limit is finite then

P = lim i

•in the space L\f), and

\\P\*fdσ = lim\\(klfϊ)+\*dσ .
J 8->0+ J

Proof. Assume first that Qd has a solution P, q and divide both

sides of (1) by /ε~~. Since g//ε~ e K1 and \ qjfvdσ = 0 we have qjfς eD

and (g//8-)+ = 0; also P///Γ eL2cD. Therefore we can apply ( )+ to
both sides, obtaining

Consequently

(7) j |(fc//r)+ l 2 ^ ^ J IP///Γ I'dσ ^ \\P\*fdσ ,

and so

(8 ) lim sup ( \(klfτ)+ I2 da < oo .
ε->o+ J

Conversely suppose that {εj is a sequence of ε's such that εn —> 0 + and

(9) j |(AΪ//Γ)+Nα = 0(1) for ε = en .

By Theorem 3(i) there corresponds to each ε = εn a solution Pe, qΈ of
(/ + ε)Pε = k + q2. We have

(10) J I P ε |
2 /dσ ^ j I P ε |

2 / ε dσ = j |(fc//Γ)+ I2 dσ = 0(1) .

Thus there exists a subsequence of {εn} such that {Pε} converges weakly
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in L\f) to an element P e ^ . It will follow that P, Pf-k satisfies
Q3 if the L1 function q = Pf — k satisfies (2). We have for n = 0,1, 2,

q(φ)e-ίn*dσ = J {Pε(φ)[/(φ) + ε]

[P(φ) - Pε(φ)]/(φ)e-^(2<7 - ε

Theorem 3(i) implies that Jx — 0. By the weak convergence of the P r

we can make J2 as small as desired by taking εn sufficiently smalL

Finally (10) implies that \ | ε1/2Pε |
2 dσ = 0(1), so by the Schwarz inequal-

ity I Ja I ^ ε1/2 ( I ε1/2Pε | dσ = O(ε1/2) as εn ~> 0. Thus P, q satisfy Q3, so

(8), holds and (9) is true for any sequence {εm} of ε's that converge to
0 + . By what we have shown there corresponds to any such sequence
{εm} a subsequence such that P ε converges weakly to the unique (Lem-
ma 2) element P. Thus we can consider ε to be a real variable and
conclude that P ε converges weakly in L\f) to P e & as ε —> 0 + provided
that

limim inf ί | fe//r)+ Γ da < oo .
S->0+ J

We next prove that in fact P ε converges strongly to P in L\f).

It suffices to show that \ | P ε \2fdσ —> \ | P \2fdσ. Weak convergence gives.

lim inf | P ε \2 fdσ ^ | P \2fdσ .
ε-+o+ J J

On the other hand, as in (7),

ί I P ε \2fdσ S [ I P ε \*f*da = \ |(/b//ε")+ |2 dσ S
J J J

so

l i m s u p ( I P ε \
2fdσ s\\P I 2 f d σ .

ε->o+ J J

Thus

lim (I P ε \>fdσ

exists, and equals

+ \2dσ = \\P\2fdσ .
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Thus the proof is complete.

4. Solution of Q1Φ In Qλ we wish to find

where g is a given function in L\μ). Since I±{g, μ) represents the dis-
tance from g to the manifold ^ 0 in L\μ), there exists a (unique) func-
tion P belonging to the closure &f of ^ 0 in L\μ) such that

This function P is such that g + P is orthogonal to ^ 0 , so

[<7(Φ) + P(Φ)]e'tnφdμ(φ) = 0 n = 0, 1, 2,

It follows from a theorem of the brothers Riesz ([6], p. 158) that the
measure v given by

v{E) = [g(φ) + P(φ)]dμ(φ)

is absolutely continuous with respect to Lebesgue measure. Let F be
a Borel set of Lebesgue measure zero such that μs((—κ, π] — F) = 0.
Then g + P vanishes on F almost everywhere with respect to μs, so

( I g + P |2 dμs = 0
JF

and

j I flf + P |2 d// - j I flr + P |2 dμA = j | ff +

Since μ ^ ^ it follows that I^g, //) — Ĵ r̂, / ) , and this common value
is attained by the same extremizing function P e £/**'c^5.

Now,

5 lΰ(Φ) + P(Φ)]e~ίnφf(Φ)dσ = 0 n = 0, 1, . ,

so if we set q = (g + P)/ we have Pf = — gf + q, where P e ^ and <?
satisfies (2). Since (gfflf = g2feL\ we can apply Theorem 3 to this
situation. The extremizing function

-(l/Λ)(f l/ + ) + if

ff if log/0 L 1 ,
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and since

Ug, f) = [\ Iff + P \2fdσf = [j \q \ηfdσf

we have

Tί χ T{ ~ \\\\{gn-\*dσf if log/6 U

vθ if log/0 U.

5. Solution of Q2. Given A e L1, we will evaluate

UK μ) = |up P |

Since μ ^ μA it is clear that if I2{h,f) is finite so is I2(h, μ). We shall
show that, conversely, if I2(h, μ) is finite then so is I2(h, f) and in fact
Uhyf) — Iz(h> f1)- So now suppose I2(h, μ) < oo. Then the linear func-
tional L on ^ 0 given by

L(P) =

is bounded on L\μ). Therefore if &>' denotes the closure of ^ 0 in

L\μ), there is a uniquely determined Qe^f such that L(P) = \PQdμ.

Then we have

" e-^[Q(φ)dμ(φ) - h(φ)dσ(φ)] - 0 n = 0, 1, .. .

We again apply the F. and M. Riesz theorem, and deduce that the
measure v given by

v(Έ) = [ Qdμ - ί hdσ
}E )E

is absolutely continuous with respect to Lebesgue measure. Letting F
be a Borel set of Lebesgue measure zero such that μs{{—iz, π] — F) = 0,
we see that Q vanishes on F almost everywhere with respect to μs.
Consequently

j e-in*[Q(φ)f(Φ) - Hφ)]dσ(φ) - 0 n = 0, 1,

so Qf = h + q, where Q e ^ ' c ^ and q satisfies (2). Thus the linear
functional

L(P) =[phdσ= [pQfdσ,
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P e ^0> is bounded on L2(/), so I2(h,f) is finite and in fact equals I2(h, μ).
We deduce from Theorem 4 that

UK μ) = I2(h, /) = lim Γί I (Λ//e-)+ |
2 dσf ,

and Q may be exhibited as an L\f) limit in the mean.

6» Some formulae for I2(h, μ)Φ We can obtain a simpler formula
for I2(h, μ) if we assume that WjfeL1 and apply Theorem 3. Then

as =ϋ
\2lfdσj

if log/6L1,

if log/^L1.

This, in conjunction with our solution of Qlf gives the duality discussed
in Theorem 1. Note that the hypothesis 1/feL1 of Theorem 1 implies
that logfeL1.

Another simple formula for I2(h, μ) is available if we know that the
Fourier series Σ-~ Keίnφ of h is such that h^n = 0(Ron) as n —> + oo
for some J?o > 1. Then the function H(z) = ̂  h-nz~n is analytic in
\z\> 1/Ro. We have

_ |2 dσ ,(K/f7)+ ?dσ = \\ (

which by the Parseval relation equals

e^h(φ)f}(Φ)dσ \r-» -^\ z»+1H(z)/F;(z)dz

\z\=B

where 1/JBO < R < 1- Let us also assume that log/eL1, so
defined and

is well-

in L2 as ε —* 0 +. It follows that

UK μf - Σ
o 2π J\Z\=B

Now, if we write

F+(z)
ST1 f ^n

— 2-Λ J n" J
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, μf = v

Thus if H is the Hankel matrix [h-.n-m]n>m=0, and Φ the column vector
with components fOf fu , then

Uh,μ) = \\HΦ\\,

where the norm is that of I2.
For example, let a be such that | a | < 1 and consider

Thus we wish to evaluate /2(1/(1 — ae~iφ), μ). Here &_w = an, n = 0,1,
so

Uh, μy = - I a

as in [2], p. 48.
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A CLASS OF LINEAR DIFFERENTIAL-

DIFFERENCE EQUATIONS

MORTON SLATER* AND HERBERT S. WILF**

I. Introduction* The purpose of this paper is to study the follow-
ing integral equation:

(1) φ(x)

or the differential-difference equation

(1') φ\χ) = K(X + l)φ(x + 1) -K{X)Ψ{X)

with the boundary condition

( 2 ) lim φ{x) = 1 .

Equations of the type (1), (1') have been investigated in great gen-
erality by many authors. In particular, the interested reader is referred
to Yates [6], and Cooke [2], for recent developments, and a bibliography
of. significant earlier work. The equations of the form (1) which we shall
consider are related to the class of linear differential-difference equations
with asymptotically constant coefficients, a class treated thoroughly by
Wright [5], and Bellman [1].

The novelty of the results below arises from the boundary condition
(2) which appears not to have been studied before, and which gives re-
results of an essentially different character from those of the works
cited above. The system (1), (2) is of interest in some problems con-
nected with the theory of neutron slowing down (Placzek [3]).

A further departure from previous work is the fact that no use is
made of complex variable methods or the asymptotic characteristic equa-
tion of the kernel K(y).

Aside from some fairly obvious theorems concerning uniqueness,
boundedness and positivity, our main results are the following:

(a) necessary and sufficient conditions for the existence of a solution
of (1), (2); this is achieved by constructing a minorant for the solution.

(b) proof of the existence of φ( — oo) under fairly general conditions.
(c) an application of Fubini's theorem to exhibit a rather surpris-

Received February 4, 1960.
* Nuclear Development Corporation of America, White Plains, N. Y.
** The above research was done while the second author was employed by the Nuclear

Development Corporation of America, White Plains, N. Y. At present his address is the
University of Illinois, Urbana, Illinois.
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ing relation between an integral of the solution over the real axis and
its limits at ± oo. We assume

H1 K(x) is measurable ,

H 2 0 < K(x) ^ 1 , for almost all x ,

H 3 For x ^ M , K(x) increases ,

H4 limK(x) = l,

throughout the paper.
To summarize the results below, we shall give necessary and suffi-

cient conditions for the existence (Theorem 4), uniqueness (Theorem 1),
boundedness (Theorem 2), and positivity (Theorem 3) of the solution; a
a sufficient condition for its monotonicity (Theorem 5); a proof of the
existence of φ(—oo)(Theorem 6) and the evaluation of a definite integral
involving the solution (Theorem 7).

By "solution" we shall always mean a function φ(x) satisfying both
(1) and (2). All integrals are to be understood in the sense of Lebesgue.

II* Existence and uniqueness of solutions•

THEOREM 1. Under H I — H4, the solution φ(x), when it exists, is
unique.

Proof. If the theorem is false, there exists a function ψ(x) not
identically zero which satisfies (1) and for which

lim ψ(x) == 0 .

Then by the continuity of ψ(x) there exist numbers η and x0 such
that η > 0, I ψ(x0) | = η and for all x > x0, | ψ(x) | < η. But then

S XQ + l

I Ψ(V) \dy <η

a contradiction, which completes the proof.

THEOREM 2. With HI — H4 we have, for any solution φ(x) of (1),

(2),

(3) \<P(v)\ SI (-°o < x < oo)

Proof. For if | φ(x) | > 1 for some x, then by (2) and the continuity

of I φ(x) I there is a C > 1 and an x0 such that ] φ(x0) | = C, and for all

% > Xo,\ φ(%o) I < C B u t then

I φ(x0) I ̂  I ̂ °+1| φ(y) 1 dy
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implies C < C, which is a contradiction.

THEOREM 3. Supposing HI — H4, the solution <p(x) of (1) and (2),
when it exists, is positive for all x, and is non-decreasing for x^M.

Proof. We prove positivity first. If φ(x) is not >0 for all x, then
by (2) and the continuity of φ(x) there is an xQ such that φ(x0) = 0 and
for all x > xQ, φ(x) > 0. Then

S X O + 1

K(y)φ(y)dy ,
z0

which is a contradiction by H2.
To prove the monotonicity part, we define

(4)

and

( 5 )

Since 0 < K(y) S 1, ψi(x) ^ ψo(x), and since

(6) φn(%) — Ψn+i(ρ) = \ κ(y) lΨn-i(v) — ψn(y)]dy ,

we see by induction that {ψn(x)} is a decreasing sequence. But since
φ(x) ^ 1 = ψo(x), we see by a second induction that ψn(x) ^ φ{x) for all
x. Hence the ψn(x) decrease to a limit function ψ(x) satisfying (1) by
Lebesgue's dominated convergence theorem, and

lim ψ(x) = 1
X—»oo

since φ(x) ^ ψ(x) ^ 1. Now ψo(x) is non-decreasing for x ^ Mf and thus
so is faty), and again by induction, ψn(x) and hence ^(α;). But by
Theorem 1, ψ(x) — φ(%), which proves the theorem.

LEMMA 1. Under HI — H4 and

H5: 1 - K(x)e£?(M, oo)

ίfoerβ is α function S(x) such that S(x) ^ 0, S(x) is non-decreasing,

.Six) - 1,

( 7 )

Proof. Define

(0
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where the Cn are constants to be determined, and define

S M+(n+ll2)
K(y)dy .

M + (nl2)

Now, requiring that S(x) satisfy (1) at the points M + (n/2) gives

CnQn + Cn+1qn+1 = Cn

that is

r — r Γ 1 ~ Qn Ί

and

(10) Cn+1 = I

But since

1 — ffj — 1 = -*- ~ " (V* ~^~ H i + l ) > 0

we see that the Cw form a non-decreasing sequence. Also

ί j + 1 - K(M)

since iί(?/) increases. But then H5 implies that

K[M +

converges, and so the limit of the product in (10) exists. We can then
choose Co so that

lim Cn = 1 .
W-»oo

It remains to show that (7) is everywhere satisfied. If x0 > M and xQΦ
M+(nj2) for any n, let M +(nJ2) be the largest of the M + (w/2) which
is less than a?0. Then

* 0

jM+(nQl2)

Λf+(ίl0

= S(x0),
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since K and S are positive and non-decreasing.
We can now prove

THEOREM 4. Let HI — H4 hold. Then, necessary and sufficient for
the existence of a solution of (1), (2) is H5.

Proof. Suppose φ(x) exists, then

S x+1
K(y)φ(y)dy

X

+\l - K(y)]φ(y)dy .

Choose ε between 0 and 1 and x0 > M such that φ(x) > 1 — ε for
x ^ a?o Then

S XQ + l

[1 - K(y)]dy ^ <P(£0 + 1) - φ(x0)
XQ

since φ{x) is non-decreasing (Theorem 3) for x ^ M. Replacing x0 by
xQ + 1, etc., and adding

Γ [1 - K(y)]dy rg 1 - 9>(a?o) < °° .

On the other hand, if H5 holds, consider again the ψn(x) of (4)-(5).
Since {ψn(x)} is a decreasing sequence, and

ψn+1(x) - S(x) ^ \ αjK:(2/)[^w(^) - S(y)]dy

we see that ψn{x) ^ S(x) for all n and x. Hence ^w(x) decreases to a
a limit φ(#), satisfying (1), and since

^ S(x)

we have (2) also.

IIL Monotonicity. The solution <p(x) of (1), (2), when it exists,
need not to be monotone on the whole real axis. In this section we will
first illustrate the above statement, and then give sufficient conditions
for the monotonicity of the solution. A lemma that will be of use in
the illustration is

LEMMA 2. Let Ka(x) and Kh{x) each satisfy H1-H5, and in additon
suppose that for all x

Ka(x) ^ Kt(x) .
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Then if <pa(x), <pb(x) are the corresponding solutions of (1), (2), we
have

for all x.

Proof. First,

φa(x) = I Ka(y)φa{y)dy
Jx

Now let ψaAx) = Φaiώ), and define

= \
Jx

Then {φa,n(χ)} In and is bounded above by 1. Hence the sequence
converges to a solution of

(φ(x) = \ Kυ(y)φ{y)dy
I Jx

lim φ(x) = 1 .

The result then follows from Theorem 1 .
Now consider the family

Ka(x) = 4 ΐ4ΐτ (O^a^l).
x2 + 1

Clearly each Ka(x) satisfies H1-H5. Let φo(x) satisfy (1), (2) with
K(x) = K0(x). Then

9>ί(-l) = - K0(-l)φ0(-l) = - (1/2W-1) < 0

by Theorem 3. Hence <pQ(x) is not monotone. In fact we can invoke
Lemma 2 to show that there exists a number α*ε(0,1) such that for
a < α* £>α(#) is not monotone. For if not, there exists a sequence {αJjO
such that <Pan(%) satisfies (1), (2) with K(x) = I ζ ^ ) and 9>αJ#) is mono-
tone for each n. Since {φaj,%)} decreases to a solution of (1), (2) with
K(x) = Zo(^)(by Lemma 2 and Theorem 1) we must have φo(x) monotone
which is a contradiction.

The following theorem, however, gives a sufficient condition for the
monotonicity of φ(x):

THEOREM 5. With H1-H5, suppose that for almost all x,
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(11) K(x + 1) ^ K{x) \X+1K(y)dy .
Jx

Then φ(x) is non-decreasing on the real axis.

Proof. Let S0(x) be the function S(x) of (8). Define

(12) Sn+1(x) = \x+1K(y)Sn(y)dy (n = 0 , 1 , . . .) .

Then, for all w,

(a) 0^Sn(x)^l

(13) (b) limSn(a?) = l

(c) J

We show next that with (11), the subsequence {S2n(x)} is a sequence
•of non-decreasing functions. Clearly SQ(x)]x for all x. Now suppose that
for all k<>n, S2fc(a0ΐ* for all x. Then

Sίn+2(x) = K(x + l)S2n+1(x + 1) - K(x)S2n+1(x)

a.e.
Now by (13) (c),

O (/y* j "1 \ "^> Cf (/yt I "1 \

and since

S x+l

K(y)S2n(y)dy ,

it follows from the inductive hypothesis that

S2n+1(x) rg S2n(x + 1) (X + 1if(i/)# .
Jx

Hence

^ 0 a.e.

by (11), which proves the theorem, since S2n+2(x) is absolutely continuous.

IV Behaviour for large negative values of x. We wish now to
explore the limiting behaviour of the solution φ(x) as x —> — oo. We have
seen that the solution will in general oscillate. We will establish below
a sufficient condition for the existence of φ(—oo).
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THEOREM 6. Suppose φ(x) is a solution o/(l), (2). Let K(x) satisfy
H1-H4, and further suppose that

(14) lim Γ + | K{t + 1) - K(t) \ dt = 0 .
X-*— oo J X

Then

(15) lim φ(x) = φ(— oo)
03-»— oo

exists.

Proof. Let m (resp. M) be the lim inf (resp. lim sup) of φ(x) as
x —> — oo, and write

x+l

IS
X

Let ε > 0 be given. Let — x0 > 0 be chosen so that 9>(cc0) < m + e

S X+l

I 9>'(ί) I dt < A; + ε. Let xx be the first point to the left
X

of x0 at which 9>(θ51) = Λf— ε, so that φ(x) < M — ε on the interval
xλ < x ^ a?0. It follows that a?0 < ^ + 1 for otherwise a ' 'proper" maxi-
mum for φ(x) on a?! ̂  x ^ ^ + 1 occurs at xlt which is impossible. For
the same reason there is a point x2 satisfying xx < x0 < x2 ^ xx + 1 at
which φ(x2) = ikf — ε. Hence

+ ε ̂  Γ1 + 11 9>'(ί) I dt ̂  Γ° I φ'(t) I dί + Γ 2 | φ'{t) I rfί
J a?! J aj χ J xQ

^ I p?>'(ί)dί I + I \\'(t)dt
I JXi JXQ

Hence k ^ 2(M — m) .
However, since

= ( M — m — ε) + (ikf — m — ε) .

φ'(x) = K(X + l)[φ(x + 1) - φ(x)] + <p(x)[K(x + 1) - K(x)] ,

we find, using (14) k g M — m. Thus M = m, which proves the theo-
rem, and incidently, fc = 0.

REMARK. Γ + 1 | K(t + 1) - jBΓ(t) | dt ^ Γ + 2 | 1 - K{t) \ dt; thus in the
JX JX

above theorem, (14) may be replaced be 1 — K(x) e ^f(—^f c»), and the
conclusion is still valid.

We are now able to prove the following integral relationship.
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THEOREM 7. Suppose ψ(x) is a solution o/(l), (2). Let K(x) satisfy
H1-H4, and suppose further

(16) 1

Then

(17) Γ [1 - K(y)]φ(y)dy =

Proof. Put

Then

r i ri

F\x) = ψ\x - y)ydy = -φ(x - 1) + \ φ(x - y)dy
Jo Jo

= \φ(x - y)[l - K(x - y)]dy .
Jo

Since φ(x) is bounded and 1 — K(x) e ^ ί 7 ( — oo, oo), it follows from
Fubini's theorem (see reference 4, p. 87) that F\x) e £f(— &>, oo), and

But since φ(x) satisfies (2), F(co) = (1/2), and by the remark follow-
ing Theorem 6, F(— oo) = (l/2)^>(—oo). This completes the proof.
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THE STRUCTURE OF THREADS

CHARLES R. STOREY

A thread, as defined by A. H. Clifford, is a connected topological
semigroup in which the topology is the interval topology induced by a
total order. A resume of papers on the subject can be found in the
introduction of [1] or in section three of [3].

Briefly, the main classes of threads which have been described are:
that of compact threads with an identity and a zero for which the
underlying space is a real interval [4]; that of threads defined on the
real interval [0, co) in which "zero" and "one" play their usual roles
[6]; and the class of compact threads with idempotent endpoints, [1] and
[2]. Since the separability of the real numbers is not needed for the
proofs involved, we will interpret the results of [4] and [6] as applying
also to threads in which the underlying space is not real.

The object of this paper is to investigate the structure of more
general threads. In the second, third and forth sections we study
maximal subgroups, subthreads and the minimal ideal respectively of an
arbitrary thread. Theorem 5.5 generalizes the result in [6] by describing
all threads S with a zero as an endpoint for which S2 = S. In the final
section, we are able to describe at least half of any thread satisfying
S2=S. More explicitly, if such a thread has no minimal ideal, or if it
is itself the minimal ideal, then the entire structure of the thread is
determined; while, if there is a proper minimal ideal, then the set of
elements larger or the set of elements smaller than the minimal ideal
forms a subthread which, satisfying the hypotheses of Theorem 5.5, can
be completely described.

It is a pleasure to acknowledge the careful direction by Professor
A. H. Clifford of the research leading to this paper.

1. Preliminaries. As defined in [1], a standard thread is a compact
thread in which the minimal element is a zero and the maximal element
an identity. The primary examples are the real interval [0,1] under
the natural order and multiplication and the Rees quotient of [0, 1] by
the ideal [0, i]. The structure of any standard thread can be given as
follows [7, Theorem B]: The set of idempotents is closed and thus its
complement is a union of disjoint open intervals. If (e, f) is one of
these intervals, then [β, /] is a subthread isomorphic with one of the
two examples just given. Finally, if e is an idempotent and if x ^ e ^ y,

Received January'6, I960. This work was begun while the author received partial
support from the Danforth Foundation and also from the National Science Foundation con-
tract with Tulane University, and completed while he held a National Science Foundation
Postdoctoral Fellowship.
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then xy — yx = x.
We say that a thread with a zero and an identity is a positive

thread if the zero is a least element and if there is no greatest element.
The result in [6] is that, in a positive thread, there exists a largest
idempotent e less than the identity, [0, e] is a standard thread, {t\e < t}
is isomorphic with the group of positive real numbers, and xy — yx — x
whenever x ^ e ^ y.

Given a thread S which has a zero as a least element, we construct
a new thread which we denote by &{S). Let S' be a copy of S\{0},
and let xr be the element of S' corresponding to the element x of S\{0};
put 0' = 0. Let &(S) = S' U S, and extend the order on S to ̂ p(S)
by reversing the order in S' and declaring each element of S' to be
less than every element of S. Now extend the multiplication in S to
&(S) by defining x'y — yx' = {xy)f and x'y' ~ xy. It is easy to verify
that &(S) is a thread.

We state Lemma 1 of [1] which will be repeatedly used without
reference. If α, b and c are elements in a thread, then [αc, be] c [α, b]c
and [ca, cb] c c[α, 6], The same holds for open and for half-open
intervals. The proof is a simple application of the fact that a con-
tinuous image of a connected set is connected.

If there is a homeomorphism between threads S and T which is
also an algebraic homomorphism, S and T are iseomorphic and we write
S ^ T. If the iseomorphism is also order preserving (it must either
preserve or reverse the order), then S and T are isomorphic and we
write S = T. A subthread is, of course, a connected subsemigroup.
The order dual of a thread is the thread obtained by reversing the
order while leaving the multiplication unchanged. As in [8], H(e) is
the maximal subgroup containing the idempotent e, Γ{x) is the topologi-
cal closure of the set of powers of x, and J(x) is the ideal generated
by x.

The groups of positive and non-zero real numbers will be denoted
by & and X respectively. Throughout the paper, S will always be a
thread.

2. Maximal subgroups. Let e be an idempotent in an arbitrary
thread S. We wish to investigate the maximal subgroup H(e) of S
having e as its identity. We recall that

H{e) = eSeΠ{x\eexSΠ Sx} .

Since H(e) is an algebraic group and a topological semigroup, it is
homogeneous. Thus, if H(e) contains any open interval of S, it contains
an open interval about e. Denoting the component of H(e) containing
e by G, either G — e or e is a cut point of G. But G is clearly a cancel-
lative thread, and by a theorem of Acel and Tamari (as stated on page
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81 of [1]), every such thread is isomorphic with a subthread of ^ .
Since the only subthread of <3? of which the identity is a cut point is
& itself, we see that G = e or G = &*.

Again, observe that translations of eSe, the set on which e acts as
an identity, by elements of H(e) are homeomorphisms. Thus, if any
element of H(e) is a cut point of eSe, then e is a cut point. Consequently,
if H(e) contains more than two elements, then e is a cut point of eSe.

2.1 LEMMA. If e is an idempotent in S, then either e = eSe, or e
is an endpoint of eS U Se, or e cuts eSe. In the first two cases, H(e)
contains at most two elements; while in the last, the identity component
of H(e) is isomorphic with ^ .

Proof. It will suffice for the proof to show that the following are
equivalent: the identity component of H(e) is isomorphic with &\ H(e)
contains more than two element; e cuts eSe; e Φ eSe and e cuts eS U Se.
Moreover, the first of these obviously implies the second; we have already
seen that the second implies the third; and the third clearly implies the
forth.

Suppose then that e Φ eSe and that e is a cut point of eS U Se.
Since eS n Se — eSe, this means that e cuts one of eS and Se, and that
Se Φ e Φ eS. The two cases being similar, assume that e cuts eS, and
choose a and b in eS such that a < e < b. Using the continuity of
multiplication, there exists an open interval W about e such that W c
(a, b) and Wa < e < Wb. Thus, if x is in W, e e (xa, xb) c x(a, b).
Repeating the argument, using W in place of (a, b), we obtain an open
interval V about e such that e e zW for each z in V. Now if z e V Π
eSe, then there exist x in W and s in (α, b) such that e = zx = xs.
Since z e Se while s e eS,

z — ze — z(xs) = (zx)s — es — s .

Hence V (Ί eSe c H(e). Observing that V Π eSe is a non-degenerate
interval containing e, it follows from the argument of the first para-
graph in this section that the identity component of H(e) is isomorphic
with ^ .

2.2 THEOREM. If e is an idempotent in a thread S and if e cuts
eSe, then H(e) = & or H(e) & % % Moreover, if the identity component
G is not all of S, then the boundary of G in S contains exactly one
point f, either G = (/, oo) or G = (— oo,/), and f acts as a zero for G.

Proof. Assuming that e cuts eSe, G = & by 2.1. Certainly, H(e)
is a topological group of which G is a normal subgroup. Since the
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remainder of the theorem is evident otherwise, we assume G Φ S.
We claim now that if M and N are cosets of G in H(e) and if

t e M*\M, then ίiV* and N*t contain but one point each. For, since
each coset is homeomorphic with G, each coset is open and connected,
and thus has at most two boundary points. Since t does not belong to
H(e), Nt misses H(e). Thus Nt c (NM)*\NM. But Nt is connected
and (NM)*\NM, the boundary of some coset, contains at most two points.
Hence Nt consists of a single element, and by continuity, the same
must be true of N*t. Likewise, tN* contains only one element.

Now take / in G*\G, and let C be any coset. If t e C*\C, then,
using the result of the preceding paragraph, £G* = te = t and G*t =
et = t. In particular, / acts as an identity on C*\C. But applying the
result again, /C* and C*/ contain one point each. Thus the coset C
has exactly one bDundary point. Taking C — G, we see that G has
only one boundary point / and thus G — (/, oo) or G = (—oo,/). More-
over, /G* = G*/ = / implies that G is iseomorphic (we do not know
whether / is the least or the greatest element of G*) with the thread
of non-negative real numbers. If H(e) = G, the proof is complete.

Assuming H(e) Φ G, it follows from the fact that each coset has
only one boundary point in S that there can be only one other coset
besides G. Take b e H(e)\G and observe that the function on G* which
takes g into b~τgb is a continuous automorphism which (since δ2 e G and
G is commutative) is its own inverse. But the only such automorphism
of the non-negative real numbers is the identity, and thus b~ιgb — g for
each g in G. It follows that H(e) is commutative, and from this it is
easy to verify that H(e) is iseomorphic with ^.

2.3 THEOREM. Let e be an idempotent in a thread S.

(1) If H(e) = {d, e} with d < e, then Se = eS = [d, e] and there
exists a zero for S in (d, e). Denoting the zero by z, [z, e] is a standard
thread and [d, e] = &{[z, e\).

(2 ) If H(e) & % then the complete structure of S is determined.
Namely, there exists a positive thread T such that S

Proof. Let H(e) = {d, e} with d < e, and observe that [d, e] c eSe.
Then eS U Se fg e, for otherwise e cuts eS or Se and 2.1 yields a con-
tradiction. Now since d is in iϊ(e) and d2 = β, left multiplication by cί
is a strictly decreasing function from eS onto itself. Hence

d = de ^ d(eS) = eS ,

so that [d, e] = βS. Moreover, there exists a unique element q in eS
such that dq = g. However, if s is any element of Sf then gs e eS and
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d(qs) — qs. Since q is unique, q is a left zero for S. Similarly [d, e] = Se
and there exists a right zero for S in Se. Evidently these two one
sided zeros are equal, and putting z = q, z is a zero for S. Now, [d, e]
is a subthread with an identity e and a zero z in which d2 — e. Applying
part one of Theorem 6.2 in [4], we conclude that [z, e] is a standard
thread and that [d, e] = &{[z, e]).

Turning to the proof of (2), let H(e) & ^Γ. Since S is iseomorphic
with its order dual, we may assume that e is larger than the element
u which corresponds to — 1. Each coset in H(e) has exactly one boundary
point in S and thus H(e) = (•— oo, h) U (/, oo) where h ^ / . Since we
have assumed that u < e, (/, oo) ~ &%

One sees easily that f2 — h2 — f and that fh — hf' = fc, i.e., i ϊ(/) =
{&, /}. If h=f then S i s iseomorphic with the multiplicative thread
of all real numbers which is certainly &(T) where T is the thread of non-
negative reals. Assuming h < /, we may apply the conclusion of (1).
Thus S has a zero between h and /, [z, f] is a standard thread, [h, f]
is commutative, and Sf — fS = [h,f].

Since / is an identity for [z, f] and a zero for G, each element of
G acts as an identity on [z,f]. Consequently, [z, oo) is a positive thread.

If 2/e[2,/], then uy = u(fy) = (uf)y and yu = y(fu). Now, /
commutes with w, and since ufe [h,f], uf commutes with y. Thus u
commutes with each element of [z,f] as well as with each element of
(/, oo). Armed with these facts, it is a straightforward exercise to show
that the function g defined on &([z, oo)) by g(t) — t and g(t') = ut is
an iseomorphism onto S.

2.4 COROLLARY. If x10 < x < xp for some x in a thread S and for
some positive integers k and p, then S & &{T) for some positive thread
T. Moreover, if e is the identity of S, then x e H(e) and e separates
x and x2.

Proof. Since x is evidently not an idempotent, we assume that
x < x2. The case where x2 < x is entirely similar. Taking j to be the
least positive integer such that xj+1 < x, we have 2 ^ j and x < xj.
Now x e (xj+\ x2) and (xj+\ x2) c x(x, xj) Π (as, xj)x, so x — xs = tx for
some s and t in (x, x3). It follows that s is a right identity on Sx and
that £ is a left identity on xS. But (a?, xj) c (xj+\ xj) axS f] Sx, hence
s = ts = t. Putting e — s, e e (x, xj) and (x, xj) a xS f) Sx = exS Π Sxe c
eSe, so that e is a cut point of eSe. By 2.2, iί(β) = g? or iϊ(e) ^ ^ .
But e 6 α?S Π Sx and # e eSe imply that a? e H{e), and in view of the
hypothesis on the powers of x, H(e) = 3? is impossible. The result now
follows from 2.3.

The following facts concerning the sets eS and Se will be useful later.
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2.5 LEMMA. Let e be an idempotent in a thread S.

(1) If e — eSe, then either eS = e or Se = e\ and in either case,
SeS is the minimal ideal of S. It is a closed connected set of one
sided zeros.

(2 ) Either eS c Se or Se c eS, and thus SeS = eS U Se.

Proof. Let e — eSe, and recall that eSe = eS Π Se. By way of
contradiction suppose that eS Φ e and that Se Φ e. Then either eS ^
e ^ Se or Se ̂  e ̂  eS; and in either case, e is in the interior of eS U Se.
Thus there exists an open interval V about β such that V2 a eS {J Se.
Choosing x and y in V such that x e eS, x Φ e, ye Se, and y Φ e, we
have yx e eS [j Se. But if 2/# e eS, then

e = e(yx)e = (yx)e = (ye)xe = y(exe) = ye = y ,

contrary to the choice of y; and if yx e Se9 then similarly, e = x, con-
trary to the choice of x.

Now if eS = e9 SeS = Se. Since Sβ is the image of the connected
set S under right translation by e, it is connected; and since it is the
set on which right translation by e agrees with the identity mapping,
it is closed. Moreover, for each k in SeS,

icS = (ke)S - k(eS) = ke = k .

Thus, SeS is a closed connected set of left zeros and is clearly the
minimal ideal of S. If Se — e, then SeS consists of right zeros.

In order to prove (2), consider the three cases of 2.1. If e = eSe,
then one of eS and Se is just {e} and is clearly contained in the other.
If e is an endpoint of eS U Se, then since eS and Se are connected sets
extending from e in the same direction, one evidently contains the
other. Finally, if e cuts eSe,- then the identity component of H(e) ex-
tends to one end of the thread. Since H(e) c eS Π Se, the result again
follows from the connectedness of eS and Se.

3 Subthreads

3.1 LEMMA. Let A be a subset of S which contains, with x, all
elements larger than x. If A contains no idempotents and if a < α2

for some a in A, then A is a subthread in which max {x, y} < xy for
each pair of elements x and y in A.

Proof. Let a be an element in A such that a < a2, and let x be
any element of i , If x2 < x, then, since A is evidently connected and
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since the function mapping each element onto its square is continuous,
there is an idempotent between x and a contrary to the assumption
that A contains no idempotents. Hence x < x2. If xn < x, for some
positive integer n, then there is an idempotent between x and x2 by
2.4. And again, if Γ(x) is bounded, it is a compact semigroup and thus
contains an idempotent. Hence x e A implies that x tί Γ{x) and that
Γ(x) is unbounded.

Now suppose that yz = y with y and z in A. For each positive
integer n, yzn = y, thus zn is a right identity for Sy. But both Γ(y)
and Γ\z) are unbounded, so for some n and m, y2 < zn < ym. Thus zn

is in Sy and- znzn = zn. Since A contains no idempotents, yz = y is im-
possible.

Finally, if yz < y, then, by the continuity of right multiplication
by z and the fact that z < zz, there exists a t between y and z for
which tz — t, a contradiction. Hence y < yz, and dually z < yz.

3.2 LEMMA. If e is an idempotent, if eS [j Se ̂  e, if C is a con-
nected set containing e as a least element, and if [e, x) c xC Π Cx
whenever x e C; £feew β <Ξ C2.

Proof. Appealing to 2.5 we will lose no generality by assuming
that eS c Se. Thus t e eC implies et — te — t. Moreover, if t — ex
with x in C, then e = sx for some s in C, and thus

(es)t — (es)(ex) = [(es)e]x = (es)x = e(sx) = β .

It follows that βC is a subgroup of H(e). But eC is connected and
contains e while, by 2.1, H(e) contains at most two elements. Hence
eC = e.

Now suppose that xy < e for some x and y in C. Clearly e < #
and therefore e < #£ for some t in C Now xy < e < xt implies that
e = xw for some w between y and t. But if y < w, then #?/ 6 xwC =
eC = e; and if t < w, then #£ 6 xwC — eC — e. Since this contradicts
xy < e < xt, we have e ̂  x#. Hence, e ̂  C2.

The following result, which is a generalization of Faucett's Lemma
4 in [5], will be extremely useful in the remainder of the paper.

3.3 THEOREM. If e and f are idempotents in a thread S and if
eS U Se ̂  e < / , then [e,f] is a standard thread. If, in addition, f
cuts fSf, then [e, oo) is a positive thread.

Proof. Since ef e eS and fe e Se, neither ef nor fe is larger than
e. But ef e Sf and fe e fS, and these sets are connected. Thus e e
SfΠfS, and/acts as an identity on [e,f]. Then, for each x in [e, f],
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[β, x] c [ex,fx] Π [xe, xf] c [e,f]x Π %[e,f]. Consequently, by 3.2, e <:
[e,/]2, and in particular, e acts as a zero for [β, / ] .

Now if fSϋ.Sf^f; then [ e , / ] c / S implies [e ,/] 2 c/S and the
theorem is established. If on the other hand, fS U S / | / ; then, by
2.1, / cuts fSf.

Finally, if / cuts fSf; then, since e cannot be in H(f), it follows
from 2.2 that there exists an idempotent h in [e,f) such that (h, oo) is
isomorphic with &. Since hS U Sh ^ Λ, the preceding paragraphs show
that [e, ft] is a standard thread (it may of course be simply one point
if e = h). Evidently then, [e, oo) is a positive thread of which [e,/] is
a standard subthread.

3.4 LEMMA. If [α, b] and [b, c] are subthreads, then so is [α, c].

Proof. Let x e [α, 6], let y e [6, c], and suppose that c < #?/. Then,
since xb e [α, 6], [6, c] c [ccδ, ̂ ] c x[b> c\. Now Γ(α?) and [6, c] are both
compact, and by Wallace's Theorem 1 in [11], we conclude that [6, c] =
x[b, c] contrary to c < xy. Thus xy ^ c; and similarly, one proves that
a ^ xy and that a ^yx ^ c.

3.5 THEOREM. If e and f are any two idempotents in a thread,
then the closed interval between them is a subthread.

The proof of this result will be postponed until the end of section
four. The proof will be much easier then, and we promise not to apply
the result in the meanwhile.

4. The minimal ideal*

4.1 THEOREM. If S has no minimal ideal, then a zero may be ad-
joined as an endpoint and the resulting semigroup is again a thread.

Proof. We show first that S has no bounded ideals. Indeed, if M
is a bounded ideal, then M* is a compact ideal. In particular, ikf * is a
compact topological semigroup, and as such (see Theorem 3 in [10]),
there is an idempotent e in M* such that eM*e is a group. But M*
is an ideal and thus eSe = eM*e, thus eSe is a compact connected group.
It follows from 2.1 and 2.5 that eSe = e and that SeS is the minimal
ideal of S. Hence, S has no bounded ideals.

Next observe that every ideal contains a connected ideal. For if x
is any element of an ideal /, then SxS is a connected ideal contained
in J.

Now fix y in S and let J be an ideal contained in S\y. Such an
ideal does exist, for if not, then y is in each ideal of S, the intersection
of all ideals is not empty, and S has a minimal ideal. Since we may
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take J to be connected, we lose no generality if we assume that J < y.
If x < y then again there is a connected ideal M contained in S\x.

In fact, M < x, for otherwise M Π J is a bounded ideal. Thus M* is a
connected, closed, unbounded ideal whose elements are all less than or
equal to x. Hence, for each x less than y, there exists a c not greater
than x such that (— oo, c] is an ideal. Evidently a zero can be adjoined
as a least element.

4.2 THEOREM. If S has a minimal ideal K, then either S = K and
S = &*, or there exists an idempotent e such that e = eSe. In the
second case, it follows from 2.5 that K — SeS and is a closed connected
set of one sided zeros.

Proof. Let x e K and consider the subthread xK. We claim that
xK contains an idempotent. If not, we may assume without loss of
generality that a < a2 for some a in xK. It follows from 3.1 that
a < (xK)a(xK). But K{ax)K is an ideal contained in if and must there-
fore be equal to K. Consequently (xK)a(xK) — xK so that a e (xK)a(xK).
Hence, xK (and by an analogous proof, Kx as well) contains an idempotent
for each x in K.

Let e be an idempotent in K and recall that one of eS and Se
contains the other by 2.5. Assuming eS c Se, we have eSe = eS = eK.
Notice that eSe contains no idempotents other than e. For if / e eSe,
then f=ef = fe. But also, / e K so that e e SfS = Sf \J fS, hence
e=f.

Now if x e eSe, then xK contains an idempotent. But

xK = (#e)J£ = x(eK) = α (eSe) c eSe ,

and eSte contains only one idempotent. Hence x e eSe implies e e x(eSe),
i.e. eSe is a group.

Since eSe is also connected, either e = eSe or eSe = &*. In the
latter case, eSe is both open and closed and hence eSe = S. Thus S = ^
and S = K.

We are now in a position to give the overdue proof of Theorem 3.5.
We are to show that the closed interval between two idempotents in a
thread is a subthread.

Proof of 3.5. Since we can adjoin a zero if not, we assume that
S has a minimal K; and since the assertion is vacuously true otherwise,
we assume that K consists of one sided zeros. Observe that because of
the trivial multiplication within K, any closed interval contained in K
is a subthread.

If / is an idempotent larger than each element of K, and if k = sup K,
then [k,f] is a standard thread by 3.3. Similarly, if f<K and if
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I = inf K, then [/, ί] is the order dual of a standard thread. Moreover,
the interval between any two idempotents in a standard thread is again
a standard thread.

Finally, using these facts along with Lemma 3.4, which allows us
to sew the subthreads together, the theorem follows easily.

5 Threads with a zero The principal result of this section is the
characterization in 5.5 of all threads which have a zero as an endpoint
and for which S2 = S. However, the series of lemmas leading to this
result will be used again in the following section; consequently they are
more troublesome than is apparently necessary.

It will be convenient to introduce the following partial order when-
ever S has a zero:

x < y if and only i ί 0 ^ x < y o r y < x ^ 0 .

Obviously this does define a partial order on S.

5.1 LEMMA. Let S be a thread with a zero in which each idem-
potent e is an endpoint of eSe. Then Γ(x) is compact for each x in S,
J(x) ^ x when 0 < x, and x ^ J(x) when x < 0.

Proof. We show first that 0 < x implies Γ(x) ^ x. This is clear
if x e [0, e] for some idempotent e, for [0, e] is a standard thread by
3.3. Assume that x is larger than each idempotent, and let e be the
largest idempotent. Now if x < x2, then by 3.1, max{t/, x) < xy for each
y larger than e. By continuity, x ^ xe, and thus, 0 < e < x while
x e Se. But using 2.1, this implies that e cuts eSe, contrary to hypothesis.
Hence x2 < x, and it follows from 2.4 and the assumption that each
idempotent e is an endpoint of eSe that Γ(x) <Z x. Repeating the argu-
ment with all inequalities reversed, x ^ Γ(x) when x < 0.

Next we prove that Γ(x) is compact for each x larger than 0. This
is obvious if Γ(x) c [0, x]. If Γ(x) ςt [0, x], let xj be the first power of
x which is less than 0. Since xj ^ Γ{xj), xjn e [xj, x] for each positive
integer n. By the choice of j , xι e [xJ, x] for each positive integer i
less than j as well; therefore Γ(x) c \x\ xf U [xj, x], a compact set.
Similarly, Γ(x) is compact when x is less than 0.

To establish the last statement of the lemma, let 0 < x and suppose
that x ^ sxt. Then [0, x] c s[0, x\t, while [0, x], Γ(s), and Γ(t) are
compact. By Corollary 2 in [11], [0, x] — s[0, x]t. Therefore SxS ^ x,
and using the one sided analogues of the result just used, it can be
proved that Sx ^ x and that xS ^ x. This gives J(x) ^ x, and it follow
similarly that x <g J(x) when x < 0.

5.2 LEMMA. Let S be a thread with a zero. If S2 — S, then, for
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each x larger than 0, there exist an element u and a compact set A
such that x — uA and such that x is in the interior of uV for each
open set V which contains A.

Proof. Given x larger than 0, choose y larger than x\ or if x is
maximal, put y = x. Since S2 — S, we can choose u and v in S so that
y — uv. Now if 0 < v, let

p = inf {t I 0 ^ t ^ v and x ^ u[t, v]} ,

q — sup{t\p ^ t ^ v and x = ̂ [p, £]} ,

and let A = [p, q\. And if i; < 0, define p, q, and A analogously. The
details are easy to verify in either case. Actually, this proof is just a
slight generalization of the usual proof of the intermediate value theorem
for continuous functions on the real line.

5.3 LEMMA. Let S have a zero, let S2 = S, and let J(x) <£ x for
x > 0. If T is a connected set containing 0 such that Tu is bounded
for each u in S, and if h is defined on {x | 0 ̂  x] by h(x) = sup Tx,
then h is continuous.

Proof. Since Tx c J(x) <^ x, 0 ̂  h(x) ^ cc for each x greater than
0, and consequently, h is continuous at 0.

Now let 0 < x and let a < h(x) < b. Choose c and t so that t e T,
a < £x, and h(x) < c < 6, and let u and A be as in 5.2. We have

(Γw)*A c {TuAγ = (Γa?)* ^ h(x) < c ,

and since Tu is bounded by hypothesis, {Tu)* and A are both compact.
Thus (Lemma 2 in [9]) there exists an open set V such that A a V and
TuV < c. If y e uV, then fe(#) = sup Ty ̂  c < δ; and by 5.2, uV con-
tains an open set about x.

Since α < tx, there is another open set Wabout x such that a <tW.
Thus, y e W implies

a < ty ^ sup TV = h(y) .

Taking the intersection of W and the interior of u V, we have produced
a neighborhood of α? which is mapped into (α, b). Thus /̂  is continuous.

5.4 LEMMA. Let S have a zero and let A be a set such that Γ(a)
is compact for each a in A. If [0, x) c Ax for each x greater than 0,
then rt ^ st whenever 0 ̂  r < s.

Proof. If 0 lies strictly between rt and st, then there exists c in
(r, s) for which ct = 0. But then r e [0, c) so that rt e (Ac)t = A(cί) = 0
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which contradicts the assumption that zero lies strictly between rt and
st. Hence rt and st are at least comparable with respect to -<.

Since r e [0, s), we can choose an a in A such that r — as. Now
if st ^ rt, then

{x I 0 ̂  x ^ st} c {x I 0 ̂  x ^ asί} c <φ | 0 ̂  a? ̂  si}

and since both Γ(a) and {# 10 ̂  # ̂  si} are compact, we have
{x \0 ^ x ^ st} = a{x \0 ^ x ^ st} (Theorem 1, [11]). Thus rt = ast ̂  si.

5.5 THEOREM. If S is a thread with a zero as a least element and
if S2 = S, then S is a standard thread, or S is a standard thread
with its identity removed, or S is a positive thread.

Proof. If there exists an idempotent f in S which cuts fSf, then
S is a positive thread by 3.3. Hence, assume that no idempotent e cuts
eSe. By 5.1, Γ(x) is compact and J(x) c [0, x] for each x in S.

If we put h(x) = sup Sx, then h is continuous by 5.3. We claim
moreover that h is the identity. For suppose h(a) Φ a. Then a Φ 0
and h(a) < a. Using the continuity of h we choose an element t and
an open interval V, containing a, such that h(V) < t < V. Since S2 — S,
we can write a =yx and thus h(0) < a ̂  h(x). Again using continuity,
choose, b so that a = h(b). Now take any c in V such that c < a, and
observe that c e Sb = S(S6). Thus c e Sp for some p in S6. But then
c ^ p ^ α so that p e F , and hence Λ(p) < t < c contrary to c e Sp.

Since fc is the identity, [0, x) c S# for each x; and an analogous
argument gives [0, x) c xS. Thus we conclude from 5.4 and its left-right
dual that the multiplication in S is monotone.

If S is compact with w as its largest element, then w is an idem-
potent and S is a standard thread. Indeed, we can write w = xy, and
it then follows from J(x) ̂  x and J(y) ̂  y that w — x —y.

If S is not compact, then let T be the semigroup obtained by
adjoining an identity to S, and extend the order of S to T by declaring
that the identity is larger than each element of S. Since S is not
compact, T is evidently connected. Finally, the continuity of multipli-
cation in T follows immediately from the continuity and monotonicity
is S along with the relation [0, x) c xS Π Sx. Thus, T is a thread, and
in fact, a standard thread.

5.6 COROLLARY. If S is a thread with no idempotents, and if S2=S,
then S is iseomorphic with the real interval (0, 1) under the natural
multiplication.

Proof. Since S has no idempotents, it follows from 4.2 that S has
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no minimal ideal; and by 4.1, a zero may be adjoined as an endpoint to
S. Then either the extended thread or its order dual satisfies the
hypotheses of 5.5. Thus, S must be the result of removing both the
zero and the identity from a standard thread which has no other idem-
potents and which has no nilpotent elements. But Faucett proved in
Theorem 2 of [5] that any such standard thread is iseomorphic with [0, 1].

6. Threads in which S2 = S. Let S be a thread satisfying S2 = S.
If S has no minimal ideal, then a zero may be adjoined as an endpoint.
After taking the order dual, if necessary, the extended thread can then
be described by 5.5. Consequently, the structure of S is determined.
If S does have a minimal ideal, and if K = S, then the structure of S
is given by 4.2.

Thus, we have left only the case where S has a proper minimal
ideal which consists either of left zeros or of right zeros. We include,
of course, the special case in which S has a zero. Throughout this
section, when we say that S has a minimal ideal K, it will be tacitly
assumed that K is proper and thus consists of zeros.

The following notation will be used when there exists a minimal
ideal K:

R = {t\k^t for each k in K) ,

L = {t 11 ί£ k for each k in K} ,

If S has a zero, we have, R = {t | 0 ^ ί} and L = {ί 11 ̂  0}.

6.1 LEMMA. If S has a minimal ideal K, if S2 = S, and if there
exists a connected proper ideal of S containing L, then R2 = R.

Proof. Let J be a connected proper ideal containing L, and let
c = sup J". If J* — S, then S\J = c; and since S2 = S, c is an idem-
potent. Thus by 3.3, R is a standard thread, and certainly R2 = R.

Now assume that J* is a proper ideal, and let B = {ί | c <̂  ί}. Since
J * is closed and connected, T = SjJ* is a non-degenerate thread with
a zero as a least element and with T2 = T. By 5.5, T is a positive
thread or T is a standard thread with or without its identity. In any
case, [0, t) c tT Π Tt for each t larger than zero in T. Since the natural
homomorphism of S onto T is strictly increasing on B and takes J *
onto 0, we conclude that [c, b) c bB n Bb for each b larger than c in S.

Taking k = sup ϋΓ, fc is the least element of R and kS U Sk ^ k.
Since 6i2 and iϋί> are connected sets, [fc, 6) c bR Π iϋ& for each b larger
than c. Now fix b larger than c and let r be any element of R such
that r ^ c. Then there exist s and t in iϋ such that r = sb = bt. Thus,

, r) c [sfc, sδ) c 8[k, b) c sδi? = rR ,
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and similarly, [k, r) c Rr. Hence, for each r in R, [k, r) c rR Π Rr.
Applying 3.2, with C = R and e — k, we have R2 c R. On the other
hand, R2 Z) R follows immediately from the facts that J is a proper ideal
containing L and that S2 = S.

6.2 LEMMA. Let S have a zero, and let S2 = S. If R c LS U SL
and i/ i/̂ ere exists a set A such that (d, 0] c dA Π Ad /or eacfe d less
than 0 awd swc/?, that Γ(a) is compact for each a in A, then the multi-
plication in S is monotone with respect to < and 0 is an endpoint of
L2, R2, LR, and RL.

Proof. First, notice that the second conclusion follows from the
first. Indeed, it suffices to show that if x and y are -<-comparable and
if u and v are •< -comparable, then so are xu and yv. But if x < y
and u < v; then, assuming that the multiplication is monotone, xu ̂  yu
and yu ^ yv, so that xu ̂  yv.

To prove monotonicity, observe that (using both order and left-right
duality) 5.4 gives dt ^ pt and td ^ tp whenever p < d ^ 0. Since
R c LS U SL, while each of LS and SL is a connected set containing
0, either R c LS or R a SL; and without loss of generality we assume
that R c LS.

Now if x > 0, choose d in L and g in S such that x — dq. Then

[0, x) = [0g, dq) c (d, 0]g c Adq = AE .

Thus, again by 5.4, rί ^ st whenever 0 ̂  r < s.
The only case left to demonstrate is tr ^ ts for 0 <J r < s. Again

choose d and g with d in L so that dq = s. Then r e [0g, dg) so that
r = pq for some p in (d, 0]. Since d < p <̂  0, we have £p ̂  td, i.e.,
either 0 ̂  tp ^ id or id ^ ίp ̂  0. In either case we can multiply on
the right by q to obtain

tr = £pg ^ £dg = is .

6.3 LEMMA. // S λ,αs a zero, if S2 = S, and i/ either L2 = L or
ίfeβ conclusions of 6.2 Λoid.

Proof. The other case being quite similar, let us assume that
L2 = L. By 5.5, the order dual of L is a positive thread or a standard
thread with or without its identity. In the first case, L has an identity
e, Γ(x) is compact for each x in [e, 0], and (d, 0] c d[e, 0] Π [β, 0]d for
each d less than 0. In the second case, Γ(x) is compact for each x in
L and (d, 0] c dL Π Ld when d < 0.

Hence, if J? c LS U SL as well, then monotonicity follows from 6.2.
However, even if R ς£ LS U SL, we may still apply 5.4 to conclude that
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dt ^ pt and td^tp for p < d g 0. Thus, if we show that R2 = R,
then monotonicity follows by dualizing the foregoing argument.

Now assume that R <£ LS U SL; we must show that R2 — R. If R
contains an idempotent e which cuts eSe, this is an immediate con-
sequence of 3.3. Assume that each idempotent e in R is an endpoint
of eSe.

If each idempotent / in L is also an endpoint of fSf, then by 5.1,
J(x) <, x whenever 0 < x. From this it follows that L U SL U LS is
an ideal, and thus a connected proper ideal containing L. If some
idempotent f in L cuts fSf, then by 3.3 and 2.5, fS U Sf is a connected
proper ideal containing L. Thus, in either case, 6.1 yields R2 — R.

6.4 LEMMA. // S has a zero, if S2 = S, if J(x) ^ x for x > 0, and
if x ^ J(x) for x < 0; then either L c L2 or RaR2.

Proof. Suppose by way of contradiction that neither L c L2 nor
RaR2. Since L d S2 = L2 [j SR I) RS, while each of the three sets on
the right is connected and contains 0, L must be contained in one of
the three. Consequently L c SR or L c RS.

If L c &R, then

Λ c S2 - SL U SR c S(SΛ) [J SR = SR = R2 U LR ,

and thus iϋ c Liϋ. Now

RaLRa L(LR) = (L2 Π L)R U (L2 n Λ)Λ c (L2 Π L)Λ U R2 .

Again, Jί c (L2 n L)^; and hence L c. SR a S(L2 Γ) L)R.
If L c JRS, we obtain similarly, L c i?(L2 (Ί L)S. But then, in either

case, L c S(L2 n L)S; and choosing d less than L2, d e SpS for some
p in L2 Π L contrary to p ^

6.5 LEMMA. Let S have a zero, let S2 = S, Zeί Sx be bounded for
each x, let J(x) ίg cc for 0 < x, Zet cc g J(x) for x < 0, ami define a
function f on S by:

1 i n f S a , if x ^ 0 .

Then f is continuous. Moreover, if f is the identity on a set B, then
f also acts as the identity on BS.

Proof. The continuity of / is immediate from 5.3 and its order
dual.

Since Sx is connected and contains 0, f(x) = x if and only if
{V I y ^ %} c Sx. Now if /(&) = 6, and if ί = bs, then
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{y \y ^ t} = {y \y ^ bs} a {y \y ^ b}s (Z Sbs = St.

Thus f{b) = b implies f(bs) = bs.

6.6 LEMMA. Let S be a thread with a zero in which J(x) ^ x for
0 < x and x ^ J(x) for x < 0. Let Γ(x) be compact for each x in S,
and let R2 = S. Then R = S.

Proof. Since J(x) ^x for 0 < x, L U LS U SL is an ideal. If
R qL LS U SL, then L U LS U SL is a proper connected ideal containing
L, and by 6.1, S — R2 = R. Hence we assume that R c LS U SL.

If J(x) is unbounded for some x larger than 0, then L is unbounded
and L c J(x). But then, R is unbounded, and at the same time R c
LS U SL c J(x) ^ x. Hence x ^ 0 implies that J(x) is bounded. If
/(#) is unbounded for some x < 0, then ϋ? is unbounded and R c /(#).
Since R2 = S, α? e J(r) for some r in iϋ. Hence i? c J(r) ^ r, a con-
tradiction. Thus, So? and xS are bounded for each x in S.

In the remainder of the proof we will prove that {d, 0] c Sd Π ώS
for each d less than 0. Actually we only prove that {d, 0] c Sd; the
other case depends on an analogous argument. Then we will be able
to apply 6.2 and conclude that 0 is an endpoint of R2, and thus S = R.

Let a e S and choose Λ in R such that a e Sh. From S2 = S it
follows that α e Sc^ for some αx in Sh. Continuing inductively, we con-
struct an infinite sequence {an} such that an e San+1 and an+1 e Sh.
Replacing {an} by an infinite subsequence if necessary, we may assume
that either {an} c L or {an} a R. In either case, it follows from the
hypotheses that an ^ αn+1.

Since each aw e Sh while Sh is bounded, the least upper bound of
{an} with respect to •< exists. Let b be this least upper bound. Let /
be the function defined in Lemma 6.5. Then an ^ f(an+1) ^ αn+1, and
since / is continuous, f(b) = b. This means that {x \ 0 ^ x -< b} c Sb.
Now if &! = b then α e Sαx = Sδ, and if αx •< b then α e Saλ c S(S6) = Sδ.
We have shown that for each a in S there exists b such that a e Sb
and f(b) = b.

Let B = {x\ f(x) — x} and let A = BS. We have just proved that
SJ5 = S and thus SA = S. Moreover, / is the identity on A by 6.5;
and since we can write A = (j {δS| 6 e J5}, A is a connected right ideal.

Suppose that neither L a A nor R a A. Then choose cί in L and r
in R such that c£ < A < r. Since SA = S, there exist s and t in A
such that d e Ss and r e St. It follows from d < A and A < r that
£ < 0 < s. But then s e [0, r] and [0, r] c Si, so that d e SsaSt con-
trary to t ^ J(ί). Hence, either L c A or R c A. Moreover, if R c A
then L c R2 c Aiϋ c A, and thus L c A in any case. Finally, / acts
as the identity on L and thus (d, 0] c Sc£ for each d less than 0.
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6.7 THEOREM. Let S be a thread with a proper minimal ideal K,
and let S2 = S. Then, passing to the order dual if necessary, R2 = R
and is thus completely described by 5.5. Moreover, if L c L2 then
L = L2 as well. Finally, K does not separate R2, L2, LR, or RL, and
the multiplication in SjK is monotone with respect to <.

Proof. Since K is connected and closed, T = S/K is a thread which
obviously has a zero and satisfies T2 = T. We show first that, after
passing to the order dual if necessary, R2 = R in T.

If some idempotent / cuts fSf in T then by 3.3 either L or R is
a positive thread, and clearly either L2 = L or R2 — R. Otherwise, each
idempotent e in T is an endpoint of eSe and 5.1 can be applied. Thus
J(x) <̂  x for x > 0, J(x) ^ x for x < 0, and Γ(x) is compact for each
x. Now by 6.4, either L c L2 or R a R2, and passing to the order dual
if necessary, we assume that R c R2. Since d ^ J(d) for each d less
than 0, R2 is itself a thread. Moreover, it satisfies the hypotheses of
6.6, and thus R2 = R.

Next, applying 6.3 to T, we see that the multiplication in T is
monotone with respect to •<, and that 0 is an endpoint of L2, R2, LR,
and RL. This evidently gives the last assertion of the theorem.

Finally, going back to S itself, we clearly have R c R2. Since K
does not separate R2, K U R is a thread satisfying 6.1 and thus R = R2.
Likewise, if L cL2 in S, then L = ZΛ
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AN ESTIMATE FOR DIFFERENTIAL POLYNOMIALS
_d_ # # # _d_

FRANςois TREVES

This article is concerned with polynomials with respect to the Cauchy-
Riemann operators

dzλ 2\dx1 dyj dzn 2\dxn dyn.

We establish an ZΛestimate, for such polynomials, and derive from it
uniqueness in a class of Cauchy problems. The estimate is quite similar
to Hόrmander's inequalities and, in fact, can be essentially deduced
from them. However, its direct proof is very simple and leads to a
constant better than the one in Hormander's inequalities. We have
therefore preferred to present it thoroughly.

The last part of the paper studies a class of Cauchy problems and
applies the estimate to obtain uniqueness. There the methods are quite
standard (see for instance Nirenberg [1]). The nature of the differential
operators considered allows us to remove the strict convexity of the
domains in which the solutions are studied, and replace it by a weaker
condition.

1. The inequality. We consider a polynomial P(z) on C\ We set,
f o r p = (pl9 ---fpn)eNn:

We shall denote by P(DZ) the differential polynomial on R2n obtained by
substituting d/dzj = 1/2(0/9^ + (l/i)(9/92/j)) for z3 (1 ^ j g n) in P(z).

If S is a subset of R2n, we denote by βj(S) the diameter of S in
the complex "direction" z3: βj(s) = sup^^es I sj — %" |.

THEOREM 1. Let Ω he an open set in R2n. For all polynomials P(z)
on Cn, all functions H(z) defined and holomorphic in Ω, all functions
φ(x, y) e C~(Ω), all p - (plf .. , pn) e Nn:

|| e™P^(Dz)φ | | ί2 ^ βHΩ) . . . #ftβ) || e™P(D,)φ ||zi .

It is enough to prove the inequality in Theorem 1 for pλ — 1 and
Pj = 0 for j ^ 2. We shall denote by Pλ(z) the corresponding P{p)(z).
On the other hand, we set, for j = 1, , n:

Received January 15, 1960.
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= ±-H(z) ,
dZ

Λ, = ±. HAz) .

Observe that for all 1 ̂  j , k ^ n, (d/dz^H^z) = (dldzk)H3(z); it follows
from this that the A/s all commute.

The formal adjoint of A3 is A* = — d/dzj — Hj(z). Observe first
that the Af's all commute, since the A/s do. But also the Af's com-
mute with the Afc's, for the Hj(z)'s are antiholomorphic functions of z
in Ω.

If Q(z) is a polynomial on Cn, we denote by Q(A) the differential
operator on R2n obtained by substituting Aj for z5 (1 ̂  i ^ w) in Q(z).
If Q(«) is the polynomial whose coefficients are the complex conjugates
of the ones of Q(z), the formal adjoint of the operator Q(A) is Q*(A) =
Q(A*) = Q(Af, , Aϊ). It is easy to check that:

(1) (PJT(A) = - (P*h(A) = - [P*(A)f gj .

Let us denote by (,) and || || the inner product and the norm in L\Rin).
We may as well assume that β-Sβ) = 2d, with d — sup^o I «i |. If Φ(%, y)
has its support in Ω, we can write:

(P*(A)φ, Zl(Pi)*(A)φ) = (φ, P(A)[zι(P1)*(A)φ])

= frφ, (P1)*(A)P(A)φ)+ (φ, (P1)*(A)P1(A)Φ)

), P(A)φ) + || P1(A)Φ II2

, ZlP(A)φ) + \\P1(A)Φ II 2 -

Hence:

= (P1(A)φ9 z1P(A)φ) + (z1P%A)φf (P*MA)φ) ,

by applying (1). We get at once:

(2) ||PU)ΦII2 ^ d || P1(A)Φ|| | |P(A)φ|| +d \\P*{A)φ\\ || (P%(A)φ\\ .

But since the Â  and the A* all commute with each other, P(A) and
P*(A) commute, and PX{A) and (P^iA) do. Therefore:

|| P*(A)φ || - || P(A)φ || , || (Pir(A)φ \\ = || P,(A)φ || .

These relations, together with (2), lead to:

(3) \\P1(A)Φ\\^(2d)\\P(A)φ\\.

In this inequality (3), let us replace φ by eH{z)φ; we have
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and hence:

Q(A)[e™φ] = eH{z)Q(Dz)φ ,

for any polynomial Q(z) on Cn. Thus, we get, from (3):

^ (2d) \\ e™P(Da)φ\\ . q.e.d.

2 Uniqueness in Cauchy problems* We shall denote by Bα (α > 0)
the open ball | z \ < α in Cn.

We say that an open set Ω in R2n is admissible at the point zQ if
z0 lies on the boundary of Ω, if the boundary of Ω is, near z0, a piece
of a C°° hypersurface and if the following property holds:

(A) For some a > 0, there exists a function F(z), holomorphic in the
ball I z — z01 < α, vanishing at z0 and such that the diameter of
the set Ub of those points ze Ω which satisfy \z—zQ\<a, — b<Re F(z)
converges to 0 when b > 0 does.

In the sequel, Ω will be an open set in R2n admissible at the origin,
a will be a positive number such that (A) holds for z0 = 0 and some
function F(z) holomorphic in Ba. Furthermore, we shall assume that
the intersection of Ba with the boundary of Ω is a piece S of a hyper-
surface C°° (passing by 0).

Let us clarify a little the geometric situation. Let us denote by
W the piece of the hypersurface ReF(z) — 0 contained in Ba. Since
0eWf)Ω aUb for every b > 0, we must have WnΩ = Wf]S = {0}.
On the other hand, for any 6 > 0, Ub[jCΩ is a neighborhood of 0. For,
let ε > 0 be small so that | z | < ε implies | Re F(z) \ < b. If z e BB, z $ Ub

only if z 0 Ω. The interior of Ub is never empty. For assume it were
and let z belong to Ub; z would have a neighborhood N in which Re F
would still be > — b and since zeΩ, N would intersect Ω; obviously
Nf) Ω is contained in the interior of Ub.

We consider a polynomial P(z) on Cn, of degree m > 1, and a partial
differential operator on R2n with continuous coefficients, Q, of order
^ m — 1, satisfying the condition:

for all iϊ(2) holomorphic in Ba, all iφ;, y) e Co°° with support in Ba.

THEOREM 2. Lei 17(8, y) be a function defined and Cm in Ω, with
zero Cauchy data on S, satisfying:

( 2 ) \P(D,)U\ ^ \QU\ in Ω .

There exists a neighborhood of 0 in which U vanishes identically.
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We keep our previous notations, for a, F(z), etc.
Let us take a function β(z), C°° in Ba, with the following properties:

β(z) = 1 for z e Ba and -2ε g i2e i^(z) ^ 0

β(z) = 0 ίor zeBa and -3ε ^ Re F(z) ,

where ε > 0 is chosen small enough so that the support of β(z) intersects
Ω according to a compact set contained in Ba. That is possible because
of property (A); notice that the diameter of the compact set in question
goes to 0 when ε —•* 0.

We define now a function v(z) as being equal to β(z) U in Ω and to
0 elsewhere. Notice the following properties of v:
( i ) the support of v is compact (and contained in BaΓ\Ω))
(ii) v(z) is m — 1 times continuously differentiate;
(iii) P(Dz)v — βP(Dz)U + RUφ in Ωy R being a partial differential operator

with C°° coefficients.
If one extends the definition of RU by 0 outside Ω, it becomes a con-
tinuous function in Ba since the order of R is at most m — 1 and the
Cauchy data of U were 0 on S. On the other hand, P(DZ)U vanishes
also on S, because of (2) and of the fact that Q is of order g= m — 1.
Hence, continuing βP(Dz)U by 0 outside Ω leads again to a continuous
function in Ba. We see thus that P{Dz)v is a continuous function (in
Rn). This fact, together with properties (i) and (ii), allows us to extend
to v(z) the inequality of Theorem 1. We see that there exists a constant
A such that, for all holomorphic functions H(z) in Ba,

( 3 ) Σ II e™PM(D,)v |U» S AS || e™P(D,)v |U» ,

δ being the diameter of the support of v. Remember that δ —> 0 if
ε —> 0. Since, on f/2ε, v = U, by using inequality (1) and (3), we get:

(\ U\2 + I QU\2)dxdy rg (2AiΓδ)2( e2/?e^ | P(Dz)U\2dxdy
J

But since ί72S c Ω, we have the right to substitute \QU\ for
in the first integral of the right hand side; and if we choose ε small
enough so that (2AKS)2 < 1/2, we obtain finally:

e2Reπ I U \2dxdy ^ M ( e2ReH \ P(Dz)v \2dxdy ,
}cσ2ξ

M being a constant independent of both H(z) and ε. Observe that
the integral on the right hand side is actually performed on U&Γ\CU2B.
Let us take H(z) = (t/2)F(z), t > 0. The nature of the domains of
integration leads us to:
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I Ufdxdy rg Me-^oσ \ P(Dz)v fdxdy ,

or:

j f /j Ufdxdy £

where M1 does not depend on t; we conclude that U = 0 in Us, q.e.d.
We end now by a few remarks about admissible sets.

l Any open set Ω, strictly convex at a boundary point z0 (and
bounded near z0 by a piece of C°° hypersurface) is admissible at this
point. For simplicity, let us assume that z0 = 0, and let H be an hyper-
plane passing by 0, such that Ω intersects H only at the origin and lies
entirely on one side of H (at least near 0). Let N be the unit vector,
orthogonal to H, which lies on the side of H containing Ω. If N19 , Nn

are the complex components of JV, we may choose, as holomorphic function
F(z)9 the hermitian product Nxzx + + Nnzn.

2. There are open sets, admissible at a boundary point, which are
not strictly convex at this point. For instance, consider an open set Ω
whose boundary contains the origin (and is a piece of C°° hypersurface
near it) and whose complement contains the cylinder \zx — a\ < \a\9 a
being a complex number Φ 0. If the diameter of the intersection of
Ω with the cylinder | z1 — ka | < eQk | a \ (k < 1, ε > 0) tends to 0 when
ε —> 0, Ω will be admissible at z — 0. For then we may take, as holo-
morphic function F(z)9 any branch of — log (1 — zjka). If n = 1, any
open set whose complement contains the circle \z1 — a\ < \a\ (and whose
boundary, near 0, is a piece of C°° curve passing by 0) is admissible at
z1 — 0. If n > 1, one may still construct open sets having the desired
properties, which are not strictly convex at 2 = 0.

3 Let F(z) be any holomorphic function of z in a neighborhood

U of 0 in Cn, such that F(0) = 0. Let U+ be the set of points zeU

such that ReF(z) > 0. / / n > 1, the set U+ cannot be strictly convex

at z = 0.

It U+ were strictly convex at 0, there should exist an hyper plane
H, passing by 0, intersecting U+ only at this point 0 and such that U+

would lie only on one side of H. Let Ω be the other side of H, and
U(b) be the set of z e U such that ReF(z) > - 6 , (δ > 0). After
maybe shrinking U we may say that the diameter of U(b) Π Ω converges
to 0 when b —»0. For assume that this were not true: there would be
pairs of points z'k9 z" in £7(l/&) such that | z'k — z" \ Ξ> c > 0 for every
k = 1, 2, . We could assume that z'k converges to z\ z" to z", and
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we should have: | z' - z" | ^ c, z\ z" e Ω. But also Re F(z') = 0, Re F(z") = 0,
i.e., z\ z" e U+. But that implies z' = 2" = 0, which is absurd. Hence
the open set Ω is admissible at z — 0. But if £? is admissible at some
boundary point, the same must clearly be true for any open half space
in Cn. And this would mean that there is uniqueness in the Cauchy
problem for data on an arbitrary hyperplane and for any differential
polynomial

d

which is absurd.
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ON THE REPRESENTATION OF OPERATORS

BY CONVOLUTION INTEGRALS

J. D. WESTON

1. Introduction* Let ΐ be the complex vector space consisting of
all complex-valued functions of a non-negative real variable. For each
positive number u, let the shift operator Iu be the mapping of X into
itself defined by the formula

° (0 = ι < u)

x(t-u) (t^u)

Evidently, Iu+υ — IuIυ, for any positive numbers u and v.
A linear operator A which maps a subspace ® of 3c into itself will

here be called a V-operator (after Volterra) if
(1.1) for each x in ®, the conjugate function x* belongs to ®,
(1.2) both © and ΐ\® are invariant under the shift operators,
(1.3) every shift operator commutes with A.

Many operators that occur in mathematical physics are of this type. If
® is any subspace of 36 having the properties (1.1) and (1.2), the rest-
riction to ® of each shift operator is an example of a F-operator. All
'perfect operators' (of which a definition may be found in [5]1) are
F-operators, on the space of perfect functions.

In this paper we obtain a representation theorem for F-operators
which are continuous in a certain sense. This result leads to characteri-
zations of two related classes of perfect operators, one of which has
been considered from a different point of view in [5]. The main repre-
sentation theorem (Theorem 4) is similar to a result obtained by R. E.
Edwards [2] for F-operators which are continuous in another sense; and
it closely resembles a theorem given recently by Kδnig and Meixner
([3], Satz 3).

2 Elementary properties of V-operators An important property of
F-operators is given by

THEOREM 1. Let A be a V-operator, and let xλ and x2 be two of
its operands such that, for some positive number t0, xλ(t) = x2(t) when-
ever 0 ^ t ^ t0. Then Axλ{t) — Ax2(t) whenever 0 g t ^ ί0.

Proof. Let x — x1 — x2. Then, since x(t) = 0 if 0 g t ^ t0, there is

Received January 22, 1960.
1 And in §4 below.
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a function y such that x = ItQy; and y is an operand of A, by virtue of
the property (1.2). Consequently, by virtue of (1.3), Ax — ItQAy; so that
Ax(t) = 0 whenever 0 ^ t ^ t0. But Ax = A ^ — A#2, since A is linear:
hence the conclusion of the theorem.

With products and linear combinations defined in the usual way, the
F-operators on a given space ® constitute a linear algebra 2ί(3)). If A
belongs to 31(2)) then so does the operator A* defined by

A*x = (Ax*)* ,

where x is any function in ®. We therefore have the unique decompo-
sition

A = B + iC ,

where B and C belong to SI(®) and are 'real' in the sense that Bx and
Cx are real for every real function x in ®. (The property (1.1) ensures
that every function x in 3) can be uniquely expressed as xx + i#2, where
#! and x2 are real functions in ®.)

If A is a linear combination of shift operators, we have

n n
A = 2-jpίμu •= lu\j0ίμu U

3=ι 3 3=ι J

where a19 ,an are complex numbers, u is the least of the positive
numbers u19

 m,v>n9 and Io is the unit operator (to be denoted henceforth
by ' / ' ) . From this it is apparent that A has no reciprocal in the algebra
2I(3t); however, I — A has a reciprocal in 2ί(ϊ), as the following result
shows.

THEOREM 2. Let A be a V-operator on a space ©, and let u be any
positive number. Then the formula

Bx(t) = x(t) + ^tlnuA
nx(t) ,

n=i

where x is any function in ®, and t ^ 0, defines a linear transforma-
tion B, of ® m£o 36, which commutes with every shift operator and is
such that B(I — IuA)x — x for every x in ® and (/ — IuA)Bx = x if Bx
is in ®.

Proof. The series defining B certainly converges (pointwise): in fact,
if ί0 ^ 0 and m is a positive integer such that mu ^ t0, then, for any
x in 2),

- α?(ί) + Σ InuAnx{t)
i
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whenever 0 g t ^ t0. Hence if Bx is in © then, by Theorem 1,

( / - IuA)Bx(t) = x(t) - I{n+1)nA
nnx(t) = a?(ί)

whenever 0 g £ ̂  ίo; so that (I — IuA)Bx = x, since ί0 is arbitrary. Also,
if x is in © then (/ — /WA)# is in 25, so that

= (/ - IuA)x(t) /

= x(t) - I{mΛλ)uA™K{t) = α(ί)

whenever 0 gΞ ί g ί0. Thus 5(7 — IuA)x = as. It can be verified in a
similar way that 5 commutes with the shift operators and is linear.

If the transformation B of Theorem 2 maps 3) into itself, then I—IUA
has a reciprocal in 2I(©), namely B. This is certainly the case if © con-
sists of all the functions as that have some purely local property (for
example, continuity, with x(0) = 0, or differentiability, with #(0) = x'(0) = 0,
or local integrability).2 It is also the case with certain other choices of
®, provided that A is restricted to be a linear combination of shift
operators; for example, if © consists of the perfect functions, then an
operator of the form

(2.1) aj + ajui+ . . . +aJUn

has a reciprocal in 21(35) if a0 Φ 0 (this can be seen at once on taking
Laplace transforms and using Theorem 6 of [51).

If ® contains more than the zero function, it is clear that (2.1) re-
presents the zero operator on © only if all the coefficients α0, , an are
zero; and since the product of two operators of this form is another such
operator, the reciprocal of (2.1) cannot be expressed in the same form
unless it is a scalar multiple of /. Thus it is usual for 51 (®) to contain
operators other than those of the form (2.1). In general it seems to be
difficult to decide whether 21(25) is commutative or not; but it is shown
in § 4 that © can be chosen, of moderate size, so that 21(25) is not com-
mutative.

The Laplace transformation is naturally associated with the idea of
a F-operator, because it converts the shift operators to exponential fac-
tors. A locally integrable function x has an absolutely convergent Lap-
lace integral if x is of exponential order at infinity, in the sense that
x(t) = O(ect) as t —> co, for some real number c (depending on x). One
can consider F-operators on spaces consisting of such functions, and for
some of these spaces the following result is available.

THEOREM 3. Let A be a V-operator on a space © consisting of all
2 A property at infinity might be regarded as 'local', but this interpretation is to be

excluded here.
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the functions in 3c which satisfy some (possibly empty) set of local con-
ditions and are of exponential order at infinity. Then there are posi-
tive numbers b, c, and τ such that \ Ax(t) | ^ bect whenever t ^ τ and
I x(t) I ̂  1 for all t, with x in ®.

Proof. Assuming the theorem to be false, we shall construct in-
ductively a sequence {xn} in 3), and a sequence {tn} of positive numbers,
such that, for each positive integer n,

(i) I xn(t) I ̂  2~w for all values of ί,
(ii) tn ^ n,

(iii) xn{t) = 0 if 0 S t ^ ίn_!, where t0 = 0,
(iv) I Σj=iAxj(tn) I ̂  eΛί».
In the first place, if the theorem is false, we can choose xx so that

I χλ(t) I S i for all values of t and | Axx(t) | ^ et for some value of t, say
*!, greater than 1. Suppose, then, that the first m — 1 terms of each
sequence have been chosen, where m > 1, so that (i)-(iv) hold when
n ^ m — 1. Let

w—l

1/™= ΊLAxj .

Since ?/m belongs to 2), there is a real number cm such that | ym(t) | ^
ecmf when ί is sufficiently large. We can choose xm so that | xm(t)
for all t, xjt) = 0 if 0 ^ ί ^ «,„_!, and

where tm is chosen so that tm^ m and | ym(tm) | ^ ec™tm. Then

> I Λ/γ (+ \\ \ ni (+ \ I ~> /?^cm+m^im ">> £>mtm

Thus (i)-(iv) hold when n — m.
Now let xQ — Σn=i#n Then | xQ(t) | ^ 1 for all t, by virtue of (i); and

x0 belongs to ® since, by (iii), it has the appropriate local properties.
Hence there is a real number c0 such that Ax(t) = O(eCQt) as t —> oo so
that, by (ii), Ax{tn) = O(eG°tn) as n —> oo. But, by (iii) and (iv), and Theo-
rem 1, I Ax(tn) I ̂  entn for each w. This contradiction proves the theorem.

3. Strong continuity. If the field of complex numbers is given ei-
ther the discrete topology or the usual topology, the space X can be
given the corresponding topology of uniform convergence on finite closed
intervals. The first of these topologies for X has the property that every
V-operator is continuous with respect to it, as Theorem 1 shows; but it
does not make X a topological vector space (it has the defect that n~xx—>0
as n —-• oo only if x is the zero function). The second topology for X
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is more interesting, and will be referred to as the strong topology.
In fact we shall consider this only in relation to the closed subspace, (£0,
consisting of all the continuous functions x for which x(0) = 0. For each
x in Qt0, and each non-negative number t, we define || x \\t to be the least
upper bound of | x(u) \ with 0 ^ u ^ t. We can then give SO a metric,
which determines the strong topology, by taking the distance between
functions x and y to be

In this way 6t0 becomes a Frechet space.
In the case of (£0, which is an example of a space 35 satisfying (1.1)

and (1.2), a large class of F-operators, including those of the form (2.1),
can be defined in terms of Riemann-Stieltjes convolution integrals. If
v is a function which belongs to ΐ and has bounded variation in every
finite interval [0, t], then the formula

(3.1) Ax(t) = [x(t - u)dv(u)
Jo

where x is any function in So, defines a F-operator A on Gt0 (cf. [5],
Theorem 3). Moreover, if 0 gΞ v ^ t then

Ax(v) \^[\x(v- u ) || d v ( u ) I ̂  [\\ x \ \ t \ dv{u) | , ( ί ^ 0) ,
Jo Jo

so that

fί
Ax \\t S || x \\Λ \dv(u) I;

Jo

whence it follows that A is strongly continuous (continuous with respect
to the strong topology). The theorem we are about to prove shows that
every strongly continuous F-operator on a sufficiently large space ® of
continuous functions can be represented in this way (and can therefore
be extended from © to the whole of (£0).

If A is a linear operator on a subspace ® of Eo, and if £ ̂  0, we
denote by 'HAH/ the least upper bound of ||Acc||c with x in S and
|| x \\t ̂  1. It is clear that A is strongly continuous if and only if \\A\\t

is finite for all values of t (or, equivalently, for all sufficiently large values
of ί).

THEOREM 4. Let Abe a strongly continuous V-operator on a strong-
ly dense subspace 2) of GΓ0, and let t be any positive number. Then there
is a function v in ϊ , with v(0) = 0 and v(u—) = v(u) whenever 0<u^t,
such that Ax(t) is given by (3.1) for every x in 3). This function v is
uniquely determined by A, and is independent of t; its total variation
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in the interval [0,t] is | |A | | t .

Proof. For each function x in ®, and for each positive number t,
let xt be the restriction of x to the closed interval [0, ί]. Then, for a
fixed value of t, the mapping x —* xt is a linear transformation of ® on
to a subspace 3)t of the complex Banach space C[0, ί], consisting of all
continuous functions on the interval [0, t]; moreover, || xt \\ — || x \\t. If
xt — 0 then Ax(t) = 0, by Theorem 1; we can therefore define a linear
functional φ on ©t by the formula

9>(αβ) = Ax(t) .

This functional is continuous, with ||<p|| = | |A| | t .
An integral representation of φ can be found by adapting a const-

ruction used by Banach ([1], 59-60). By a well-known theorem3, φ can
be extended without change of norm to the complex Banach space M[0, ί],
which contains the characteristic functions of all the subintervals of
[0, t]. A function vt can then be defined on [0, t] so that 1̂ (0) = 0 and

(i)

(ii) <P(f) = [fit - u)dvt{n)
Jo

for every function / i n C[0, £].
Without affecting the validity of (i) or (ii), we can adjust vt so that

it is continuous on the left at each interior point of the interval [0, ί].
Moreover, if / is a continuous function such that /(0) = 0, then the jump
of vt at the point t makes no contribution to the integral in (ii); there-
fore, as far as such functions / are concerned, we may suppose vt chosen
so that vt(t —) = vt(t), giving left-hand continuity throughout the inter-
val (0, t], and retaining (i). Under these conditions, vt is uniquely de-
termined by A. For, if 0 < v ^ t and 0 < δ < v, there is a function /δ

in C[0, t] such that | |/ a || = 1 and

JO

Thus
— u)dvt(u) ,

JO Jv-δ

and therefore

I φ(A) - v*(v - δ) I ̂  Γ I dvt(u) I,
Jυ-δ

3 The Hahn-Banach-Bohnenblust-Sobczyk extension theorem: see, for example, [8], 113.
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so that φ(fs) —* vt(v) as δ —* 0.4 But since © is strongly dense in (£0, f8

belongs to the closure of ©β, in C[0, t]m, so that, φ being continuous,
φ(fs) is uniquely determined by A, for each value of δ. This establishes
the uniqueness of vt.

Now suppose that V > t. By what has been proved, we have, for

any x in ®,

x(£ — u)dvt(u) .

o

But Ax(t) = 7t/_tAa?(ί')» a n d ίf-ί-A = AIt,-t\ hence

It>~tx(tf — u)dvt,{u) = \χ(t — u)dvt,{u) .

It follows that vt{v) = vr(u) whenever 0 ^ u ^ t; in particular, vt(ί) =
vt>(t). Hence if we define the function v by

v{t) - vt(t) (t ^ 0) ,

we obtain the required representation of A.
Finally, (i) shows that

and we have previously noted that, for any x in SD,

I I ^ I L ^ \\x\\X\dv(u)\ .
Jo

S i

I dv(u) I = || A ||t, and the proof is complete.5

0

As a corollary, we have

THEOREM 5. Suppose that the formula

Ax(t) = [Kit, u)xiu)du it ^ 0)

defines a V-operator A on Ko, the kernel K being such that \ \ K{t,u) \du
Jo

exists as a Lebesgue integral which is locally bounded with respect to
t. Then there is a function k inϋ such that, for each t, K(ty u) — k(t — u)
for almost all values of u.

4 Here we use the fact that if a function of bounded variation is continuous on the left,
then so is its total variation.

5 In this proof we have not fully used the fact that A maps Φ into itself: it is enough
that A maps 2) into Co.
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\K(v,u)\du
0

with 0 ^ v ^ t; this is finite, by hypothesis. Then, for each x in (£0,

\\Ax\\t£\\K\\t\\x\\t,

so that A is strongly continuous. But

Ax(t) = \ K{t, t — u)x(t — u)du ,
Jo

so that if

Lt(u) = \UK(t,t -v)dv
Jo

then

i t
x(t — u)dLt(u) .

Hence, by Theorem 4, Lt = v, a function which is independent of t. Since
v has bounded variation, there is a function k such that

except when u is in a set E whose Lebesgue measure is 0. However,
for each value of ί,

A y(w) - i -L ( ( t t ) = ΛΓ(ί, t - w)

except when u is in a set Et of measure 0. Thus

K(t, u) = fc(ί - w)

except when w is in the set t — (Et U ί7), which has measure 0.

The functions in (£0 which are of exponential order at infinity form
a subspace Gf0. The perfect functions form a smaller subspace, S)o (in
fact ®0 is the largest subspace of 6f0 which is invariant under the dif-
ferential operator, D).

THEOREM 6. ®0 is strongly dense in Ko.

Proof. It is easily seen that @0 is strongly dense in Ko: in fact, if
a is in (£0 and xn is defined by

χ ,t) = ί^*) (0 = * = π )

(α (w) (ί Ξ> w) ,
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then xn belongs to G?o, for each n, and xn —> x strongly as n —> oo. To
show that ®0 is dense in Gf0, let x be any function in G?o and, for each
positive number δ, let g{8) be a positive perfect function such that if

S t
g{5)(u)du = 1 (for example, we could take g{5)

0

to be Dh{8), where h{8) is given by Lemma 1 of [5]). Let x(δ) = ίc*gr(δ).
Then α?(δ) belongs to ®0 ('#*' is a perfect operator), and, if v ^ δ,

S B

a?(ι; — u)g{8)(u)du — x(v)
0

j δ
= I {x(v — u) — x(v)}g{8)(u)du .

Jo

Now let t and ε be any positive numbers. Since x is uniformly
continuous in the interval [0, ί], with x(0) = 0, we can choose δ so that

I x(v — u) — x(v) I < ε

whenever δ ^ v ^ ί, and | a (t ) | < Jε whenever 0 ^ v ^ δ; then

S δ

g{δ)(u)du = ε
o

if δ ^ v g ί, and if 0 ^ v ^ δ,

S δ

I x(^ - u) g{B) (u)du + x(v) \
o

S δ

g{h){u)du + £ε = ε .
0

Thus || a?(8) — x ||ί < ε. It follows that ®0 is strongly dense in (£0.

In [5] it is shown that any positive perfect operator has the repre-
sentation (3.1), with v a non-decreasing function (in fact this holds for
any positive F-operator on a space ® such that ®0 = ® £ &o) It follows
that the linear combinations of positive perfect operators, which form
a linear algebra 2Ji(®0)

6, are strongly continuous. On the other hand,
there are strongly continuous perfect operators which do not belong to
2Jί(©0): for example, if v(t) = sin(e ί2 —1), and A is defined on ®0 accord-
ing to (3.1), then, as is shown in [5], A is a perfect operator which is
not in sJJί(®0); but of course A is strongly continuous. However, it is
possible to characterize 9JΪ(®0) in terms of seminorms, as follows.

THEOREM 7. A V-operator A on ®0 is an element of 3Jί(®0) if and
only if there is a real number c such that \\A\\t = O(ect) as t—>oo.

Proof. By Theorem 1 of [5], an operator A on ®0 is in 3Jί(®0) if

a)ί(®o) is denoted in [5] by '
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and only if it admits the representation (3.1) with v a linear combination
of positive non-decreasing functions which are of exponential order at
infinity. This condition on v is equivalent to the existence of a real

number c such that I | dv(u) | = O(ect) as t —> oo. Therefore, by Theorems

4 and 6 above, A is in 3Ή(®0) if and only if || A \\t = O(ect) as t -— oo.
Each function y in &0 determines a strongly continuous F-operator

A on (£0 according to the formula Ax = cc*τ/; for, integration by parts
shows that this formula is equivalent to (3.1), with

fί
v(t) — D~xy{t) — \ y(u)du (t ^ 0) .

An important property of convolution in (£0 is the fact that it obeys the
associative law (as well as the commutative law); more generally, we
have

THEOREM 8. Let A and B be strongly continuous V-operators, on
©o and on a subspace ® of (£0 respectively. If x is any function in ®
then Ax belongs to the strong closure of ®; if Ax is in ® itself, then
ABx — BAx. In particular, if y is a function in (£0 such that x*y is
in ®, then B(x*y) = (Bx)*y.

Proof. Let A be represented by a function v in accordance with
Theorem 4. Then for any x in ®, each value Ax(t) can be arbitrarily
approximated by sums of the form

n

Σ*{v(uj) - viuj-^xit - u3) ,
J=l

where O ^ u ^ ^ ^ ^ ί ; and this approximation is locally uniform
with respect to t. Now the above sum is the value at t of the function

(i) Σ
3=ι

where a5 — v(u}) —v{u5^. This function belongs to ®, since S) satifies
(1.2). Thus Ax belongs to the strong closure of 3). Further, the points
Uj can be chosen in such a way that, while Ax is strongly approximated
by (i), ABx is simultaneously approximated, in the same sense, by

(ϋ) ΣfljIujBx .

But, since B is a F-operator, (ii) is the same as

3=1
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Since B is strongly continuous, it follows that ABx = BAx if Ax is an
operand of B.

We can now prove a partial converse of Theorem 1, namely.

THEOREM 9. Let A be a non-zero strongly continuous V-operator on
(£0. Then there is a non-negative number τ such that (i) for any func-
tion x in Co, Ax(t) = 0 whenever 0 ^ t ^ τ, and (ii) if Ax(t) = 0 when-
ever 0 ^ ί ^ ί0, where x belongs to (£0 ornd ί0 ^ τ, ίfeew cc(t) = 0 whenever

0 ^ t S t0 — τ. In particular, x = 0 if Ax = 0.

Proof. Let v be the function representing A according to Theorem
4, and let τ be the greatest lower bound of the numbers t for which
v(t) Φ 0. Obviously, τ has the property (i) required by the theorem.
Suppose that x is a function in ©0 such that Ax(t) = 0 whenever O^t^tOy

where ί0 ^ τ. Let g{5) be defined as in the proof of Theorem 6, and let
%(&) — #*0(δ). Then, for each value of δ, x{8) has a derivative x[8) in Ko;
in fact x[δ) — x*^;δ). Also, if 0 ^ ί ^ ί0,

- u)v(u)du = Ax{h){t) =

= I Acc(ί
Jo

u)g{6)(u)du = 0 .

Therefore, by a theorem of Titchmarsh [4, 327], x\^{t) = 0 whenever
0 ^ ί ^ t0 — τ (we cannot have v(t) = 0 for almost all ί in a neighbour-
hood of τ, since y is continuous on the left). Hence x{8)(t) — 0 whenever
0 ^ t ^ t0 — τ. Since #ιδ)(t) —• x(t) as δ —> 0, the theorem follows.

It is a consequence of Theorem 8 that every strongly continuous
F-operator on S)o is a perfect operator (the converse is false; in fact it
is easy to see that the differential operator D is not strongly continu-
ous). Thus an operator A represented by (3.1) is a perfect operator if
and only if it maps S)o into itself. An equivalent condition is given by

THEOREM 10. The formula (3.1), with x in ®0, represents a perfect
operator A if and only if there is a positive integer n such that D~nv
belongs to Qf0, where

nv{t) = Γ . . . [^viujdur -dun (t = un+1 ^ 0) .
Jo Jo

D-n

Proof. For any perfect function x and any positive integer n, we
have from (3.1), after integration by parts,
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Ax(t) = [x{n+1)(t - u)D~nv(u)du (t ^ 0) .
o

Thus if D~nv belongs to G?o for some value of n, then A is a perfect
operator. On the other hand, suppose that A, given by (3.1), is a per-
fect operator (when restricted to ©0). By a general representation theo-
rem for perfect operators [6], there is a function y in G?o such that, for
some positive integer n, and every perfect function x,

Ax(t) = x{n+1)(t - u)y(u)du (ί ^ 0) .
Jo

Hence x{n+1)*(y - D~nv) = 0, so that, by Theorem 9,y = D'nv.

If u(t) = ee\ the F-operator A given by (3.1) does not map ®0 into
itself, since v does not satisfy the condition of Theorem 10.

Every perfect operator A has a Laplace transform, A: if A is given
by (3.1), A may or may not be given by

(3.2) A(z) = \°°e-ztdv(t) ,
Jo

the integral being convergent when ΪRz is sufficiently large. This repre-
sentation of A is certainly valid if A belongs to 9Qΐ(®0) (cf. [5], Theorem
4); and also if v(t) = sin(βί2 —1), for example. But if J3"1v(ί) = sin (efc2—1)
the integral in (3.2) does not converge for any value of z (as can be
seen on integrating twice by parts). However, (3.2) holds whenever the
integral is convergent, as the following result shows.

THEOREM 11. Let A be any strongly continuous perfect operator,
and let v be a function such that A is represented by (3.1). Then the
Laplace transform A is represented by (3.2), with 9ΐz sufficiently large,
if the infinite integral is interpreted in the sense of summability (C, n),
where n is any non-negative integer such that D~nv belongs to G?o.

Proof. Let B be the perfect operator obtained on replacing v by
D~ιv in (3.1). Then, if x is any perfect function, and t ^ 0,

DBx(t) = Bx\t) = [xf(t - u)v(u)du = v(0)x(t) + [x(t - u)dv{u) .
Jo Jo

Thus DB = v(0)I + A. If v belongs to Gf0 then, since B is determined
by the function v in the sense that Bx = x*vy B has the same Laplace
transform as v; that is to say, when 9Ϊ2 is sufficiently large,

B(z) = [°e-ztv(t)dt .
Jo
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Therefore, in this case,

A(z) = zB(z) - v(0) = \°° ze~zt{v{t) -v(0)}dt = [°°e-ztdv(t) ,
Jo Jo

so that (3.2) holds, the integral being convergent.
We now proceed by induction. Suppose that, for some non-negative

integer n, (3.2) holds in the sense of summability (C, n) provided that
D~nv belongs to (So and $ϊz is sufficiently large. If D~n~ιv belongs to Gr0,
and t > 0, then

- ±) e~zudv(u) = -v(0) + z
"0

t JoV t

But, by the induction hypothesis (with D'1^ in place of v),

- Γ f / 01 \W + 1 f ί / ηi

B(«) = hm I 1 - — e-βttdJD-Mw) = lim I 1 — Γ

when 3ϊa; is sufficiently large; so that

lim \ ( 1 — — ) e~zudv(u) = — v(0) + 2;JS(2;) = A(z) .
ί-^oo JoV ί /

Thus

A(z) = \ e~ztdv(ΐ) (C, n + 1) ,
Jo

and the theorem follows.

If ® is any subspace of Ko satisfying (1.1) and (1.2), the strongly
continuous V-operators on ® form a subalgebra of 3ί(®), say 9i(5)). If
2) is strongly dense in Ko, it follows from Theorem 4 that 5R(S)) effectively
consists of those operators in 5R(QT0) which leave ® invariant. In this
case, Theorems 8 and 9 show that 5R(®) is an integral domain (it is
commutative, and has no divisors of zero). The full algebra 9^(EΌ)7 has
the further property that any operator which is inverse to an operator
in ^((SQ) is itself in 5R(E0): this is special case of

THEOREM 12. Let A and B be strongly continuous V-operators on
a strongly closed subspace ® of So>

 and suppose that there is an ope-
rator C on 3) such that A = BC. Suppose also that Bx = 0 only if
x = 0. I%e% C is a strongly continuous V-operator.

consisting of the linear combinations of positive F-operators on So.
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Proof. If u > 0 and x is any function in ® then, since A and B

are F-operators,

B(IuCx - CIux) = JttAα - A/w£ = 0;

so that, by the hypothesis concerning B, IuCx — CIux. In a similar way
it can be verified that C is linear, and is therefore a F-operator. To
show that C is strongly continuous, let {xn} be a strongly convergent
sequence in © such that the sequence {C#J is also strongly convergent.
Since A and B are strongly continuous,

ί?(lim Cxn — C lim xn) = lim A#w — A lim #w = 0 ,

so that lim^ooCα^ = Clim^^a^; thus the graph of C is closed. Now ®,
being strongly closed, is a Frechet space relative to the strong topology;
hence, by Banach's closed-graph theorem [1, 41], C is strongly continuous.

4 Operators that commute with convolution* It is a consequence
of Theorem 8 that a subspace 3) of (£0, satisfying (1.1) and (1.2), is
closed under convolution if it is strongly closed. On the other hand, 3)0

is closed under convolution though it is not strongly closed. If ® is any
subspace of (£0 which is closed under convolution (so forming an integral
domain with no unit element), an operator Aon S will be said to com-
mute with convolution if

A(x*y) — (Ax)*y

for all x and y in ®. Such operators are necessarily linear (cf. [5], § 4),
and, for a given choice of ®, they form an integral domain 2)* in which
® is isomorphically embedded (by the correspondence x —* a?*).

A shift operator belongs to ®* if it maps ® into itself. Hence if
Φ satisfies (1.1) and (1.2), in addition to being closed under convolution,
then all the operators in ®* are F-operators; in fact 5D# is then a maxi-
mal commutative subalgebra of SI(®). In this case, Theorem 8 shows
that every strongly continuous F-operator commutes with convolution;
so that

$R(Φ) S ®* £ 31(3)) .

If, further, 3) is strongly closed, then 5R(3)) = ®#: for, if £ is defined
by Bx = x*y, with y in 3), and A = 5C, where C is any operator in S)#,
then, for any # in 3),

Ax = (Cx)*2/ = C(#*?/) = C(t/*#) = (Cy)*x;

thus the conditions of Theorem 12 are satisfied, so that C belongs to

5R(35), In particular, the operators on ©0 that commute with convolution
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are precisely the strongly continuous F-operators on Ko (and can there-
fore be represented according to Theorem 4).

An operator A on 6?0 which commutes with convolution can be ex-
tended to the whole of (£0 so as to preserve this property. For, if x is
any function in Eo, let xn be defined, for each positive integer n, as in
the proof of Theorem 6: then xn belongs to G?o, and Theorem 1 shows
that Axn(t) is independent of n provided that n ^ t; therefore, if ί^O,
we can define Ax(t) to be Axjt), where n^t, without ambiguity. Since
convolution is defined locally this extension of A is an operator on (£0

which commutes with convolution. It follows that A is strongly conti-
nuous, and that its extension to (£0 is unique (since G?o is strongly dense
in e0).

The integration operator, D" 1 , is an example of an operator on Eo

which commutes with convolution. Since ®0 can be expressed as Γ\n=iD~n(£Q,
any operator on (£0 which commutes with convolution and leaves @0 in-
variant must leave ®0 invariant. The converse of this is false: for, if
A is defined by (3.1), v being such that D~2v belongs to @0 but D~ιv
does not, and v(0) = 0, then A maps SD0 into itself, by Theorem 10; how-
ever, if x(t) = t then

Ax(t) = Γ(ί - u)dv{u) = D~ιv{t) ,
Jo

so that x is in Gf0 but Ax is not.
The operators on S)o that commute with convolution are the perfect

operators. These can be characterized as those F-operators on ®0 which
are continuous in a sense defined in terms of Laplace transforms [7]8.
The strongly continuous perfect operators are the strongly continuous
F-operators on S)o, constituting the algebra ϊϊ(®0); this algebra, and also
its subalgebra 3K(5)0)> can be characterized in terms of convolution, as
follows.

THEOREM 13. A perfect operator belongs to 5R(®0) if and on^V if
it can be extended to the whole of (£0 so as to commute with convolution;
it belongs to sDΪ(®0) if and only if this extension {necessary unique)
leaves Gf0 invariant.

Proof. If an operator A on ®0 can be extended to Ko so as to com-
mute with convolution, then its extension belongs to $ft(@Ό)> so that A
itself belongs to 5ί(®0). On the other hand, any operator A in sJΪ(®0)
admits the representation (3.1), which provides an extension of A to So:
this extension, being strongly continuous, commutes with convolution;

8 It is not at present known whether there are any F-operators on ®0 which are not
perfect; that is to say, it is not known whether siί(S)o) is commutative or not (but there are
linear operators on Φo which commute with D and are not perfect [6]).
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it is also unique, since ®0 is strongly dense in (£0.
If a perfect operator A has a strongly continuous extension to Ko

which leaves Gr0 invariant, we can regard A as a F-operator on @0; then,
by Theorem 3, there is a real number c such that || A \\t = O(ect) as t—>co,
and this implies, by Theorem 7, that A belongs to 2Jί(®0). On the other
hand, if A belongs to 3JΪ(®0) then the extension of A to &0 given by
(3.1) leaves Gr0 invariant, by Theorem 3 of [5].

Finally, we give an example of a F-operator, on a strongly dense
subspace of (£0, which does not commute with convolution. Let h be the
Heaviside unit function (h(t) = 1 if t i> 0), and let ®2 be the class of all
functions x given by

(4.1) x = D-\y + Bh) ,

where y belongs to (£0 and B is an operator of the type (2.1). Then
®0 <Ξ Sj £ ©o, and ®! satiyfies (1.1) and (1.2); moreover, ®x is closed
under convolution. It is clear that y and B in (4.1) are uniquely deter-
mined by xf and that the mapping x —• # is a F-operator, say A, on 3)1#

The operator D~x maps ®x into itself and commutes with convolution.
However, AD~xx — x and Ό~λAx — y, so that AD'1 Φ D~λA. Hence A
does not commute with convolution. It follows that the algebra 31(®i),
of all F-operators on ®x, is not commutative.
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NORMAL SUBGROUPS OF SOME HOMEOMORPHISM

GROUPS*

J. V. WHITTAKER

1. Introduction. The normal subgroups of the group of all homeo-
morphisms of a space X have been enumerated by Fine and Schweigert
[2] when X is a line, by Schreier and Ulam [3] when X is a circle, by
Ulam and von Neumann [4] and Anderson [1] when X is a 2-sphere.
In each of these cases there are either one or two proper normal sub-
groups. However, when X is an ti-cell (n > 1), there are infinitely
many. The object of this paper is to investigate the normal subgroups
for a class of spaces X which includes the n-cell. Some of these nor-
mal subgroups, although not all, can be defined in terms of the family
of fixed point sets of their elements, and we investigate this relation-
ship at some length. A smallest normal subgroup is exhibited, and the
corresponding quotient group is represented as a group of transforma-
tions of a related space.

2* Families of fixed point sets. Let X be a set, Π(X) the group
of all permutations of X (one-to-one mappings of X onto itself), and G
a subgroup of Π(X). Suppose that j^~ is a non-empty family of sub-
sets of X satisfying the following conditions:

(i) If Fl9 F2 6 ^Γthen there exists an F3 e ^ such that F3 c
F, n Fi9

(ii) If Fx e ^ and g e G, then there exists an F2 e ^ such that
F2 C g(FJ.

We shall call j^~ ecliptic relative to G. For example, if JΓ con-
sists of the complements of all finite subsets of X, then ^ is ecliptic
relative to Tl(X). If X has a topology, we denote the group of homeo-
morphisms of X by H(X). Let X be a closed unit ball Bn in euclidean
%-space and J^ consist of the complements in Bn of those balls which
are concentric with Bn and have radius less than one. Then J^ is
ecliptic relative to H{Bn). In this connection, we note that for h e
H(Bn), ft(Sn-i) = Sn--i, where Sn^ is the boundary of Bn.

Let X again be an arbitrary set and G a subgroup of Π(X). We
introduce a partial ordering among the families of subsets of X as fol-
lows: ^ ^ ^ ' provided that, for every F e J^ there exists an F' e

f such that F' c F. Evidently J ^ c ^ ' implies ^ ^ ^~\ where
c j^~* means set inclusion, but the converse is false. We define

equivalence of j^~ and j ^ ' to mean j ^ ~ ^ JΓ' and j^~' ^ ^ and we
write

Received October 26, 1959. This paper was written while the author was a Summer
Research Institute Fellow of the Canadian Mathematical Congress.
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LEMMA 1. // ^ ^ ' are families of subsets of X, j^~ = ^ \ and
is ecliptic relative to G, then j ^ ' is ecliptic relative to G.

Proof. If Fί, F'2 6 jr\ then there exist sets F19 F2, Fs e ^ and
F'2 e J^~' such that Fλ c F[, F2 c F'2, and F[ c F 3 c F1 Π F2 c F[ Π F[.
Second, if F[ e S*~' and g e G, then we can find Fu F2 e ^ and F'2 e
j ^ ~ ' such that Fx c F[ and Fί c F2 c #(2^) c βr(F{).

To any family j^~ we can adjoin all subsets of X which contain
some element of j^~ and thus obtain a family ^~* which is clearly
equivalent to ^ and, by Lemma 1, is ecliptic relative to G if ^ is.
In fact, j ^ ~ * has the property that Ff, F* e ^~* and g e G implies
F* Π F*,g(F*) e ^~*. In addition, J ^ * is an upper bound, with re-
spect to set inclusion, among the families equivalent to J^7 We shall
call JF~ replete if it is equivalent to no larger family.

If / e Π(X), we set K(f) = {x e X:f(x) = x}. For any family
of subsets of X, we define

S(jrG) = {g e G : X(flf) 3 F for some F

We note that if the empty set 0 e ^ then S(J^G) = G.

LEMMA 2. (a) ^~ = ^~' implies S(j^G) = S(jTΛ G).
(b) If ^ satisfies (i), then S(J^G) is a subgroup of G.
(c) If f e

(d) // . ^ is ecliptic relative to G, then S(^G) is a normal sub-
group of G.

Proof. For (a) we show that ^ ^ ^ " ' implies S(J^G) c S(J^', G).
Indeed, if ^ e S(J^G) and ϋΓ(βr) =) F for some F e ^ Γ we can find
F' e ^ " ' such that F' (Z F c K(g), whence g e S(^~'f G). In (b) we
need merely observe that, for any f,f2 e U(X), K(fuf2) Ό K{fx) n K{f2)
and Kifϊ1) = K{f). In part (c) we use the relation K{fgf~ι) = f(K(g)).
If g e f[S(^G)]f-\ then g=fg1f"

1

f where ft e G and K{gλ) D F for
some F e ^ Hence, 0 e /G/~\ #(</) D / ( F ) , and g e S(f{^
If g e S{f{jr),fGf~ι), then g = fgj-1 for some gλ e G, and K{g) D
for some F e Ĵ Γ Hence, ίΓ(ft) 3 F, and flr e f[S(J^G)]f-\ In part
(d), let / e G. From (c), /[S(^ΓG)]/-1 - S(/(JΠ, G). Normality will
follow from (a) if we can show that f(^~) = ^C Clearly (ii) implies
f(^~) ^ ^ lίF^SA then there is an F2 e ^ " such that F2df"\F^9

whence f(F2)(zFu and j r ^ / ( ^ ' ) .
We shall assume, from now on, that X is a Hausdorff topological

space, unless the contrary is explicitly stated. For S{^H{X)) we shall
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write S(^), and if j^~ is ecliptic relative to H(X), we shall simply say
that j^~ is ecliptic. For any family of subsets of X, we introduce a
further condition:

(iii) If Fe^~ and UaX is open (U Φ 0), then there exists an
h e H(X) such that h(cF) c U, where cF is the complement of F in X.
An ecliptic family which satisfies (iii) will be called strictly ecliptic. The
family ^ oί subsets of Bn defined above is evidently strictly ecliptic. If
^"satisfies (iii) and _̂ ~ ^ J^~\ then clearly j^~f satisfies (iii). Since
K(h) is closed for every h e H(X), there is no loss of generality in as-
suming that the elements of any family ^ are closed, and this assump-
tion will be made from now on, unless the contrary is stated.

LEMMA 3. If X admits families J^j^' which satisfy (ii) and (iii)
and contain more than one element, then JZΓ = .^ r ' .

Proof. We may as well assume that ^Γ.^~' are replete in the
closed subsets of X If Fe^ F Φ X, and Ff ej^\ then we can find
heH(X) such that h(cF')czcF. Hence, h(F')z)F, h{Ff) e jr9 and F ' =
h-\h{F')) e ̂ . Thus j ^ ~ ' c . j ^ and, similarly , r c j Γ ' ,

Some spaces contain no ecliptic families except {X} and the set C^(X)
of all closed subsets of X. For, by Lemma 2, such a family defines a
normal subgroup of H(X); when X is a 1-sphere, Schreier and Ulam
[3] showed that the only proper normal subgroup of H(X) consists of the
orientation-preserving elements of which some have no fixed points.

3 Minimal normal subgroups* We shall need to know something
more about H(X). Rather than make specific and detailed assumptions
about the existence of certain homeomorphisms, we shall assume a mild-
ly euclidean structure for X, namely:

(iv) If UaX is open (UΦ 0), then there exists an open Va U which
is homeomorphic to an open ball in a euclidean space of positive dimen-
sion.

The dimension of the ball may vary for different open sets. We
shall refer to F a s a euclidean neighborhood in X.

THEOREM 1. Suppose X satisfies (iv) and contains a strictly eclip-
tic family ^\ If N is a normal subgroup of H(X), then either

or N consists of the identity e.

Proof. Suppose N Φ {e} and gQeN, gQ φ e. Then go(x) Φ x for some
x 6 X, and we can find a neighborhood Uo of x and a euclidean neighbor-
hood Vo such that go(Uo)n UQ— 0 and Voczgo(Uo). Let ω map VQ homeo-
morphically onto an open ball in some euclidean space, let Bczω(V0) be
a closed unit ball of the same dimension, and set WQ = αr^intl?), where
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int denotes interior. We wish to construct a homeomorphism hQ of Wo

in its relative topology with the following properties:
(a) K(ho)z)WoncWQ,
(b) there exists an open Vc. Wo such that, for all integers n > 0,

(c) if A = \Jn=oho(V), then Af]cA is a single point. To do this is
evidently equivalent to constructing such a homeomorphism k0 of B, for
then hQ = ω~ιkQω has the desired properties in WQ. Let θ be a homeomor-
phism of [0,1] such that K(θ) = {0,1} and θ(r) < r for 0 < r < 1. If
pe B lies at a distance r from the center of B, then we define ko(p)
to be the point on the same radial line at a distance θ(r) from the
center. By choosing a sufficiently small open ball in B which does not
meet either the center or boundary, we can satisfy (a), (b), and (c).

We now define the function hx as follows: hx{x) = ho(x) if x e Wo,
hx{x)=x if xecW0 Clearly, h^HiX). Now gx = gJi^g^Ke N since N
is normal, and gji^g^h^x) = hx{x) for xe Wo, since g^1(W0)dcWQ. Thus
gτ(x) = Λ0(ί») for a? € TΓ0. Let g be any element of S ( J ^ ) . Then there
exists an F e ^ and h2eH(X) such that K{g)i)F and fe2

Thus Kt/ijfffcr1)^0^ M w e can construct an heH(X) such that

(1) g^hgjr1 = hghϊ1 = / ,

then we will have shown that g e N and S(^)c:N9 since the left mem-
ber of (1) lies in N. Let us rewrite (1) as hgλ = gjh. We set

h{x) = \ a J θ 1 (x) ί 0 r

ιx for x e c(\Jn

By property (b) above, m Φ n implies g?(V)Γ\g?(V) = 0 , whence h is
single-valued. Since K(f)Z)cV, the restriction of / to V is a homeo-
morphism of V, and the same holds for g?fgzn and g?(V)f n = 1,2, .
Let AΓ\cA consist of the point xQ, where A— U«=o^i(^) Then each
x Φ xQ has a neighborhood which meets at most one of the sets g?(V)9

and h, hr1 are evidently continuous at such points. By the construction
of hQ and V, every neighborhood of x0 contains all but a finite number
of the sets gΐ{V)9 whence k9 hr1 are continuous here as well. Hence,
heH(X). If xecA, then gλ{x) eK(h) and hg1(x) = gjh{x). When xeV,

Finally, if w ̂  1 and xeg?(V), we have g»(V)czK(f), so that g1fύί(y) =
gΐ+1(y) when j / e 7 . Hence,

This establishes (1) and completes the proof.
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We offer the following example of a non-Hausdorff space X without
euclidean neighborhoods which admits a strictly ecliptic family ^ r such
that S(^~) is not minimal. Let X be an infinite set in which r^(X)
consists of the finite subsets of X and X itself. Then H(X) = Π(X).
For ^ we take the collection of non-empty open sets and form S(j^~).
Since X is not Hausdorff, K(h) need not be closed for heH(X). Clearly
&~ is strictly ecliptic, but S(^~) contains, as a proper normal subgroup,
the set of h e H(X) such that cK(h) is finite and h is an even permuta-
tion of cK(h).

4 Normal subgroups of H(Bn). As we remarked in § 2, the family
^o of complements of smaller, open, concentric balls in Bn is strictly
ecliptic. When _^Γis extended to a replete family, it will consist of all
closed sets containing a neighborhood of the boundary Sw_lβ In this sec-
tion, we will also be concerned with the group H0(Bn) of those h e H(Bn)
such that K(h)z)Sn^. Evidently HQ(Bn)z>S(J^), and H0(Bn) is normal
in H(Bn).

THEOREM 2. If N is a normal subgroup of H(Bn) which contains
an element not in HQ(Bn), then Nz)H0(Bn).

Proof. We will assume, to begin with, than n ^ 2. Suppose g0 e
NC]cHQ(Bn), and choose ^ e S ^ so that go(x) Φ x. Let Wo be the part
of an open ball with center x which lies in Bn and is small enough so
that go( WQ) (Ί WQ = 0 . We wish to construct a homeomorphism hQ of WQ

and an open set We Wo such that W^S^ Φ 0 and h09 W satisfy (a),
(b), (c) in the proof of Theorem 1. Let B, k0, and V be the same as in
that proof. If 77 is an (n—l)-dimensional hyperplane which passes through
the center of B and meets V, then Π divides B into two regions (in-
cluding boundaries) Δ, Af such that Δ[\Δ* — Π. The restriction of k0 to
Δ is evidently a homeomorphism of A. Let ψ map Δ homeomorphically
onto Wo in such a way that ψ(Π) = W0Γ\Sn^lm Then h0 = ψkQψ~x and
W = ψ(Δ Π V) clearly satisfy (a), (b), (c). We define hλ{x) = h,{x) for x e
T ô, hx(x) = x for xecW0, so that hj.eHiBn). Then g1 — gQh^ιgQlh1eN1

and flr^fl?) = ^(a?) for α?e Wo, as in the proof of Theorem 1. If g is any
element of H0(Bn) such that K(g)z)cW, it follows from the construction
in the same proof that geN.

Let p,qeSn-! be antipodal, D the diameter joining them, and Πu

Π2aBn two (n — l)-dimensional hyperplanes perpendicular to D. Now
Π19 Π2 divide Bn into three regions (including boundaries) Δ19 Δ2, z/3 and,
correspondingly, Sw_i into three zones (including boundaries) Z19 Z2, Z3.
We take Δ2 to be the middle region, so that Δλ Π Δ2 = Πlf Δ2 Π Λ3 = 772,
p e Δl9 q e Δ%. Let P, Q be arbitrary neighborhoods of p, g, respectively,
such that P c 4 , Q c J3.

Next, we construct h2fh5eH(Bn) such that ^2(P)z)cTF,
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For example, h2 might first expand P until its complement is quite small
and then rotate the complement into W. If geH0(Bn) and K(g)z)P,
then K{h2gh2

λ) zicW, whence g e N. Similarly, K{g) z> Q implies g e N.
We now wish to construct a homeomorphic mapping θ of Bn onto Δ% U Δs

such that θ(x) — x for all x e ΔΆ. To accomplish this, we introduce sphe-
rical coordinates r, φ19 , φn_λ for the points x e Bn such that φλ is the
angle between D and the radial line through x. Then 77 ̂  satisfies the
equation r cos φλ = fc4, | fc41 < 1 (i = 1, 2). Let r, φx be regarded as polar
coordinates for the closed upper half-plane in euclidean 2-space, and let
R be the set of (r, φλ) such that r ^ 1, 0 ^ φx ̂  TΓ. The lines r cos
φx = kt (i = 1, 2) divide 12 into three regions (including boundaries) Rl9

R2, 7?3. Let ω be a homeomorphic mapping of R onto R2 U i?3 such that
ω(y) — V for all y eR3. We then set

Let / be any element of HQ(Bn). Then θfθ'1 e H(Δ2 U ̂ 8 ), and
-1)D77,UZ2u^3. We define g2(x) = θfθ-\x) ΊίxeA2\jΔi9 g2(x) = a if

flce4ι Clearly, g2eH(Bn), and K{g2)z^P, whence g2eN. In addition,
&0») = / ( * ) for a ; e J 8 n / - U ) » s o that K{g2

lf)z>Q = A^f~\A,)y and g,=
g^feN. Hence, f=g^eN, and H0(Bn)czN. When w = 1, the con-
structions in the first half of the proof can not be carried out in So.
The theorem follows, in this case, from the result obtained in [2] that
the only proper normal subgroups of H(B^) are S(^) and HQ(B^).

If GaΠ(X) and 7 c l , we denote the restrictions of the elements
of G to Y by G \ Y. For any orientable space X, we let E(X) denote
the group of all orientation-preserving homeomorphisms of X

LEMMA 4. If N is a normal subgroup of H(Bn), then N\ Sw_! is a
normal subgroup of S

Proof. Clearly 2NΠ Sn_i is a subgroup of H(Sn^). If hoeH(Sn-J,
we can extend hQ to an element h of H(Bn). Let p0 be the center of
Bni p Φ p0 a point of Bn lying on the sphere S with center p09 and π the
radial projection of S onto Sn_lβ We define fc(p) = π-λhQπ(p), h(pQ) = pQ.
Clearly Λ e H(Bn). Then iV | S,_1 - (hNh'1) \ Sn^ - ho(N \ S^hό1.

COROLLARY. If N is not contained in H0(Bn) and n g 3, then N
is either E(Bn) or H(Bn).

Proof. By Lemma 4, N \ Sn^ is a normal subgroup of H(Sn^) dif-
ferent from {β}. It was proved in [3] for n = 2 and in [1] for w = 3
that the only normal subgroups of H(Sn^) are {e}, EiS^), and H(Sn^).
Hence, if heE(Bn), there exists a, geN such that /ι | Sw_! = βf | Sn_lβ
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Then / = g-'h e HQ(Bn)aN by Theorem 2, and h = gfeN. If NφE{Bn),
a similar argument shows that N=H(Bn). We note that HQ(B1) = E(B1).

5 The lattice of normal subgroups. In the first part of this sec-
tion, we revert to the assumption that X is an arbitrary set. The in-
tersection of two ecliptic families may be empty. If, for example, <βζ
is the ecliptic family defined above for B2 and ^ is the family of com-
plements of interiors of simple polygons lying entirely in the interior
of B2, then ^ ~ n ^ Γ = 0 , although ^ t — ^ Ί * . However, the inter-
section of any collection of replete, ecliptic families is also replete,
ecliptic, and non-empty, since it always contains {X}. The smallest
ecliptic family (up to equivalence) which contains a given collection {^}
of ecliptic families consists of all finite intersections of elements in
U ^l. We denote this set by V ^ and set Λ^K = Π JK- If the Jϊ~
are replete, then V ^ i s also replete. For if 1^, , F n e U ^ , and
F D f l / i , then F\jFt e \JJ^(i = 1, , n), and F = Γh(^Ui^).

For any collection {Ga} of subgroups of a group G, we set ΛGα =
PiGa and define VGΛ as the smallest subgroup of G which contains Ga.

LEMMA 5. If G is a subgroup of Π(X) and {J^}aeA is a collection
of replete ecliptic families relative to G, then

Proof. If g e S( A J^9 G), then there is an F e Π ^ such that K(g) u F,
whence geS(Jsζ,G) for each as A. If g e /\S{J^,G), then, for each
aeA, there is an F^e^ζ such that K(g)i)Fω. Hence, K(g)zDF =
VJcoeήF^ Fe^ for each βeA since j ^ is replete, and geS(A^fG).
This proves the first relation. In the second, if g e v S ( ^ , G ) , then
there are sets Flf , Fn e \JaeA^ and elements glf , gneG such that
if(fif4)Dfτ

i(i = l, . ,w) and flf = ffi ff«. Hence, K(g)z>F = ΓitFifF e
V<^ζ, and geS(VJ^,G).

We now return to the case X — Bn.

LEMMA 6. Let & be a family of {not necessarily closed) subsets
of Sw_! which

(a) satisfies (i), or
(b) is ecliptic relative to H(Bn). Let J^ be the family of closed

subsets of Bn which contain a member of & in their interior (in the
relative topology of Bn). Then

(a) <Ψ~ is ecliptic relative to H0(Bn), or
(b) J^~ is ecliptic relative to H(Bn). In either case, J^ is replete.

Proof. If Fo, F'oe%? and Fo c int F, F[ c int F', then FonF'Qc int
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F Π iτΛF' = iτA(FΓ[F'), and FnF'ejT, whence JT satisfies (i). In
part (a), if he H0(Bn), then int h(F) = fe(int F)zDh(F0)== FQy and h(F) e SK
In part (b), if heH(Bn), then there is an F'o'e & such that h(F0)z)Ff

0\
and int h(F) ID F" as in (a), so that h(F)eJ*\ Thus (ii) is verified in
each case. The repleteness of j ^ * is obvious.

We will indicate the above relationship between S^ and 2^ by say-
ing that j ^ ~ is derived from 2^. The simplest example of a derived
ecliptic family relative to H0(Bn) is that in which & consists of a single
subset of Sn_lβ An ecliptic family relative to H(Bn) is obtained by let-
ting Sf consist of the complements in Sn^ of finite subsets of S ^ .
When n = 2, a family equivalent to the latter can be described as the
set of complements in B2 of interiors of simple closed curves which meet
Sλ in a finite number of points. The construction can be varied by tak-
ing the set of complements of countable or first category subsets in Sra.lβ

Returning to Lemma 5 and the case X—Bn,G — H(Bn), we have
not been able to determine whether equality holds in the second relation
even for the case S(J^V^ f)z)S{^)yS(J^'), ά^V^1 = ^(X). How-
ever, we do have the following result for derived families.

THEOREM 3. Let ^ ^ f be derived from Sf, 5?', respectively,
where & = {Po}, &' = {Qo}> and suppose that Po, QQ can be separated in
Sπ_i by an (n — 2)-sphere Σ c ^ - i which is tame relative to H(Bn).
Then

(2) S(JTvJT', HQ(Bn)) = S(^H0(Bn))vS(jr', HQ(BU)) .

Proof. Let Π1 be an (n — l)-dimensional hyperplane passing through
the center of Bn, and set Σ1 = Π^S^. Choose heH(Bn) such that
h(Σ) = Σx. Since Πλ and h(Q0) are closed and disjoint, we can findL a
second hyperplane Π2 parallel to Πλ and lying between Π1 and h(Q0).
Now Πlf Π2 divide Bn into three regions (including boundaries) Δ19 Δ2, Δd

such that h(PQ) c Δu h(Q0) c 4 . In fact, Po c int hr\Δύ, Qo c int hτ\Δ^>
where int denotes interior in the relative topology of Bn. Hence, hr\ΔD e J^"
and h"\Δ^) e j^~'m Since these sets are disjoint, 0 6 j^~ V J ^ ' and
Si^V^', fli^n)) = fl"0(J5n). By setting 4 = P, J8 = Q, and following
the argument in the second half of the proof of Theorem 2, we can
show that the group generated by those g e H0(Bn) such that K(g) ID ΔX

or 4J is precisely HQ(Bn). Since K(g)z)Δ1 implies geS(h"1(J^')9 H0(Bn)),
and K{g)uΔz implies geS(hr\^'), HQ(Bn)), it follows from Lemma 2(c)
that

H0(Bn) - h[S(h~\jr)f Ho(Bn)) V

H0(Bn))]h-i V

V S(^-', HQ(Bn)) .
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Hence, (2) is established. When n — 1, the hypothesis of the theorem
states that Po and Qo are the two points in So. The construction in the
second half of the proof of Theorem 2 can evidently be carried through
in this case.

6. Quotient spaces* we turn now to the problem of representing
the quotient groups H0(Bn)IS(J^), where JF' is an ecliptic family, as
groups of transformations.

THEOREM 4. Let A c Sn-X have the property that the set of its
neighborhoods in Bn has a countable base, and let J^ be the ecliptic
family derived from {A}. Then HQ{BV)IS{^') can be represented as a
group of order-preserving transformations of a partially ordered set
Z onto itself.

Proof. Let Y be the set of all countable sequences {Uk} of open
subsets Uk c Bn such that Uλ z) U2 3 , and {Uk} is a base for the set
of neighborhoods of A. We introduce a partial ordering in Y as follows:
{Uk} ^ {Vk} if there exists a kQ > 0 such that k > k0 implies Uk d Vk.
We call {Uk} and {Vk} equivalent if {Uk} ^ {Vk} and {Vk} ^ {Uk}, and we
write {Uk} Ξ= {FJ. Thus {Uk} = {Vk} means that Uk = Vk for all but a
finite set of fc's. If {£/*}={7,} and { t / J ^ T O , then clearly {Vk}S{Wk}.
Let Z be the set of equivalence classes in Y formed by the relation Ξ= .
If u,ve Z, we define u ^ v to mean that the same ordering subsists
between their respective equivalence classes. Moreover, u g v and v ^ u
implies u — v.

If heH0(Bn) and { i/Je7, then {&(#*)} e γm Furthermore, {Vk}eY
and {?7J ^ {FJ implies {Λ(ί/»)} ^ {h(Vk)}. In particular, {C/fc} = {Vk} im-
plies {̂ (ί7fc)} = {h(Vk)}. Thus, corresponding to /̂  there is an element
ω(h) e Π(Z) which is order-preserving, and g e H0(Bn) implies ω{gh) =
ω(g)ω(h). We now show that heS(J?r) if, and only if, ω(h) = ί, where
i is the identity in Π(Z). If heS(^")f then there is an F c Bn such
that K(h)z)F and int F ID A. For any weZ, let {Uk} be a representative
of u in F. Since {Uk} is a base for the neighborhoods of A, we can find
k0 > 0 such that k > kQ implies ί7fc c int F, whence ω (h) (u) = u, and
(o(h) = i. Conversely, if h^S(^)f then for each {Uk}e Y, there exists
a sequence {xk} of points in Bn such that xke Uk and h(xk) Φ xk (k — 1,
2, ) Setting Ffc = Uk Π c{h(xk)} for each k, we have {Vk}eY and
W"̂ *)} ^ {̂ ΐb} If ί̂ fc} is a respresentative of veZ, then α)(fc)(̂ ) ^ v,
and o>(/̂ ) ̂  ί. This proves our assertion. Let θ denote the canonical
mapping from H0{Bn) onto HQ(Bn)IS(J^). Then θ{g) = θ(h) if, and only
if, ω(g) = α>(/̂ ). Hence, ωθ'1 is an isomorphism between H0(Bn)IS(^)
and ω(H0(Bn)).

If A is closed in I?w, then A is compact, and the uniform (1/fc)-
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neighborhoods of A form a base for its set of neighborhoods, so that the
hypothesis of the theorem is satisfied in this case. If A — Sn-lf then
jF" = J?Q and the construction in the proof allows us to represent
H(Bn)IS(^r) as a subgroup of order-preserving elements in Π(Z) which
contains ω(H0(Bn)).
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