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AN OPTIMUM CUBICALLY CONVERGENT ITERATIVE
METHOD OF INVERTING A LINEAR BOUNDED
OPERATOR IN HILBERT SPACE

M. ALTMAN

1. In paper [1] we considered a power series method of inverting
a linear bounded operator in Hilbert space. This method is actually
an iterative method with the same speed of convergence as a geometric
progression. A product of two linear operators we shall call briefly
a multiplication. Thus, in general, a power series approximative method
has the following two properties:

(1) at each iteration we use one multiplication;

(2) the convergence is linear.

In paper [2] we considered an iterative method of inverting an arbitrary
linear bounded operator in a Hilbert space. This method requires two
multiplications at each iteration step, and the convergence is quadratic.
In the present paper we give an iterative method of inverting an
arbitrary linear bounded operator in a Hilbert space. This method
requires three multiplications at each iteration step and is cubically
convergent. Thus, the quadratically convergent method which requires
two multiplications at each iteration step may be called the iterative
hyperpower method of order two. Analogously, the cubically convergent
iterative method which requires three multiplications at each iteration
step may be called the iterative hyperpower method of order three. The
following two problems arise now in a natural way:

(1) Is it possible to construct an iterative hyperpower method of
any degree?

(2) To give a comparison of the hyperpower methods of different
degrees, and to answer the question whether there exists an optimum
method. As a criterion for a hyperpower method to be better we can
assume the following:

The method I is better than the method II if after some iteration
steps using the same amount of multiplications for both methods, the
method I gives better accuracy. In this paper we construct a certain
class of iterative hyperpower methods and for this class the answers to
both questions mentioned above is positive. It turns out that the opti-
mum method of this class is the iterative hyperpower method of degree
three.

Let A be a linear (i.e. additive and homogeneous) bounded operator
with the domain and the range in a Banach space X.

Let us assume that the operator A is non-singular, i.e. A has an

Received October 5, 1959. Based on research supported by O.N.R., U.S.A.

1107



1108 M. ALTMAN

inverse A™' defined on the space X. Let us suppose that the linear
bounded operator R, is an approximate reciprocal of A. Suppose also
that R, satisfies the following condition

(1) II-AR\||=a<1,

where I is the identity mapping of X
Let p be any positive integer such that p» = 2. We shall construct
an iterative hyperpower method of degree p with the following property

(2) I—- ARn+1 = (I— ARn)p ’

where (R,) is the sequence of the approximate inverses of A. It is easy
to see that this sequence can be defined as follows

(3) Rn+1:Rn(I+ Tn+Tﬁb+'-.+T17:/_l),
where
(4) Tn:I_ARn, /}’[,:1’2,...

Multiplying both sides in (3) by A we get by (4)
ARyy=(I— T+ Ty + Tit ooe + T3 =1— T4,

Hence we obtain the relationship (2).
Thus, we have the following theorem.

THEOREM 1. The sequence of the approximate inverses R, defined
by formula (3) converges in the morm of operators toward the inverse
of the non-singular operator A, provided that R, satisfies condition (1).
The error estimate is given by the formula

(5) | A = Ry ] < || A Ja”
or

1 a
(6) 14 RnﬂlléllRlHl_a

Proof. Formula (2) gives by induction

(7) AR,.,=1—T".
Hence we get by (7)

(8) R—R,.,=RT"
or

(9) R—R,,=R(I—-T)y>T7".
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Formula (5) follows from (8) and formula (6) follows from (9).
For p = 2 formula (3) yields

(10) R,.,=R,(2] — AR)) .

This case was considered in [23]. For p = 3 we get
(11) R..=R(I+({— AR, + (I AR,))
or

(12) R,.. = R,(3I — 3AR, + (AR,))

Thus, we have a class of methods with the property (2).

The question is now if there is an optimum method in this class of
methods. To compare two methods we shall use the criterion mentioned
above, i.e. the method is better if using the same number of multipli-
cations gives a better accuracy.

Let p and ¢ be two different positive integers. Consider the corre-
spondings methods M, and M, defined by the formula (3). At each itera-
tion step the method M, takes p multiplications and the method M,
takes ¢ multiplications in the sense defined above. Suppose that after
a certain number of iteration steps which is different for both methods
we get the same number of multiplications which is equal to

(13) mp = ng .

Then in virtue of (5) the accuracy of the methods M, and M, is given
by the exponents p™ and ¢" respectively. Suppose that

"™ > q" .
Then we have by (13)

> q,
where

S = ﬂ)_

q

Hence, we have
(14) > g,

The inequality (14) shows that we obtain the optimum method M, for
p such that the function pY*(p = 2, 8, ---) achieves its maximum. This
is the case when p = 3 since the maximum of the function

y=a", x>0

is attained at x = e.
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2. We shall now apply Theorem 1 in order to find the approximate
inverse of a linear bounded operator in a Hilbert space. Thus, we sup-
pose that X is a Hilbert space H and A is a non-singular linear bounded
operator with the domain and the range in H.

Let us begin with the case when A is a self-adjoint and positive
definite operator, or, more precisely

A*¥ = A,
where A* is the adjoint of A, and A satisfies the condition
m(z, x) < (Az, ) < M(w, x) ,

where 0 < m < M, and m, M are the minimum and maximum eigen-
values of A respectively.
Consider the linear operator.

T,=1—aA, I<a<2/M.

In virtue of the critical value theorem' we have

M—m .
13 S| Tll=a, <1 if 0<a<2/M.
(13) M+m"” I <1 if 0<a<2

The minimum of the norm || 7, || is equal to

M—m
14 c — Tw =
(14 a =Tl ="

and is reached precisely at the critical value a, of A, i.e. for

2

a=q,= .
M+ m

Thus, we get the following theorem.

THEOREM 2. Let us suppose that A is a self-adjoint positive de-
fined linear operator. If

(15) R =al for 0<a<2/M,

then the sequence of operators R, determined by the iterative process
wn (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the following formula
(16) | A" — R, || = L az"

m

1 See [1), (2]
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or
(17) 47— R, || £ T2,
where a, = || T,||. The convergence is best for the critical value of

A,ie. for a=a,=2/M+ m. In this case a, in formulae (16) and
(17) should be replaced by a, defined in (14).

Putting »p = 3 in Theorem 2 we get the theorem for the optimum
method. Thus, we have

COROLLARY 1. The iterative process defined by the formula (11) or
(12) converges cubically toward the inverse of A provided that R, is de-
fined by (14). The error estimate is given by formula (16) or (17),
where p = 8. The convergence is best for the critical value of A, i.e.
for a =a, =2/M + m. In this case a, in formulae (16) and (17) should
be replaced by a, defined in (14).

REMARK 1. The convergence of the iterative process is uniform with
respect to « for any closed interval contained in the interval 0 < a < 2/M.
Let us observe that « in (15) can be replaced by any number 1/K, where

K is greater than || A||]. However, the convergence is faster when K
is smaller. If the operator A is defined by a matrix
(18) A:(aij) i!jzlyzy"'yk

satisfying the conditions of Theorem 2, then K can be replaced by any
of the following numbers

3 ] 3 1/2
(19 max $ilagl; max Sylayl; (3 la,l)
13 J=1 J i=1 1,J=1
However, the convergence is faster when K is smaller.

3. We shall now consider the general case when A is an arbitrary
non-singular linear bounded operator in H.

Since the operator AA* is self-adjoint and positive definite, we have
the following inequalities

mi(x, ¥) = (Ad%x, ) = M*(x, ) ,

where 0 < m® < M? and m? M*? are the minimum and the maximum
eigenvalues of AA* respectively.
Let us consider the linear operator

T, =I— adA*, 0<a<2/M.

Using the same argument as in §2, we get the following inequalities
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instead of (13).

M? — m? .
20 = " <|IT — 2
(20) M2—l—m2_” Wl =a, <1 if 0<a<2/M?.

The minimum of the norm || T, || is reached at

a:ac:_z_
M? 4+ m?
and is equal to
2 a2
1) 0 =T, =L =m
M? + m?

Thus we obtain the following theorem.

THEOREM 3. If
(22) R =aA* for 0<a<2/M*,

then the sequence of operators R, determined by the iterative process
i (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the formulae (16) or (17), where a,
should be replaced by the expression in (18). The convergence is best

for

2

i o

For the error estimate in this case a, in formulae (16) and (17) should
be replaced by a, defined in (21).

Putting p = 3 in Theorem 3 we get the theorem for the optimum
method in general case. Thus we have

COROLLARY 2. If R, is determined by (22) then the iterative
process defined in (11) or (12) converges cubically toward the inverse of
A. For the error estimate we have the formulae (16) or (17), where
p = 3. The convergence is best for the critical value of AA*, i.e. for

o 2
a—ao————Mz+m2 .
In this case a, in formulae (16) and (17) should be replaced by a, de-
termined in (21).

ReEMARK 2. The convergence of the iterative process defined by
Theorem 3 is uniform with respect to @ for any closed interval contained
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in the interval 0 < a < 2/M?*. Let us remark that « in (22) can be re-
placed by any number 1/K, where K is greater than || A||>. However,
the convergence is faster when K is smaller.

If the operator A is defined by the non-singular matrix in (18), then
for K we can take any of the numbers in (19) with the matrix AA*
replacing the matrix A. We can also take for K any of the squared
numbers in (19).

The table below shows the difference in rate of convergence between
the following three method: I, II, III, where

I is the power series method considered in [1] (see page 52)
II is the quadratically convergent defined in (10)
IIT is the cubically convergent optimum method defined in (11) or (12).

Number of Iterations Number of Multiplication Accuracy (a < 1)

I I I I n 11 1 I I
6 3 2 6 6 6 a5 ad a®
12 6 4 12 12 12 a2 gt a8l
18 9 6 18 18 18 als as12 a’®
24 12 8 24 24 2 gt @ins o561
REFERENCES
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CRITERION FOR #TH POWER RESIDUACITY
N. C. ANKENY

The Law of Quadratic Reciprocity in the rational integers states:
If p,q are two distinct odd primes, then ¢ is a square (modp) if and
only if (—1)*%p is a square (mod q).

One of the classical generalizations of the law of reciprocity is of
the following type. Let » be a fixed positive integer, ¢(r) denotes the
number of positive integers < r which are relatively prime to ;p,q
are two distinet primes and p =1 (mod 7). Then can we find rational
integers a,(p), a,(p), +--, a,(p) determined by p, such that ¢ is an rth
power (mod p) if and only if a,(p), ---, a,(p) satisfy certain conditions
(mod g).

The Law of Quadratic Reciprocity states that for » =2, we may
take a,(p) = (—1)*"7p.

Jacobi and Gauss solved this problem for » = 3 and r = 4, respective-
ly. Mrs. E. Lehmer gave another solution recently [2].

In this paper I would like to develop the theory when 7 is a prime
and ¢ =1 (mod r). I then show that ¢ is an rth power (mod p) if and
only if a certain linear combination of a(p), :--, a,_(p) is an rth power
(mod q). a,(p), +--, a,_(p) are determined by solving several simultaneous
Diophantine equations. This determination appears mildly formidable
and to make the actual numerical computations would certainly be so
for a large ». (See Theorem B below.) Also given is a criterion for
when 7 is an rth power (mod p) in terms of a linear combination of
a,(p), « -+, a,_(p) (mod r?). (See Theorem A below.)

It is possible by the methods developed in this paper to eliminate
the conditions that # is a prime and ¢=1 (mod ). This would com-
plicate the paper a great deal, and the cases given clearly indicate the
underlying theory.

Consider the following Diophantine equations in the rational integers:

(1) TEX%— <§XJ>2:(T—1)]0"'2

(2) PX, X, = SOX,X, =2 ’”;1,

where >,{® denotes the sum over all 5, «++, 5,1, =1,2, +«+, r — 1, with
the condition 7, + ++« + J, — kjr1s = 1 (mod 7).

Received April 24, 1959; in revised form January, 1960. This research was supported
by the United States Air Force through the Air Force Office of Scientific Research of the

Air Research and Development Command, under contract No. AF 18 (603)-90. Reproduc-
tion in whole or in part is permitted for any purpose of the United States Government.
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1116 N. C. ANKENY

(3) 1+ZX, ZJXJ~0(mod’r)

(4) not all of the X, =0 (mod p) and
SHXy e Xy — 20Xy 000 Xy, , =0 (mod pm*)

for k=20, r—2;9=1,2, -+, r — 1.

We shall prove in §II that there exist exactly » — 1 distinet in-
tegral solutions of the equations (1) through (4). In particular let {X, =
a;,5=1,+++,7 — 1} be a solution. Then we prove that the a,p) = a,
satisfy our residuacity criterion, namely

THEOREM A. 7 is an rth power (mod p) if and only if

TZ_ljaJ + —;— ra,_, = 0 (mod 7?) .

=

THEOREM B. If g =1 (modr) and h is any integer such that h*
is the least power of h which is =1 (mod q), then q is aw rth power
(mod q) if and only if >.izial is an rth power (mod g).

At the end of §II various special cases are considered.

In particular, for ¢ = 2, r = b5, then 2 is a quintic power (mod p)
if and only if a, = a,_, (mod 2),5 =1, 2.

For ¢ = 2,r =7, then 2 is a 7th power (mod p) if and only if ¢, =1
(mod2), 1 =1, -.+,6.

Let » = 3. ‘Then the solutions to the Diophantine equations (1) to
(4) are (a,, a,) and (a,, a,), where

(5) p=a— a0 +a,a=a=1 (mod83).
Multiplying (56) by 4 and grouping terms gives
4p = (a, + a,)’ + 3(a, — a,)* .

Let L= —a, — @y, M = (a;, — a,)/3. This gives the representation
which Lehmer employs:

4p =12+ 2TM*, L =1 (mod 3) .

Theorem A states that 8 is a cubic residue (mod p) if and only if
a, = a, (mod 9). This, in turn, is equivalent to M being divisible by 8,
the condition quoted by Lehmer.

I. Notation. 7 denotes a prime number, &, a primitive rth root of
unity, @ the rational numbers, Q(¢,) the cyclotomic field over @ generat-
ed by §,. For3=1,2,.--,7 — 1,0, are the automorphisms of Q(¢,)/Q
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such that ¢,¢,) =&, o7'(¢,) = ¢, where 77’ =1 (mod 7). p denotes a
positive rational prime =1 (mod r), and X, = X will be any primitive rth
power character (mod p).

9(1) = S um)gs

will be the Gaussian sum associated with %,. <{a> denotes the fractional
part of a; i.e., (&> = a — [a].

Lemma 1. (i) (g =p,
(i) 909X ™) e, ,
(iii) g(0)" €Q(S,), and
(iv) o9(0)") = g(X*)
for k=1,2,+,r — 1.

Proof. (i) is the classical result about the absolute value of g(X)
and can easily be deduced from the definition of g(X). (ii), (iii) and (iv)
follow from Galois Theory using the relation >122% x(n)er' = x(t) 'g(X) for
any integer t prime to p.

LEMMA 2. There exists a prime ideal p in Q(é’,) dividing p such
that (g() = Sj-4a7yem,

Conversely, given any prime ideal p, in Q(&,) dividing p, there
exists a k such that

@0 = % 079l

Proof. Lemma 2 is a result of Stickelberger. For a proof see Daven-
port and Hasse [1]. See especially the elegant proof on page 181-2.
In Q(¢,), the ideal (r) = (1 — &),

LemmA 3. 1—-8)A —¢)7=¢ (mod(1 —¢)) and r(l — )"+ =
—1 (mod (1 —¢,)) for (¢, r)=1.

Proof. The first fact follows as

A-e)1—g) ' =Sg=51=t (md(—¢).

J=0

-

The second follows from Wilson’s Theorem as

r(1 =gy = (A - )a -

A=A —g) =@ —1l=—1(mod (1 — &) .

J=1



1118 N. C. ANKENY

THEOREM 1. For any t not divisible by r,
9y +1=r1 — x(r)™*) (mod (1 — &)™),
and consequently, X(r) =1 if and only if
9’y +1=0 (mod (1 —£,)™*) .
Proof. As

p—1
901) = S Amez
the binomial theorem yields

—g0y = (~S & + S0 - 2mE) = @+ S0 — 21mgy
=147 50— 2 + S~ Wy @mod (L — 5™,

as all other terms are divisible by at least »(1 — ¢,). By Lemma 3, if
Xn) =1, 1 — X)) 7*= —r (mod (1 — &,)), and clearly, if x(n) =1,

1 —=Xm)) = —r@ — An)) (mod (1 — &,)*").
Thus,

—g(y =1+ (S (1 = 2wz — (@ — 2Ey)
=1+73 1= X0 — (1 — )y
=1—r—x(r)7) X xn);
=1—r1-xr)")XE
=14 r1 — x(r)™) (mod (1 — &)™) .

By (iv) of Lemma 1,
=gy = —o(9(0)) =1 + r(1 — 2(r)™*) (mod (1 — &)™),

which completes the first statement of Theorem 1. The second state-
ment in Theorem 1 then follows immediately.

Let g denote any positive rational prime other than 7, f the least
positive integer such that ¢ =1 (mod r), and ef = — 1. Then in Q(&,)
the ideal (¢) = A, 2, --- A, where the 2, are prime ideals and
(6) Norm (2,) =¢” .

Q.0

In the following let 2 be any of the e prime divisors 2,, 7 =1, «--, e.

THEOREM 2, Let q,p, and r be distinct.
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Then

(7) 9" = x(¢)™’ (mod g) .
Consequently x(q) = 1 if and only if

(8) gy = B (mod A) for some BeQE.) .

p—1 (If
Proof. g()" = (ElX(")é‘;‘)
= :Z:xm)q’ = (mod g)

= 3 )’ (modg), as rl¢’ — 1,
= 2(¢) "9(x) (mod q) .

Multiplying both sides of the above congruence by g(x), and noting
(i) of Lemma 1, yields

I

pg(0)” = 2(9)~'p (mod g) or g(x)” = %(g)~" (mod q) ,

as p and ¢ are distinct primes. Hence, we have proved (7).

Note that as 7»|q” — 1, (7) becomes a congruence in Q(£,). As
flr—1,(f, r) =1, we have by (7) that x(g) = 1 if and only if g(x)‘*"1 =
1 (mod 20).

(Note that 1 — &&= 0 (mod 2) unless ¢ = 1.)

If g(x)" = B" (mod A) for some B e Q(,), then

g7 = B = 1 (mod )

by (6).

Conversely, if g(x)qf“zl (mod ) then (g(x)r)“‘f‘””z 1 (mod ).
By Lemma 1, g(x)"€Q(,). By (6) this implies g = B (mod ).
(Euler’s Criterion for rth powers.)

In the above argument we must bear in mind that g(x) ¢ Q(¢,).

II. In the last section we have developed a criterion for rth power
residuacity in Q(¢,). From this we derive a criterion in the rational
numbers €, which is the purpose of Theorems A and B.

First let us assume that there is a rational integral solution X, =
a, of equations (1), (2), (8) and (4). In Q(¢,) define the algebraic integer
a = >tall. We shall prove that a satisfies

(9) o) |* = p*, E=1,2, 00,7 —1.
(10) (pa)to(pay™

is also an algebraic integer in Q(¢,), for k=1,2, .-, r — 1.
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To prove (9) we note that

af = (Sag)(Se)

= 30,07

i

=1 r—1 )
=Sa+ S(Er e

By (2) all of the coeflicients of ¢! are equal, since for any 4, the
sums corresponding to ¢ and r — 4 are identical. Thus

la | = ; a; — 23 ayay,
r—1
= Zj‘aﬁ —(r—1)7 21' S a,a;,
=
71
= r(r — 1) ;aﬁ —(r— 1)’:201 3o a;a;,

=r@r— 1) gaﬁ —(r — 1)“1(2 “J>2
— pre

by (1). Similarly |o,(a)]* = p~2 Thus (1) and (2) imply (9).
Let k& be a fixed integer 2 <k < r — 1. Then

(11) ()0, (pa) ™ = Pata (@)
= pk_lako—k(a) I o.(a) I -2
= p ke _(a)

by (10). Now
(12) o (e) = (Sa IS at™)
=SSP ay, e 0, )0

= (S — SP)

Condition (4) implies that each coefficient of ¢¢ in (12) is divisible
by p"*'. Placing this information in (11) states that (pa)‘s.(pa)™ is
an integer; thus proving (10).

(4) also tells us that p, but not p? divides pa, as not all the coef-
ficients of ¢ in @ = >.j-la¢) are divisible by p.

If we restate the above facts in terms of ideals, we have that (pa)
is ‘an integral ideal in Q(¢,) divisible only by the prime ideals which
divide p. '

There exists one prime ideal, say p, dividing p, which divides pa
but p* does not divide pa. All other prime factors of p in Q(¢,) are of
the form o;'p. Hence,



CRITERION FOR »TH POWER RESIDUACITY 1121

(13) (pa) = :Z_jll,o;lpdi where d, =1,d, >0 .
By (9)
(pa)(o_(pa)) = (p*|a ) = p
— (1orv){igo-orv)
= [l oy *ptittr
or Z
(14) di+d.,=7r.
By (10), (pa)to(pa)™ is integral, or
(P (@ pa) ™ = [] 0p I] 0,07~
= [l opriec

is an integral ideal. (The index of d,, is interpreted mod r.) Hence,
kd, = d;.

Asd,=1,k=d, for k=2,3, ..., — 2. By (14) this yields that
d, = k. By Lemma 2, we arrive at the fact that in terms of ideals

(15) (pa) = (g(x*)") for some 1 <t < r.

In proving (15) we have used (1), (2) and (4). We wish to prove
that pa = g(x')". To do this we now utilize (3). By (15) we have that
for some unit 7€ Q(¢,), 9(")" = Hpa, or

(16) g’y = g, (pa) = oo (pa) .

Taking the absolute value of both sides of (16) and utilizing (i) of
Lemma 1 and (9) gives p" = |0,(%) *p", or |o(np) | = 1. By a Theorem
of Dirichlet on units (See [3] Theorem IV 9, A pp. 174), any unit which
has all of its conjugates with absolute value 1 is then a root of unity.
As 7€ Q(g), n = x££

Now

a=Nagl =N~ Sal - )
= S, — Sjal — &) (mod (1 — &)),
by Lemma 3. As p=1 (modr),p=1 (mod (1 — ¢,)). By (3),
1+ Zjaj = ;jaj =0 (mod 7).

Hence, pa = —1 (mod (1 — &,)*). By Theorem 1, g(3*)" = —1 (mod 1 —¢,)%
Therefore, =1 (mod (1—¢,))). But y=%§l= £(1+s(1—¢,)) (mod (1-¢,)");
i.e., s =0 (mod r) and the + sign holds. Hence, n =1.
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Therefore, if the a; are any integral solution of (1), (2), (3) and (4),
there exists an integer 1 =<t < r — 1 such that

r—1
(17) P2 agr =gy -
Conversely, given any integer ¢,1 < ¢ < » — 1, and writing
7—1
90 = p S akl,

we can prove that the a, are rational integers which satisfy (1), (2),
(3), and (4). The proof is merely reversing the above steps we used in
proving (17). By Lemma 2 the prime factorizations of (g(x*)") and (g()x*)"),
1<s<t=r—1, aredistinct, and thus g();°)" # g(x*)". Hence, we have
shown that there are precisely » — 1 rational integral solutions of (1),
(2), (3), and (4).

We are now in a position to prove Theorems A and B. First for
Theorem A.

Let a, be an integral solution of (1) through (4). Then we have
shown that p 372t el = g(*)" for some integer ¢ relatively prime to 7.
By Theorem 1, the above states that )(r) = 1 if and only if » >},a,fl =
—1 (mod (1 — &)™).

Define b,s=0,1, -+, — 2, by b, = — pa,_,, b, = p(a, — a,_,), s =
1,2, -+, — 2. Then

pSiagl=3bil.
Further let
Co= (=15 (3.

where <§) is the binomial coefficient. Then

PR ag =3k = Tbl— (- 5)y
=6 5 0 (5)a - oy
=30 - &)

The first statement in Theorem 1 states that g(3*)"+1=0 (mod (1—¢,)").
Hence,

SCA-g) +1=(C+ D+ S0 —5)
=0 (mod (1 - £,))
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This implies that C, + 1 = 0 (mod r?). Hence,
SC(1—g) =Cl— &) (mod (1 — &)

or that y(r) =1 if and only if

18) C,=0 (mod 7Y .
Now
(19) C, = (~1) g (i)b - —gsbs

r—2
= =D 2 8(0 — Gyy)

r—2 .
= —pS sa, + -;—p(r — 2)(r — D,
s=1

I

—p (:5_‘_,: sa,; + %ra,_l> (mod 7?) .

Equations (18) and (19) complete the proof of Theorem A.

Theorem B is also derived immediately from Theorem 2. If ¢g=1
(mod 7), ¢ a positive rational prime, then in Q(,), (¢) = AW, -+ Ay,
where 2, are prime ideals and Normgg .o, = ¢.

We may take 0,1, 2, ---, ¢ — 1 as a set of residues (mod 2,). Hence,
as 1 — ¢t £ 0 (mod ), unless ¢ =1,¢, = h (mod 2,), where h is a ra-
tional integer such that A" =1 (mod g).

Thus by Theorem 2, X(q) = 1 if and only if there is a 8 € Q(¢,) such
that g(X')" = p 30,8 =p X0,k = 6" (mod U,).

We may take 8 = be @ by the above remarks.

Hence, x,(9) =1 if and only if x,(» 3., a,h’) = 1 where y, is a primi-
tive rth power character (mod q).

If we had chosen another k, whose order was r (mod g), then &, =
k' (mod %,), and

by anjhi =p Sfaj 7 = g(x")" (mod ) .

Thus, any # whose order (mod q) is » works equally well in Theorem B.

There are several special cases one can derive when ¢ # 1 (mod 7),
in particular, when ¢ = 2, and » = 5, 7.

If ¢ =2,r =5, then in Q(¢,), 2 remains a prime because 2* is the
least power of 2 congruent to 1 (mod5). One can easily compute that
the only elements in Q(¢;) which are fifth powers (mod2) are 1=
—SU ot G+ &% and £ + & (mod 2). Hence, for r =5, x,(2) =1 if
and only if ¢, = a,_, (mod 2).

For ¢ =2,r =17, then 2°=1 (mod 7). Hence, in Q(,), (2) = A,
where Norm 2, = 8. For a = & (mod 2,), B = 0 (mod 2,), and BeQ(¢,)
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implies =1 (mod 2,). Hence, for » =7, %, (2) =1 if and only if a, =
1 (mod2) for =1, -.-.,6.

One could easily generalize this to the case when » = 2° — 1. Then
%p 2) =1 if and only if a;=1 (mod2) for =1, ---,r — 1.
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ON INVARIANT PROBABILITY MEASURES I

J. R. BLumM' AND D. L. HANSON®

1. Introduction. Let £ be a set and let .~ be a o-algebra of
subsets of 2. Let T be a one-to-one bimeasurable transformation map-
ping ©Q onto itself. 7T then induces the group of transformations {7,
1 =20, +1, -.-} defined in the usual way. If Az .o, T'A is defined to
be the set of images of the elements of A under the transformation T'.

Let ©” be the class of probability measures defined on &7 for
which 7T is invariant, i.e. if P is a probability measure defined on &
then Pe &” if and only if PA = PTA for every Aec. . Let . be
the subclass of .o which is invariant under T; a set A e .o belongs
to o7 if and only if A = TA. It is trivial to verify that .97 is sub-o-
algebra of &2 Finally let &7 be the subclass of &# for which T is
ergodic, i.e. if Pe &? then Pe & if and only if PA =0 or PA =1 for
every Ae Y.

In §2. several results are proved, concerning the structure of the
class &2 These are not new, although several of them do not seem to
have appeared in the literature. The main theorem of this paper is in
§ 3 where it is shown that each element of &” can be represented as
a convex combination of the extreme points of & Several consequences
of this theorem are pointed out.

2. Some properties of the class &

THEOREM 1. Let P and Q be elements of 2 Suppose PA = QA
for Ae oy Then P=Q.

Proof. Let =P — Q. Then pis a completely additive set function
defined on o7 If p is not identically zero, there exists Ae.w” such
M(A) >0 and ((A) = p(B) for all Be.ox This follows from the Hahn
decomposition theorem. Write #(A) = a + B, where o = (A — AN TA)
and 8 = w(ANTA). Since (A — ANTA) = w(TA — ANTA) we have
MAUTA) =2 + B. Now if @ <0, then (ANTA) > p(A) and A is
not maximal, and if 8 < 0 then (A4 — AnTA) > (A) and A is not
maximal. Consequently ¢ = 0 and 8= 0. But if A is maximal then
a+ B=2x+ 8. Hence a =0 and (AU TA) = #(A). By the same
argument we show that y(T77AUAU TA) = p(4) and it follows by in-
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duction that p(B,)=(A) for every positive integer n, where B, = J?-_.
T'A. Now B, is an increasing sequence of sets. Let B = lim,.. B,.
Then 4(B)=p(A)>0. Butclearly B=J;_. T°'A€ .7 and p is zero on
4. Consequently we have a contradiction and the theorem is proved.

Suppose now that Pe & and Qe <&” and suppose also that @ is
absolutely continuous with respect to P. Then if Ae .4 we have

PA =0 or PA =1 and hence Q agrees with P on .%4. Thus the theorem
applies and we have

COROLLARY 1. If Pe 22, Qe ?, and Q is absolutely continuous
with respect to P then @ = P.

Theorem 1 also furnishes an elegant proof of a result which was
proved by Lamperti [3], and in a special situation by Harris [1]. Suppose
P and @ are both ergodic, i.e. Pe & and Qe . Then either P and
@ are orthogonal or for each 4 € &~ for which PA = 1 we have Q(4) > 0.
Now suppose Ae . and PA = 1. Then if @ is not orthogonal to P
and since Q € & we must have Q(4) =1 and it follows that P =@Q on
4. We have

COROLLARY 2. If Pe &, Q¢ 7, then either P=Q or P is orthogonal
to Q.

In § 3, we shall show that this result can be considerably generalized.

THEOREM 2. 7 is a convex set. Pe F if and only if P is an
extreme point of .

Proof. The first statement is obvious. Suppose Pe .&? and suppose
we may represent P in the form P = aP, + (1 — a)P, where 0 <a <1
and P,e &4 =1,2. Then clearly P, and P, are absolutely continuous
with respect to P and it follows from Corollary 1 that P,=P,= P.
Thus if Pe &7 it is an extreme point of &2 Conversely if P¢ & there
exists a set Be. . with 0 < PB< 1. Then we may write P=
aP, + (1 — a)P, where a« = PB, and for Ae.% we have P,(4)=
P(ANB)/P(B) and Py(A) = P(ANB°)/P(B°). It is easily verified that
P, and P, are invariant probability measures and it follows that P is
not an extreme point of <

Theorem 2 strongly suggests that it may be possible to obtain the
elements of <7 as convex combinations of the extreme points of Z.
Under a rather mild assumption this is in fact true, as will be shown
in the next section. Examples of the kind of theorem we have in mind
were proved by Hewitt and Savage [2].

3. The representation theorem. Throughout part of this section
we shall assume that if Ae .7 and if PA =0 for every Pe S then
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PA =0 for every Pe &? Clearly such a condition is necessary for a
convex representation theorem and the condition can actually be verified
in many examples of interest.

Suppose now that Pe . Theorem 1 tells us that P has a unique
invariant extension from % to .4 This suggests that if Ae . & we
should be able to determine PA by knowing only the values of P on
. A proof of this statement follows from the individual ergodic
theorem.

THEOREM 3. Let Ae o4 For every a with 0 < a <1 there exists
a set Al e .o such that if Pe S then PA = a if and only if PA, = 1.

Proof. Let fi(x) be the set characteristic function of the set S.
Let Ae %7 and « be given. For every positive integer n define g, ,(x) =
1/n 32t F(Tx), and define Al = {x|lim,_.. 9, .(x) = a}. Clearly A, e 4
and the individual ergodic theorem implies that PA = « if and only if
PA!, =1, whenever Pe &,

Using the same technique we can prove

THEOREM 4. Let Ae % For every a with 0 < o < 1 there exists
a set A, e 4 such that if Pe & then PA < a if and only if PA, = 1.

Let Ae . o4. Define 7, by n, ={Pe Z7|PA =1}. Let Il be the
collection of all such sets w i.e. IT = {r,|Ae 4}. The following facts
are easily verified:

(i) ma=A

(i) [m)o ==

(i) 7U.A4.=U.74,
where A and each A, is an element of .94, Since .7 is a ¢-algebra it
follows that IT is a o-algebra. Now let Q ¢ &% We define a set function
Yo on I by po(m,) = Q(A).

We shall show that under the assumption at the beginning of this
section g, is in fact a probability measure defined on II. Clearly zy(7,)=0
for each m,, and po(F) = po(mo) = Q(2) = 1. Now suppose {r, } is a
sequence of disjoint elements of 7. It is easily verified that this is the
case if and only if PA,NA, =0 for every pair of sets A4,, 4, in &
with » # m and for every Pe 2. It follows from the assumption that
Q(A,NA,) =0 for n +m. Hence p{U, 74} = QU.4,) =3,Q4,) =
> tolma,} and we have shown that g, is a probability measure defined
on /I. We summarize in

THEOREM 5. If II and p, are defined as above then II is a o-algebra
of subsets of . Under the assumption at the beginning of this section
Yo s a probability measure defined on II.
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THEOREM 6. Let Ae 7 Consider the function f.(P) defined on
Gt and with values f,(P) = PA. Then f(P) is measurable with respect
to II.

Proof. We must show that for every ¢ with 0 < a <1 we have
{Pe Z|fiP)<a}={Pe FZ|PA<a}lell. But it follows from Theorem
4 that {Pe &/| PA < a} = m,,, where A,e .97 is the set guaranteed
by Theorem 4, and the theorem follows. _

Since f.(P) is bounded and measurable it is clearly integrable with
respect to any probability measure defined on /1. Now let @€ .Z and
!, be the corresponding probability measure defined on /7. For each
A e o7 define Q'(A) by

Q@) = £(Pyip, = Sg, PAdp, .

It follows immediately from this definition that @’ is an invariant prob-
ability measure defined on .9 Butif Ae .9 we have Q'(4) = po{ns} =
Q(A). Hence Q' = @ on .97 and it follows from Theorem 1 that Q' = Q.

Furthermore suppose we know that Q(4) = S PAdp, where p is some
probability measure defined on /. Then if AeM we have Q(4) =
- PAdp = pfr,} = po{m}, ie. = pt,. We state these results in

THEOREM 7. Suppose the assumption at the beginning of the section
holds. Then for every Q € <7 there exists a unique probability measure
Lo defined on Il such that

Q(A) = L?”‘i P(A)dp, for evefy Ae 7 .

We shall refer to Theorem 7 as the representation theorem, and
the rest of this section is devoted to exploring some consequences of
this theorem. One immediate consequence is a generalization of Corollary
2 to Theorem 1.

THEOREM 8. Let Q,e <72, i = 1,2. Then Q, and Q, are orthogonal
if and only if the corresponding measured ft,, and {4, are orthogonal.

Proof. Suppose @, and @, are orthogonal. Let B be a set such
that Q(B)=1=QyB°) and let A = U;=_.. T"B. Then Ae .97 and Q,(4) =
1 = @Qy(A°) and we obtain 1= p, {7} = po,{(%.)}. Thus o and p,, are
orthogonal. Conversely if £, and p, are orthogonal there is a set
Ae. o7 such that 1= g {7} = Qi(A) and 0 = g {7} = Q,(A) and the
theorem? isTproved.
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Another interesting consequence of the theorem is the obvious fact
that if Ae o and if PA =1 for each Pe &7 then Q(A) =1 for each
Qe . Thus the individual ergodic theorem for arbitrary invariant
measures is an immediate consequence of that theorem for ergodic
measures. Furthermore Theorem 7 throws some light on the evaluation
of the limiting function in the individual ergodic theorem. Let Qe <#
and let f(x) be defined on £ and measurable with respect to %4 Let
Sul®) = 1/n S0 f(T?). Then if fe L(Q) the ergodic theorem states
that lim,_.. fu(®) = f*(x) say, exists on a set of Q-measure one. It is
clear that f* is invariant i.e. f*(Tx) = f*(x) for all x for which f*
exists. If f is also integrable with respect to P e .7/ then f* is constant
on a set of P-measure one, and we have

Q| f*(@) = u} = S@ Po{| f*(®) = uldpto = p1{Pe Z|f* = u},

In particular we conclude f* is a constant, say ¢, on a set of Q-measure
one if and only if y,[Pe Z|Plx|f*(x) =c}] = 1.
Finally, suppose f is again measurable with respect to .7 Let
Qe & and suppose #QP{ € gfls |fldP < oo} = 1. Then we can easily
Q

prove

THEOREM 8. If g | f1dP is an integrable function of P (with respect
Q
to tt,) then fe L(Q) and

0=, [ el
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POSITIVE OPERATORS COMPACT IN
AN AUXILIARY TOPOLOGY

F. F. BONSALL

Of the several generalizations to infinite dimensional spaces of the
Perron-Frobenius theorem on matrices with non-negative elements, two
are outstanding for their freedom from ad hoc conditions.

THEOREM A (Krein and Rutman [3] Theorem 6.1). If the positive
cone K in a partially ordered Banach space E is closed and funda-
mental, and if T is a compact linear operator in FE that is positive
(i.e., TK C K) and has non-zero spectral radius p, then p is an eigen-
value corresponding to positive eigenvectors of T and of T*.

THEOREM B ([4] p. 749 [1] p. 1384). If the positive cone K in a partial-
ly ordered normed space E is normal' and has interior points, and if
T 4s a positive linear operator in E, them the spectral radius is an
eigenvalue of T* corresponding to a positive eigenvector.

In [2], we have proved the following generalization of Theorem A.

THEOREM C. Let the positive cone K in a normed and partially
ordered space E be complete, and let T be a positive linear operator
in E that is continuous and compact in K. If the partial spectral
radius ¢ of T is non-zero, then p is an eigenvalue of T corresponding
to a positive eigenvector.

Also in [2], we have developed a single method of proof of Theo-
rems A, B,C which exploits the fact that the resolvent operator is a
geometric series, and thus avoids the use of complex analysis or any
other deep method.

In [5] (Theorems (10.4), (10.5)), Schaefer has further extended these
results by showing that (A) and (C) remain valid for operators in locally
convex spaces, with suitable definitions of spectral radius and partial
spectral radius.

QOur aim in the present article is to unify these theorems still fur-
ther. We prove a single theorem (Theorem 1) that contains Theorem C
(and hence A), and also contains Theorem B except in the case p =0,
for which an extra gloss is needed (Theorem 2). The central idea is
that instead of being compact in K in the norm topology, T maps the
part of the unit ball in K into a set that is compact with respect to a

Received February 19, 1960.

1 K is said to be a mormal cone if there exists a positive constant & such that

e +yll z«llzll (v,9€K).
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second linear topology, this topology being related to the norm topology
in a certain way. This idea is, in essence, derived from the recent
paper [6] of Schaefer, though his conditions are too restrictive for our
purpose. Again we use only elementary real analysis of the kind used
in [2]. After proving our two main theorems, we exhibit a number of
examples of situations in which these theorems are applicable.

NotaTiON. We suppose that FE is a normed and partially ordered
real linear space with norm || - ||, norm topology 75, and positive cone
K; i.e., K is a non-empty set satisfying the axiom:

(i) z,ye K, a =0 imply z + 9, ax € K,

(ii) =z, —xz € K imply « = 0.

We write £ <y or ¥ = x to denote that y — 2z ¢ K.

We suppose that K is complete with respect to the norm. How-
ever, we do not require that E be complete, so that there is no real
loss of generality in supposing that £ = K — K, and we shall therefore
suppose that this is the case. We exclude the trivial case in which
K = (0).

We denote by B the intersection of K with the closed unit ball in
E, ie.,, B={x:xe K and ||« =<1}, and suppose that T is a linear
operator in E that is positive (TK C K) and partially bounded (i.e.,
| Tz || is bounded on B). We denote the partial bound of T by p(T')
ie.,

o(T) = sup{|| Tz ||: x € B},
and by p the partial spectral radius

o = lim {p(T")}" .

We are indebted to H. H Schaefer for several helpful suggestions,
and in particular for pointing out that substantial simplification can be
obtained by introducing a second norm ¢ into E defined as follows. Let
B, denote the convex symmetric hull of B, i.e.,

B,={ax + By: »,y € B, |a| +|B| =1},
and let ¢ be the gauge functional of B,,
g(x) =inf{A: A >0 and Nz € B} .

It is easily verified that ¢ is a norm in E, that q(x) = ||z]|| (x € E),
and that g(x) = ||z || (x € K). Also the completeness of K with respect
to the given norm implies that £ and K are complete with respect to q.

Given a positive operator 7T, the partial bound and the partial
spectral radius are the usual operator norm and spectral radius for the
operator T in the Banach space (¥, ¢). For » > p, the resolvent operator
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R, = (I — T)" is given by the series
R=lrylp iy .
S VP U '

which converges in the operator norm for (F,q), and is a partially
bounded positive operator.

We suppose that we are given a second linear topology 7 in E,
such that K is (r)-closed and T is (v)-continuous in K.

DEFINITION. Given a subset 4 of K, we say that 7 is sequentially
stronger than 7, at 0 relative to A if 0 is a (ry)-cluster point of each
sequence of points of A of which it is a (7)-cluster point.

THEOREM 1. If TB is contained in a (7)-compact set, T is sequential-
ly stronger than ty at 0 relative to TB, and pt > 0, then there exists
a non-zero vector w in K with Tu = pu.

THEOREM 2. If B is contained in a (t)-compact set, and T 1s
sequentially stronger than Ty ot 0 relative to B, then there exists a
non-zero vector u i K with Tu = pu.

Since TB c p(T)B, Theorem 2 is contained in Theorem 1 except
when ¢ = 0.

The proofs of these theorems will depend on the following two
lemmas. Lemma 1, which is needed in the proof of Lemma 2, is repeated
from [2] in order to make the present paper self-contained.

LEMMA 1. Let {a,} be an unbounded sequence of mon-negative real
numbers. Then there exists a subsequence {a,} such that

(i) a, >k =12, ),
(11) ank>aj (.7<nlc’k:17 2, "')-

Proof. By induction. With n,, +--, n,_, chosen to satisfy (i) and
(i), let n, be the smallest positive integer » with a, > a,, , + k.

LEMMA 2. If TB is contained in a (t)-compact set, and 7 1s
sequentially stronger than vy at 0 relative to TB, then

lim p(R,) = o .
A-p-0

Proof. Suppose that the conditions of the lemma are satisfied, but
that p(R,) does not tend to infinity as A decreases to ft. Then there
exists a positive constant M such that p(R,) < M for some v greater
than and arbitrarily close to (.
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The case ¢t = 0 is easily settled. For if ¢ =0, then
MR = >0, e K),

and letting » tend to zero through values for which »(R,) = M, we
obtain —x e K, K = (0). This is the trivial case that we have excluded.
Suppose now that g2 > 0. Then we may choose \, v with

0< A< <y <N+ M
and with p(R,) < M. With this choice of \, v the series
R,+(— MR+ —\NR A+ -+

converges in operator norm for the Banach space (F,q) to a partially
bounded positive operator S with

Sx = Nz + M'TSx (x € K).
Thus

Sx = N 'TSx (x € K),
and therefore
(1) S%E-X—(NH)T"% (xeK’ n = ]_, 2, ...)_

Since lim,_.p(A""*PT") = oo, and since the partial bound of a positive
operator coincides with its operator norm in (E,q), the principle of
uniform boundedness implies that there exists a point z € £ with
gtV T"g) unbounded. Since E = K — K, it follows that there exists
w € K for which the sequence (|| »""*"T"w||) is unbounded. Therefore,
by Lemma 1, there exists a subsequence such that

(2) lm [| A" T™w || = oo,
koo

(3) [[ Nt Tmew || 2 ([N T w || .

Since

| Tmwl| < o(T)|| T w]|,
we also have

(4) lim || v T || = oo .
k—oco

Let y, = || T™'w||*T™*w. Then, by (1), there exists 2, € K with
(5) | VT || Sw = N Ty, + 2, (k=1,2,+--).
By (4) and (5), we have

(6) MTy, +2.—0 (7).
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Since y, € B and TB is contained in a (r)-compact set, the sequence
(A *Ty,) has a (t)-cluster point ¥ in K. By (6), —y is a (7)-cluster point
of (2;), and since 2, € K and K is (7)-closed, —y ¢ K. Thus y = 0, and
0 is a (7)-cluster point of (Ty,). But 7 is sequentially stronger than 7,
at 0 relative to 7'B, and so 0 is a (try)-cluster point of (T%,). But this
is absurd, for, by (3),

I Tyell = Myl =N
Proofs of Theorems 1 and 2. Since TB c p(T)B, Lemma 2 is
available under the conditions of each theorem, and gives
lim p(R,) = o .
A—p+0
Then, applying the principle of uniform boundedness as in the proof of

Lemma 2, we see that there exists a sequence (),) converging decreas-
ingly to #, and a point w in K with |[w]| =1 and

lim [[ Ry w]|l = oo,
and we may suppose that B, w #0(n=1,2,+-+). Leta, = || R, w|™,
and %, = a,R, w. Then

Under the conditions of Theorem 2, the proof is easily completed.
For, since #, € B and B is contained in a (7)-compact set, it follows
from (8) that

i, — Tu,— 0 (7).

Also (u,) has a (7r)-cluster point # in K, and since 7T is (7)-continuous
in K, we have

pu —Tu =0,

We have u # 0, for otherwise 0 is a (ry)-cluster point of (u,), which
is absurd, since || u,]|] = 1.

Finally, suppose that the conditions of Theorem 1 are satisfied.
Then, by (8),

wl— T)Tu, =TI — TYu, = (¢t — 7)) T, + a,Tw .
Since TB is contained in a (7)-compact set, it follows that
(¢l — T)Tu,—0 (7),

and (Tu,) has a (r)-cluster point » in K. Therefore, by the (7)-continuity
of T,
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(I — Tyw=0.
If v =0, then 0 is a (ty)-cluster point of (Tw,). But, by (8),
tu, — Tu, — 0 (ty),

and so 0 is a (ty)-cluster point of (zu,). Since ¢ # 0 and ||u,|| =1,
this is absurd. Hence v # 0, and the proof is complete.

It will be noticed that the preceding theorems and lemmas remain
true if compactness is replaced by countable compactness, no change in
the proofs being required. It may be of interest to remark that under
the conditions of Theorem 2, K is a normal cone. However, since this
fact is not needed for our main purpose, we omit its proof.

ExampPLE 1. Taking 7 =7, in Theorem 1, we obtain Theorem C,
and hence, as we have seen in [2], Theorem A also.

ExAMPLE 2. Suppose that there exists a subset A of K with the
following properties:

(i) Given z € E with ||z]|] £ 1, there exists ¢ ¢ A with —a <z = a.

(ii) TA is contained in a (ry)-compact set.’

Let E* denote the usual dual space of continuous linear functionals
on the normed space F, and let K* denote the dual cone of all elements
of E'* that are non-negative on K. Then K* is a norm complete positive
cone in EF*, and we denote by B* the intersection of K* with the
closed unit ball in E*.

For each @ in E*, let T*® be defined as usual by

(T*p)x) = ¢(Tx) (% e E).

Since T is not necessarily a bounded operator in E, T*® may fail to
belong to E*. However, T*K* c K*, and T* is a partially bounded
operator in K* — K*. For, given » € B* and z e E with ||z]| =1,
there exists a € A with —a < ¢ < a, and therefore

—p(Ta) £ p(Tx) < o(Ta) .

Since T'A is contained in a (ry)-compact set, the set {||Tall:a € A}
has a finite upper bound M and so |(Tx)| = M, || T*® || < M, T*B* C
MB*, T* is partially bounded. It is easily seen that T* is weak*-
continuous in K* and that K* is weak*-closed.

We shall show that if the partial spectral radius p* of T* is not
zero, then Theorem 1 is applicable to the operator 7* in the space
K* — K* with the weak® topology as the auxiliary topology 7. This
will prove the existence of a non-zero element +» of K* with

2 In Examples 2, 3 no auxiliary topology is needed in F, but an auxiliary topology will
appear in the dual space.
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Ty = p*y .

Since T'* maps B* into the weak*-compact set MB*, we need only
prove that the weak™ topology is sequentially stronger than the norm
topology at 0 relative to T'*B*. To prove this, let ¢, € B*(n =1, 2, -+.),
and suppose that 0 is a weak*-cluster point of the sequence (TI'*¢,).
Since TA is contained in a (ty)-compact set, given & > 0, there exist

@y, +++,a, in A such that for each point @ in A there is some k (1 =
k < r) with

(9) | Ta — Ta, || <ef2.

Since 0 is a weak*-cluster point of (7 *¢,), there exists an infinite set
A of positive integers such that

(10) HT*pa)a) | < ef2 (k=1,.--,7; ned),
i.e., |l (Ta,)| < /2 k=1,+--,7r; neAd.

By (9) and (10), we have
(11) lpu(Ta)| <e (@€ A, ned).

Given z € K with ||z|| =1, there exists a€ A with —a <% <@, and
so, by (11),

(T*p) @) | = |Pu(T2) | = @u(To) < ¢ (n € 4),
| T*p, || = ¢ (n e 4).

Therefore 0 is a norm-cluster point of (T*®,), and we have proved that
Theorem 1 is applicable.

ExAMPLE 3. Suppose that there exists a subset A of K with the
following properties:

(i) Given z € E with |2 || £ 1, there exists @ € A with —a =z < a.

(ii) A is contained in a (ty)-compact set.

Let K*, B*, T* be defined as in Example 2. Given @ € B* and
% € E with ||z|] £ 1, there exists a € 4 with —a < 2 < @, and therefore

|p(T2)| = P(Ta) = [ Ta |l = o(T)[la]l .

Since A is contained in a (zy)-compact set, ||a || is bounded on A, and
T* is a partially bounded mapping of K* into itself.

We show that Theorem 2 is applicable to the operator T*. Since
K* is weak*-closed, B* is weak*-compact, and T* is weak*-continuous
in K*, we need only prove that the weak* topology is sequentially
stronger than the norm topology at 0 relative to B*. This is proved

by an argument similar to that in Example 2, but using A in place of
TA.
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It follows that there exists a non-zero element + of K* with
T*y = p*r, where p* is the partial spectral radius of T'*.

In particular, the conditions of this example are satisfied with 4
consisting of a single point if K contains an interior point in the normed
space E. Thus Theorem B is contained in this example, and hence in
Theorem 2.

ExAMPLE 4. Theorem 1 of Schaefer [6] is a case of our Theorem
2. In this case the topology 7 is given, and Schaefer constructs a norm
in K — K in such a way that

]| = f(@) (v € K),

where f is a certain (7)-continuous linear functional. Since f is (7)-
continuous, it is easily verified that 7 is sequentially stronger than c,
at 0 relative to B.
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SUMMABILITY OF DERIVED CONJUGATE SERIES
B. J. BoYEr

1. Introduction. In a recent paper ([3] it was shown that the
summability of the successively derived Fourier series of a CP integrable
function could be characterized by that of the Fourier series of another
CP integrable function. It is the purpose of the present paper to give
analogous theorems for the successively derived conjugate series of a
Fourier series.

2. Definitions. The terminology used in [3] will be continued in
this paper. In addition let us define:

(1) V(t) = Wit r, @) = %[ F@+ 1)+ (—1) @ — B)]
=l
(2) Qi) = >, ___ali—li___tr—l—zz

& (r—1— 29!
(8) g(t) = rit7" () — Q)]

The 7th derived conjugate series of the Fourier series of f(f) at
t = o« will be denoEed by D,CFSf(x), and the nth mean of order («, 8)
of D,CFSf (@) by Si4(f, @, n).

3. Lemmas.

LEMMA 1. For a=0,8>1o0r a>0,83=0, and »r = 0,

M o(2) = =7l (—2)* + 0|z |7~ log™* |z )
+ 0|7 as @] — oo .

This is a result due to Bosanquet and Linfoot [2].
LeMMA 2. For «>0,8=0o0r a=0,8>0 and
r —>_~ 0; xrxl(gm+r,ﬁ(x) :t;Ong(a’ B)X’1+w+r—i.ﬂ+j(x) ’

where the Bj; are independent from x and have the properties:
(1) Bifa,0)=0 for j = 1;
(ii) Bi(a, B) # 0;

r
() > Bifa, B) = (—1)yrk
,7—0
Received January 19, 1960.
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The proofs of (i) and (il)) will be found in [3], Lemma 2, taking the
imaginary parts of the equations there. Part (iii) follows immediately
from the first part of the lemma and Lemma 1.

LemmA 3. For n >0, a=0,8>1o0or a>0,8=0, and r =0,

<%—>T{2Bn“:§n <1 - %)w log=# ( ) C > ) sin vt}

n

= 241 gwmwﬁ[n(t T 2k7)] .

Proof. Smith (]6], Lemma 6) has shown that for every odd, Lebes-
gue integrable function, Z(t), of period 2,

S, 47,0, n) = —anZ(t)XHw,B(nt)dt .
0
Since the right side of this equation can be written

_an"Z(t) S Nuvaslnlt + 2m))de

for every such Z(¢), the lemma is true for » = 0. For » = 1 the inter-
change of (d/dt)" and >=.. is justified by uniform convergence.
The following lemma is a direct consequence of Lemma 3:

LemMMA 4. Let f(x)e CP[—=x, ] and be of period 2. For n >0
and a =0,8>10r a>0,8=0,

F3 oo

Sualf, @, 1) = 2=y 9(t) S5 Kt sln(t + 2km)ldt .
LeMMA 5. For a=0,8=0,n>0 and r = 0,
| QO it = 0,
where Q(t) 1s defined by (2). -

Proof. If r =0, then Q) =0. Forr=1landz=0,1, ... [r—1/2],
the truth of the lemma follows from the equation:

gwxr_l_%xl(?w+r,ﬁ(m)dx = 0 ’
0
which is easily verified by means of » — 1 — 21 integrations by parts.

The final two lemmas of this section give the appropriate representa-
tion of the nth mean of D,CFSf(x).
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LEMMA 6. Let f(x)e C,P[—=, 7] and be of period 2zx. Let m,0 =<
m <\ + 1, be an integer for which ¥,(t)e L|0, x]. Then, for a = m,
B>1lora>m,8=0and r =0,
Stanalf, @, m) = 2=ny | THO) = QUINCarrsut)dt + C, + o(1)

as n— oo, where

C, = 272:‘1(—1)’+1S:«p(t)<%>r[—éctn—;—t — t—l] dt
(4)

+2ﬂnfrt“@@mn

Proof. It follows from Lemmas 4 and 5 that

Strslfy @, m) = 2=y | THO) = QORL. s08)at

20— | OZ AL it + 20t
(5) R
= 2(=n) | QUL )it

=L+ L+1.
Since the degree of Q(¢) is » — 1, Lemma 1 shows that
(6) I = 2r!7rlgjt*’"lQ(t)dt + o).
Let us define:
T, 1) = 2=y 3 e ln(t + 2km)]
— (=1)yrlzn(t + 2kx)]""} .

Again appealing to Lemma 1, we see that lim,.. (6/6tyJ(n,t) = 0 uni-
formly for ¢€[0,x] and 5 =0,1, -+, m.

With the aid of the well-known cotangent expansion I, may be
written:

L= | )T en, 0t + (~1y 727 (S )

(7) [%ctn%t — t—l]dt .

But after m integrations by parts, it is seen that

(8) S:«p(t)J(n, t)dt = o(1) .
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The lemma now follows from equations (5), (6), (7), and (8).
A vparticular, but useful, case of Lemma 6 is

LEmMmA 7. Let f(x)e C\P[—=n, @] and be of period 2z. If g(t)e
C.P[0, 7], where g(t) is defined by (8), then

5. 40,0, n) = —an"g<t)xl+,,,s<nt>dt
0

ol LetmLs o
o Sog(t)<20tn2t ¢ )dt—l—o(l)

Jora=1+&B8>1ora>1+§& B8=0, where § = min [¢, max (r, V)].
The hypothese of Lemma 6 are fulfilled, because t"g(¢) e C, P[0, =]
implies G,.(t) e L[0, 7] by Lemma 6 of [3].

4. Theorems.

THEOREM 1. Let f(x)e C,P[—=, 7] and be of period 2z, If there
exist constants @, ,_yu, 1= 0,1, --- [r — 1/2], such that
(i) 9(t)e C.P[0, 7] for some integer U; _
(i) CFSg(0) =s(a, B) for a=1+&B>1 or a>14+& 820,
where £ = min [, max (r, M)];
then D,CFSf(x) = S(a + 7, B), s = n"S:g(t)ctn(1/2)tdt and

S = ——27:‘1Snt‘1g(t)dt +c,
0
where C, is defined by equation (4).

THEOREM 2. Let f(x)eC\P[—m, ] and be of period 2z. If
DCFSf(x)y=8S(@+r,B) for a=1+xN,8>1 or a>14+x8=20,
then there exist constants @,_, 5, 7 = 0,1, <+« [r — 1/2], such that

(i) g@)e C.P[0, ] for some integer p:

(i) CFSg(0) = s(o, B), where
a'=1+E&B>1 if 1+ rx=2a<1l+E or a=1+§B=1a =a,
B=Bifa=1+EEB>1or a>1+§L=0, and & s and S have
the values given im Theorem 1.

Before passing to the proofs of these theorems, let us observe that
the existence of the constants @,_,_,, implies their uniqueness from the
definition of ¢g(¢). In fact, it can be shown that the @, ,,, are given by

D, FSf(x) = @_5(C), 1=0,1,-- [r ; 11] )

1 Bosanquet ([1], Theorem 1) has shown this for f(x) Lebesgue integrable and (C) re-
placed by Abel summability.
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In addition it can be shown that when f(x)e L, the sum, S, of
D,CFSf(x) may be written

oo

S = ~27r1S t7g(t)dt .2
)

—0(C

Proof of Theorem 1. That s = —z‘lgng(t)ctn(l/Z)tdt follows from
0

the consistency of (a, 8) summability and a result due to Sargent ([4],
Theorem 3). Therefore, both g(f)ctn(1/2)t and t~'g(t) are CP integrable
over [0, «].

From Lemma 7 we have

(9)  Susle, 0,m) — s = —20| GO Nrrwplnt) — (Ent) 1t + o(1) .

The left side of (9) is o(1) by hypothesis. By consistency equation (9)
remains valid if « is replaced by a+r —4and B by B+ 74,1,5 =
0,1, -+« r. Therefore,

—20{"9(8) 33 BU@, B)Nsvasr-en) — )t = o(1) .
With the aid of Lemmas 2 and 6, the last equation becomes
Sr. o(f, @, m) = —ZE‘IS:t“g(t)dt +C, + o(l) .
This completes the proof of Theorem 1.

Proof of Theorem 2. Due to the length of this proof and its simi-
larity to the proof of Theorem 2, ([3]), only a brief outline of the proof
will be given.

Putting Q) = 0,8 =0 and p > a + r in Lemma 6 and integrating
the right-hand side of the resulting equation M + 1 times, one can show
that

D, ,CFS(¥,.,, 0,n) is summable (C, p) .

A result due to Bosanquet ([1], Theorem 1) and the stepwise pro-
cedure employed in the proof of Theorem 2 ([3], equations 18 through
22) lead to the conclusion: ¢ '[y(t) — Q(t)] € CP[0, =] for an appropriate
polynomial Q(¢t), i.e., t7*¢(t) € CP[0, =]. From this statement and a results
due to Sargent ([4], Theorem 3), g(t) € C.P[0, ] for some integer ¢ and

CFSg(0) = s(C), where s = n—lS”g(t)cma/z)tdt K

2 Ibid. The difference in sign is due to the distinction between allied and conjugate
series.

3 The CP integrability of g(t)ctn(1/2)t is equivalent to that of ¢-1g(¢).
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That S, the (a + 7, 8) sum of D,CFSf(x), has the value
~27rlg"t—1g(t)dt L C,

follows immediately from Theorem 1 and the consistency of the sum-
mability scale.

Thus, it remains to prove only the order relations (o, #’) in (ii) of
the theorem. A straightforward calculation using the representations
in Lemmas 6 and 7, the properties of the Bi(«,8) in Lemma 2, and
the consistency of the summability scale applied to D,CFSf(x), leads to
the following equations:

>, Bia' + k, B,)[Sw’—kk%rfi.ﬁ’%—j(gy 0, n)

4,J=0

—n‘IS:g(t)ctn—;—tdt] =0(1),

for k=0,1,2, <.,

The expression in brackets may be considered the nth mean of order
(@ +k+1r—1,8 +7J) of a series formed from CFSg(0) by altering the
first term. Since this series is summable (C) to 0, then Lemma 8 [3]
shows that CFSg(0) = s(«/, 8.

The following theorem gives a sufficient condition for the (a, )
summability of CFSg(0) for B3 = 0. Since the proof follows the usual
lines for Riesz summability, it is omitted.

THEOREM 3. Let ¢(t) be an odd function of period 2rm. If
t7'g(t) e C,P|0, ], where k is a non-negative integer, then

CFSg(0) = —n—‘yg(t)ctn—é—tdt(l + kB, B>1.

As an application of these theorems it can be shown that
D,CFSf(0,m)=8SA +m + 2r,B),8>1,

where f(x; m) is either ™ ginx™ or x™cosx™',m =0,1,2, ---.

The following results may be deduced from Theorems 1 and 2. It
is assumed that f(x)e C,P[—m, 7] and is of period 2zx. The values of
S and s, when either exists, and & are given in Theorem 1.

(A). If g(t)e C.P[0,x], then for a =1+&B8>1 or a>1+E,
B =0, DCFSf(x) = S(a + r, 8) if and only if CFSg(0) = s(«, B).

B). For a=1+max(r,3),8>1 or a>1+max(r,\),B8=0,
D,CFSf(x) = S(a + r, 8) if and only if g(t)e CP[0, #] and CFSg(0) =
s(a, B).
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These results generalize, to various degrees, results obtained by
Takahashi and Wang [7] and Bosanquet [1].
A weak, but none the less interesting, form of these results is

(). If f(x)e CP[—m, w] and is of period 27, then in order that
D,CFSf(x) be summable (C), it is necessary and sufficient that
g(t)e CPJ0, =] and CFSg(0) be summable (C).
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A NOTE ON A PROBLEM OF FUCHS
D. L. Boyer

In [1] Fuchs has asked (problem 3) the cardinality of the set of all
pure subgroups of an Abelian group. The purpose of this paper is to
settle the question for nondenumerable Abelian groups. |4 | will denote
the cardinality of the set A.

THEOREM. Let G be a nondenumerable Abelian group, and let <7
be the collection of all pure subgroups, P, of G with |P| =|G|. Then
|7 | =2

Proof. Let T be the torsion subgroup of G. If |T| < |G|, then
|G/T|=]G| and by a result of Walker [3, Theorem 4], G/T, and hence
G, has 2'! pure subgroups of order |G|.

If | T|=]| G|, then we write T in the form T=3; . BZ.(p7)D>.,DE,,
where the R, are reduced primary groups and 3. @ Z.(p7) is the
maximal divisible subgroup of 7.

If the above decomposition of 7 has |G | summands then the theorem
follows.

If the above decomposition has fewer than |G| summands, then
|2, DR, | =1G|

We first consider the case that there exists a prime, p, such that
|R,| =|G|. Let B be a basic subgroup of R,. If |B|<|R,]|, then
|R,/B|=|G| and R,/B = Y,e.PD Z.(p~) with [A]|=|G|. Thus the
theorem holds for R,/B, and hence also for G. If |B|=|R,|, then
since B is the direct sum of cyclic groups, B = >,.c. P C,, it follows
that |A| =|G|. Thus the theorem follows for B and hence for G.
Finally, if |R,| < |G| for all p, we let' R’ = 3, @ R,,, where the sum
is taken over all primes, p;, such that |R, | > Y,. Then |R'|=|G|=
X1 R, |. We have proved above that for each p;, R, has 2'"»!' pure
subgroups, P(¢) of order |R, |. For each %, choose P(i) C R, with
[P(t)| = | R,,|. Then P =3, P(1) is a pure subgroup of R’ with
|P|=|R'|, and the number of subgroups formed in this way is 2'¢.

REFERENCES

1. L. Fuchs, Abelian groups, Hungarian Academy of Science (1958), Budapest.

2. W. Scott, Groups and cardinal numbers, Amer. J. Math., 74 (1952), 187-197.

3. E. Walker, Subdirect sums and infinite Abelian groups, Pacific J. Math., 9 (1959),
287-291.

FRESNO STATE COLLEGE

Received October 22, 1959.
1 This is exactly the method used by Scott, [2].

1147






THE ENVELOPES OF HOLOMORPHY OF TUBE DOMAINS
IN INFINITE DIMENSIONAL BANACH SPACES

H. J. BREMERMANN

1. Introduction. Let B be a Banach space with the strong topology
generated by the norm. An open and connected set is called a domain.
Let f be a complex valued functional defined in a domain D of a complex
Banach space B,. Let L be a finite dimensional translated complex
linear subspace of B,: L = {z|2z = 2z, + 7.0, + -+ T,a,} wWhere 2, a;, *++, a,
are fixed elements 7, -+, 7, complex parameters. (In the following we
will call L an “‘affine subspace’’). f is called ‘‘G-holomorphic’’ (=Gateaux-
holomorphic) if and only if the restriction of f to the intersection DN L
of D with any finite dimensional affine subspace L of B, is holomorphic
(in the ordinary sense). (Compare Hille-Phillips [7], Soeder [9], Bremer-
mann [5].)

A funectional that is G-holomorphic and locally bounded is called
“F-holomorphic’’ (Fréchet-holomorphic). For finite dimension the notions
(ordinary) ‘‘holomorphic function’ and ‘G- and F-holomorphic functional’’
coincide. (The theory of holomorphic functionals in finite dimensional
Banach spaces is equivalent to the theory of n complex variables.) For
infinite dimension, in general, there exist already linear (and hence
G-holomorphic) functionals that are not locally bounded (and hence not
F-holomorphic).

In Bremermann [5] it has been shown that the phenomenon of
“‘simultaneous holomorphic continuation,”” well known for » complex
variables, persists for infinite dimension even for the very general
G-holomorphic functionals: There exist domains such that all G-holo-
morphic functionals can be continued into a larger domain.

A domain for which a G-holomorphic functional exists that cannot
be continued is called (in analogy to finite dimension) a ‘‘domain of
G-holomorphy.”” In Bremermann [5] it has been shown that a domain
of G-holomorphy is ‘‘pseudo-convex’ (in a sense which is a natural ex-
tension from finite dimension).

We will apply these notions in the following to infinite dimensional
tube domains and moreover we will show that it is possible to define
and to determine the envelope of holomorphy of tube domains.

Finite dimensional tube domains and their envelopes of holomorphy
have been studied by Bochner [1], Bochner-Martin [2], Hitotumatu [8],
and Bremermann [3],[4]. It has been shown that a tube domain is
pseudo-convex if and only if it is convex, and that the envelope of

Received January 11, 1960. This research has in part been supported by the Office of
Naval Research under Contract Nonr 447 (17).
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holomorphy of any tube domain is its convex envelope. The former
property has been extended to infinite dimension in [5]. We extend
here the latter. To the author’s knowledge this is the first time that
the envelope of holomorphy of a class of infinite dimensional domains
has been determined. At the same time the proof given in the following
is simpler than some previous proofs for finite dimension.

2. Tube domains, envelopes of holomorphy. Let B, be a complex
Banach space that is split into a real and imaginary part, such that
every z¢c B, is written

2z =x + 1y, where x€ B,, y€ B, ,

where B, is a real Banach space. Then a domain Ty s called a tube
domain with basis X if and only if it is of the form Ty = {z|lze X,y
arbitrary}, where X is a domain in B,.

Obviously, Ty is convex if and only if X is convex, and X is convex
if and only if the intersection of X with every finite dimensional affine
subspace L, of B, is convex. (L, ={x|x =2, + t,a, + +--, t,a,}, Where
Xy, Ay, +++, &, are fixed elements in B,, and ¢, ---, ¢, real parameters).

It is somewhat difficult to define the envelope of holomorphy for
arbitrary domains. Already for finite dimension it may not be schlicht.
(Comp. [3],[6]). However, for finite dimension the following is true.
Let D be a given domain. Suppose we have a domain E(D) with the
following properties:

(I) Every function holomorphic in D can be continued as a (single-
valued) holomorphic function to E(D).

(IT) To every finite boundary point z, of E(D) there exists a function
that is holomorphic throughout E(D) and is singular at z,. If E(D) has
these properties, then E(D) is the envelope of holomorphy of D.

Analogously, if we have an infinite dimensional domain D and a
domain E(D) with the properties (I) and (II) (with respect to G-holo-
morphic functionals), then we call E(D) the envelope of G-holomorphy
of D.

3. Proof of the main theorem. Let T be a tube domain that is
not convex. Then, there exists an affine subspace

Lr:{xlx:x0+tla1+ "'tnan}

(%9 @1y +++, Q€ B,y &y, -+, T, real parameters) such that XNL, is not
convex.

Now it would be possible that XNL, is not connected and each
connected component is convex (for instance if L, is one-dimensional).
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If X is not convex, then there exist two points x, and x, that cannot
be connected by a straight line segment in X. However, X is connected,
and even arcwise connected. Hence we can connect x, and x, by an
arc in X, and even by a ‘“‘polygon’’ that is by finitely many straight
line segments. The polygonal arc spans a finite dimensional affine sub-
space L, and the connected component of L,.NX that contains x, and
2, 1s not convex since x, and «, cannot be connected by a straight line.

Thus L,N X has a connected component that is not convex. Hence
there exists a point z; on the boundary of L,NX and a line segment s
containing 2, such that s is locally a supporting line segment of the
complement of L,NX. In particular, x, and s can be chosen such that
in a neighborhood of z; the line segment s has with the boundary
0(XNL,) only the point x; in common.

Let the equation of the line containing s be

s={x|xz = x, + bt} ,

where b is a fixed element in B,, t a real parameter. Let b be normalized
such that ||b|| = 1. This real line lies in the analytic plane:

A={z|z=ua,+ b1},

where 7 is a complex parameter.
Let S, be a disc on A with center at x;, radius p:

S,=1{|z=u,4+ b7, |7| < p}.

If o is small enough, then S, will lie entirely in T, except for the
points
{22 =2, + 1bt, |t| < p, t real}.

We now apply the following lemma (which is an immediate conse-
quence of the ‘“‘fundamental Lemma’’ 3.1 (and 3.2) of [5] and Theorem
6.3 of [6]).

To formulate the lemma we need the distance function d,(z) which
is defined as follows: Given a domain D, then

dy(2) =suprafe|ljz—7||<r}c D,

in other words d,(z) is the distance of the points z from the boundary
of D, measured in the norm of B..

LEMMA. Let h(z) be the solution of the boundary value problem

h(z) = IOngX(xs + b7) for |T|=p,
h(t) harmonic for |t|<p.
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Then any function that is G-holomorphic in Ty can be continued G-
holomorphically into the point set:

C:{zlz’:x3+7—-b,lfl<p, ”z—z’||<eh(r)}'

(We note that even though log dTX(oc) becomes infinite at the two points
2z = x; & 1pb, the solution of the boundary value problem exists and is
finite for all |7| < p).

The pointset C is a neighborhood of the point z = x,. In particular
it contains the points ||z — z;|] < €*®, and €"® = 0. This continuation
procedure can be repeated at any point z = x, + 4y, where y is arbitrary.
We always get the same neighborhood, independently of ¥, because the
function dr_(z; + vy) and hence & does not depend upon y. Hence any
function G-holomorphic in 7'y can not only be continued into a larger
domain but into a larger tube domain T, that means X c X', X = X".

We have to observe however one difficulty: If the intersection
Xn{X|]|lz — 2,]] < e*®} consists of more than one component, then
continuation into Ty, with X' = XU{x |||z — ;|| < €"®} could possibly be
such that the continued function would no longer be single-valued in
Tx.. In order to keep the continuation single-valued we remove from
X’ all components of XN{x||x — ] < "™} except the one that
intersects S,. In this way the continuation remains single-valued.

Thus we have the result: If T, is a tube domain such that X is
not convex, then any function that is G-holomorphic can be continued
G-holomorphically (and single-valued) into a larger tube domain with
basis X’. Then we can apply the same result to T, and obviously
the process can be iterated as long as the enlarged tube is not yet
convex. Thus we have proved:

Given a tube domain Ty, then any function that is G-holomorphic
in Ty can be continued G-holomorphically into the convex envelope of Tx.

(The convex envelope of T, equals Ty x,, where C(X) is the convex
envelope of X.)

On the other hand there exists to every boundary point z, of Ty,
a supporting affine subspace of B, and a linear functional I(z) that be-
comes zero exactly on the affine subspace. (This is an immediate con-
sequence of the Hahn-Banach theorem.) The functional 1/I(z) is then
G-holomorphic in Ty, and becomes singular at z,, Hence we have shown:

To every boundary point z, of a convex tube domain there exists a
functional that is G-holomorphic in the domain and singular at z,. The
two statements combined give:

THEOREM. Let T, be a tube domain in a complex Banach space
(of arbitrary dimension). Then the envelope of G-holomorphy of Ty
18 the convex envelope of Ty, which equals Ty, where C(X) is the
convex envelope of X.
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MINIMAL SUPERADDITIVE EXTENSIONS OF
SUPERADDITIVE FUNCTIONS

ANDREW BRUCKNER

Introduction. A real valued function f is said to be superad-
ditive on an inverval I = [0, a] if it satisfies the inequality f(z + y) =
f(z) + f(y) whenever %,y and « + y are in I. Such functions have been
studied in detail by E. Hille and R. Phillips [1] and R. A. Rosenbaum
[2]. In this paper we show that any superadditive function f on I has
a minimal superadditive extension F' to the non-negative real line F, and
then proceed to show that F inherits much of its behavior from the be-
havior of f. We deal primarily with superadditive functions which are
continuous and non-negative.

A simple example of a superadditive function on [0, @] is furnished
by a convex function f with £(0) < 0. Also, if f is convex and f(0) =0,
then it is easy to verify that its minimal superadditive extension F' is
given by

F(x) = nf(a) + f(z — na)

for na =« < (n + 1)a. In general, the minimal superadditive extension
F' is not easily computed. In the sequel we shall discuss two methods
for obtaining F. For brevity we shall use the notation f*F to mean
“F' is the minimal superadditive extension of f’’.

1. The decomposition method. DEFINITION. Let x e E. The num-
bers «*,.--, 2" are said to form an a-pariition for x if 2' +...+ax" =
and for each ¢ =1,.--, 7 we have 0 < 2* < a.

THEOREM 1. Let f be a superadditive function on I =10, a]. Then
the function F defined on E by the equation

F(x) = sup Zf(u') ,

the supremum being taken over all a-partitions of x, is the minimal
superadditive extension of f.

Proof. We will show that F'is superadditive. The minimality of F
will then follow from the fact that any superadditive extension f of f
must satisfy f(x) = 2f(x*) for all x e E and all a-partitions z',-++, 2® of
2. Let x,ye E,e> 0. Choose a-partitions #*,-.-, 2™ and ¢*,--.,y" for

Received November 6, 1959. This paper is part of the author’s doctoral thesis, and the
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x and y respectively such that f(x') + «++ + f(@™) = F(x) — ¢/2 and
SW) + - +f(y") = F(y) — ¢/2. Then the numbers ',---, 2", y', -+-, y"
form an a-partition for x + y and we have

Fle +y) = fl@) + - + @) +5@) + - +1")
= F(x)+ F(y) —e.

Suppose we have an approximation for F'(x): that is, a number ¢ >0
and an a-partition a,--., 2" for x such that F'(x) — Zf(x') < ¢. If among
the members of this a-partition there are two, say 2/ and x* such that
u =2’ + x* < a, then since f(u) = f(&’) + f(«*), we have

F@) — [f(w) + S/6)] < F(r) — S/ < <.

In other words, replacing two numbers used in the approximation by
their sum % < a yields an approximation at least as good as the origin-
al. It follows that if x satisfies the inequality (M — 2)a/2 <z < (M — 1)a/2,
where M is a positive integer, then there exist arbitrarily good approx-
imations for F(x) using only M terms in the a-partition. If f is con-
tinuous, then a simple compactness argument results in the following
theorem:

THEOREM 2. Let f be a continuous superadditive function on [0, a],
and let F be its minimal superadditive extension. Let x satisfy the
inequality (M — 2)a/2 < 2 < (M — D)a/2. Then 3 an a-partition x*,- -, 2"
for x such that

Sf(e’) = F(z) .

Such an a-partition for 2 will be called a decomposition of z, for
which we shall use the notation {x) whenever convenient. We will de-
note by N(x) a number so large that for any continuous superadditive
function on [0, a], 3 a decomposition <x> of © with at most N(x) mem-
bers. It follows from the above that we can always let N(x) = 2x/a+2,
for example.

Henceforth we shall be concerned primarily with continuous non-
negative superadditive functions for which we shall use the abbreviation
csa. It is readily verified that such functions are non-decreasing and
vanish at the origin.

2. Combinations of extensions. One might expect that if the mem-
bers of a family f of csa functions are combined in a linear fashion to
give another csa function %, then combining the members of the family F
of minimal superadditive extensions of functions in f in the same way
would give rise to a function H which is the minimal superadditive
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extension of h. However this is not always the case. Consider, for
example, the functions f and g defined on [0, 8] as follows: f(0) =0,
f1)=0,7(2)=0,r3) = 1and g(0) =0, g(1) = 0, g(2) = 2, 9(3) =3, f and
g linear on [, n+1],n» = 0,1, 2. Simple computations show that whereas
(F+ G)4) = 5 and F'G(4) = 4, the minimal superadditive extensions of
f + g and fg take on the values 4 and 3 respectively at x = 4. The mi-
nimal superadditive extension of a sum (product) of superadditive func-
tions is thus not necessarily the sum (product) of the minimal superadditive
extensions. However, some processes do commute with taking minimal
superadditive extensions. '

THEOREM 3. Let {f,} be a sequence of csa functions converging to
the continuous function fon I=1[0,a]. Let f,*F,. Then f is csa and
f*lim,_ . F,.

Proof. That f is superadditive and non-negative is clear. Since for
each positive integer = the function f, is non-decreasing, the conver-
gence of {f,} to f is uniform on I. Given ¢ >0 and e E, let M be
such that n = M = max,, | f(t) — f(¢)] < ¢/N(x) where N(x) is a number
chosen as in §1. Let &k > M and let (&"> = xL,---, 2" and <{&)> =,

., 27" be decompositions for x relative to F', and F respectively. We
have

N (x) N (z) X
F) = S.0@) 2 Y. f@h)
and
N(z) ) N(x)
Fyw) = Sfad) 2 S -
It follows from these two inequalities that
F(x) — Fiy(z)| <,

for n = M.

3. Behavior of the minimal superadditive extension. It seems rea-
sonable to expect that the minimal superadditive extension F' of a csa
function f will enjoy many of the properties of f. To a certain extent
this is true and we are able to predict much about the behavior of F
by examining the behavior of f.

THEOREM 4. Let f be csa on [0,a]. If f*F, then F is csa on E.

Proof. Clearly F' is non-negative. To prove that F' is continuous
let ¢>0 and choose 8§ < a/22 if w,v=a and |u—v|<38 then
| flw) — f(v)] < e. Now let x and ¥ be points of E for which |y — z|<3,
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say y = 2 + h. Let {&y> = ¥',-++,y" be a decomposition for y with, say,
¥, = aj2. We have

Fy) = 3fw) and F@) = S50) + 7@ —h) .

Hence 0 = F(y) — F(x) = f") — f(y* — h) < e.
In a similar manner one can establish the following theorem, which
is stated without proof.

THEOREM 5. Let f be c¢sa on [0,a]. If f*F, then the following
statements hold:

() If f satisfies a Lipschitz condition with coefficient M, then so
does F

(o) If <y> =y, y" is a decomposition for y and f is differen-
tiable at y¢ and ¥, then f'(y") = f'('). If, in addition, F is differen-
tiable at y, then F'(y) = f'(¥").

One might expect that the differentiability of f on [0, a] would
imply the differentiability of F', except possibly at integral multiples of
a. Although this turns out not to be the case, we do have the follow-
ing theorem:

THEOREM 6. Let f be a csa function on the interval [0, al, with f'
continuous on (0, a). For x not an integral multiple of a, let X be the
set of points of [0, a] which can be used in a decomposition for x. Then
F has a right hand derivative F (x) and a left hand derivative F_(x)
at x© with

Fi(@) = supf'(t) = S

and
F(x)y=inff't)y=1.
teEX

Proof. We will prove only the upper equality. The lower can be
proved in a similar manner. It suffices to show D*F(x) = D.F(z) = S
where D+F and D,F are the upper and lower right hand derivatives of
F. Suppose 3¢ > 03D+F(x2) > S + 2¢. Then a sequence {k;} of num-
bers approaching 0 such that

1) F(x) < F(z + h) — (S + ol

for i =1,2,---. For each positive integer i, let (u', v*,--+, w') be a de-
composition for = + h;,. Without loss of generality, we assume that the
sequence (uf, v',~++, w’) converges to, say, (u,v,-++,w); otherwise we
consider a convergent subsequence. Since # is not an integral multiple
of @, one of the numbers u,v,+-+, w is not equal to 0 or a. Denote
such a one by w. From (1) we have
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(2) F(z) < f') + f(0") + -+ + f(w) — (S + ek, .
Choose N, 31 > N, implies that
(3) S < fw' — k) + [f'(w’ — k) + ¢/2]h;

That N, can be so chosen follows from the continuity of f’. In fact,
let § be such that |[u—v|<d=|f'(u)—f'(v)| <¢/4. Now choose N, such
that ¢+ > Nsu —8<ui —h, <u'<u+38. If ye[u*— h;, ], with
1> N;, then f'(u’ — h;) + ¢/2 > f'(y). Hence (3) is a valid inequality.
For ¢ > N, we have from (2) and (3),

(4) F) <f' — ) + f@)+ - +f @) +[f'(u' — h) — (S + ¢/2)]h.

Now the sequence (uf — h,, v%,--+, w') converges to (u,v,---,w) and
%+ v+.--+w=2 Thus, since

f@) + f) +- o+ f (W) = Fe + b)) > F(x),
and F is a superadditive function, we have

f@) + f() +---+f(w) = Flx)

and w e X. Therefore f'(u)<S. By the continuity of f’', lim,_.f ' (w*—h;)=
f'(u). Hence 3 a positive number N, such that 1 >N, = F'(u'—h;) <S+¢/2.
Let ¢ = max(N,, N,). For this ¢ we have from (4),

F(r) <f@' —hi) + f(0) 4=+ f(w).

This is impossible, for u* — h; + v* +++++w* = ¢ for each 1 =1,2, .-
and F is superadditive. We have shown D*F'(x) < S.

It remains to show D.F'(x) = S. Lete >0, and let (u, v,+--, w) be
a decomposition for z such that « == a, and f'(u) > S — ¢/4. Choose
§>02h < 8=>Ff(w+ h)>F) + (S —¢/2)h;. For h <8,

F(x + k) = flu+ k) + f(0)+++- +f(w) > F(2) + (S — ¢/2)h .
The first and third members of this inequality give

F(x 4+ h) — F()
h

Since & was arbitrary, D.F(x) = S, and the proof of the theorem is
complete.

We now proceed to obtain a linear upper bound for F. If f is csa
on [0, a], then the function g defined by g{x) = f(x)/x is continuous on
[0, a] and satisfies g(nz) = g(x),n = 1,2, .-+, whenever nx < a. It fol-
lows that g attains a maximum at some point of (0, a].

>S4+ ¢/2.

THEOREM 7. Let f be csa on [0,a], f*F, and let g be defined as
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above. Let t be a point of (0,a] at which g attains its maximum M.
Then

(a) F(x)lx < M for all x >0,

(b) F(x)jx =M if x 18 an integral multiple of t,

(c) lim F(x)]x =

(d) max [Mx —f(x)] = max [Mx — F(x)],

(e) hm [F(x) Mx] =0 @ff 1s differentiable at t.

x—o0

Proof. The proofs of (a), (b), (¢) and (d) are straightforward and
will be omitted. Let us then turn to (e). For each x e FE, write z in
the form « = nt + y, where n is an integer and 0 <y < t. Define a
function F'* by F*(nt + y) = nft + y/n),n =1, 2,--.. Clearly F*(x)<
F(x) < Mx for all xe E. We will show that lim, ... [Mx — F'*(x)] = 0. By
the definition of F'* we have

Mx — F*(x) = M(nt + y) — nf(t + y/n) .

Noting that f(t) = Mt, we see that the right hand member of this last
equation can be written in the form

(1) y[M— f(t+y?j7/’2—f(t)]

Now let © — o. Then ¥ is bounded between 0 and ¢ and n — . The
expression (1) approaches 0, since f'(t) = M

We observe that the function F'* of the preceding theorem is asymp-
totic to F' with F’* < F. Hence F(x) is bounded between F*(x) and Mz,
two functions which are easy to calculate, and whose difference is small
when x is large.

4, The polygonal method. The minimal superadditive extension of
a csa function may also be obtained as the limit of a sequence of poly-
gonal functions. A function p is said to be polygonal if p is continuous
and piecewise linear. The point x e [0, a] is called a vertex of p if (x,
p(x)) is a vertex of the polygon forming the graph of p.

THEOREM 8. Let p be polygonal on [0, a] with equally spaced wver-
tices. Then p is superadditive if and only if p is superadditive on
its vertices.

Proof. If p is superadditive, then p is clearly superadditive on its
vertices. To prove the converse consider the function g defined on the
set

D= {x9):0=c,y<aand v +y < a}
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by the equation g(z,y) = p(x + y) — p(x) — p(y). It is easy to verify
that g is planar on any triangle T of the form

T={xy): m, Sz = Uy S Y= 0,28 +y = (or =)u, + vy},

where (u,, v,) and (u,, v,) are pairs of successive vertices of p. Hence
¢ attains its minimum on 7 at one of the points (u,, v;) and therefore
its minimum on D at a point (u, ¥) where both % and v are vertices of
p. Thus, if g is anywhere negative then g is negative at a point whose
two coordinates are vertices of p. This proves the theorem.

Now let p be a polygonal function on [0, a] with vertices at 0, v, 20,
ceo,mv =a. We define a function P on E as follows:

Px) = p(x) for x < a
P(Mv) = max [P(kv) + P(Mv — kv)] M an integer = m + 1
K=1,+++,M

—1

and
P linear on [Mv, (M + L], M =m,m + 1,+--.

P will be called the function associated with p. It is easy to see that
if p is c¢sa, then P is csa.

DEFINITION. A sequence {p,} of functions defined on [0, a] is called
a p-sequence if
(i) each p, is a polygonal function
(ii) the vertices of p, are Ka/2", K=0,1,...,2"
(iii) P.(Ka/2™) = p,(Ka/2™) if m < n.
In terms of this concept we have

THEOREM 9. Let {p,} be a p-sequence coverging to the csa function
f on [0,a]. For each positive integer n let P, be the function associated
with p,. Then, if f*F, {P,} converges to F' on E.

Proof. It suffices to show that P, approaches F' on [0,2a]. Let
F*(x) = lim,_.. P,(x). It is easy to check that F'* is superadditive. Let
V, be the set of vertices of Py in [a,2a],andlet V=UrV,. If veV,
then lim,_. P.(v) exists since the sequence {P,(v)} is ultimately non-de-
creasing and P,(v) < F(v) for all n. We have lim,_. P,(v) = F(v). But
since F'* is superadditive, we have FF* = F. Hence F'* = F on V. By
standard arguments involving the continuity of F, the density of V
in [a, 2a], and the monotonicity of each P, and F'*, it follows that F'=

F* and that F'* = lim,_..P,(%).

5. Superadditive functions in n-dimensions. It turns out that many
of the results obtained in one dimension have their analogues in n-di-
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mensions. The interval I = [0, a] is replaced by a fundamental region
R defined by the inequalities 0 < 2, = a;,7 =1,-+--,n, where the a; are
arbitrary positive numbers. The decomposition method works, just as it
does on the line, and we can prove with little difficulty that to any
superadditive function f on R there corresponds a minimal superadditive
extension F to K} ={x, -+, 2,):0=2;,,7=1,-++,---,n}. We can
also prove a theorem corresponding to Theorem 5, the derivatives here
being directional derivatives. In Theorem 7 a certain line I(x) = Mz
played an important role. In n-dimensions, for each direction 6 we have
a plane P, which plays the role of I in some direction, and when the
function P, defined on the fundamental region R by the equation

P(z) = inf Py(z) ,

is extended to E;} by homogeneity it is the minimal concave superad-
ditive function which bounds F' from above. It can be proved, at least
in E7, that

nmax [P(z) — f(2)] = max [P(2) — F(2)] .

2€ B,
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ON EXPANSIVE HOMEOMORPHISMS

B. F. BRYANT

1. Introduction. A homeomorphism ¢ of a compact metric space
X onto X is said to be expansive provided there exists d > 0 such that
if x, y € X with #=y, then there exists an integer » such that o(x¢”, yp*) >d
(see [1] and [3]). The question arises as to the possibility of extending
the results concerning expansive homeomorphisms to compact uniform
spaces. The extension is possible, although trivial in light of the corol-
lary to Theorem 1.

In 88§ 3 and 4 the setting is a compact metric space X. Theorem 2
is stronger than Theorem 10.36 of [1] in that we do not require X to be
self-dense. Also, the lemmas of which Theorem 2 is a consequence are
perhaps of some interest in themselves. In §4 we show that if X is
self-dense, then for each xe X and each ¢ > 0 there exists ye U, %)
such that # and y are not doubly asymptotic.

2. A homeomorphism ¢ of a compact uniform space (X, %) onto
(X, %) is said to be expansive provided there exists Ue % such that
U =+ 4 (the diagonal) and if x, ¥ € X with # # y, then there exists an in-
teger n such that (x$”, y¢") ¢ U. For uniform spaces we use the notation
of [2], but following Weil [4] we suppose (X, %) is Hausdorff; i.e.,
N{U: Uez} = 4. We also suppose that each Ue %/ is symmetric.

THEOREM 1. Let (X, %) be a compact uniform space which is not
metrizable and let ¢ be a homeomorphism of X onto X. If Uez/, then
there exist x,ye X with x = y such that (xp”, yp*) e U for each integer
n. (Compare with Theorem 10.80 of [1].)

Proof. Select Ve such that VoVoVc U and VcU (see [2], p.
180). Since ¢, for each integer n, is uniformly continuous, we may
choose U, ez with U,CV such that (p, ¢) € U, implies (pp*, gp*) e V for
k= +1. For ¢ > 1, choose U,ezy with U,cU,_, such that (p, q)e U,
implies (pp*, qp*) e V for k = £ 4. Since (X, %) is not metrizable, the
countable set {U;|7 =1, 2,---} is not a base for the uniformity Z ([4],
p. 16). Thus there exists We< with W c U such that ¢ = 1 implies
U,Ncomp W == 0. Choose, for each %,(x;, ¥;) € U;Ncomp W. Since XxX
is a compact Hausdorff space, there exists (x, ) such that each neigh-
borhood of (x,y) contains (x,;, ¥;) for an infinite number of positive in-
tegers 1. Let m be an arbitrary positive integer, then there exists m>n
such that (2, ¥.) € U,(x)x U (y). Hence (x, x,)ec U, and (¥, ¥n) € U,;

Received October 3, 1959, and in revised form, February 1, 1960.

1163



1164 B. F. BRYANT

therefore (x9*, x,$*) e V and (y9*, y.9*) € V for k = = n. Also (2, Yn) €
U,c U, so that (2,¢%, ¥.9%) e V for k= =+ n. Hence (z¢*, yp*) e Vo VoV U
for k = + n. Each (2;,%,) e U,c V and Vc U; hence (x,y) e U. Finally,
x # Y. For otherwise we could choose Se </ such that SoSc W; then
(24, Yu) € S(x) x S(x) for some k, and hence (z, x,)e S, (x, ¥,) €S so that
(4, ¥,) € W. This completes the proof.

An immediate consequent of the theorem is the following

COROLLARY. If (X, Z) s a compact uniform space on which it s
possible to define an expansive homeomorphism, then (X, 7/) is metriz-
able.

3. The author is indebted to the referee for suggesting the ar-
rangement of the material in this section. In the original version, Lemma
2 had a slightly stronger hypothesis and Lemma 3 was essentially con-
tained in the proof of Theorem 2. In this section we suppose that X
is an infinite compact metric space and (with the exception of Lemma 3)

that ¢ is an expansive homeomorphism (with expansive constant d) of
X onto X.

LEMMA 1. If © + y and if there is an integer N such that n>N
{n < N} implies o(xd", yp*) = d, then x and y are positively {negatively}
asymptotic under ¢.

Proof. 1If x and y are not positively asymptotic under ¢, then there
exist ¢ > 0 and positive integers n, < n, <---such that o(z¢":, yp") = ¢
with lim,_ .2¢" =« and lim,_,..y¢" =v. Obviously u # v. Let m be an
arbitrary integer. For all 4 sufficiently large =, + m > N; hence
o(xpmt™, ypritm™)y < d.  Since lim,_ ., .2d™ ™ = ug™ and lim,__  ydp™t™=vp™,
it is clear that o(up™, vp™) < d for each integer m. This contradicts
the hypothesis that ¢ is expansive. The alternative statement may be
proved by a similar argument.

Lemma 2. If o(x){a(x)} contains a periodic point p and w(x){a(x)}
18 not identical with the orbit of p, then there exist w and 2z in w(x)
{a(x)} such that w and p are positively asymptotic and z and p are
negatively asymptotic.

Proof. Suppose p is of period k. There exist positive integers
N, <My <-+++ such that lim,.,.xp" = p. Let k, be the smallest non-
negative integer such that n, + k, is a multiple of k. Since 0 < k;, < k,
there exists m such that k, = m for an infinite number of integers <.
Thus there are positive integers m, < m, <---such that
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lim gpmit™ :zliin P = pp™ |
Denote ¢* by 6 (with expansive constant d,) and pp™ by ¢ (see [1], Dp.
86). Thus lim,, .20’ = ¢ and ¢0 = q. We can assume that o(x¢’:, ¢)<d,
for each 1.

The points « and ¢ are not positively asymptotic under 6, since other-
wise w(x) under ¢ would consist of the k& points in the orbit of p. Hence,
by Lemma 1, there exist arbitrarily large integers + such that o(x6", q)>d,.
Therefore we can assume that s, < s,---are positive integers where s; is
the smallest positive integer such that p(x6’i+%, ¢q) > d, and lim, ,,..x¢’i"5i1=
uew(x). Let —a be an arbitrary negative integer, then for all ¢ suffi-
ciently large 0 <s, —a <s,. Hence p(x6"*5° ¢q) < d,, and therefore
oo, q) < d, for each negative integer —a. Thus, by Lemma 1, u is
negatively asymptotic to ¢ under ¢ and hence under ¢([1], p.85). We
can assume J, < J, + 8; < 7,., and hence that there exist positive integers
t,<t,<.:.where t, is the smallest positive integer such that o(x¢:~', q) > d,
and lim,...x6" % = vew(x). By an argument similar to the above, v
is positively asymptotic to ¢ under ¢. Since a(x) under ¢ coincides with
o(x) under ¢!, this completes the proof.

In the following lemma we do not require ¢ to be expansive.

LemMMA 3. If x is not periodic and w(x){a(x)} is the orbit of a
pertodic point p, then there ewxists a point q in the orbit of p such that
g and x are positively {negativaly} asymptotic.

Proof. Let pew(x) and, as in the first paragraph of the proof of
Lemma 2, select positive integers 7, < 7, <--- such that lim,,..x0" =
g =pp™ and @0 = q,0 = ¢*. If x and ¢ are not positively asymptotic
under ¢, then there exists a positive constant o and a sequence n,<n,<-++
of integers such that o(x6™, q) > a. Let ¢ > 0 and choose 8 > 0 such
that 8 <, B < @, and p(z, w) < B implies p(z6, wd) < e. We can assume
that o(x0, q) < B. Let s, be the smallest positive integer such that
ot q) > B. Then for each ¢, 8 < p(x0i*%, q) < e. But the sequence
{x6i**i} has a convergent subsequence. Let s be the limit of such a
convergent subsequence, then s # ¢, se w(x) and 0(s, ¢) < e. Thus w(x)
is not finite, contrary to hypothesis. It follows that x and ¢ are posi-
tively asymptotic under 6, and hence under ¢.

Similarly, if a(x) is the orbit of a periodic point p, then there exists
a point ¢ in the orbit of p such that ¢ and x are negatively asymptotic
under .

THEOREM 2. There exist a,b, ¢, de X such that a and b are posi-
tively asymptotic under ¢ and ¢ and d are negatively asymptotic under

3,

b.
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Proof. There exists a minimal set N X ([1], p. 15). If N is infinite,
then N is self-dense and the conclusion follows from Theorem 10.36 of
[1]. Henceforth, suppose each minimal set in X is finite and thus is a
periodic orbit.

Since X is compact and infinite, there exists a non-isolated point 7.
If » is not periodic, let » = p. If # is periodic, then there exists ¢ #= »
such that « and » are asymptotic ([1], p. 87). But then x is not periodic
and we let z = p.

There exists a minimal set NCw(p), and a minimal set M C a(p).
Both N and M are periodic orbits. If N = w(p) or M + a(p) the con-
clusion of the theorem follows from Lemma 2. If N = w(p) and M=a(p),
the conclusion of the theorem follows from Lemma 3.

4, In addition to the standing hypothesis of § 3 we require X to
be self-dense.

LemmaA 4. If ye U(e, x) tmplies that each neighborhood of y con-
tains z such that o(yo", z¢") > d/2 for some positive {negative} m, then
there exists w e Ule, x) such that w and x are not positively {negatively}
asymptotic.

Proof. Let 0 < a < ¢, then there exist x, € U(a, ) and a positive
integer m, such that o(x,¢™, xp™) > d/2. Suppose x, and x are positively
asymptotic (otherwise the lemma holds); hence there exists m, > n, such
that # > m, implies o(x,9", x¢$")<d/8. Choose a,>0 such that U(a,, x,) C
U, x) and po(p, ¢) < a, implies o(pe”, pp™) < d/8 for 0 < n < m,. For
1 > 1 we select x;, n,;, m;, and a; > 0 such that x; e U(a,;_,, 2;-.), n;>m;_,,
O, D™, x,_ ™) > d[2, m; > n,, n > m, implies o(x,9", xp™)<d[8, Ulw;, ;) <
Ula;—, 2,-,), and 0(p, q) < a; implies o(pg”, q¢") < d[8 for 0 = n = m,.
We can suppose lim, ,,..x; = we Ula, x)cUle, x) and w = 2. If 7> 1,
then n, > m,_, and hence o(x,.,9", x¢p™) < d/8. But p(xp™, x;_.p")>d/[2,
and the triangle inequality implies ©(z$™, xp") > 3d/8. If 7 > 1,
then x; € U(a,, ;) and, since m; > n,, o(x,", 2,dp™) < d/8. Therefore
oz, wp™) > df4 for g = 4. If 7 >1 is fixed, then p(x;p", wd™) is
arbitrarily small for 7 sufficiently large. Hence p(x¢™, we™) = d/4. Since
{n,} is an increasing sequence of positive integers, w and z are not
positively asymptotic. This proof establishes the alternative statement
by using ¢ rather than ¢.

THEOREM 3. For each xe X and each ¢ > 0 there exists ye Ule, x)
such that x and y are not doubly asymptotic.

Proof. Suppose there exist xe€ X and ¢ > 0 such that ze U, x)
implies # and 2 are positively asymptotic. Suppose ¢ < d/2, then, by
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the above lemma, there exist ye U(e, ) and a > 0 such that U(a, y) C
Ule, x) and ¢t € U(e, y) implies that p(ts”, y¢™) < d/2 for n = 0. Therefore
u, ve U(a, y) implies p(ud®, vd™) =< d for » = 0. Thus, since ¢ is ex-
pansive, u, ve U(a, y) implies p(ud”, vp™) > d for some negative n. By
the alternative form of the lemma above, there exists we U(a, y) such
that w and y are not negatively asymptotic. Therefore either w and =
are not negatively asymptotic or ¥ and x are not negatively asymptotic,
which establishes the theorem.

If X is an infinite minimal set, then a stronger statement can be
made. Since X is pointwise almost periodic under ¢([1], p. 81),e >0
implies o(x, x¢p") < e for some n % 0. It is easy to show that x and x¢
are neither positively nor negatively asymptotic.

If X is not self-dense, then, as shown by the following example,
each pair of distinct points may be both positively and negatively asymp-
totic. Let X consist of the real numbers 0, 1/n{n = =1, 4 2,--.}, and
let

YO if 2=0.
xp=<1/(n+1) if 2=1mn and n+ —1.
1 if = —1.
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ON COMPLETE AND INDEPENDENT SETS OF
OPERATIONS IN FINITE ALGEBRAS

JEAN W. BUTLER

In [4] Post obtained a variety of results about truth functions in
2-valued sentential calculus. He studied sets of truth functions which
could be used as primitive notions for various systems of 2-valued logics.
In particular, he was interested in complete sets of truth functions, i.e.,
sets having the property that every truth function with an arbitrary
finite number of arguments is definable in terms of the truth functions
belonging to the set. Among other results Post established a computable
criterion for a set of truth functions to be complete. Using this criterion
he showed that there is a finite upper bound for the number of ele-
ments in any complete and independent set of primitive notions for the
2-valued sentential calculus (and that actually the number 4 is the least
upper bound). Alfred Tarski has asked to what extent these results
can be extended to n-valued sentential calculus, for any finite n. It
will be seen from this note that those results of Post concerning com-
plete sets of truth functions can actually be extended. On the other
hand it has been shown recently by A. Ehrenfeucht that the result
concerning arbitrary sets of functions cannot be extended.

Both the results of Post and those of this note can be formulated
in terms of truth functions of the 2-valued (n-valued) sentential calculus
or in terms of finitary operations in arbitrary 2 element (n element)
algebras. We choose the second alternative since the many-valued
sentential calculi have a rather restricted significance in logic and
mathematics.

Thus we shall concern ourselves with finitary operations under which
a given set 4 with n elements is closed. For simplicity we restrict our
attention to the case when A is the set N of all natural numbers less
than n. This restriction implies no loss of generality, since all the results
can be extended by isomorphism to any finite set with n elements. For
convenience we will identify N with », as is frequently done in modern
set theory.

For any given natural number %, let »* be the set of all k-termed
sequences & = {&y, &1, +++, L,_,» With terms in n. Denote by F,, the
set of all k-ary operations on and to elements of », i.e., of all function

Received December 15, 1959. This is the text of a talk given by the author at the
Summer Institute of Symbolic Logic held in 1957 at Cornell University; it appeared in
condensed form in ‘‘Summaries of talks presented at the Summer Institute of Symbolic
Logic in 1957 at Cornell University’’ (mimeographed), 1957, pp. 78-80. The results were

first communicated to the American Mathematical Society in [1]. The author thanks Professor
Alfred Tarski for his guidance and encouragement.
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on n®* ton. Let F, = Ui<.F, ., i.e., F, is the set of all finitary opera-
tions on and to elements of n.

For any subset X of F, we will denote by X the smallest set Y
which includes X and satisfies the following conditions:

(i) if feY and h is obtained from f by exchanging or identifying
two arguments, then 2 € Y

(ii) if feY, geY, and h is obtained from f by replacing an
argument by g, then A€ Y. A function f is said to be generated by
a set X if fe X. The set X is called closed if X = X, it is called
complete if X = F,, it is called independent if there is no proper subset
X’ of X for which X’ = X. A set Y is called a basis for a set X if
Y< Xand Y= X. A function f e F,, is called reducible or reducible
to first order if its values depend on at most one argument; i.e., if
there is an 7 < k and an h e F,, such that for every sequence x e n®
we have f(x) = h(x;). Hence f is not reducible if and only if for every
q < k there are z,y € n* with z, = y, and f(x) # f(y). We will denote
by Z(f) the range of f. We single out two functions in F,. V, is
the function of two arguments defined by the formula:

2V .,y = max (z, y) .

~, is the function of one argument defined by:
~,% = 2 + 1(mod n) .

In the following few lemmas we will establish some properties of
the notions just defined:

LEMMA 1. If feF,,, n=3, f not reducible and FZ(f) = n, then
{fYU F,, generates a function g € F,,, g not reducible and <&(g) = n.

Proof. We first establish that there exist ¢ < k and u, v € »* such
that f () #= f(v) and u, = v, for all ¢ # ¢, ¢ < n. Since <Z(f) contains
more than one element there exist a, b € »* such that f(a) = £(b). There
are k + 1 sequences ¢, ¢®, «««, c® € n* with ¢ = a, ¢® = b, and such
that for any ¢ < k, ¢“*" is obtained from ¢ by replacing ¢!’ by c®.
Hence ¢? and ¢%" differ only in the 4th coordinate, moreover
¢ =a, for 1=37 and ¢? =b, for ¢<j. Since f(a)= f(c®) =
FeP, e, eee e), f(0) = f(c™) and f(a) # f(b) it cannot be the case
that f(c®) = f(c**") for all © < k. Therefore there is some ¢ < k such
that f(c?) +# f(c**") and ¢{@ = ¢{*™ for all ¢ +q, 1 < k. Take ¢? for
% and ¢ for v.

Since .<Z(f) = n, we can choose % sequences ¥, y', «-+, y* e nk
such that f(y) = f(u), fF(¥®) = f(v), and each value in » is taken on
by f for some y®. There also exist w, z € n* for which w, = 2, and
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f(w) # f(2), since if this were not the case f would depend only on its
gth argument and thus be reducible.

There are two possible cases: (i) there exist w, z € n*, with w, = z,,
and f(w) + £ ), f(w) = fu), f(w) = f@); (i) for every w, z € n* with
w, = 2, and f(w) # f(z) neither f(w) nor f(z) is different from both f(u)
and f(v).

If case (i) holds there exist w,zen® for which w,=7, and
fw) # £(2), fw) #= fw), f(w) #= f(v). With no loss of generality we
may assume f(¥?) = f(w). We define k£ functions b, Ay, +++, hyy € F,,
separately for h, and for h,, j #gq,

Uy =0 Uy =0
v r=1 P r=1
(@) =4" @y =+1"
q - J -
y®» x> 2 ¥y ox>2.

We define g € F,, as follows:

( 1 ) g(ac, y) = f(ho(x)! hl(x)’ A hq—l(x)’ h’q(y)’ hq+1(x), ttty hk—l(x)) .

Notice that y appears only in the gth coordinate of f. <#(g) = n since
900,0) = f(w) = f(¥?), 9(0, 1) = f(v) = fF(¥?), 92, 2) = f(w) = f(¥?), and
9, 1) = f(y"¥) for © > 2. Moreover g is not reducible, since g(0, 0) #
9(0,1) and g(1, 2) = g(2, 2).

If case (ii) holds we take for h, the identity function in F,, and
using any w, z € #* for which w, = 2z, and f(w) # f(z) we choose k — 1
functions &, € F,; for j # q, satisfying

U, x=0
hix) = {w, x=1
2y

and then define g by (1). Now for any s € #n* withs, =y, 2 <17 = n,
condition (ii) guarantees that f(s) =f("?¥) since f(y"?)+ f(u) and
F(@?) # f@). Therefore g(0, u,) = f(u) = f™), 9, v) = f @) =fHy™),
g(m, y) = fFy?) for m <n and 2 =<7 <mn. Hence #(g) =mn. The
function g is not reducible, since g(0, u,) # ¢(0, v,) and g(1, w,) # 9(2, w,).

LEmMA 2. If fe F,, ts not reducible and <Z(f) has p elements
D = 3, then there exist 1, 7, k,l < n such that among the function values
F@, k), £, 0, £(3, k), £(3,1) at least three distinct values are represented.

Proof. There are two possibilities;
(i) in the table of f all value in .&Z(f) are taken on across some
row, i.e., there is an ¢ < » such that the set of all values f(¢,5) with
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j < n coincides with <2 (f);

(ii) in no row are all values in .<Z(f) taken on.

If (i) holds, since f is not reducible there must be 7, I < n for which
f@, 0+ f£(4,1). Since p = 8 and all values in <#(f) are taken on in
the ¢th row there must be a k¥ < n such that f(¢, k) is distinet from
both f(z,1) and f(7, ).

If (ii) holds, since f is not reducible there is some non-constant row,
i.e., some 1, 7', " such that f(<,J') + £ (4,7”). However, by assumption
there is a w € <Z(f) which does not appear in this row, i.e., for all
x<p, f@t,x) * w. Since we F(f) there are 7,1 <n for which
f(4, ) =w. Hence f(3,1) #+ f(4,1). Since w does not appear in the ith
row and the ¢th row is not constant there is some k& < n such that the
value f(¢, k) is different from both f(7,1) and f(7, ).

LemMa 8. If fe F,, is not reducible and <Z(f) has exactly p
elements, 3 <p < n, then there exist two functions h, h, € F,, with
#(h), F(h,) each consisting of at most p — 1 elements, and such that
for every x € Z(f) we have f(h(x), h,(x)) = x.

Proof. By Lemma 2 we can find 4,7, k,1 <mn such that f(z, k),
f@, 0, £(3,k), f(4,1) represent at least three distinct values. Assume
f@, k) =mu, f@&,1) =, f(5,k) = w are all different. Functions h,, h, €
F, . can be found such that

hw) =i ha(t) = ke
h(v) =1 hy(v) =1
h(w) =7 hyo(w) =k

and
h(z) =1, h(x)=Fk for z¢ Z(f)
S (), ho(z)) = for = e ZZ(f) ~{u,v, w}.
Clearly, h, and h, satisfy the requirements of the Lemma. The proof

in the other cases is analogous.

LEmMMA 4. If feF,, and 2= p <n, and there exist i,j,k <mn
such that for all y <p

fGy) =y and f(j,y) =k

then f together with the functions in F,, generate a function g € F,,
such that g(x, y) = xV,y for z,y < p.

Proof. We shall prove, by induction on D, a slightly weakened form
of the theorem, replacing the condition 7,7,k <n by 4,5,k < p. The
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theorem as stated then follows, since {f}U F,, generates a function
satisfying the strengthened hypothesis.

For p = 2, since 1,5 < p the function f must agree on {0, 1} with
one of the following four tables:

(iy 0 1 ({) o0 1 Gi) 0 1 iv) 0 1
olo 1 olo 1 0lo o ol1 1
101 1 110 0 110 1 110 1

In case (i) f itself may be taken for g. In the other cases using any
homomorphism & € F),, which exchanges 0 and 1, g may be constructed

as (i) 2(f(x, M(y)), (i) k(S (R(®), R(y))), (V) f(~(2), ¥).

Agssume the theorem is true for p — 1. From {f}UF,, we can
construct a function satisfying the induction hypothesis for p — 1. Thus
we can generate a function ¢’ such that

g, y) =aV,y for z,y<p—1.
Now choose functions %, k, € F',; such that
.. p—1 if 2=k
h(x) = ho(x) = {k it z=p—1

pif x=p—1
J b X otherwise

and construct f' € F,, as follows:

F'(@, y) = ho(f (), ho(®))) -
It can be seen that

(y if 2<p—1 and y<p

f(w,y)=1p_1 if s=p—1 and y<p.

Now we define g € F, ,:
9(x,y) = f'(f'(,9), 9, ¥)) -

For z,y<p-—1, g9 =gy =aV,y; for 2=p—1, y<p,
g,y =f'p—1,9@—1Ly)=p—1, for t<p—1and y=p—1,
g@, ) =f"(p—1,¢(x,»—1) =p—1. Therefore g agrees with VY,
for =,y < p, which estalishes the Lemma.

LEmMA 5. If fe F,, is not reducible and FH(f) =p, 3=p=n,
then f together with the functions in F,, genmerate a function g € F,,
such that g(x, y) = xVy for all x,y < p.

Proof. The proof is by induction on p. For p = 3, using the 4, j,
k,1 of Lemma 3 and appropriate homomorphisms from F,; we can
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generate a function h € F),, such that the values of 2 on {0,1} agree
with one of the two tables:

(i) 0 1 () 0 1
0lo 1 0jo 1
1|2 2 1]2 o

We then choose five functions k., h,, ks, by, by € F,, such that

lO)=0 h(0)=0 Rh(0)=0 Rh(0)=0  hy0)=0
hl)=0 h1)=1 hk1)=0 kQ=1 hkl)=2
M@ =1 h@=1 §h@=0 h@=0 h=2.

In case (i) g can be constructed as

9@, y) = hh(x, h(y)), k(®, k() .

To construct ¢ in case (ii) we define ¢', 9" € F,,

g'(x, ¥) = h(h(hy(x), hi(¥)), ho(h(hi(), hy(¥))))
g"(x, y) = h(g'(z, hy(y)))
and then
g9(x,y) = 9'(¢"(x,v), 9'(x, ¥)) .

Assuming the theorem true for p — 1, we prove it for p, 3 < p < n.
First we construct a function f” satisfying the induction hypothesis for
p —1. To do this we apply Lemma 2, taking an 4,7, %k, such that
f@, k), £@, 0, £(4,k), £(4,1) represent at least 3 distinct values, u, v, w.
Since p > 3 there is a value ze H(f) ~{u,v,w}. Let heF,, such
that

% x =z

h(zx) = .

x otherwise,
Then the function A(f(x,y)) is not reducible and has p — 1 elements in
its range. The application of an appropriate isomorphism from F,, will
produce a function f' € F,, with <Z(f"”) = p — 1 and f" not reducible.
Then by the induction assumption we can generate a function ¢” € F,,
such that

9"z, y) =2V,y for z,y<p-—1.

Next by Lemma 3 there exist &, h, € F,, with <#Z(h,), “#2(h,) each
consisting of at most p — 1 elements and such that

f(hl(x)! hy(x)) =«
for = < p.
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Let hy, h, € F,, be isomorphisms such that

hix) <p—1 for xe ()
h(x) <p—1 for e 2h,),

and define f'e F,,, h;, hye F, .:

ho(x) = hy(hy(2)) , x<n
he(x) = hy(hy(x)) , x < n
S, y) = fhi(@), k@), zy<mn.
Then
F'(hy(), he(x)) = for « < p

and #Z ), F(hy) S p — 1.
We can now define a function ¢’ € F,, as follows:

9@, y) =1'9"@ @), 9", k) .
Then
90, 9) =f'(), b)) =y for y <p
and
g—-2,y)=fp—2p—-2 for y<p.

Therefore by Lemma 4 we can generate a function g € F,, such that
9@, y) = xV .,y for =,y < p.

LEMMA 6. If feF,, n=38, f is not reducible, and FZ(f)=n
then F,, U {f} is complete.

Proof. By definition ~, € F,,. By Lemma 1 there is a ge
F,,U{f1nF,, such that <#(g) =n and ¢ is not reducible. Using
Lemma 5 with p =% we see that V, e F,, U {f}. It is known' that
the set {V., ~,} is complete. Clearly, if X< Y and X is complete
then Y is complete. Therefore F,, U {f} is complete.

In [4] Post established a necessary and sufficient condition for a
set X < F, to be complete. In order to extend this result to n > 2 we
use his method. This consists in constructing a finite family .7, of
proper closed subsets of F), satisfying the condition that every proper
closed subset of F), is included in some set of the family. The existence
of such a finite family of maximal sets is an important property of the
lattice of all closed subsets of F,.

By our definition F),, is closed. Moreover F,, is finite, containing

1 Post [3].
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exactly n” elements; therefore the family of all closed subsets of F),, is
finite. For each closed S S F,,;, » = 3, we define a set M(S) as follows:

(i) if S=F,, then M(S) is the set of all functions f € F, such
that either f is reducible or <#(f) is a proper subset of n;

(ii) if S # F,,, then M(S) is the set of all functions f € F, satis-
fying the following condition: if in f we replace zero or more argu-
ments by functions in S and then identify all arguments, the resulting
function is in S.

Finally, we take as .7,, n < 3, the family of all sets M(S) where
S is any closed subset of F, .. That this family ., actually has the
property mentioned above is seen from the following.

LemmA 7. Let S is a closed subset of F, ., (n = 3). Then

(i) M(S) s closed.

(ii) M(S) is a proper subset of F.,.

(i) MES)NnF,,=S.

(iv) If Y is a proper closed subset of F, with YNF,, =S then
Y < M(S). '

Proof. We establish Lemma 7 first for the case S+ F,,. M(S)
is closed, since the defining property for M(S) is preserved under ex-
change or identification of variables and also under substitution. Since
S is a proper subset of F,,, M(S) does not contain all functions of F, ;.
Therefore M(S) is a proper subset of F,. S& M(S)NF,, =S, hence
M®S)YNF,,=S. The fourth property can be verified directly from
the definition of M(S): Let Y be any proper closed subset of F, with
YNF,, =8, feY, and h a function obtained by replacing zero or more
arguments of f by functions in S and then identifying all arguments.
Since S Y and Y is closed, he Y. But YNF,, < S and he F,,, so
h e S. Thus every function f € Y is in M(S). Therefore Y < M(S).

We turn now to the case S = F,,. That M(F,,) is closed follows
from its definition: Both reducibility and range different from # are
preserved under exchange or identification of variables. Let f, g € M(F, ),
h a function obtained by replacing an argument of f by the function g.
If <#(9) # » then <#(h) +n and h € M(F,,). If g is reducible, either
h is reducible or h = f, so h € M(F,,). Clearly M(F,,) is a proper sub-
set of F, since there exist functions in F, with full range » which are
not reducible. M(F,)NF,,= F,,, since every function in F,, is
reducible. The proof of the fourth property follows from Lemma 6:

2 The corresponding family for n = 2 contains nine elements since F% ; has exactly nine
closed subsets. In [4] Post defined these nine sets individually: Ci, Rs, R3, Ry, Cs, Cs, Ds,
A,, Li. Our definition of M(S) is directly applicable to the eight proper closed subsets of

Fy.;. However, it is of interest to note that in the case S = Fy, the structure of M(S)
is essentially different for n > 2.
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Let Y be any proper closed subset of F, with YNF,, = F,,. Clearly,
Y cannot be complete. By Lemma 6, since F,, = Y, Y cannot contain
any function f, with <Z(f) = %, which is not reducible. Hence Y &
M(F,,). This completes the proof.

Thus we see that the family .7, of all sets M(S) where S is any
closed subset of F),, consists of finitely many proper closed subsets of
F,. Moreover, if X is any proper closed subset of F', by property (iv)
of Lemma 7T X & M(XNF,,) e «,, since XN F,, is a closed subset of
F,..

We now state the main result of the note:

THEOREM 1. A necessary and sufficient condition for a set X < F,,
n = 3, to be complete is that for every closed subset S of F., there 1is
an fe X such that f & M(S).?

The proof of this theorem follows directly from Lemma 7. If there
were any closed subset S of F,, such that X < M(S) then X < M(S)
since M(S) is closed and hence X would not be complete. On the other
hand if for every closed subset S of F),, thereis an f ¢ X ~ M(S) then
X & M(S) for any closed subset S of F,,. By Lemma 7, X cannot
be a proper subset of F),. Therefore X must be complete.

COROLLARY 1. A set X S F, is complete if and only if F,, < X,
n =3, and there ts an fe X such that <Z(f)=mn, and f is not
reducible.

Proof. 1If X is complete then F,, < X; and by Theorem 1, X &
M(F, ). Therefore thereisan fe X~ M(F,)); i.e., f e X, Z(f) =n,
and f not reducible. On the other hand if F,, < X, then X is not
included in M (S) for any proper closed subset S of F,,. If, in addition,
there is an f € X with <#(f) = n and f not reducible, then X & M(F, ).
Therefore by Theorem 1, X must be complete.

We now state two further results, Theorems 2 and 3,* which follow
easily from Theorem 1;

THEOREM 2. There exist finite deciston procedures to determine

3 An analogous result for # = 2 with the family .4, replaced by the set {Ds, Cs, Cs, A1, L1}
was obtained by Post in [4]. It may be noted that our theorem can be sharpened to include
this result by adding the restriction: S contains the identity function and at least one
other element.

¢ Yablonskii in [5] states without proof Theorem 2, which he attributes to A. V.
Kuznecov. He also attributes to Kuznecov another result which he states (again without
proof) as follows: Every complete set (included in F%) contains a finite complete subset
(i.e., a finite basis). In this form the result is rather obvious and follows directly from the
results of Post [3]; compare the first part of the proof of Corollary 2. The subsequent
remarks of Yablonskii make it likely, however, that Kuznecov obtained a stronger result
established here as Corollary 2.
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whether or not any finite subset of F,, n =3, is complete and if
complete whether independent.®

This theorem depends essentially on the computable character of
our definition of the sets M(S). This means that for any f e F, and
any closed subset S of F,, we can tell by a finite procedure whether
or not f € M(S). Therefore if X is a finite set, Theorem 1 provides a
finite method for determining whether or not X is complete. This part
of the proof can also be based on Corollary 1. The only thing to be
shown is that all functions belonging to F,,N X can be obtained by
means of a well determined finite procedure.

If X is complete then X is independent if and only if no proper
subset of X is complete. For a finite complete X, therefore, we can
determine in finitely many steps whether or not X is independent.

THEOREM 3. For any natural number n, n = 2, there is a natural
number p such that every complete and independent subset of F, has
at most p elements.®

For n = 2 this theorem was proved by Post in [4]. For n = 3 it
can be derived directly from Theorem 1. Let p be the number of ele-
ments in the family .#Z, of all sets M(S) for S any proper closed subset
of F,,. By Theorem 1, any set which contains an f ¢ M(S) for each
M(S) in .#, is complete. Thus any complete set with more than p
elements would contain a proper subset which is complete.

COROLLARY 2. For any number n, n = 2, there is a natural number
p such that every complete set included in F, has a finite basis with
at most p element.

If X F,= is complete, then V,, ~, ¢ X. Hence {V,, ~.} can be
generated by a finite subset Y of X. Since {V,, ~,} is complete Y must
be complete. Let Z be any complete independent subset of Y. Z is a
finite basis of X and by Theorem 3, Z has at most p elements.

By modifying the proof of this result (and in fact making the
argument independent of Theorem 1) A. Tarski has obtained the following
generalization of Theorem 3.

THEOREM 4. For any closed set X < F, which has a finite basis
there is a natural number q such that every independent basis of X
has at most q elements.

The method of proof is similar to the proof of Theorem 3. We
replace the family .4, by a finite family < ={L, L,, -+, L,_;} of
closed proper subsets of X with the property that for any closed proper

5 By Post’'s results in [4], this theorem is also valid for n = 2 since the conditions

defining the sets Ds, Cs, C3, Ay and L, are finitely computable.
6 For n == 3, Yablonskii in [5] found p = 18.
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subset Y of X there is 'a set L,, © <gq, in %5 such that Y& L,. %
is constructed as follows. Let B be any finite basis of X. Since B is
finite there is a natural number % such that B = U, F}.. For each
A satisfying

Aan Ut<Ian,iy A:'tX’ and AmUiﬂanz:A

we define the set L(A) in the same manner as the sets M(S) were de-
fined for S = F,,. The proof that the sets L(A) are closed proper sets
with the required property in the lattice all closed subsets of X is
entirely analogous to the proof of Lemma 7.

For complete sets the upper bound ¢ of Theorem 4 is much larger
than the » of Theorem 3.

For n = 2, Post in [4] computed an upper bound p = 5 in Theorem
3, and then showed that actually 4 was the least upper bound. He also
proved that every closed subset of F, has a finite basis. Therefore,
two further questions arise for n = 8:

(1) does every closed system of functions in F, have a finite basis;

(2) (proposed by A. Tarski) is there any finite procedure to deter-
mine the least upper bound for the number of elements in any inde-
pendent basis of the complete system F,.

The solutions of these two problems have been communicated to me
by A. Ehrenfeucht. He has shown that the solution of problem (2) is
positive, while that of problem (1) is negative. Ehrenfeucht exhibits a
very simple closed subset of F),, » = 3, which has no finite basis.

(Added in proof.) It has been communicated to me by Professor
C. C. Chang that Lemma 5 was obtained by Jerzy Slupecki in ““A
criterion of fullness of many-valued systems of propositional logic”’,
Comptes Rendues des séances de la Société des Sciences et des lettres
de Varsovie 33, 1939, Classe III, pp 102-109. Slupecki proves the
following extension of Lemma 5: If F,, S X then X is complete if
and only if there is an fe X, feF,, f not reducible and <Z(f) = n.
Note that Lemma 6 and Corollary 1 extend this result by using Lemmas
1 and 7 to remove the condition fe F) ,, which is necessary for the main
results of this note.
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AN APPROXIMATION THEOREM FOR THE
POISSON BINOMIAL DISTRIBUTION

LucieN LE Cam

1. Introduction. Letx,;5=1,2, «--- be independent random varia-
bles such that Prob(X; = 1) = 1 — Prob (X, = 0) = p;. Let @ = (X))
be the distribution of their sum. This kind of distribution is often re-
ferred to as a Poisson binomial distribution. For any finite measure p
on the real line let || ¢£|| be the norm defined by

eell = sup { | (e}

the supremum being taken over all measurable functions f such that
[f1=1. Let » = J3p,, let ¥p} = v and let « = sup,p,. Finally let P
be the Poisson distribution whose expectation is equal to .

The purpose of the present paper is to show that there exist ab-
solute constants D, and D, such that ||Q — P|| < Dx for all values of
the p/’s and [|Q@ — P|| £ Dyw if 4o = 1.

The constant D, is not larger than 9 and the constant D, is not
larger than 16.

Such a result can be considered a generalization of a theorem of
Yu. V. Prohorov [9] according to which such constants exist when all
the probabilities p, are equal.

The norm || @ — P|| is always larger than the maximum distance
O(P, Q) between the cumulative distributions. For this distance o a very
general theorem of A. N. Kolmogorov [6] implies that o(P, Q) is at
most of order a'®. The improvement obtained here is made possible by
the smaller scope of our assumptions.

The method of proof used in the present paper is not quite ele-
mentary, since it uses both operator theoretic methods and characteristic
functions. The relevant concepts are described in § 2.

A completely elementary approach, described in {4] leads to bounds
of the order of 3a**® for the distance p. Unfortunately, the elementary
method does not seem to be able to provide the more precise result of
the present paper.

The developments given here were prompted by discussions with
J. H. Hodges, Jr. in connection with the writing of [4].

2. Measures as operators. Let {9, %} be a measurable Abelian
group, that is, an Abelian group on which a o-field 2 has been selected

Received December 9, 1959. The author is a research fellow of the A.P. Sloan Foun-
dation.
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in such a way that the map(x,y) — ¢ + y from X x X to X is measura-
ble for the o-fields A x A and A.

Let <7 denote the set of bounded measurable numerical functions
on {X, A}. A finite signed measure ¢ on 2 defines an operator, also
denoted y, from <# to itself. To the function fe <z the operator n
makes correspond the element pf whose value at the point @ is (¢f)(x) =

S fx + E)(dg). Linear combinations of two operators are defined by
the equality

(ap + BIf = a(f) + BS) .

The product of two operators will be defined by composition: (¢)f =
p(vf). In other words,

(7)) = | ) | f@ + & + wm(ad)

It follows from Fubini’s theorem that gy = vy, The product pv cor-
responds to the convolution of the two measures.

For any element f of <7 let |f]| be the norm | f| = sup|f(x)|. De-
fine the operator norm || ¢ || by

Il =sup{ pf s Lf I =1}

The norm || £]] is equal to the total mass of y considered as a measure.
It is an immediate consequence of the operator representation of v that
IS

Let 9 be the system of operators obtained from all the finite signed
measures. What precedes can be summarized by saying that I is
a normed commutative algebra having for identity the operator I which
is the probability measure whose mass is entirely concentrated at the
point £ = 0. It is not difficult to show that 9 is complete for the
norm, so that 9 is in fact a real commutative Banach algebra.

Let @ be a complex-valued function of a complex variable z. Sup-
pose that for |z| < @, the function ¢ has a convergent power series
expansion. It is then possible to define @(A4) for every A € M such that
Il A]l < a by simple formal substitution in the power series expansion
of @,

The entity ¢(A) is then of the form ¢(A) = B + ¢C where both B
and C belong to M. Other possible definitions can be found in [3], [2], [8]-

If /i is the Fourier transform fi(t) = \e"* p(dx) of the measure g then

@(y) is the measure where the Fourier transform is @(f).

In most cases of statistical interest, the space ¥ is either the real
line, or the additive group of integers, or the circle, or a Euclidean
space. In those circumstances, as well as in the case where ¥ is an ar-
bitrary Abelian locally compact group, we may replace <& by the space
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of continuous functions which tend to zero at infinity without affecting
any of the above properties.

Let M be an arbitrary finite positive measure on ¥. Then exp (M) =
e =I+M+ -+« + Q) M* + --.. It follows that exp[M — || M ||I] =
exp[—|| M ||]] exp (M) is always a probability measure.

If a random variable X is equal to the origin of % with probability
(1 — p) the distribution &2(X) can be written (X)) =1+ p(M — 1)
where M is a probability measure.

The following theorem, essentially due to Khintchin [5] and Doeblin
[1] is concerned with the distribution @ of a sum XX, of independent
variables having distributions G, = I + p,(M; — I) where M, is a prob-
ability measure. The product [],G, is always convergent when )\ =
>.;D; is finite. Conversely finiteness of \ is necessary to the convergence
of TI,;G, when ¥ is the additive group of integers. More generally,
suppose that X is the real line and that there exists an € > 0 such that
N: = 3p;M{[—e¢, €]} = 0. Then I],;G, cannot be convergent. This fol-
lows for instance from a result of Paul Lévy [7] according to which
any interval containing the sum XX, with probability & > 0 must have
a length of the order of e1/..

A refinement of Paul Lévy’s theorem can be found in [6], Lemma 1.
However, the finiteness of )\ is not generally necessary to the conver-
gence of [[;G,. This is quite obvious if X is the circle and G, is the
Haar measure of the circle, but the condition is not even necessary on
the line.

THEOREM 1. Let X,;;5=1,2, .-+ be independent random variables
taking their values in the measurable Abelian group X. Assume that
LX) =1+ p(M; — I) where M, is a probability measure and as-
sume that N = Sp; < . Let p, = \¢;, let w = X¢,p, and finally let
M = 3¢;M,. Then

1Q — P|| = 2vor
Jfor P = exp|[MM — I)].

Proof. The proof is essentially the same as the proof of Theorem 1
in [4], given there in terms of random variables. In terms of operators
one can proceed as follows.

Let F, =expp,(M,; — I) and let B, = [],:.G;. For k> 1 let R, =
(ILs26— F)(IT 2241 G). Then R.F, = Ry ,Gy., so that

].;IGJ'_IJ[F]:%:RJ(GJ'—F»°

Since R, is a probability measure, this implies
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IIG, — I1F 1l = 31 Gy — Fy ]l -

The difference F'; — G, can be written

F— Gy = e — (1= p)ll+pe”s — DM, + 5 <2 pis

Hence || F, — G, || = 2p,(1 — e™%) =< 2p5.
Noting that I[,F, = exp [MM — I)], this proves the desired result.

REMARK. The literature does not seem to contain any reference to
the fact that Theorem 1 can be proved as in [4] and coupled with
Lindeberg’s proof of the normal approximation theorem to obtain a com-
pletely elementary proof of the general Central Limit theorem.

3. Sums of indicator variables and binomial distributions. In all
the subsequent sections of this paper ¥ will be the additive group of
integers and {X,;; 1,2, ...} will be a family of independent random
variables such that Prob(X, = 1) = 1 — Prob (X, =0) = P,. The distri-
bution &(X,) can then be written either as I + p;4 or (1 — p,)I + p,H
where 4 is the difference operator 4 = H — I and H is the probability
measure whose mass is entirely concentrated at the point x =1. The
Poisson distribution whose expectation is )\ can be written P = exp (\4).

Letting M¢; = p, and @ = J¢,;p,, Theorem 1 implies that if @ =
Z(2X;) then the following inequality holds.

PROPOSITION 1. || @ — exp (M) || = 2\w.

From now on we shall assume that )\ < « and that a = supp,
does not exceed 1/4.

It may be expected that @ would be approximable by a binomial
distribution much more closely than by a Poisson distribution. Letting
A = v, a binomial distribution with v trials and probability of success
w can be written

B=U+ w4y =»10—-wy(d+ pH)y

with p = w/1 — @, at least when v is an integer. If v is not an in-
teger the expression

B=(L—w¥ﬁ+(ﬁpH+.u+(@¢Hk+.”}

where

r'v+1)
By —Fk+1)

<Z)=~k17v(u—1)---(u—k+1):
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still possesses a precise meaning as long as p < 1. However, B is not
a probability measure even though SldB = 1. Let n be the integer such

that (n — 1) < v < n. The coefficients <}:> oforderk =(n+1),(n+2)---
are alternately positive and negative.
Let S=(1 — w) 3, (Z)p’“H’“ The norm of S is equal to

(7) 2 (E)eer

The term inside the absolute value symbol is simply the remainder of
the expansion of (1 — p)*. By Taylor’s formula || S]|| is equal to the
absolute value of

1S =1 —wy 3

k=n+1

0= (1 - )

%u(y -1 (yv—n)(1—w)1 — p)"gzllip(——l)”t”(l + i

Therefore, since n —1 <y <n
P/l
[4]

IS=@—opa—or| e+ oa

1 N N [O >n+1
= 1 — )1 — I
s 50— oyl —p) (1_p
= T 2wy E g
n -+ 1 v+ 1

In the cases considered here v = (Xp,)(Xp?)* is always larger than or
equal to unity. In all cases where v is large and w is small || S| will
be rather negligible.

Note that M =vw = Sde and vo(l — w) = S(x — \)dB. How-
ever, this last quantity may not be treated as a variance, since B pos-
sesses negative terms.

In spite of this it will be convenient to bound the remainder term

Sm) = (1~ wy 5 (})erH

=m+
for large values of m, by Chebyshev’s inequality. Assuming A< m < n
the terms (1 — m’)”(’,’c)p’c are smaller than (1 — w) ™ (1 — tf)”(Z’)p".
Therefore

4m/v+1
v+ 1

1Stm) | = 4% 4+ (1 = vy 5 @ —oy(})er

Finally, by Chebyshev’s inequality applied to the binomial [1 + w 4],
one obtains
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no(l — ©)

=y

4,®«v+1
I S(m) || = 222

In particular, if m < 2nw <m + 1

4’(7”'1 + (1 — ,Gr)l—(n—v)

18(m) || = 2= 2

gmww+u%.

To show that @ can be approximated by the Poisson distribution P
in the cases where X is too large for Proposition 1 to have any significance,
we shall first show that @ can be approximated by B and then show
that B is very close to P. The argument will be divided into three
parts according to the values of A and \a’ for o’ = Jey(p; — w)’. If &
is large but Ma® is small, bounds will be obtained through operator
theoretic methods. If A\ is so large that Aa® becomes large, bounds will
be obtained through computations on characteristic functions.

4. Approximations by binomial distributions. In this section, it will
be assumed throughout that » = 3 and that a < 1/4.

For the distributions @ and B defined in the preceding section we
can write

log@Q — log B = Zj}log(f-l- p,4) — vlog (I + w4)

= xg cj{i log (I + p,4) — —élog I+ m’A)}

D;

i(l)BMH—MM
with

2( ) B,4*

and B, = 3,,¢;0f — wt = 0.
Since (—1)¥4*= 3, (if >(—1)SH s, the measure M assigns negative masses
$=0
to the odd positive integers and positive masses to the even nonnegative

integers.
The norm of M is precisely equal to

Bu2® _ _ 1 _ _ 1 _
1M1= £ 757 = —Sedg, gt~ 20) — gLlog (1~ 2w)} .

Letting 4 = 2w and v; = 2(p, — w) this can also be written
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1M1= S:ZC’{[l - t(@ll, To) 1 = tn ]}dt :

Since Xecw, = 0 and Jev? = 4a* while

1=t + )] — A —tw)™ =1 — tu)f{l + (o)l — tu + v, Mo,

one can write

_ 1 ,v? tZ
171 = go{zcj 1 —tu + vj)]} A — tuy at
4&2 Sl tz dt
1—2alto (1 —tuy

4a’ 3w
= 3(1 — 2a){1 + 1- 217)2} )

Hence || M || = ha® with

4 3w
= 3(1—2w) {1+ (1—217)2} )

One can also write M = 4M, = 4*M, with || M || = 2|| M, || = 4|| M, .
It results from these equalities that

Q = Bexp[MM].

For every measure p, Taylor’s formula gives

o= I+ ySlef“dé .
0

Hence
Q — B = 4BM| e dg
= \aBM| e
Finally
|Q — Bl = M| M|| || 4B [|e
and

1Q—B| = -;—xn M| || £B [|le

One can also note that there exist probability measures F' and G such
that if ¢ = || M|] then

Qexp[re(F — I)] = Bexp[re(G — I)] .
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According to the foregoing expressions, to obtain bounds on || @ — B||
it will be sufficient to evaluate || 4B|| and || 4’B]|.

Let f(x) = (’;)mﬂ(l — w)*® and consider only values x such that

2 <n—1. In this range f achieves its maximum at a value x such that
M+ o —1<a=)+ w. It follows that (4f)(z’) is positive for 2’ = =
and negative for x’ > x. Finally

| 4B || = 2f(x) + || S| .
Let ©x = v&€&. An application of Stirling’s formula leads to the inequality
log f(z) < — — log [2m2£(1 — £)]

0

fle) = Yoy

with

o= vlea-9]

Since w(l + 1/v) — 1/y < ¢ £ w1 + 1/v) the quantity /w1 — §) is larger
than

2= 2= oo D] [t 252 - <o+ 2]
2B o P2 1-8).

Consequently,
72 \*
o< (——
“(7071-)
and
4,m/‘u+2
AB <__
4B = =t

Thus, we have shown the validity of the following proposition.

PROPOSITION 2. Let =3 and a < 1/4, then

2 —_— . 4@/1/4»2
1@ — B|| < 2ha*V' ) exp(2h>»a){0 + = }

with
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4/ 1 3o 32
hs——————[l ____]g__
—3<1—2a> T A2y I =3

and

o (B ) s L.
~\8x/ T V38

A computation using the fact that 4M = 4*°M, and the bounds for
{l 4B || can be carried out as follows.

Let u=2+1—vw and let f(u) be the probability of = =
vw + # — 1 for the binomial B. Let 6 =vw(l — w) and let 8 = wé
and v = (1 — w)é. Then

S+l _ 1—pBu—1)
fu) 1+yu

‘The second differences of the function f for x <% are equal to some
positive quantity multiplied by

gu) =u"— 2w — Du — (v + 2wl — @) .

Let », and 7,, r, < 7, be the roots of this polynomial. The second
differences (4°f)(u) are negative for we(r, 7,) and positive otherwise.
Letting @(u) = (4f)(u) it follows that

| #B|| < o(u,) + | P(uy) — (U, — 1|+ @(n — » + 1) — @(u, — 1)
8
v+ 1

+ ,m/v+1 .

The values u, are determined by the condition that the correspond-
ing « values, say x, and x,, are respectively the largest integer not
exceeding 7, + ) and the smallest integer as large as 7, + A. The roots
r, and 7, are given by the expression

r= (o —1/2) + [(u + Dol — o) + %]”2 .

If » = 3 the value u, is negative while u, — 1 is positive.
In this case

P) = flon + D1 - g ]

= flu, + D[l uy | + o]

1

= _
= 1 — )

]+ |
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Similarly,
| p(u) | < f(uz)[l_—{if‘—;u——l) -1]

o ]+ o))

Note that |, — 1| =14+ 1/2 4+ vVyw(d — w) + 1/6 = 5/3 + /N1 — w).
Hence

-

o= = Hamaysls VA= 9]+ )

A

0
A
90
4N
The other terms can be bounded in a similar manner giving

1489 + 18 oo < 54
A A A

Finally the following result holds.
PROPOSITION 3. If A= 3 and a < 1/4 then
| Q@ — Bl < (2.7)h exp [2h\a?]a?

with h < 32/3.

It is possible to obtain bounds on the third difference || 4°B|| by
similar procedures. The algebra becomes somewhat more cumbersome.
Nevertheless, it is not difficult to see that bounds of the type

1Q—B||<C 11"%)" exp [2Aath]a?

can be obtained in this manner.

The bounds given in Propositions 2 and 3 will be of value if Ma? is
small. When A is so large that Aa® is large, better inequalities than
the preceding may be obtained through the use of Fourier transforms.

Let £t be the Fourier transform of the measure p. For instance
Q(t) = Se“” Q(dx). Note the following inequalities.

First

|1+ pe® —1)P=1—2p(1 — p)(1 — cost) .

Hence, if |t]| = 7/2
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2
11+ pe” — P =1—2p( —p)=[t].

If [t]| £ /2 then

1 t=21— £ coset
COS ——é—[ —1—2008 ]

with [&] < 1.
Consequently, for |t| < =/2

; t* (48 — 7*
1+ T _DEPL1—2p1 — —_—
| p(e Y= o( p)2< B )

and for |t| = w/4

. /192 — 72
1 it 1)< 1 — 2p(l — ~<___~>
|1+ ple Y= 2( p)z 153

It follows that | B(t)| <1 and
(1) For w2 < lt[:grz:
max {{B@) |, | Q) |} < exp —{M1 — o)(2/n)| t]}.
(2) Forzl4 < |t| = w2
max {| B(t) |, | Q) [} < exp[—(*/2) 2]
with v* = (1 — w) — 7°/48.
(3) For |t| < xm/4 A
max {| B®) |, | Q) [} = exp[—(8%/2) 2]
with 8° = (1 — »)(1 — 7*/192).
In addition, for |¢| = 7/4 and for 2 = ¢ — 1 one can write

log @ — log B =\ [-Llog (1 +p2) — Llog L+ w3)|

J

S S S -

o(1 + Ewa) 1+ épsz

with ¢; = p,/» and 8, = p;, — w.
This gives
|log @ — logB| < —é— M| 7 ()

where

! 3& 1

- dg .
V(@) = sup sup So 0+ wrf A ) |
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Since |14 fwz|*=|(1 — £w) + Ewe' |?
=1-— 2wl — £w)(1 — cost)
one has
[1+évzf21-@-vVE) Lo,
Finally
1 1
P(z) =
a (ng
/1-5 (-3

Hence

IlogQ — logﬁ] < K2t
with

It follows that, for |¢t]| < 7/4 one can write

| Q) — B(t)| < | B(t) |Ma*K?| t [* exp [MaK?| ¢ ]
1
S N 272 t 3 —_—— 242
< M’K? |t exp[ 5 )uyt]
with 7* = 82 — a*’K®7w[4 = 0.
Let V=(Q — B). The individual terms of V are given by the
formula

1 [+ N
V(k):.z_g e P(t)dt .

Applying to this formula the above inequalities one obtains:

or | V(k)| < 2m2K2§” £ sup [—.;. Mzﬁ]dt
0

oo

4 S exp [—xbz—tzi]dt

nl4

+4:S°°

]2

exp[—m _ ﬁr)%]dt :

Therefore,

4K?%a’ 16 [ Abm? 27
= —_ — —(1 — .
2| Vik) | =< o —+ =" exp 32 ] + " — ) exp[—( )N
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Noting that xe=* < e for = 0, this gives

2o | Vil | s 25 4 (22 2

ch* (1 — w)%e N

Let m be an integer such that m <2nw <m + 1 with n—1<v < n.
The sum of the first m terms of [V(k)| is inferior to

L{4K2a2 n 16 x 32 27 }(1 1)

T 7 ATPeb? ML — w)e v

From this and Chebyshev’s inequality it follows that

1 1\[4K*a’ 16 x 32 27
~pis Lo+ ) ;
e Ih= n( * Y vt " APeb! g Ml — w)e

Q—w) | 1 g
+ S +k[+m’ 1.

As a summary, one can state the following.

PROPOSITION 4. Assume )\ = 8 and a < 1/4. Then, there exist con-
stants C, and C, such that

Il —Bll= Ca’+ Ca™.

5. Approximation of the binomial by a Poisson distribution. A
theorem of Yu. V. Prohorov [9] states that the binomial B =[]+ w4}
and the Poisson P = exp(\4) differ little. Explicitly, there is a con-
stant C, such that || P — B|| = Cyw.

Prohorov’s result is proved in [9] only for integer values of v. For
this reason we shall give here a complete proof which happens to be
somewhat simpler than Prohorov’s original argument. This proof leads
to an evaluation of the constant C, which may not be the best availa-
ble but will serve our purposes.

Let R(x) be the ratio of the binomial probability B[{x}] to the
Poisson probability P[{x}]

Rx)y=vy—1)--- (v —2 + Do*(l — @) %e\?.
Let us restrict ourselves to the interval 0 < x < n. Since

Rw+1) _ v—u

R(x) v(l — w)

the ratio R achieves in this interval a maximum at the point x such
that x — 1 = A < 2.

For this particular value of #, Stirling’s formula leads to the ine-
quality
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1
log R(z) < —5 log(1 — §)

with
w<§§w(1+%>.

Finally for » = 3 and 4w <1,

R() = T/T—l_?_g <1+ ﬁ__—?
N

<1+ (2)'s.

Let f be a nonnegative function such that 0 < f < 1. The above ine-
qualities imply that

[ ram = j‘i —+ | R@f@Ps)

=27+ (2) o | f@PE) + | s@)P@)

v+1 3
< Jruman o {(2) ).
Similarly,
Sa — fYB=1— g fdB < ga — f)dP + w[(_g->/ + ;“fl ] .
Consequently:

PROPOSITION 5. If A =3 and 4w < 1, then

IB—P| = 2w[(—§-)“2 + j‘jl]
< [1.64]w .

Collecting the inequalities established in the preceding sections one
obtains the following statement.

THEOREM 2. Let {X;5=1,2,.--} be a family of independent
random variables. Assume that < (X;) =1+ p,4 and that » = Zp, is
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finite. Let p, = \¢; and w = Xe,p; and « = sup,;p;. Denote by Q the
distribution Q = & (2X;) and P the Poisson distribution P = exp (\J).
There exist constants D, and D, such that
(1) For all values of the p; one has

IP—Q| =2y
and
P —-Qf = De.
2) If da <1 then
IP—-Qll = Dw .

The constant D, is inferior to 9 and the constant D, is im-
fertor to 16.

Proof. The proof of Theorem 2 consists essentially of an evaluation
of the constants involved in the bounds given by Propositions 2, 3 and
4. To these propositions one must add the following remarks.

The quantity a® = Jc,(p, — @)’ can be written

o' = ch<pj — %)2 — (% — m’>2 .

Hence

@t < omr(l ~ %) = <%> :

In particular ¢* < aw and ¢ £ /2 £ 1/8 for a < 1/4. The bound
[|@ — P|| < D is operative only when Da < 2. It is therefore sufficient
to prove that ||Q — P|| £ D for a« < 2D;* and 27\ = D,. A constant
D, can then be obtained through application of Proposition 2 for )\a? <
y* and Proposition 4 for A’ = y*, the quantity ¥* being adjusted to give
the best value available.

Similarly, the second inequality can be proved by use of Proposi-
tions 3 and 4, assuming 2\ = 16 and w < 1/8.

Note that the constants 9 and 16 are certainly much too large.
For very small values of a or @ one can obtain much better values of
D, and D,.

Statement 2 of Theorem 2 implies that the approximation by a Pois-
son dis_tribution will be good even though a few of the probabilities P,
may be close to the bound « < 1/4. This will happen provided only that
these large values contribute relatively little to the value of )\, the bulk
of ) being due to very small values of the p,.



1196 LUCIEN LE CAM

6. Concluding remarks.

REMARK 1. It would be highly desirable for the applications to
lower the values of the coefficients D, and D, to a more reasonable level.
When « is fixed, this can be achieved for D, by restricting the range
of values of w to which the inequalities apply. For instance, taking
40 =1 but w = 107?% the coefficient D, can be taken approximately
equal to 8. Such a value being still too large one may inquire whether
there is a lower bound to the acceptable values of D,.

In this connection the following remarks may be of interest. When
X becomes very large the distance (1/w) || @ — B || becomes rapidly negligi-
ble. This can be seen for instance by using the inequalities which led
to Proposition 4 and the bounds in a®log )\/1/\ obtained through the
use of third differences.

The main contribution to (1/w)]|| — P|| is then attributable to the
difference between the binomial B and the Poisson measure P.

Prohorov’s theorem implies that (1/w)|| B — P|| cannot be much
smaller than (.483). Therefore, one cannot expect to obtain a result
of the type ||@ — P|| £ D,o where D, would be substantially smaller
than 1/2.

ReEMARK 2. The result of Theorem 1 cannot be materially improv-
ed unless one is willing to restrict further the measures M, or the
group X.

A slight modification of the proof given here leads to the inequality

le-prisei-1a-8)],

where 3, is taken equal to p,(1 — e ?5). The bound so obtained is
actually reached for certain choices of the measures M,. An example
of this can be constructed when X is the real line. It is sufficient to
take M, to be the probability measure giving all its mass to a point
x, and select the values {x;; 5 =1,2, ---} to be rationally independent.
For any fixed ¢>0 one may find values p; < ¢ such that 2[1 — [](1 —3,)] >
2 — ¢ and such that » = >};p; be finite.
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INVOLUTIONS ON LOCALLY COMPACT RINGS

Paur CIvin

By a proper involution * on a ring R we mean a mapping = — z*
defined on R with the following properties:

(1) (@+9* =" +y*

(i) (zy)* = y*x*,

(ii) (z*)* =2 and

(iv) zz* =0 if and only if = 0. If (iv) is not assumed, the
mapping is simply termed an involution. If F is a field with an involu-
tion # and R is an algebra over F, we say that an involution on R is
an algebra involution if in addition to (i)-(iv) above the following holds:

(v) (ax)* = a*z* for all x ¢ R and «a e F.

We are concerned principally with involutions on two types of
locally compact semi-simple rings, namely those which are compact or
connected. The main result is that involutions on such rings are auto-
matically continuous. As a byproduct we determine the form of any
proper involution on a total matric ring R over a division ring. If in
addition R is topological and the division ring admits only continuous
involutions, then we note that R has only continuous involutions.

LEMMA Let D be a division ring with center Z. Let R be a total
matric ring over D. Any ring involution * on R induces an involu-
tion £ on Z, and * is an algebra involution on R with respect to the
involution £ on Z.

Direct calculation shows that the center of R consists of the totality
of elements of the form «f where @ € Z and I is the identity of K.
Suppose z is in the center of R and y € R, then z*y = (y*x)* = (xy™*)* =
yx*, so £* is in the center of R. Since I* = I is immediate, it follows
that for any a € Z, there is a 8 € Z such that (al)* = B1. Denote 8
by af. It is clear that # is an involution on Z. Moreover, if ae Z
and z € R, (ax)* = [(al)x]* = z*a*] = atx, so * is an algebra involution
on R with respect to the involution ¥ on Z.

THEOREM 2. Let R be a total matric ring over D, where D is a
division ring with center Z. Let * be a proper ring involution on R,
and let £ be the induced involution on Z. Then there exist a set of
matriz units {g,;} in R such that gi = g,; and a set of non-zero elements
v, of Z such that vt = v, such that the involution * has the following
Jorm: If © = > a,¢,,, with «;; € D, then x* = X, v 7 5.
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Let ¢, ¢,j=1,---,n be a set of matric units for B. The right
ideal e, R is minimal, so by a theorem of Rickart [7] there is a unique
idempotent u, € e,R such that % =4, 0. Let L, = Ru, and L, =
Re,, = Re,,, k=2,---,n. The L, are minimal left ideals so by the
Rickart theorem there are unique idempotents u, € L, such that u; =
U, =0, k=1, -+, n.

We denote by [4, B, ---, C] the smallest left ideal containing A, B,
«++, C. The linear independence of u, and the e, k = 2, -+, n implies
that L, & [L,, +++, L,_;] for 1 < k <n. It is readily verified that R =
[Ly, ---, L,].

Let g, = u, and suppose that g, ---, 9,—, have been defined so that
9; :g?:gj* # 0, g, € [Lv "',LJ] and 9:9; = Oforiij’ 'L’j: L2 ...,
k — 1. We next show that g, may be defined with the corresponding
properties.

Let v = u, — 35 usg;. Since Ly & [Ly, ««+, Ly ], Uy € [Lyy o+ <, L]
and thus » # 0. Since L, = Ru, is a minimal left ideal u,Ru, is a
division ring with unit u,. The propriety of the involution then yields
vv* #= 0. Since vv* € u,Ru,, there is an element s € u,Ru, such that
s(vv*) = (vv*)s = u,. If we apply the involution to the prior relation
(vv*)s* = s*(vv*) = u,, and the uniqueness of inverses in a division ring
yields s = s*.

It is claimed that g, = v*sv has the desired properties. Since
vgv* = vv*svv* = uwv* = vv* = 0, it follows that g, # 0. Clearly
0. = g5 and ¢ = v¥swwrsv =v*usv=v*sv=g¢, If i=1,.--,k—1,
g:v* = g,(u;, — Sklgu,) =0 by the inductive hypothesis, thus g,9, =
g9;v*sv=0. By applying the involution we obtain g¢,9;,=0. The induction
is thus complete and we may suppose that ¢,, -+, g, have been defined.

Clearly [g.] =[L.]. Suppose that for 1<k =mn, [gi, ***, Gpal =
[Liy +++, L,;]. The defining property for g, yields [g,, *-+, 9:] C
[Ly, «+, L] = [lgs, +++) geals Le]. Thus g, = 2,9, + =+« + @151 + Tilue
Right multiplication of the last relation by g, shows that x.e, # 0.
Since L, is a minimal left ideal, there is a z € R such that zx,e,, = €.
This may be expressed as z[g, — %,0,-** — T4 10p-] = €. Thus L, C
lgs, <+, 9] and hence [g,, ++-, 9s] = [Ly, +++, L] for £=1,:--,m. In
particular B = [g,, -, g.].

The spaces Rg, must be irreducible over R, otherwise we would
have R decomposed into sums of irreducible R-spaces of different lengths.
Thus the ideals Rg, are minimal. Furthermore if we denote the unit
element of R by ¢, we havee =¥,9, + -++ + ¥,.9,. Right multiplication
by g, shows that g, = y,9, and thus e =g, + <+ + g,.

The form of an idempotent in e¢,R and Re,,, k = 2, ---, n, together
with the fact that \e;; = e;,\ yields M, = u A = Uy, k=1, «++, n for
any M e D. The inductive method of defining g, then permits one to
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deduce that \g, = g\ = g.\g,. For suppose that rg, =g for j =1,
ses, bk —1. From the way in which v and v* were defined Av = vA and
Av* = ¥\, Since Ag, = v*Asv = v U ASsu,v, and g\ = V¥V = v*U,SNULY,
it is sufficient if we show that wu,\su, = u,shu, for all v e D. But
(UM (VV*) = SVVIN = U = M, = ASVV* = U hsu,(vo*). Since u, Ru, is
a division ring, wu,sM\u, = U \su, as desired. Hence Mg, = g.» for all
rxeDand k=1, .-, n.

Since (0) == Rg,R is a two sided ideal of R, Rg,Rg, = Ry, # (0), and
thus ¢,Rg, #+ (0). Suppose % < k, and ¢,rg, + 0. Then, by the propriety
of the involution, 0 = (9,79.)0(9:79.)* = 9:79,r*g,. Since the left ideal
Rg, is minimal, ¢g,Rg; is a division ring, and there exists t € R such that
(9:tg.)(9;r9,r*g;) = 9;. If we take adjoints of the expressions in the
preceding equation, we see that g¢,tg, = g,t*g,. Let g,. = g,t9,rg9, and
9w = 9x7*9;. Then g9, = 9;, and consequently (9:,9x:)(9i9x:) = g5, SO
0 # 9.9 € 9.Rg,, which is a division ring. Also ¢,.9,, is idempotent so
9wl = 0. Finally if we define g,, = g;,, we obtain a set of matrix
units {g,;} for R such that g}; = ¢,;,- The form of the involution * on
R is then an immediate consequence of a theorem of Jacobson and
Rickart [2].

We are now in a position in which we may discuss the continuity
of involutions.

THEOREM 3. Let D be a topological division ring such that any
wnvolution on D is continuous. If R is a total matric ring over D,
then any proper ring involution on R is continuous.

The result is immediate by virtue of the representation of the
involution given in Theorem 2, together with the fact that convergence
in R, when it is regarded as a finite dimensional vector space, involves
[1] convergence of the coefficients of the representation in terms of a
given basis.

We turn now to locally compact semi-simple rings which are either
connected or compact. The first item needed concerns their topological
algebraic structure.

LEMMA. (a) A compact semi-simple ring is the topological direct
sum of total matric algebras over finite fields.

(b) A locally compact connected semi-simple ring is the topological
direct sum of a finite number of total matric rings over locally com-
pact division rings.

Statement (a) is immediate from Theorem 16 of Kaplansky [4]. In
the second statement, the semi-simplicity allows the use of Theorem 2
of Kaplansky [5], which shows that the ring is the direct sum of a
semi-simple algebra over the reals with a unit and a totally disconnected
ring. Since the decomposition is the Peirce decomposition relative to
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the algebra unit, it is easily seen that one has a topological direct sum.
The connectedness then forces the second summand to be zero. The
conclusion of the lemmas then follows from Theorem 10 of [5].

It might further be noted that the division rings involved must be
connected. Consequently, since the only connected locally compact di-
vision rings are the reals, the complexes and the quaternions [3], [6],
these are the only rings involved in the conclusion of (b).

LemMMA 5. If * is a proper involution on a direct sum of total
matric rings over division rings, then each matric ring s invariant
under *. Thus * resiricted to an itndividual matric ring is a proper
involution on that ring.

Let R be the direct sum of rings R,. Let e° be the unit of a
summand R°., Say e¢°=e¢ + --- + ¢, is the decomposition of e° in
terms of the vector units of R°. The right ideal ¢,R — ¢,R° is a minimal
right ideal of E. Hence, by the theorem of Rickart used previously,
there exists a unique idempotent f, in e¢,R such that 0 = f, = f;*. Thus
e; = fie;, and ef = eff;,. Consequently if x e R°, x =ex + -+ + ¢, =
fieX + + oo+ fre.®, and x* = x¥eff; + +o0 + 2%l f, is in R°.

We are now in a position to establish the continuity of proper
involutions on the class of semisimple rings under discussion.

THEOREM 6. If R is a semi-simple locally compact ring which is
either compact or connected them any proper involution * on R 1is
continuous. ‘

In view of Lemmas 4 and 5, it is sufficient to prove the continuity
of * on an individual matric ring. Thus the proof is complete for the
compact ring. For the connected ring, all we need note is that the
only involutions on the reals, complexes and quaternions are automati-
cally continuous. Hence Theorem 3 applies and the proof is complete.
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NORMAL EXTENSIONS OF FORMALLY
NORMAL OPERATORS

EArRL A. CODDINGTON

1. Introduction. Let  be a Hilbert space. If T is any operator
in © its domain will be denoted by D(T), its null space by R(T).
A formally normal operator N in  is a densely defined closed operator
such that D(N) C DN*), and || Nf|| = {| N*f|| for all f € DN). Inti-
mately associated with such an N is the operator N which is the
restriction of N* to ©®(). The operator N is formally normal if and
only if N is. A mormal operator N in $ is a formally normal operator
for which ©(N) = D(N*); in this case N = N*. A densely defined
closed operator N is normal if and only if N*N = NN*.

Let N be formally normal in . Since Nc N* we have Nc N*,
where N* = (N)*. Thus we see that a closed symmetric operator is a
formally normal operator such that N = N, and a self-adjoint operator
is a normal operator such that N = N (= N*). If a closed symmetric
operator has a normal extension in 9, this extension is self-adjoint. It
is known that a closed symmetric operator may not have a self-adjoint
extension in . Necessary and sufficient conditions for such extensions
were given by von Neumann.® However, until recently, conditions under
which a formally normal operator N can be extended to a normal one
in  were known only for certain special cases.** Kilpi® considered the
problem in terms of the real and imaginary parts of N. It is the pur-
pose of this note to characterize the normal extensions of N in a manner
similar to the von Neumann solution for the symmetric case.

If N, is a normal extension of a formally normal operator N in 9,
then it is easy to see that N N, € N*, and N N* c N*. In Theorem
1 we describe D(N*) and D(N*) for any two operators N, N satisfying
Nc N*, Nc N*. With the aid of this result a characterization of the
normal extensions N, of a formally normal N in » is given in Theorem
2. It is indicated in Theorem 3 how the domains of normal extensions
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can be described by abstract boundary conditions.
I would like to thank Ralph Phillips for instructive conversations
during this work.

2. Domains.

THEOREM 1. Let N, N be two closed densely defined operators in
a Hilbert space © such that Nc N*, Nc N*. Then

DN*) =DN) + M, DN*) =DN) + M,

where M = NI + N*N*), M =NT + N*N*). Here I is the identity
operator, and the sums are direct sums.

Proof. Let N, N be any two closed densely defined operators in ©
such that Nc N*, Nc N*. Then (N7, g) = (f, Ng) for all fe ©(N),
g € D(N). Define an operator _s~ in the Hilbert space 9, = H D » with
domain D(_+") the set of all f = {f, fi} with f, e D), f, € DN), and
such that _s°f = {Nf,, Nf}. Then _s is closed symmetric. Indeed
D(_+") is dense in P 9, and, if f = {£, £i}, § = {g., 9.} are in D),
we have '

(Fr §) = (Nfy ) + (NFy, ) = (f1 Noo) + (f» Ng) = (F, 479) -

Since N and N are closed, so is .. The adjoint _+* of _4" has
domain D(_s*) the set of all § = {g,, g,} such that g, € D(N*), g, € DN *);
and _+*§ = {N*g,, N*g.}.

We now show that the defect spaces of _4~, namely,

G(+1) = {d e D) : 4% = i},
B(—1) = [ € DA ™) 1 A 4 = i},

have the same dimension. We have ¢ = {¢), .} € G(+1) if and only if
¢ e DN*), ¢, e TN*), N*¢, = ip, N*p, = i¢y. The latter is true if
and only if N*(—¢,) = —ip, N*p, = —i(—¢,). Thus we see that the
unitary map % of 9, onto itself given by Z{fi, fi} = {/fi, —f.} carries
E(—17) onto E(+1) in an isometric way. This proves dim G(+7)=dim E(—1).
We note that {¢, ¢} € G(+4) if and only if ¢, e DIN*N*),
(I + N*N*)¢, =0, and ¢, = —iN*¢,. Alternatively {¢,, ¢} € G(+1) if
and only of ¢, e D(N*N*), (I + N*N*)p, =0, and ¢, = —iN*p,. Thus
we see that the algebraic dimensions of the spaces M = NI + N*N*),
M= NI + N*N*), &(+1), and G(—1) are all the same. Further it is
easy to see that N* maps N one-to-one onto M, the inverse mapping
being —N* restricted to 9. '
Since dim &(+17) = dim §(—+<) the operator s~ has self-adjoint
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extensions in ,. They are in a one-to-one correspondence with the iso-
metries of G(—%) onto E(+1¢). If &7 is a self-adjoint extension of _¢~
there is a unique isometry 7~ of &(—17) onto €(+41) such that D(&) =
D) + (F — #7)8(—1), where _# is the identity operator on 9,.
Let us consider that self-adjoint extension & of _ s~ determined in this
way by the isometry —< restricted to €(—i). Then we have /i € D()
if and only if A =f + v + 2, for some fe D(_17), e G(—i). If
k= {hy, b, F = {fi £}, ¥ = {4, ¥}, this means & = f, + 2y, hy = f,,
where f, € D(N), Yy, e M, f, e S(N). Thus (<) is the set of all
{hy, b} with h, € DN) + M, h,e D(N). Now the operator .&¢ with
domain all {&,, k,} with h, € D(N*), h, € D(N), and such that .57 {h, h,} =
{Nh,, N*h,}, is readily seen to be a self-adjoint operator in 9, satisfying
S K N* Hence & =.5%, and we see that DN*) =
D(N) +M. The sum is a direct one, for if feDN)NM, 0=
(I+ N*N*)f = f + N*Nfimplying 0 = (f + N*Nf, f) = || f I + || NfI]’
or f=0.

A similar argument shows that the self-adjoint extension & of ¢+~
determined by the isometry </ equal to % restricted to &(—4) has
domain the set of all {h, k) with h, € D), h,e D(N) + M. This
operator is equal to the self-adjoint extension of _4~ having domain the
set of all {h, h,} with h, € D(N), h,e T(N*), implying that DIN*) =
D(N) + M, a direct sum. This completes the proof of Theorem 1.

Note added in proof. The results of Theorem 1 can be obtained
more directly, although some of the discussion given in the proof above
is required for our proof of Theorem 2. Let &(T) denote the graph of
an operator T. If A, B are any two closed operators with dense domain,
and A C B, then it is easy to see that §(B)S &(A4) is the set of all
{u, Bu} € &(B) such that weN(I + A*B). Since

&(B) = B(4) B [&(B) © &(4)],
we have D(B)=D(A)+NI+A*B), a direct sum. This implies Theorem 1.

3. Normal extensions.

THEOREM 2. If N, is a normal extension of a formally normal
operator N in a Hilbert space £, then there exists a unique linear
map W of M onto itself satisfying

(i) wW2=1, _ ~

(il) NP+ [IN*p|F = Wl + [ N*Wo [P, (b e M),

(i) (I— W)= N*(I + W)k,

iv) [IN*(I—= W)l =I[IN*I— W)pll, (e M).

In terms of W we have

(1) DN = DN) + I~ W)k, N.f=N*f, (f € DN)) -
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Conversely, if W is any linear map of M onto M satisfying (i)—
(iv) above, then the operator N, defined by (1) is a nmormal extension of
N in .

REMARKS. Condition (i) implies that P, = (1/2)({ + W) and P, =
(1/2)(I — W) are projections (not necessarily orthogonal) in 9, and I
is the direct sum of M, = PM and WM, = P,AR. If ¢ e M, then ¢ € M,
if and only if W¢ = ¢, and ¢ € M, if and only if W = —¢.

Condition (ii) implies that if ¢, ¢’ € M then

@, ¢) + (N*p, N*¢) = (Wo, W) + (N*Wop, N*W¢') .

If e M, ¢ M, we see that (¢, ¢') + (N*p, N*¢') = 0, which means
that the graph of N* restricted to 9, is orthogonal to the graph of N*
restricted to ..

Since N* is one-to-one from I onto 9N, condition (iii) implies that
M, = N*IM, M N M, and M, has the same algebraic dimension as M,.
In particular the dimension of 9t must be even.

Proof of Theorem 2. Let N, be a normal extension of the formally
normal operator N in . Then we have Nc N,c N*, Nc Nf c N*.
Let the operator .7; in 9, be defined with domain all {&,, k,} such that
h, € D(N,), h, € DN}), and so that s, {h,, h} = {N}h,, N\h,}. Then it is
easily seen that _7{ is a self-adjoint extension of the operator _s~ de-
fined in the proof of Theorem 1.

Let 77 be any self-adjoint extension of _#~, and let " be the
unique isometry of ©(—t) onto &(+17) such that D(A{) = D(_17) +
(F — 7")&(—1). Then we may write " = 9% %, where 7/ is the
isometry defined on G(—1%) to &(+1%) by Z {yr, Y} = (Y, — Y}, and 97~
is a wunitary map of &(417) onto itself. For {¢, ¢} € E(+7) let
Wby, b} = {X1, X} Then ¢, X, € M and ¢, = ‘iN*d)n X = —ILN*Xl
Define the map W of 9 into M by We, = x,.. Then W is linear, and
since 97 is unitary, W is onto, and

1{$, —iN*¢} | = |[{We, —iN* W} ||, (e,

or
(2) 1P+ IN*o [P = | Wo|I* + || N* W |, (¢eMm).

Conversely, suppose W is a linear map of It onto M satisfying (2).
Then for ¢ = {¢, —iN*¢} € G(+1) define 7 ¢ = {Wp, —iN*W¢}. Then
2~ maps E(+1) onto E(+17) and (2) implies that 97~ is unitary. Thus
we see that the self-adjoint extensions .7/, of _/~ are in a one-to-one
correspondence with the linear maps W of I onto M satisfying (2).
We have h = {hy, by} € D(A7) if and only if h can be represented in
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the form h=f+ (7 — O//?/)xir, where f = {f, fi} e D( 1), «;r =
{p, iN*¢} € &(—1). This means h, = fi+(IT— W)p, h, = foi+iN*(I+ W),
where f, e (1), f,e DN), ¢ e M.

The self-adjoint extension ./ arising from the normal extension
N, of N has the property that if & = {h, h)} € D(_ /) then so does
;7;’}2 = {h,, 0}. It will now be shown that a self-adjoint extension _/{
of _ 4~ has this property if and only if the W corresponding to . /{
satisfies W? = I. First suppose .Z2h € D(_1;) for all ke D). Letting
hy=fi+T— W)p, hy=f, + iN*(I + W)$ as above, we see that this
implies that there exist elements f,e D(N), fie DN), ¢ € M, such
that

H+T=Wp=Ffi+T— W),
0=f1+iN*I+ W) .

Since D(N) + M and D(N) + M are direct sums these equations imply
that fi=f,, U — W)p=UT — W), fi =0, and N*(I + W)¢' = 0. The
last equation implies (I + W)¢' = 0 since N* is one-to-one from I to M.
Thus we have

(3) ¢+ We' =0,
¢ — W' =¢— Wo,

from which results 2¢' = (I — W)p. Returning to the first equation in
(3) we obtain (I + W)Y — W)p = (I — W*¢p = 0 for all ¢ € M, showing
that W?* = 1. Conversely, suppose W? = I on . Then if h = {h, h,} €
DA h=fH+T—= W), hy=fi+ iN*(I+ W)p, define ¢ =
(1/2)(I — W)$. Then equations (3) will be valid, implying that

H+T=-Wp=Ff+T—- W),
0=0+iN*T+ W),

which shows that Z2h = {h,, 0} € D(_).

If .4 is any self-adjoint extension of .4~ for which W? = I, then
D(_+7) consists of those {h, h,} such that &, = f, + (I — W)p, h, = f, +
iN*(I + W)¢', for some f, € D(N), f, € DN), and ¢, ¢’ ¢ M. The point
is that ¢ and ¢ need not now be the same element. Indeed, if A, A,
have such representations let ¢ = (1/2XI — W) + (1/2)(I + W)¢'. Then
I—Wyp=UI— W)p", and (I + W)¢p' = (I + W)$”, which implies that
{hy, by} € D(_47). For such an _y; define N, to be the operator in © with
DN) = DN) + (I — W)YM, and N, = N*h, for h, € D(N,). Similarly
define N, on D(N,) = D(N) + N*(I + W)M by Nh, = N*h, for h, e
D(N,). In terms of N, and N, we have {h, h,} € D(_#") if and only if
h, € D(N), h, € S(N,), and _#{"{h,, hy} = {N,hs, Nih,}. A short computation
shows that (_s;*) is the set of all {g, g, such that g, € T(N]),
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g. € D(NY), and _#7*{g,, 9.} = {N*9,, Ny'g,}. But since 17 = 4" we
obtain N, = N*. Hence ¥(.4{) consists of all {,, h,} with h, € D(N,),
hy € D(N), and 4 {h,, by} = {N*h,, Nk}, Here

(4) DN) =DN) + I — W),
DNY) = DN) + NXI + W)ym,

and Nc N,c N*, Nc N* c N*. Thus any self-adjoint extension _#{
of _4~ having the property that W? = I determines a unique operator
N, in  as above, which is easily seen to be closed. In particular, if
N, is a normal extension of N, then the equalities (4) hold.

It remains to characterize those _#; such that W? = I for which
N, is normal, that is DV,) = D) and || N[ = || NFh]||, h e DN,).
We claim that this is true if and only if

(5) (I— W) = N*(I + WM,
and
(6) | N*I— W)p|l = ||IN*T — W)l , (peM).

If (5) is valid then (4) implies that D(N,) = D(N¥), sihce D(N) = D(N).
Let he DN), h=f+T— W)p, fe DN), peIM. Then (I— W)pe
M N M, and we have Nh = Nf + N*(I—W)p, Nih = Nf + N*(I— W)p.
Thus

I N | = [| NFIIP + (Nf, N*(I — W)¢) + (N*(I — W)¢, Nf)
+IIN*I = Wi,

and

| N#R P = | NFIP + (Nf, N*(I — W)¢) + (N*(I — W)$, Nf)
+ NI — W) .

Since N is formally normal || Nf|| = || Nf|l. Moreover N*(I — W)p € M
implies that (Nf, N*(I — W)¢) = (f, N*N*(I — W)p) = —(f, (I — W)¢),
and similarly (Nf, N*(I — W)$) = —(f, (I — W)$). Using (6) we see
that || N& || = || Nk || for all & € D(N,), proving that N, is normal.

Conversely, suppose N, is normal. Then (6) is clearly valid, for
(I— W)pe DWW, by (4). Suppose he DN, =DN) and h=f+
I—W)p=f"+ N*UT+ W)p with f, f' € DN), ¢, ¢ € M. We show
that f=f" and (I — W)p = N*(I + W)¢'. Applying this to f=0
we obtain (I— W)Mc N*(I + W), and with f =0 we get
N*(I + W) c (I — W)M, proving (5). Now for any g € D(N) we have
(Nh, N.g) = (N*h, N*g), or

(Nf, Ng) + (N*(I — W)$, Ng) = (Nf’, Ng) — (I + W)¢', Ng) .
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Since (Nf’, Ng) = (Nf’, Ng) and (N*(I — W), Ng) = —((I — W)¢, g),
this yields

(Nf, Ng) — (I — W), g) = (Nf', Ng) — (N*(I + W)¢', 9) ,
or
(N(f = f"), Ng) + (N*(I + W)/ — (I — W)p,9) =0.
But N*(I + W)¢' — (I — W)p = f — ', and hence
NSf—=F)H N+ (F—f,9=0

for all g € D(N). Letting g =f — f' we obtain f = f' as desired. This
completes the proof of Theorem 2.

4. Abstract boundary conditions. For # ¢ D(N*), v e DIN*) de-
fine {uv)> = (N*u, v) — (u, N*v).

THEOREM 3. If N, is a normal extension of the formally mormal
operator N such that D(N) = DN) + (I — W)YIR, then D(N,) may be
described as the set of all u € DN*) satisfying {uad =0 for all
ae (- Wyms

REMARK. For differential operators the conditions (ua> = 0 become
boundary conditions. They are self-adjoint ones, that is, {aa’> = 0 for
all o, e (I — W)M. Indeed a,a € D(N,) = DN*) and for any
aeDWN,), o ecIDNF) we have (N*a,a) = (Na,a) = (a, Nfa') =
(a, N*a').

Proof of Theorem 3. If we DN), ae(l— W)Y DN*), the
above argument shows that (ua) = 0. Conversely suppose % € D(N*)
and (uay =0 forallae(I — W)M. Letu =+ T — W)p + I+ W)p,
where fe D), ¢ € M. We note that { > is linear in the first spot,
and f+ (T — W)pe DN,). Thus I+ W)pa> =0 foralla e (I — W)
Let a=N*I+ W)pe (I — W)M, since (I — W) = N*(I + W)I.
Then

0=<I+ W)p N*(I+ W)pp = (N*(I + W)p, N*(I + W)¢)
+ T+ Wb, I+ W)p),
which proves that (I + W)$ = 0, and hence u € D(N,) as desired.

UNIVERSITY OF CALIFORNIA,
L0S ANGELES

8 A result similar to Theorem 3 appears in the report by Davis (4) for the case when
dim (DN#/D(N)) < .






SOME CLASSES OF EQUIVALENT GAUSSIAN
PROCESSES ON AN INTERVAL

JACOB FELDMAN

1. Introduction. Let 7T be an index set, R, S real-valued nonnega-
tive definite funetions of two variables in T, and m, n real-valued functions
on T. Let 2 be the set of all real-valued functions on T, and .&” the
Borel field of cylinder sets. There are then unique measures f, v on .&*
such that the functions x, on 2 defined by «,(®w) = w(t) form Gaussian
stochastic processes, with means respectively m and n, and covariances
respectively R and S. It is shown in [2] that £ and v are either mu-
tually absolutely continuous or totally singular, and a necessary and suf-
ficient condition for equivalence is given.

Suppose now that T is a subset of the real line, and R(s,t) =2 (s — t),
S(s,t) =4(s — t), where , and s are continuous nonnegative-definite
functions, and hence can be written as inverse Fourier transforms of
finite measures dp, do. Thus, using respectively the measures f¢ and v
on Q,x, — m(t) and x, — n(t) are the restrictions to T of stationary
Gaussian processes on the real line. For simplicity, only the case m =
n = 0 will be considered.

When T is the entire real line, then it is easy to see, by looking at
dp and do, exactly when ¢t ~ v, as is essentially known (see [3]). The
precise conditions are:

a. p and o must have identical non-atomic parts.

b. Their points of positive mass be the same, and if the masses
are a, and b, at x;, then > {(a:/b;) — 1}* must be finite.

Now suppose T is a finite interval. The problem of determining
from knowledge of p and o whether £ and v are equivalent becomes
much more difficult. We here discuss only a certain class of cases.
Because of stationarity, one need only consider an interval symmetric
about 0. Continuity of » and » implies that the Gaussian process is
continuous with probability one at any given point, so that it makes no
difference whether the interval is open or closed. There is no essential
loss of generality, then, in considering only the closed interval [—=, 7].
The following,facts will then be proven:

THEOREM. Let do(x) = {dx/(1 + x%)*}, where u 1is an integer =1,
and let o be some other finite nonnegative measure on the real line.
Write © = a0 — p. The following conditions are necessary and sufficient
that the Gaussian processes induced on [—x, ] by the Fourier trans-

Received December 21, 1959, Research partly supported by Contract NONR-222 (60).
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forms of p and o have equivalent measures on path space:

(@) f k, is a sequence of C. functions with support in |—mx, |
and K, 1is the Fourier transform of k,, then S|Kn[2da—»0 implies
S[Knlzdp—>0 .

(b) The Fourier transform (in the sense of Schwartz distributions)
of (14 x*)"dzr(x) agrees on | — 2x, 2n] with a function » such that

Lg_l P(s — t) |’dsdt < oo.

REMARK 1. It will be seen that sufficiency still holds if (a) is
weakened to:

@) S]KnPda—» 0 and K,— K in Z(0) implies that K =0 on some
set of positive p-measure.

REMARK 2. As a consequence of Remark 1, it is clear that if ¢
has a component which is absolutely continuous with respect to o, then
Condition (a) automatically satisfied.

Retaining the notation of the theorem:

COROLLARY 1. If do = @dp, where @ is a function such that &—1
18 a finite linear combination of functions in wvarious L,(—oo, o)
classes, 1 < a < 2, then the Gaussian processes induced by p and ¢ have
equivalent measures on path space.

One direction of the following corollary was proven by D. Slepian
in [5], using techniques of G. Baxter in [1]:

COROLLARY 2. If A, and B, are polynomials, with degrees re-
spectively a, and b,,5 = 1,2, and b, > a,, then the Gaussian processes
whose spectral measures are | A (x)/By(x) |* dx have equivalent measures
on path space if and only if

@ b —a =0b—a,

(b) the ratio of the leading coefficients of A, and B, has the same
absolute value as the ratio of the leading coefficients of A, and B,.

The author wishes to thank J. F. Tréves for several useful discus-
sions about distributions.

2. Some preliminaries on functions of exponential type. First, some
notation. Functions will be complex-valued functions of a real variable,
unless otherwise stated. F' will mean the Fourier transform of F (in
various degrees of generalization, depending on context), and F the con-
jugate Fourier transform. sup (f) will mean the points where f+0. &=
{F|F extends to an entire function of exponential type = arn}. & =
& N L (— o, x), or, by the Payley-Wiener theorem,
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={/Ife Al—w, @), sw(f)c[~am,azxl}.
Zy={fIfe 7z sup(f)cl—amanl}, Z={fIfez}.

u will be a fixed integer = 1, and p(x) = (¢ + x)*. p© is the measure
do(x) = {1/| p(x) |*}dx. 2#~ will denote the completion of ] in the inner
product (F, G> = SFde.

Naturally, .7 really consists of equivalence classes of functions; but
it will turn out that there is a continuous, in fact entire, member in
each class. H, will denote a fixed function of <7, such that h, = H, is
nonnegative and has integral 1. For a > 0, h,(s) will be (1/a)h,(s/a),
H,(x) = H,(ax), so that h, = FIa, and H,e€ &r,. Then H, vanishes faster
than any polynomial, | H,(x)| < 1 for all , and lim,_,H,(¥) = 1 uniformly
on any finite interval.

LemyMa 1. If Fe®, and S|F|2dp < oo, then Fe 9.

Proof. If (1/2) <c¢ <1, then
(1 Fen) — F@) 1aow)’ (S" | Fleo) — F@)|'dp@))

Now,

[ 1Fenaow = L |F@):
lz1>b C Jlx|>0vc

z2| F@I L

121 < (b/2) | ( )|2

Choosing b large, and then choosing ¢ close enough to 1 to make |F(cx)— F'(x)]
small on [—b, b], we see that it suffices to show that the function G:z—
F(cx) is in 9¥°. Notice that Ge¥,, as ¢ < 1.

H,G is square-integrable, since H, vanishes faster than (1/|p]?.
So H,G is in 57, its Fourier transform being some ¢’ in &7,(— o, =)
with support in [—(a+c)7, (a+c)x]. Thus k9’ € & yure, and HiG € I ygyc-
Choosing a small causes HiG to be in &r,, and simultaneously causes

SI H:G — G |*dp to get small. This proves the lemma.
Let o7 ={pF|Fe 57}, and &7 = {pF|Fe & ,}. Lemmal tells us
& C .

LEMMA 2. 57 is precisely the closure of & in ¢ .
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Proof. First, we see that 57 is closed. If F,e 5~ and
g| pF, — G |*dp— 0, then S' Fo (@) — F(x) |*dz — 0 .

Since 577, is complete, there is some F'e 57, with S| F,(x) — F(x) |*dx—0.
So some subsequence of the pF, converges almost everywhere to pF.
Thus pF = G almost everywhere.

To approximate elements pF in 57 by elements in <7, just approx-
imate F' in &7,(— o, ) by elements in <r,, using the technique of
Lemma 1.

LEMMA 3. % © 57 s precisely the finite-dimensional space &
of functions of the form x—e'*"q(i — x), where q s a polynomial of
degree < u — 1.

Proof. Suppose Fe 2% ©57. Then SFWd‘O =0 forallGin &,,i.e.
S{F(x)/p(x)}G(x) dr =0 for all Gin &7,. Now, (F[p)isin &Z,(— o, ),
so it has a Fourier transform &k which is likewise square-integrable, and,
by Plancherel’s theorem, Sk(s)g_(g)ds =0 for all g in @1. So & vanishes
in |—=x, x[.

Since F'e.% ", F can be approximated in .9~ by functions F, in &r,.
Each F, is in <7, for some a, < 1, since sup (F,)c]—=, 7|, and hence
cl—a,x, a,n| for some a, < 1. Let k, be the Fourier transform of F,/p.
Then k,—k in <,(—, ), and k, is in the domain of the &~,—differ-
ential operator p(—iD)=1“(I—D)*. So p(—iD)k,=f,, where f, is the Fou-
rier transform of F,. Since f, vanishes outside some [—a,7, a,7], a,<1,
k, must be of the form > ,a{"s’e* in |—co, —z[ and > ,b;”'s%* in |z, =],
where j ranges between 0 and u — 1. Since k, is in & (— o, o), the
b™ are zero, and, letting @ be the indicator of |—, —7[, we get
Pk, =93, ,as’%’. This converges in &7,(— », =), so the limit is of the
form ¢ ,a,s%°. Then k,—0 in Jr, [,0 in [—=x, 7], and >,a,s%° in
|—co, —7[, so k = 9> a,8%°. F|[pisthen alinear combination of terms
like e *5glesds, 0 < j < u — 1, which is a linear combination of terms
like e*"(¢ + 2)~7,1 < 7 < u. Multiplying by p gives the result.

Combining information from lemmas 1,2,3 we get a description of
7

PROPOSITION. .9 is the orthogonal direct sum of % and .&~.
LEMMA 4. 9 =720 9..

Proof. <57, by definition, since <,co7,. Also 9o cCco,,
since &7, is closed under multiplication by polynomials (because <7, is
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closed under differentiation). So & C.57”N <, and it remains to show
DO N,

Suppose G € 5#°. Then G is a {, > limit of elements G, in &7, by Lem-
ma 2. G, then has the form pF,, F, in <r,. Thus F, is an $7,(— o, )
Cauchy sequence, hence has a limit F. Then pF = G.

Suppose G is alsoin <7,. Then G is infinitely differentiable. Since
G = pF = p(—iD)F, we conclude that F' is infinitely differentiable. Now
it must be shown that F vanishes outsides some interval [—ar, ar],
0<a<1l ButG= p(—iD)F vanishes outside such on interval, so F
is analytic outside [—am, aw]. Also, F' vanishes outside [—=, 7], since
each ﬁ'n has support in |—=x, z[. Therefore, F vanishes outside [—arm,
ar]. So Fis in <, and F is in <,.

LEMMA 5. 9, is finite dimensional.
Proof. 2. = 2| D N ~ (D + 90| o0 Coa |57 ~ .

3. Proof of theorem. In [2] it is shown that a necessary and suf-
ficient condition for equivalence of ¢ and v is that there be an equiva-
lence operator from the closed linear span of {x,|te T} in .&7,(y) to their
closed linear span in &7,(v), sending the p-equivalence class of x, to the
v-equivalence class of x, for each t¢ T. (An equivalence operator, as
defined in {2], is a linear homeomorphism H between two Hilbert spaces
such that I — H*H is Hilbert Schmidt). Actually, we shall want the
condition in complex <&7,, while the proof in [2] is for real &~ ,; however,
the transition from the one to the other is immediate.

Under this condition, H would map r flz)dt as an .&7,(¢)— valued
integral to S f(@®)xdt as an &7y (v)- valued mtegral for each fe T
and conversely, if H had this effect on all such" f(t)ac dt, then by choosing
a sequence of f approximating a delta functlon one could verify that H

sent the equivalence class of x, in .&7,(¢) to the equivalence class of x, in
<J(v). Therefore, putting inner products (,) and (,)* on <7, by the rules
(70 = | |7 6 - tf@itasdt,
oy =" " o6 - nreeddsat,
it follows that a necessary and sufficient condition for the equivalence
of ¢ and v is the existence of an equivalence operator from the (,) com-

and noting that (f, g) = S f(s)x ds SK g(t)xmlt)d;z and

oy = |(|" sowas)(|" amat)iv,
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pletion of él to its (, )* completion, and sending the (, )-equivalence class
of f to its (,)'-equivalence class.

Now let {F, G)* = SF@do, where F and G are in <7, (and hence con-

tinuous and bounded, so that the integral exists). Let 9% be the closure
of &7, in &2,(0). Let J be the map assigning to F'in <7, its equivalence
class in .% . Since <F,G> = (F, G), and {F, G>* = (F, G)", the necessary
and sufficient condition for the equivalence of ¢ and v in the theorem
is that J be the restriction to <7, of an equivalence map from .5 to .5 .

To prove sufficiency of the conditions in the theorem, suppose first
that | p(x)|* dr(x) has a generalized Fourier transform (see [4]) which

agrees on |—2m, 27] with a function + such that S” S | Yr(s—1t) |*dsdt=
a* < . We extend y» by making it 0 outside |—2m=, 271'[

LEMMA 6. If Fe o, then (F,F> < (1 + a)<{F, F>.

Proof. Write F'=pG,Ge &,. ThenSI F o =Sl F|dp —i—SlGPldeT.
Now, G is in <7,, so GG is infinitely differentiable with” support in
1—2r, 27[. Then, by Schwartz’s definition of generalized Fourier_trans-
form, we getS]GPlpl dr = S GG(s)y(s) ds = S S“S’ G(s — )G (1—1)
\r(s)dtds, where a(s) = max (— ;r s — 7) and b(s) = ;;i;(s()n', s+ 7). Let-
ting s—t =3¢, and t = — t’ gives Sz S G(s’)G(t’)«lr(s’ — t")ds'dt’, whose
absolute value, by the Schwartz ineqaraﬁgy, is

< [S_S_| @(s)a(T)lzdsdtS;Sixl W(s — 1) |2dsdt]m

— G-' G(s) " ds)a = (§| Fl'dp)a.

Pick a complete orthonormal set (e. 0.n. 8.) fi,fa, for L(—m, )
out of the dense subset <r,. Let F, f,,, and G, = pF,. Then the G,
form a c.o.n.s. for 57 (in {,)) consisting of elements of <7, because the
F, are a c.o.n.s. for 57, consisting of elements of <z..

LEMMA 7. 335 mei|<Gu Gp> — <G, G |* = @’

Proof. SG ()G (@)dr(x) = Y F *Fm(s)«}r(s)ds By using a change of
variable as in the previous lemma, this equals S Fn(8) Fr@)r(s — t)dsdt.
But the functions (s, t)—(7,8)f.(t) form a ¢.0.n.s. in =_9//2([ 7, Ty x[—m, 7)),
sothat > .- 1|S zS Fu(8) fuYr(s— t)dsdt] is exactly S S" l«}r(s—t) rdsdt.

Now consider the map J from <, to .5¢". Lemma 6 implies that its
restriction to &7 is bounded, and, since &,/ & is ﬁ{lite-dimensional (Lem-
ma 5), J is bounded as an operator from <, to % (a finite-dimensional



SOME CLASSES OF EQUIVALENT GAUSSIAN PROCESSES ON AN INTERVAL 1217

extension of a bounded operator is bounded, as is readily seen). So J
extends uniquely to a bounded operator A from .9 to .9 .

LEMMA 8. I—A*A 1s a Hilbert-Schmadt operator.

Proof. Complete the o.n.s. G, G,, -+ by adding to it a c.o.n.s.
G,,G_,,++,G,_, in &°. Then, letting bk =u — 1,

2im—i | U — A*A)G, G |
= 2ima [T — A*A)G,, Guy |
+ i [ T = A%A) G, Gy |
+ i Xim=i | G, (I — A*A)G |*
= 2im=1 <G, Gup — CAGy, AG,)" |?
+ 2350 KI — A*A)G,, (I — A*A)G,) I*,

using Parseval’s equality. But {4AG,, AG,)>' =<G,, G,>* for n, m >0,
since such G, are in <r,, so that the sum is exactly

a* + 230 (I — A*A)G,, (I — A*A)G,> .

In order to complete the proof, it must be shown that A is a ho-
meomorphism from .9 onto .5 . Since I — A*A is completely continu-
ous, it will suffice to show

(1) that the range of A is dense in .

(2) that A sends no nonzero element to zero.

(1) 1is clear, since the range of A contains the range of J, which
is dense by the very definition of .5 .

We now make use of (a), or rather of the weaker (a’), to prove
(2). Suppose, in fact, that A(K) is zero in % for some K in .57.
Let K, be a sequence of members of Z converging to K in .5 .
Then K, converges to zero in K, since A(K,) = J(K,). Then, by (a’),
K=0 on a set of positive p measure. But the Proposition of the
previous section tells us that K is analytic. Thus K=0.

To show the necessity of condition (a), suppose J has an extension
to an equivalence operator from .9 to jz'/, which we call A. Then
(a) is immediate from the fact that A is continuously invertible.

Since I — A*A is an equivalence operator, .7 ,.-|<{G,, Gn)> —
{G,G,> |*< o, where G,,G,,---is the c.o.n.s. in & for 5 previously
constructed. Define an operator Z on <#,([—=, ] x[—=, 7]) as follows:
let fom(5,t) = fu(s)fu(t), where G, = pf,. For Q = S nlumfom, Let
Z(Q) = Zn,man.m (<GnGm> - <Gny Gm>.)' Then

1ZQ) " = S |G " Zinm [ {Gay Gup — G, G | -
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So Z(Q) has the form |’ S Qs, 1) ¥ (s, {)dsdt for some ¥ such that

—r)—7

Sﬂ S | (s, t) |*dsdt < . In particular, consider f,ge &, and let f =
Siitafur §=Sbnf . Let Q(s, )=f()90). Then Z(Q) = S utubn Grr G
— (G Gu)') = SonnaB|(PF) GF)dt = (73| p | dt.

Let 0 < r < 2z, and let f, g have the closure of their supports in

in]-n+r, x[. Letf'(s) =f(s+7),9'(s) =g(s+r). Then f’, ¢’ are in &,,
and their inverse Fourier transforms satisfy f (x)=e"" f(oc)*e“‘g(x) Then

S"_,,Sz_nf (&TOY (s, dsdt=| /7| » ['at

:S £élpldt = g;gi”f(s)g—(ﬂllf(s, tydsdt .
But

SMS_f (s + 19t + ¥ (s, t)dsdt = S;S;f(s)ﬁt)«p(s —r, t—r)dsdt.

in view of the restrictions on the support of f and g. Since this
holds for all such f,g, the equality ¥(s — r,t — r) = ¥ (s, t) holds for
almost all (s, t) for which s,¢,s — r,t — r are in |—=, 7| (r being fixed).
Thus, {(r,s,t)|s,t,s —r, are in |—n, 7] and ¥(s —r,t —r) = ¥(s, 1)}
has measure zero.

Applying Fubini’s theorem, we get: for almost all pairs s, ¢ in |—=, 7|
the set {r|s—r,t —r lie in ]—=z, z[ and ¥(s — r,t — r) = ¥ (s, r)} has
measure 0. Denote by 4 the exceptional set of pairs (s, t).

Now let I'; be the line of slope 1 which passes through (s, —s),
where —m < s < mw Let I' be the set of s for which I"';N4 is not a
set of measure 0. Then I" has measure 0, again by Fubini’s theorem,
and by rotation-invariance of Lebesgue measure. If s is in |—z, [ but
not in /°, then almost all points on that portion of L, which lies in
l—m, o] x |—=, n| assign to ¥ a common value; thus, if the function
7’ is defined on |—x, 7] by &'(s, t) = Sb(s'“gf(s——r, t—r)dr, where a(s, t) =
max (s — 7, ¢ — 7) and b(s, {) = min (s -+ 7, ¢ + 7), then, for (s, t) on I,
¥'(s,t) has this common value. Thus, for almost all », ¥'(s, t) = ¥(s,t)
for almost all (in linear measure) points (s, t) with —7 < s,t < w and s,
t on I'.. Then ¥’(s,t) is equal almost everywhere to ¥(s,t). Now
set Yo(r) = U(—r/2,r/2), —2r < r < 2.

Then

P'(s, t)y = '(s—(s+1t)/2,t — (s + t)/2)
=¥'(—(t—59)/2, — 9)/2) =P — ),

for s,t in |—x, #[. This completes the proof.
Corollary 1 is just a consequence of the fact (proven in [4]) that if
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@ is as in the statement, then ((I—? — 1)dx has a generalized Fourier
transform which is a function @ square-summable in any finite interval,
so that

|- |pe—ofasa =[],

To prove corollary 2: let ¢, be the absolute value of the ratio of the
leading terms of A; and B,, and let u; = b, — a; = deg (B,) — deg (4)).
It is clear in general that equivalence of the Gaussian processes induced
by given covariances is unaffected if both covariances are multiplied by
the same constant. Thus, we find that the process whose spectral mea-
sure is

P(r) lzdr =2z S:{ l <p(7‘)l2dr .

Alz) |
B@)|“

has measure on path space equivalent to that whose spectral measure
is

CJ d s
1+ zyw
because the quotient of
Ayx) |? b G
B! T+

is of the form:1 plus a function in %(— o, ). So the problem is re-
duced to whether or not the processes with spectral measures

1 c,eit
— = dx and —=
(1 + %)= 1 + %)=

are equivalent. The criterion is that

(0~ =)

have a generalized Fourier transform which agrees with a function on
|—2r, 27] having certain properties. But this generalized Fourier trans-
form is explicitly calculated (see [4]), and is of the required form when
and only when ¢, = ¢, and u, = u,.
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WEAK AND STRONG CONVERGENCE FOR
MARKOV PROCESSES

S. R. FOGUEL

1. Introduction. Let (2, %, P) be a probability space and z,(w) a
Markov process defined on it. For every Borel set on the real line
P,(w, A) is the conditional probability that x,e A given x,. The purpose
of this paper is to study the limiting behavior, of the family of functions,
p(w, A), for t — o and A fixed.

In §3 we investigate conditions for the weak convergence, in the
sense of L,(2, 2, P), of p,(w, A). The classical result on Markov processes,
as presented in [2] p. 353, is generalized to functions x,(w) with nondis-
crete ranges. Under the additional assumption of existence of finite
stationary measures.

It should be noted that

pz(?) — (pn(w! {.7'})! Xzo = ,L)
Pz, = 1)

where the parenthesis stand for scalar product and X., = ¢ is the charac-
teristic function of the set x,(w)=1. Thus weak convergence of p,(w, {7})
implies ordinary convergence of p{™.

In §4 the strong convergence in L,(2, ¥, P) is studied. Our results
are similiar to Theorem 11 of [4] though the exact relation between the
two theories is not clear to us.

The paper deals with real processes and L, is the real Hilbert space.

Throughout the paper a weak form of the definition of Markov pro-
cesses is used. We do not assume any of the regularity properties which
are usually imposed.

2. Notation and general background. Let z,(w) be a set of mea-
surable functions, defined on £, where ¢ runs over [0, «) or the positive
integers. This set of functions, will be called a Markov process if when-
ever t, < t, <t; then conditional probability that x, € A given x, and
%, s equal to the conditional probability that x, € A given w,.

In order to simplify this condition let us observe the following:

If 2, is a sub o algebra of X and fe L2, 3, P) then the conditional
expectation of f with respect to 3, is equal a.e. to K, f where E, is the
self adjoint projection on the subspace of L, generated by characteristic
functions of sets in X,.

With the Markov process, (), associate a collection of subspaces,

Received November, 23, 1959, and in revised from March 2, 1960.
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B, of L2, 2, P), where B, is the closed subspace spanned by characte-
ristic functions of sets of the form x;'(A), A a Borel set on the line.
Let E, be the self adjoint projection on B,.

THEOREM 2.1. If the set of functions x (®) is a Markov process,
then

2.1) E,E.E, = EE, for t, <t <t.

Proof. Let ¢, <, <¢&. If geB, then g — E.g is orthogonal to
B,. Thus

Etl(Es3 - EtzEt3) =0.

DEFINITION. A Collection of spaces B, C L,(92), ts a Markov class
if equation 2.1 holds.
From the above definition follows:

THEOREM 2.2. Let B, be a Markov class. If fe B, N B, and t, <t<t,
then fe B,.

Proof. 1f f=E, f=E,f then
NEfI = (E.f, f) = (EE,.f E.f) = (E,EE,ff)
= [ (BB f, f)=IFI.
Thus f = E,fe€ B, .

DEFINITION. A Markov process is called stationary if
(2.2) P(%,1n€ AiNTy1a€ 4) = Px, € A Nx, € Ay) .
In particular for a stationary Markov process
2.3) P(x,e A) = P(x, e A) .

Let T, be the transformation from B, to B, defined for characteris-
tic functions in B, by

(2'4) TtXZOEA = X;v&EA .

LEMMA 2.4. Let x(w) be a stationary Markov process. The trans-
formation T, can be extended tn a unique way to all of B, such that
(a) [Tl =zl of xeB
(b) T.B, = B,

(© (Ttl+wxr Tzﬁw?/) = (Ttlx; th?/)
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for every xe B,,ye B, and a > 0.

Proof. In order to consider T, as a transformation in B, we have
to show that:

If A, and A, are two Borel sets and X, 1.4, Xzt iy differ by a set
of measure zero, then

Lo @)y = Aajrup(®)  ace.
Now by assumption
I Xzo"ml) =1l Xxo_l(AZ) [l = Xmo‘l(AlﬂAZ) I .
But by 2.3
I Loty =1l Xariap Il = ] K51 4,0 ) I
which means
La7liay = Xojluay @€

Let us extend T, to linear combinations of characteristic functions
by additivity. If conditions & and c¢ are satisfied for this dense set, we
will be able to extend T, by continuity to all of B, and T, will satisfy
a,b and ¢. It is enough to show that the extension of T, to linear com-
binations is unique. For then ¢ follows from 2.2, and a holds because
every linear combination of characteristic functions in B,, can be writ-
ten with disjoint characteristic functions. Let us assume, then, that
there exists numbers o, and Borel sets A, such that

Zain;l(Ai) = 0 but Zaixxt_l(Ai) +* 0 .
Thus there are k integers 4, +--, %, with
XE;I(BHA,;) =0 a.e., 7 +* ’I:j
where
k
B = ijlAij, P(z;7(B)) > 0
and
&
;ait *+0.
But then, by 2.3,

Xxo_l(BnAi) = O a.e.,

if 7 # 4, and for we x;'(B)
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k
2o rrapn (@) = 20, # 0.
=1
This contradicts our assumption for
P(x;'(B)) = P(x(B)) # 0 .
REMARK. From a follows that T, preserves inner products.

DEFINITION. A Markov class is called stationary if there exist
transformations T, from B, to B, satisfying a, b and ¢ of Lemma 2.4.
In the rest of the paper we will use the notation

Xia = th_l(A)
3. Weak convergence. The main tool in this section is:

LemMA 3.1. Let B, be a stationary Markov class. If Ny B, =0
then

weak lim T,x, = 0

for every x,€ B,.
For the proof we need the following.

LemMMA 3.2. Let B, be a stationary Markow class, and (-, B, =0"
If for some subsequence n;, of the integers,

weak lim T, %, =z + 0

then
&= B + 3 (B, — By )z
n=1
and the terms of the sum are mutually orthogonal.

Proof. Let n < m then
@) E.E,x = weak lim E,E, T, 2, = weak lim E, T, x, = E,x

§—ro0 §—o0

by Equation 2.1 Thus
**) E(E,x—FE, 2)=FEx—Ex=0.

Now

N N
I By ||* = | E@ + 3 (B — Eydo |I* = [ B I + 5 (1(Ba—Ey)e ||
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hence the sum converges. Let
y=Ex + gl(En — E, Dx.
If 2z = E,ze B, then by (**)
(0, 2) = (Eyy, 2) = (B, 2) = (%, 2) .
Also if 2z is orthogonal to all the spaces B, then

(Y,2) = (2,2) =0.
Thus y = «.

LeMMA 3.3. Under the same conditions, there exists a subsequence
ni, of n,, such that if z,€ B, is defined by
Then
weak limz,; =0 .
Proof. Let Z,) converges weakly to z. Such subsequence exists be-
cause a Hilbert space is weakly sequentially compact. Now ze B,, we

shall prove that ze B,, for all k, and thus z = 0. Now, by equations
(***) and 2.2

(Tkzn—Hc! zn) = (Tn+kzn+lc; Tnzn) = (En—l—kx/“ r “’ Enx/” @x ”) — 1 .

n—roo

Hence
” Tkzn+k — 2y ”2 = 2 — 2(Tkzn+7c; zn) —0.

If ue Ly(2) then

(Tkzn£+k’ u) = ((Tkzn{+k - zné)y ’M/) + (zniy u) - (zr u)
or
weak lim T2,/ = 2

and by Hahn Banach Theorem ze B,.

Proof of Lemma 3.1. It is enough to show that for any subsequence
n,;, there exists a subsequence n], of n,, such that

weak lim Tyx, = 0.
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We may assume that T, x, converges weakly to #. Let n] be chosen by
Lemma 4.3. Then

iom = lim (zn{r %) = Elm (Tnizn{ ’ Tn{xo)

= lim (Byall| o], Twz) = I« |

For E,x tends strongly to z, by Lemma 8.2, and by assumption
Tnioco converges weakly to z.

COROLLARY. Let xz, be a stationary Markov process. If No-o B.=
{1} then

weak lim X,, , = H Xoall’1 .

Proof. The Markov class B, — {1} satisfies the conditions of Lemma
3.1, hence

weak im %, 4 — || Xua |1 =0 .

In the rest of this section let #, be a given stationary Markov pro-
cess. Let

Co = ﬁ Bn
n=0
By Theorem 2.2
C, = N B,

wherever t, = 0 and ¢, —» . Let
C.=NB, and D,=B,—C,.

REMARK. {1} stands for the space of constants. Also if B and C
are subspaces B — C is the orthogonal complement of C in B.

LEMMA 3.4. For every integer n
7.6,=¢C,, T.D,=D,
and

Cn c Cn+1 .

Proof. Let x = T,x,. The vector « belongs to C,,, if and only if,
for every integer k there exists a vector z, e B, such that

= Tpiis -
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But then
|| 2|]* = (Tm+kxk! T,x,) = (T, %)

and |2, || =l2z]|| =] Twx, ||. Hence x, = T2, and x, € B, for all k: z, € C,.
Now ye D, if and only if y = T,%, and

(y,2)y=0 if zeC,.
This is equivalent to
(T, Tpey) =0 if xeCy, or (y,,x)=0.
Thus ye D,, if and only if y,e D,.

LemMMA 3.5. Both C,, and D,, are stationary Markov classes.

Proof. The class C,, is Markov because C,, € C,,.,. Now let F,, be
the projection on C,, and G,, the projection on D,,. Then
Gm = m(I - Fm) .

If n=m then E,F,=F, hence E, and I — F, commute. Let
m, < m, < m,; then

Gmlesz3 = Eml(I - le)Emz(I - sz)Ems(I - Fm3)
= EmlEszm3(I - le) (I - Fm2) (I - Fmg)
= EmlEma(I - le)(I_Fm3) = Gmles .

We used Equation 2.1 and the fact that I — F,, decreases with m.
THEOREM 3.6. If xe D, then T.x tends weakly to zero.

Proof. The Markov class D, satisfies the conditions of Theorem 3.1
for

s

D,cD,NAB.=0.
n=0

n=0

i

It remains to study the monotone stationary Markov class C,,.
Define

c.,=T3C, H=AC.,.
m=1

REMARK. If C, is finite dimensional then C,c C,, and both have same
dimension:

C,=C, and H=C,.

THEOREM 3.7. If xeC, is orthogonal to H then
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weak lim T,z = 0

n—oco

Proof. If m >k then C_,cC_,: if xe (C_, then T,x e C,. Let
Y,€C, and T,_y, = T,x then
” me ||2 - (mey Tm—ky()) = (Tkx; yO)

Thus y, = Twx € C,.
Now if F_,, is the projection of C,on C_,, then for each 2eC, F_,x
converges to the projection of x on H (See [3] p. 266). Thus

2 = lim(I — F_,)x

or x is the limit of vectors orthogonal to C_,,.
Let us prove that

weak lim T2z = 0

n—roo

if z is orthogonal to C_,,, and because this is a dense set the theorem
will follow.

The vector « is orthogonal to C_,, and hence to C_,_, for all p.
Now

(Trn+at, Tot) = (Tymtt, %)
but e C, and for some ¥y, C,, x = T,,Y, thus
(Trn+ay Tatt) = (Tontty Trmto) = (2, %) = 0
for y,€C_,,. Thus the m sequences
{Typrq2}d =0,1,+¢,m —1

consist of mutually orthogonal elements and thus converge weakly to
Zero.
It remains to study T on H.

THEOREM 3.8. On the space H, T is a unitary operator and T,=T™.

Proof. If xeH then T.xeC, for all » and it is possible to take
T,.(T,x). But then

(Tn+mx; Tn(me)) = ” me ”2

thus T,.p,x = T (T,x), or T,x = T"x. Thus if y = TweeC, then T,y =
T,.xeC, and ye H.

In order to show that T is unitary we have to show that it is onto.
Let xe H then for some z,e C, Tz, = . But then T,x, = T, ,xeC, and
x, € H.
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In general the powers of a unitary operator do not converge. How-
ever the operator T has some special properties.

Lemma 3.9. If fe L(Q) and fe H then ¥,-1. € H for every Borel
set A.

Proof. In order to prove this we have to go back to the definitions
of Hand T. Now, if fe B, and A is a Borel set, then f'(4)=x;'(4,)
for some A4, and thus y,-1, € B,. Thus feC, implies that ;-1 € C,.
But feH so T,fe H The Lemma will be proved if we show that

ToXs—t = X p-1a  @.€.

If M<f< N then M < T,f <N, thus it is enough to prove the above
equation under the assumption that A is a bounded set and f a bounded
function. If f is bounded (hence 7,f is bounded also) it defines a self
adjoint operator on L.,(Q),: the multiplication operator. Thus as an ope-
rator

£ = @
T.f= SXTan_l(aM = S(Tnfvlum .

Now T, transforms characteristic functions to characteristic functions
and T,);1w, Xw,p—14 are both the spectral measure of T,f. Thus

Ty = Xiwgn—1a - ..
This lemma shows that H is generated by characteristic functions.

Let us study the limits of T,x when % is a characteristic function.

LEMMA 3.10. Let H be generated by a countable number of disjoint
characteristic functions y,. For a given X; there is an integer m:
T, = ;s and then

Trm+dXz = L) -

Proof. For every n T,X, is a characteristic function, hence either
TX: = Y or

(TnX£, Xi) =0.

If (Tan; XL) = 0 fOI‘ a‘u n then (mem TnXi) = (Tm—nxm Xi) = O thus
there exist infinitely many disjoint sets of equal measure which is im-

possible.
Now if for some m, T,x, = %;, let m be the smallest integer that
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this happens. Then
Trm+dXi = TdTmXi = TdXi = Td%i .
THEOREM 3.11. Let z, be a stationary Markov process. If H 1is
generated by a countable collection of disjoint characteristic functions
{x.} then for every ye B, such that (y, ;) # 0 for finitely many i’s (y

has a “‘finite’’ support), there exists an integer m such that the m se-
quences

{Tm+a} d=1,2:++,m

converge weakly.

Proof. From Theorems 3.6 and 3.7 it follows that
weak lim To(y — 2(y, x|l 2:117%) =0 .

Let X, X, ***» X, be those functions for which (y,x,) # 0. Now
T™y, = %, Choose m to be the product of this m,. Thus

Tkm-l-d%ij = TdXij .
Hence

3.1) weak Effi Tin+ay = weak 1,}12 Tiom+a2(W, 2D 1 X6 11720
=3, ) Il % 1|2 T .

COROLLARY 1. FEquation 3.1 holds if the function x, has countable
range.

This is a classical theorem see [2] p. 353.

COROLLARY 2. If there exists a finite measure @, on the line, such
that, for some ¢ > 0, ©(A) < ¢ implies that

EOXn,A 75 Xn,A

for some m, then the space H is generated by a finite number of dis-
joint characteristic functions. Thus an integer m exists, such that
Equation 3.1 holds for all ye B,.

Proof. Let k be an integer greater or equal to ¢(2)e. If xo,,,€ H
1 =1, «++,k where the A, are disjoint then

P(2) =z I9(A;) =Z min (P(4,)k

or ¢(4;) = p(2)/k < ¢ for some 4,. But then, for some u, ¥, Aio¢ H hence
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Youu € H

Thus there are at most & — 1 disjoint characteristic functions that
generate H.

REMARK. This last corollary is similiar to Doeblin’s condition as
given in [1] page 192.

4, Strong convergence. Throughout this section we assume:

4.1. There exists a real number t, > 0 such that the space B, N Bb0
18 finite dimensional and there is a positive angle between B, — B,NB,,
and B, — B, N B,

Two subspaces, B* and B**, are said to have a positive angle be-
tween them if

sup {(0*, b**) ||| b% || = || ** || = 1 and b*e B*, b**e B**} < 1.

ConDITION 4.1. Is equivalent to each of the following.

(a) The point 1 is not in the essential spectrum of EyE, Eyor E, E,E, ).

(b) The operator E\E, E,(or E, E,E,) is quasi compact.

(¢) The operator E,E, Eyor E, E\E,) is a sum of a compact opera-
tor and an operator of norm less than 1.

(d) The norm of E, restricted to B, — B, N B, is less than one.

LemmA 4.1. If t > ¢, then Condition 4.1 is satisfied when B, is
replaced by B,.

Proof. Let us use the form given in ¢ for 4.1. Now
E.EE, = Ez(EcoEoEto)Et

by Equation 2.1, hence it is a sum of a compact and an operator of norm
less than 1.

Now from Theorem 2.2 it follows that B, N B, decreases with £, Let
t, be such that

dim (B,N B,) = dim(B,N B,) for all ¢.

It is easy to see that B,N B, is generated by a finite number of
disjoint characteristic functions. Let them be x,,--+, %, thus

B,NB, = BN B, = span {)4,*+, X} t>1t,.
because by Theorem 2.2
B,NB, D B,N B,

and they have the same dimension.
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LeMMA 4.2. If t > 0 then
T(B,N Btl) = BN le
and

T(B, — Bonle) =B, - BonBtl =B, — B,NB, .

Proof. A vector xe B,N B, , if and only if, € B, and v = T,y for

some y € B,. But then

(Tw, Tevy) = (&, Toy) = ||« ||* = || T ||®
or

Tw=T,y: TxeBNB,, .

Thus

T(B,NnB,) = B,NB,;,,,0B,NB;;, = B,NB,
by Theorem 2.2 and the remark above. This shows that

T(B,nB,)=B,NB, .

Let xe B, be orthogonal to B,NB,. If yeB,NB,, then y = T,z where
ze B,NB,. Thus

(T, y) = (T, T)2) = (w,2) = 0.

THEOREM 4.3. Let xe B, and let ¢ = norm of E, restricted to
B, — B,NB, .
1 1
Then ¢ <1 and

(“.2) I BT — S, 20 1 217 Tl £ o[l |

where n is an integer such that nt, < t.

Proof. The vector ' — 3% (%, Xo) || 2. || *); is orthogonal to B,N B,
and hence so is

y=Taw— 3, 2) 1 217 Toxs -
Thus
I Ey || = || BBy || = || BBy By » « - By || -
Now the norm E,, restricted to By, — B,N B, is equal to ¢ hence
NEyll=cllyll Sec.llall .

It becomes now interesting to study T.x;.
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THEOREM 4.4. For each given t there is a permutation of the in-
teger 1,2, -+, k, w,, such that

Tt = Ay -
Also there exists an integer m such that

Tmt%i = X(ﬁbi)m =X for all < .

Proof. Let us use induction on k. Let x,, Xigr* s Xi, be a subset
of x;,t =1, «-+, k, with minimum norm: ||, || = || x|l. Then T;x; is a
characteristic function in B,N B, with norm smaller or equal to the norm
of Xis Xas o0y Ait T&Xire(Xilr ] ij)

This shows that ‘T, maps the set (); , -, X;,) into, therefore onto,
itself. If x; is not in this set then T,x, will be also, orthogonal to ;.
In the remaining set there are less than & functions and by induction
the first part of the theorem is proved. The second part is an easy re-
sult on permutations.

The last two theorems include the classical result on Markov pro-
cesses with a finite number of states. There might be a connection to
Theorem 11 of [4].

If dimB, N B, =1 then

| Tow — (@, DLl = c" [ = ||

where nt, <t and 1 is X,. This is a similiar to the case of independent
functions. Let us conclude this section by studying this case. Thus let
B, and B, be two subspaces of L,(£) generated by characteristic func-
tions ¥, and y., where A and A’ belong to some ¢ subalgebras of 2.
The cosine of the angle between B, — {1} and B, — {1}, ¢, is given by

(¥) ¢ = sup{(Zais,, 2aiyAD|1 = YaiP(A) = ZaiP (A}
and
Sa,P(4;) = ZalP(A]) = 0} .
THEOREM 4.5. The number ¢ is smaller than
1. sup | (P(ANA") — P(A)P(A)P(ANA) | =g, .
2. sup | (P(ANA") — P(A)P(A")(P(A)P(A)" | = c, .
Where A and A’ belong to the o subalgebras generating B, and B,

respectively.

Proof. Let us show that ¢ < ¢, the other inequality is proved in
a similiar way. Now let a;, a], A, and A] satisfy the conditions of equa-
tion (*). Then



1234 S. R. FOGUEL

200 PANA) = Za.0(P(A, 0 4) — P(A)P(A) + Zoa,P(A)P(4,) .

The second term is equal to zero. Thus

| ZabiP(4,NA) | = ¢ 2| aaf | (AN A)

1/2

= o(SaiP(Ain 4)) (SarPAn 4))

1/2

— cl<§_i‘_la§P(Ai))m(;agzP(Aj)) —e,.

A more convenient form of the conditions of Lemma 3.2 is
1. ¢, is the largest number for which

L+e)'=PANAYPAPA)NT =1 —c).
2. ¢, is the largest number for which

1—c=PANA)PAPA) " =1 +ec,.
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SOME ZERO SUM TWO-PERSON GAMES WITH
MOVES IN THE UNIT INTERVAL

MARTIN Fox

Introduction. Consider the following zero sum two person game.
The players alternately choose points #,€[0,1] for ¢ = 1,2, -+, n, the
choice being made by player I if 7 is odd and by player II if ¢ is even.
After the 4th move the player who is to make the (7 + 1)st move ob-
serves the value of ¢,(¢, ¢, -+, t;) where ¢, is some function on the -
dimensional closed unit cube to some set 4;. The payoff is f({, ¢, +--, t,)
where f is a continuous, real-valued function.

If all the ¢, are constant we have the case of no information. Ville
[1] showed that in this case such a game has a value. At the other
extreme, if the ¢, are all one-to-one we have the case of perfect infor-
mation so the game has a value.

The purpose of the present paper is to show that, in general, games
of the form introduced in the first paragraph do not have values and
to consider two cases in which they do. The counter-examples to be
presented will be compared with Ville’s classical example of a game on
the unit square which has no value.

It is shown in §2 that the games considered always have values
when n = 2.

An example of a game with no value is presented in §3. In this
example 7 = 8 and the ¢, take only a finite number of values.

In §4 it is shown that the additional hypothesis of continuity of
the ¢, is not sufficient to guarantee existence of a value. In that ex-
ample n = 4. The case n = 8 with continuous ¢, remains unsolved.

Section 5 deals with a special case for which » is arbitrary and
yet the game has a value. In this case the ¢, each take only a finite
number of values and each is constant on sets which are finite unions
of t-dimensional generalized intervals.

1. Preliminary remarks. In this section the notation to be used
in this paper will be introduced. This will be facilitated by the intro-
duction of the normal forms of the games under consideration.

A pure strategy for player I is a vector @ = (2, s **+, Xy a)
where x,€[0, 1] and the x, for 7 = 2,3, «-+, [(n + 1)/2] are functions on
A, _, to [0,1]. If moves t,t,, +--,t, , have been made, then the <th
move made by player I (the (2¢ — 1)st move in the game) will be
(Do o1, Toy <, ty_5)). His first move will be ..

Received November 16, 1959. Excerpt from dissertation for the degree of Doctor of
Philosophy, University of California, 1959. Partial support was given by Office of Ordnance
Research, ‘U.S. Army under Contract DA-04-200-ORD-171, Task Order 3.
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A pure strategy for player II is a vector ¥ = (Y1, Yoy ** *, Yu) Where
each y, is a function on A,_, to [0,1]. If moves ¢,¢, +--, t;_, have
been made, then the ith move made by player II (the (2¢)th move in
the game) will be y;(bu.(ts, tay *++, t2-1)).

When player I uses the pure strategy x and player II uses the pure
strategy y let t,(x, ¥) be the +th move made in the game. The ¢, are
defined recursively as follows:

bz, y) = 2, ;
0@, ¥) = Yu(Pua(t(®, ¥), Lo, ¥), « -+, taua(, Y)))
for e =1,2, .-+, [n/2];
bai1(%5 Y) = Zo(Pu—a(t(®, ), L2, Y), «+ -, Lo, ¥)))
for : =2,8, .-+, [(n + 1)/2] .

The payoff function is given by M(x,y) = f(t.(x,y), t,(x,¥), -+ +, t.(2, ¥))-
The payoff as a function of mixed strategies will also be denoted by M.

In our case, since the moves are points in [0, 1], the strategy spaces
X and Y are products, usually infinite dimensional, each coordinate space
being [0, 1]. Hence, the choice of a strategy by player I is equivalent
to the choice of a distribution function F' on X. It will be convenient
to let the space P of mixed strategies for player I be the family of all
distribution functions on X which assign probability 1 to a finite subset
of X. The same will be done for @, the space of mixed strategies for
player II.

If H is a distribution function on the real line and S is any subset
of the real line which is Borel measurable, we will let HS be the
probability assigned to S by H.

For FFe P we let F,, denote the marginal distribution function of
the coordinate of player I's strategy which corresponds to his ¢th move
when ¢,,_, = «. Similar notation will be used for Ge Q.

2. The case n» = 2. In this section it will be shown that any game
<« of the type given in the introduction for which » = 2 has a value.
It is not even necessary to assume that ¢, is a measurable function.

For any ae A, let & (a) = (¢7(), [0, 1], M,) where M, is f restricted
to ¢ () [0, 1]. It follows by the proof used for Ville’s minimax theorem
that each Z(a) has a value v(a). Let

v = sup v(«) .
w€4)
Fix ¢ > 0 and let a™ be such that v»(a*) > v —e. For each aecA, let
F® and G be e-good strategies for players I and II, respectively, in
Z(a). The distribution function F'* assigns probability 1 to a finite
subset of ¢ (). Since F'“” is a distribution function on [0, 1] which
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is the strategy space for player Iin < it can also be used as a strategy
in &, Let y be any pure strategy for player Il in &, Since y,(a*)€[0, 1],
it follows that #.(a™) is a pure strategy for player Il in < (a*). Hence,

ME,y) = |, v@)F =)

b7 @)
- ng*(t, U@ F=(dt)
= M (F”, y(a™))
> (o) —e>v— 2¢.
Let G be any strategy for player II in & such that G, ,=G" for all
a€A,. Let xz be any pure strategy for player I in <. For some a€ A4,

it must be true that xe¢'(a) so that x is also a pure strategy for
player I in Z(a). Then,

Mz, G) = | fia, G,.(d)

- [Mw(x, G (dt)
— w(x; G(w))
<va)y+e=v+e.

From the two inequalities obtained above it follows that the value of
& is .

3. A counter-example for n = 3. In this section the counter-
example for n = 3 will be given. The functions ¢, (# = 1, 2) each take
only a finite number of values. The similarity of this example to Ville’s
example will be discussed.

For this example let

¢1(t1)50;
—1ift,=00r 0<min(,1—1t)=t;
t,if £, =0 or 1 and ¢, ~0;

@m@ﬁzzmo<a<g§%

BIF0<H<I—t<L

f(tv 25 ts) = _lt:s — 1, I

Let I be any strategy for player I. Fix ¢ > 0 and let §¢ (0, ¢) be
sufficiently small so that F(0, 8) < e. Let G{8} = G{1 — &} = 1/2. Then,
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M(F,6) = —+ (FI5, 11+ Fop[ [ 16, — 81 F.(at)
+ {1t —a -9 @)

<-du-ofE- 9+ foa- Ble-de i

so that
sup inf M(F, ) < —2 .
F @ 2
Let G be any strategy for player II. Fix ¢ > 0 and let x, € (0, 1/2)

be sufficiently small so that G(0, ] + G[1 — x,, 1) < e.
Let

iifaz—l;

2

aif a=0o0r1;
962(05): lf(/’(:2

4 b

3 ita=3.

4

Let # = (x,, 2,) so that x is a pure strategy for player I. Then,

MG, v) = —SW (- t2>G(dt2) - S (t.~ %)G(dtz)

2 [1—2;.1)

1 3
— ——tGdt2—S — — t,|G(dt,
5[0,1/2] 4 | Gldt) a4 Gldt,)

1
Sy
so that

inf sup M(F, G) = —~
aq F 4

and the game has no value.

In Ville’s example the payoff function is such as to force each
player to attempt to choose a point closer to 1 than does his opponent
without actually choosing 1. It is impossible for either player to
guarantee he will achieve this with any preassigned positive probability
no matter what pure strategy his opponent may use. In the example
just presented a similar situation arises on the first two moves. In Ville’s
example the competition to choose a point close to the endpoint is.
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a direct competition over payoff. In the present example this competi-
tion is over the information player I will receive, which, of course, helps
determine the payoff. If on his first move player I chooses a point
closer to 0 (but not 0) than the choice of his opponent is to both 0 and
1, then he will obtain more accurate information about the location of
his opponent’s choice than would be the case otherwise. Player II is
prevented from choosing an endpoint since to do so would be to give
his opponent perfect information.

4. A counter-example with continuous ¢;. In this section a coun-
ter-example will be presented in which the functions ¢, are all con-
tinuous. In this example n = 4. Again a comparison will be made with
Ville’s example.

Let

di(t) =0
¢z(t17 tz) = tl(l - tl)tz ’
0if min(¢,1 —¢t) =t =max(t,1—1t);

tz(l - tz)(tl - tz) t1 - ‘—;“1 1f tz < tl < %

1
or — <t t,;
bults, £ b)) = g Sh<

tz(l - t2)[t1 - (1 - tz)]

Lo

if-;—étl<1—t2

1
or 1—t2<t1=?;

f(t1yt2yt3yt4):Itl_t4l_10|t2_tal-

Assume t,# 0 or 1. Then, ¢y(t,, t, £) >0 for min (t,, 1 —t,) < ¢, < 1/2
while ¢y(t,, t,, t;) < 0 for 1/2 < t; < max(t,, 1 —¢,). On the other hand,
bi(ty, Ty, t) = 0 otherwise.

Let F be any strategy for player I. Fix ¢ > 0 and let §€(0, ¢) be
sufficiently small so that F,(0, 8] + F[1 — 6,1) < e. Let

=
=)
il
<

Ys(a) = if a>0;

if a<0.

NN S

Let G assign probability 1/2 to each of the pure strategies (§,y,) and
(1 —3,%,). Then,
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M(F, G) = S [0,8] (é_ B tl>F1(dt1) + S[l—s,u <t1 N %)Fl(dtl)

—l_ S
(8,1/2)

—_ 10[F1{0} + F1{1}][';_SI & — ts I Fz,o(dta)

t ——‘F(dt1)+S

t, ——'F(dtl)

(1/2,1-8)

+ %S 1= 8—t,| Fiudty |
< IR0 + F1)] + Se 4 51— < = {0} — R
—5B[F {0} + F{l}][(— - 5) + (1 o ‘%)]

e U F1{1}1[5(1 20) Z]

1
— 4 11e
<4+

so that sup, inf; M(F, G) £ 1/4.

Let G be any strategy for player II. Fixe >0 and let 6€(0,¢)N(0,1/2)
be sufficiently small so that G,40,8) + G, (1 — §,1) <e. Let x,(a) =
a/[8(1 — 8)] and let F assign probability 1/2 to each of the pure strategies
(8, x,) and (1 — J, 2,). When player I uses the strategy F the value of
the nonpositive term in f will always be zero. Thus,

M(F, 6) 2 [1 = G.0,8) = Guol — 8,1

[ S[B—t | Gyoldt) + £ 511—34 ]Gzo(dt4)]

S Tt CRORIGES )

so that inf,sup, M(F, G) = 1/2 and the game has no value.

Here again the primary competition between the players is to make
their first moves as close to the endpoints as possible without actually
choosing the endpoints. If player I is successful in choosing a point ¢,
at least as close to one of the endpoints as is player II’s choice, then
player II will have less information about f, than would be the case
otherwise. Player 1 is prevented from choosing an endpoint by the fact -
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that if he does so he will get no information about his opponent’s first
move so that he cannot guarantee that he can keep the negative term
close to zero. Player II is prevented from choosing an endpoint by the
fact that when he does so the function ¢, will take the value zero no
matter what his opponent does so that he will have no information about
player I’s first move.

5. The case of information sets which are unions of generalized
intervals. The case to be considered here is that in which each ¢, takes
only a finite number of values and each is constant only on sets which
are finite unions of i-dimensional generalized intervals. This is the only
case considered in this paper in which » remains arbitrary.

Let the values of ¢, be 1,2, «--, m;. Let P;p;'(k) be the projection
on the jth coordinate of ¢;'(k) where 7 =1,2, ---,4. The interval [0, 1]
can be subdivided into disjoint sets By, By, ---, By, such that for each
B, there exist %, %, +++, %, and k, k,, «-+, k,, all integers, such that
teB; if, and only if, teP;p;' (k) whenever 4e{i, %, --+,4,} and
keik,k,y, «-+, k,} while t¢& P;p;7'(k) otherwise. Suppose j is even so that
player II makes the jth move. Let ¥ = (¥, ¥y *+*, Yn) and y'=
W, vl -+, ¥™*) be any strategies for player II such that y, =y, for
1 # j/2 and if y,.(k) e By, then ¥),(k) € B;,. For any pure strategy x for
player I we have t,(x, y) = t,(x,y’) for 1 =1,2, .-+, 7 — 1 since for these
values of ¢ player II's moves are unchanged. If ¢z, y)e B;;, then
t(x, y') e B;,. Hence,

(f)]‘(tl(xv y)) t2(xy y)v tety tj(x; y)) = (I)j(tl(xy y’), tZ(x’ y')) ccy, tj(xy y’))

so that ¢,..(x, ¥) = t;.u(x, ¥'). Suppose that ¢,(x,y) = ¢, (x, y') for 1 =
j + 1, .7 +2 .. 7:0- Then, ¢i0(t1(x’ y)r tz(x’ y)’ ) tio(xr y)) = ¢i0(t1(xr y,)’
tz(x’ yl)! ) tio(x’ y,)) so that tioﬂ(x, y) = ti0+1(wr y’)- Thus, tz(x’ y) =
t(x, y") for all 7 = j.

Foreachj=1,2, ..+, n — 11ix § > 0 and select points t;, ¢;, +++, ¢,
such that for any ¢, e B,, there exists ¢;, € B;, such that for any ¢, t,, -« -
t; 1ty oo+, t, we have

’

If(tlr tZy M) tj—v tjr tj+1; M) tn)
’_f(tly t2, M) tj—lv tjvr tj+1’ tey tn) I < 8} .

Select the t;, in such a way that as §;| the set of all the ¢,, increases
monotonically.

Let the game ?f‘(ﬁl, 82’ ct 8@) = (X(Slv 82; tt Yy 8i)> Y(BIY 82’ ] Si)y
Ms, s, ...5,) be our original game with the jth move for j=1,2,...,4
restricted to ¢, tp, <<+, s, In <, &, +++, 5,_,) the player who makes
the (n — 1)st move has only a finite number of strategies so that
Z (5, 8, +++, 8, has a value (see Wald [2]).
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Suppose £ (8, &,, +++, 8,1, 8;) has a value for all §, > 0. It follows,
by a proof similar to Ville’s, that £ (é,, ,, +++, 8;,_,) has a value. Thus,
by induction, & will also have a value.

Acknowledgment. The author wishes to express his gratitude to
Professor David Blackwell for suggesting the problem treated here and
for his continued interest in its solution.
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SINGULARITIES OF THREE-DIMENSIONAL
HARMONIC FUNCTIONS

R. P. GILBERT

Introduction. Recently G. Szego [9] and Z. Nehari [8] have obtained
some interesting results connecting the singularities of axially symmetric
harmonic functions with those of analytic functions. In this paper we
shall show that a similar connection also exists between the singulari-
ties of a three-dimensional harmonic function and a function of two
complex variables. We may do this by considering the Whittaker-
Bergman operator [10] [1] Bi(f, % X,) which transforms functions of
two complex variables f (¢, u), into harmonic functions of three variables.

H(X) = B{f, % X), B(f, % X) = 5= rt, ™

t:[— — it ; u__l_],
(x %?/)2+z+(x+w)2
|X_X0I <8, XE(x,y,z), XOE(xO’yO,ZO)’

where &~ is a closed differentiable arc® in the u-plane, and ¢ >0 is suf-
ficiently small. We may see how this operator maps the functions
f(t, ) into harmonic functions by considering the homogeneous polyno-
mials of degree » in x, v, 2, which are defined by

i % . u—l n +n
tn - {_(W—@y)‘z— + 4 + (x + ?/y)—é—} = _E:l_ hn,m(xa Y, z)u—m .

The h, .(x, y, 2) are linearly independent polynomials, which form a com-
plete system [4]. Now, any harmonic function regular in a neighborhood
of the origin | X| < e, may be expanded into a series

H(X) = H(x! y! z) :Z:=0 Zf:n—n a’n,lhn»l.(xy ’!/, Z),
which converges inside the smallest sphere on whose surface there is a

singularity of H(X).
From the definition of the harmonic polynomials we see that

1 du
—_— "Yr— = hnm(x, Y, Z) ’
2m J& U
where & is, say, the unit circle. In spherical coordinates this result
may be recognized as one of Heine’s [7] integral representations for the
Received January 19, 1960. This work has been submitted to Carnegie Institute of
Technology in partial fulfillment of the requirement for the degree of Doctor of Philosophy.

1 We shall usually consider £ to be closed; however there is nothing preventing us
from considering open arcs also.
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associated Legendre functions.?
It follows then that if H(X) is regular for | X| < ¢ it may be gen-
erated by an integral operator

HEX) = SL ] re n,
where

fEw=3 3 autrur.

n=0 m=—n

The harmonic functions which are regular at infinity, |X]| > 1/e,
are of the form

o - (2 2 2).

and may also be generated by the Whittaker operator; however, in this
case we use the functions

1 i
G(t, u) = 72 Z AT

How the functions G(t, u) transform may be seen from Heine’s other
representation
~1 - S t—”um@.
27 tu

_m=—mlm+m! 1, < @ LL)

(nl)27 r N e

= h3 (%, ¥, 2)

(= m)! (—)mr—"*P™(cos 0)¢'™ ,
n!
where, as before, & is the unit cirele.

Occasionally it is convenient to continue the arguments z,y, z to
complex values in order to study the behavior of H(X). For instance,
if we introduce, as a particular continuation, the complex spherical co-
ordinates

r = + (xz + yz + 22)1I2 .
2 By introducing spherical coordinates
x=rsinfcose,
y=rsingsing ,
z=rcosé,
the polynomials may be written in the form hn m(z, y,2) = (n!/(n + m!)rn Py (cos 9)etme

Integrals of terms t®y™, where |m| > |n| > 0, vanish; consequently, we may restrict
ourselves to just those functions where |m| < |n]|.
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o (axiny”
x—ay/
- %
£ = ot
which reduce to & = €%, £ = cos 0, for real z,y,z, we may obtain an
inverse Whittaker operator.

LEMMA. Let V(r,cos 6, e®), be a harmonic function regular at in-
fimity; i.e.

V(r, cos 0, ¢*) = H~(X) = —i—g G(t, u)ﬂ ,
2 J ¥ U
where
G(t, u) = (f‘, 2 anmt‘"“lu’"> :

and & is the unit circle.
Then G(s, w) may be generated by the integral transform

G(s, u) = 4; SH[S 7(”8(8 +t)t2) Vv, & ?) ]

The integration path in the E-plane is the linear segment —1 < £ <1,
the path in &-plane is the unit cirele.

Proof. Let us define

%K<%§ g) %m‘s;_m(szrl)( + )r< ) m(5)< )m;

it follows then, directly from the orthogonality relation

o m . 2 (n + WL)y
Lﬂ@ﬂ@%—%m+lm_my

that

| O Co e e

(where the integration paths are those mentioned in the hypothesis).
Recalling the generating function for the spherical harmonics

oo n el +n ,ny n m L m
nét Z ; (n + m)! P"("&)(@'u\)
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we see that K may be formally summed to

K<1, &, ﬁL—> = <1 — 28£)1"§ <i>n —ps ST ,
s ¢ s/ =0\ g (s—1t)y
providing (|¢/s|) < 1. In this case, K is an analytic function of ¢, and
hence also analytic in r, & and & The harmonie functions H=(z, ¥, ?),
which are regular at infinity, have a Taylor series expansion of the form
Z}X,’k,z:o Aﬂczxﬁy—kz*l-

If this series converges for x* 4 y* + 2* > (1/¢%), then the series

j%:o Ajkl(xl + ixz)‘j(yl + iyz)_’“(zl + ’L'Zz)‘l ,

if rewritten in the form

> Bayerss®7T %Y Y 2R
a,b,C
t

will converge for 22 4+ y? + 22 > (2/¢), and x} + ¥ + 22 > (2/¢). Hence,
H~>(z, y, 2) is an analytic function of the complex variable x, ¥, 2z, in some
neighborhopd of infinity. The harmonic function V(r, &, ) obtained by
replacing «, ¥y, z in H*(z, ¥, 2) by

v=ZCHWVI=F,

y= -;”—.(,f —rWi-g,
1

r=1rf,

consequently is an analytic function of 7, &, £, except of course at £=+1,
and £ = 0.

It may be concluded, therefore, that the integrals involved in our
representation for G(s, u) are Cauchy-integrals, since the integrand is a
single-valued analytic function of & and ¢.

II. Singularities of harmonic functions generated by the Whittaker-
Bergman operator. Bergman [2] has considered a special class of har-
monic functions generated by the Whittaker operator and has given a
simple procedure for finding their singularities. He does this as follows:

Suppose that (1/u)f (¢, ) has the form P(¢, u)/Q(t, w), where P and
@ are polynomials in ¢ and . In order to study the harmonic function

HX) = B(f, ZX) = 50| fE, 0,

271

we consider the singularity manifold of P/Q, i.e.
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U .
7z} = E{Q[——(w — zy)—z— + 2z + (x + y)(2u)?, u] = O} .

The manifold Z°® may also be written in the form
Z}*=FEu=¢(X),v=1,2,8, -+ n},

where the ¢ (X) are algebraic functions of x, ¥, 2, and the degree of

in @ is n. At every point (x, ¥, 2), except those which satisfy the equa-
tion

I [¢x(X) — $(X)] = 0,

there are n distinct branches of Z: = FE{u = ¢,(X),v=1,2,3, ---, n},
of Z%. We choose the contours «%,v»=1,2,3,---,n, so that one and

only one u = ¢,(X) lies inside .&. It follows from the residue theorem
that

1 { P(t,u)
B(X) = 2iseVQ(t, e

where H,(X) is the corresponding branch of

H(X) = Pl—(x — w)u/2 + 2z + (x — w)(2u)?, u]
oQI—(x — ww)u/2 + z + (v — w)(2u) ™", ul}/ou ’

with
. U * —1 —_—
Q[—(w — i)y + 2+ (@ — )W u] =0.

We notice that H(X) becomes singular for those values of (x, ¥, 2) which
satisfy the equations

Q[—(x — e+ 7+ (@ — i), u] —0,

O{Q[—(x — W)+ 2+ (@ — W)@ u]}/au —0.

We shall now show that Bergman’s result does not depend on the
fact that (1/u)f(t, w) is an algebraic function, but holds under more
general conditions. The only restriction we will impose is that the
singularities of (1/u)f(¢,u) can be written in the implicit form
S(x, y, 2z, w) = 0.

THEOREM 1. If Z* = E{S(x, y, 2z, uw) = 0} is an implicit representa-
tion of the singularities of
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1 1 du
L7t ), then H(X) = 'z;?ijz it mst

-

(where &~ is the unit circle) is regular at X = (z, ¥, 2), providing this
point does not lie simultaneously on the two surfaces

S, y,2u)=0,
and
iS(x,y, z,u)=10.
ou

Proof. The proof of Theorem 1 will be based on a modified form
of an idea employed by Hadamard in the proof of his theorem on the
multiplication of singularities [8] [5]. The integral representation of
H(X) is valid for all points (z, ¥, 2) which can be reached from an in-
itial point by continuation along a curve I'(X) (in three dimensional
real-space, R?®), provided no point of I'(X) corresponds to a singularity
of (1/u)f(t, u) on the integration path. This initial domain of definition
of H(X) can now be enlarged by continuously deforming the integration
path provided, again, that in this process of deformation the integration
path at no time crosses a singularity of (1/u)f(¢, u). Accordingly, we
may now write H(X) as

HxX) = e wde,

where &’ is now a new integration path obtained by observing the
above precautions.

Since ¢ is dependent on X = (z, ¥, 2), the singularities of the integral
move in the u-plane as we continue H(X) along I'(X). Now, as long as
we can avoid crossing such a singularity by deforming the contour .&#’
we are still able to continue H(X). Let us assume we have been able
to continue H(X) to the point X, = (z,, ¥;, 2,), and let us consider the
singularities of the integral for X = X,. The singularities of (1/u)f (¢, )
are those values of u satisfying S(x,, ¥, 2, ) = 0. From Taylor’s theo
rem we may describe the local properties of S about some point # = «,
for which S =0, by

—a)2 623(371, Yy, %) Of) coe
2! ou? '

S (@4, Yay 21, u) = (u— 01)56?;8 (1 Ysy 21y @) + (

Unless 8S/ou = 0 at w = «, in a neighborhood of % = a@ we may ap-
proximate S by

(X) 6S(ﬁ(}1, Y1y 21y CZ) .

S(xu ylr zl; u) = (’H/ -
ou
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Therefore in some neighborhood of u = a, say |u — a| <e¢, S does
not vanish save at w = a. Clearly, then, by deforming &’ we can avoid
crossing ¥ = a, or any other point v = 8 for which S(x, v, 2z, 8) =0,
if we follow an arc of the circle |u — a| = ¢/2 about u = «. This com-
pletes our proof.

Using the language of real geometry we may say that unless we
are in the neighborhood of the envelope & (z, ¥, 2) = 0 to S(x, ¥, 2z, u) =0
(in which case there are an infinite number of such surfaces tangent to
(%, y,2) = 0 we may avoid crossing these singularities by deforming
.

THEOREM 2. Let r = @(§, &) be a representation of the singularities
of V(r,£,¢) = H*(X), X e C°. The function of two complex variables

6o,0) = | [ § gV 6 05 ae,

1s then regular at (s, u) providing (s, u) does not lie on the ‘‘envelope’
of the two parameter family

s, ule, 0 =0 e+ VT F (L4 L) -s=0.
2 g U
Proof. The proof of this theorem closely parallels the one for
Theorem 1. As before, we consider the analytic continuation of G(s, u)
along an arc [(s™%, u), beginning at s'=10,u =1. The integral rep-
resentation of

G =g5) | g e s o]

will remain the same if either integration path (in & or ¢ planes) is
continuously deformed in such a manner so that at no time they cross
a singularity of the integrand. Therefore, we may write G(s, u) as

G(s, u) = ___S“ [S SETL Lyr g z;)%}]dg

A J £ L) 2, (s — 1)

where .27 and % are new integration paths obtained by observing the
above precautions. Now, the kernel in our integral representation is
singular whenever

t—s:r[é%—}—Vl——(S?(—u—+£—>]—s:0,

2 e °

and the harmonic function is singular for @(§, &) — r = 0. We notice a
significant difference in these two singularity manifolds; as G(s, u) is
continued along I™(s™*, #) the singularities of the kernel move in the
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g, ¢-planes, while those of the harmonic function remain fixed. By us-
ing the Hadamard idea we realize that we may always avoid an advanc-
ing singularity by deforming one of our contours with the possible
exception occuring when the two manifolds coincide. Therefore, unless
r =@ ¢) as a function of & and ¢ also satisfies ¢t — s = 0, G(s, u)
must be regular. This leads us to consider the two parameter family,

Wis ulg, 8) = 0, o & + VT=F (% + L)] -5 =0,
2 ¢ U
as the only possible singularities of G(s, u).

Let us assume that we have been able to continue G(s, u) to (s, %,)
and let us consider those values of &, ¢ satisfying r(s,, u,|&, &) = 0.
These values are singularities of the integrand which must be investigated
to determine whether they are avoidable by deforming the paths of in-
tegration. Let & = «, and & = B be singularities which may cross either
L or < respectively if G(s,w) is continued further along I™(s™*, u).
In a bicylindrical neighborhood |& — | < &, | — B] < &, we may expand
(8o, Up] &, &) in a double Taylor series as

1#(30, u0l§7 C) = (S - a)'%‘lj\(sm uo,a, B) + (C - B)gg‘l’(sm uolar :8)

e — qpdV — _ g _ gyl
e L i e e R S KRR
Now, unless the first variation of (s, %,|&, £) vanishes at («, 8), ¥ may
be approximated as

(S0 o £, £) = (& — a)%«p(so, Uolat, B) + (€ — ﬁ);—gwso, uola, B) .

In this case it is always possible to choose a secant to the circle
|€ — a| = &/2 not passing through & = a, and a secant to the circle
|¢ — B| = &/2 not passing through ¢ = 8, such that (s, u,|&, &) # 0 on
those portions of the secants inside the respective circles. It follows
that, in this case, we may deform the paths %, and -%§ so that they
follow the secants about the singular point (a, 8) and thereby continue
G(s, w) still further. The only possible singularities of G(s, #) are there-
fore those values of s and u satisfying simultaneously

Yis, ul£,8) =0

and

O O ey =
L+ Sre =0,
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where ¢ = n(€) is an arbitrary relationship between & and ¢. This com-
pletes our proof.

We notice here, that a particular class of singularities of G(s, w)
may occur for s and u satisfying simultaneously

¥(s, ul&, ) =0,
%:O’
3
and
M _y,
e

We have reduced the problem of locating the singularities of G(s,u)
to obtaining the envelope of a three parameter family of complex sur-
faces

Y(s, ulr, £ 8 =0,
where the parameters 7, & ¢ are subject to the condition
A(r, §,8)=0.

It was most natural, because of the Cauchy integrals involved, to con-
sider £ and ¢ as independent parameters, and » the dependent parameter.
However, unless we are in the neighborhood of a ‘‘singular point’’ of
A = 0, it is no longer necessary to make this distinction.

For a point (s, #) to lie on the envelope E(s, u) = 0, the first varia-
tion,

L
by = Zbr + 6§8§+ ag‘%’

must vanish. If we proceed as before, and consider r dependent, we
obtain

(%@i_%@i>gg+<ﬁg‘£ 0A 6‘#)3@:0,

or 6  0E or or o¢  or or

which implies that an arbitrary functional relationship exists between &
and &, or more generally a relationship B(r, &, £) = 0, such that

OB oy _ 0B oY\, , (9B 0% _ 0B 05, _
<6r 0F 0& or >8§+<6r o¢ il 67>8C 0,

where
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0A o A0y 0A D) 04 o)
or 0f o0& or or o¢ oc or
9B oy _ 0B oy OB oy _ 0B 0%

or 6  OF or or ac ot or

Let us consider the envelope of (s, u|r, & &) = 0 [subject to A(r, & &)=0]
under the transformation of parameters

r = + (x2 + y2 _I_ 22)1/2
E=z/+ @ +y + ),
. 1/2
£ = +(ZEW)7,
x — 1Y
We realize that, for X = («, y, 2) = B* the Jacobian cannot vanish and

hence the transformation is one-to-one. However, as may be confirmed
by direct computation

Mio, for all X e C?,
0(x, ¥, 2)
which are a finite distance from the origin.
Under this transformation our family of complex surfaces becomes

(s, w|r, & &) = 0} — {X(s, ul|x, y, 2) = 0},
with the auxiliary condition
{A(r, &, 0) = 0} — {P(, y,2) = 0} .

Now, for a point (s, #) to lie on the envelope to )} = 0, the first varia-
tion must vanish, i.e.

ox ox ox
oy = Ldu + =£-8 L6z =0
x ox + 0y vt 0z

_ (0w or 0w 5 | by ot
_<6r v 9t ow | ot ax>8x
oy or | O 08 | oy 9F
+<a¢ oy o oy o ay>8y
o Or | oy OF | Oy 0F
+<87' 0z * 05 oz + ¢ 8z>82

_61[»(67'896 or o or >
=2 (o —8y + —82
or \ ox + oy Y oz

oy (08 s, L OEs | OF
ag(ax o+ 6y8y * 6282>

%(ﬁg 9 s ?55):0
oc 6yx+6yy+6zz ’
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From our auxiliary condition we have
[——890 + —»8?/ + —Sz]

ox
_ 3 o0& 0f & ]
= S+ 25§
ag[ R A vl [
_0A[BL s, . 0L ¢ 5, /04
ag[axmkaywr zz] or

which, together with 8y = 0, yields

bA By _BA W 04 o _ 04 By |5 _
[61” o5 0E or ][Sg(x’y’ z)]+[6r oc  o¢ or ][8‘-’(90’ vl =0.

We conclude that under a one-to-one, continuous transformation of
parameters the envelope is invariant and we have the following corol-
lary to Theorem 2. Let F(x,y,2) =0 be a representation of the sing-
ularities of H=(X), X € C®. Then the function G(s, ), which generates
H=(X) under the Whittaker operator, can only have singularities on the
envelope, E(s,u) = 0, to the family of complex surfaces

1o, ulo,y,2) = |~ — )%+ 2+ @+ iwgi] —s=0,

where the parameters (x,y,z) are subject to the auxiliary condition
F(x,y,2) = 0.

To illustrate the use of Theorem 1, we consider the case where
(1/u) f(t, u) has the particular form

Lyt = offo- )]

F(x) is an arbitrary function of x singular at « = 8. This choice of
(1/u)f(t, u) generates an H(X) having a simple type of singularity.
Since the singularities of (1/u)f (¢, u) satisfy u — (1/u) = tB, we represent
the singularity manifold as

S, y, 2, u) = — ulBx — iy) + 2] + 28z +—37[B(x +iy) +2] .

Eliminating % between S =0, and 0S/ou = 0, we obtain the locus
(x + 2/B) + y* + 2 = 0, for the singularities of H(X).

When B is real this reduces to a point singularity in R®. However,
if B is complex the singularities in R® are given by

2
r = g‘B’
18P
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Y+ 2= W(dm:@)z
We note that these are only the possible singularities of H(X). To find
the actual singularities we make use of our inverse Whittaker operator
to find which of the possible singularities of H(X) correspond to singul-
arities of (1/u)f (¢, w).
Let us consider the locus of

(ac —1—%)2 + y*+2*=0 in R? that is

2
= — % _Rep,
SR VT
and
2+ 2
Y IBI“(MB)

If we wish to find which singularities of (1/u)f(t, ) correspond to:
this real locus, we eliminate two parameters from x and consider the
first variation with respect to the remaining parameter. Doing this,

X:_ﬁ<u_l>+ @2y<u+ 1>+z—s:0, becomes
u

2= (e ) = gy gl e ) He =0

The first variation is then

+ i'(—z)<u + —1->

99X — +1
%y ey 7

Eliminating 2z, between y and 8y/dz yields

=% i@me)(u + L) + e (u— 1) - 4iQme)

et 2).

By choosing suitable signs this is recognized readily as

(o= )=
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REMARK. In concluding we note, that as in the case of harmonic
functions regular at the origin, a connection will exist between the
coefficients of the series development for f(f, #) and the singularities of
H(X)’. Hence, it would be of interest to investigate whether a relation
exists between singularities as predicted by Theorem 1 of this paper,
and the corresponding coefficients of the series development for f(¢, ).
Such an investigation should lead to a classification of harmonic functions
in terms of their pole-like singularities in three-dimensional complex
space.
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PARTITIONS OF MASS-DISTRIBUTIONS AND
OF CONVEX BODIES BY HYPERPLANES

B. GRUNBAUM

1. Introduction. The following results are well-known (Neumann
[7]; Eggleston [3], [4, p. 126-126], [5, p. 118]; Newman [8]:

(A) For any mass-distribution in the plane, such that the total
mass contained in every half-plane is finite and depends continuously on
the position of the half-plane, there exists a point P such that each
half-plane which contains P, contains at least 1/3 of the total mass.

(B) For any convex body K in the plane there exists a point P
such that for each half-plane H containing P the area of HN K is at
least 4/9 of the area of K.

The main object of the present note is to generalize (A) and (B) to
higher-dimensional Euclidean spaces.

In the following m shall denote a fixed (non-negative) finite measure
on the ring of subsets of E™ generated by the closed half-spaces in E".
(For the terminology and results on measures see, e.g., Halmos [6].)

For a real \, 0 <)\ < 1/2, we define & (m, \) as the subset of E*
consisting of those points P e E™ which satisfy the condition: For any
closed half-space H < E", with P e H, the relation m(H) =\ - m(E™)
holds.

Obviously, & (m, \) is a compact, convex (possibly empty) set.

Using the notation of = '(m, \), Theorem (A) may be extended as
follows:

THEOREM 1. & (m,1/(n 4 1)) = ¢ for any measure m in E”.

Let V(S) denote the volume (n-dimensional Lebesgue measure) of
the set S E”. For any convex body K < K", we denote by m, the
measure (defined for all Lebesgue measurable subsets S of E") ob-
tained by taking m.(S) = V(S N K). We denote & (mg, \) by & (K, \).

Theorem (B) may now be generalized as follows:

THEOREM 2. If K 1is any convex body in E™ then

“(K, (nil>n>i¢'

We shall prove Theorems 1 and 2 in the following two sections.

Received January 22, 1960. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under contract No. AF49(638)-253. Reproduction in whole or in part is permitted
for any purpose of the United States Government.
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The last section contains remarks and comments.

2. Proof of Theorem 1.! If v is a unit vector (in E*) and « is a
real number, let H(v, @) be the closed half-space

Hw,a)={x e E" (z,v) < a}.
Let a(v) be defined by

a(v) = min {a; m(H(v, @)) = ” i : m(En)} ’

(the minimum is attained since m(H (v, @)) is continuous to the right as
a function of a). Let H(v) = H(v, a(v)) and

H*(v) = {x e £ (%, v) = a(v)} .

(Without loss of generality we shall in the sequel assume m(E") = 1.)
Obviously,

1

DN H®W);
g(m (n + 1)> 0 )

hence, if N,H(v) #+ ¢ the proof is complete. On the other hand, if

N.H () = ¢, we shall show that

C<mfn_—1i——1)—> * ¢

in the following way. The half-spaces H(v) are closed convex sets, and
it is easily seen that a finite number of them may be found such that
their intersection is compact. By Helly’s theorem on intersections of
convex sets (see, e.g., Rademacher-Schoenberg [9]) the assumption
N.H(v) = ¢ implies the existence of an » + 1 membered family of unit
vectors v;,, 0 <1 <m, such that N H(v;) = ¢. Using an inductive
argument it is easily seen that we may assume that every » of the
vectors v; are linearly independent. Therefore (denoting H, = H(v,) and
HF = HX(v,)) the set S = N, H; is a non-degenerate simplex whose
faces are contained in the hyperplanes H, N H*, 0 <1 <mn. By the
definition of a(v) we have m(H;*) = 1/(n + 1) and m(Int H*) < 1/(n + 1)
for all . Therefore m(H, N Int H;*) < 1/(n + 1), and thus m(H, N H,) =
(n — 1)/(n + 1) for all © #+ j. Now, since NL,H, = ¢, we have

s ZmH.zm[H ( H>]>
PR (H;) = i N jL;?'z J =n_10%§%nm(HiﬂHJ)
> 1 . .on=1_ =n )
T n-—1 n+1 n+1

t The author is indebted to Professor B. M. Stewart for the correction of an error in
the original proof.
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Thus, for all 7, equality signs hold throughout. In particular,

1
n(0.1)-
" ml

for all 7 (i.e., the support of m is contained in the ‘‘vertex-regions’ of
the simplex S = N,H;), and it is immediately verified that

1
m)jS#qﬁ.

This ends the proof of Theorem 1.

3. Proof of Theorem 2. Let G, denote the centroid of the convex
body K E*. We shall prove Theorem 2 by establishing the stronger
statement G, e (X, a,), where a, = (n/(n + 1))*. Assuming, to the
contrary, that G, ¢ (K, a,), there exists a hyperplane L containing
G such that the volume of the part of K contained in one of the half-
spaces determined by L is less than a, . V(K). We shall obtain a
contradiction from this assumption.

Let Gx be the origin of an orthogonal system of coordinates (x,,
.-+, x,) of E” such that L is the hyperplane determined by x, = 0.

Let H* be the half-space {(x, ---, %,); %, = 0} and H~ the other
closed half-space determined by L. We may assume that V(K N H™) <
a, - V(K). Forany set S © E” we shall use the notations S— =S n H-
and S*=S8n H*. Let K be the set obtained from K by spherical
symmetrization (‘‘Schwarzsche Abrundung’’, Bonnesen-Fenchel [1, p. 71];
“Schwarz rota;tion process’’, Eggleston [5, p. 100]) with respect to the
x,;-axis (i.e., K is the union of the (n — 1)-dimensional spheres obtained
by taking in each hyperplane L, = {(xy, ++-,x,); %, =t an (n — 1)
dimensional sphere with center (¢,0,--+,0) and (n — 1)-dimensional
volume equal to that of If N L). Tt is well known that K is a convex
body, and obviously V(K~)= V(K"), V(K*) = V(K') and G; = G.
Therefore V(K~) < a, - V(K) and G4 ¢ v*(K, a,). Let C~ denote the
(orthogonal) hypercone with base K N L and vertex (c,0,.-+,0)e H-,
where ¢ is chosen in such a way that V(C-) = V(K-). Let C be the
hypercone obtained by extending C- (along its generators) into H* in
such a way that V(C*) = V(K*). With C thus defined, it is easily
verified that the w,-coordinate of G, (resp. G,+) is not greater than
that of Gi- (resp. G¢+). Therefore, G, ¢ H-, and thus the hyperplane
L*, parallel to L and passing through G,, divides C into two parts in
such a way that the part contained in H- has a volume smaller than
a, - V(C). But by a simple computation we find (since the centroid of
a hypercone divides its height in the ratio 1:m) that the volume in
question equals @, + V(C). The contradiction reached proves the theorem.
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4. Remarks. (i) It is very easy to find examples which show
that the bounds in Theorems 1 and 2 are the best possible. From the
proofs given, it is also easy to deduce that if (K, «, + ¢) = ¢ for all
€ >0 then K is a simplex, and that & (m, 1/(n + 1) + ¢) = ¢ for all
¢ > 0 only if the support of m is contained in the ‘‘vertex-regions’’ of
some (possibly degenerate) simplex, and all the ‘‘vertex-regions’’ have
the same measure.

(ii) The proof of Theorem 1 may be somewhat simplified if the
measure m is assumed to be continuous (as in Theorem (A)). The
advantage of the more general form is that it includes, e.g., measures
generated by finite point-sets, surface-area etc.

(iii) The following obvious corcllary of Theorem 2 is interesting
because of its independence on the dimension:

For any convex body K c E™ we have

G e z(K,e")=C(K,0.3678.--) .

(iv) It would be interesting to find the analogue of Theorem 2
obtained by substituting the (rn — 1)-dimensional surface area A(K) for
the volume V(K) of K C E". The problem seems to be unsolved even
for n = 2.

(v) It is easily proved that for any continuous mass-distribution in
the plane there exists a pair of orthogonal lines such that each ‘‘quad-
rant’’ determined by them contains 1/4 of the total mass. The analo-
gous statement is not true for » mutually orthogonal hyperplanes in E™;
does it become true if the condition of orthogonality is omitted?

(vi) It is well known (Buck and Buck [2]) that for any continuous
mass-distribution in the plane there exist three concurrent straight lines
such that each of the six ‘‘wedges’’ determined by them contains 1/6 of
the total mass. Does this fact generalize to E™ when the three lines
are replaced by » -+ 1 hyperplanes with a common (% — 2)-dimensional
intersection?

Added in proof. After submitiing the present note for publication,
the following facts came to our attention:

(i) Theorems (A) and B are proved, and Theorem 1 suggested, in
I. M. Jaglom—W. G. Boltjanski, Konvexe Figuren, Berlin, 1956, pp. 16,
18, 27, 104-106, 116, 135-136 (this is a translation of the Russian origi-
nal, which appeared in 1951); Theorem (b) is there attributed (without
references) to A. Winternitz.

(ii) A proof of Theorem 1 (using Brouwer’s fixed-point theorem),
together with some related results, was given in B. J. Birch, On 3N
points in a plane, Proc. Cambridge Philos. Soc., 55 (1959), 289-293.

(iii) A proof of Theorem 2, very similar to the one given in the
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present paper, was found independently by P. C. Hammer; it is contained
in a paper ‘“‘Volumes cut from convex bodies by planes’’, submitted to
“Mathematika’’.

(iv) The relation & (m, %) #+ ¢ (resp. %”(K, —;—> # ¢ holds for

any distribution of masses (resp. convex body) with a center of sym-

metry. Obviously, %”(m, %) + ¢ is possible also for mass-distributions

without a center. The conjecture (trivial for the plane) that %’(K ) %) #* ¢

characterizes centrally symmetric convex bedies was first established
Professor F. J. Dyson; it is hoped that a proef will be published soon.

(v) Results generalizing Theorem 1 were established by R. Rado
in the paper, ‘A theorem on general measure’’, J. London Math. Soc.,
21 (1946), 291-300. Rado’s proof also uses Helley’s theorem, but in a
fashion different from the one used in the present paper.
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REGULAR COVERING SURFACES OF RIEMANN SURFACES

SIDNEY M. HARMON

Introduction. The homotopy and homology groups of a given arc-
wise connected surface are topological invariants. A smooth covering
surface F'* is a locally-topological equivalent of its base surface F. Con-
sequently, it is natural that the fundamental and homology groups of
F*, T(F*) and H(F*) respectively, should be related to those of F,
T(F) and H(F') respectively. In this paper the term homology is always
used for the 1-dimensional case. The cover transformations of a covering
surface F'* are topological self-mappings such that corresponding points
have the same projection on F. These cover transformations form a
group which we will denote by /"(F*). The homology properties of F
should influence I"'(F'*) by means of the composition of the self-topologi-
cal mapping and the locally-topological mapping F'* — F.

Section 1 considers the general class of smooth covering surfaces on
which there exists a continuation along every arc of the base surface.
We refer to such a covering surface as a regular covering surface F'*.
A number of results are collected and put into the form in which they
are needed to derive the main theorems. The class {F'*} is shown to
form a complete lattice. Next there is shown a one to one correspondence
between all subgroups N, C T (F'), such that N, contains the commutator
subgroup N, of T'(F'), and the set of all subgroups H, C H(F). This
correspondence leads to isomorphisms which relate the associated sub-
groups.

Section 2 considers a special class of regular covering surfaces {F}
in which F* is characterized by the properties that it corresponds to a
normal subgroup of T'(F) and I'(F)) is Abelian. In our notation these
covering surfaces form the class of homology covering surfaces (cf.
Kerékjarto [5]). An equivalent characterization of the property that
F* corresponds to a normal subgroup is the assumption that above any
closed curve on F' there never lie two curves on F* one of which is
closed and the other open. There are derived here for {F} an isomor-
phism and correspondence theorem which relates subgroups I, C I'(F)
to quotient groups of H(F) and T(F). The class {F}} is shown to
form a complete and modular lattice. If the base surface F' is an
orientable or non-orientable closed surface, with covering surface F}F,
the rank of I'(Fy) is determined in terms of the genus of F and the

Received December 3, 1958. This paper contains a part of the author’s doctoral thesis
which was completed at the University of California at Los Angeles, together with some

extensions. The author is indebted to Professor Leo Sario for his guidance in its prepa-
ration.
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rank of an associated subgroup H, C H(F).

Section 3 considers the Schottky covering surface F§ of a closed
orientable surface. We denote the boundary of the conformal equivalent
of F§ in the plane by Es. There is obtained here a criterion for the
vanishing of the linear measure of Kj.

We will refer to functions defined on a Riemann surface by an ab-
breviated notation as follows: Green’s functions by G, nonconstant ana-
lytic functions with finite Dirichlet integral by AD and non-constant
analytic bounded functions by AB. We denote the class of Riemann
surfaces on which there does not exist any G, AD and AB functions
respectively by O, O, and O,,. If Wis an open (non-compact) Riemann
surface we are led to the problem of studying it from the following
comparative viewpoint (Sario [13]). Suppose that P is a property of all
closed (compact) Riemann surfaces, determine open Riemann surfaces
which possess the same property. Recently Mori [8] established a con-
nection between homology covering surfaces and the classes O, O,, and
0,z

Section 4 applies the results of the previous three sections to the
classification of Riemann surfaces. It considers regular covering surfaces
of a closed Riemann surface F' of genus p. We refer to the covering
surface of F which corresponds to N,  T'(F') as the commutator covering
surface F. It is shown that the results obtained in [8] for homology
covering surfaces F)* with respect to O,y O; and O,; may be applied
to any regular covering surface F;* which is weaker than F*. In the
case of O, this yields for F;* a criterion in terms of the generators of
quotient groups of T(F') and H(F'). A generalization of Painlevé’s
problem for an open Riemann surface is proved, and there is also ob-
tained a criterion based on vanishing linear measure of a plane point
set which determines that a Schottky covering surface is in O,;.

1. Regular Covering Surfaces.

1.1. DEerFINITIONS. A surjace is a connected Hausdorff space on
which there exists an open covering by sets which are homeomorphic
with open sets of the 2-dimensional Euclidean space.

A surface F'* is a smooth covering surface of a base surface F if
there exists a mapping f: F* — F such that for every p* € F'* a neigh-
borhood V* of p* is mapped topologically onto a neighborhood V of
p = f(p*) e F.

F* is a regular covering surface of F' if it is smooth and if every
arc v on F' can be continued along v from any point over the initia]
point of v. [2] (The term ‘‘unramified and unbounded’’ also appears in
the literature instead of the term ‘‘regular’’ used here.)
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1.2. FUNDAMENTAL GROUP. The results in this subsection are
needed for the later treatment and may be found or are implied in the
literature; and the development closely parallels that of Ahlfors and
Sario [2]. The following result is well-known.

LEMMA 1. Let {7y} be the homotopic classes of those curves from 0
on F which have a closed continuation {vy*} from 0% € F*. Then D = {v}
18 a subgroup of the fundamental group T(F) with origin at 0.

Let the notation (F'*, f) and F represent a regular covering surface
F* of F with topological mapping f:F* — F and homotopic classes
originating at 0* where f(0*) = 0. We will identify (F}*, f.) and (F}*, f5)
if there exists a topological mapping ¢ : F* — F,* such that f, = fyio¢
and ¢(0;) = 0;. It is clear that this identification is defined by means of
an equivalence relation.

The proofs of the following proposition and of the subsequent
Lemmas 2 through 4 may be obtained from reference [2] or [9].

PROPOSITION 1. The mapping ¢ in the identification of (F*, f.) and
(FF, f,) with ¢07) = 0 is uniquely determined.
With the foregoing identification, we obtain

LEMMA 2. There exists a one to one correspondence between identi-
fied pairs (F*, f) and the subgroups D of T(F). Two pairs can be
represented by means of the same (F'*, f) if and only if the corre-
sponding subgroups are conjugate.

LEMMA 3. The fundamental group T(F'™*) of (F'*, f) is isomorphic
with the corresponding subgroup D of T(F).

If (Fy, f) covers F)* and (F7,f,) covers F, then it is clear that
(F, fief) covers F' where f,0f(0f)=0. If two pairs (Fy,f,) and
(F*, f) cover F, we say that the former is stronger than the latter if
and only if there exists an f such that (F¥, f) covers Fi* and f, = f.o f.
This relation is clearly transitive.

Let D, and D, be the subgroups of T(F) which correspond respec-
tively to (FY*, f) and (F}', f.), then we have

LEmMMA 4. The pair (F), f,) is stronger than (F*, f) if and only
if D, C D,.

1.3. COMPLETE LATTICE THEOREM. By means of Lemmas 2 and 4,
we obtain an ordering of the regular covering surfaces according to
relative strength which is isomorphic with the ordering of the corre-
sponding subgroups of T(F') by inclusion.

Let {D,} with a in the index set A be a finite or infinite subset of
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a lattice L. Then L is complete if for all {D,} < L, there exists in L
a least upper bound U.c.D, and a greatest lower bound MNaesD,.

THEOREM 1. The system of regular covering surfaces of F is a
complete lattice.

Proof. The system of subgroups {D, of T(F) with ae A is
partially ordered by inclusion. Also the union of any number of sub-
groups {D,} for a; € A is a subgroup U,e.D,, which is the least upper
bound for {D,}. Similarly, the intersection of any number of subgroups
{D,,} is a subgroup UesD., Which is the greatest lower bound for {D,,}.
Consequently the system of subgroups {D,} is a complete lattice. Be-
cause of the isomorphy obtained from Lemmas 2 and 4, the correspond-
ing regular covering surfaces form a complete lattice.

It can be shown that any complete lattice has a zero and a universal
element. The weakest covering surface of F' corresponds to T(F') and
is F itself or (F'*, e), where e is the identity; the strongest covering
surface corresponds to the unit element of T'(F) and is the universal
covering surface of F.

1.4. RELATIONS BETWEEN FUNDAMENTAL AND HOMOLOGY GROUPS.
The commutator subgroup of T'(F') will be denoted by N,. The covering
surface F;* which corresponds to N, will be referred to as the com-

mutator covering surface. (Uberlagerungsflaiche der Integralflunktionen,
Weyl [17])

LemMmA 5. (Nevanlinna [9; 61-63]) There exists a homomorphism
from the elements of T(F') onto the elements of H(F') for which the
kernel is the commutator subgroup.

If 6 is a homomorphism from T to H with kernel K, the fundamental
theorem for group homomorphisms yields the isomorphism 7T/K = H.
A second fundamental theorem for group homomorphisms may be stated
in the following form (Kurosh [6]).

LEMMA 6. Let 0: F — H be a homomorphism with kernel K. Then

(i) There is a one to one correspondence between subgroups N, of
T such that TD> N; D K and all subgroups H, of H. In this corre-
spondence H, consists of all images of elements of N, and N, consists
of all inverse images of elements of H,.

(i) If N, vs normal in T then H,; is normal in H and conversely.

(iii) If N, and K are normal in T then T|N, = (T/K)/(N,/K).

THEOREM 2. Let {N;} be the set of all subgroups such that T(F) >
N, D N, and let {H;} be the set of all subgroups H, C H(F). Then
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(1) There exists a one to ome correspondence between {N;} and
{H}. In this correspondence H, consists of all images of elements of
N, and N, consists of all inverse images of elements of H,.

(ii) N,/N,= H,.

Proof. To prove the first part, we use the homomorphism of Lemma 5
0:T(F)— H(F) with kernal N,. Part (i) of the theorem is then an
immediate consequence of Lemma 6 (i).

To obtain the isomorphism (ii) we note that N, is normal in N, and
that the restricted homomorphism é: N, — H, is onto. We apply the
fundamental theorem for group homomorphisms which yields the required
isomorphism.

If in Theorem 2 we set N; = T(F'), we obtain T(F)/N,= H(F') as
a special case.

1.5. RELATIONS BETWEEN THE FUNDAMENTAL GROUP AND THE GROUP
OF COVER TRANSFORMATIONS.

DEFINITION. A cover tramsformation of a regular covering surface
(F'*, f) is a topological self-mapping ¢ such that, for every p* e F'*,
¢(p*) and p* have the same projection.

The totality of cover transformations on F'* clearly form a group.
We will denote this group by I'(F'*).

In the sequel, unless otherwise indicated, D or D, will refer to the
subgroup of T'(F') which corresponds to the covering surface F'* or F
respectively, according to the specifications of Lemma 2. We note that
['(F'*) and the normalizer of D are unaffected by the choice of 0 and 0*.

LemMMA 7. [9; 83] Let M be the normalizer of D in T(F). Then
there exists a homomorphism ¢ : M — I'(F'*) with the kernel D.

THEOREM 3. Let {D;} be the set of all subgroups D; such that
M > D, > D and let {I";} be the set of all subgroups of I'(F'*). Then

(i) There exists a one to one correspondence between {D;} and
{l'}. Im this correspondence I'; comsists of all tmages of elements of
D,, and D, consists of all inverse images of elements of I;.

(ii) I'; = D,/D.

Proof. We use the homomorphism ¢ of Lemma 7 with kernel D.
Part (i) of the theorem is then an immediate consequence of Lemma 6
(i). To obtain the isomorphism (ii), we note that D is the kernel of ¢
and D is normal in M and, therefore, normal in D, c M. By (i), $ maps
D, onto I';. The restriction of ¢ to D, in conjunction with the funda-
mental theorem for group homomorphisms yields the required isomorphism.
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If in Theorem 3 we set D, = M, we find from part (i) of the theo-
rem that M is mapped onto I"'(F*). Consequently, we obtain from (ii),

(1) I'(F*)= M|D,

as a special case.

COROLLARY. If D s normal in T(F'), then the one to one corre-
spondence and isomorphism specified in Theorem 3 holds for all sub-
groups D,, such that T(F)> D, > D.

Proof. If D is normal in T(F'), then the normalizer of Dis T(F').
We replace M in Theorem 3 by T(F') and obtain the required result.

A special case of the corollary is obtained if in Theorem 3 (ii) we
set D, = T(F). We then find that

(2) I'F* = T(F)|D.
2. Homology Covering Surfaces.

2.1. DEFINITIONS AND BaSIC RESULT. A regular covering surface
of F is mormal if it corresponds to a normal subgroup of T'(F') [2].
(The term ‘‘unramified, unbounded and regular’’ also appears in the
literature instead of the single term ‘‘normal’’ used here.)

ProposITION 2. (Seifert-Threlfall [16; 196]) If (F'*, f) is a normal
covering surface of F, then there exists a unique cover transformation
which carries any given point p* € (F'*, f) into a prescribed point pf
with the same projection.

A regular covering surface is referred to as a commutative covering
surface if its group of cover transformations is Abelian.

A homology covering surface is a covering surface which is simul-
taneously normal and commutative.

2.2. CRITERION THEOREM.

THEOREM 4. A regular covering surface F* is a homology covering
surface of F if and only if it is weaker than the commutator covering
surface FgF, or equivalently, if and only if N, D N, where F} and
F} correspond respectively to the subgroups N, and N, of T(F).

Proof. To prove the sufficiency of the condition, we first consider
F} which corresponds to N, which is clearly normal in T'(F'). By the
isomorphism (2), we obtain I'(F}) = T(F')/N,. The latter quotient group
is Abelian; for if a, b € T(F'), ab(ba)™ = aba='b* € N,; hence N,ab = N ba.
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By hypothesis, F;* is weaker than F; consequently by Lemma 4,
N, D N,. From the fact that T(F)/N, is Abelian and N, D N, in con-
junction with Lemma 6 (ii), it follows that any subgroup N, which
contains N, is normal. We conclude from Lemma 6 (iii) that T(F')/N,
is Abelian. The latter quotient group is isomorphic to I'(F*) by the
special case (2). We conclude that F* is simultaneously a normal and
commutative covering surface and therefore a homology covering surface.

Conversely, we suppose that F;* is a homology covering surface.
From the special case (2), we obtain /(Fy*) = T(F')/N,. By hypothesis,
the left member of the isomorphism is Abelian; consequently T(F')/N,
is Abelian. Because of the commutativity of T'(F#)/N; and the normality
of N,, we obtain for a,b e T(F), N,aba™'b* = N,; therefore, N, D N.,.
We conclude, by Lemma 4, that F;* is weaker than F.

The last statement of the theorem is an immediate consequence of
Lemma 4.

2.3. ISOMORPHISM AND CORRESPONDENCE THEOREM.

THEOREM 5. Let {F5} be the set of all homology covering surfaces
of F under the identification of Lemma 2, and let {N,;} be the set of
all corresponding subgroups of T(F) under the isomorphy of Lemma
8; such that T(F}) = N,. Let {H) be the set of all subgroups of
H(F) under the correspondence indicated in Theorem 2, such that
N,/N, = H,. Then

(1) I'(Fy) = HF)/H, = T(F)[Ny = [TF)|Ne]/(Nyif Ne).

(ii) There exists a one-to-one correspondence between the identified
sets {F}5} and the sets {N,;} and {H}.

Proof. To derive the first and second isomorphisms of (i), we note
that because of the commutativity of the homology groups, H, is normal
in H(F'). We consider the composite mapping ¢ o 4,

b O[T(F)] = $[H(F)] = H(F)/H, ,
podlae T(F)| = ¢(a)=Ha .

This mapping is composed of the homomorphism 6 of Lemma 5 and
the natural homomorphism ¢; consequently the composition is a homo-
morphism. The kernel of ¢oéd consists of all a € T(F) such that
H,o' = H,. We note that by Theorem 4, N,; D N, hence Theorem 2 (i)
is applicable. From the specifications in Theorem 2 (i) for 0 : N,, — H,,
we find that the kernel of ¢o @ is precisely N,;. The fundamental
theorem of group homomorphism, together with the special case (2), now
yield

I'(F7) = T(F)|N,, = H(F)/H, .
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To derive the third isomorphism of (i), we note that N,, and N,
are normal in T(F'). Hence an application of the fundamental theorem
for group homomorphisms yields the result.

For the proof of (ii), we note that by Theorem 4, any homology
covering surface F; satisfies N,, D N,. Hence Theorem 2 is applicable.
We apply Theorem 2 (i) to obtain a one-to-one correspondence between
{N,;} and {H;}. The one-to-one correspondence obtained is carried
through {N,;} to {F%}, under the postulated identification, by means of
Lemma 2. This completes the proof of the theorem.

2.4, COMPLETE AND MODULAR LATTICE THEOREM. A lattice is called
modular (Dedekind structure) if it satisfies the following weak form of
the distributive law:

If a2bh, thenan®Uc)=(anbd) U(anec).

LemmA 8. (Kurosh [7]). The lattice of normal subgroups of any
group is modular.

THEOREM 6. The system of homology covering surfaces {Fy} of F
is a complete and modular lattice.

Proof. Let {N,;} correspond to the collection {F;%}. In the course
of the proof of Theorem 1, it was shown that the system af subgroups
{D;} of T(F) is a complete lattice. {N,;} is therefore a subset of a
complete lattice. From the definition of a homology covering surface
and from Theorem 4 every N,,; is normal in T(F) and N, D N.. The
union or intersection of any number of normal subgroups of {N,;} is a
normal subgroup containing N,. Consequently, {N,;} is a sublattice and
a complete lattice. By the normality of N,; and Lemma 8, {N,;} is also
a modular lattice. We conclude from Theorem 5 (ii) and Lemma 4 that
{F%} is a complete and modular lattice.

2.5. RANK OF THE GROUP OF COVER TRANSFORMATIONS. We consider
the rank of the group of cover transformations for homology covering
surfaces for which the base surface F is closed. In this case, T(F')
and H(F') are finitely generated. We have

LEMMA 9. (Seifert-Threlfall [16; 145]). Let F be a closed surface
of genus p. If F is orientable, H(F') is a free Abelian group of 2p
generators; if F is nonorientable, H(F') is the direct product of a free
Abelian group of p — 1 generators and a group of order 2.

Because the homology group of a closed surface is finitely generated.
it always has a finite rank.

The fellowing lemma is fundamental in the theory of Abelian groups.
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LeMMA 10. Let H be an Abelian group of fintte rank r, and let
H, be a subgroup of H. Then H, and H|/H; are also of finite rank and
r(H) = r(H,) + r(H|H,).

THEOREM 7. Let F be a closed surface of genus p, and let {F}
be the class of homology covering surfaces of F' such that

T(F)) =N, cCcTF), N,/N, = H,C H(F) .
If F' 1is orientable, then
r[I(F)] = 2p — r(H,)
and
0=r[l"(FH)]=2p.
If F is nonorientable, then
rl(FD]l=p»—1—r(H)
and
O=rlI'F)l=p—1.
In either case, r[I'(F})]| assumes all integral values in the indicated

ranges.

Proof. We note that the rank of a free Abelian group is equal to
the number of its generators, that the rank of an Abelian group in
which all elements have finite order is zero, and that the rank of an
Abelian group equals the sum of the ranks of the factors in the direct
product decomposition of the group. Consequently, it follows from Lemma
9, that if F' is orientable, r[H(F')] = 2p, and that if F'is nonorientable,
r[H(F)] = p — 1. By use of Theorem 5 (i) and Lemma 10, and by sub-
stituting for r[H(F')] the values just deduced we find that if F is
orientable

rlI'(F9)] = 2p — r(H) ,
and that if F' is nonorientable,
r[FEFED] =p—1—r(H).
Because H,; is a subgroup of H(F')
0 = r(H) = r[H(F)] .

For each integer n such that 0 < n < r[H(F)], there exists a sub-
group H, which is generated by » linearly independent elements; therefore
r(H;) = n. We conclude that if F' is orientable,
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0= r[l'(FH]l = r[HEF)] =2p,
and that if F' is nonorientable,
O0=r[I'(FHl=r[HF)]=p—-1.

In both cases r[(F};)] assumes all integral values in the indicated ranges.

In connection with Theorem 7 it is of interest to note that the
quantities 2p and p — 1 are the 1-dimensional Betti numbers for a closed
orientable and a closed nonorientable surface respectively.

3. Schottky Covering Surface of a Riemann Surface.

3.1. DEFINITIONS FOR RIEMANN SURFACES. We shall define a Rie-
mann surface topologically as a Hausdorff space with certain restrictive
properties.

DEFINITION. A Riemann surface F' is a surface together with a
collection of local homeomorphisms {k} from open sets of F onto open
sets of the complex plane which satisfy the following conditions.

(i) The totality of domains of {k} form a covering of F.

(ii) The images of every nonnull common domain of &, and %, € {h}
are directly conformally equivalent in the complex plane through the
composite homeomorphism #; o hjt.

We denote the domain of #&; € {h} by 4,. If pe 4,, then z = h(p)
is uniquely determined. Because of condition (ii), the conformally in-
variant properties of F' are independent of the choice of h&; € {#}. Con-
sequently in considering such properties we may regard z in the complex
plane as a local variable instead of p € F. In this paper we shall be
concerned exclusively with conformally invariant properties of F'; there-
fore we will resort to the local variable notation z whenever it is
convenient.

DEFINITION. A complex-valued function f is analytic on F if and
only if fo h;* is analytic on h; (4;) for every h, € {h} with domain 4,.

DEFINITION. A real-valued function u is harmonic on F if u o h;'is
harmonic on #,; (4;) for every h; € {h} with domain 4,.

The Riemann surface as defined here is an orientable surface because
the composite mapping ;o h;* is directly conformal and consequently
sense-preserving. It can be shown that the Riemann surface is topologi-
cally a countable space.

3.2. Basic CONSIDERATIONS. In this section the base surface F is
assumed to be a closed Riemann surface of finite genus p. By suitably
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cutting F, we can obtain a planar region F{;, such that an infinite
number of copies of F;, when put together under special identi-
fications of their boundaries, will generate the Schottky covering surface
F§ of F. The surface F§ is a planar, open Riemann surface. We will
study the boundary of the conformal equivalent of F§ in the complex
plane by means of a Schottky group.

3.3. GENERATORS OF SCHOTTKY GROUP. The conformal equivalent
of the initial copy Flys is an infinite region R, where R, is bounded by
2p disjoint circles @,;, Q) (+ =1, 2, ---, p), lying in the finite plane. We
will refer to this set of circles which bound R, as {Q,}. The p pairs of
circles {Q,} correspond to a system of p hyperbolic or loxodromic linear
transformations which generate a group of linear transformations G
called the Schottky group (Schottky [15]). The group G can be shown
to be denumerably infinite and is properly discontinuous up to a set of
discrete points Fj, called the singular set of the Schottky group. The
transforms of R, converge for » > 1 to a nondenumerable discrete set
of points Es which is the boundary of the conformal image of F§ in
the plane.

A set has zero linear measure if it can be covered by a sequence
of disks {K;} with radii {r;} such that >\7, is arbitrarily small. We
will denote the linear measure of the singular set of the Schottky group
by m(Ejy).

We consider a configuration of the bounding circles {Q,} correspond-
ing to a Schottky group G, in order to obtain a criterion for the vanishing
of m(Es).

Let the 2p.circles {Q,} be paired in such a manner that a set of p

hyperbolic or loxodromic linear transformations S, ---, S, operate on the
extended complex plane and yield
(3) SIQIZQ{y SzQZZQ;! ct Spr: 5),

with the exterior of each @, mapped into the interior of Q.. The set
of such generators will be designated as {S,;}. A general form for the
transformation S, is

4 S —a+b
(4) = ad

S, and other linear transformations in the sequel will be normalized by
the condition ad — bc = 1. The circles {Q,} have the general equations

(5) Q:lz—ql=r; Q:lz—dq|=r1].

A general normalized transformation of {S;} corresponding to the
circles (5) may be written as
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Q2 _ 9iqi + 1t
( 6) Si(Z) _ ]/7',;7'; 1/7',;7';

% %

Vor 7]

in which g, + 7,¢® transforms into ¢} — 7}ei®=9,

The set {S,} corresponding to the form (6) will generate a Schottky
group.

Let & and & denote the fixed points of a generator S;, where g,
and &, are finite. Then

a—d=+1V(a+d—4
2c )

(7) En &=

Since S,(e0) = ¢i, Si(?) = 2’ may be expressed in terms of a cross-ratio
as

?—& =Kz_§1

Z'—Ez z_gz

where K is a multiplier such that

K= Gk Kol
q; — 52
By simplification, this reduces to
K= <q¢ —qi+ V(i — @) — 4m‘£>2
2y T
We note that K is independent of z and that the fixed points are

independent of the power of z. Consequently, S/(z) = 2™ may be ex-
pressed as

(8)

2™ — & — an — &
2™ — &, z—&

This yields

Sr(z) = E6 — &)z — HEE" — 1)

To normalize S{™(z) we divide through by

K" — &) =D’

and obtain
<Kn‘£:2 — §1>z . El&z(Kn — 1)
D’ D’
S» =
) T S P

DI DI
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3.4. IsomeTRIC CIRCLES. Because of the mappings S,Q, = @} in the
generation of the Schottky group, there is a particular convenience in
utilizing the concept of isometric circle under a linear transformation
(e.g., Ford [4]).

Let S be a linear transformation expressed in the general form (4).
Then length and area are unaltered in magnitude in the neighborhood
of a point z if and only if |¢z + d] =1. The locus of such points for

¢ # 0 may be written as the circle |z + dje| = 1/|¢|, with center —d/c
and radius 1/|¢].

DEFINITION. Let S be the linear transformation

S(z) = (az + b)/(cz + d) .

Then the circle

I:ilez+d|=1, c#0,

which is the complete locus of points in the neighborhood of which

length and area are unaltered in magnitude by S is called the isometric
cirele of S,

LEMMA 11. Let the linear transformations S have I as its iso-
metric circle, and let S(I) = I'. Then S has I’ as its isometric circle.

Proof. By definition S carries I into a circle I’ without alteration
of lengths in the neighborhood of any point of I. Consequently S
carries I' = S(I) back to I without alteration of lengths. By the unique-
ness of I’, we conclude that I’ is the isometric circle of S—.

LemMMA 12. (Ford [4]). Let I and I' be the isometric circles of S
and S respectively and let L be the perpendicular bisector of the line
joining the centers of I and I'. If S is a hyperbolic, elliptic or para-
bolic linear tramsformation, S is equivalent to the composition of an
wnversion 1 I followed by a reflection in the line L; if S 1s loxodromic,
there is in addition a rotation about the center of I’ through the angle
—2arg (a + d).

THEOREM 8. Let S be a linear transformation. Suppose that S
and S~ have the isometric circles I and I’ respectively. Then for
every n

(i) The circles S—™(I) and S™I') are equal in magnitude and
S™I)yclI S*I)cI.

(ii) S™(I) is the isometric circle of S¥+.,

(ili) The radit of the circles S—"(I) and S™(I') are each equal to
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1/lc|, where ¢ is the coefficient in the general expression for a linear
transformation corresponding to S*+,

Proof. Because S and S~ have the respective isometric circles I
and I’, we conclude from Lemma 11 that S(I) = I’. Let L be the
perpendicular bisector of the line joining the centers of I and I'. We
first consider the case where S is nonloxodromic. Then by Lemma 12,
S-*(I) is obtained by successive compositions of an inversion in I’ fol-
lowed by a reflection in L, and S*(I') is obtained by successive com-
positions of an inversion in I followed by a reflection in L. We note
that for all linear transformations the size of the circle is influenced
only by the inversion. The circles S*() and S*’') are symmetrical
with respect to L for all £ < n. Because of the symmetry of the
inversion with respect to the equal circles I' and I, we conclude that
S—(I) and S™(I') are equal. Further, from the geometrical interpretation
of S* and S as expressed by Lemma 12, it follows that S™()cC I
and S¥I')c I'.

If S is loxodromic, there is in addition, in the foregoing com-
positions a rotation. For S~*) and k < n the required rotation is
—2karg [—(a 4+ d)] = —2km — 2k arg (¢ + d) about the center of I, and
for S*(I') the required rotation is —2k arg (a+d) about the center of I’
The circles S~*(I) and S*(I’) are therefore symmetrical with respect to
the intersection of L and the line joining the centers of I’ and I. This
symmetry yields equal circles in the successive inversions with respect
to the circles I' and I. We conclude again that S—(I) and S*(I) are equal
and that S—"(I)cland S¥I')cI’. This completes the proof of part (i).

To prove part (ii) we consider S***o S—(I). The first n operations
by S transform S-*(I) to I. The inversions associated with these
transformation are all in I and are of the type S—-“?(I) inverts to
S*=3(I"), where § = 0,1, ---,n — 1. The n + 1st operation transforms
I to I' and involves the identity inversion, i.e., I inverts to I. The last
n operations by S transform I’ to S*(I’). The inversions associated with
these transformations are all in I and are of the type S* /7' (I') inverts
to S~™=7(I). The latter » inversions are thus inverses of the afore-
mentioned % inversions. Hence the resulting inversions associated with
S+ preserve infinitesimal lengths on S—(I). The reflection and rota-
tion components of S**! clearly preserve infinitesimal lengths. Therefore
S-(I) is the isometric circle of S+,

Part (iii) of the theorem is a consequence of the fact that an iso-
metric circle may be written in the form |z + djc| = 1/|¢c]|.

We collect here some results on the inversion of one circle into
another circle which will be needed subsequently. In the sequel, the
circles @, and @, are always disjoint. If a circle @, is inverted into a
circle Q,, we will designate the image circle by @,, and a corresponding
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subscript notation will be used for the radii = and centers ¢ of the
respective circles.
Let @, and @, be given by

Q1:[z—Q1I:Tl,
Q:lz—q|=7.

We denote by I the line which passes through the centers of Q,, @,
and we take the points «, 8 € @, N l. Suppose that @, is inverted into
Q, with «, 8 transforming into «;, 8, respectively. Then

|a"‘Q2['[ai—qzi:7ﬁ§’
‘B—(]ﬂ'],@i—(]ﬂ:’r;.

We denote the distance between ¢, and ¢, by e¢ and obtain

(11) - P73 — 17y
fa—q, |1 B — q,] e —
(12) lqn — @] = =22
e — 7

LeEMMA 13. Let Q,, Q, be disjoint circles with centers q,, q, and
radii r,, r, respectively. Then

(i) 7, imcreases with increasing v, and fixed e and also with
decreasing e and fixed r,.

(i) If Q. s enlarged to Q. in such a manner that Q, C Q. and
Q. 1s disjoint from @, then r., > r, and vy > 7.

(ili) ¢, lies on the line joining q, and q, and |q, — q.,| decreases
with increasing e.

Proof. To prove (i) we note that because @, and @, are disjoint,
e > r,. The result then follows from equation (11).

For the proof of (ii), we denote the line passing through ¢, and ¢,
by {. It is sufficient to consider the case in which the center ¢, lies on
{ and one of the two points in @, N ! is fixed during the enlargement
of Q. We use the first equation in (11) to find the total derivative
with respect to 7,,. We obtain the result that if @, is inverted into
Q,, dr,,/dr, > 0; and if @, is inverted into Q,, dr,./dr,, > 0. Because
7, is steadily nondecreasing, we conclude that »,, > r, and 7, > 7.

The first part of (iii) follows from elementary geometrical consider-
ations of inversions. The second part of (iii) is obtained by differentiat-
ing, in equation (12), | ¢, — ¢.»| With respect to ¢ and noting that the
derivative is negative.

3.5. CRITERION FOR VANISHING LINEAR MEASURE. In the sequence
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of circles which bound the successive generations of mapped regions in
the conformal mapping of F§, the size of the circles is influenced only
by the inversions associated with the elements of G in the Schottky
group. Suppose we enlarge any circle 6, € {@,} to @, in such a manner
that @,  Q,, and Q, are disjoint from all other circles in {Q,;}. Then
by repeated applications of Lemma 13 (i) and (ii) it follows that in the
limit m(E%) for the new configuration will be greater than m(Es). Con-
sequently, for establishing a criterion for the vanishing of m(Es), we
may modify the configuration {Q,} to one in which all circles @, are of
equal unit size, subject to the conditions just mentioned. We will refer
to this modified configuration of {Q,} as {Q}..

We consider the configuration {Q.},. Let e; be the distance between
the centers of the pair Q; and Q] (¢+ =1,2,--+,p), and let ,d; be the
distance between the centers of two arbitrary circles @, and Q; € {Qq}4.
We denote by e the minimum e, and by d the minimum ,d,. If

(B) d=e,

we will say that {Q,}, satisfies condition (B) and denote the configuration
by {Q¢}.s. The modified configuration {Q,},; will have a corresponding
group of hyperbolic or loxodromic linear transformations G’ which is as-
sociated with the Schottky group G corresponding to {Q,). In the
sequel, we will use the same notation for the circles in {Q.}.z and for
the generators of G’ as used previously for those in {Q,} and in {S;}
respectively.

THEOREM 9. Let G be a Schottky group with p generators. Suppose
that there exists a configuration {Q.;. which is associated with G.
Then the linear measure of the singular set of G vanishes if

(€) p<%(e+1/e2—4).

Proof. Because of equations (3) and (6) in subsection 8.8 and because
Q,; and @, are equal for all 7, @, and @, are the isometric circles of the
hyperbolic or loxodromic linear transformations S, and S;* respectively.
Consequently, an arbitrary element of the group generated by {S} is
by Lemma 12 equivalent to a succession of compositions. Each of these
compositions is an inversion in one of the circles {Q.}.s; followed by a
reflection in the perpendicular bisector of the line joining the center of
this circle to the center of its paired circle and a rotation about the
center of some @;. We note that in the compositions, the size of the
image circles is influenced only by the inversions.

Let @, and @) with centers at ¢, and ¢ respectively be that pair
of circles in {Q,.; which has the minimum distance e between their
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centers, and let S, be the corresponding generator. We may take ¢, at
the origin and ¢} to be positive and real. Thus

(13) Q:lzl=1; Q:|lz—ql|=1.

With this choice, we find from equation (6) that @ + d is real and
la 4+ d| > 2; hence S, is hyperbolic.

By hypothesis, the distance between ¢, and ¢! is smallest for the
circles @, and @] in comparison with any other two circles in {Q.}.s;
also, all of the circles in {Q.},; are equal. Consequently, we conclude
from Lemma 13 (i) that the circle S,(Q!) — Q. has the maximal radius
for all circles of the first generation. We denote by ¢s, the center of
S,(Q)). By noting that S, is hyperbolic, it follows from Lemma 13 (iii)
together with simple geometrical considerations that the distance between
¢s, and ¢, is minimal in comparison with the distance between the center
of any other circles S;(Q,) C Q) of the first generation and the center
of any circle in {Q,},; exterior to Q). Consequently, if we apply Lemma
13 (i) again, we find that SiQ!) — Q! has the maximal radius for all
circles of the second generation.

Another application of Lemma 18 (iii) shows that the distance be-
tween qs? and ¢, is minimal in comparison with the distance between
the center of any other circle S, o S,(Q,) € Q] of the second generation
and the center of any circle in {Q.}., exterior to Q). Similarly we ob-
tain a corresponding result for the wmth generation. We conclude by
induction that the circle S"(Q!) © @ has the maximal radius for all
circles of the mth generation for all .

Let 7, denote the radius of SQ!) < Q.. We note that S, and S;™
have the isometric circles Q, and Q! respectively. Consequently Theorem
8 (iii) is applicable and we obtain

r.=1/lc],

where ¢ refers to the coefficient of the linear transformation correspond-
ing to S*. By utilizing this equation and equations (9), (13), (6), (7)
and (8) and replacing ¢, by e, we obtain

P, = 51 - Ez
2n+1 —(2n+1)
K2 —K =
_ Ve —4
]<—~e G\ S e
2 2
_ 1t — 4

- (et 12/62 ST (e 1/;2 )™ '
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The total number of circles in the nth generation is 2p(2p — 1)~
We denote the total length of these circles by L,. Then

4rp(2p — )M/ @ — 4

K (Cet e i) (exvedy
2 2
We find that
L{{E.Ln =0
if

p<(e+1/eﬁ—4)2+4:e(e+1/62—4)_
8 4

Because m(E;) < lim,,_..L,, this is the required criterion.

COROLLARY. Suppose that the Schottky covering surface Fg corre-
sponds to a Schottky group G with p generators. Let G be associated
with a configuration {Q.} which satisfies Condition C of Theorem 9.
Then the boundary of the conformal equivalent of Fg in the plane has
zero linear measure.

Proof. By definition the boundary of the conformal equivalent of
F§ in the plane is the singular set of G. The conclusion then follows
immediately from Theorem 9.

4. Classification of Riemann Surfaces.

4.1. EXHAUSTIONS AND HARMONIC MODULI. An arc is analytic if
it is the conformal image of a closed interval in the complex plane.

By virtue of the countability of a Riemann surface there always
exists on such a surface an exhaustion which may be described as follows.

DEFINITION. A nested sequence {w,} of compact regions is an ex-
haustion of an open Riemann surface W if

(i) W, is interior to W,,,.

(ii) The boundary B3, of W, consists of a finite number of closed
disjoint piecewise analytic curves.

(ili) Each complement W, — W,_, consists of a finite number of
disjoint noncompact regions.

iv) UnpW,=W.

For every # (n = 0,1, ---), the complement W, — W,_, consists of
a finite number k(n) of disjoint subregions E,; (¢t =1,2, ---, k(n)) of
finite genus. The boundary of E,; consists of two or more closed disjoint
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piecewise analytic curves which are subsets of 5, and B,. We denote
the intersections of the boundary of E,, with 8,., and 8,, by £.. and
B, respectively. There exists on FE,, a unique harmonic function u,,
which is continuous on the closure of E,;, vanishes on £8,, and is con-
stantly equal to unity on B,,. The function u,, is called the harmonic
measure of B, with respect to E,,.

If E,, is planar and 8,; and 8,; each consist of one component, then
E,, is doubly connected. In this case, the function U = e*it®'n¢ maps
E,, conformally onto an annulus, where u), represents the conjugate
harmonic function of u,;.

Let E,;, :=1,2,-++,k(n)< o, n=20,1,---) be a collection of
doubly-connected subregions of the open Riemann surface W, which may
be represented as annuli and which satisfy the following conditions:

(i) Each annulus E,; is bounded by two closed, disjoint and piece-
wise analytic curves 8,, and 3.,.

(ii) Any two of the annuli have no points in common.

(iii) The complementary set of UJ!™FE,, with respect to W has
precisely one compact component W,.

(iv) W, is bounded by the k(n) curves and contains the annuli £,
with n’ < n.

We define the harmonic modulus pt,, of E,; as

Uni = 277/5 duk, .
Bni

4.2. GENERAL CONCEPT. The classification problem will be studied
from the viewpoint of Sario [13] which classifies open Riemann surfaces
according to their possession or nonpossession of a given property P
shared by all closed Riemann surfaces. If W has the property P, we
say that W has a removable boundary with respect to P. Thus the
behavior of the open surface with respect to P is the same as if it were
closed, that is, had no boundary. We will consider three properties
shared by all closed Riemann surfaces, namely, they possess no G, AD
or AB functions.

4.3. THE CLASS 0,. The Green’s function g(z, &) of a relatively
compact Jordan region R is defined as the unique harmonic function on
R which possesses the singularity —log|z — ¢| at a point £ € B and
which vanishes continuously on the boundary 8 of R.

In order to generalize this definition to an arbitrary open Riemann
surface, we will require the well-known Harnack’s Principle which we
state in the following form [2].

LemMMA 14. Suppose that o family 7 of harmonic functions on a
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Riemann surface W satisfies the following condition.
To any u,, u, € 7/ there exists a u, € 2 with u, = max (u;, u,) on W.
Then the function

U(z) = sup u,(2)
UN-Y74

18 either harmonic or constantly equal to co.

We consider an open Riemann surface W and an exhaustion of the
type described in subsection 4.1. If W, is one of the compact elements
of the sequence {W,} in the exhaustion, its Green’s function g,(z, {)
has the usual interpretation. By the maximum principle g,.(2,¢&) is a
monotone increasing sequence of harmonic functions on W. Consequently
by Harnack’s principle, the sequence has a limiting function g(z, ¢) on
W which is either harmonic with the exclusion of the pole —log|z —¢|
or else is identically infinite. In the first case we define g(z, {) to be
Green’s function for W with a pole at ¢. It can be shown that if the
Green’s function ¢ exists it is the smallest positive harmonic func-
tion with the singularity —log|z — ¢|. Also it satisfies the equality
infg =0. If a harmonic function with the same singularity as g tends
to 0 as 2z approaches the boundary of W, then it is identical with g¢.
We conclude that the Green’s function is independent of the exhaustion.

LEMMA 15. Mori [8]. Let F}¥ be a homology covering surface of a
closed Riemann surface F and let r[['(Fy)] be the rank of the group of
cover transformations of Fy¥. Then F € 05 if and only if r[['(F¥)] < 2.

THEOREM 10. Let F* be a regular covering surface of a closed
Riemann surface F such that F is weaker than the commutator cover-
wng surface of F, or equivalently

T(FY)=N,cTF), NDN,, N/N.=H cCHF).
Then F¥ € 0 if and only if
: _ T(F)] [H(F)] — [T(F)/Nc]
r@n) =] O] = o HE)] - o TN | < 5
(1) r[C(FH]=r N, T 7 r NN,

or equivalently

(ii) 2p—2=r(H)=2p.

Proof. To prove (i) we note that by Theorem 4, F* is a homology
covering surface. The conclusion then follows from Lemma 15 and
Theorem 5 (i).

To prove (ii), we note that F* is a homology covering surface and
F is orientable. Consequently, Theorem 7 for the orientable case is
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applicable. We obtain
r[I(F)] = 2p — r(H,) ,
in which
0 = r(H) = r[H(F)] .
If F* satisfies (i),
r[FEFEHI=2.
Therefore,
2p — 2 = r(H,) < r[H(F)] .
Conversely, we suppose that F;* satisfies (ii). Then
r[[(F)] =2p —r(H)=2p—(2p—2)=2.
Hence, (i) and (ii) are equivalent.
4.4. THE CrLAss 0,,. If f(2) is an analytic function on a Riemann

surface W, the Euclidean area of the image W’ is given by the Dirichlet
integral

p(f) = || 175G rasay

where 2z = « 4+ 7y is the local variable. It follows that the existence
on W of an AD function implies the existence of a conformal equiva-
lent of W with finite Euclidean area. For simply-connected regions, the
possibility of conformal equivalence with a finite or infinite disk is pre-
cisely the classical type problem. Hence the classification according to
0., is a generalization to arbitrary Riemann surfaces of this classical
problem.

LemmA 16. Mori [8]. If F,* is a homology covering surface of a
closed Riemann surface, then F,* e 0,.

THEOREM 11. If F* 4s a regular covering surface of a closed
Riemann surface F such that F* is weaker than the commutator
covering surface of F, or equivalently,

T(F¥)= N, Cc T(F), N, D N,,
then

Frel,,.
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Proof By Theorem 4, F* is a homology covering surface. The
result is then a consequence of Lemma 16.

4.5. THE CLASS 0,. If we consider an AB function f(2) defined
in a region W, of the extended complex plane, which is complementary
to a finite set of isolated points {p,}, it is well known from the classi-
cal theory that the singularities {p;} can be removed by appropriately
defining f(2) at the points p;. Painlevé [10] generalized this concept by
investigating the analytic continuation of AB functions across arbitrary
point set boundaries of regions in the extended complex plane. This is
the classical Painlevé’s problem.

The connection of the classification according to 0,, with Painlevé’s
problem is shown by the following lemma.

LEemMma 17. [10], [1]. Suppose E is a compact set in the extended
plane and W is its complement. Let G be a relatively compact region
in the plane with analytic boundary o and ECG. If G,=G — E,
then every AB function, defined in G, possesses an analytic continuation
to all of G, if and only if W e 03

Proof. Suppose that We 0,. Let F(z) e AB be defined in G,.
By the compactness of £ we can enclose the points of E in a finite
number of piecewise analytic closed curves {C;}. We apply Cauchy’s
integral formula to the region contained in G but exterior to {C,}.
Then we can write

f(z) :fl(z) +f2(z) ’

where f,(z) is analytic in G, and fy(2) is analytic in the region exterior
to {C;}. We have for fy(2),

[ f2)| = Mifp,

where M is the supremum of f(z), I is a finite length and o > 0. Con-
sequently fuz) is an AB function in W. Because W € 0., fx(2) is
constant. Consequently f,(z) + constant is an analytic continuation of
f(z) across E.

Conversely, we suppose that the analytical continuation across F is
possible for every AB function defined in G,. If f(z) is an AB function
on W, then the analytic continuation of f(2) across E is an AB function
in the extended plane. Therefore f(z) must reduce to a constant. Hence
we conclude that W e 0.

The lemma just proved shows that Painlevé’s problem is the special
case of the classification according to 0,5, where the surface is restricted
to plane regions.
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The following lemma is implicit in the works of Painlevé [10].

LEMMA 18, Let E be a compact set in the extended plane and let
W be the complement of E. If the linear measure of E is zero, then
W e 0,z

The following is a generalization of Lemma 18.

THEOREM 12. Let W be an open Riemann surface with boundary
B. Suppose that there exists a planar neighborhood N of B such that
the relative boundary of N is a single contour «. If the boundary of
the conformal equivalent of N in the plane has zero linear wmeasure,
then W e 0,p.

Proof. N is planar by hypothesis; therefore it can be mapped con-
formally onto a region N’ of a disk K:|z| < 1. In this mapping S
appears as a closed point set E interior to K. The linear measure of
E vanishes by hypothesis; therefore by Lemma 18, W € 0.

If W is of finite genus p with boundary B, then the postulated
planar neighborhood of 8 in Theorem 12 is assured. For in this case,
we can find a compact region W, W, with genus p, bounded by a
single contour «a, with a lying entirely in W. The complement N =
W — W, is then a planar neighborhood of B and has a single contour «
as its relative boundary. The following corollary is then an immediate
consequence of Theorem 12.

COROLLARY. If W is of finite genus and if the linear measure of
B vanishes under the conformal mapping of N in the plane, then
W e 045

THEOREM 13. Let F be a closed Riemann surface of finite genus
p. Suppose that there exists for the Schottky covering surface F§ of
F o modified configuration {Q.).s, n the sense of subsection 3.5 such
that p < (ef4)(e + 1V & — 4). Then F§ e 0.

Proof. By the corollary to Theorem 9, the boundary of the con-
formal equivalent of F§ in the plane has zero linear measure. We note
that F'§ is an open Riemann surface of zero genus. The conclusion
then follows from the corollary to Theorem 12.

We consider an open Riemann surface W on which the domains of
the homeomorphism h, € {h} are denoted by 4,. Let \(z) be a continuous
and positive (except for isolated points) function on each domain 4, of
W. If two domains 4, and 4, overlap, let \(z) satisfy the covariance
relation
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dz,

Z;

Mzy) = Mzy)

at corresponding points z;, and 2, in 4, N 4,. We further require that
all points in W have an infinite distance from the ideal boundary of W.
We say that the differential

ds = Mz) | dz ]|
defines a conformal metric on W, if it satisfies all the conditions just

indicated.

Suppose that a conformal metric is defined on W. We fix a point
0in W and let D, be the domain formed by those points whose distance
from 0 is less than o, where 0 < p < . For p < =, we assume that
the domains are compact and that they generate W as p— «. Each
domain D, is bounded by 3,, where B3, consists of a finite number k(o)
of closed disjoint piecewise analytic curves, B, Bes, ***) Bore- Let

li:Se ds , 1=1,2,+,k(0),

A(0) = maxg ds ,
4 BP,;
K(N) = max k(0') .
p'=p

Then we have

Lemma 19. (Pfluger [11]). If

Tim [4778?% ~ log K(N)] —

on W, then W e 0,;.

In [8], Mori states without proof a modification of Lemma 19 which
does not involve the assumption of a conformal metric on the surface.
For the modified version of the lemma, we assume an exhaustion of W

and obtain as in subsection 4.1 the corresponding collection of annuli
{E,;}. We set

M, = min g, = 27T/S duk; ,
% Bns

K(N) = max k(n) .

Then we prove

LEmMMmA 20. If

m { 5 — —log KV)} = e,

N> n=7j
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then
We 04,

Proof. We consider the postulated exhaustion of W and the corre-
sponding annuli {£,;}. Let E,, be one such annulus which is bounded
by B, and B and let u,(z) be the harmonic measure of 8;; with re-
spect to F,,. By the maximum principle, 0 < u,,(2) <1 in E,. We
define the function wu,(2) to be the distance of the point z from B,;.

Then the function | grad «,,(2) | defines a conformal metric on the annulus
E,;, for which

ds = | grad u,,(2) | |dz] .

Let 43, denote the set of points on E,; which have the distance p
from B,;. Then

o= as=| Parjgp)={ aquz =2
Bo, 8o, ON Bp

13 ni
where on is normal to ds.

The result then follows from Lemma 19.
In [8], Mori utilized Lemma 20 to prove

LEmMMA 21. Let F be a homology covering surface of a closed
Riemann surface F. Suppose that the group of cover transformation
I'(F) has the system of 2p generators C,_,,Cy (1=1,2,+-+,p). If
there exists for each © a relation of the form

V2i-1Cai1 + ¥2Co = 0

where vy,_, and v, are integers and do not vanish stmultaneously, then
F¥ e 045

Let F' be a closed Riemann surface of genus p. Suppose that F'is
cut along p disjoint nondividing cycles to produce a planar surface FY.
Following Royden [12], we shall refer to a regular covering surface F'*
of F' as a covering surface of type S, if it consists of a finite or infinite
number of copies of F|.

COROLLARY. [8]. A homology covering surface F¥ of type S of a
closed Riemann surface F is in 0,p.

Proof. Let the 2p nondividing cycles Cy;—y, C,, (1 = 1,2, -+, p) cor-
respond to the 2p generators of I'(F). If we cut F along the non-
dividing cycles C,,_, (t =1, 2, +--, p), then the cycles C,,_, correspond to
the identity element in I"(F). Hence we may take v,_, =1 and v,, =0
and obtain
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Y24-1Coims + Wziczi =0, (’L =12, p) .

The conclusion then follows from Lemma 21.

THEOREM 14. Let F;* be a regular covering surface of a closed
Riemann surface F of genus p such that F is weaker than the com-
mutator covering surface of F, or equivalently,

T(F*) = N,c T(F), N,oN,, (N,/N,)=H, cHF).

Suppose that

(i) [(F}) has the 2p genmerators C,_,, Cy (1 =1,2, 4+, D) such
that C,_,, C,; correspond respectively to ay_,, @y under the isomorphisms
of Theorem 5 (i). If there exists for each 1 =1,2, «++, p a relation of
the form

Yoi—1Qai—1 + Vailla; = 0

where v, and v, are integers and do not vanish simultaneously, and
Gy qy Oy (1 =1,2,---,p) refer to the 2p generators of the Abelian
groups

HEF) TFE) ., TE)IN,
H, ' N, NN, '’

or
(ii) Fy* is of type S,
then F* € 0,p.

Proof. By Theorem 4, F* is a homology covering surface. The
conclusion then follows from Lemma 21 and its corollary in conjunction
with Theorem 5 (i).
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THE MULTIPLICATIVE SEMIGROUP OF
INTEGERS MODULO m

Epwin HEWITT AND H. S. ZUCKERMAN

1. Introduction. Throughout this paper, m denotes a fixed
integer >1. The set of all residue classes modulo m is denoted by S,,.
For an integer %, [x] denotes the residue class containing %. Under the
usual multiplication [x]-[y] = [*y], S, is a semigroup. The subgroup of
S,, consisting of all residue classes [x] such that (x, m) =1 is denoted
by G.,.

We write m = []5_, 3/, where the p, are distinct primes and the
a, are positive integers. Following the usual conventions, we take void
products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups
is discussed. In §2, we work out this structure for S,. In §3, we
give a construction based on [2], 3.2 and 3.3, for all of the semicharacters
of S,,. In §4, we prove that if X is a semicharacter of S,, assuming a
value different from 0 and 1, then e, 2([2]) = 0. In §5, we compute
x([z]) explicitly in terms of the integer x, for an arbitrary semicharacter
x of S,. In §6, we discuss the structure of the semigroup of all semi-
characters of S,,.

Our interest in S,, arose from seeing the interesting paper [4] of
Parizek and Schwarz. Some of their results appear in somewhat dif-
ferent form in § 2. Other writers ([1], [5], [6], [7]) have also dealt with
S,, from various points of view. In particular, a number of the results
of §2 appear in [6] and in more detail in [7]. We have also benefitted
from conversations with R. S. Pierce.

2. The structure of S,,. Let G be any finite commutative semigroup,
and let ¢ denote an idempotent of G. The sets T, ={rx:2eG, 2™ =a
for some positive integer m} are pairwise disjoint subsemigroups of G
whose union is G. The set U,={x:xe T, o' = for some positive
integer I} is a subgroup of G and is the largest subgroup of G that
containg @. For a complete discussion, see [2], 2.6-2.11. 1In the present
section, we identify the idempotents a of S, and the sets T, and U,.
We first prove a lemma.

2.1 LEMMA. Let x be any mon-zero integer, written in the form
11 v, B;=0,(m)=1.
Jj=1

Received January 9, 1960. The authors gratefully acknowledge financial support from
the National Science Foundation, under Grant NSF—G 5439.
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Then there is an integer ¢ prime to m such that

x EJI_:IIp}J-c (mod m),
where N, = min (@, B;)) (=1, «++, 7). If

X

i

,ﬁ pii-d (mod m) ,

where 0 < 4, = oy (J=1, +++,7) and (d, m) =1, then p, =), (=1, --

However, it may happen that d % ¢ (mod m).

Proof. Let b = ][ p;, Then we have

J
@j=Bj
x + bm = pfl cee pfra + pP ... p:rb
= [I pp»«sf2. (Aa + B),
Jj=1
where

A — H p‘;na,x(O.(ﬂj—wj))

J=1

and
B — ﬁ p;nax(o,(wj—ﬁj)).b .
j=1
Then it is easy to see that (Aa + B, m) =1, so that

r
z = [I pP*@»E2.¢c (mod m) ,
Jj=1

7).

where ¢ = Aa + B is prime to m. The last two statements of the

lemma are also easily checked.

2.2 THEOREM. Consider the 2" sequences {3, «-+, 8.}, where &, =0
or a,(j =1, ---,7r). Corresponding to each such sequence, there is ex-
actly one idempotent of the semigroup S,, and different sequences give

different idempotents. The idempotent corresponding to {5, - -

be written as
[1154],
J=1

where d 1s any solution of the congruence

I p-d =1 (mod 11 p?‘ﬁ‘”) .
J=1 j=1

-, 6,} can
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Proof. An element [x] of S, is idempotent if and only if
2= (mod m). If x is written as in 2.1, this congruence becomes
15 p29-¢* = 115, p}¥¢ (mod m), which is equivalent to

(1) [T py-c=1 (mod ITp1).
J=1 J=1
The congruence (1) has a solution ¢ if and only if [/, p}/ is relatively

prime to I[7-, »77~*, that is, if and only if \;=0or a; (=1, -+, 7).
If ¢, is a solution of (1), then all solutions of (1) are given by

¢c=¢ +yllp™,
Jj=1
where y is an integer. Plainly

[FLve] =12

for all such e.
We have thus proved the existence of a unique idempotent

[fi-]

corresponding to a sequence {J;, ---, 5,}, where §;,=0ora; (j =1, «++, 7).
If {8,.-+,8,} and {8, ---, 8]} are distinct such sequences, the corre-
sponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

[f7-¢]

and
ez

be idempotents in S,, written as in 2.2. Then their product 1s the
idempotent

[ﬁ p?ax(aj.53>,drl] ,
Jj=1
as i Theorem 2.2.

This follows directly from 2.1 and the obvious fact that products
of idempotents are idempotent.

We next determine the sets T, and U, defined above.

2.3 THEOREM. Let
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(o] = [ 11 e

be any element of S,, where 0 =N Za; (j=1,-++,7) and (c,m) = 1.
Then [x]e T,, where the idempotent

a=[ 11 pd],
1sjsr
Aj>0

and d s as in 2.2.

Proof. The idempotent a such that [x]e T, has the property that
[x]** = @ for some positive integer &k and all integers » = some fixed
positive integer n, (see [2], 2.6.2). For % = n,max(a, -+, a,), 2.1
implies that

a = [x]nk — [wnk] — ]11[:1 p}zku.cnk] — [;I:Il p}nin(nk)\j,wj).dl] — [ﬁ:l pﬁf-d] ,

where 6, =0if X\, =0 and §;, = «; if A, > 0, and d’ and d are relatively
prime to m.

2.4 THEOREM. Let
J=1

be any idempotent of S,, written as in 2.2. The group U, consists of
all elements of S,, of the form

it

where (¢, m) = 1.

Proof. Let [x]e U,. Then for some integers I >1 and k=1 and
all integers n = n,, we have [z} = [#] and [z]*™ = a. This implies that
[2] = [z]™**'. Writing 2 as in 2.1 and using 2.1, we now have

r 7
11 pr-c = T p™Pem+t = T pyreh (mod m)
J=1 J=1 1sJs7

Ay
]>0

provided that n is sufficiently large; here (k, m) = 1. From 2.1 we infer
that A, =0 or @, (j =1, -+-, 7). Since [x] e U,c T,, 2.3 now implies that
N=8 (F=1,«,7).

Now let = = [[}-, p}’-c, where (¢, m) =1. Then 2.3 shows that
[x]e T,. To prove that [x]e U,, we need to find an integer [ > 1 such
that [#]* = [#]. This is equivalent to finding an ! such that
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r I3 7
(1T pv-c) = L pr-c (mod m)
J=1 J=1
and this congruence is equivalent to the congruence
r -1 7
(H 1031-0> =1 (mod 11 p‘;‘f‘”) .
Jj=1 J=1

Since

o

p?l.c
J

Il

1

is relatively prime to the modulus, such an ! exists.
We now identify the groups U,.

2.5 THEOREM. Let

aQ = [17:[ pg]-d]

be any idempotent of S,, written as in 2.2. Let
A= T] p2rs .
j=1

The group U, is tsomorphic to the group G..

1295

Proof. For every integer z, let [z] be the residue class modulo A
to which x belongs. For [x] e S, let 7({x]) = [#]’. Plainly 7 is single-
valued and is a homomorphism of S,, onto S,. We need only show that

T is one-to-one on U,. If (¢, m) = (¢*, m) =1 and

([ ftmee]) = <[ o-er]).

then

11 pi-c = 11 p+c* (mod A),
j=1 j=1

which implies that ¢ =c¢* (mod A), because (IIi, P}, A) =1. Since
Tl pY-A = m, we can multiply the last congruence by T[’_, p¥ to obtain

I p¥7+c =TT p%7-¢* (mod m) .
Jj=1 J=1

3. A construction of the semicharacters of S,. A semicharacter
of S,, is a complex-valued multiplicative function defined on S,, that is
not identically zero. The set X, of all semicharacters of S,, forms a
semigroup under pointwise multiplication, since [1] is the unit of S,
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and x([1]) = 1 for all x e X,,. In this section, we apply the construction
of [2], 3.2 and 3.3, to obtain the semicharacters of S,. In §5, we will
give a second construction of the semicharacters of S,, more explicit
than the present one, and independent of [2]. This construction will
enable us to identify X, as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters
of S,, in terms of the groups U,. Let X, be any character of the group
U, We extend X, to a function on all of S,, in the following way:

0 if ab # a for the idempotent b such that [x] e T}

(1) 2u=D =
{Xa([x]a) if ab = a for the idempotent b such that [x] e T;,.

The set of all such functions ¥ is the set X,,.
3.1 THEOREM. The semigroup X,, has exactly
],YI:I1 (1 + P37 — pi™)
elements.

Proof. For each idempotent a = [pdr --. pir¢] as in 2.2, (1) yields
as many distinct semicharacters of S, as there are characters of the
group U,. The group U, has just as many characters as elements. By
2.5, U, consists of

#(ILpy*) = T {pr"(v, — 1}

8§ =r
J

o

elements. Also, distinct idempotents ¢ and b of S,, yield distinct semi-
characters of S,, under the definition (1). Therefore the number of
elements in X, is

(2) ;dgmﬂﬁzgwﬁémﬁ 2(H¢@D

O+WWD=ﬁ( pww

n}:js

The sums in (2) are taken over all sequences {8, --+, 5,} where each &,
is 0 or a;.

3.2 THEOREM. Let X be a semicharacter of S, as given in (1) with
the idempotent a = [ph « -+ pid], and let X' be a semicharacter with the
idempotent a = [pli --- p¥d']. Then the semicharacter XX’ is given by
(1) with the idempotent o'’ = [pPin®1:3D ... poinG.30d],

This theorem follows at once from 2.21 and the definition (1).

We now prove two facts needed in §4.
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3.3 THEOREM. Let X be a semicharacter of S, that assumes some-

where a value different from 0 and 1. Then ) assumes a value different
Sfrom 1 somewhere on G,,.

Proof. Definition (1) implies that the character X, of U, assumes
a value different from 1. It is also easy to see that G, = Uy For
[x] € G, definition (1) implies that x([z]) = X.(e[2]). We need therefore
only show that the mapping [x] — a[«x] carries G, onto U,.

Write a = [ph +-- p¥d]. Every element of U, can be written as
[Pl - pic] where (¢, m) =1, by 2.4. We must produce an [x]eG,
such that af[x] = [pd --- p¥¢]. That is, we must produce an integer =«
such that

(3) f[pji-doczﬂpﬁf-c (mod m)
j=1 j=1
and (z, m) =1. The congruence (3) is equivalent to
(4) dr=c (modﬁp}i*5i> .
J=1
Since d is relatively prime to the modulus in (4), the congruence (4)
has a solution z,, We determine x as a number
zo + LTI 03
Jj=1
where [ is an integer for which
7o + LT 93 =1 (mod T #3) .
J=1 J=1
Clearly
@ = @, + LI
Jj=1

:satisfies (3) and the condition (z, m) = 1.

3.4. Let {\, --+,\,} be a sequence of integers such that 0 =\, = «;
(=1, .--,7), and consider the set V(x, +++,),) of all [pit.-- pra]e S,
with (x, m) = 1. It is easy to see that this set is contained in T,
where a is the idempotent

L 11 p?f-d]-

<j=r

A
]>0

3.5 THEOREM. Given M\, +++,\,, there is a positive integer k such
that the mapping [x] — [p}t <+ pyx] of G, onto V(\, ++-,\,) s exactly
k to one.
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Proof. Let u be any integer such that (u,m)=1, and let [x],
+o+,[2,] be the distinet elements of G, such that [pj* ... prx)] =
[pM ++. pru]. That is,

Moo P, =P oo pyt (mod M) (F=1,---,k,).

Let u* be any solution of wu* =1 (mod m). If (v, m) =1, then we
have

Moo p?ru*q)xj = plt ... pv (mod m) .

Since (u*vz,,m) =1( =1, -+, k,) and the elements [u*vz,], « -, [u*vxku]’
are distinct in G, it follows that k, =< k,. Similarly, we have k, < k,.

4., A property of semicharacters of S,. It is well known and
obvious that if H is a finite group and X is a character of H, then
Seer X(x) = 0 or o(H) according as X # 1 or y =1. This result does
not hold in general for finite commutative semigroups. As a simple
example, consider the cyclic finite semigroup 7'={x, 2%, «++, %, +++, 2"},
where ¢*** = &/, and I and [ + k are the first pair of positive integers
m, n, m < n, for which 2™ = x”. The following facts are easy to show,
and follow from the general theory in [2]. The subset {«’, 2™+, .., 2™}
is the largest subgroup of 7. Its unit is the element z**, where the
integer u is defined by I < uk <l + k. The general semicharacter of
T is the function ) whose value at 2" is exp (2wihj/k), where j = 0,
1,.-,k—1. For j=1,2, .+, k —1, the sum >+ x(x*) is equal to

1 — exp <2m'(lck+ l)j)

1 — exp < 27;:7 >
which is 0 if and only if k/(k,[) divides 7. Hence the sum of a semi-
character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for
the semigroup S,,.

4.1 THEOREM. Let X be a semicharacter of S, that assumes some-
where a value different from 0 and 1. Then Siaes, X([x]) = 0.

Proof. It is obvious from 2.1 that the sets V(:, ---,)\,) of 3.4
are pairwise disjoint and that their union is S,,. We therefore need
only show that >iaern,...ay X([#]) =0 for all {\,.--,\}. By 3.3, %
assumes a value different from 1 somewhere on the group G,,, so that
Simtea,, X([2]) = 0. (Note that X on G, is a character of the group G,,.)

Thus we have 0 = Xpee,, X([P1 - - 2P DA(2]) = Singea, X([DI1 -« - Da]) =
k> x(ly]), where [y] runs through V(\, -+, ),).
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5. A second construction of semicharacters of S,,. In this section,
we compute explicitly all of the semicharacters of S,,. The case m even
is a little different from the case m odd. When m is even, we will
take p, = 2. To compute the semicharacters of S,,, we need to examine
the structure of S, in more detail than was done in §8. For this
purpose, we fix once and for all the following numbers.

5.1 DEFINITION. For 7 =1, , 7, let

g, = a primitive root modulo p¥ if p; 18 odd;

=51 n=2

h, = g, + y;p37 where y; is such that h, =1 (mod m/p5d);

hy = — 1 + y,p* where y, is such that h, =1 (mod m/p®);

g, = p; + 2,057 where z; 18 such that ¢, =1 (mod m/p5?);
For j=1,«-- 7,1 =1,ce, 7,51, and p, odd, let k;, be a positive
integer such that p, = gin (mod pj1).
For 1 =2,++,7 and p, = 2 let

ky be a positive integer such that p, = (—1)*""1g*n (mod pi).

Plainly v, 1, *++, ¥, and 2z, +--, 2, exist. For p, odd, the integers
I, exist because ¢, is a primitive root modulo p¥:. For p, = 2, the
integers k,, exist for a; = 3 by [3], p. 82, Satz 126. For a;, =1 or 2,
k; can be any positive integer.

5.2. Let x be any integer #0. Then x = []j, p* .a(x), where
Bix) = 0 and (a(x), m) = 1. Plainly the numbers 8, = 8,(x) and ¢ = a(z)
are uniquely determined by . For j =1, ..., and p, odd, let
e; = e¢,(x) be any positive integer such that

a(2) = g (mod p) .
The number e¢,(z) is uniquely determined modulo ®(p$7). For p, = 2, let
e, = e,(z) be any positive integer such that
a(x) = (=1)=2lgp® (mod pf) .

For a, = 3, e,(x) exists and is uniquely determined modulo pf*~? (see [3],
p. 82, Satz 126). For a, =1 or 2, e(x) can be any positive integer.
If m is even, let

0 = ([ o )

J=1

'-'v-

If m is odd, let

(1) Aw) = (1T n

H
w;q
?7‘
&
~—
g
==
L=
T
o
~—
TN
="
]
=8
~—
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If m is even, it is easy to see from 5.1 that

r

(2) A = (IT(—)eree (1T gt )pp(—1)“"gzt (mod pi)

J=2

1l

(TT (—1yorvingen ) pp(—1ye—vrege
= j[[zﬁwp?la = (mod p{),
and, if n =2, +--, 7,

A(w) = TI g&%sm-plngin = T pfr-pira = o (mod pi) .
= i
Therefore A(x) = 2 (mod m) if m is even.
If m is odd, then for n =1, -+, 7, we have

r

Ax) = JE[I ghiEin. phngn = jl} piiepara = @ (mod prn) .
J#n J#n

Therefore A(x) = (mod m) if m is even or odd.

5.3. Suppose that ) is any semicharacter of S,. Let + be the
function defined for all integers x by the relation +(x) = X([xz]). Then
+r is obviously a semicharacter of the integers under multiplication, and
() = Y(y) if =1y (mod m). We will construct the semicharacters
of S, by finding all of the functions +» with these properties. As 5.2
shows, 4 is determined by its values on hy, ki, +++, k, and q,, -+, q,.
We now set down relations involving the %’s and ¢’s which restrict the
values that «» can assume on these integers.

5.4, If p, is odd, then

h?(p?j) =1 (mod pY), h?(p‘;j) =1 <m0d mj) ;
Y

hence
R =1 (mod m) .

Also,

k=1 (mod »?), =1 (mod > ) ;
it

hence h} =1 (mod m).

If p,=2and a, =1, then h,=1 (mod 2), 7, =1 (mod m/2); hence

hy =1 (mod m).
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If p, =2 and a;, =1 or 2, then

h, =5=1 (mod p{*), h, =1 (mod m/p); hence h, =1 (mod m).

If p, =2 and a, = 3, then

B =1 (mod p=), h™ =1 (mod m/p*); hence B =1 (mod m).

(The first congruence on the line above is proved in [3], p. 81, Satz 125.)
For =1, ---,r, we have

=0, qyh; =0, ¢ =0 (mod p}’),

¢r=1, qvh,=1, q¢=1 (mod ﬂj) .
Dy

Therefore we have
qy = q3h; = q37™ (mod m) .
Also, if p, = 2, we have
=0,  ¢Phy=0 (mod p),

@=1, qoh=1(mod ™).
e

Therefore we have
= q%h, (mod m) .

5.5 If 4ris to be a function on the integers such that r(x) = x([x])
for some semicharacter X of S,, then the choices of the values of 4 at
the h’s and ¢’s are restricted by the congruences modulo m derived in
5.4. Thus, since x([1]) = 1, we have

Ylhy)#Wi" =1 if p, is odd;
Y(he) = = 1, and (k) =1 if &, =1 and p, = 2;
Y(h) =1if p,=2 and'a;, =1 or 2;
Wby =11if p, =2 and a, = 3.
Also we have
(@)™ = P(g)"r(hy) = r(g)™ ™ for g =1, -+, 7.
If p, = 2, we have

‘1"(%)“1 = \l’(%)wl‘P(ho) .

The last two equalities give us:

Y(q;) # 0 implies Yr(h;) = Y(q,) = 1;

and
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(q,) # 0 implies (k) = 1 if p, = 2.

5.6. To construct our functions +r, we now choose numbers @,
@, +++,®, and f, <+, 1, which are to be (h,), Y(h,), +--,Y(h,) and

¥(qy), +++, ¥(q,). The relations in 5.5 show that we must take these
numbers such that:

@i =1if j=1,.-.,r and p, is odd;

w,==+1, w,=11if p, =2 and a, = 1, or if m is odd;
w, =11 p,=2and o, =1 or 2;

@7 =1if p,=2 and o, = 8;

t;=0o0r1if j=1,cc,7;

w, =11 ¢, =1,7=1,+-,7;

w,=11if p,=2 and 1, = 1.

Formulas (1,) and (1,) of 5.2 now require us to define (zx) for non-
zero integers x as follows:

3.) Y(x) = (jf_[zz wg(Dj“Nﬁj(z)ﬂ)( H 81 x)kjl><j]i£ #gj(x)>

=1 j=1
. @11 <H ew) if m is even?

ﬂj(l?)ka)( ‘uﬂj(x)>< (L)?f(x)> if m is Odd-

,,.

(3) W) = (H

\-.
Nr—-

Finally, we define y+(0) = y~(m).

The ¢’s, h’s, and k’s appearing in (1) and (3) were fixed once and
for all in terms of m. The w’s and ¢’s are at our disposal and serve
to define Yr. The B’s are determined uniquely from 2x; but the e’s are
not. As noted in 5.2, e, is determlned modulo @(p§7) if p, is odd, and
e, is determined modulo p®—2 if p, =2 and a, = 3. Since wy?? =1 if

p,is odd, @™ =1 if p,=2 and &, =3, and w, =1 if p,=2 and
o, = 2, we see that 4 is uniquely defined by the formulas (3,) and (3,).

5.7. We now prove that yr(xy) = (@) (y). Since + is obviously
bounded and not identically zero, this will show that 4 is a semicharacter.
Suppose first that « = 0,y = 0. Then we have

v =1l pf'a(@), y=1TI00"aly), ay=IIpH"*Y. a(x)a(y) .
Jj=1 J=1 J=1

1 We take wyp =1 when m is odd merely as a matter of convenience. Actually, as will
shortly be apparent, wy does not appear in the definition of ¢ if m is odd.
2 We take 00 =1.
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Therefore a(xy) = a(x)a(y) and B,(xy) = B,(x) + By) for j =1,
Also we have

957" = alwy) = a(@)aly) = g7gyY = ¢+ (mod pj7)

if p, is odd. Since g, is a primitive root modulo p3¥ and w7 =1, it
follows that e,(xy) = e¢,(x) + e,(y) (mod @(p3?)) and W™V = WY DWWV if
p; is odd (j=1,.-+,7). If p, =2, then a(x) and a(y) are odd, and
plainly

aey) —1 _ a(x) —1 a(y) — 1
5 = 2 + 7 (mod 2) .

Therefore we have

wo(a(m/)fl)lz — wo(a(x)—l)ﬂwo(u(y)al)/z
for both admissible values of w,. Furthermore,

( 1)(a 2Y) — /del(ﬂl = a(x)a(y)
—= (_l)m(z 1)/2 el(x)( 1)(11 (mOd o 1) ’

if p, = 2. Therefore we have
g = gp@+a® (mod p) ,

if p, = 2.
Hence, if @, = 3 and p, = 2, we have e, (xy) = e, (x) + e,(y) (mod py~?),
as follows from [3], p. 82, Satz 126 (recall that ¢, =5, p, = 2). Hence

WA = @h@ aw) ifa,=38,p,=2.

The last equality also holds if «, <2 and p, = 2, since w, =1 in this
case.

The foregoing computations, together with (3), now show that
Y(xy) = yr(@)p(y) if xy = 0.

We next show that yr(zy) = y(@)W(y) if 2y = 0. We compute yr(m).
Since Bym) =a;, >0 for j =1, --+, 7, we have

f[ Bj(m):{lif#]_:...:#r:l,

= 0 otherwise.

If gy =+.+ =p, =1, then by 5.6, we have oy =0, =+ =0, =1, so
that y(x) =1 for all . In this case, we have +y(xy) = (20 (y) for
all z and y. If some py; =0, then y(m) =0, and hence (0) =0. In
this case, Yr(xy) = ()Y (y) if xy = 0.

5.8. We now prove that y(z) = y(y) if © =y (mod m). Suppose
first that @y = 0 and 2 =y (mod m). Then
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I %% .a(x) = ﬁ 5% a(y) (mod m) .
J=1 J=1

From this, we see that B,(x) > 0 if and only if B,(y) > 0. If, for some
J, we have B,(x) > 0 and g, = 0, then B,(y) > 0 and Y(x) = 0 = Y (¥).

Now we can suppose that g, =1 for all j such that B,(x) > 0.
Then w, =1 if Byx) >0 (G =1, ---,7) and w, =1 if By(x) > 0. If m
is odd, or if m is even and 53,(x) > 0, we have

(4) v@ = ( I Dop=s)( 1T o),
Bl(l;io = ,sjf;)io

(5) Yr(y) = ( 11 wa](y)ka>< H a)?](ﬂ)) .
b5 o b e

If m is even and B,(x) = 0, we have

r

(6) \1/'(-7/') — (ﬁ wo(pj—l)ﬁj(z)ﬂ)( ﬁ H w?;(z)kﬂ>wo(a(as)—l)/2< ﬁ w;](:&)) s
Jj=2 J=1

=1 J=1
B (.t) Oﬁj(z)>0 ,Bj(a:) =0

(7)) = ([Lowrewm)( [T 11 eposo,eose T opo).

=1
Bl(x)=0 Bj(z)>0 J( =0

Since © =y (mod m), we see from 5.2 that A(x) = A(y) (mod m)
and hence
(8) A(x) = A(y) (mod p2») for n =1, «--, ¢

The congruence

(9) Aw) = JT br="m-gfe=hin™ (mod pie)

J#n

holds if p, is odd. To verify this, use (1,) and (1,) together with 5.1.
Notice that for n» = 1, we use only (1,).

The congruences (8) and (9), together with the fact that B,(x) =0
if and only if B,(y) = 0, now show that

y
Hhﬁj(z)kﬂ hen(x thjw)kj"'hﬁ”w) (mod pzn)
J=1

j#n J#n

if p, is odd and B,(x) = 0. This implies that

3 Bi@sn + @) = 3B, + en(y) (mod #(pi) ,
J#n J#n

and

y r

(10) H wg;(:c)kjn_w;n(y) — jII ng(ﬂ”ﬂm.w;n(v) ,
j=1 =1
J#n J#n
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if p, is odd and B,(x) = 0.
Similarly, if p, = 2 and B(x) = 0, in which case g, = 5, (2) implies
that

(11) A(x) = <.;|E[ (___1)(11_1—1)Bj(x)/2><ﬁ 53_1(2)1611)(_1)(a(m)~1)/25el(z) (mod 2@1) .
=2 j=2

The congruences (8) and (11), together with the fact that B.(y) = 0,
now show that

r

% 5 (b= DBs) + 50 =1)_ % Bioks+es) _
(-2 5/

ﬂmlm@+—mwl>zm@+mw
= (—-1)> 5= (mod 2%)

From this congruence, we find that

510, - D8 + Haw) - 1) =

550 = VAW + Lal) — 1) (mod 2)

if a; =2, and

j% Bj(x)kjl + e(x) = ]’;2 Bj(y)kﬂ + e(y) (mod 2012

if ¢, =8. Since wy,=1if ;=1 and w,=11if a,=1 or 2, we now
have

-

(12) H wo(pjfl)ﬂj z)/2, a) (a(x)—1)/ H a) (pj—DBjsty)/2, a) aly)—1)/2
J=2 J=

if ¢, =21, and

<

-
(13) H wlﬂj(x)kjl N wil(-’c) — H wlﬁj(y)kjl .wfﬂy)
J=2

if @, = 1. Multiplying (10) over the relevant values of %, we have

(14) ( H Hwﬂj kjn>< n]i[l a);nm) < 1:11 ga)ﬁjy)kjn)( ﬁ a);in(v)),

n=1
Bn(z)=0 H&n Bn(x):ﬂ ﬂ z) =0 Bn(x):()

Dy >2 D,>2 D, >3 0,>2

If m is odd, or if m is even and B(x) > 0, (14), (4), and (5) show that
Y(x) = Y(y). If m is even and B,(x) =0, we multiply (12), (13), and
(14) together. Comparing the result with (6) and (7), we find that
Yr(x) = +r(y) in this case also.

We have therefore proved that y(z) = (y) if x =y (mod m) and
2y + 0. If x =0 (mod m) and « # 0, then Y(x) = Yr(m). Since Y(0) =
Yr(m) by definition, the proof is complete.
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5.9. The foregoing construction of the functions +, and from these
the semicharacters X of S,, X([%]) = y(x), clearly gives us all of the
semicharacters of S,. As the @’s and ¢’s of 5.6 run through all admissi-
ble values, each semicharacter X appears exactly once. We could show
this by exhibiting, for each pair + and ', a number x such that
Y(x) # ¥'(x). Rather than do this, we prefer to count the +’s and
compare their number with the number obtained in 3.1.

For p, odd, the number of possible values of w, is @(p) if ¢, =0
and 1 if g, =1. Hence this number is @(pj?"~*”). For p, =2, there
are several cases to consider (¢, =0or 1, o, =1, a, =2, &, = 3). In
each case, it is easy to see that the number of admissible pairs {w,, o}
is @(@ni-w) Thus, for each sequence {z, ---, 4}, the total number of
sequences {w,, w,, +++, ®,} is equal to

TT (pgre-sry .
J=1

Summing this number over all possible {t, -+, &}, We obtain
05—, (1 + p7 — p37), as in Theorem 3.1.

6. The structure of X,,.

6.1. Let X and X’ be any semicharacters of S, and let (¢, « -+, t,;
Wy, Wy, »++, w,) and (Y, «--, t; 0, @), -+, ®.) be the parameters as in
5.6 that determine ¥ and X', respectively. The product XY’ then has
as its parameters

( 1 ) (ﬂl#{y cc ﬂrﬂl"; (Uo(l)é, W@, <, (Ur(l);‘) .

Thus, all of the X’s in X, for which the s are a fixed sequence of
0’s and 1’s form a group, plainly the direct product of cyclic groups,
one corresponding to each zero value of ¢. These are maximal subgroups
of X,, and X,, is the union of these subgroups. The multiplication rule
(1) shows clearly how elements of different subgroups are multiplied.
The rule (1) shows also that X, resembles a direct product of groups
and {0, 1} semigroups. It fails to be one because of the condition in
5.6 that ¢, =1 implies o, = 1.

6.2. The characters modulo m of number theory (see [3], p. 83)
are of course among the semicharacters that we have computed. They
are exactly those for which f4, = 4, = +++ = ¢, = 0. In the description
of §3, they are the semicharacters that are characters on the group
G., and are 0 elsewhere on S,.

6.3. We can also map X, into S,,, and represent X,, as a subset
of S,, with a new definition of multiplication. Let X be in X, and let
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X have parameters (f4, +«, th; @y, @y, +++, ®,). For m odd and j = 0, 1,

cee,70or m even and j =0,2,3, .-+, 7, let w, be any integer such that

w; = exp Qmiw,/®(p}?)). For m even and a;, =1 or 2, let w, = 0; for

m even and «, = 3, let w, be any integer such that @, = exp (2riw,/2%17%),
We now define the mapping

(2) X— 7)) = [hgvoﬂ—m) fI (h}vj(l—uﬁq}zjw)] ,
Jj=1
which carries X,, into S,,. Evidently = is single-valued.

6.4 THEOREM. The mapping T ts one-to-one.

Proof. Suppose that X and )’ are semicharacters of S,, with para-
meters as in 6.1. Suppose that (X)) = 7(X’), that is,

(8)  hyou—m T (psw0ggoms) = hest=rd T (o359 q2w5) (mod m) .
Jj=1 J=1

This congruence, along with 5.1, implies that
B piin = e priki (mod  pi)

for I =1, .--,7 and p, odd. Since (k,, p,) =1, and y; and 2 are 0 or
1, it is obvious that g, = p. If p, = p] =1, then from 5.6, we have
w,=w,=1. If g, =y =0, then A= kYt (mod pf), so that w, = w;
(mod @(p?)) and hence w, = w;.

If p, =2, (2) implies that

(4) R R = R pE (mod )

Again, we have p, = . If g, = pf =1, then 5.6 states that o, = 0] =
w, =, =1. If a, =1, then 0w, =0} =1, also by 5.6. If a, =2 and
¢ = i = 0, then (3), along with 5.1, shows that (—1)* = (—1)*s (mod 4),
and hence w, = w). If @, = 3 and ¢, = ¢} = 0, then we have (—1)5* =
(—1)#5%1 (mod 2%1), Once again, [3], p. 82, Satz 126 shows that (—1)*° =
(—1)* and that w,= w] (mod 2*+%). Hence w, = w} and , = wi.
Therefore 7 is one-to-one.

6.5. The set 7(X,,) consists of all the elements [p} :++ pia] of S,
for which 8, =0 or «a; and (¢, m)=1. It is evident from (2) that
7(X,,) is contained in the set {[p} --. p¥a]}. The reverse inclusion is
established by a routine examination of cases, which we omit.

6.6. The mapping 7 plainly defines a new multiplication in (X,):
(0¥t = (X’). Every residue class 7()) contains a number

,
@ = b= I (pr=ro ggovs) .
Jj=1
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If 2’ is another number of this form, then it can be shown that [x]*[«x]
is equal to [xx'/1] q7/], where the product [[ ¢/ is taken over all j,
j=1,++,r, for which p,|xx’. We omit the details.
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RELATION OF A DIRECT LIMIT GROUP TO
ASSOCIATED VECTOR GROUPS

Paun D. HLL

A set M with a binary, transitive relation < is said to be directed
if for each pair @, b in M, thereisa ¢ in M such that a < ¢, b <ec. Let
{Gileex be a collection of groups indexed by a directed set M = {a, b, ---;
<}, and for each a < b in M let h¢ be a homomorphism of G, into G,.
The homomorphisms are assumed to satisfy the relations

(i) Rri=ntifa<b<ec
and

(ii) if @ < @, then hZis the identity.

We call such a system a direct system of groups and define a direct
limit group of this system in the following manner. Two elements
9.€G, and §g,eg, are said to be equivalent if there is a ¢ > a, b such
that h3(g.) = h%(g,). Let g¥ denote the collection of elements which are
equivalent to g,. Now given any two equivalence classes ¢ and g7,
there exists a ¢ and elements g, g, in G, such that g = g¥ and g = g.
We define ¢}-3F = (9.9,)*. This multiplication is a well defined binary
operation on the set, G*, of equivalence classes. And it may be shown
that G* is a (multiplicative) group, which we define to be the direct limit
group of the given system.

Let G = [[ G, be the restricted direct product of the given groups
G,, and consider the groups G, as subgroups of G. An element in G of
the form g;'hi(g,) is called a relation. Let H be the subgroup generated
by the relations of G. Note that the inverse of a relation is a relation.
By a “‘last’”’ element of M we mean an element b such that a < b for
all @ in M. If M contains no last element, it is immediate that given
@, Gy +++, @, in M, there exists a be M with the property a, <b, a; #
bfori=1,2,---,k.

LEMMA 1. If M contains no last element, the commutator group
K of G is contained in H.

Proof. Let ® = ¢49a,** 9o, and ¥ = §,,Js, * -+ J», be arbitrary ele-
ments of G, where a,, = a, or b, = b, implies that m = n. First choose
a with the property that a;, < a,a; #+a, and b, #a for all 2. Then
choose b such that b, < b,b, #b,a, + b, and a =b. We have

k J 1 1
wyr~y™ = 1194, 119, 11 92 1195}
i=1 =1 i=k i=j
Received September 8, 1959, and in revised form September 11, 1959.
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=ng II ai(gagrj Ij b(357)
= H oh293) Hgbzhbi(gbn I gah(a.) 1135, -

Thus xyx~'y ‘e H. Since H is a group, the lemma follows.

COROLLARY 1. If M contains mo last element, then H is a normal
subgroup of G.

The following example shows that H may not be normal in G if M
contains a last element.

ExAMPLE. Suppose that M is {1, 2; <}. Let G, be the symmetric
group on the set {1,2,3}, and let G, be the subgroup of G, of those
elements fixing 3. Define A} to be the identity isomorphism of G, into
G,. Then H, a cyclic group of order 2, is generated by ((1,2), (1, 2)).
It is, therefore, not normal in G.

Lemma 2. If g, in G, is in H, then there exists a b such that
hi(g.) € K, the commutator group of G,.

Proof. In general, if x, in G, is the product z,®,, «-- x, Wwhere
%, €G, and if b>a,a; for 1 =1,2,.--,m, then hf(x,) can be written
as the product of the elements h{i(x,), hox®,,), « - -, hi"(®,,) in some or-
der. This fact is easily proved by induction on n. If » > 1, by the
induction hypothesis we may as well assume that the factors z, are
nontrivial. Thus two of the factors must be contained in a single group
G, And the product #,%,, « -+ %,, can be contracted to a product of the
same form with one less factor by taking one of the new factors to be
the product of two of the old and letting the other factors remain un-
changed (except, possibly, for the order in which they appear).

Since g, is in H, it can be written in the form JI%, ¢z 'Ri¥(g,,).
Choose b such that b > a,b, for ©=1,2, .-+, k. Then

hy(9) K, = H h3(ga)hetheig.,) Ky

k

= zII k(92 )hst (gai)Kb =LK, =K, ,

which proves the lemma.

THEOREM 1. If H is a normal subgroup of G, then G/H is o homo-
morphism image of G*, where the kernel of the homomorphism is con-
tained in the commutator subgroup, K*
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REMARKS. The theorem is well known [1] in case the groups G, are
abelian. In this case H is necessarily normal and K* =1 is the identi-
ty. Thus G* = G/H, and we have two equivalent definitions for the
direct limit.

Proof of theorem. Let f be the mapping of G* into G/H, defined
by: 95 — g,H. In order to show that f is single-valued, let g¢; = g;.
There exists ¢>a, b such that h%(g,) = #%(7,). Thus 9:'g, = 9. h%(9.)%(T>) "' Ts.
Since hi(g,)7'g, = g,h%(g;"), we have ¢.'¢, € H, which implies that f is
independent of the representative of g*. The multiplicative property of
f is immediate. We next show that f is onto. Let gHeG/H and let
9 = 9a9a, *** 9a,, Where the a;’s are distinct. Choose b such that a; <b
for 1=1,2,++-, k. If a, =0 for some %, we may as well assume that
i = k since the g,’s commute. For each i, g;'h;¥(g,) € H. Thus

1 1 1
g = Il 9;hi'(9s) = 11 9o I1h54(94)
is in H, which implies that ggH = gH. But g7 = [Ii_. hii(g,,) is in G,.
Hence f((99)*) = gH, and f is onto. Since g, € K,, the commutator group
of G,, implies that ¢g'e K*, it follows from Lemma 2 that the kernel
of f is contained in K*.

THEOREM 2. If M contains no last element, then G*|K* = G/H.

Proof. By Corollary 1, H is normal in G. Thus by Theorem 1,
we need only show that the kernel of f is the whole commutator group,
K*. However, if gF is a commutator of G*, then there exist a b and
a commutator g, e K, such that g} = gf. Since K, & K, by Lemma 1
g,€ H. Thus f(9¥) = H, and the theorem folllows.

The limit group G* is abelian if and only if for every a in M and
for every commutator g, of the group G,, there exists a b > a (depend-
ing on g,) such that h¢(g9,) = 1,. Also, under this condition the commu-
tator subgroups, K,, of the groups G, are contained in H, and H is
normal in G since the conjugate of a generator of H transformed by
a general element of G

{cteen9a M3 (9N Totodn = Tau9a Ry(90) 25 2,
= 2,92"%2'94 92 13(90)  h3(9.) @R (9.) 0,

remains in H.

COROLLARY 2. If the limit group G* is abelian, then G* = G[H.
Moreover, the converse holds if M contains no last element.
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A directed set M = {a, b, -++; <} is said to be completely directed
if for every a in M all but a finite number of b’s in M satisfy the
relation @ < b. In particular, the positive integers are completely direct-
ed by <.

Letting G' = II'G, be the complete direct product of the given
groups G,, we have

LEemmA 3. If M is completely directed and has mo last element,
then G* is contained (in the sense of isomorphism) in the factor group

G'|G.

Proof. Define a mapping h of G* into G'/G by: 9% — {2,}rexG,
where x, =g, and a < b implies that x, = h¥(g9,). The coordinate =,
may be chosen as an arbitrary element of G, if b fails to satisfy a <b.
It may be shown that % is a homomorphism with trivial kernel, which
proves the lemma.

Letting F' be the inverse image of A(G*) under the natural homo-
morphism of G’ onto G'/G, we observe

COROLLARY 3. Let M satisfy the conditions of Lemma 3, and let
G* be abelian. Then in the chain
GoF2G2H21

we have F|G = G|H = G*.
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COMMUTATOR GROUPS OF MONOMIAL GROUPS
C. V. HoLMES

This paper is a study of the commutator groups of certain general-
ized permutation groups called complete monomial groups. In [2] Ore
has shown that every element of the infinite permutation group is itsself
a commutator of this group. Here it is shown that every element of
the infinite complete monomial group is the product of at most two
commutators of the infinite complete monomial group. The commutator
subgroup of the infinite complete monomial group is itself, as is the case
in the infinite symmetric group, [2]. The derived series is determined
for a wide class of monomial groups.

Let H be an arbitrary group, and S a set of order B, B = d, d=¥,.
Then one obtains a monomial group after the manner described in [1].
A monomial substitution over H is a linear transformation mapping each
element « of S in a one-to-one manner onto some element of S multi-
plied by an element A of H, the multiplication being formal. The ele-
ment # is termed a factor of the substitution. If substitution « maps
%; into h,x;, while substitution v maps «, into k,x,, then the substitution
#v maps x; into hh,x,. A substitution all of whose factor are the iden-
tity e of H is called a permutation and the set of all permutations is a
subgroup which is isomorphic to the symmetric group on B objects. A
substitution which maps each element of S into itself multiplied by an
element of H is called a multiplication. The set of all multiplications
form a subgroup which is the strong direct product of groups H,, each
H, isomorphic to H. Hereafter monomial substitutions which are per-
mutations will be denoted by s, while those that are multiplications will
be denoted by v. The monomial group whose elements are the monomial
substitutions, restricted by the definitions of C and D as given below,
will be denoted by S.(H; B, C, D), where the symbols in the name are
to be interpreted as follows, H the given arbitrary group, B the order
of the given set S, C a cardinal number such that the number of non-
identity factors of any substitution of the group is less than C, D a
cardinal number such that the number of elements of S being mapped
into elements of S distinet from themselves by any substitution of the
group is less than D. In the event C = D = B*, B* the successor of
B, the resulting monomial group is termed the complete monamial group
generated by the given group H and the given set S. S(B, M), d<MZ<D,
will denote the subgroup of permutations which map fewer than M
elements of S onto elements of S distinet from themselves, while V(B, N),

Received October 25, 1958, and in revised form August 27, 1959.
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d < N < C, will denote the subgroup of multiplications which have fewer
than N nonidentity factors. In particular S(B, d) denotes the subgroup
of finite permutations and V(B, d) the subgroup consisting of those
multiplications which have finitely many nonidentity factors. The con-
cept of alternating as associated with permutation groups may be ex-
tended in an obvious manner to monomial groups. A(B,d) will denote
the alternating subgroup of the permutation group S(B,d), while
Sw(H; B,d,d) will denote the alternating subgroup of the monomial
group >\ (H; B, d, d). Any substitution may be written as the product of
a multiplication and a permutation. Hence we may write S\(H; B, C, D)=
V(B, CYUS(B, D), where U here and throughout will mean group ge-
nerated by the set. G’ will be used to denote the commutator subgroup
of the group G.

THEOREM 1. The commutator subgroup V'(B,C),d < C £ B*, of
V(B, C) is the set of all elements

v = (h;, h/;; h:;;"'), héeH’ s

where there exists an integer N such that each h} is the product of N
or fewer commutators of H.

Proof. The theorem follows from the fact that V(B,C) is the
strong direct product, each of whose summands is isomorphic to H, to-
gether with the remark following the lemma page 308 of [2].

THEOREM 2. The commutator subgroup S'(B,C),d < C £ B*, of
S(B,C) is S(B,C). The commutator subgroup S'(B,d)of S(B,d) is
A(B, d).

The proof is contained in [2].

THEOREM 3. The commutator subgroup >)(H; B, d, d) of S(H; B, d, d)
is A(B, d)U V*(B, d) where V*(B, d) is the set of all elements of V(B, d)
whose product of factors is a member of H'.

Proof. By reason of Theorem 2 we have
>/(H; B, d, d) > A(B, d), and that
S/(H; B,d, d)y> VB, d)

will now be demonstrated.

If h;, is the only nonidentity factor of the multiplication w;, then
the commutator v,sv;'s, where s = (;, «,), is a multiplication whose only
nonidentity factors are &; and 4;*. It then follows that any multiplication
v of V*(B,d) with » nonidentity factors can be written as the product
of n + 1 multiplications, » of which are of the type of the commutator
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described above, and the remaining member having as its only noniden-
tity factor the product of the factors of v. But the first » members
of the product belong to >V(H; B, d, d), while the other member of the
product is an element of V'(B, d), by reason of Theorem 1, and hence

S/(H; B,d, d)D V*(B, d), since V(B,d)c>/(H; B, d, d).
Then
SV(H; B, d, d)D V*H(B, d)U A(B, d).

Since G/G' is abelian for any group G, and G’ is the smallest group
for which this is true, to demonstrate that

2.(H; B, d, d)| VH(B, d) U A(B, d)
is abelian will imply that

>/ (H; B,d,d)cV*(B,d)UA(B,d),

and the conclusion of the theorem will follow.

That V*(B, d)> V'(B, d) follows from the definition of V*(B, d), and
hence V (B, d)/]V*(B,d) is abelian. Therefore any two multiplications
commute mod V*(B,d)UA(B,d). Since A(B,d) consists of all even
permutations there are but two cosets of A(B,d) in S(B, d), namely,
A(B,d) and (x;, 2,)A(B,d). Thus any element of the factor group
SWH; B, d, d)|VH(B, d)U A(B, d) has one of the forms

v[V*(B, d)UA(B, d)]
or
v(x,, ©)[VH(B, d)UA(B, d)], ve V(B,d) .

But wv(x,, 2,)v' (2, ,) is the commutator (kA7 hhi', e,-+-) which be-
longs to V*(B, d). That is, (x,, «,) and v commute mod [ V+(B, d) U A(B, d)],
and hence >\(H; B, d,d)/V*(B,d)U A(B, d) is abelian, which implies
SVY(H; B, d, d)cV+(B,d)UA(B,d), and we have

S/(H; B,d,d) = V¥(B,d)UA(B,d) .

The following theorem asserts that the derived series for >\(H; B, d,d)
consists of but two distinct terms.

THEOREM 4. The commutator subgroup > (H; B,d,d) of >\ (H;B,d,d)
s >)(H; B, d, d).

Proof. A(B,d) = A'(B,d), as was demonstrated in Theorem 7 of
[2], and hence 3\ (H; B, d, d) contains A(B, d).
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Consider elements v, and v, of >/(H; B, d, d), where the factors of
v, are all e except the first two and they are inverses of one another,
and the factors of v, are all ¢ except the first and third and they are
inverses of one another. The commutator v,v,v7*v;*, which is an element
of >/'(H; B,d, d), has as its first factor a commutator of H and all
other factors e. It then follows that any element of V’(B,d) is the
product of elements of >)'(H; B,d,d) and hence is an element of
SVW(H; B, d,d). That is >(H; B, d, d)> V'(B, d). Then one can in the
manner described in the first part of Theorem 3 write any element v
of V*(B, d) as the product of n + 1 elements, each member of the pro-
duct being an element of >)'(H; B,d,d). That is 3'(H; B, d, d) con-
tains V*(B, d), and hence >\ (H; B, d, d) contains V*(B, d)U A(B, d) =
SWH; B, d, d).

THEOREM 5. The commutator subgroup
SW(H; B, d, d) of 3..(H; B, d,d) is V*(B,d)UA(B,d) .

This theorem together with Theorem 3 states that 3,(H; B, d, d) has
for its commutator subgroup >..(H; B, d, d). This is the analogue for
monomial groups of the result Ore obtains for permutation groups in
[2], and as stated in the second part of Theorem 2.

Proof. We have
>(H; B,d,d)c > «(H; B,d,d)c>(H; B,d, d),
hence,
> (H; B,d,d)yc>(H; B, d, d)c >(H; B, d, d).
Then by reason of Theorem 4,
SNH; B,d,d)y=>V"(H; B,d,d) = VB, d)UA(B, d) .
Hence YV(H; B, d,d) = V*(B, d)UA(B, d).
THEOREM 6. The commutator subgroup >(H; B, C, D), d<C<D<B*,
of S\(H; B,C, D) is 3\(H; B, C, D).

This theorem is also an analogue of a result Ore obtains in [2] for
permutation groups as stated in the first part of Theorem 2.

Proof. It is shown in [2] that the commutator subgroup S'(B, D)
of S(B,D) is S(B, D). Hence >/(H; B, C, D) contains S(B, D). The
conclusion of the theorem will then follow if it can be demonstrated that
SW(H; B,C, D)DV(B,C). Let

S:(“', L1y Xy, xl"")
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and
v = (""hfl;hm hly"')

be elements of >(H; B, C, D). Then the commutator svs~'v~' an element
of >/(H; B, C, D) has the form

(""hoh:}’hlhaly h2h;17 "') .
Let
V, = ("',041,00,01,“‘)

be an arbitrary element of V(B, C), and consider the following set of
equations.

°'-,h0h:1 = Cﬂshlh(;1 = COyhzhx_l = Cpy vt

This set of equations has solutions,
n —1
ho = C_q, hfl =e, hn = Cndlhnflv hﬂz = [ H C*i] .

Then if the factors of v be represented in terms of the factors of v, as
indicated above, we see that

svs ™t =wv,e>/(H; B,C, D),
and hence 3/(H; B, C, D) contains V(B, C), and therefore
>(H;B,C,D)=>'(H;B,C, D).

COROLLARY 1. Any element w of S(H; B,C,D),d < C < D < B+,
18 the product of at most two commutators.

Proof. Every element of S(B, D) is a commutator of S(B, D), as
was shown in [2]. Every element of V(B,C) is a commutator of
>\W(H; B, C, D), as was shown in Theorem 6. Therefore any element of
SW(H; B, C, D) which is either a multiplication or a permutation is a
commutator. But every element of >\(H; B, C, D) maybe written as the
product of a multiplication and a permutation and consequently may be
written as the product of two commutators.

To see that the assertion that every element of > (H; B, C, D) is
the product of at most two commutators is the strongest possible, sup-
pose every element of >(H; B, C, D) is a commutator. Let

we>(H; B,d,dyc>(H; B,C,D) .

Then u = wuuu;t, u, and u, elements of S(H; B, C, D). But since u
belongs to S(H; B, d, d) we can choose a u; and u] in >.(H; B, d, d) by
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causing u, and 4, to become the map of z; into ex, except for those
maps which yield the permutation and nonidentity factors of w. It then
follows that u is an element of >)(H; B, d, d), and hence >\(H; B, d, d)=
SV(H; B,d,d). But this is a contradiction to Theorem 3.

REFERENCES

1. Ore, Oystein, Theory of monomial groups, Trans, Amer. Math. Soc. 51 (1942).
2. Ore, Oystein, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951).

UNIVERSITY OF KANSAS AND
SAN DIEGO STATE COLLEGE



THE NONEXISTENCE OF EXPANSIVE HOMEOMOR-
PHISMS ON A CLOSED 2-CELL

J. F. JAKOBSEN AND W. R. Utz

1. Introduction. If X is a metric space with metric p and T(X)=X
is a self-homeomorphism of X, then T is said to be expansive! provided
there exists a & > 0 depending only upon X and T such that corre-
sponding to each distinct pair z, y € X there exists an integer n(x, ) for
which o(T™(x), T"(y)) > 6. W. H. Gottschalk [2] has asked if the n-cell
can carry an expansive homeomorphism. B. F. Bryant [1] obtained a
partial answer to this question when he essentially showed that there
are no expansive self-homeomorphisms of a closed 1-cell, that is, of an
arc. In this paper we show that there are no expansive self-homeomor-
phisms of a closed 2-cell and, in the final section, point out an error in
a paper of R. F. Williams. The authors wish to acknowledge the re-
feree’s assistance in condensing the paper.

Throughout the paper, X will denote a metric space with metric o
and T(X) = X will denote a self-homeomorphism of X. The set 0(x)=
UreAT™(x)}, where I denotes the integers, is called the orbit of x under
T. A set McX is said to be minimal under 7T if, and only if, M is
non-vacuous and M is the closure of the orbit of each of its points. If
x,y€ X, then 0(x) and O(y) are said to be positively (negatively) asymp-
totic if corresponding to € > 0, there exists an integer N such that

o(T™x), T"(y)) < e for all n > N(n < N).

If O(x) and O(y) are both positively and negatively asymptotic, then the
orbits are said to be doubly asymptotic.

2. Self-homeomorphisms of the 2-cell. In this section we show
with the aid of results of van Kampen that there is no expansive self-
homeomorphism of a circle, and from this obtain the same result for a
simple closed curve and a closed 2-cell.

THEOREM. If T is a homeomorphism of a closed 2-cell onto itself,
then T is not expansive.

Proof. 1f there is an expansive homeomorphism, 7, of a closed 2-
cell onto itself then, since the boundary of the 2-cell is invariant under
Received August 24, 1959, and in revised form March 15, 1960. This research was
supported by the United States Air Force through the Air Force Office of Scientific Research

and Development Command under Contract No. AF 18 (600) 1108.
! In most of the literature cited, the term ‘‘unstable’ is used in place of ‘‘expansive’’.
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T, T must be expansive on the simple closed curve forming the boundary
of the 2-cell. Since T is an expansive self-homeomorphism of a simple
closed curve, there must be an expansive self-homeomorphism of a circle
since it is known [1] that if T is an expansive self-homeomorphism of
a metric space X and g(X) = Y is a homeomorphism onto the metric
space Y such that g is uniformly continuous, then gTg¢~* is an expan-
sive self-homeomorphism of Y.

Hereafter we assume that 7 is an expansive self-homeomorphism
of a circle, C. We first show that T cannot have a periodic point. If
T has at least two distinct periodic points on C, then for some integer
m, T™ = @ has at least two fixed points on C and it is easy to see that
either @ or @? leaves an arc invariant. Powers of an expansive homeo-
morphism are expansive [3] and hence either @ or @* is an expansive
self-homeomorphism of an arc in violation of the cited result of Bryant.

If T has exactly one periodic point on C, then the point must be
fixed under T and the orbit of every other point is doubly asymptotic
to the fixed point. There are uncountably many such orbits contrary to
the fact that when X is compact and T is an expansive self-homeomor-
phism of X, then the number of distinct orbits doubly asymptotic to any
fixed point is at most countably infinite.

Since we have shown that 7 has no periodic point on C, C is either
a minimal set under T, or [4] there is a minimal set which is a Cantor
set and which consists of the common cluster points of orbits. In the
first instance T is topologically equivalent to a rotation and is therefore
not expansive. In the second instance, a component, A, of the comple-
ment of the minimal set is chosen. Now, T%(A4) is an open arc and its
diameter goes to zero with increasing or decreasing n. Taking two dis-
tinct points of A which are sufficiently close, they remain close for all
n by virtue of the continuity of 7. This contradicts the hypothesis that
T is expansive and the theorem is proved.

3. An example of Williams. R. F. Williams [5] has given two
examples of non-degenerate continua and self-homeomorphisms of them
which are said to be expansive. One example, where the continuum is
the inverse limit space of the unit circle in the complex plane under the
bonding map g(z) = 2* and with the shift homeomorphism, is expansive.
The other example contains an error which we now explain.

Using the notation of Williams’ example, let
10" — 1 b— 10" + 1

10"’ 10"

a =

and consider the points
z = (a, a/2, a/2?, a/2%--+),
Y = (a’9 b/zy b/229 b/237' ¢ ')
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for an arbitrary but fixed positive integer n. It is not difficult to see
that the maximum value of o(f(x), f(y)) occurs for j = — 1. Since

o(f (&), £~H(y)) = 1/10%(L + 1/2* + 1/2' 4.+ +)

this maximum can be made arbitrarily small by taking = sufficiently
large. Thus the homeomorphism f is not expansive.

The failure of this example suggests seeking another continuous
function on [0, 1] such that the shift homeomorphism of the inverse limit
space onto itself is expansive. However, such an example is impossi-
ble. The authors can prove that the shift homeomorphism on the inverse
limit space of any continuous transformation of an arc onto itself
cannot be expansive. The proof of the theorem is long and will not be
given here.
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MULTIPLICATION ON CLASSES OF
PSUEDO-ANALYTIC FUNCTIONS

JOHN JEWETT

Lipman Bers [1, 2] has formulated a theory of solutions of linear
elliptic partial differential equations in terms of classes of psuedo-analy-
tic functions on a plane domain D. The theory for each class of psuedo-
analytic functions is based on the notion of a generating pair of Holder
continuous complex valued functions F' and G defined on D and satisfy-
ing Jm[F(2)G(z)] > 0 in D.

If w is any function defined on D, then there exist two real valued
functions ¢ and 4 such that w can be written uniquely as

(1) w(z) = $()F(2) + (2)G(2)

A function w defined on D is said to be (¥, G)-psuedo-analytic (of
the first kind) if a certain generalized derivative exists or equivalently
if the equations

(2) ¢zF1_¢yF2+‘I’zG1—‘l’sz:0
¢yF1 + ¢xF2 + ’lll\yGl + '\zl":cG2 = O

are satisfied in D, where the subscripts # and y refer to partial deri-
vatives with respect to 2 and y and the subscripts 1 and 2 refer to the
real and imaginary parts of the functions F and G. If F=1 and
G = 1, these equations reduce to the Cauchy-Riemann equations.

Given a generating pair (F, G) let B denote the class of all func-
tions which are (F, G)-psuedo-analytic. If FF =1 and G = ¢, then B is
the class of analytic functions on D, which will be referred to in this
paper as A.

Any B has many of the properties of the ring of analytic functions.
In particular very close analogues of the identity theorem, the Cauchy
theorem, the Cauchy integral formula, the standard convergence theorems,
and power series expansions have been proved.

With each class B is associated a class B’ of psuedo-analytic func-
tions of the second kind. This association is made by a mapping 7 of
B into B’ defined by

NPF + YyG) = ¢ + i .

On the class A of analytic functions this mapping is clearly the
identity.

Each class B is a vector space with the usual definition of addition

Received October 13, 1959.
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of functions and multiplication by scalars and 7 is a vector space isomor-
phism of B onto B’. The class A is a ring under the usual pointwise
multiplication of functions. Since the classes of psuedo analytic func-
tions each bear such marked resemblances to the class A of analytic
functions, the question arises as to whether there exist for other classes
appropriate generalizations of the ordinary multiplications of function.
We shall prove that if such a multiplication bears a certain slight re-
semblance to the point wise multiplication, then B is multiplicatively
isomorphic to A under the mapping » and conversely.

We denote the ordinary multiplication of functions by juxtaposition.
Let m denote any mapping from B x B to the set of all functions from
D to the plane. In particular let m, be the mapping defined as follows:
if w=¢F+ G and w' = ¢'F + G, let

my(w, w') = (b — YY) + (S + ' P)G .

THEOREM. Let B be a system of psuedo-analytic functions on the
plane domain D and let m be a multiplication on B (any mapping from
B x B to the set of all functions from D to the plane). Let m be as-
soctattve and bilinear with respect to addition in B. Then a necessary
and sufficient condition for the mapping 7 to be a multiplicative iso-
morphism of B onto the ring A of all analytic functions on D is that
there exists a mnon-constant w in B such that m(w, G) = m,(w, G) and
m,(w, G) € B.

The proof of this theorem will be preceded by a lemma.

LEMMA. Suppose that for all w and w' in B, m(w, w') = my(w, w').
Then the mapping 7 defined above is an isomorphism of B onto the ring
A of analytic functions on D if and only if F, =G, and F,= —G,.

Proof of Lemma. A simple calculation shows that » is an isomor-
phism of B onto B’ if and only if m = m,. So the condition concerning
isomorphism in the lemma is that B’ = A.

By adding and subtracting terms involving +r the system (2) is seen
to be equivalent to

(3) F1(¢)m‘—¢y) _F2(¢y+‘i’"x) +‘PV(F1'—G2) + ‘P‘m(Fz‘{‘ Gl) =0
F1(<}51,+ ‘#x) +F2(¢z""‘;’y) + ‘PV(FZ'I" Gl) _‘I"x(Fl—Gz) =0.

First suppose F, = G, and F, = —G,. Then this system becomes

Fl((i):c'— l1’1,/) - F2(¢y+",l"x) =0
F1(¢1/+"P‘;u) +F2(¢)1_"\,l"«y) :0 .

It is clear that if w™ = ¢ + 44 is analytic, then 7 *(w*) satisfies
the system (4). Therefore A ¢ B’

(4)
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Suppose then that B’ contains a function w = ¢ + ¢+ which at some
point z of D does not satisfy the Cauchy-Riemann equations. For this
point the system (4) is a system of homogeneous algebraic equations
with a non zero determinant whose value is

[$.(2) — V(R + [$4(2) + 4, (2)] .
Hence the only solution at z is the zero solution and thus
Sm[F()G(R)] = Fi(2) + Fiz) =0

which contradicts the definition of generating pair. Thus B’ A and
we have proved that A = B'.

Conversely suppose that » is an isomorphism onto 4 so that A = B’.
Let w* = ¢ + 44 be a non constant analytic function in B’. Then the
system (3) becomes for this w*

(5) Vo(Fy = G) + (B, + G) = 0
o (Fy + Gy) — o Fy — G) = 0 .

If for some z the equations F\(z) = Gy(2) and F,(z) = —G.(z) do not
both hold, then the determinant of this system is non-zero at z and
hence by continuity of F' and G the determinant is non-zero in some
neighborhood of z and hence +r, = 4, = 0 on this neighborhood. By the
identity theorem for harmonic functions +r, and +r, must then be zero
everywhere so that +r is constant. A similar argument demonstrates
the constancy of ¢ so that w™ is constant contrary to assumption. This
completes the proof of the lemma.

Proof of Theorem. Suppose first that » is a multiplicative isomor-
phism of B onto the ring A of analytic functions in D. Then as before
m is identically equal to m, so that for w = ¢F + yGeB we have
m(w, G) = —F + ¢G. Substituting this function for ¢F + G in the
system (1) yields that m(w, G) is in B if and only if

(6) — B+ P, + 0,6 — d,G, =0
— By — A F, + o,G, + .G, =0 .

By the lemma F, = G, and F, = —(G,. Using this to substitute for
the G’s in the system (6) we obtain the system (4) and this system must
be satisfied because ¢ + iy is analytic. Thus if w is in B then so is
m(w, G) and the condition of the theorem is necessary.

Conversely suppose that there exists a non-constant w in B such
that m(w, G) = m,(w, G) = —yF + ¢G and this function is in B. Then
¢ and + satisfy both (1) and (6) and since w is non-constant there must
exist a z such that this system of four equations has a non-zero solu-
tion, i.e., the determinant of this system must be zero.



1326 JOHN JEWETT

The determinant of this system is
(7) [(F, — G + (Fy + G)I(F, + Go)* + (F. — G .

Now Jm (FG) = F\G, — F,G, which must be everywhere positive since
F and G form a generating pair. If the second factor of (7) is zero,
then it follows that

Sm(FG) = —F: — F1<0.

Hence the first factor must be zero and the lemma implies that 7 is
an isomorphism of B onto A.
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ANALYTIC AUTOMORPHISMS OF BOUNDED
SYMMETRIC COMPLEX DOMAINS

HeLMUT KLINGEN

In a former paper [2] I determined the full group of one-to-one
analytic mappings of a bounded symmetric Cartan domain [1]. Those
investigations were incomplete, because it was impossible to treat the
second Cartan-type of n(n — 1)/2 complex dimensions for odd n by this
method. The present note is devoted to a new shorter proof of the
former result (n even), which furthermore covers the remaining case of
odd n.

Take the complex n(n — 1)/2-dimensional space of skew symmetric
n-rowed matrices Z. The irreducible bounded symmetric Cartan space
in question is the set &, of those matrices Z, for which

I+7ZZ>0, Z = -2,

is positive definite. Here I is the » by » unit matrix. Obviously &, is
the unit circle. It is easy to see that analytic automorphisms of &, are
described by the group ¢ of the mappings

(1) W = (AZ + B)(—BZ + A,
where the n-rowed matrices A, B fulfill
* _ . _ AB /I 0
M*KM = K with M = <~§ Z>’ K= (0 _I>.
Here M* denotes the conjugate transpose of M. For n =4
W=2Z

is a further analytic automorphism, where Z arises from Z by inter-
changing the elements z,, and z,,

0 22 Rz Ry
ZN — % 0 Zu 2
- —Zi3 —Ry O 2y

—R93 —Ry Ry O

For WW and ZZ have the same characteristic roots. But this mapping
is not contained in ¢, since CZ = ZD cannot be satisfied identically in
Z by non-singular constant matrices C, D. On the other hand the fol-
lowing theorem holds.

Received October 13, 1959.
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THEOREM. FEach analytic automorphism of &, can be written as
W = f(Z) or W=f(Z) (only for n = 4) with f € ¢.

Therefore the group ¢ is already the full group of analytic auto-
morphisms for 7 #= 4. Only in the exceptional case n = 4 there are
the further mappings W = f(Z), which together with ¢ form the full
group of analytic automorphisms. The proof of this theorem consists
of two parts. The first analytic part is a reproduction of my former
proof [2], which will be given here again for completeness, the second
part is of algebraic character.

The group ¢ acts transitively on &,. For take an arbitrary point
Z, of &,, choose the matrix A such that

A(I+ Z,Z)A* = I

and define B= —AZ,. Then (1) maps Z into 0. Therefore it is suf-
ficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping W = W(Z) of
&, with the fixed point 0 is linear. For an arbitrary point Z, e &, let
P ooy a0 r, < oo <1, <1, be the characteristic roots of Z, Z}.
Then also tZ, belongs to &,, if t is a complex number with tfr, < 1.
Consequently there exists a power series expansion

(2) W(tZ) = St Wi(Z) , thr, <1.

The elements of the skew-symmetric matrices W (Z,) are homogeneous
polynomials of degree k in the independent elements of Z,. Because of
I+ WtZ)W(tZ) > 0 for tt =1, one obtains from (2)

dt
t

(3) L[ a+ wezywezy

: =T+ 3 W(Z)Wi(Z) >0
21 =1

and in particular I+ W(Z)Wy(Z,) > 0. Therefore the linear function
Wi(Z) is an analytic mapping of &, into itself. Its determinant D is
at the same time the Jacobian of the function W(Z) with respect to Z.
By interchanging Z and W it can be assumed DD = 1. Consequently
W(Z) is an analytic automorphism of £, and even maps the boundary
onto itself. Take now in particular

(4) ,=UPU, P=[0),pF, - p,F], F:<_(1) é)

with an unitary matrix U, m = [n/2]. P shall be the matrix, which is
built up by the two-rowed blocks p, F, ---, p,,F' and possibly by the ele-
ment 0 along the main diagonal. Z, belongs to the interior of &,, if
—1<p,<1(k=1,---,m), and to the boundary,if —1=p, =1k =
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1,.++,m) and p,= + 1 for at least one k. Now |I+ W(Z)W,| is a
polynomial in p,, ---, p, of total degree 4m and on the other hand (see
[2], Lemma 4) the square of a polynomial. As|I+ W(Z,)W,| vanishes
on the boundary of &,, this polynomial is divisible by

I+ 22 =110~ 5.

Because the constant terms and the degrees of both polynomials are
equal, one obtains

(5) |I+ W1(Z1)W1|:[I+Z1Z_1I

even identically in Z,; for each skew-symmetric matrix Z, permits a rep-
resentation (4) (see [2], Lemma 3). On account of (5) and the linearity
of W, the matrices W, W, and ZZ always have the same characteristic
roots and this implies

(6) W(Z)=U'ZU

with unitary U, which for the present still depends on Z.
Put now

Z=uX, X=U,[eF, - ¢&F U, 0=u=1,
with real variables ¢, --+,¢,. Then Ze&, and by (6)

WWr — uZU’U{<(I) " ((g) 0.0

for all w between 0 and 1. Because of (3) one obtains

U001+ W,W,+ WW)U'U, >0 (k=2,8,:++).

If 4 tends to 1, one gets

0 0 rT 7T T/ 'TT
(0 (1)) + OOWW.U'U. >0,
hence W(X)=0. As W, is a polynomial, W,(Z) even vanishes iden-
tically in Z. Therefore the stability group of &, is linear.

The investigation of W = W(Z) is now a purely algebraic problem.
The representation (6) shows that rank W =rank Z and beyond this
the equality of the characteristic roots of WW and ZZ. These proper-
ties will be used in order to determine W(Z) explicitly. We have to
prove

(7) W(Z) = U'ZU or W(Z)= U'ZU
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with unitary constant U, where the second type only occurs for n = 4.
The proof of this fact will be given by induction. The assertion (7) is
trivial for the unit circle (n = 2). Let us assume its correctness for
2,8,++,%n —1 and consider &,. Write the linear mapping W(Z) of &,
onto itself as

W= Z zk:lAkZ
k<t

with constant skew-symmetric # by » matrices A,;. Because of the
equality of the characteristic roots of WW* and ZZ* the hermitian
matrix A,,A} has 1,1,0, ---, 0 as characteristic roots. Therefore after
unitary transformation of W we can assume A,, = E,,, where in general
E,;, denotes the skew-symmetric matrix the elements of which are all
zero besides the element in the kth row and Ith column and the ele-
ment in the Ith row and kth column, which are 1 respectively —1.
Since tr (A,4,) =0 for (k, 1) # (1, 2), one obtains

4, = (0" :) (B, 1) # (1,2) .

A, = E, does not change, if W is transformed by

<(€](z) 3)

with unitary U, V,|U| = 1. Therefore

4=y o) 2= 0)

can be assumed. From rank W = rank Z identically in Z one obtains
possibly after unitary transformation A, = E,,.

For A,, = (a,;) we get two possibilities. First the equation tr(4,,4,) =
tr (Au4,) = 0 implies a,, = a,; = 0. After unitary transformation all the
elements of the first row besides a,, are zero. Then take only the ele-
ments 2, 2, 21, 0f Z distinet from zero; from rank W = rank Z = 2 one
sees

A14 = E14 or Au = Luy; .

By a similar consideration A4,, turns out to be E,, or E,. But actually
for v > 4 the second possibility 4,, = E,; may not occur. For 4,, = 4,, =
E,, is impossible because of tr(4,,4,) = 0. If A, = E,, A, = E,, choose
only the elements z,,, z,, # 0, then rank Z = 2 but rank W = 4. Therefore
A,=FE, (v=+4),A,=FE, or E,. Furthermore A,, = E,; may only hap-
pen if n = 4. For assume A,, = E,,, A,; = E,; and take only the elements
21, 25 7= 0. This implies rank Z = 2 but rank W = 4.
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Let us summarize our results. After a suitable unitary transforma-
tion W can be written as

W= (—2 L(QZT),>’ Z= (-2 2,) ’

besides the exceptional case n =4, A, = E,,. Now L(Z) is an analytic
automorphism of &,_, with the fixed point 0. For n = 3 we know I(Z)) =
e%Z, with a real constant ¢. Therefore W = U'ZU with a constant

unitary matrix U, which is the theorem for # = 3. For n > 5 the in-
duction hypothesis shows

(o2

with constant unitary U. From the equality

rank W = rank Z

U turns out to be a diagonal matrix. Finally consider the sum of the
two-rowed principal minors of WW and ZZ. These two quantities are
equal identically in Z because of the fact that WW and ZZ have the
same characteristic roots. By this identity one obtains U = al with
a complex number a of absolute value 1, which again proves our theorem.

There still remain the cases n =4 and 5. For n =4, A, = E,, we
can use the reasoning above. Let A,, = E,,; since

tr (AD/A%) =tr (Alv;lu) = tr (AIVA—M) =0 (D = 2,3, 4)

W only differs from Z in the last row, where a linear combination of
Zu3y 224y 22 appears. The identity between the ranks of Z and W shows
Wiy = 0129, Wy = by 29y, Wy = Ay, Now it is easy to compute the sum
of the two-rowed principal minors of WW and ZZ. This computation
shows again the assertion for n = 4.

For n = 5 we know by the induction hypothesis

L(Z)=U2ZU or LZ)=U2ZU

with constant unitary U. The first case can be treated as above. In
the second case one obtains

= (L0 "2

Choose once only z,, 2, #0, then only z,2z,2;+ 0. In any case
rank Z = 2, hence rank W = 2. But this implies that all the elements
of the third column of U vanish, which is a contradiction to the unitary
character of U. This final remark completes the proof.
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ORDERED SEMIGROUPS IN PARTIALLY
ORDERED SEMIGROUPS

R. J. KocH

In this note we establish a local version of the following result:
a locally compact connected partially ordered non-degenerate semigroup
S with unit contains a non-degenerate linearly ordered local subsemi-
group (containing the unit). This is an extension of a result of Gleason
[2; 664] who proved a similar theorem under the additional hypotheses
that

(1) S is a semigroup with right invariant uniform structure and

(2) for any compact neighborhood U of the identity there are nets
{x;} in S and {n,;} integers such that x;, —e and z} ¢ U. A consequence
of our theorem is the fact that a nondegenerate compact connected
partially ordered semigroup with unit contains a standard thread join-
ing the unit to the minimal ideal.

By a local semigroup S we mean a Hausdorff space with an open
subset U and a multiplication m: U x U - S which is continuous and
associative insofar as is meaningful. A unit is an (unique, if it exists)
element u of U satisfying ux = 2u = x for all xe U. A local subsemi-
group of S is a subset L containing the unit such that for some open
set V about the unit, (V N L)* © L. We say that the local semigroup
S is partially ordered if the relation < defined by a < b if and only if
@ = be is reflexive and antisymmetric. In case S is a semigroup, S is
partially ordered if and only if each principal right ideal has a unique
generator, i.e. (assuming a unit) that ¢S = bS implies @ =b. In this
case, < is also transitive.

Closure is denoted by *, the null set by [, the boundary of V by
F(V), and the complement of B in A by A\B.

As in [4] we use the following topolopy for the space .&7(X) of non-
empty closed subsets of the space X: for open sets U and V of X, let
NU,Vy={A|Ae s (X),AcU, ANV # [1}; take {N(U,V)| U,V open}
for a sub-basis for the open sets of &~(X). It is easy to see that if
X is compact Hausdorff, so is 7 (X).

THEOREM 1. Let S be a locally compact partially ordered local
semigroup with wnit w, and let U, be a non-degenerate open connected
set about u with U defined. Then S contains a mon-degenerate com-
pact connected linearly ordered local sub-semigroup L with we L C U,.
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Proof. Let U, be an open set containing « with U} compact and
Ufc U, Define < on U} x Uf by: @« £b if and only if a = bc for
some ce Uf. From the compactness of U} it is easily seen that Graph
(=) is closed in UF x Uf. We show first that < is transitive on some
neighborhood of u. Let U, be an open set about u with U2 < U,. We
claim there is an open set U containing «, U < U,, such that if a,be U*
with @ = bec for some ce U}, then ce U,. If this is false, then for any
open set U with we U c U,, there are elements ¢ and b of U* with
a = bc for some ce UF\U,. Hence there are nets a, and b, converging
to v with a, = b,-¢c, where c¢,e Uf\U,. It follows that ¢, must also
converge to u, a contradiction. Since Ui c U, it follows that < is
transitive on U*. Also the restriction of < on U* x U* is closed and
hence U* is locally convex [6]. We show next that there exists an
open set V, with u e V, < U such that ¢’ = ee V, implies eUge +# e. Sup-
pose the contrary; we can then find a net of idempotents e, — u with
e, Uge, = €,. Let xe U, then e, = e,xe, converges to uxu — x, so that
x =u and U, is degenerate, a contradiction. Let V be a convex open
set with ue Vc V¥ (V¥ c V.. Then ¢ =eec V implies eUge + e.

Let & denote the collection of all closed chains C in U* with we C,
CNS\V=0, and (Cn V) < C. Note that & # [, for if ae F(V),
then the elements u and a constitute an element of <.

(i) &= 1s closed in <~(U*). We will show that & is an intersec-
tion of closed set. Since the collection of all closed chains which con-
tain 4 and meet S\V is closed [4], it remains to show that the collection
of closed chains C satisfying (C N V)* < C is closed. Suppose A is a
closed chain with (AN V)* & A; then there are elements @ and b of
A NV with abe S\A. Hence there exist open sets U,, U,, and W con-
taining a, b, and A respectively, with U,- U, N W =[]. Now N(W,U,)N
N(W, U,) is an open set about A, and contains no chain C with (C N
V)Y < C. This establishes (i).

As in [4], we define L(z) ={y|y =z}, M(z) ={y |z < y}, and (z,y) =
{z]x <z <y} Let & be an open cover of U*, and define a subset M,
of &#(U*) by: Ce M, if and only if C is a closed chain in U*, and for
any £ and y in C with 2 <% and (x,4) N C =[], there exists Ded
such that D* meets both L(x) N C.

(i) M; N & # [] for any open cover 6 of U*. Let & be an open
cover of U*, and let <& be the collection of all closed chains C with
ueCc U, CeM;, and (VN C)cC. Let v be a maximal tower in &,
and let 7= Ur. Then T* is a closed chain, ue T* c U*, and (VN T*)’C
T*. As in [4], T* e M,, and it remains to show that 7" e &, i.e., that
T* N S\V = []. Suppose T* C V; (note then that T = T*) then since
(TNVyc T, Tis a compact chain and a semigroup. Let e =inf T.
Since e? < ¢ and e*e T we have ¢* = ¢. We show next that e is a zero
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for T. Let ye T, then eye T and ey < ¢, so ey = ¢ and e is a left zero
for 7. Hence the minimal ideal K of T consists of left zeros for T
[1]. Let fe K; then e < f so there exists ce U with e = f¢. There-
fore f = fe = e, and e is the unique left zero, and hence a zero for T.
Let Wed with ee W. If eUe N W N V contains an idempotent g + e,
then T U g is a semigroup: for if xe T then xg = x(eg) = eg = g and
gx = (ge)x = glex) = ge = ¢g. Also T U g is a chain, so by the maximali-
ty of 7, T= T U g, a contradiction.

Hence we may assume that eUge N W N V has a unique idempotent
e. Since < is antisymmetric, the maximal subgroup of S containing e
is e. Also eUge is a local semigroup with unit e, eUe #* ¢, and e is not
isolated in eU,e which is the continuous image of U, and hence con-
nected. Hence [5; 122] there is a non-degenerate one parameter local
semigroup A withee AceUeNWNYV; let ae A with a # ¢ and a’ec A.
Define a"=¢ and let B, = % ,a"a, el, B. = Upia"[a, ] where [a, ¢]
denotes the sub-arc of A from a to ¢. We assume temporarily that all
products involved in forming B, and B. are defined. Each of the sets
a"[a, e] is a compact connected chain (hence an arc) with minimal ele-
ment a”*' and maximal element a”. Hence B, is a compact connected
chain from a®*' to e. Also B., is a connected chain, hence B is a closed
connected chain. Using the easily established commutativity of B, and
B it follows that for x e T and be B, (or B¥) then xb = x(eb) = (xe)b =
eb = b, and similarly bz =b. Hence [(TUB)NVIPPcCc TU B:NV)
and similarly with B, replaced by BX. We distinguish two cases:

Case 1: For some £ = 0, a*** e V and a*** ¢ V. Then since V is con-
vex, a’, a, «++,a*" are in ¥V and all products involved in forming B, are
defined, so that B, V and B,,, & V. We show first that B: N VC
B,. Let ze B2 N V; then z = xy with ¢, y€ B,, so £ = o™’ and y = o™y’
with 2’ and %’ in [a, e]. Hence zy = a™"a'y’. If x'y’'€ A, then since
zeV it follows that m +n < k. If 2’y ¢ A, then 'y’ = at for some
teA, soxy=a™""'t and m +n + 1 < k. In either case, then, ze B,.
Note that (T'U B,)* € M; since B; is a connected chain. Also [(T U B%) N
VEPECcTUB:NVYcTUB:, so that TU Bie &». This contradicts
the maximality of <.

Case 2: a*e V for each k = 0. Using the convexity of V we see
that all products involved in forming B. are defined, and B, = B> C V,
hence BZX = BX’. Since BX is a connected chain, it follows that 7 U
BieM;s. Also [(TU BN V]Pc TU B, so that TU Bfe &7, a con-
tradiction to the maximality of z. The proof of (ii) is now complete.

(iii)) M; N & 1s closed for each finite open cover 8§ of U*.

This proof is similar to that in [4], and is omitted.

For any finite open cover 8 of U*, let Py = M; N «. The collec-
tion of sets {P;} is a descending family, so N\P; + []. If CeNPs,
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then as shown in [4], C is an arc. Clearly C is a local semigroup, and
the proof is complete.

In what follows, a standard thread is a compact connected semi-
group irreducibly connected between a zero and a unit. The structure
of standard threads is known [5; 130]. The example in [4] shows that
a compact connected semigroup with zero and unit need not contain
a standard thread joining the zero to the unit. The problem of finding
standard threads joining zero to unit has an affirmative solution in case
either

(1) S is compact, connected, and one-dimensional [3], or

(2) S is compact, connected, and each element is idempotent [4].
A third solution is given by the following corollary.

COROLLARY 1. If S is a mon-degenerate compact connected par-
tially ordered semigroup with unit u, then the minimal ideal K con-
sists of left zeros for S, K comsists of the set of minimal elements,
and some elements of K can be joined by a standard thread to the

unit.

Proof. Note that Graph (=) is closed since S is compact. Let @G
be a compact group in S, with unit e. Since 2* <« for each zeS,
then for 2z€G we have ezzx=a"= +--, and {a"} clusters at an
idempotent, which must be e. We conclude that & = e, and hence that
each compact group in S is trivial. From this fact it is clear that K
is proper, for otherwise K = S would be a compact group [1]. From
the fact that aS = bS implies @ = b we conclude that each minimal
right ideal is a single element, hence each element of K is a left zero
for S [1]. Since a minimal element x of S is characterized by the
equality «S = «, it is clear that K consists of the set of minimal ele-
ments of S, and hence that S\K is convex. In the proof of the Theorem,
we take S=U,= U, = U, = U, and V =S\K. Hence there is a com-
pact connected linearly ordered local semigroup I containing u, with
L N S\V=+#[]. Since the elements of K are minimal it follows that L
is a semigroup, and hence a standard thread.
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ON A COMMUTATOR RESULT OF
TAUSSKY AND ZASSENHAUS

MARVIN MARCUS! AND N. A. KHaN?

1. Introduction and results. Let M, denote the set of %-square
matrices over a field . For A, B in M, let [A, B] = AB — BA’, where
A’ is the transpose of A and define inductively

(1.1) [4, Bl = [4, [4, Bli] .
If P'JP = A, then
[A4, X] = [P'JP, X]| = P'[J, PXP'|(P),
and similarly
(1.2) [4, X], = P'[J, PXP'|(P7)" .

Now for a fixed A let T be the linear map of M, into itself defined
by

(1.3) T(Y)=[4,7Y]

and (1.1) implies that
TYY)=[A, Y], .

In a recent paper [1], Taussky and Zassenhaus showed that A ¢s non-
derogatory if and only if any nonsingular X in the null space of T
1s symmetric. In this note we investigate the structure of the null
space of both T and T for arbitrary A.

Enlarge the field F to include )\, ¢ =1, -+, p, the distinct eigenvalues
of A, and let (& — N)w, J=1,c0,m,€,> o+ >0, t=1,--+,p be
the distinct elementary divisors of A where (x — )\,)%s appears with
multiplicity »;;,. Set m,; = S r4€y, the algebraic multiplicity of ;.
Let n(T) denote the null space of T, o(T') denote the subspace of sym-
metric matrices in Y T), and ¥(T) denote the subspace of skew-symmetric
matrices in H(T). We show that

n 7,

(1.4) dim 7(T) = 33| 33 (rhew + 21 5 raca) |

=11 J=1

”,

. » 4 %
@) dimo(0) = = 5[5 {rulr + Doy + 21, 3% rueat ],
t=1 k=j+1

J=1
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n

) 2 M ™
@8 dimy(T) = S5 {rt@e — 1 + 4 3 ruel ],
i=1LJj=1 k=j+1

n

1.7 dim o(T?) = _é_ é[ {'r“(2e“ — 1) 4y + 4y z frikeik}] .

In case A is nonderogatory, n, =1, r,, = 1,4=1, ---, p and (1.4) and
(1.5) reduce to

dim 79(T) = » = dim o(T) .
Thus every matrixz X satisfying
1.8) AX = XA

where A 1is non-derogatory is symmetric, the result in [1]. Moreover,
if every matrix X satisfying (1.8) is symmetric then dim 7(7T") = dim o(T).
Using the formulas (1.4) and (1.5) we see that this condition implies that

n

» P g
2l —riey + 2 iZf ,rijkgilrikeik =0.

=1

o

“
I
-

Now since 7, e¢;; and m; are all positive integers we conclude that
ry=1,5=1,+-+,n,and n, = 1. That is, there is only one elementary
divisor corresponding to each eigenvalue. Hence, if every matriz X
satisfying (1.8) is symmetric then A is mon-derogatory, a result also
found in [1].

We also show in this case that 7(T') consists of matrices of the form
PXP’ where P is fixed (depending on A) and X is persymmetric, (i.e. all
the entries of X on each line perpendicular to the main diagonal are
equal).

We next note that 7(T') = o(T') + ¥(T) (direct) and »(T?) = o(T?) +
v(T?) (direct). The first statement is easy to show; we indicate the
brief proof of the second statement:

Since x=X+tX XX

5 + o if Xen(T?, then

T X+ X")=[A,[A, X + X']]
=[4, [4, X] + [4, X'}
=[4,[A, X]] + [A, [4, X']]
= I'(X) — [A, [4, XT1]
= [4, [4, X]I
=(T(X)) =0.
Similarly, T%X — X’) = 0. Thus any X e 7(T?) is expressible uniquely
as a sum of two elements, one in ¢(7T?) and the other in v(7?%. Hence
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(1.9 dim Y(T) = dim (T) — dim o(T)

1 2 % 73
= D) > [Z {”'w(”'w — De;y + 21, 3, Tikem}] )
i