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GENERALIZED TWISTED FIELDS

A. A. ALBERT

1. Introduction. Consider a finite field $. If V is any automor-
phism of & we define ®v to be the fixed field of K under V. Let S
and T be any automorphism of $ and define F to be the fixed field

( 1 ) S — Sα — (®s)r — (®τ)s >

under both S and Γ. Then % is the field of q = j>* elements, where p
is the characteristic of $, and fi is a field of degree n over g We
shall assume that

(2) n>2, q > 2 .

Then the period of a primitive element of β is qn — 1 and there always
exist elements c in & such that c =£ k*-1 for any element & of fi. Indeed
we could always select c to be a primitive element of β.

Define a product (a?, #) on the additive abelian group β, in terms
of the product αjj/ of the field S, by

(3 ) (»,») = «Λ = i/Ba - xy - c(xT)(yS) ,

for c in β. Then

( 4 ) Ay = Ry — TRc{yS) , Bx = Rx — SRG{xT) ,

where the transformation Ry = J?[T/] is defined for all y in & by the
product xy = a?i?y of β. Then the condition that (a?, #) =£ 0 for all
xy Φ 0 is equivalent to the property that

' xT yS '

for any nonzero x and y of β. But the definition of a generating auto-
morphism U of $ over § by xU — xq implies that

(6) S=U* , T=W .

We shall assume that S =£ I, Γ =£ I, so that

(7) 0 < / 3 < w , 0 < γ < ^ .

Then ^^[(α S)^! 7 )]" 1 = a;3"1, where

( o ) ± — y K — (Q — i j , i — q' — yq — ±) , z — JU y .

Received April 25, 1960. This paper was supported in part by an Esso Educational
Foundation Grant and by NSF Grant G-9504.



2 A. A. ALBERT

Thus the condition that c Φ kq~λ is sufficient to insure the property that
(%, y) Φ 0 whenever xy Φ 0.

For every c satisfying (5) we can define a division ring ® =
®($, S, T, c), with unity quantity /' = e — c, where e is the unity
quantity of S. It is the same additive group as K and we define the
product x |/ of ΰ by

(9) xAe-yBe = (x,y) .

These rings may be seen to generalize the twisted fields defined in an
earlier paper.1

We shall show that 3) is isomorphic to $ if and only if S = T.
Indeed we shall derive the following result.

THEOREM 1. Let S Φ I, T Φ I, S Φ T. Then the right nucleus of
35(SΪ, S, Γ, c) is f®s and the left nucleus of ®(jϊ, S, Γ, c) is /ffiΓ. // S
is Zfee set of all elements g of $t such that gS — gT then gAe = gBe and
$>Ae = 2Be is the middle nucleus of ®.

The result above implies that /g is the center of ®(®, S, T, c).
Since it is known2 that isotopic rings have isomorphic right (left and
middle) nuclei, our results imply that the (generalized) twisted fields
S)($, S, T, c) are new whenever the group generated by either S or T
is not the group generated by S and T. In this case our new twisted
fields define new finite non-Desarguesian projective planes.3

2. The fundamental equation* Consider the equation

for x, y and z in $. Assume that the degree of $ over ®τ is m, where
we shall now assume that

(10) m > 2 .

1 For earlier definitions of twisted fields see the case c = — 1 in On nonassociative
division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309 and the general case in
Finite noncommutative division algebras, Proc. Amer. Math. Soc. 9 (1958), 928-932. In
those papers we defined a product [x, y] = x(yT) — cy(xT) so that (x, y) = [x, yT'1] =
xy - c(yS)(xT) is the product (3) with S = T'1.

2 This result was originally given for loops by R. H. Bruck. It is easy to show that,
if φ and Φo are isotopic rings with isotopy defined by the relation QRxp=Riχ)QRz, then
the mapping x -» (zx)P~1 induces an isomorphism of the right nucleus © onto that of φ 0 ,
and the mapping x -> {xz)P~x induces an isomorphism of the middle nucleus of © onto
that of ®o.

3 Two finite projective planes 9K(φ) and 9K(Φo) coordinatized by division rings % and
Φo respectively are known to be isomorphic if and only if Φ and Φo are isotopic. See the
author's Finite division algebras and finite planes, Proceedings of Symposia in Applied
Mathematics; vol. 10, pp. 53-70.
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Then the norm in & over ®τ of any element k of Sϊ is

(11) v(fc)

and v(k) is in ί£Γ, that is,

(12) Kfc) =

for every k of 5ΐ. Thus

(13) I - (TRc)
m =

where

(14) d = e-

Now

(15) Ae = l-TRC1 Be = I-SRc,

and we obtain

(16) Ae[I + TRC + {TRcf + +

so that

(17) i+ TRC + (TRcy + .. +

Our definition (4) implies that

(18) RaAy = AyRa, R

for every x and y of iΓ, providing that

(19) a = aT, b = bS .

In particular, i?dAy = AyRa, and so (9) is equivalent to

(20) A J J + (ΓΛβ) + (TRCY + + ( Γ Λ ^ - 1 ] ^ = Asi2d .

It is well known that distinct automorphisms of any field $ are
linearly independent in the field of right multiplications of ££. Thus
we can equate the coefficients of the distinct powers of T in the equa-
tion (20). The right member of (20) is RzΛ — TRcd{zS) and so does not
contain the term in Tm~1 when m > 2. It follows that

(21) Rx[( TR^-'Ry ~ (TR c r~\ TRc)RyS]
2Ry - (TRcr~XTRc)RyS] = 0 .

This equation is equivalent to

(22) xTm~\y - yS) = xSTm~\y - yS) ,
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and so to the relation

(23) [(x - xST-^T™-1]^ - yS) = 0 .

By symmetry we have the following result.

LEMMA 1. Let T have period m > 2. Then the equation AzA~ιAy=Az.
holds for some x, y,z in $ΐ only if y = yS or x = xST~\ If S has
period m0 > 2 the equation ByB~1Bx = J5, feoicίs /or some a, y, z in S£

if x = xT or y = yST'1.

3. The nuclei. The ring 2) = £(SΪ, S, Γ, c) has its product defined bjr

(24) x-y = xRy

0) =yLy

c),

where

(25) Ryχ = Aβ^A, , Licie - B?B% .

When S = Γ our formula (3) becomes (x,y) = xy — c[(xy)S] = xy(I—
But then the ring ®0, defined by the product (x,y)9 is isotopic to the
field St. Since ® = ®(ffi, S, S, c) is isotopic to ®0 it is isotopic to SB, and
it is well known that ® is then also isomorphic to $. Assume hence-
forth that

(26) S Φ T .

The right nucleus of S) is the set 5ip of all elements zp in ffi such that

(27) (x-y)-zP = aj d/ «p) ,

for every α? and ?/ of ffi. Suppose that 6 = bS so that

(28) Ab = Rb- TRc{bS) = (/ - 2Ήc)i?&, ^ e - ^ & = i?δ .

By (18) we know that RbBx = J?aΛ6, and so Rb{B~ιBx) - (B^BJR, for
every a? of Λ. By (25) this implies that the transformation

(29) Rb = A^Ab = Riχ

commutes with every L(f. However, (27) is equivalent to

(30) Uc)Rζ = R{ξUx

c) .

Thus bBe = 6 ( 1 - Si2c) = 6(e - c) = bf is in 5RP. We have proved that
the right nucleus of 2) = 3)(5t, S, Γ, c) contains the field / ^ , a subring
of 3) isomorphic to $#.

ΓΛβ left nucleus 3lλ of S) consists of all ^λ such that

(31) (zχ v) x = Zλ-(yx)
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for all x and y of St. This equation is equivalent to

•(32) L%R{

X

C) = R^Lΐl

for every x of $. If a = aT then Ba = (I- SRc)Ra, B-χBa = Ra =
L^]

Ae commutes with every Ay and every Rx

c), and we see that the left
nucleus of S)(β, S, T, c) contains the field fSiτ isomorphic to βΓ .

The middle nucleus of i® = ®(®, S, T, c) is the set 3lμ of all zμ of
$ such that

(33) (x-zj-y = a Ovi/)

for every a? and y of β. This equation is equivalent to

(34) R {

z

c ) R y

c ) = R{

z% ,

where z — zμ. However, we can observe that the assumption that

(35) Ric)R™ = Rίc) ,

for some v in ^ , implies that (f z) y=f v = v = z y, Hence (34) holds
for every y in $t if and only if

(36) AgA-χAv = Aυ ,

for every y of β, where v is in S and

(37) gBe = z = z,.

If ^ S = gT t h e n A, = Rg - TRc{gS) = Rg- TRc{gτ) = Rg - RgTRc = RgAe.
Then (36) becomes

(38) RgAy = Rg(Rg — TRc{yS)) = Rgy — TRc{ySgT) = Agy .

Hence gBe = g(I — SRC) — g — (gS)c = g — (gT)c = gAe, and $ftμ contains
the field of all elements gBe for gS = gT.

We are now able to derive the converse of these results. We first
observe that (27) is equivalent to

(39) R\fRίc) = R[l\ ,

for every y of $t, where z — zp. This equation is equivalent to

(40) AyAe'Au - Av ,

where z = uBe. If the period of T is m > 2 we use Lemma 1 to see
that, if we take y Φ yST~x, then u = uS, z — uBe = fu. The stated
choice of y is always possible since we assuming that S Φ T and so
some element of β is not left fixed by ST~\ Thus Stt = / ^ . Similar-
ly, is the period of S is not two then 5Jϊλ = f$tτ. Assume that one of
S and T has period two.
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The automorphisms S and T cannot both have period two. For the
group G of automorphisms of ^ is a cyclic group and has a unique sub-
group ξ> of order two. This group contains I and only one other
automorphism. If S and T both had period two we would have S — T
and so m = n = 2, contrary to hypothesis. Thus we may assume that
one of S and T has period two. There is clearly no loss of generality
if we assume that T has period two, so that the period of S is at least
three. By the argument already given we have 5ftλ = f$ΐτ. We are
then led to study (40) as holding for all elements y of ®, where zp =
uBe. Now

(41) A, = I- TRΰ, Ae(I + TRC) = Rd, d = e - c(cT) = dT .

But then (40) becomes

(42) [Ry — TRc{yS)](I + TRC)[RU — TRc{uS)] — Rυd — TRcd{υS) .

This yields the equations

(43) y[u - c(cT)(uS)] - (yST)[c(cT)](u - uS) = vd ,

(44) yT(u - uS) - yS[u - (uS)c(cT)] = - d(vS) .

Hence

d(yS)[uS - (cS)(cST)(uS2)] - yS2T(cS)(cST)(uS - uS*)d = vS(dS)d

= (dS)yS[u - (uS)c(cT)] - yT(u - uS)(dS) .

Since this holds for all y we have the transformation equation

(45) SR[d(uS) - d(cS)(cST)uS2] - S2TR[d(cS)(cST)(uS - uS2)]

= SR[dSu - (dS)(uS)c(cT)] - TR[(u - uS)dS].

Since S2 Φ I and T Φ S, S2T we know that the coefficient of S2T is
zero. Thus (u — uS)dS — 0 and u — uS as desired. This shows that

The middle nucleus condition (36) implies that gS = gT if T does
not have period two. When T does have period two but S does not
have period two the analogous property

(46) U% = UC)UX

C)

is equivalent to

(47) BgB?Bx = BΌ ,

and we see again that gS = gT. This completes our proof of the theorem
stated in the introduction.
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4 Commutativity It is known4 that © = (fi, S, S~~\ c) is com-
mutative if and only if c = — 1. There remains the case where

(48) Sφl, TΦl, STΦl, SΦT.

Any SB(®, S», Γ, c) is commutative if and only if R{f = Lic) for every
as of S. Assume first that ®8ΦStτ. There is clearly no loss of generality
if we assume that there is an element δ in $t8 and not in $ Γ , since the
roles of S and T can be interchanged when ®($, S, T, c) is commuta-
tive. Thus we have b = bS φ bT. By (28) we know that Ah = AeRb

and so we have i ί # = i?δ. Then L $ = B^-By = Rb, where y = (&/)Arx.
It follows that

(49) Bg = Ry — SRc{yT) = -Be.B5 = ( J — SRc)Rb .

Then lί y = Rb, y = 6, c(2/Γ) = c(6Γ) = cδ, and δ = bT contrary to hypo-
thesis.

We have shown that if 35(®, S, Γ, c) is commutative the automor-
phisms S and T have the same fixed fields, that is, δ = bS if and only
if δ = δΓ, δ is in g T h ΐ l s S a n d ϊ 7 both generate the cyclic automor-
phism group © of order n of ® over g, and S is a power of ϊ7. Since
rp-i _ yn-i _£. gf there exists an integer r such that

(50) 0 <r <n-l, S = Tr .

We now use the fact that R{

x

c) = Lic) for every x of i ί to see that
A~λAx - B r 1 ^ for every x of Λ, where y = xBeA~\ Also (TRc)

n =
(SRc)

n = i?v(c), and our condition becomes

(51) [J

= [I + SΉC + (S,RC)2 + + (SR,)"-1] [Ry - SRc{yτ)] ,

where we have used the fact that d = e — v(c) = dT = ώS. Compute
the constant term to obtain the equation

(52) Rx - (TRc)
nRxS = Ry- (SRc)uRyτ .

This is equivalent to the relation x — [v(c)]{xS) = y — [v(c)]yT for every
x of Kf where y = ίcBgA^1. Thus (52) is equivalent to

(53) / - SRV{C) =BeAeV- ΓBv(β)]

We also compute the term in Tr in (51). Since r < n — 1 the left
member of this term is (TRc)

rRx — (TRc)
rRxS, which is equal to

RrRgc(Rx- RxS), where g = (cΓ)(cΓ)2 -(cΓ)7*-1. The right member is
the term in S, and this is SRc(Ry — Ryτ). Hence (a? — xS)g = y — yT,
a result equivalent to

4 See footnote 1.
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(54) (/ - S)B0 = BeAΛI - T) .

Since the transformations I — T and I — 272V(C) commute we may use
(53) to obtain

(55) (I - S)Rg[I - TRUΰ)] = [I - SJ?v(β)] (I - T) .

By (48) we may equate coefficients of I, S, T and ST, respectively. The
constant term yields g = e. The term in S then yields v(c) = e which is
impossible when S and T generate the same group and 2) = ®(S, S, Γ, c)
is a division algebra.

We have proved the following result.

THEOREM 2. Let ® = 2)(ί8, S, Γ, c) be a division algebra defined
for S Φ I, T Φ I, S Φ T. Then S) is commutative if and only if
ST = I and c = - 1.

T H E UNIVERSITY OF CHICAGO



OPERATIONAL CALCULUS OF LINEAR RELATIONS

RICHARD ARENS

1. Introduction* Let X and Y be linear spaces, and T a linear
subspace of 1 0 7. We call T a linear relation to indicate our interest
in those constructions with T which generalize those carried out when
T is single-valued [4].

Properly many-valued linear relations arise naturally from operators
T when T~τ or T* is contemplated in cases where they are not single-
valued. One advantage of not dismissing T* when it is not single-
valued is that T** = T if and only if T is closed (for the details, see
3.34, below.) A more superficial attraction is that linear relations, even
self-adjoint linear relations in Hubert space can exhibit phenomena
(unbounded spectrum, domain Φ X) in finite-dimensional spaces which
linear operators exhibit only in infinite-dimensional spaces.

We present an outline of the paper. In § 2 we define p(T) where
p is a polynomial with coefficients in the field Φ involved in X. We
prove that (pq)(T) = p(T)q(T), (poq)(T) = p{q{T)), and point out that
sometimes (p + q){T) Φ p(T) + q(T), etc.

In § 3 we turn to relations in dual pairs. In this situation, adjoints
can be defined. We build an automorphism λ —> λ of Φ into the theory
of dual pairs, so as not to exclude the Hubert space situation, which
dual pairs are intended to imitate. (Thus the transpose is a special
kind of adjoint.) Closedness is defined algebraically, but in a way com-
patible with the topological concept. Closure of T7* and other algebraic
properties of * are established. Finally, it is shown that if T is closed
and its resolvent is not void then p(T) is also closed.

Section 4 considers the self-dual case. We give a simple condition
(4.3) always true in Hubert space, that T*T be self-adjoint, T being
closed. In § 5 we give the spectral analysis of self-ad joint linear re-
lations in Hubert space. In a 1:1 manner these correspond to the
unitary operators, via the Cay ley transform. However, it can be shown
directly that X is the direct sum of orthogonal subspaces Y, Z which
reduce T (= T7*) giving in Z a self-ad joint operator and in Fthe inverse
of the zero-operator.

2 Linear relations* A relation T between members of a set X and
members of a set Y is merely a subset of X x Y. For x e X, T(x) =
{y (x, y) e T}. The domain of T consists of those x such that T(x) is
not void. T is called single-valued if T(x) never contains more than
one element. The range of T is the union of all T(x).

Received April 13, 1960.
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If T is as above and S (Z Y x Z, then SoT = {(a, z): (x, y) e T,
(yf z) e S for some y}. We shall write this ST. Finally, T'1 =
{(y, x): (a;, i/) € T}. The r α ^ e of T is the domain of T~\

If X and F are linear spaces over a field Φ then I © 7 is I x F
with the usual linear structure. A linear relation T between members
of X and members of F is a linear subspace of 1 0 7. Linearity is
characterized by

2.01 aT{xx) + βT(x2) c T(axx + βx2) , (α, β e <Z>; ^ , #2 e X) .

The null space of T is the class of x such that (x, 0) e Γ. It is
easy to see that
2.02 if S and T are linear relations with the same null space, and
the same range, then S c T only if S = T.

Let L be a linear subspace of X, and λ an element of Φ. Then
λz denotes the single valued operator defined on L by XL = {{x, Xx): x e L}.
The unit of Φ we denote by 1. Thus 1L has a meaning according to
the preceeding agreement. For T a linear relation with range L, we
define XT as XLT. The zero of Φ we denote by 0. Thus OT is not Ox,
but OL where L is the domain of T.

Addition of linear relations S, Γ is defined as follows:

S + T — {(x, y) :y = s + t for some s, t such that (x, s) e S, (x, t) e T} .

The linear relations in J φ J do not form a linear space, let alone
a linear algebra. We list algebraic properties partly for use later, but
mainly to call attention, as it were, to those that are lacking.

2.1 THEOREM. The operations Ό ' and ( + ) are associative, ' + ' is
commutative. Let R, S, T be linear relations. Then
2.11 domain of R = X<£=> lx c 22 "Ή;
2.12 JB is single-valued ξ==$> RR-1 c l z, L = range of R;
2.13 λ e ί ^ Φ X(ST) = (λS)Γ = S(λΓ) = STλx, L = domaiu of T;
2.14 jβ c S:φ # + T c S + T, RT a ST, TR c: TS, R-1 a S"1;
2.15 jβ/S + ΛΓ c i?(iS + Γ), with equality when the domain of R coin-

cides with the whole space;
2.16 (S + T)R c SR + TRf with equality when R is single-valued;
2.17 (ST)-1 = T-'S-K

The proof of these may be left to the reader.
We say S and T commute is ST = TS. Suppose SR = #S, TR = i?Γ.

Then (S + Γ)J2 c i2(S + T). The equality may not hold, as the example
S = —T=1X9 domain of R Φ X, will show.

Tn is defined as Tn~1T, as usual. If Tn appears in a formula where
n = 0 is allowed, then T° stands for lx.

These things can all be extended to the case of moduls over a ring
Φ. However, we now turn to a lemma whose proof requires that Φ be a
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field.
For the remainder of § 2, T will denote a linear relation in J φ J ,

and for λ e Φ, we write just 'λ' for 'Xx\
It is clear that a0 + aλT + • + anT

n has for its domain, just the
domain of Tn. This is true even if an — 0! If a polynomial p has
coefficients a09 aly , an, then by p(T) we mean α0 + ax + + anT

n

provied an Φ 0. Otherwise we omit an and consider whether an-λ Φ 0,
etc. If an Φ 0 and α t = 0 for some i <ny then it does not matter
whether a% is omitted or not (but we have already agreed to retain it)
because, for example Γ3 + 0T = T\

The next lemma settles a little difficulty that arises in the 'multiple-
valued' situation. It enables us to include the multiple valued case in
the succeeding theorem, whose substance is that the usual laws of algebra
apply to the multiplication of linear polynomials in T. The importance
of this theorem is based on the natural fear that even in the single
valued case (see 2.15, 2.16), factoring might produce a proper extension
of the "multiplied-out" polynomial.

2.2 LEMMA. Let (xfy)eaQ + a1T
J[ h anT

n

y where an Φ 0.
Then there exist y0, ylf , yn such that

2.21 yQ = x, ΣΛaiyi = y
ί=0

and

2.22 (l/i-i, ϊ/i) e Γ (ΐ = l , ••-,*&).

Proof. Assume t h a t for some j , we have yo,y19

 m ,yn

 s u c h t h a t
2.21 holds, and (instead of 2.22)

U) ( l/,-i, V ι ) e T (l^iύ J)

and

(x, Vi) eTι (1 g i ^ n) .

Let k be the next integer greater than j such that ak Φ 0. We shall
establish (&). This will suffice to prove the lemma.

Because ak Φ 0 we can find XL, , λ̂  such that, for 1 ^ h ^ i,

We can find z19z2, ",zk where zk = yk and (x,zj,(z19z2), ,(zk-19zk) e T.
This implies that (0, yλ — zλ) e T, and (yt^ — zt-19 yt — zt) e T for i ^ j .

Now we define w0,w19 9wn as follows. w0 = χ,wλ = z19 for 1 ^ m ^ fc,

j-k+m

ί=i
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while wk+1 — yk+1, , wn = yn. It is clear that (w4_i, wt) e T for i ^ fc,
and (x, wt) e Tι for all i. There remains only the question, does
^jxiwi — y, or, equivalently, does

2.24 Σ α Λ ( i ί i Λ - 2/J = 0?

The sum in 2.24 has the value

fc—1 fc j - f c + r a

2_i CXm\Zm y<m) i ,2-ι Jd j ^m^- ' ίv i/ j - fc+TO+i- i ^ J - f c + m + i + ί /

It is not hard to verify that for 0 ^ h < fc the coefficient of yft — zh

in this sum is

2.25 -ah + Σ α«Λ

where the Σ ' ^ e r m is understood to be absent when fc — j + h > fc.
These λ were chosen in order to make this vanish for 0 ^ h ^ j . For
i < h < fc, αΛ = 0; since fc < fc — j + h, the Σ t e r m ?s absent. Thus
the sum in 2.24 is 0, and this concludes the proof of the Lemma (2.2).

N.B. This lemma does not imply that T could be cut down to a
linear operator U whose domain contains c, Ux, •••, and Ό^^x, where

Σ o α w t f Λ (a0 = y,

for x could be 0 and y be not 0.

2.3 THEOREM. Let p and q be two polynomials with coefficients in
Φ. Then

2.31 (qp)(T) = q(T)p(T) .

Proof. Suppose the degrees of p and q are m and n respecively.
Let p(ξ) — a0 + aj; + + amξm. Mutatis mutandis, let the coefficients
of q and qp be β3 and yk.

Now suppose (x,y) e (pq)(T). By 2.2 there exist xίy « , a w w such
that (xk-lf XJC) e T for fc = 1, , m + n where x0 = x, and Σ'/*^* — 2/
Let ^ = Σ Γ Λ ( + J for i = 0, , %. Then (α?, j/0) e 2>(Γ) and (^_x, ^ ) e Γ.
Let z = Σj=cβjVJ, so that (yo,z)eq(T). Then (α,s) e g(Γ)p(Γ). But
obviously 2 = Σγfcxfc = y. This shows that (?p)(T) c q(T)p(T).

Now suppose (α?, 2) e q(T)p(T). Then there must exist 2/ such that
(#, y) e p(Γ) and (?/, z) e q(T). By 2.2 we can find x0, -*-,xm and
VQ> "-,Vn (where x0 = #, and ί/0 = y) such that Σ^i^t = V and Σ/3j2/j = «.
We now turn to the free linear space Ξ (over Φ) generated by elements
£0, , ξmi Vit * •> %• In S we define a linear operator S, whose domain
is spanned by ξ0, * ,ηn-lf as follows:
Sd,-!) = ^ (i = 1, , m), S(%) = %, where η0 = Σαi?ί» and
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(j = 1, , n — 1). We can map Ξ linearly into X by a mapping / which
sends ξt into Xi9 and r]3 into y3. This mapping has the property that
for ξ in the domain of S, (/(£), /(Sf)) e Γ. Derivable from this is that
if r is a poly nominal and r ^ ) ! is defined some ξ in Ξ then (/(f),
f(r{S)ξ)) e r(T). We apply this to ξ = ξ0 and r = gp. It is easy to
see that p(S)(ξ0) = %, whence f(qp(S))(ξ0) = f(Σβflj) = Σfrl/j = s, and

This completes the proof of 2.3.
[jP^rί/^βr remarks on polynomials of relations. Inspection of the

first argument in the proof of 2.3 yields the following result.

2.32 THEOREM. Let p and q be as in 2.3. Then

2.33 (p + q)(T) czp(T) + q(T) .

The ' = ' does not always hold. While

2.34

hold when Σaι =£ 0, it does not hold when Σai — 0, some at Φ 0, and
T is not single-valued.

As the assertion connected with 2.34 implies, the reason that 2.33
cannot be strengthened to an inequality, is that T — T is not 0 times
some relation, if T is not single-valued. We close this little discourse
on the peculiarities of many-valued relations by showing that the dif-
ficulty arises only with the terms of highest order.

2.35 THEOREM. Let p, q be as above, and suppose the sum of their
leading coefficients is not 0. Then (p + q)(T) = p(T) + q(T).

Proof. We combine the monomials of like degree on the right, and
use 2.34 in each case. Eventually one may have to apply the following

2.36 L E M M A . If n^k then Tn = Tn + X(Tk - T).

Proof. Let (x, y) belong to the right side. Then y = u + v where
(x, u) e Tn + XT16 and (x, v)ε — XTk. From 2.2 we obtain u0, --,un

which are successively Γ-related, u0 = x, un + XU]c = u. Therefore
XUk + ve T*(0), whence un + XUjc + ve T\un-h) c T\x). Thus (a, y) e Tn.

2.37 THEOREM. Let q and p be polynomials. Then(qop)(T) = q(p{T)).

Proof. The poly nominal qop is the result of substituting p into q,
by definition. The leading coefficients may be taken as not zero. We
can multiply out the terms βjP(T)3 on the right side, without affecting
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that sum, by 2.3. (The associative law holds for addition.) We can
arrange the sum as a polynominal, by virtue of 2.35 there being in
fact at all times a unique term amβnT

m+n of highest degree. The result-
ing polynomial is of course {q°p)(T), for formal reasons.]

We now make some definitions which coincide with the usual ones
for closed operators in F-spaces. We call a linear relation T resolvable
if T-1 is single-valued with domain X (that is, by 2.11, if T ^ Γ c l ^ c TT"1.
If T~1T= 1 = TT-1 we call T regular.)

2.4 PROPOSITION. The product of {finitely many pairwise) commut-
ing linear relations is resolvable only if, and if, each factor is resolvable.

Proof. It is inevitable and sufficient to consider the case of two
factors. If these are resolvable, so is their product. The criterion
Γ T c l c TT'1 can be used here.

If on the other hand, a linear relation S is not resolvable, then either
(x, 0) e S for some x Φ 0, or the range Φ X. Accordingly, TS or ST
shares the defect. (This sufficies for 2.4).

The resolvent set of a linear relation T is the class of λ in Φ for
which T — X (by which we mean T — Xlx) is resolvable; and its com-
plement is the spectrum σ(T) of T.

2.5 (Spectral polynomial theorem). Let Φ be algebraically closed,
and let p be a polynomial over Φ. Then σ(p(T)) = p(σ(T)), where by
the latter is meant the class of p(X), X e σ(T).

Proof. For μ e Φ we can write

p(T) -μ = a(T- \) .(Γ - λn), μ =

where T — \, , T — Xn commute.
If μ e σ(p(T)) then p(T) — μ is not resolvable, whence (by 2.4) some
X, e σ(T), or μ e p(T)). If μ e p(T)) then μ = p(λ), X e σ(T), and so
X — χt for some ί. Then p(T) — μ has a non-resolvable factor, and so
is not resolvable. Therefore μ e σ(p(T)). This proves 2.5.

We have defined the sum (and difference) of two linear subspaces
U and V (say) of 1 0 7, but occasionally one is concerned with the
linear subspace of I φ Γ which they span. We will have to use some
other symbol for this, and we choose

2.6 UΦ V.

Our purpose is to prove the following

2.61 THEOREM. The range ofl— V~lU is the null-space of U Φ V>
and the null-space of 1 — V'1 U is the domain of U Π V.
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Proof. Let (x, z) e 1 - V^U. Then (x, z - x)ε - V^U whence
(x, y) e U and (y, x — z)ε — F~\ for some y. Therefore (z — x, — y) e V
and so (z, 0) e U Φ V. If moreover, z = 0 (so that x is in the null-
space) then (—x, —y) and thus (x, y) belongs to V and thus x e dom Uf] V.
The reverse inclusions can be established by reversing the steps of this
argument.

3 Ad joints* For the formalism of ad joints, it is good to suppose
that the field Φ has an involutory automorphism

ΛJ — > A, ,

and we shall do so. Whether Φ admits a non-trivial involution or not,
one can base the discussion on the identity. Thus the discussion includes
the transpose.

Let X, A be two linear spaces over Φ. We shall say X, A are a
(Φ, —) dual pair (or, more briefly, a dual pair) is there is a non-dege-
nerate bi-additive, (̂ -valued form <, > defined o n l φ A , linear in first
argument, and semi-linear in the second:

ζx, λα> == X<x, ay .

Let Y, B be another (Φ, —) dual pair. Let T be a linear relation
between elements of X and elements of Y, i.e., let T be a linear sub-
space of 1 0 7. I φ 7 , A © β form a (Φ, —) dual pair, in a natural
way:

The adjoint T* is defined as follows:

3.11 Γ* = {(6, α): <a?, α> = <τ/, 6> for all (α?, i/) e Γ} .

T* is (evidently) a linear subspace of β © A .
For a linear subspace ί7 of ΰ © 4 we define

3.12 Ϊ7* - {(a?, ?/): <a?, α> = <?/, 6> for all (6, α ) e ί / } .

It is usually supposed that 3.12 need hardly be written down, once 3.11
is presented. We mention three obvious properties of this process (or,
rather, these processes. See § 4)

3.2 T c T**, S c Γ φ T* c S*

3.21 (λΓ)* = λT*

3.22 (ϊ7-1)* - (77*)-1 .

For a subset M of X, let

3.23 ML = {a: <x, α> = 0 for all α> 6 M)
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while if M c A then

3.24 M1 = {x : ζxt α> = 0 for all a e M} .

In this sense (cf. [4])

3.3 T* ^ ( - Γ - 1 ) 1 .

In 3.3 we have in mind the natural pairing of 7 0 1 and
of course.

Again, considering X, A as a typical pair, and M a linear subspace
of X, we define M11 as the closure of M. This requires no topology
in X, A, or Φ, and resembles the Stone topology [1, p. 466] in this
respect—and in fact admits a natural, joint generalization.

M is closed if M = M1-1, and dense if M11 = X.

PROPOSITION.

3.31 7%e null-space of Γ* = (rα^gre of T)1

3.32 Γ* is single-valued only if and if the domain of T is dense
3.33 T* is closed
3.34 T** is £/fce smallest closed linear relation containing T.

Here 3.31 is easily established on the definitions, and 3.32 follows
from it by considering the null space of T*"1. 3.33 is obvious, because
any M1 is closed, while 3.34 follows from 3.33.

Turning to the adjoint of a sum, let S and T be two linear subspaces-
of 1 0 7, It is quite elementary that

3.4 S* + Γ* c ( S + T)* .

The following gives an unsymmetric condition which insures the
equality.

3.41 THEOREM. If the domain of <S* = B, and the domain of S
includes that of T, then

(S + T) = S* + T* .

Proof. Let (6, α) e (S + T)*. Then there is an element aλ such
that (δ, αx) e S*. Let us show that (6, a — αx) e T7*. To this end, suppose
(a?, t) e T. Then (a?, s) e S for s = S(&), and (a?, s + t) e S + T. Now

<α, α - α:> - <t, 6> = O, α> - <α, α2> - <t, 6>

= <a?, α> - <s, 6> - <ί, 6> = <&, α> - <s + t, 6> = 0 .

Thus (δ, α - cO e Γ*, which, with (6, α j 6 S* gives (6, α ) e S H Γ* as>
was to be shown.

Although our T is not a function, we may adapt a symbolism usually
used in a functional context, and write
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X TY, or Yτ X ,

to convey that Γ is a linear subspace of I φ 7 .
If we introduce S

Y SZ

where Z, C is another (Φ, —) dual pair, then

o ST ZJ , anci o {ST)* •**•

Since A Γ* B s* C we also have C τ*s* A and there arises the
question of the relation of (ST)* and Γ*S*. In fact, it is quite elementary
that (ST)* ID Γ*S*, but we wish to examine also the reverse inclusion,
which is initiated by the following lemma. Here fa (for example) is the
linear functional on X defined by fa(%) — <(#, ά}, etc.

3.5 LEMMA. Let ceC, aeA. Consider these linear functionals
defined in Y

3.51 fooS.faoT-1.

Then (c, a) e (SoΓ)* if and only if these functionals are single-valued
and agree on the intersection of their domains; and (c,a) e Γ*oS* if
and only if they have a common extension to some fbJb e B.

Proof. The second assertion is the easier to show. If (c, a) JΓ*OS*

then ( c , i ) ) e S * , ( M ) e Γ for some b e B. Let y e D(S) n D(T^)
('D1 means 'domain'). I say these functionals (3.51) agree with fb for
such y. Indeed, if (y, z) e S and (y, x) e ϊ 7" 1 then fc(z) = (z9 c> = <(τ/, 6> =
<jc, α> = fa(x).

Conversely, if b having this property exists, then (c, b) e S* and
(6, α) e T* or (c,a) e T*oS*.

Now let (c, a) e (SoΓ)*, and let y e D(S) n D^T-1). Let (y, z) e S,
(x, y) 6 T. Then (x, z) e SoT and ζx, a) = <«, c>, and these are generic
elements of {fa°T~1)(y)y{fc^S~1)(y) respectively. Thus 3.51 are single-
valued, and agree on D(S) Π D(T~λ). The converse is obvious.

This establishes 3.5.
From this, a useful conclusion may be drawn.

3.52 PROPOSITION. Suppose either that the domain of S* is C, or
that the range of T* is A. Then

(SoΓ)* = T*oS* .

Proof. Let (c, a) e (SoΓ)*. Consider the case in which the domain
of S* is c. Then (c, b) e S* for some b. Let (y, z) e S. Then (fcoS)(y) =
<z, c> = <j/, by, i.e., / 6 is an extension of' fe°S. Hence it is also an ex-
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tension of fa°T~1 (the latter confined, if need be, to the domain of
S + T~\) We apply 3.5, and obtain (c, a) e T*oS*.

If the range of T* is A, the proof is similar. But it may be reduced
to the case treated, by using 3.22, and the general fact (t/o F)" 1 = V~xo U~ι.

We may now drop the Ό' again, which was reintroduced to make
3.5 easier to present.

3.6 PROPOSITION. Let U be a linear subspace of 1 0 7, and V,
of Y®Z. If either the domain of Z7** is X, or the range of F** is
Z, then (VU)** c F**C/**.

Proof. In any case U*V* c (VU)* and (Ft/)** c (?7*F*)*. We
think of [7* as S and F* as T and apply 3.52, mutatis mutandis.

We recall (3.34) that T is closed precisely when Γ D T**. The
merit of our ''many-valued" approach is that this criterion is available
whether T* is single-valued or not.

3.7 THEOREM. Let S and T be linear relations as above. Suppose
they are closed, and that either the domain of T is X or the range of
S is Z. Then ST is closed.

Proof. By 3.6, we obtian (ST)** c S ** Γ** = ST provided the domain
of T is X or the range of S is Z, which suffices.

The relevance of the existence of resolvent values, to the question
of closedness of polynomials in a (closed) operator, was noticed by
Taylor [3] (see also [2, p. 56]).

3.8 THEOREM. Let T be a closed linear subspace of X@X, for
which there is at least one λ e Φ such that T — X has range X. Then
p(T), for any polynomial p over Φ, is closed.

Proof. By the algebraic Theorem 2.3 we have

where q is a polynomial of degree less than that of p. By 3.7 and an
obvious inductive approach, we see that [p — p(λ)](Γ) is closed. Now
[p — 2>(λ)](T) = p(T) — p(X) by 2.35, so the latter is closed. Note that
p(T) - U + F where U = p(T) - p(λ), F = p(X).

Now (17+ F)* =) £P + F* and so (U + F)** c (U* + F*)*. Let
F* be the S of 3.41. Then its domain is the whole space, while S* = F
and its domain is also the whole space. Thus (U + F)** c Z7** + F** =
Ϊ7+ F, so that p(T) is closed. Of course, we also know that

p(T) = p(X) + {T - X)p(T)
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which does not emerge from the proof given in [2].

4Φ Self-duality* When X, A is a (Φ, —) dual pair and A = X, we
speak of a self-dual pair. This situation presents two definitions of M 1 ,
that given by 3.23, and another, which we might call 1M, given by 3.24.
These coincide if and only if

4.1 <x, yy = 0 if and only if <#, xy = 0

which, in turn, is equivalent to
4.11 There exists a p e Φ such that pp = 1 and

ζy, x ) — p(x, yy f o r a l l x,y e X .

(We leave the proof of this equivalence to the reader. One should note
that 4.1 for X is transmitted, via 4.11, to X 0 X , so that when
T c X 0 X, T1 = LT when 4.1 holds.)

The situation M± Φ ±M would not be awkward if one had ±(M±) =
(-LΛf)1, but for all we know this condition might be equivalent to 4.1.
In any case, it does not hold in general (see 5.41).

We therefore assume 4.1 in this section.
Let T be a linear subspace of 1 0 X. Then W = T + TL (see 2.6)

is of interest, because for closed relations in Hubert space, W = X 0 X.
In general, the following relations hold:

4.2 null-space of W — X W is dense

null-space of W is dense T1- Π Γ(0, 0) .

We proceed to generalize a proposition of von Neumann's [5].

4.3 THEOREM. Let T be closed. Let W = T T T1^ and suppose
that the null-space of W is all of X. Then the null-space of 1 + Γ*Γ
is (0), the range is X, and (Γ*T)* = Γ*Γ (i.e., T*T is self-ad joint.)

Proof. Let U (in 2.61) = rΓ, and V=T\ Then - F" 1 = T*.
Therefore the range of 1 + T*T is the null-space of W, that is, X.
Moreover, the null-space of (1 + Γ*T)* is (by 3.31) (range of 1 + T*T)L,
which is (0).

We know that Γ*S* c (ST)* in general, so if we set S = T*,
S* = T** = T, we get Γ*T c (T*T)*, or 1 + Γ Γ c ( l + Γ T ) * ,
Here we have used 3.41.
Considering 2.02, and what we know about the null-spaces and ranges,
we conclude that 1 + Γ * Γ = (1 + T*T)*, T*T=(T*T)*.

We have already defined T to be self-ad joint if T— T*. We call
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T unitary if T* = ϊ7"1. We say nothing about single-valuedness. In
the Hilbert-space-situation, there are no unitary linear relations except
those single-valued relations which are usually called unitary, as the
following shows.

4.4 PROPOSITION. T'1 C T* if and only if ζx, %> = ζy, i/> for all
(x, y) e T. If T* = T~λ and T+ TL = I φ X then the domain and
range of T both equal X.

Proof. The statement about ζx, #> and ζy, y) is obviously true.
Now assume Γ + Γ ^ l φ l a n d ϊ7* = T~\ Let y e X. Then

(0, y) = (x, t) + (-a?, ?/ - ί) where (a?, t) e T and (-a?, y - t) e TΣ =
(- T*)-1 = -T, or (a?, y -t) e T. Then (2a?, #) e Γ, or the given y is
in the range of T. Now the things assumed about T are inherited by
T-1 so that the range of Γ"1 is also X.

Returning briefly to the Hilbert-space-situation, if T* = T"1 then T
is closed and so T + T 1 does equal 1 0 X, whence T ΐs unitary in the
usual sense.

To generalize the formal aspects of the Cayley transform [4] we
assume now that Φ contains an element i such that i2 — — 1 and i = — ΐ.

Cayley's map sends X®X onto I φ l thus

C(x, v) = (x — iyf x + iy).

Its third iterate is scalar, and it preserves orthogonality, etc. If
T c X © X then

C(T) = {(s -it,s + it): (s, t) e T}

is the Cayley transform of T.
We list several elementary properties.

4.51 S c T<#==φ C(S) c

4.52 C(-T)= C(T)-χ

4.53 CίΓ-1) = -C(T)-1

4.54 CίΓ 1) = C(T)1

4.55 C(Γ*) =

4.6 THEOREM. T a T* if and only if C(T)-1 c C(Γ)*, T = T* if
and only if C(T) is unitary.

If C2(Γ) were unitary, and we were in Hubert space, then T would
have a spectral resolution, but C2(T) is unitary if and only if T* = — T.

The spectral mapping theorem holds for this Cayley transform:

4,7 σ(C(T)) = {(1 + iτ)(l - iτ)-1: τ e (Γ)}
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with the following understanding: oo e σ(S) means 0 6 σ(S~1), 2/0 — oo,
(1 + ioo)(l — ioo)-1 = — 1 . Moreover, eigenvalues correspond to eigen-
values.

The set consisting of the spectrum of T, plus the symbol oo if
0 € σ{T~λ) we call, following Taylor, the augumented spectrum. The
augmented spectrum thus contains oo whenever T is not single-valued.

5* Hubert space. In Hubert space X, (Φ = complex numbers), self-
adjoint linear relations T may be analyzed in just the same way as the
single-valued ones are, by von Neumann, in [4]. The general theory is
perfect in a way that the usual theory is not: every unitary operator
is the Cayley transform of a unique self-ad joint linear relation, and
conversely (4.6).

However, rather than repeat the application of the Cayley transform
method, we prefer to analyze the general self-ad joint linear relation in
term of self-ad joint operators.

If T is a closed linear subspace of X 0 X, X being a Hubert space
(as shall be assumed in all of this section) then

5.1 T= Tβo±T1

where TΌo, 2\ are orthogonal closed linear subspaces (so we write '±'
instead of ' + ') and T^ = T f] ( { 0 } © ! ) . Thus T* has only 0 in its
domain, while its range is T(0) (see § 2). T(0) is closed, since TL —
{0} 0 T(0). The domain of TΎ is the domain of Γ, and Tλ is single-
valued.

5.2 LEMMA. T(0) = (dom T*) 1 , dom Tx is dense in T*(0)-S and
the range of T2 lies in T(0)L.

Proof. 3.31 tells us that T*" 1 ^) = (dom I 7 - 1 ) 1 . We can replace T
here by T~\ and then replace T* by T since T is closed. Thus Γ(0) =
(dom T*y. From T*(0) = (dom T)L we obtain (dom T)1 = T*(0)\ and
thus the second assertion. Finally, if (x,y) e Tu and (0,z) e T^ then
(%9y) JL (0,z), because Tλ is the orthogonal complement of TL relative
to T. Hence <#, z> = 0.

5.3 THEOREM. Let T be a self-adjoint linear subspace of I φ X
Let T = TU ± Tx as above. Then

X= Y±Z

and Tπ consists of all pairs (0, y), y e Y while Tx is a closed linear
operator whose domain is dense in Z, and whose range is in Z. Tlt

restricted to Z, coincides with a self-adjoint linear operator in Z.
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Proof. Let Y = Γ(0), Z = Γ(O)1. Then the domain of Tλ is dense
in Γ^O)1- = YL = Z and the range lines in T(θy = Z, all by 5.2.

Suppose that (z, w) e S* where S is Tx restricted to Z. Then
ζx, wy = <v, #> for all (a?, v) e Tλ. Each (a?, u) e T is of the form
(a?, y + v) where y e Γ(0) and (a?, v) e TΊ. Now <j/, z) = 0, so <x, w> =
<2/ + v, z} for all (x, y + v) e T. It follows that (z, w) e Γ* = ϊ7. But
since z, w e Z we have (s, w) e Γlβ This proves 5.3.

We return here to the question raised in second paragraph of § 4,
because a counterexample in a Hubert space context is more desireable
than any other. Let X = L2 [0,2], in which the inner product will be
denoted by <, >, and orthogonality, by _|_. Select a bounded operator
T, domain X, range dense, with single-valued inverse, and define a self-
dual pairing by means of the formula

5.4 If, g] = <Tf, g> = <f, T*g> .

The associated orthogonality will be denoted by Ό9 to prevent confusion
with ' !_ ' already present.

5.41 PROPOSITION. It is possible to select T and M (a linear sub-
space of X) such that

5.42 ° ( I ° ) = M but ( ° I ) ° Φ M .

Before deciding on a specific T we shall establish

5.43 LEMMA. ° ( I ° ) is the closure of M in the norm \\x\\τ=\\Tx\\
[4, 298], and ( ° I ) ° is the closure of M in || •• \\τ*.

Proof. M° = {a:[M,a] = 0} = λ(TM), and °M = λ(T*M). Con-
sequently ° (I ° ) = ^ Γ ^ Γ M ) ] , and so ^ e °{M°) precisely when
g _L T*L(TM) or Tg 1 L(TM), i.e.,

5.44 Tge(TM)11 =ΎW.

But this characterizes the closure of M in || | |Γ, and this observation
suffices to establish 5.43.

Now we select T' = J where

(Jf)(t) =

This J meets our requirement for T. We have

(J*f)(t) = \\f(τ)dτ ,

whence J * = E — J where E is the projection on the constant functions
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in X.
Let N be the linear subspace of those functions that vanish on [1,2].

Let

0 ^ t < 1

0 0 g t SL 2 .

Then he N and M = N Π {h}1 Φ N. Thus EM = (0). It is easy to
establish, in the order given, the following: JM c N, J*N c i\Γ, JM = JV,

Then one observes that JfeN implies f e M while J*f e N implies
f e N, (and each converse holds, because JM c N, J*N c N.) Using
5.44 as a criterion for J# e °(I °) we obtain °(I°) = M, ( °I) ° = ]V.
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DISCONJUGACY OF A SELF-ADJOINT DIFFERENTIAL
EQUATION OF THE FOURTH ORDER1

JOHN H. BARRETT2

Introduction* In a recent paper [10] W. Leighton and Z. Nehari
investigated oscillation properties of solutions of self-adjoint differential
equations of the fourth order

(r(x)y'T + (Q(x)vΎ + V{x)v = 0

with particular attention to the cases where the middle term is missing,
r(x) > 0 and p(x) does not change sign. In the present paper one of
these particular cases

(1) {r{x)y")" - V{x)v = 0

(r(x) and p(x) positive and continuous on [a, oo)) will be pursued further
with the object of paralleling the known theory of second order equation

( 2) (r(x)y'Y + p(x)y = 0

with positive and continuous coefficients (e.g., see [2] and [12]). With only
occasional minor modifications the terminology of [10], together with the
fundamental properties of (1) established there, will be assumed
throughout this paper. One point of departure is the distinction between
"disconjugacy" and "non-oscillation" as the author has used them pre-
viously [2] for equation (2) in discussions which will be extended here
to the fourth-order equation (1). It will be said that equation (1) is

(i) dίsconjugate if no nontrivial solution has more than 3 zeros on
[α, oo) and, hence, no conjugate pairs exist on [α, oo) in the sense of
Leighton and Nehari [10],

(ii) oscillatory if there is a nontrivial solution with infinitely many
zeros on [α, oo).

(iii) nonoscillatory if every nontrivial solution has at most a finite
number of zeros on [α, oo).

Recently, W. J. Coles [5] has developed Wirtinger-type inequalities in
relation to the higher order equation
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1 This work was sponsored by the Office of Ordnance Research, U. S. Army, Contract

DA-04-495-ORD-1088 with the University of Utah. Presented to the Amer. Math. Soc, Janu-
ary, 1960.
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(r(x)yim)Ym) + (-l)m+1p(x)y = 0 (m=l, 2, 3, .)

by use of his Riccati systems [4] and in this discussion are included
various sets of two-point boundary conditions, one of which is analogous
to the well-known focal-point conditions for the second order equation
(1) (see [2], [12] and [13]).

Again following the second-order discussions [2], associate with (1)
its "reciprocal" equation [10, p. 369]

(1*) (V'ΊΦ))" - (VΦ))y = 0

as was done for (2) with

(2*) (VΊP(X)Ϊ + air(x))y = 03.

Note that y(x) is a solution of (1) if, and only if,

. = r{x)y"{x)

is a solution of (1*). Throughout this paper, the subscript " 1 " on a
solution will stand for the leading coefficient times the second derivative
of the solution.

In the first section known second-order definitions and theorems will
be listed, which will be shown to be true almost verbatim for the fourth
order case in the second section. The third section contains results fol-
lowing from Wirtinger-type inequalities, which are the fourth-order
special cases of the above-mentioned results of Coles, and an extension
of the eigenvalue discussion of Leighton and Nehari. The last section
contains Coles' general theorem with minor modifications, as utilized in
the preceding sections.

1. The second*order case. Consider equation (2) with the stated
conditions on its coefficients [2].

DEFINITION 1.1. If a nontrivial solution of (2) satisfies the two-point
boundary conditions y(a) = y(b) = 0, a < 6, then the smallest such number
b is designated as ηλ(a) and is called the first (right) conjugate point of
α. If no such solution and number b exist then equation (2) is said to
be disconjugate.

DEFINITION 1.2. If a nontrivial solution of (2) satisfies y(a)=y'(b)=0,
a < 6, then the smallest such number b is designated by fJt^a) and it is
said that a is the first (left) focal point of & = μx(α). The first two
theorems are almost trivial for (2) but their counterparts for (1) require
some proof, as is seen in the next section.

3 Previously utilized by Leighton for boundedness theorems in [8].
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THEOREM 1.1. Ifη^a) exists then so does μλ(a) and a<μL(a)<η1(a).
Furthermore, if (*) denotes the same notation for the reciprocal equa-
tion (2*) then the existence of η^a) implies, also, the existence of /^*(a).
In other words, if either η^a) or η*{a) exist then both of μx(a) and μΐ{a)
exist.

THEOREM 1.2. If μ^a) does not exist then for every solution y(x) of
(2), for which y(a) = 0 and y'{a) > 0, it follows that y(x)>0 and y'(x)>0
on (a, oo).

THEOREM 1.3. [2, p. 554] // μ^a) exists and I (l/r)=oo then r]x{a)

exists. Furthermore, for any solution y(x) of (2), for which y\b) = 0,

y(b) Φ 0, a S. b, it follows that y(x) has a zero on (b, oo).

This theorem is due to Hille for r = 1 and was utilized by Nehari

[12]. It is noted that disconjugacy of (2) implies the non-existence of

μλ(a), if Γ(l/r) = oo. Recall (e.g., [2]) that if ί~(l/r) < oo then μx{a)

can exist even though rj^a) does not—in particular, when \ p — oo.

(1/r) = oo and \ p—co then η^a) exists and,

in fact, equation (2) is oscillatory (for this result p(x) may change sign).
The well-known relation of the focal-point problem to quadratic func-

tionals4 was reiterated recently by W.T. Reid [13], when he gave a concise,
self-contained development with applications to new oscillation criteria of
(2).

THEOREM 1.5. [2, 13]. // the number μ^a) does not exist then the
quadratic functional

(3) Ilu; b] = \\r(u'Y - pu>)

is strictly positive for every b > a and every function u(x) such that
u(x) is absolutely continuous, uf 6 L2(a, b) and u has a zero of at least
order one at x — a. This conclusion can also be stated as a Wirtinger-
tγpe inequality

(V2<

2. The fourth-order case. Consider the equations

(1) (ΦW)" - p(x)y = 0 ,
4 For the general classical theory see Morse [11] and for the theory for singular func-

tionals see Leighton [9].
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(r(x) and p(x) positive and continuous on [α, co))f and

(Γ) {y"iv(χ)" - y[r(χ) = o .

The following conjugate point definition is that of Leighton and Nehari

[10].

DEFINITION 2.1. If a non-trivial solution of (1) satisfies the two-point
boundary conditions

( 5 ) y(a) = y'(a) = y(b) = y'(b) = 0, a < b ,

then the smallest such number 6 is designated by Vi(a) a n d * s called the
first (right) conjugate point of α. Recall from [10] that such a number
exists if (1) has a nontrivial solution which has double zeros at a and
%(α), is non-zero on (α, ̂ i(α)) and any essentially different (linearly in-
dependent) solution of (1) has at most 3 zeros on [α, %(α)].

DEFINITION 2.2. If a nontrivial solution of (1) satisfies

( 6 ) y(a) = y\a) = Vl(b) = y[(b) = 0, a < 6,

(recall ^ = rι/")

then the smallest such number b is designated by ^(a). The solutions
of (1) which are particularly useful in the following analysis are those
whose Wronskian at x — a is

( 7 )

By [10, Lemma 2.1] all of y, y', yx and y[ for y = U, V, u and v are
positive on (α, α>).

LEMMA 2.1. [10] If y(x) and z(x) are solutions of (1) then

S[y; z] = yz[ - zy[ - yfzλ + z% = C, a constant.

In [10] the non-self-adjoint form of the following is established and
utilized in establishing conjugate point (oscillation) theorems.

LEMMA 2.2. If y(x) and z(z) are solutions of (1) such that S[y; z]=0
and y(x) Φ 0 on I a [a, oo) then W(x) — yz' — zyf satisfies the second-
order self-adjoint equation

(8 ) (rW'ly2)' + (2y1/yd)W = 0 on I.

y = U(x):

y = V(x):

y = u(x):

y = v(x):

y
1

0

0

0

y'
0

1

0

0

Vl

0

0

1

0

y[

0

0

0

1
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Note that if y > 0 and y[ > 0 on I (such solutions exist for any such /)
both coefficients in (8) are positive and the results of the first section
apply. The following is an example of the importance of (8):

LEMMA 2.3. [10. Th. 3.11] // y(x) is a solution of (1) having at
most a finite number of zeros then (1) is oscillatory if, and only if, (8)
is oscillatory.

The present discussion will be concerned with relations between the
last two solutions, u(x) and v(x), defined by (7), since every solution of
(1) having a double zero at x = a can be expressed by

y = yλ(a)u(x) + y[(a)v(x) .

As in [10], note that in order for any nontrivial solution of (1) to have
both a double zero at x = a and at x — b (i.e., satisfy boundary conditions
(5)) it is necessary and sufficient that

( 9 ) σ(x) = u{x)v\x) - u'{x)v{x)

vanish at x — b. Furthermore, ηx(a) (of Definition 2.1) is the smallest such
b > a. Observe further that in order for a nontrivial solution of (1) to
satisfy the conditions (6) it is necessary and sufficient that

(10) ρ{x) = uλ{x)v[(;x) - u[{x)vλ{x)

vanish at x = b. The stage is now set for the verbatim fourth-order
analog of Theorem 1.1.

THEOREM 2.1. // 7)x(a) exists then so does μλ(a) and a<μ1{a)<y]1(a).
Furthermore, if (*) denotes the same notation for the reciprocal equation
(1*) then ηλ(a) implies, also, the existence of μ*(a).

Proof. Let Z(x) be a solution of (1) having double zeros at x = a
and x = Ύ)x(a) and positive in (a, ^i(α)). There exist inflection points
xλ < x2 of y = Z{x) on (α, rj^a)) such that Z"{xλ) = Z"(x2) = 0 and Z"<0
on (xlf x2). Recall that u(x) is the solution of (1) which satisfies

u(a) = w'(α) = u[{a) = 0, uλ(a) = 1 .

By use of a fundamental technique of [10], since {Z"\u")f must change
sign on (x19 x2), say at x = b. There exists a number λ such that the
solution y = Z(x) — Xu(x) satisfies the boundary conditions (6) and
a</^(a) 5Ξ 6 < ^i(α)5. For the second part consider the pair of solutions
U, u. Since S[u; v] = 0 then σ(x) = wy' — τra' is a solution of

5 This result may also be established easily by means of an indirect argument using
equation (8i) following.



30 JOHN H. BARRETT

Zf\'+*ha = o and (<*)'+ *hσ = 0 on («,«).
u / u \ v J v

Note that x = α is a singular point. Similarly, S[{7, w] = 0 and σ1(x) =
ΪTM/ — uU' is a solution of (8') and

(8") (ψy+ψLσi = o on

Finally, S[£7, F] = 0 and <72 - t /F ' - VU' is a solution of (8"). Since
σ(a) = 0 = 0(7]^ = σ^a) and σ2(a) > 0, σ'2(a) — 0, then simple comparison
techniques give that σx has a zero xx on (α, %) and that σ2(x) has a zero
x2 on (α, α?i) c (α, ̂ ) . Because of the relationship between (1) and (1*)
it is easily seen that the smallest such number x2 is actually μΐ{a) and
the theorem is proved.

While Theorem 1.2 is not true for (1) a similar theorem does hold.

THEOREM 2.2. If μλ{a) does not exist then there exists a solution
y(x) such that y(a) = y'{a) = 0, y(x) > 0, y'(x) > 0 yx(x) > 0 and y[(x) < 0,
on (α, oo).

The proof will be accomplished by two lemmas concerning the ratios
involving the particular solutions u(x) and v(x) of (7).

(11) λ0 = ujv, \ = u'\v\ λ2 = ujv19 λ3 = u'JvΊ .

LEMMA 2.4. // μ2(α) does not exist then

λ0 > λi > λ2 > λ3 > 0 on (α, oo) .

Proof of lemma. That all \ are positive is obvious. Also, if Lemma
2.2 is applied to (1*) and its solutions uλ and vλ then p(x), defined by
(10), satisfies

(8J (pΊpulϊ + 2uρlu\ = 0 on [α, oo)

viy + 2vp/vl = 0 on (α, co) .

Note that x — a is not a singular point of the first equation of (8X).
The following useful relations are derived by routine calculations:

n*\ / PΊv = -~rσ'
(*-*) jλΊ M- τiv Vi ί(rσ')' = 2τ

where

(14) τ(x) — u% — t X = uv[ — vu[ ,

the latter identity following from the fact that S[u; v] = 0.
Since ^(α) does not exist and ρ(a) = 1 then p(x) > 0 on [a, oo). Also,
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p'(a) = 0 and, hence, integration of the first equation of (8X) gives
p\x) < 0 on (α, oo). Therefore, σ'(x) > 0 and σ(x) > 0 on (α, oo). In
order to show that τ(x) > 0, recall that (p'lp)' = — 2τ and from the
second equation of

2τ\v\ = 2vρjvl — 2v[ρflpv\ > 0 on (α, oo) .

Therefore, all of the differences (12) are positive on (α, oo).

LEMMA 2.5. If ^(a) does not exist then λ0, Xλ and X2 are decreasing
functions and λ3 is an increasing function on (a, oo).

Proof of lemma. Simple calculations yield

(14) λ{ = - a\v\ X[ - -τlφ'f, λj = -p\u\, λί - pτl(v[Y

from which the result follows immediately.

To complete the proof of Theorem 2.2, let λ* be a positive number
such that

XQ(x) > X£x) > X2(x) > λ* > X3(x) on (α, oo) .

Then y(x, λ*) = u(x) — X*v(x) satisfies the required conditions.
An example of (1) for which μλ{a) does not exist is (e~%xy")n—e~2xy — 0

for which direct calculations show that p(x) > 0 on (α, oo). This example
should be compared with the similar one for the second-order case [2].

S oo

(1/r) = oo then ηλ{a) exists.

Proof. In addition to the identities (12), (13) and (14) note that

(15)

\ — λ2 = rσf/vv1

χo-χ3 = τlvv[ (16) .

Λi — ^3 — T'/V'V!

τf = (̂ Ίo + τu^\ux

τ" = — p — pσ or
r

( w ' ) w + 2pσ = 2^/r.

and that τ(x) satisfies the second order self-adjoint equation with posi-
tive coefficients:

(17) ( - £ — V + 1 — ( U + gg-V = 0 on (α,oo).
Wu'u'J 2Vu'u[\ruf u'J

Assume that the theorem is not true, i.e., (1) is disconjugate. Thus

σ(x) > 0 on (α, oo) and since \ (u2/r)=oo, Theorem 1.3 (second part) may

b l i dbe applied to
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(8') (rσ'lu2)' + 2u1σ/u3 = 0 on (a, oo) .

to obtain that σ\x) > 0 on (a, oo). Hence ρ\x) < 0 and p(x) has only
one zero, namely μx{a), on (α, oo). Since

(τ/uY = -σu'Ju2 < 0 on (a, oo), lim(τ/^) = — > 0 ,

r(a) = τ'a) = 0 and τ"(α) > 0 .

Then τ{x) can have at most one zero on (α, oo). Suppose first that such

a zero x — ty exists. Then τ(x) > 0 on (a, tλ) and τ(x) < 0 on (tlf oo).

Note that I ι/u'u[ = oo and since (17) is disconjugate, Theorem 1.3

guarantees that its solution τ(x) has only one point x = t[ on (α, ί j where
τ' = 0 and τ' < 0 on (ί{, oo). The first equation of (16) yields that
a < μι<t[< ίj.

On the half-line (ίx, oo) equations (12), (14) and (15) yield

\(x) > X0(x) > X2(x) > λi(a?)

λί < 0, X'o < 0, λ̂  > 0, λj > 0 .

Because of the above monotonicity there exists a positive constant λ* such
that on (t19 oo),

Let 2/(α;) = u(x) — λ*v(^), a solution of (1). Then y(x) > 0, y'(x) < 0 and
y"{x) < 0 (since yx < 0) on (ί^ oo), which is contradictory information.

Therefore, τ(x) > 0 on (α, oo) and by Theorem 1.3, τ\x) > 0. Thus
on the half-line (μ19 oo):

X0(x) > XL(x) > XΆ(x) > λa(a?)

λj < 0, λj < 0, λ̂  > 0, λ̂  > 0 .

As above there exists a positive constant λ* between \ and λ3 on (μly oo).
For y(x) — u(x) — X*v(x) on the interval (μu oo):

y(x) > 0, y\x) > 0, ^(α?) < 0 and y[(x) > 0

which is contradictory, using that I (1/r) = oo.

S oo poo

(1/r) — oo and \ pu\ — oo then rj^a) exists and,
in fact, equation (1) is oscillatory.

The crucial point of the proof is the following which follows im-
mediately by application of Theorem 1.3 to equation

LEMMA 2.6. // I pul = oo then μλ{a) exists.
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S CO

pu\ — oo implies that μx{a) exists which, to-
(1/r) = oo and Theorem 2.3 gives that y]i(a) exists. Since

for any aλ > α, ^ ( α j exists, then by [10] equation (1) is oscillatory.

Because of the monotonicity of u(x) and uλ(x) it follows that

(1/r) = oo and I p = oo then (1) is oscίl-

Further corollaries are obtained by a more careful examination of
the properties of u(x) and its derivatives. Integration of (1) and con-
sideration of the initial conditions for u(x) yield

(18) uλ{x) = 1 + l\pn) and u(x) = l\ujr) ,
α a

where the Riemann-Liouville notation is used for the iterated integrals.
For a < x0 ^ x < oo it follows that

and

Mr) > ul(x0) \~(llr(x))\hllr)Ίdx

S r ~ Γ a; -12

pul > p(x) 1 + u(x0) Γp dx
XQ J XQ L XO -J

= Γ p + 2%(a;0) Γ (p(x) (ί2p)dx + %2(x
Jx0 Jx0 \xo /

COROLLARY 2.4.2. If\ (llr(x))dx= oo and \°°p(x) (ϊ2p)2dx=oo then

(1) is oscillatory.

x Cx\

Note that for a < x0 < xλ ^ a? < oo, Γp ^ (^ — α^n p-^oo as x—>oo and

the following result of Nehari and Leigh ton follows.
COROLLARY 2.4.36. [10, Th. 6.8] If r{x) ^ m αraZ (1) is nonoscillatory

S oo

x2p(x)dx < oo.
In connection with the above oscillation theorems it is appropriate

to list two known theorems insuring nonoscillation.

Theorem [10, Th. 6.12] If P(x) = ΐp and Γ(P/r) < oo then (1) is
X J

non-oscillatory.
Theorem [10, Th. 6.11] If Γ l / r < oo and [°x2p(x)dx < oo then (1) is

J Jx

non-oscillatory.
6 Also, a special case of a more general result for fourth-order systems by Sternberg

and Sternberg [14].
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3. A n eigenvalue problem, a n d Wirtinger-type inequalities. Leigh-
ton and Nehar i have shown [10, Th. 6.6 and 6.7] t h a t equation (1) is
disconjugate on [α, oo) if, and only if, t h e least eigenvalue λ(6) of t h e
' "conjugate-point" problem

(ry")" - Xpy = 0, y(a) = y\a) = y(b) = y'(b) = 0 .

satisfies λ(6) > 1 for all b > α. F u r t h e r m o r e , if equation (1) is discon-
j u g a t e on [α, oo) t h e n I4[w; 6] ^ 0 (see equation (25)) for all w(x) of class
D"{a, b) e L2(a, b) which satisfy w(a) = w\a) = w(b) = w\b) = 0. Finally,
in t h e spirit of [12] t h e y obtained a number of nonoscillation theorems
by tak ing special examples of such w(x).

Consider here t h e " focal-point" problem as for t h e second-order case
in [2, 12].

(19) (ry")" - Xpy = 0, y(a) = y'(a) = y,{b) = y[{b) = 0 .

For each 6 > a let X^b) be the least eigenvalue and y = z(x) be a cor-
responding eigenfunction. Integration by parts gives

(20) ( V = \(b)[r(z"Y .

If there does not exist a number μ^a) then λ = 1 is not an eigenvalue
for any by a and by Theorem 2.2, there exists a solution y(x) of (1) for
which y(a) = y\a) = 0 and y(x) > 0, y\x) > 0, yλ(x) > 0, y[(x) < 0 on
(α, oo). This is but a special case of the general theorem of Coles [5],
as will be seen in the last section, and it follows7 that for every
b > a

(21) ( V 2 < [r(u"Y, i.e., /4[u; 6] > 0
ja Ja

for every function u(x) for which u1 is absolutely continuous, u" e L2(a, b)
and u has a double zero at x — α.

LEMMA 3.1. The number μ^a) does not exist if, and only if, the
eigenvalue λx(6) > 1 for all b > α.

Proof. If μλ(a) exists then for b = /A(α), λ(^(α)) = 1. If μx{a) does
not exist then (20) and (21) yield that λx(δ) > 1 for b > a and the lem-
ma is proved.

By combining the above lemma with Theorem 2.3 it follows that
(recall the special monotone solution u(x) of (1)):

( oo

(1/r) = oo then equation (1) is disconjugate on

7 See concluding statement of section 4.
8 This result has also been obtained by H. C. Howard by means of Rayleigh quotients

in his dissertation at Carnegie Institute of Technology, June 1958; to appear in the Transac-
tions of the American Mathematical Society 96 (1960), 296-311.



DISCONJUGACY OF A SELF-ADJOINT DIFFERENTIAL EQUATION 35

[α, oo) if and only if, λ^δ) > 1 for all b > a and if (1) is disconjugate
then for every b> a

(21) [pw2 < \br(w"Y
Ja Ja

for all w(x) such that w'(x) is absolutely continuous, w" e L2(α, 6) and w(x)
has a double zero at x — a.

S CO

(l/r)=oo the Wirting-
er-type inequality requires a double zero only at x = α while the result
stated at the beginning requires double zeros at both x — a and x = b.

An application of Theorem 3.1 to the reciprocal equation (1*) yields

COROLLARY 3.1.1. If\ p = oo and equation (1*) is disconjugate

then for every b > a

ar p

for the above class of functions w.

4. Higher order equations* The following is the theorem of Coles
[5] which has been utilized several times in the preceding sections. It
should be noted that his proof for the case r = 1 carries over step-for-
step for the following.

THEOREM C. If m is a positive integer; r(x) > 0 and p(x) are both
continuous on [a, b], a < b; and y(x) is a solution of

(22) (r(x)y{m)Ym) - p(x)y = 0; yx{x) = r{x)y{m){x)

such that

ί(-l)mp(x)y(x) ^ 0 b u t ΐ O o n [α, b]

(23) P*» ( w-4 )(c4) ^ 0 (i = l , 2 , . . . , m )

I idi) ^ 0 (i = 0 , l , . . . , m - l )

where
fc4 = 0 or 1 (i = 0 , 1 , , m) such that ΣΓ=o^ is

Ct = /«, A;4 = 0 ^ = ία, fc1+1 = 0 ίc4* = a + b - ct= ία, fc1+1 = 0 ίc4* = a

\ ki+1 = 0 Hf^a
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(24) Pty^-^ix) > 0 on (a, b) and at cf (i = 1, 2, , m)

QiVi^n) ^ 0 on [a, b] and > 0 at df (i = 0,1, , m — 1) ,

and the last inequality is strictly positive if p(x) is not identically zero
on any subinterval of [a, b]. Furthermore, for every b > a

(25) I2m[u; b] = [[r(u™f - (-I)-*™2]
Jα

is non-negative for all functions u(x) such that

-^ix) is absolutely continuous
{m)eL2[a, b] and u{i)(d*_4_x) = 0

(of at least order 1)

for i = 0,1, , m — 1; with I2m = 0 if, and only if, u(x) is a constant
times a solution of (22) which, in addition, satisfies

(27) Qiy
{i)(di) = 0 (i = 0,l, , m - l ) .

Note that the special case in §3 is that for m = 2 and fcx = fc2 = &3 = 0.
For this case, Coles' method reduces to the following: If y(x) is a

solution of (1) such that y > 0 and #' > 0 on [α, b] then by integrating
by parts and completing squares

(V =
Jα

Uy'L y

Using Theorem 2.2 the inequality (21) follows immediately.
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HARDY'S INEQUALITY AND ITS EXTENSIONS

PAUL R. BEESACK

1. Introduction. In this paper we are concerned with a systematic
and uniform treatment of some analogues and extensions of Hardy's
inequality for integrals. This result we state as

THEOREM 1. If p > 1, f(x) ^ 0, and F(x) = [*f(t)dt, then

Jo

Jo \χj \p — 1 / Jo

unless / = 0. The constant is the best possible.
This theorem was first proved by Hardy [1], and various alternative

proofs have been given by other authors. (For reference to these, see
[3, 240—243].) Theorem 1, together with the following generalization
of this result (also due to Hardy, [2] and [3, Th. 330]) may be regarded
as models of the class of inequalities with which this paper deals.

THEOREM 2. If p > 1, r Φ 1, f(x) ^ 0, and F(x) is defined by

\Xf(t)dt (r > 1) ,

:
f(t)dt (r < 1) ,

JX

then

Jo
χ-rFpdx

I r — 11

unless f Ξ= 0. Again the constant is the best possible.
Our integral inequalities will be of the form

(1.1) [bs(x)Fpdx S [br(x)fpdx
Ja Ja

where p > 1 (or p < 0), and F is defined (as in Theorem 2) as a suitable
integral of f(x). For 0 < p < 1, we obtain inequalities of the form
(1.1), but with the inequality sign reversed. Our method of proof
differs from those referred to above. We make use of the Euler-Lag-
range differential equations

Received July 14, 1959.
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(1.2) jL{r(χ)y'*-*} + s(x)y^ = 0 ,
dx

(1.3) * {rfcκ-yr-1} - Φ ) ^ " 1 = 0 ,

associated with the minimum problem (1.1). Here, (1.2) applies if F' =/,
while (1.3) applies if F' = —f. Nevertheless, the method is not a
variational method, the difficulties involved in such an approach being
considerable, (cf. [3, p. 181], where a variational proof of Theorem 1
is sketched.) Rather, we make use of certain Riccati-like equations as-
sociated with (1.2), (1.3) leading to integral identities. Aside from this,
the main tools used are Holder's inequality and two special, simple cases
of the theorem of the arithmetic-geometric means.

In §2 we begin by disposing of several lemmas on the ' 'order of a
zero" of a function. There will be needed in § 3, where we deal with
the inequalities (1.1); this arrangement avoids interrupting the main
thread of the argument. Finally, in § 4, we consider the case that p
is a positive, even integer, so that (1.2), (1.3) are the same, and we
may allow / (and F) to change sign.

2. Preliminary lemmas* Throughout this paper our integrals may
be interpreted either in the Lebesgue sense, or as (absolutely convergent)
improper Riemann integrals, with statements such as f(x) = g(x) to be
interpreted accordingly. We always use the letters p and q to denote
conjugate exponents, i.e., p'1 + g"1 = 1.

LEMMA 2.1. Let r(x) be positive and continuous on a < x <b, and

S b

r\f\pdx < oo, where p > 1. Set
a

F,(x) = \Xf{t)dt , ( a ^ x <b); F,(x) = \*f(t)dt , (a<
Ja Jx

If r(x) =O[(x - ay-1], or if rqlP(x)\Xr-qlll(t)dt = O(x - a), then
Ja

(2.1) τ(x) I Fλ(x) \p = o[(x - ay-1] as x-+a+ .

// r(x)=O[(b - xγ-% or if rqlP(x)\br-^lv(t)dt = 0(6 - x), then

(2.2) r(x) I F2{x) \p - o[(b - xf'1] as x — b- .

Either a or b may be infinite, the order conditions being modified ap-
propriately.

Proof. We prove only (2.1), the proof of (2.2) being the same.
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First, note that Fx(x) = o(l), so that if r{%) = O[(x - a)*"1], then (2.1)
follows. If the alternative hypothesis holds, then

^ \x\f\dt =
Jα

llP /Cx \l/gG x

β r |/ |*

by Holder's inequality. Hence

{ Cx ΛPlQ.

r"lP(x)\ r-'i'dtV = o(l)Ό[(x - a)m]
= o[(x - α)*-1] ,

as asserted.
We remark that (2.1) is well-known in the case r(x) = 1, where the

assertion is simply that / e Lp(a, x) implies | Fx(x) \p = o[(x — α)*"1]. (cf.
[3, Th. 222].) That r(x) must satisfy some restriction in order to assure

(2.1) for all Fx such that I r [/['do? converges is easily seen by taking

a = 0, / = 1, F = x. Finally, we note that the two hypotheses assuring

(2.1) are mutually exclusive. For, r(x) £ k(x — aY~x implies r-qlv(x) ^

S x

r~qlPdt does not exist.
a

COROLLARY 2.1. The hypotheses for (2.1) are satisfied if either

(2.1.1) 0 < cλ ^ r(x) <Ξ c2 on (a, x], or

(2.1.2) r(x) is nonincreasing on (α, x], and a is finite.

For (2.2), the same result holds, with "nonincreasing" replaced by
"nondecreasing," (and b is finite).

If a = — oo, then (2.1.1) implies that r(x) is bounded on (—«>,#],
and hence that r(x) =o(\x\p'1) as x—> — oo. If a is finite, then

rp/%x)[Xr-qίPdt ^ cϊ/pcϊq/p[*dt = O(x - a) ,
Jα Jα

or

rqlP{x)\Xr'qlPdt ^ [*dt = O(x - a) ,
Jo Jα

according as (2.1.1) or (2.1.2) holds.
The next lemma, although not strictly required in the sequel, may

shed some light on the question as to whether the inequality (1.1) can
be "improved," in a given case. The notation is that of Lemma 2.1,

J b

r\f\pdx < co, and p > 1.
a
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LEMMA 2.2. // either rqlP{x)\^r-qlPdt = o(b - x), or if both r(x) =

o[(b — x)1"1] and rqlP{x)Vr-qlPdt = 0(6 — x), where k ^ a, then

(2.3) r(x) I F,(x) \p = o[(b - x)*-1] as x-^b- .

Similarly, if rqlP(x)\\-qlPdt = o(x — α), or if both r(x) = o[(a; - α)31"1]
r~qlPdt = 0(x — a), where k ^ δ, fe

a;

(2.4) r(x) I F2(α?) \p = o[(a; - α)p-χ] as

Proof. Again we shall prove only the first half of this lemma. If

the first hypothesis is valid, then from the proof of (2.1) we have

r \f\pdxArqlP(x)\ r~qlPdt\ = o[(b - α;)*"1] .

Now, suppose the alternative hypotheses are valid. Then

rq}p(x)[Xr-qlPdt ^ K(b - x)
Jfc

for x near 6. Given ε > 0 there corresponds X ^ k such that

G δ \ l / p

χr\f\'dή -K^<ε.
Proceeding now as in Lemma 2.1, we have

\Fι(x)\- |Ή(X)| SS \'jf\dt ^ §\\f\>dty

G b \ijp

r|/|«dίj
Hence

r*»(x) I FJix) I ̂  r" ' (*) | FX(X) \ + s(b - x)

so

f*"jx)\F1(x)\< r«°(x)
(6 _»)<»-»" = ( δ - x ) 1 '

Letting x—> 5—, we obtain

- δ - (6 - aj) (2)-1)/ i J ~

Since ε is arbitrary, (2.3) is established.
We note, without proof, that if b = oo then (2.3) is valid if either

0 < cx ^ r(x) 5g c2 or if r(x) is nonincreasing on [α?, oo).
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LEMMA 2.3. Let r(x) be positive and continuous on a < x < b, and

S b

rfpdx < co, where / > 0 and p < 0. Set
a

FAx) = \Xf(t)dt, (a^x<b); F2(x) = Γ' f(t)dt, (a<x^b).
Ja Jx

if

ίraip(x)[ V^'dίV"1 = O[(x - a)-1],

then

r(x)Fp(x) = o[(x - a)2"'1]

as x—>a + . Similarly, if

ίr^xtfr-^dtY1 - O[(b - x)-1] ,

then

r(x)Fi{x) = o[{b - x)*-1]

as x-+b—. If a or b is infinite, the result is still valid, with (x — a)
or (b — x) replaced by \x\.

Proof. This time we shall give the proof of the second half of the
lemma. Proceeding as in Lemma 2.1, and noting that Holder's inequality
is reversed for p < 0, we have

S b /Cb \llP/Cb

(rllPf)(r-llP)dt ^ (λ rf'dή (\
/Cb \ /Cb \p/q

Fξ(x) ̂  ()ffPdή()x

r~qlPdt)
Hence

{ Cb Λp/q

r«lP(x)\ r~qlPdή = o [(6 -

l/g

since p\q = p — 1 < 0.

S b Γb

rfpdt, \ fdt as-

J x Jx

r~qlPdt in this case (p < 0). Finally, we note
X

that the appropriate hypothesis of the lemma is satisfied: if a Φ — oo,
and either 0 < cx ̂  r(x) ̂  c2 or r(x) is nonincreasing on (α, x]; or if
b < oo, and either 0 < cλ S r(x) ̂  c2 or r(x) is nondecreasing on [xy 6).

LEMMA 2.4. Wϊίfe the same notation as in Lemma 2.3

(p < 0, \rfpdx < oo). // eiί
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ίrq'p(x)[XrPlq-dt\ * = o[(b - x)'1] ,

or

r(x) = o[(b - xy-1] ,

then

r(x)F1

p(x) = o[(b - xy-1} as x

// either

ίrqlP(x)[br~qlPdt\ λ = o[(x - a)'1] ,

or

r(x) = o[(x - a)^1] ,

then

r{x)F£{x) = o[(x — ay-1] as x-+a + .

Again, we shall prove only the second assertion. Since F2 increases
as x—*α + , Fξ decreases; hence if r(x) = o[(x — α)2*"1], the conclusion
follows.

If the alternative hypothesis holds, then from the proof of Lemma
2.3, we have

S δ f Cb \Plq

rfpdx-\rqlP(x)\ r~qίPdt\ = o[(x - a)*-1] .
Finally, we note that if a Φ —°°, the second assertion of the lemma
will be valid if r(x) is bounded near x = a.

LEMMA 2.5. Let r{x), s(x) be positive and continuous for a < x < 6.
Suppose Fλ{x) is nonnegative and nondecreasing on a < x < 6, and that

\bs(x)Fp(x)dx < oo , 0 < p < 1 .

{ f(3s-α)/2 ^

(x - ay-1- \ s{t)dt\, then r{x)Fp{x) = o[(x - a)**-1] as

(b - xy-Λ

If a — — oo, or b = oo, the assertions should be

{ fz/2 1

tfl*-1! s(t)dt> implies r(x)F?(x) = oda?!*"1) as x—> — oo ,
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or

r(χ) =θ\xp~1\2Xs(t)dt\ implies r{x)Fp{x) = odx^'1) as α?-> oo.

Proof. Since Ff is nondecreasing we have

S (3x-α)/2 f(3x-α)/2

s(t)Fr(t)dt S ί?(»)\ s(ί)dί ^ Kr{x)F?(x)ίx - a?-' .
X JX

The result now follows from the fact that the left term of this inequality
converges to zero asx->α + . The second assertion of the lemma follows
in the same way. Finally we note that if a Φ — oo, and r(x) is bounded
near x = a, then r(x)Ff(x) = o[(x — α)2)~1] is immediately valid.

LEMMA 2.6. With the same hypotheses as in Lemma 2.5, except
F2(x) is supposed nonnegative and nonincreasing on a < x < b:

Ifr{x) =θ{(x - ayA* s(t)dt\, then r(x)F£{x) = o[(x - a)*'1] asx->a+ .

Ifr{x) =θ\(b - x)*-1^ s(t)dt\, then r(x)F2

p(x) = o[(b - x)*'1] asx->b- .
I J(3aJ-6)/2 J

This is proved in precisely the same way as Lemma 2.5.

3. Integral inequalities with p reaK Let p be a real parameter
(p Φ 0, p Φ 1). Consider the pair of second-order, nonlinear differential
equations

(3.1) jLφ)y»-*} + s(x)y^ = 0 ,
dx

(3.2) d{r{χ){_yΎ_1} _ ^ ^ = Q ^
ax

where s(x), r{x), r\x) are assumed continuous on an interval a < x < 6,
and r(x) > 0 on this interval. Here either a or 6, or both, may be
infinite. We note that these two equations are identical if p is an even
integer. In particular, when p = 2, these equations reduce to the self-
adjoint linear equation

{r{x)yj + s(x)y = 0 .

Let y(x) be a solution of (3.1) for which y(x) > 0, y\x) > 0 on (α, b) and
set h(x) = [y'(x)ly(x)]p-\ Then h(x) satisfies the Riccati-like equation

(3.1)* A-(rh) + (p- l)rΛ< = -s(x) , q = pj{p - 1) .
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Similarly, if y(x) is a solution of (3.2) such that y(x) > 0, y\x) < 0 on
(α, 6), and we set h{x) = [—y'(x)ly(x)]p~\ then h satisfies

(3.2)* -£-(**) - (p - l)rλβ = 8(x)
ax

Now, suppose f1(x)ff2(x) are nonnegative, measurable functions on
(α, δ). With the pair of differential equations (3.1), (3.2), we shall as-
sociate the functions

(3.3) Fx(x) = (Vi(ί)dί , a ^ x < b ,

(3.4) Fs(a?) - \bf2(t)dt , α < x ^ 6 ,

Notice, in particular, that our notation implies -F^α) =F2(b) = 0, and
that /i,/ a are integrable on any closed subinterval of (a, b). Since r, &
and Ft are all continuous and h Φ 0 on such a closed subinterval, it
follows that if a < α' < 6' < 6, then the integrals

(3.5) /,(α', 6') - ['r{fP + (p -

exist, provided /4 e Lp(αf, 6') I n the case 0 < p < 1 this latter condition
follows from the fact that /4 e L(α', &'). If p < 0, we must also insist
that fi be strictly positive. Taking i = 1 and integrating by parts the
last term of (3.5), we obtain

£((&', 6') - Γr/fώx + (p - ΐ)[b'rhq F?dx + [b\rh)'F?dx - rhFλ"',
Ja' Jα' Jα' Jδ'

or using (3.1)*,

(3.6) Ix{af, V) = Γr/ίdα - Γβίyda + τ(a')h{a')Ff(a9) - r{b')h{b')F?{V) .
Jα' Jα'

Proceeding in the same way for /2, and using (3.2)*, we obtain

(3.7) Ua\ V) = Ϋ'rfξdx - ['sFfdx + r(b')h(b')Ff(b') - r(a')h{a')Fi{af) .
Ja' Ja'

We now use the fact that Iέ(α', 6') is nonnegative if p > 1 or p < 0,
and nonpositive if 0 < p < 1. Indeed, this follows from the well-known
inequalities [3, Th. 41]

(3.8) xp + (p - 1)0* - pxy*-1 ^ 0 , (p < 0 or p > 1) ,

(3.9) &p + (p - l)yp - pxy9-1 ^ 0 , (0 < p < 1) .

Here, & and y are nonnegative (positive if p < 0), and in both cases



HARDY'S INEQUALITY AND ITS EXTENSIONS 47

strict inequality holds unless y = x. Setting x = fif y = hp Ft in (3.8),
and recalling that r(x) > 0 on (α', &') ,we see from (3.5) that I^a', V) ^ 0,
with strict inequality unless fJFt = ±fif\y, i.e., unless fi Ξ=Ξ cy\ Similarly,
in the case 0 < p < 1, we may apply (3.9) to prove /*(<!', 6') ^ 0. Hence
from (3.6) and (3.7) we obtain

(3.10) Γ sFpdx $ Γ rfξdx + r(x)h(x)F1

p(x)
Ja' Ja'

(3.11) ΓβFίda; $ ["'rf
Ja;' Jo'

dx

where, in both cases, the upper inequality sign holds if p < 0 or p > 1,
and the lower sign holds if 0 < p < 1. If i ) < 0 o r p > l our hypothesis

S δ

r/ydaj < oo. This will incidentally assure /4 e Lp(α', δ') Finally,
α

we note that if inequality holds in (3.10) or (3.11) for any (a', bf), then
(assuming the existence of the corresponding limits) inequality will also
hold when α' = α, bf = b. This follows from the fact that |/«(&', b') \ does
not decrease as the interval (α', br) expands.

We must now consider separately the three cases p > l , j 9 < 0 , 0 < ^ > < l ,
as the details differ in the three cases.

3.1. The case p > 1. Here we have two theorems of which we
prove only the first, the remaining theorem following by the same
arguments.

THEOREM 3.1.1. Suppose the differential equation (3.1) (where p>l)
has a solution y(x) such that y(x) > 0, y'(x) > 0 on a < x < 6, and that

(3.1.1) y\x)ly{x) = O[(x - a)-1] as x — a+ .

If r(x) =O[(x - ay-1], or rqlP(x)[Xr-qlPdt =O(x - α), and ^\rfpdx < oo,
Ja Ja

then

(3.1.2) \bs(x)F?dx g [r(x)f?(x)dx .
Jα Jα

Proof. Setting h(x) = [!/f(aO/0(aO]p-\ we have A, - O[(α - α)1-^] by
(3.1.1). Moreover, by Lemma 2.1, we have rF? = o[(# - α)31"1]. Hence,
letting a'-+a and 6' —> 6 in (3.10), we obtain

(3.1.3) [sF^dx S [rffdx -Έmr(x)h(x)F1

p(x) ,
Ja Ja x-*b

which certainly implies (3.1.2). By our previous remarks, equality can
hold in (3.1.3) only if Fx{x) = cy(x), so that equality can hold in (3.1.2)
only if both this condition holds (so y(a) must be zero), and
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lim cpr(x)y(x)y'p-\x) = 0 .
x-*b

On the other hand, even if this holds for c ψ 0, equality may hold in

(3.1.2) only for fx = 0, since \ryfpdx may diverge. Indeed, by Lemma

2.1, this integral will diverge unless

(3.1.4) lim r{x)y(x)y'p~\x) = 0 .
x-+a

In summary then, equality holds in (3.1.2) only if fλ = cy'{x) where
c = 0 unless all of the conditions

(3.1.5) y(a) = 0 , limryy'*-1 = 0 , \\y'pdx < oo ,
x-*a Ja

hold. In particular, c must be zero unless (3.1.4) is satisfied.
The inequality (3.1.2) is certainly sharp (i.e, the unit constant on

the right side cannot be reduced) if the conditions (3.1.5) all hold. Sup-
ra

pose that! ry'pdx < oo, and at least one of the remaining conditions of
Ja

(3.1.5) does not hold. Then, in general, (3.1.2) is not sharp. This is
easily seen by taking p — 2, r(x) = s(x) = 1, y(x) = sin x, with
0 < a < b ^ π/2; in this case the unit constant can be reduced to
4(6 - aflπ\

S δ
ry'pdx = oo, and s(x) ^ 0, then (3.1.2) is sharp if

a

(3.1.6) lim r{x)y{x)yfp~\x) < oo and \\mr{x)y(x)yfp-\x) < oo .
x-*a z->&

S x
ryfpdx — oo, the first of conditions (3.1.6) is sufficient, and

S a
ry'pdx = oo, the second of conditions (3.1.6) is sufficient to ensure

X

the sharpness of (3.1.2). To prove this assertion, we take

( 0 , a ^ x ^ a' ,

fi(x) = W ) , α' < x < V ,
I 0 , V ^ x S b ,

where α', 6' will be fixed later. Then Fx(x) = y(x) — y{a') for a' < x < δ',
and
(3.1.7) F!(x) = 2/p(^)ίl - ^ l } 2 ^ »p(a5)ίl - p ^ ^ - 1 , a' < x < V .

I y(χ) J I y(χ) )

This inequality is the special case of (3.8) obtained by taking x =

1 — y{a')y~\x), y = 1. Using (3.1.7) and (3.6) we now have

sFfdίi? ^ I sypdx —

a' ja'

S br a' Cbr

ryfpdx + rhyp — py{af) \ syp~λdx .
a' b' ja'
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From (3.1), we have

Γ syp-χdx = ry'p~x " .
Jα' δ'

Hence

[sFpdx > ['rf?dx - r(br)y(b')y'»-ψ) - py(a')r(a')y'p-\a')
Ja Ja'

> (1 - δ) ['rfrdx = (1 - δ)[rffdx ,
Jα' Ja

provided that

r(b')y(b')yfp-\b') + pr(ar)y(a')y'p-\a') < δ^'rffdx .
Jα'

By (3.1.6) this inequality can be satisfied for any δ > 0 by selecting a1

or &', or both, appropriately close to a or b. Hence (3.1.2) is sharp.
It is of interest to note that the sharpness of (3.1.2) implies only

that

inf jίίm r(x)h(x)F[(x)\ = 0 ,

where the infimum is taken over all admissible fx φ. 0. Hence, in general,
(3.1.3) certainly states more than (3.1.2) even when (3.1.2) is sharp. On
the other hand, if r(x) satisfies the order conditions of Lemma 2.2 at
x = b, and if y\x)y~\x) = O[(b - x)-1] asx-*b-, then (3.1.2) and (3.1.3)
are the same.

Finally, we note that if p ^ 2, then (3.1.3) can be improved to

(3.1.8) [sFfdx g [rfrdx - ϊίϊή r{x)h(x)F?(x) - (V |Λ hllip~1)F1 \
pdx .

}a ja x-*b ja

This follows from the fact that the inequality (3.8) can be improved
slightly to give

(3.1.9) x* + (p - l ) y p - p x y * - 1 ^ \ x - y- y \ p

THEOREM 3.1.2. Suppose the differential equation (3.2) (with p > 1)
has a solution y(x) such that y(x) > 0, y'(x) < 0 on a < x < 6, and that

(3.1.10) y\x)ly(x) = O[(b - x)-1] as x->b- .

If r(χ) = O[(b - xY'1], or rqlP(x)\br-qlPdt = 0(6 - x), and Vrfξdt < oo,
Jx Ja

then

(3.1.11) \bs(x)Fp(x)dx ^ [r(x)fp(x)dt ,
Ja Ja
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f2dt. Equality holds in (3.1.11) only iff2 Ξ= cy'(x)
X

where c = 0 unless all of the conditions

(3.1.12) y(b) = 0 , lim ryi-y'Y'1 = 0 , (V(-0')p<te < co
x~*a Ja

S b

τ{—yf)pdx = oo, then (3.1.11) is sharp provided
a

}ϊmry(—y')p~1 < oo, and ]imry(—y')p~x < oo .

Finally, if p }> 2, (3.1.11) may be improved to

(3.1.13) [sFξdx ^ [rffdx -Έmφ)k(x)F?(x) - (V|/2 - Λ^-^l'eZα ,
Jα Ja χ-+a Ja

where h = [(—l/')/2/]p"1.
Theorem 1 is the special case of Theorem 3.1.1 obtained by setting

a = 0, b = oo, ?/(#) = #(2>~1)/2). More generally, Theorem 2 is obtained from
Theorem 3.1.1. (for r > 1) and Theorem 3.1.2 (for r < 1) by taking

= χ{r~1)lP. In this case, we have

r(x) = kxp-r , rQfp(x) = fc1x
(ί?-r)/(ί)-1) , fife - ( ? )*)

\ \ | r — 1|/ /

S X (Όβ

r~qlPdt = k2x, or rqlP(x)\ r~qlPdt = fe2ίc according as r > 1
0 fs Jx

or r < 1. Since I r \y'\pdx = oo, equality can hold in (3.1.2) only for
Jo

/x = 0, ond in (3.1.11) only for / 2 = 0. On the other hand,

r(x)y(x)\y\x)\p-1^K

so that the corresponding inequality is sharp. Finally, we note that

S x

r~qlPdt = O(x) as x —> oo, for the case r > 1,
o r°o

and r(x) = o^*-1), rα/p(α;)\ r~qlPdt = O(ίc) as x —> 0, for the case r < 1.
Jx

Hence, according to Lemma 2.2, we have r(x)F?(x) = o^*"1) or f?(αθ =
oί^" 1) as x —> 0 (for ΐ = 2, r < 1), or as x —• oo (for i = 1, r > 1). Since
^'/T/ = fozr1 in both cases, it follows that (3.1.3) reduces to (3.1.2), with
a similar remark holding in case r < 1.

As another example for Theorem 3.1.1 we have the following ine-

quality (cf. [3, Th. 256]): If p > 1, y' ^ 0, y(x) =Sπ/2 1 / /n 7Γ \Pf«/2

»*c2a; g t _ ( -2- sin l ) y
o p — 1 \2 p / Jo

pdx

equality holding only ify = cy(x) where y(x) is the unique solution of
the equation
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% = 2-sin — [\l - tv)'llPdt , 0 ^ 2 / ^ 1 .
2 p Jo

We conclude this section with three examples similar to Theorem 2.
We suppose that p > 1, and i = 1 or 2 according as a > 0 or a < 0 in
the first two inequalities, while i — 1 or 2 according as a, β are both
positive, or both negative in the third inequality. Then

(3.1.15) I a \λ°°—^——Fξdx < [°° x^'^fξdx unless ft = 0
Jo (l + x^y-1 Jo

(3.1.16) I a \p(p~ 1 Y Γ — X ~ 1 + " Ffdx < \~x{*>-1)[l-a)f?dx unless /4 = 0
v p ) Jo (l + χ°γ Jo

(3.1.17) I α r * ( | α | + | β \)(p -
o (1 + Xβ)p

unless Fi = cxΛ(l + #β)~Λ / β. /^ αiZ ί/ r̂ee cases, the constants are the best
possible. The (inadmissible) extremal functions for the inequalities
(3.1.15), (3.1.16) are y = 1 + x«, y = (1 + x«y-{llv) respectively.

3.2. The case p < 0 . The theorems corresponding to Theorems 3.1.1
and 3.1.2 are stated as Theorems 3.2.1 and 3.2.2, of which we prove
only the second.

THEOREM 3.2.1. Suppose the differential equation (3.1) {with p < 0)
has a solution y(x) such that y(x) > 0, y'(x) > 0 on a < x < b, and that

(3.2.1) y(x)ly'(x) = 0(x-a) as x — α+ ,

(3.2.2) j r ^ ( a θ ( V ^ d έ Γ 1 = O[(x - a)-1] as x->a+ .

If /i > 0, Fλ{x) = Γ/idt, αra£ ifKrfldx < oo, tfeew
Jα Jα

(3.2.3)

Equality holds in (3.2.3) only if fλ = cy\x), and all of the conditions

(3.2.4) y(a) == 0 , lim ryytp~ι = 0 , (\y tΊ)dx < oo ,
z-δ Jα

S &

ryfϊ>dx = CXD, ίfcβ^ (3.2.3) i s sharp if
a

G X \1-(1/P)

r-g / 3 ϊcW) < oo .
α /

THEOREM 3.2.2. Suppose the differential equation (3.2) (wΐίΛ p < 0)



52 PAUL R. BEESACK

has a solution y(x) such that y(x) > 0, y'(x) < 0 on a < x < b, and that

(3.2.6) y(χ)ly'(x) = O(b-x) as x^b- ,

(3.2.7) ίr'llί'(x)[br-qlPdtyi = O[(b - a;)"1] as x^b- .

If A > 0, F2(x) = \"f2dt, and if [rfξdt < «>, then
Jx Ja

(3.2.8) [s(x)F»dx ̂  Ϋr(x)fζdx .
Ja ja

Equality holds in (3.2.8) only if f2 = cy\x), and all of the conditions

(3.2.9) y(b) = 0 , limr^-s/T-1 = 0 , \\{-yrydx < ™ ,
x-*a Ja

S b

r(—y')pdx = oo, then (3.2.8) is sharp
-f a

f
(3.2.10) Ijmryi-y'y-1 < oo, and hmrix^-y'ixψ-^r^^dt)1^11^ <

To prove Theorem 3.2.2, we set h(x) = [-y'(x)ly(x)]p~u Since p < 1,
we have h = O[(b — x)1'*], and by Lemma 2.3 we also have rFξ =
o[(b — x)*-1]. Hence, from (3.11) we obtain

(3.2.11) [sFξdx ^ [rfξdx -Έmr{x)h{x)Fξ{x) ,
Jα ja x-*a

where equality can hold only if F2(x) = cy(x). Comparing this with
(3.2.8), we verify that conditions (3.2.9) are necessary and sufficient for
equality (for an admissible function).

To prove the assertion concerning the sharpness of (3.2.8), we must
modify the procedure used in Theorem 3.1.1 in view of our requirement
/2 > 0. Here, we set

fix) =

g(x) , a ^ x ^ af ,

-y\x) , a' < x < V ,

Mk(x) , b' £ x ^ 6 ,

where αf, bf, M are to be assigned, g(x) is any (fixed) admissible function,
and k(x) is an admissible function to be chosen later. For a' < x < 6',
we have

Hence, as in Theorem 3.1.1,
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Fξ(x) ^ yp(x)\l - v^ψ\- + p-ψS kdt) ,
I y(x) y(x)hf )y(χ)

and

S b' Cb' Cb' Cb Cb'

sFξdx ^ i sypdx — py(b')\ syp~xdx + pM\ kdt\ syp~~λ(i
a' Ja' Ja' Jb' Ja'

b' ( Cb Λ (

• + rhy* — pi y(b') — M\ kdt > <

- r(α')2/(α')[-^'(α')]2)~1 + py(b')r(a')[-y'(a')]p-1

Hence

ΫsFξdx >(1 - 8)[fridx ,
Ja Ja

provided

r(α%(cO[-"2/'(α')P~1 — JP2/(6'M^')["" yX^ΊY'1 — pMrφ^l—y'φ')]^1

CCa' Cb \ Cb'

+ (1 — δ) < \ rgpdx + Mp\ rkpdx\ < 8\ r{ — y')pdx .
Via Jb' J Jα'

We first choose M = ikf(δ') so as to minimize the left side of this ine-
quality. This is accomplished by choosing

G & \l/(2>-D/fδ \l/(l-2>)

kdxj (Λ rk^dxj
With this choice of M, we find (after some reduction) that we want to
choose a', 6', k so that

kdxj (\jkpdxj < S\ r(-y')pdx .

An application of Holder's inequality shows that the best possible
choice for k is k = cr~qlP> at last for x near 6. Moreover, such a k is

r~qlPdt is well-defined, and since
X

\brkpdt = \br-qlPdt < oo .
jx Jx

With this choice of k we want to choose af, bf so that

(3.2.12) rία'MαOt-l/V)]11-1 ~ Pl/ίfi'MαOt^l/V)]*-1

+ (1 - p^^-^ίδOI-y'ίδOl't6^"^^ <

J '
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S x

r{—y')pdx =00, we fix b' < b arbitrarily. Using the first
a

of conditions (3.2.10), together with the fact that y(x) is a decreasing
function, we see that (3.2.12) can be satisfied for α' appropriately close

r(—y')pdx = 00, we fix a' arbitrarily and, using the
second of conditions (3.2.10), can choose V so that (3.2.12) is satisfied.
Hence (3.2.8) is sharp in either case.

We note that the second of conditions (3.2.10) implies (but does not
seem to be equivalent to) the condition

\ΐmry{—y'y-1 < 00 .
x->b

By taking a = 0, 6 = 00, y(χ) = X^-DIP w e obtain the following ex-
tension of Theorem 2 to the case p < 0: if f(x) > 0, and F(x) is defined
by

\Xf{t)dt (r < 1) ,

:
f{t)dt (r > 1) ,

Ja;

then

(3.2.13) \~χ-rF»dx < (1 , P ,, \Y[°x-r(xf)pdx .
Jo \| I r — 1 | 1/ Jo

The constant is the best possible. It may be of interest to note that
in this case, as for the case p > 1, the hypotheses of Lemma 2.4 are
satisfied by r(x) so that (3.2.11) and (3.2.8) are identical.

As further examples of Theorem 3.2.2 we have the following:

If a>0, K β r g l - (1/p), /2 > 0, F2 - [ fβt, then

—Fϊdx ^ \ x^-nw-vfξdx ,
0 ( 1 — α;*)11 Jo

where strict inequality always holds ifβ = l — (1/p), and otherwise
equality holds only if F2 = c(l — x*)β.

If 0 < a < 1 - γ/(p - 1),

S I Λ.y+(α-

0 ( 1 -(1

unless F2 = c(l — x*).

If a > 0, p < 0,

(3.2.16)
p I Jo(l — #*)*

eαcfe case, the constant is best possible. The inadmissible extremal
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function for the last inequality is y = (1 — xai)1~alP). Corresponding ine-

S x

fxdt, as well as for the
case p > 1.

3.3. The case 0 < p < 1. Here again we have two theorems cor-
responding to the two equations (3.1), (3.2).

THEOREM 3.3.1. Suppose the differential equation (3.1) (with
0 < p < 1 and s(x) > 0) has a solution y(x) such that y(x) > 0, y'(x) > 0
on a < x < 6, and that

(3.3.1) y{x)jy\x) = O(b -x) as x->b- ,

f f ( & + z)/2 ^

(3.3.2) (6 - xy-pr(x) - θl\ s{t)dt\, as a — 6 - .

// fx ^ 0, Fλ{x) =

(3.3.3)

Equality holds in (3.3.3) only if fx = cy'(x), where c = 0 unless

(3.3.4) y(a) = 0 , lim ryy"-1 = 0 , [sypdx < oo .
x-»α Ja

// I s?/pαίc = oo, then (3.3.3) is sharp ij
)a

S b

sdt < oo .
X

As in Lemma 2.5, if b = +oo, then 6 — α? is replaced by x, and
(6 + x)/2 by 2α; in the order conditions (3.3.1), (3.3.2).

To prove (3.3.3) we need only apply (3.10) and Lemma 2.5 to obtain

(3.3.6) [sFfdx ^ \brf?dx + Tim r(x)h(x)F1

p(x) ,
Ja Ja x-*a

where equality can hold only if Fx = cy(x). This proves (3.3.3) as well
as the assertion concerning (3.3.4).

S &
sypdx = oo, we set

α

0 , a 5̂  a? ^ a* ,

( 0 , • V ^ x ^ 6 .

Proceeding as in Theorem 3.1.1 (but using (3.9) rather than (3.8)), we
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obtain

\bsFpdx < {y(b') - y(a')}pΫ sdx + [rfrdx + (1 - p)r(af)y(af)yrp-\af)
Ja Jδ' Jα

+ py(a')r{V)y'*-\V)

< (1 + δNrffdx ,
u

provided

(3.3.7) y»(&')Γ sdx + (1 - p)r(a')y(a')y"'-1(a') + py(b')r(b')y""-1(b')
Jbf

< δ[b'ry'pdx .
Jα'

Now we note that since

S b' Γb' bf

rypdx — I sypdx + ryytp~λ

a' Ja' a'

> Γ sypdx - r(a')y(a')y'p-\a'),
Jα'

S b' Γb'

rytpdx = oo if I sypdx = oo provided the first of condi-
α Jα Γb Γb

tions (3.3.5) is valid. Moreover, if \ sypdx = oo, then \ ryrpdx = oo in

S b' Ja' Ja'

sypdx = oo, (3.3.7) can be satisfied for any δ > 0
a Γb

by fixing 6' and letting a' —* a. On the other hand, if I sypdx = oo, we
Jα'

fix a', and show that the left side of (3.3.7) remains finite for b' ap-
propriately close to 6. This is true of the first term by the second of
conditions (3.3,5). For the other term of (3.3.7) involving 6', we have

ryytp~ι = r( —) yp ^ Kλ(b — xf~pypr

S (b+x)/2
sdt ,

X

according to (3.3.1) and (3.3.2). It follows that

lim ryyfp~λ < oo ,

and that the left side of (3.3.7) remains bounded for 6' appropriately
close to 6.

For completeness we state the theorem corresponding to equation
(3.2), but omit the proof.

THEOREM 3.3.2. Suppose the differential equation (3.2) (with
and s(x) > 0) has a solution y(x) such that y(x) > 0, y\x) < 0 on a < x < b,
and that
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(3.3.8) y(x)lv'(x) = O(x -a) as x->a+ ,

(3.3.9) (x - ay-pr(x) = θ\[X s(t)dt\ as x->a + .
U(as+α)/2 J

If A ^ 0, i ^ ) = \bf2(t)dt, and [sFξdx < oo, tfeen,
Jas J α

(3.3.10) \\Fξdx ^ [V//ίfo ,
Jα Ja

with equality only if f2 = cyf{x), where c = 0 unless

(3.3.11) y(δ) = 0, lim nrc/'*-1 - 0, Γs^cto < oo .
x->& Jα

// Ps2/Pdα = oo, (3.3.10) is sharp if
Ja

(3.3.12) \jm ryy'*-1 < oo , lim j/'Γsdt < oo .
.£->& a->α J α

Taking a = 0, 6 = oo, τ/(#) = ^(r-1)/2), the preceding theorems give the
extension of Theorem 2 to the case 0 < p < 1. This result is also due
to Hardy ([2], and Theorem 347, [3]). By taking y(x) = 1 + x«, and
i = 1 or 2 according as α > 0 or a < 0, we obtain the following analogue
of (3.1.15);

(3.3.13) I a |pf"V1-"^ + x^f^Frdx > \Γx^-^^fξdx unless /, = 0 .
Jo Jo

The corresponding analogues of (3.1.16) and (3.1.17) are not valid for
0 < p < 1. The inequality (3.3.13) is sharp although only the second of
conditions (3.3.5) (or (3.3.12)) is satisfied.

4. Integral inequalities with p = 2k. As noted previously, if p = 2k
the pair of differential equations (3.1), (3.2) reduce to the single equation

(4.1) -ί-iφyy"*-1} + βίaOi/1*-1 = 0.
dx

If y(x) is a solution of (4.1) for which y(x) > 0 on (α, 6), and we set
h(x) = [y\x)ly(x)]2k'1, then Λ(#) satisfies the equation

(4.2) A(rΛ) + (2fc - ljrfc""1*-" = — β(α) .
dx

We adopt a different notation from that used in (3.3), (3.4) by
replacing /, by u' and F% by u, where we assume throughout this section
that

(4.3) u{x) = \"u'(t)dt = - (bu\t)dt , a ^ x ^ 6 ,
Jα Ja;
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so that u(a) = u(b) = 0. Proceeding as in § 3 (and noting that (3.8) is
valid for all real x, y when p = 2k) we obtain

(4.4) [b'su27cdx g [b'run*dx + r(x)h(x)u2]c(x) *'
jar Ja' b'

with strict inequality unless u(x) == cy(x). Note that

Iu(x)I ^ Γ |u'Idt , Iu(x)I ^ Γ|w' |At .
Ja Jx

It follows that Lemma 2.1 remains valid with / replaced by uf and Ft

replaced by u.
We now want to weaken the hypotheses on (4.1); in particular we

want to allow y' and h to have a single discontinuity at a point c
of (a, 6), and to allow r to have a discontinuity or a zero at x = c.
Otherwise, we assume r(x), r'(x)f s(x) continuous, and r(x) > 0 on a < x < 6,
as in § 3. Under these hypotheses, by an extended solution of (4.1) we
mean a function y(x) positive and continuous on a < x < 6 such that
y'{x) is continuous except perhaps at x = c, and such that rh is continuous
on (α, 6). Now, replacing Iλ{a', b') in (3.5) by I^α', c — ε) + Ix{c + ε, V),
carrying out the corresponding work following (3.5), and then letting
ε —> 0, we again obtain (4.4), assuming the existence of \runΊcdx. Finally,
since a < c < 6, Lemma 2.1 also holds.

THEOREM 4.1. Suppose the differential equation (4.1) has an extended
solution y(x) >0ona<x<b and that

(4.5) y'(x)lv(x) = O[(x - a)-1] as x->a+ ,

y'{x)ly{x) = O[(b - x)-1] as x ~> 6 - ,

and both of the conditions

(4.6) r(x) = O[(x - a)216-1] , or rqlP(x)\Xr-qlpdt = O(x -a) as x->a+ ,
Ja

(4.7) r(α?) = O[(b - x)™-1] , or rqlP(x)[r-qlPdt = 0(6 -- a?) αβ a -> 6 - ,

runlcdx
α

(4.8)

Equality holds only if u ^ cy(x)f where c = 0 unless

(4.9) »(α) = 1/(6) = 0 , [ry^dx < oo .
Ja
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(
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S b

rynkdx = CXD and s(x) ^ 0, then (4.8) is sharp if y(a) =
a

y(b) and
(4.10) ΐίrn | ryy'™"1| < oo , and lim | ryyt2k~ι1 < oo .

x-+a x->b

The inequality (4.8), and the sufficiency of the conditions (4.9) for
equality, follows from (4.4)—(4.7) together with Lemma 2.1. To prove
the assertion concerning sharpness we assume that y(a) = y(b), and that

S b'
ryt2kdx = oo, and define

a

a ^ x ^ a' ,

α' < x <b' ,

( , V ^ x ^ 6 .

Here α' and 6' are to be chosen later, and in such a way that y(b') =

S b Cbr

ru2Jcdx = \ ryn1cdx < oo, so u is
a ja'

admissible. As in § 3.1 we find
[su2kdx ^ \\u'2kdx + (1 - 2k)r{a')y{a')y'2k-\a') - {l-2k)r{V)y(V)yf2*-l{V)
Ja Ja

> (1 - δ) [ru'^dx
Ja

provided

(4.11) (2k - \yr(a')y(a')ynh-\a') - (2k - l)r(b')y(b')y'™-ι(V) < δΓ ryf21cdx .
Jaf

Since (ry'2*-1)' = —sy216'1 g 0, we see that ry'2*'1 is a nonincreasing func-
tion on α < a? < 6. It follows from this fact, together with y(a) = 2/(&),
that y(x) ^ 2/(α), α ^ ίc ^ 6. Since y(x) ^ /̂(̂ ) for x near α (otherwise

ry'2kdx < oo), τ/(#) assumes a maximum value for x = α, where α < a < 6.
α

But then to each a', a < ar < <x, there corresponds at least one 6',
a <b' <b, such that #(&') = y(a'). Choosing such a value of br in (4.11),
we see by (4.10) that for any δ > 0, (4.11) can be satisfied for α' suffi-

S b

ryf2kdx — oo.
a'

Because of the symmetry of the extremal function, the inequality
(3.1.14) can clearly be extended according to Theorem 4.1 to give: //
u(o) = u(π) = 0, then

(4.12) \\2kdx g _ i (k sin JL)**\x

M»*dx ,
Jo 2k — 1V 2k) Jo

equality holding only if u — cy(x), where y((πj2) + x) = y((π[2) — a?),
/or 0 ^ a? ̂  (^/2), 2/(a;) is £/&e unique solution of the equation



60 PAUL R. BEESACK

x = k sin -4T(1 ~ t2«)-ll27cdt , 0 ^ y ^ 1 .
2& J

The next two inequalities are the extensions of (3.1.17) corresponding
to the choices a= —(2k — I)" 1 , β = -2k{2k - I ) " 1 and a = — (2fc — I)" 1 ,
β — — 2w respectively.

( 4 1 3 ) ( 2 f c D » - ι ) ( i + ̂ / » - r J ( }

<

The following examples are the extensions of the analogues (for
p > 1) of the inequalities (3.2.14), (3.2.15).

(4-15) \ „ » . " * _ „ „ . < \ u'™dx unless u ^

nt2Ίcdx
_ t α _ ^

unless u Ξ 0. In (4.16), n is an odd positive integer. The inadmissible
extremal functions for these inequalities are

respectively. The case Λ = 1 of (4.15) is due to Nehari [4].

2fc-l f l /y.27l/?y2fc/7/v.

) L y ! ^
u Ξ c(l -

S I /y.2w+(2m-l)(2fc-l)-3/?.2fcr//y.

- i ( 1 — α ? 2 7 7 1 ) 2 * - 1

< \ ^2w^'2fcdα? ^^iess ^ == c(l — ^ 2 m) .

In this inequality, we assume m ^ 1, n ^ 1.

(4.19) Γ*» + ̂ T ' T « ^ < Γ J ^ x (» > 0)

unless u s c(l - a;2^**"'2*-1') .

(4.20) ( — S 2 — ) 2Liί? <
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unless % Ξ C ( 1 - xmivi&+i)^ ^-Q of ^ e preceding inequalities are sharp.
The concept of an extended solution of (4.1) appears only in examples
(4.16), (4.19) and (4.20); of these, y' has a discontinuity (at x = 0) only
in (4.20). In examples (4.13), (4.14), u(x) of course is to satisfy u(± oo) = 0,
while u(±ΐ) = 0 in examples (4.15)—(4.20).

A final example of Theorem 4.1 involving trigonometric functions is
given by

Ydx(4.21) (^^Y'Ύcsc'xi-^Tdx < \π

Cot2x(-^—
\2k — V Jo \sin#/ Jo Vcosx/

when u(0) = u(π) = 0, unless u == c sin
We conclude by noting that in the case p = 2k, Theorems 3.1.1

and 3.1.2 (and their proofs) remain valid without the restriction fλ ^ 0,
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ON INVARIANT PROBABILITY MEASURES II

J. R. BLUM AND D. L. HANSON

1. Summary, We continue the work begun in [1]. In this paper
we investigate convergence properties of sequences of probability measures
which are asympototically invariant.

2 Introduction* Let Ω be a set, s$f be a o -algebra of subsets of Ω,
and T be a mapping of Ω onto Ω which is one-to-one and bimeasurable.
A set A e jzf is said to be invariant if A = TA, a probability measure Q
defined on sf is invariant if Q(A) = Q(TA) for all i e j / , and an
invariant probability measure P is said to be ergodic if every invariant
set A is trivial for P, i.e., if P(A) = 0 or P(A) — 1. Alternately an
invariant probability measure P is ergodic if whenever P(A) > 0 we
have

) =
/

J TnA

Let {Qn} be a sequence of probability measures defined on j*Λ We
shall say that the sequence is asymptotically invariant if limw [Qn(A) —
Qn(TA)] = 0 for every A e s*/. In § 3 we give a simple condition
which yields convergence of such a sequence to a given ergodic measure.
In § 4 an example is given which shows that a reasonable conjecture is
in fact false, and further conditions are given which insure uniform
convergence of a sequence of asymptotically invariant measures. In the
last section we investigate convergence properties of certain sequences
of probability density functions.

Throughout the paper we shall have occasion to refer to the following
theorem, proved in [1]. We state it here as:

THEOREM 1. If P and Q are invariant measures which agree on
the invariant sets then P = Q.

3, A convergence theorem. Let P be an ergodic measure (we shall
assume throughout that every measure considered is a probability
measure) and let Q be a measure absolutely continuous with respect to
P. Define the sequence {Qn} for n = 1,2, by the formula

Qn(A) = — ΣQ(T*A), A e j /
n *=o

Then it is an immediate consequence of the individual ergodic theorem
that limn Qn(A) = P(A) for every A e jy. Clearly the sequence {Qn} is
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64 J. R. BLUM AND D. L. HANSON

asymptotically invariant. It is equally clear that the sequence {Qn} is
uniformly absolutely continuous with respect to P. It is the object of
this section to show that in fact these properties alone are sufficient to
insure convergence to P, and that the averaging is only incidental in
this case.
More precisely we have

THEOREM 2. Let P be an ergodic measure and {Qn} a sequence of
measures satisfying

( i ) limw [Qn(A) - Qn(TA)] = 0 for every Aej^f.
(ii) For every a > 0 there exists δ > 0 and for every A e szf an

integer NAfΰύ>8 such that if P(A) ^ δ and n ^ NAtCΰt5 then Qn(A) ^ a.
Then limw Q(A) = P(A) for every A e

Proof. If the conclusion is false there exists a0 > 0, a set A e
and a subsequence {QJ (to avoid multiple subscripting we shall index
subsequences in the same way as the original sequence) such that

(3.1) \Qn(A)-P(A)\^a0, all n.

Now let Σ be the class of sets {φ, Ω, TnA, TnAc, n = 0, ± 1, •••}, let
J^ be the smallest field of sets containing Σ, and let Ssf' be the
smallest σ-algebra containing ^ . We have Σ c ^~ c £/' c jy\ Note
that if β e Σ then TB e Σ and T~τB e Σ. Now ̂  consists of finite
intersections of finite unions of sets in Σ and it follows from the prop-
erties of T that ^ has the same property, i.e., T is bimeasurable with
respect to J?~. Let

& = {A IA e sf\ TA e sf\ T~XA e

Then ^ c & c s/\ Suppose A e ^ . Then TAC = (ΓA)C and T-M.0 =
(T~M.)C and it follows that Ac e ̂ . Similarly let {An} be a sequence of
elements of &. Then Γ | J Λ = UnTAn and Γ"1 U*A. = UnT'1^. It
follows that ^ is σ-algebra and consequently ά& — Sf*. Thus T is
bimeasurable with respect to sf*.

Now ^ is generated by a denumerable collection of sets and is
itself denumerable. By the usual diagonalization procedure we may
extract a further subsequence {Qn} which converges on every set of ̂ ~.
Define Q(B) = \imn Qn(B) for B e ̂ . Since each Qw is a measure on
^ it follows that Q is finitely additive and monotone on J^. Note that Q
satisfies (3.1); i.e., \Q(A) — P(A)\ ^ a0. We proceed to show that Q is
a probability measure on ̂ " . Clearly Q(42) = 1. Let {i?J be a sequence
of sets in &~ which decrease to the null set. Then {Q(Bn)} is a non-
increasing sequence of numbers. Suppose limw Q(Bn) = p > 0. Let
a = jθ/2 and choose an appropriate δ > 0 according to (ii) of the hypothe-
sis. Since \imn P(Bn) = 0 we may choose Bk so that P(Bk) < δ. Then
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for n sufficiently large Qn(Bk) <Ξ p/2 and hence Q(Bk) < p which is a
contradiction. Thus p — 0 and Q is completely additive ^ .

Since Q is a measure on j ^ we may employ the usual Caratheodory
technique to extend Q uniquely to ssf\ From the hypothesis it follows
that Q is invariant on j^~ and the method used in extending Q to j ^ / '
insures that Q is invariant on jy".

Now let I? e s/' and suppose i? is invariant. Then P(B) = 0 or
P(β) = 1. Suppose P(B) = 0. It is clear from the hypothesis that in
that case Q(B) = 0 and similarly Q(5) = 1 if P(B) = 1. Thus Q agrees
with P on the invariant elements of jy", and it follows from Theorem
1 that Q = P on j ^ \ In particular Q(A) = P(A), which is a contradiction.
The theorem is proved.

Theorem 2 has an interesting corollary. Consider the condition

(3.2) lim — n^P(TtA Π B) = P(A)P(B) for all i , 5

It is trivial to verify that if (3.2) holds then P is ergodic. Conversely
if P is ergodic one may verify (3.2) by using the individual ergodic
theorem. However (3.2) is also an immediate consequence of Theorem
2. It is clearly sufficient to consider the case when P(B) > 0. In that
case define the sequence {Qn} by

Σ
n «=o

It follows at once that the hypotheses of Theorem 2 apply and (3.2)
holds.

4* On uniform convergence* The converse of Theorem 2 evidently
holds. If limn Qn(A) = P(A) for every A e j^ then (i) and (ii) of Theorem
2 are true. Furthermore if limn Qn(A) = P(A) uniform for A e j^f then
limn [Qn(A) - Qn(TA)] = 0 uniformly for 4 e j / . It might therefore be
reasonable to except that if hypothesis (i) of Theorem 2 is strengthened to
limw [Qn(A) — Qn( TA)] = 0 uniformly for A e sf we might obtain uniform
convergence of Qn to P. The following example, which is of some in-
dependent interest, shows that this is not the case. Let Ω be the unit
interval closed on the left and open on the right, and j^f the Borel sets.
Define T by Tx = (x + c) mod 1, where c is an irrational number. Then
T is one-to-one, onto, and bimeasurable. Let P be Lebesgue measure.
Clearly P is invariant and it can be shown that P is ergodic. For n =
4, 5, . . . let An = [0, 1/n]. Since P(An) > 0 we have

p

and consequently for each n there is a unique first integer kn such that
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Let

Bn=\J

and let 6M = P(Bn). Define the sequence {Qn} by Qn(A) = P{ABn)jbn. Since
6m S 1/4 it follows that the probability measures Qn are uniformly
absolutely continuous with respect to P. Furthermore

I Qn(A) - QniTA) I = (1/6.) I P(ABJ - P(TABJ \

^ 41 P(TATBn) -P(TABn) \

g 4[P(TA(TBn - Bn)) + P(TA(Bn - TBn))]

^ 4[P(TBn - Bn) + P(Bn - TBJ] .

Now

Bn - TBn c

and

Hence

I Qn(A) - QΛTA) I ̂  8P(AM) = 8/n .

Thus

On the other hand Qn(Bn) - P(Bn) ^ 1 - 3/4 = 1/4 and we do not have
uniform convergence. The remainder of this section remain is devoted
to exhibiting conditions under which one does obtain uniform convergence
of the sequence {Qn} to P. For this purpose we shall need several lemmas.

LEMMA 1. Let P be an invariant measure and Q be an arbitrary
measure. Then

sup I Q(A) - Q{TlA) I g 2 sup \Q(A) - P(A) \ .
ί

Proof.

I Q(A) - Q(TΆ) I ̂  I Q(A) - P(A) + \ P(A) - P{T*A) \

+ \P(TiA)-Q(TiA)\.

Since P is invariant the middle term on the right vanishes and the
lemma follows.
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LEMMA 2. Let P be an ergodic measure and f be a non-negative
measurable function which is integrable with respect to P. Then for
every A e s/ and a > 0 there exist infinitely many values of n such
that

^nJ(x)dP(x) < (^βf(x)dP(xήp(A) + a .

Proof. Let β = \ fdP. If β — 0 there is nothing to prove. Con-

sequently assume β > 0. Define the measure Q by Q(A) = I fdPjβ for

A e j y , and the sequence {QJ by

Since Q is absolutely continuous with respect to P it follows Theorem
2 that limwQw(A) = P(A) for A e jy\ If the conclusion of the lemma
is false then for some A e s/ and a > 0 we have for sufficiently large

n, [ n fdPjβ = Q{TnA) ^ P(A) + α/2. But then limn Qn{A) > P(A) which

is a contradiction.

LEMMA 3. Let P be an ergodic measure and Q be a measure
which is absolutely continuous with respect to P. Then

sup I Q{A) - P(A) I ̂  2 sup I Q(A) - Q{TlA) \ .

Proof. Let / be the Radon-Nikodym derivative of Q with respect
to P, and let B = {x \f(x) ^ 1}. Then

sup I Q(A) - P(A) I = ( [f(x) - l]dP(x) .

Assume that P(B) ̂  1/2; in the contrary case we can use Bc. Now if
i is any integer we have

sup I Q(A) - Q(TιA) I ̂  Q(B) - Q(T'B)

= [Q(B) - P(B)] - [Q(TιB) - P(TlB)]

= \ [f-l]dP-\( [f-l]dP.
JB JT B

Hence

sup \Q(A) - P(A) I ̂  sup I Q(A) - Q(T*A) | + L [/ - l]dP
Ae& Jτ B

^ sup I Q(A) - Q(T*A) \ + \ , [/ - l)dP .
i JBf\T B
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Now let

Q{%) = L
10, x

- 1, x € B
e B°

Then

ί t[f-ΐ\dP=\tgdP.
JBΓ\T B JT B

Let a > 0. Then from Lemma 2 there exist integers i such that

But P(B) ^ 1/2 and

\ gdP=\[f- 1] dP £ sup I Q(A) - P(A) | .
JΩ JB Ae&

Hence

\τiβΰdP < 1/2 sup I Q(A) - P(A) \ + a

and we obtain

sup I Q(A) - P(A) I ̂  2 sup I Q(A) - Q{T*A) \ + a

for abritrary a > 0.

THEOREM 3. Let P be an ergodic measure and let {Qn} be a sequence
of measures each of which is absolutely continuous with respect to P.
Then

lim sup I Qn(A) - P(A) \ = 0
n A£$.

if and only if

\imsuv\Qn{A)-Qn{T*A)\ = 0.
n i

Proof. The theorem follows from Lemmas 1 and 3. Theorem 3 may
also be formulated in terms of Lλ convergence. For if fn is the Radon-
Nikodym derivative of Qn with respect to P, then

sup

Thus

I Qn(A) ~ P(A) I = ( [fn - l]dP =\ [1 - fn]dP .

lim sup I Qn{A) - P(A) \ = 0
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if and only if

limί | / n - l | d P = 0.
n JΩ

Similarly we have

limsup|QΛ(A)-Qn(Γ*il)| = O
n i

if and only if

lim sup ( \fn(x) - fn(T*x) I dP(x) = 0 .
n i JΩ

Consequently we have the

COROLLARY. Let P be an ergodic measure, let {Qn} be a sequence of
measures each of which is absolutely continuous with respect to P, and
let {fn(%)} be the corresponding sequence of Radon-Nikodym derivaties.
Then

limί \fn(x)-l\dP(x) = 0
n JΩ

if and only if

lim sup \ \fn(x) - /Λ(T*α0 | dP(x) = 0 .
n i JΩ

5. Uniform convergence of densities* In this section we shall be
concerned with probability density functions with respect to an ergodic
measure P, i.e., a function / is a probability if / is measurable, non-
negative, and \ fdP = 1. We begin with

LEMMA 4. Let P be an ergodic measure and let f be a probability
density with respect to P. Let a > 0 and define the sets A and B by

A = sup I /(Γ'α) - f(Tjx) \ < α}

and

B = {x\\f(x)-l\>a}.

Then P(AB) - 0.

Proof. Let B' = {x\f(x) > 1 + a}. Suppose P(ABf) > 0. Let
C = U-oo T\ABf). Since P is ergodic P(C) = 1. If x e C there exists
an integer m such that Tmx e AB\ Hence
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sup \f{Tιx) - f{T}x) I ̂  sup \f(T>x) - f(T}x) | g α .
ij

In particular \f(x) - f(Tmx) | ^ α or f(x) ^ /(T 7 ^) - a. But Twα; e £ '
which means f(x) > 1. Since an integer m can be foμnd for each x e C
we have f(x) > 1 for all x e C. Then ί fdP = ί /<ZP > 1, a contradic-
tion to the fact that / is a probability density. A similar argument
applies to the set B" = {x \f{x) < 1 — a}.

THEOREM 4. Let P be an ergodic measure and let {fn} be a sequence
of probability densities with respect to P. Then the following statements
are equivalent:

( i ) Phim sup \fn(Tιx) - fn(T>x) I = 0 > 0 .
V n ίj I

(ii) P(lim sup l/ΛT'a;) - fΛ(T>x) | = o) = 1 .

(in) Pίlim sup \fn(x) - 11 = 0 = 1 .
\ n x /

Proof.

(a) (i) implies (ii). Suppose (i) is true. Let B be a set such that
P(B) > 0 and such that

n ij

for x e B. But clearly this is also true for

x e C = U T'B ,

and P(C) = 1. Thus (ii) holds.
(b) (ii) implies (iii). Let C be the set of measure one such that for

x € C we have

n ίj

Then for x e C and every positive integer k there exists a positive
integer Nk such that

j

for w ^ ΛΓfc. Let

= u U\fn(χ) - 11 >

It follows from Lemma 4 that P(Ak) = 0 for fc = 1, 2, . Let A =
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C - \JhAh. Then P(A) = 1, and for x e A we have \fn(x) - 11 ^ 1/fc
for n^ Nh. Consequently

lim sup I /„(&) — 11 = 0

and (iii) follows.
(c) (iii) implies (i). Let A be the set of measure one such that

l i m s u p | / n ( α 0 - l | = O.
n xβA

Let

Λ = ή τ*A .

Then P(A0) = 1 and for x e Ao we have

sup \fn(T'x) - fn(T'x) I ̂  2 sup \fn(T*x) - 11

and the last quantity approaches zero. Thus (i) holds and the theorem
is proved.
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SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS

ROBERT A. BONIC1

1. Introduction* The Banach algebras 2ί considered here are over
the field of complex numbers, and have isometric involutions *. The
involution is said to be hermίtian if for any x — x* e 21, the spectrum
Sp^x) of x contains only real numbers. The algebra SI is said to be
symmetric if for any y e 21, Sp<%(y*y) contains only nonnegative real
numbers.

A familiar example of a Banach algebra with an involution is the
group algebra over the complex numbers of a locally compact group G.
This is obtained by taking the Banach space L\G) of all complex valued
absolutely integrable functions with respect to the left invariant Haar
measure dx on G. Multiplication is defined as convolution, and the in-
volution by the formula x*(g) — xig'^pig), where x e L\G) and ρ( ) is
the modular function relating the given measure to the right invariant
measure by dx~x = p(x)dx. This involution will be called the natural
involution of the group algebra, and is the only involution on the group
algebra we will consider.

It is known that when the group G is either compact or commuta-
tive, then its group algebra with respect to the natural involution is
symmetric. On the other hand, in 1948 Neumark [6] showed that the
natural involution in the group algebra of the homogeneous Lorentz group
is not hermitian. (This implies that the algebra is not symmetric. See
Theorem A(a).) Later Gelfand and Neumark [3] extended this example
to include all complex unimodular groups. Their proofs are quite
difficult, entailing a knowledge of the irreducible unitary representations
of the groups and considerable computation. Except for finite and com-
mutative groups, the corresponding problems have not been studied for
discrete groups. These problems will be our concern.

The main results will be summarized now. In § 2 several facts
(some of which are well known) are collected to be used later. § 3 is
concerned with the construction of group algebras that are symmetric, or
at least have an hermitian involution. It is shown (Corollary 3.4) that
the group algebra of the direct product of a commutative group and a
group whose group algebra is symmetric, is a symmetric algebra.
Theorem 3.7 shows that the natural involution is hermitian in the group
algebra of a semidirect product of a commutative group by a finite
group.

Received March 1, 1960.
1 The work in this paper consists of a portion of the author's Yale doctoral dissertation

(I960), written under the direction of Professor C. E. Rickart.
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In § 4 examples are given of discrete groups for which the natural
involution in the group algebra is not hermitian. The examples include
free groups on two or more generators, and free groups on three or more
generators of order two (Theorem 4.7). It is worth noting that these
examples settle the following matrix problem negatively: suppose T is
a bounded operator on I1 (countable absolutely convergent sequences of
complex numbers), and with respect to the usual basis, suppose that the
matrix (ttJ) of T satisfies ttJ = tJt. Then, is the spectrum of the operator
T a subset of the real axis? In this connection see Remark 4.8.

Finally in § 5 we show that various connections exist between the
above problems and the question of the existence of an invariant mean
on the group. The principal results are Theorem 5.6 and Theorem 5.8.

I wish to express my thanks to Professors C. E. Rickart and S.
Kakutani for the advice, encouragement, and time they have generously
given me.

2* Preliminary theorems*

THEOREM A. Let %be a Banach algebra over the complex numbers
with an isometric involution * and identity e. Then:

(a) if 31 is symmetric, then the involution is hermitian, and the
converse holds whenever 31 is commutative;

(b) the involution is hermitian whenever ie + x is regular for
any x = x*.

A proof of this theorem can be found in Rickart [7]. It is not known
in general if an algebra with an hermitian involution is symmetric, and
it is worth noting that this is exactly the problem in proving that a JB*
algebra is a C* algebra. The essential step in proving this is to show
that the 2?* algebra (whose involution is hermitian) is symmetric.

Let SI be a Banach algebra with an identity e of norm one, and
let <^(3I) denote the set of all bounded linear operators on SI. For
x 6 31, the left multiplication operator Lx is defined by the formula
Lxy = xy.

THEOREM B. (a) The mapping x-*Lx maps 31 isometrically and
isomorphically into ^(21).

(b) Let jδf(SI) denote the image of SI in ^(31). Then for xe%
Sp%(x) = Spg{W(Lx) = Sp(Lx), where Sp(Lx) = {a: Lx — al is a singular
operator on the Banach space}.

Proof, (a) and the first identity in (b) are immediate. If y is
regular in SI, then Ly is a regular operator on 31, since it has as inverse
the operator L _lβ This shows that Sp%(x) ID Sp(Lx). Now if Lv is
regular on ^(31), there exists an element S e ^(31) such that LyS —
SLy = I. It is then easily computed that S = LSe and Se is the inverse
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of y in 2Ϊ.

THEOREM C. Let & be a Banach algebra with an identity over the
complex numbers and suppose C is a maximal left ideal (hence closed)
in (£. Then, with respect to the quotient norm, (£/C is a Banach space.
For x e (£, y + C e (£/C the mapping defined by LfΌ(y + C) = xy + C
gives a bounded algebraically irreducible representation of (£ on E/C.

The above representation x —> Lf/<7 is called the left regular repre-
sentation of © on K/C. A proof of this theorem can also be found in
Rickart [7].

3 Group algebras in which the natural involution is hermitian* It
will be seen shortly that the symmetry problem for the group algebra
of the direct product of two groups is a special case of a more general
problem concerning tensor products of Banach algebras, so the latter
will be taken up first. If 21 and 93 are Banach algebras, then the
algebraic tensor product 210 93 can be normed with the so called greatest
cross norm and then completed to give another Banach algebra called
the protective tensor product 21 0 93 of 21 and 93. The basic results
concerning this can be found in Schatten [9]. We will summarize here
only a few pertinent facts.

Let 21 and 33 be Banach algebras over the complex numbers having
identities of norm one. It will be convenient for us not to distinguish
notationally between the norms or the identities in the two algebras.
Let 21 0 93 denote the usual algebraic tensor product of the vector spaces
21 and 93. An element u e 2ί 0 93 can be represented in many ways
in the form Σ?=i ai ® &* where α4 e 21, bt e 93, i = 1, 2, , n. Whenever
such a representation occurs, it will be denoted by u ~ Σ?=i ^ ® ^. The
set 21 0 93 becomes an algebra by defining, for u, v e 21 0 93, a repre-
sentation of the product uv to be Σ?=i ΣJU α A ® b%d^ where u ~
Σ?=i at ® bif v ~ ΣJNI CJ Θ <̂  It becomes a normed algebra by defin-
ing | | t t | | = GLBΣ?=il|αill H&ill where the GLB is extended overall
Σ?=i ai^bi^u. With this norm, any u e 2t 0 93 that satisfies u~a(&b
has a norm given by || u \\ — \\ a \\ || b ||, and the identity e ~ e 0 e
of 21 0 93 has norm one. The completion 21 0 93 of 21 0 93 is hence a
Banach algebra over the complex numbers with an identity of norm
one. Finally we note that if 21 and 93 each have isometric involutions
*, the definition of w*~Σ?=i α *Θ&* where u ~ Σ?=i aι ® bt gives a
well-defined isometric involution on 2ί 0 93 which can hence be extended
to 21 0 93.

We now restrict ourselves to commutative 2t. Let 0(21) denote the
space of maximal ideals of 2ί, which will we be identify with the corre-
sponding homomorphisms. For h e 0(21), define Th: 21 0 93 —> 93 by the
formula Th(u) = Σ?=i Mα*)&« Now, two formal sums represent the same
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element in 21 (g) S3 if and only if one can be transformed into the other
by successive applications of the distributive law and the commutative
law applied to scalars and ®. It is then clear that Th is well-defined
and a homomorphism. Also if 2t and S3 have involutions, and 21 is sym-
metric, then for u ~ Σ?=i α t (g) biy we have

Th{u*) = Th(± af <g> 5*) - ± h(af)bf = ±
\ί=l / ί=l ί=l i = l

so that TΛ is a *-homomorphism. Finally since

holds for any Σ?=iα* ® δ* ~ >̂ we have || Tft% || ^ || % || for all w, so that
Th can be extended to 21 (g) S3. The extension will also be denoted by ΓΛ.

Except for the notation, the following theorem is essentially the
same as that of Bochner and Phillips [1: Theorem 3], which generalizes
the Wiener-Gelfand theorem on the existence of an inverse.

THEOREM 3.1. An element u e 2ί (§) S3 has a left (right) inverse in
21 (§) S3 if and only if Thu has a left (right) inverse in S3 for every
h e 0(31).

Proof. Only the case of left inverses will be shown. If u e 21 (§) S3
has a left inverse v, then for any h e 0(21), Thv is a left inverse in S3
for Thuf since Th is a homomorphism taking the identity of 21 0 S3 to
the identity of S3.

Conversely assume that u0 e 21 (g) S3 = (£, that Tfo^0 has a left inverse
in S3 for every h e 0(21), and that u0 does not have a left inverse in (£.
Then &u0 is a proper left ideal containing u0 and can be extended to a
maximal left ideal C. Now consider the left regular representation
u —> Lf/cr of © on (£/C (see Theorem C). Since this representation is
algebraically irreducible, it follows from Theorem C that the set of all
bounded operators on (£/C commuting with {L®10 : u e K } consits of just
scalar multiples of the identity operator. Clearly L%G

e commutes with
all L? l 0 so that L%G

e = h{a)I, and since

it follows that h is an element of 0(21). Hence

L%% = (L%°)(L%<1) = h

so that for u ~ Σ?=* a%®^u w e have

r6/5
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Moreover, since the representation is continuous we can extend this to
(£ so that we have Lψ° - L%°TjιΌ for all v e SI 0 S3.

Now by assumption Thu0 has a left inverse δ0 e S3. Hence

/"^ \ // T (£/(? \/ T (S/(7 \\/p /O\ p i Γ* \
vV / — Vx-̂ 'e<S)&n/\ £®ThUn))\y Xjy y ~T ^ /

C) = (L%c

e)(e (g)e + C) = e(g)e + C .

On the other hand, since u0 e C, we have

0 e + C))

and we have obtained a contradiction.
Since an element is regular if and only if it has a right inverse

and a left inverse we have:

COROLLARY 3.2. An element u e SI 0 33 is regular if and only if
Thu is regular in S3 for every h e 0(31). More precisely:

Spφ^(u) = U Sps:s(Thu) .
heΦίyp

COROLLARY 3.3. If SI is symmetric and S3 is symmetric (has an
hermitian involution), then 31 0 S3 is symmetric (has an hermitian in-
volution).

Proof. If S3 has an hermitian involution, then for u = ^ * e 3 I 0 S 3
it follows that (Thu)* = Thu for all h e 0(31). By the preceding corollary,
Spφςβ(u) is a subset of the real axis. The ''symmetry argument'' is
similar.

The following theorem is a special case of a theorem due to Grothen-
dick [4: Theoreme 2], and gives the connection between tensor products
and group algebras.

THEOREM (Grothendieck). If G and H are locally compact groups,
then after a suitable normalization L\G) 0 U(H) is isometrically *
isomorphic to L\G x H). (G x H denotes the direct product of the
groups G and H).

The proof of this theorem is not easy. However our concern in the
following corollary is with discrete groups, and for this special case the
proof is quite direct. In any event, assuming this theorem, Corollary
3.3 gives:

COROLLARY 3.4. If G is a discrete abelian group and H an arbi-
trary discrete group whose group algebra is symmetric (has an hermitian
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involution), then the group algebra of G x H is symmetric (has an hermi-
tian involution).

The case of semi-direct products will now be taken up.

DEFINITION 3.5. Let K and C be groups and suppose that for each
c e C there is an automorphism φc of K such that the mapping c-+φc

is a homomorphism of C onto a group of automorphisms of K. The set
of ordered pairs {(cy ky:ceC,keK} with multiplication defined by
<A> fci><c2, k2y = <CA> k&cjjcjy then forms a group G called the semi-
direct product of K and C by φ and denoted by C XφK.

It is immediately verified that the set {(e, ky : k e K] forms a normal
subgroup of G isomorphic to K, and that <(c, ky~~x = <c~~\ φc^ {k~λ)y.
The generality of semi-direct products is shown by the following theorem.

THEOREM 3.6. If a group G contains subgroups K and C, where
K is normal, K n C = e, and G — KC9 then G is isomorphic to a semi-
direct product of C and K.

Proof. Since K is normal the mapping c —» φc, where <pc(k) = ckc~ι,
is a homomorphism of C onto a group of automorphisms of K. Since
G = iΓC, any # e G can be written in the form g — kgcg where kg e K,
cg e C, and since Kf)C = e this decomposition is unique. Then

gh — ICgCglCfyC^ — κgcgk>hcg cgch = k>gψ^vβg)c^c^

so that cgΊι = c/?Λ, and fc^ = kgφCg{kh). It is now obvious that the corre-
spondence g *-> <cg, kgy is an isomorphism between G and the semi-direct
product C XφK.

Before stating the next theorem, it is convenient to establish some
special conventions. The group algebra of a discrete group G will be
denoted by l\G), and elements of l\G) will be written as sums rather
than functions, i.e. if x e l\G), then x = Σgeσ X{Q)Q, where the x(g) are
complex numbers satisfying Σ êe? \®(θ) I < °° Convolution in l\G) is
then the usual multiplication of these formal sums, and the involution
is given by #* = Σ<;e<? ̂ (g-^g.

Let G = CχφK be a semi-direct product of C and K. We will
abuse notation and consider C and if as subgroups of G. This is justified
by Theorem 3.6. The elements of G can then be uniquely written in the
form g — kc and gg' — kck'c' — kφc(k')cc' where k,k' e K and c, c' e C.
Finally, for x e l\G), we have

A, V* V* svίhsΛhs* V1 ί V w(bn\h \n — V wUsΛn

where x\c) e l\K). Dropping the primes, we will now write any element

x e l\G) in the form x = Σceσ # ( Φ , #(<0 € ί^ίΓ).
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THEOREM 3.7. If C is a finite group and K is a discrete abelian
group, then the natural involution is hermitian in the group algebra
of any semi-direct product G = C XφK.

Proof, Let G = C XφK be a semi-direct product of C and K, and
let x = #* e l\G), x == Σceσ x{c)c. Then

α* = Σ (a(Φ)* - Σ c-^ίc)*) = Σ c-\x{cY)cc-'
ceo ceo ceo

= Σ Φ.-I Wc)*)c-1 = Σ ΦMc~Ύ)c .
ceo ceo

(Φc denotes the extension of φc to l\K) defined by Φc{Στceκ %(k)k) =
x(k)φc(k).) Since x — x* and the decomposition is unique we have

))*) = s(c) for all c e C ,
By Theorem A (b) the involution in V(G) is hermitian if ίe + x is

regular for all x — x*. We will now construct a right inverse for ie + cc.
Indeed ie + a? will have a right inverse if and only if elements y(c) e lλ{K)
can be found for each ceC such that y = Σce<72/(Φ satisfies (ie + x)y = e.
Expressing this condition in terms of the coefficients we have:

e = (ie + Σ x(c)c)(Σ v(d)d) = i Σ y(d)d + Σ x(φy(d)d
\ ceo /\aec J dec c.aeo

= i Σ v(d)d + Σ χ(c)Φc(y(d))cd = i Σ vΦ)b + Σ f Σ
αecf c,aeo υec bee \ceo

Hence our problem is to find y(c)'s satisfying the simultaneous set of
equations:

\e for b =

for b φ e .
iyφ) + Σ χ{c)Φc{y{c-ιb)) = \e

ceo W

Write the elements for the finite group C as {e = c0, clf , cn} so that
we have:

n

ί=o 4

or

Since < ĉ(0) = 0 and Φc(e) = e for any c e C the application of 0c-1 to
the fcth equation gives:

n

k r=o r
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for k = 0,1, •••, n. The matrix of coefficients of these equations is:

"ie + x(c0) xipϊ1) x(c-λ)

Φc-^cό1)) ie + Φc-i{x{cλc^)) Φc-^ic.c

•

Now the elements of this matrix are elements of the commutative algebra
l\K), and hence the determinant A of this matrix is a well defined
element of l\K). Moreover the usual ''Cramer's rule" formula will
furnish a solution of the set of equations (2) if it can be shown that A
is a nonsingular element of l\K). Let al3 denote the element in the ith
row and jth column of the above matrix so that A = det {aί3). Now A
is nonsingular if and only if h(A) is non-zero for any h e Φ(l\K)). Since
fc is a homomorphism h(Δ) = det (h{ai3)), and h(A) will be non-zero if it
can be shown that h(ai3) = h{a^ for i Φ j and h(a33) = i + βsj where
βjj = βjj. Indeed in this case the matrix {h{ai3)) is the matrix corre-
sponding to an operator on a finite dimensional Hubert space of the form
ίl + H where H is an hermitian operator. Hence the operator ίl + H
is nonsingular so that the determinant of any matrix representations of
it must be non-zero.

It remains to verify the above equations. Since Φc(x*) — {Φc{x))*
for any c e C we have

and

What we have shown is that the elements att are of the form au =
ie + 8U where δf4 = δ44 and (<%)* = α:̂  for i Φ j. Finally any h e Φ(l\K))
satisfies Λ(α*) — h(a) so that the matrix (Λ-Ô j)) is in the desired form,
and h(A) is non-zero. Hence we have a solution to the equations (2),
and the application of ΦCjc to the λ th equation of (2) gives the solution
to the equations (1) and therefore the desired right inverse y. A left
inverse for ie + x can be constructed in a similar way.

REMARK 3.8. We do not know in general if the group algebra of
a semi-direct product of a finite group and a discrete abelian group is
symmetric with respect to the natural involution, in spite of the fact
that the above theorem shows the hermitianess of the involution. The
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following theorem describes a special case where this is true.

THEOREM 3.9. If C = {e,a:a2 = e} and K is abelian, then any semi-
direct product G = C XφK has a symmetric group algebra.

Proof, x e lι{G) has the form x = xx + ax2, x19 x2 e l\K), and hence
e + x*x — e + x?x1 + x2x2 + x*ax± + xfax2. Let Φa = Φ, z1 = e + a??^ +
#*#2> and z2 = Φ(α?2*)x1 + Φ(xf)cc2. Then e + x*cc — zλ + az2. Thus e —

(«! + α^Jd/i + ay2) if and only if zλyλ + (P(22)i/2 = e and z ^ + <P(2i)2/2 = 0

so that y2=—Φ(zϊ1)z2y1 and fe—Φ{z2)Φ{z^1)z2)yι=e. Assume Z1—Φ(Z2)Φ(ZΪ1)Z2

and hence Φfe);?! — 0(22)22 is singular. Then there is a homomorphism
h such that h{Φ(z>i)h(z^ = h(Φ(z2))h(z2). But

+ I MxdMΦ&i)) I2 +
+ Ih{xMΦ{^)) I2 = 2\h(

^ 1 hix,) I2 + I h(Φ(x2) |2 + I h(x2) I
< (1 + I h{Xl) |2 + I h(x2) |2)(1 + I hiΦix,)) i2 + I h(Φ(x2)) |2)

and we have obtained a contradiction.
It is known (see Rickart [7]) that the symmetry and hermitianess

properties are preserved in passing from a Banach algebra to a norm
closed * closed subalgebra. In the case of the group algebra of a dis-
crete group, and the group algebra of a subgroup, an elementary proof
of a more general result can be given. Specifically:

THEOREM 3.10. Let G be a discrete group, and H a subgroup of G.
Then the natural imbedding of H in G induces an isometric * isomor-
phic imbedding of l\H) into l\G). With respect to this imbedding,
for x e l\H)

SpιnB)(x) = Spιι{G)(x) .

In particular, if l\G) is symmetric (has an hermitian involution), then
l\H) is symmetric (has an hermitian involution).

Proof. The only non-trivial part of the proof consists in showing
that if x 6 l\H), and x is regular in l\G), then x is already regular in
l\H).

Let {Hga : 0 , α e A, go = e} be a left coset decomposition of G with
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respect to H. Write x = Σ^e^ ooo(k)kgOf and its inverse y e l\G) as
V = ΣaβΛ (Σneπya(h)hga). Then xy = e means

= Σ Σ χ*(k)ya(h)khga) = Σ Σ Σ

For any fixed α ^ 0 and I e H we then have ΣΛ6J? ^ΰ(l^~1)τ/α(^) = 0.
Define j/J, e l\H) by j/£ = ΣjneRya(h)h. Then the above equation gives
that xy'a = 0, so that a? is a divisor of zero in l\H). But then x is a
divisor of zero in l\G). Since x is assumed to be regular in l\G) we
must have that y'a = 0, and hence that ya(h) = 0, for all h i H. As this
is true for all α ^ 0 we have that the inverse y — 'ΣiheπyXfyh is an
element of l\H).

REMARK 3.11. It is easily seen that if the group algebra of G is
symmetric or hermitian, then so is the group algebra of any quotient
group. However we do not know if the symmetry or hermitianess of
the group algebras of both H and GjH imply that of G.

4 Group algebras where the natural involution is not hermitian •
In this section G will be a countable discrete group. The notations
following Theorem 3.5 will be used. The conjugate space of l\G) will
be denoted by c<f{β) (all bounded sequences of complex numbers). Let
Lx be the left multiplication on l\G) defined by x, i.e. Lxy = xy, the
multiplication being convolution. For a given ordering {g19 g2, •••} of all
the elements of G, the matrix of Lx, mat (Lx), is then defined as (ai})
where x = Σ*=i X(QTC)QΊC and aυ = xig^i1). Since

Lxgn = Σ x(ΰτc)9κQn = Σ αίflWί1)*/* = Σ αWΛJ f c = l

we may speak of the nth. row of mat (Lx) as the image of gn under Lx.
An element 9> — (φlf φ2, •••) e ^ ( G ) will be said to be orthogonal to a
row i?ί = (α£1, αi2, •) of mat (LJ if ΣΓ=i α ^ j = 0.

LEMMA 4.1. ( i ) If mat (L^) = (αo), then mat (Lx«) = (δw) where
bi3 — α̂ ί /^ particular if x = x*, then aiό = α^.

(ii) If ίfeere is a non-zero element φ e ^ ( G ) orthogonal to all the
rows of mat(Lx), then Lx is a singular operator.

Proof. ( i ) Since #* = Σjgea y(9)ΰ where y(g) = α ίflf"1) we have that

mat (Lx*) = (&„) with 6ί<? ί Ϊ 1 " "
(ii) If such a φ exists, then φ(Lxgn) = 0 for all n. Hence all finite

linear combinations of the Lxgn's are in the nullspace of φ. From the
continuity of φ and Lx, and the fact that linear combinations of the gn's
are dense in l\G), it follows that Lx maps l\G) into the nullspace of φ.



SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS 83

Since φ is non-zero, Lx is singular because it is not onto. Note that
from Theorem B(b) we have that x is singular in lι{G).

LEMMA 4.2. Let alf a2, , an, n ^ 3 be complex numbers of absolute

value one, and xlf x2, * ',xr complex numbers of absolute value one or

zero. Then for 2r ^ n there are complex numbers xr+lf xr+2, , xn of

absolute value one or zero, not all of which are zero, such that aλxλ +

a2x2 + + arxr — ar+1xr+1 + ar+2xr+2 + +anxn. Moreover i f n ^ i

and 2r < n, there are at least two linearly independent solutions.

Proof. Suppose first that not all the xt

9s are zero. Let xr+Jc =
α fcxJαr+A; for H ί g r and xr+7c = 0 for k > r. This gives a non-zero
solution. If 2r < n then xn — 0 and some xr+ίo Φ 0. Let xr

n — xr+lQar+ιJan9

x'ίQ+r — 0, and x) — x5 for j Φn, j Φr + i0. Then the primed sequence is
also a solution and is clearly not a scalar multiple of the unprimed
sequence. (In the above case n ^ 3 is all that is required).

Now assume that xλ — x2 — = xr — 0. Since n ^ 3 and 2r ^ n,
ar+1 and ar+2 exist. Letting xr+1 = 1, xr+2 = —ar+Jar+2, and the remain-
ing Xi's zero we have a solution. Finally if 2r < n and n ^ 4, α r + 1, α r + 2,
and α r + 3 exist. In this case pick x'r+1 = 0, ^ + 2 = 1? ^'+s = — ttr+2/αr+3, and
the remaining # 's zero. Again the primed sequence is a solution and
clearly not a scalar multiple of the unprimed sequence.

Let {gu g2, •••} be an ordering έ? of all the elements of G. For a
subset A of G, let | A | denote the number of elements of A, and [A] the
subgroup generated by A. The following definition is pertinent to both
the symmetry of l\G), and the existence of an invariant mean on G.

DEFINITION 4.3. A finite set S of G will be said to be singular with
respect to the ordering έ? if:

( i )

(ii)

(iii) There is an integer n0 such that

2 I Sgn n (Sg, U Sg2 U U S g n ^ ) \ ^ \ S \ f o r a l l n > n Q .

In the following theorem an element φ — (φlf φ2, •) e C^{G) is
going to be constructed with respect to a given matrix. We will start out
with the sequence consisting of all zeros, and then begin replacing the
zeros by other entries. At any given stage in the construction, the fcth
column of the matrix will be termed an old column if <pk has already
replaced a zero (the φ* may itself be zero), and a new column otherwise.

THEOREM 4.4. Let S be a singular set in G with respect to the
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ordering {glf g2, •}. Then the element x = Σs.es cct8i9 \at\ = 1, is sin-

gular in l\G).

Proof. By Theorem B (b) it is enough to show that Lx is a singu-
lar operator, and by Lemma 4.1 (ii) it suffices to find an element φ e r^{G)
orthogonal to all the rows of mat (Lx).

Take mat (Lx). In the columns that contain a non-zero entry from
one of the first nQ rows of mat (Lx), replace the zeros in φ by zeros.
In other words, these columns will now be called old columns. We have
t h a t 2 I S g n n (Sgλ U Sg2 U U S g n ^ ) \ S r f o r n > n 0 w h e r e \ S \ = r .
The (n0 + 1) row of mat (Lx) contains non-zero entries αCl, aH, , aCr in
columns c19 c2, , cr respectively, corresponding to the elements in the
set Sgno+1. Since S is singular, at least half of these columns are new.
Denote the new columns by c[, c2, , c's where 2s ^ r and select, using
Lemma 4.2, φc[,Ψc2j '"yΦc's of absolute value one or zero (but not all
zero) such that Σ«=i Φc'i

aci — 0. At this stage the φ e C^(G) is orthogonal
to the first n0 + 1 rows of mat (Lx). Now take the (n0 + 2) row of
m a t ( L J . The non-zero entries aPl,aP2, -",aPr now occurs in columns
Pii Pi, Pr respectively, and since S is singular at least half of the p^s
are new. Denote the old columns by p[9 p2, •• ,pί, and the new ones
by p'ί,p", •• ,Pr- ί. Again by Lemma 4.2 there are complex numbers
Φp">Φ*ϊ> '"'Φp'r'-t °f absolute value one or zero such that

t r-t

Σ

Replacing the zeros by these new <pt's then gives an element of
orthogonal to the first n0 + 2 rows of mat (Lx).

The proof is completed by induction. For any m Ξ> nQ + 2 assume
that scalars of absolute value one or zero have been selected in columns
where a non-zero entry occurs in one of the first m rows of mat (Lx)r

and that the sequence constructed is orthogonal to these rows. By
again using the definition of singularity and Lemma 4.2, new φt

Js of
absolute value one or zero, in new columns corresponding to the non-
zero entries of the (m + 1) rows of mat (Lx) can be constructed so that
the resulting sequence is orthogonal to the first m + 1 rows of mat (Lx).

COROLLARY 4.5. If \ S \ ^ 4 and 21 Sgn n (Sg, U Sg2 U U Sgn-λ) \ <
I SI for n > nQ, the range of Lx is not of finite deficiency.

Proof. The second part of Lemma 4.2 assures us that at each
stage in the above construction, starting with the (n0 + 1) row, there
are two linearly independent sets of new <pt's to choose from. Therefore
we can construct infinitely many linearly independent elements in
orthogonal to all the rows of mat (Lx).



SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS 85

COROLLARY 4.6. Suppose the singular set satisfies e e S = S'1. Let
the coefficient of e be i, and the other coefficients be one. Then the
hermitian element Σs.es-{e} s% contains the element —i in its spectrum.

The following theorem gives examples of groups that contain singular
sets S satisfying e e S = S'1. A definition is needed first. Let n ^ 2,
and let F{n) be the free group on generators a19a2, • • ,an. For any
f e F{n), the length of / is:

rnin J V I w(t\ I f — πn{\)πn{2) . . . πn(s) 1

THEOREM 4.7. ( i ) Let Fin) be the free group on generators
au a2, •••, an; w Ξ> 2. Then there is an ordering έ? of F{n) such that
the set S = {e = α0, alf a2, , an, αr\ a2

λ, , a'1} is singular with respect
to it.

(ii) Let G{n) be the free group on generators bif b2, •••, bn; n ^ 3,
βαcΛ o/ order two. Then there is an ordering of G{n) such that the set
S = {e = 60, δi, δ2, , 6W} is singular with respect to it.

Proof, (i) The ordering ^ is started with g% — at, i = 0, 1, 2, , w;
and flrn+i = ay1, j — 1, 2, , w. Since the generators are free, each of
the sets Sglf Sg2, , Sg2n contains 2n — 1 distinct elements of length 2.
It is clear that no element of length 2 in Sgt can equal an element of
length 2 in Sgj9 i Φ j \ and that included in the Sg t's are all elements
of length 2. Now successively adjoin to the set {g0, gly , g2n} the
elements of length 2 from Sglf Sg2, •••, Sgn respectively. This gives
£Wi> 02*+2> '"jQin^ Again since the generators are free, each of the
sets Sg2n+1, Sg2n+2, , Sg4n2 contains 2n — 1 distinct elements of length
3; no element of length 3 in Sgt can equal an element of length 3 in
Sgj9 i Φ j ; and all the elements of length 3 are included in them. As
before successively adjoin the elements of length 3 from Sg2n+1, Sg2n+2, ,
Sg4n*. The ordering ^ constructed in this manner by then adjoining
elements of length 4.5 etc., satisfies the conditions of the theorem. Indeed,
we have for any n, | Sgn Π {SgQ U % U U Sgn^) \ = 2, and since n :> 2,
2-2 ^ 2n + 1 = | S .

(ii) The proof is in the same spirit as that in (i). In this case
start the ordering with S and successively adjoin the elements from

Sg, - (Sg, n S), Sg2 - (Sg2 n (Sg1 U S)), •, Sgn

- {Sgn n (Sg.-x U Sgw_2 U • U S)) , . .

In this case | Sgn Π (Sgn^ U Sgn-2 U U S) \ = 2, and since w ̂  3,
2-2 ^ w + 1.

REMARK 4.8. It is not hard to see that for the case of F{n) an
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element of the form ae + ax + a2 + + an + ar1 + GhΓ1 + + an1 where
\a\ < 2n — 2 is singular in l\F{n)). From this it follows that the her-
mitian element x — aλ + a2 + + an + &Γ1 + ô Γ1 + + aζ1 contains
in its spectrum the closed circle about the origin of radius 2n — 2.

REMARK 4.9. For Gl2) the theorem is false. One way to see this
is to note that G(2) is the semi-direct product of the integers by a group
of order two, where the automorphism sends an element to its inverse.
Hence by Theorem 3.9, l^G™) is symmetric with respect to the natural
involution. Another way of seeing this will be given by Theorem 4.12
(see Remark 4.14).

REMARK 4.10. It is known that the group F{n\ n ^ 2 has a com-
plete set of representations by finite groups, and it follows from this
that F{n) can be algebraically imbedded in the complete direct sum of
these finite groups. By Theorem 3.10 we then have that the natural
involution is not hermitian in the group algebra of this complete direct
sum. However, we do not know the answer to the involution question
for the general case of the restricted direct sum (sequences reducing
to the identity from some point on) of finite groups.

REMARK 4.11. Group algebras are A* algebras in the sense in-
troduced by Rickart [8]. Unfortunately, Hille and Phillips [5: pp 22]
have defined an A* algebra to be a Banach algebra with an hermitian
involution. It follows from the above that these two definitions are not
the same.

Perhaps the simplest example of an hermitian element with non-real
spectrum can be found in the group algebra of the group G — {α, b : α2 = e).
The element x = a + b + b~x is hermitian and with respect to an order-
ing of G constructed in the same fashion as above, the matrix of Lίe+X

is:

"i 1 1 1 0 0 0 0 0 0 0 0
1 i 0 0 1 1 0 0 0 0 0 0
l O i O O O l l O O O O
l O O i O O O O l l O O
O l O O i O O O O O l l
O l O O O ί O O O O O O
O O l O O O i O O O O O
0 0 1 0 0 0 0 i 0 0 0 0

The element (ί, 1, —1, — i, —i, •••) e C^{G) will then be orthogonal to
all the rows of this matrix, and hence — i is in the spectrum of x.
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Theorem 4.12 is quite special, however it does suffice to show that
hermitian elements with finite support in l\Gw) have real spectrum.

Let S = (s4J); i, j = 1,2, be any infinite matrix and define Sin) = (sQ
by the equations Sy = sυ for i,j^n and Sy = 0 otherwise. S ( w ) will be
called the principal n x n section of S. If there is an integer k so that
smn — 0 whenever \m — n\^k, S will be called a corridor matrix of
width k.

THEOREM 4.12. Let T = (αy) be an hermitian corridor matrix of
width k, with sup^lα^l < oo. Then for any real number p, the operator
T + pil defined by this matrix maps I1 onto a dense subset of I1.

Proof. Note first that since the norm of an operator on I1 can be
computed by taking the sup of the I1 norms of the rows of its matrix
with respect to the usual basis, T is a bounded operator (we will not
distinguish between the matrix and the operator it represents) on I1.
Moreover since the matrix of T is hermitian, T can be extended to a
bounded operator on I2. Hence the spectrum of T as an operator on I2

is real.

Assume there is a sequence (<pu<p2, •••) (not necessarily bounded),
that is orthogonal to all the rows of (T + pil). Since T + pil is regular
as an operator on I2, it follows that Σi°=il^l 2 = °° We are going to
show that the sequence (φlfφ29 •••) is in fact unbounded.

Let l\n) denote ^-dimensional Hubert space and φ{n) = (<plf φ21 , φn).
Since T is hermitian, we have for any y e l\n) that || (Γ + pH)ίn)y\\2 έ
PlIl/IU where (T + ρil)[n) denotes the n x n matrix in the upper left
hand portion of the principal n x n section (T + pil){n). Let K be any
large number, and pick n0 > K so that Σ?=i I Ψ% I2 > 4:K2M2ksρ~2 where
J f = s u p 4 i J | t y | and mat (T+jθiI) = (tw). Let (T+piiy^φ^^(a^a,,- - -,an),
a* = Σ P = I a>kp<PP Since ψ — (φu <p2, •) is orthogonal to all the rows of
T + pil we have that ax — a2 = = αMo_fc = 0. From the I2 norm in-
equality above, we have that

n0

or

I at |2 ^ p\±K2M2Vp-2) = AK2M2k3 .

Hence some α io, n0 — k < i0 ^n0 is such that | aiQ |2 > AK2M2k2 or | atQ \ >
2KMk. However ah = Σ?=i ^ 0 ^ ί ^ a n d s i n c e t h e r e a r e a t m o s t 2 f c non-zero
terms, there is a p0 with | tioPQφPo \ > KM and hence | φPo \ > KMj\ tkPo \ ̂  K.
In other words, the sequence (φlfφ29 •••) is unbounded, and it follows
that the range of T + pil is dense in I1.
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For x = Σgea %{Q)Q € l\G), let Go denote the subgroup of G generated
by {g e G : x(g) Ψ 0}. Since this set is countable, Go is countable. We
have:

COROLLARY 4.13. If x = x* e Γ(G), ami wΐ£/ι respect to the basis
in ^(GQ) defined by some ordering of GOf mat (Lx) is a corridor matrix,
then the spectrum of x is real.

Proof. By Theorem 3.10 it sufficies to look at the spectrum of x
as an element of (̂Go). Now the theorem above gives that the ranges
of Lίe+X and L^ie+X are dense in ^(GQ). But these ranges are also ideals
and since they are dense, they must be all of Zi(G0) This means that
there are elements yx,y2e lτ(Go) such that (ie + x)yλ = e and (—ie + x)y2 — e.
Applying the involution to the latter equality gives y2(ie + x) = e. Hence
ie + x has both a right and left inverse, and is hence regular.

REMARK 4.14. Take the ordering (e, α, 6, αδ, ba, aba, •) in the group
G(2) = {α,6 : a2 = b2 — e}. Then it is easily seen that mat (Lx) is a corridor
matrix whenever x e l^G™) has finite support. Hence Theorem 4.7 does
not hold for G(2).

5 The involution and invariant means* The main results in this
section are Theorem 5.6 and Theorem 5.8. The first theorem gives us
some information concerning the involution when the group has an in-
variant mean, and in the second theorem it is shown that a group con-
taining a singular set cannot have an invariant mean.

A continuous linear functional λ on r^{G) is said to be an invariant
mean, if it satisfies:

(i) λ(<p)^0, φ^O, φe^(G);
(ii) X(φx) = \{φx) = X(φ) where φx(y) = φix^y), and ψ\y) = φ(yx);
(iii) λ(7) = 1 where I is the function identically 1 on G.
Whenever the notation λ(A), for A a subset of G, is used, it will

mean the number λ(χj where χA is the characteristic function of A*
For φ, ψ e C^{G) define a pseudo "inner product" (φ,ψ) =

A few simple properties of this inner product are given in:

LEMMA 5.1. ( i) (<p,ψ1 + ψ2) = (<P, ψ1) + (φ, ψ2);
(ii) (φ,φ) = (φ,φ);
(iii) (aφ, ψ) = a(φ, ψ);
(iv) (φ,φ)^0;
(V) I {φ, ψ) I S (φ, Ψ)ll\f ,ψy*;

where φ, ψ, ψ19 ψ2 € ^(G), and a is a complex number.

Proof, (v) will be proved, the other statements following immediately
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from the definitions.

0 ^ (φ — aψ, φ — aψ) = (φ, φ) — a(ψ, φ) — a(φ, ψ) + \ a \2(ψ, ψ) .

If (φ, ψ) = 0, (v) is trivial, so assume that {φ, ψ) Φ 0, and let a =
(φ, φ)l(φ, φ)\ (v) then follows by direct calculation.

Let ST = {φ e ίT(G): λ(| φ\) = 0}, and Sf = {̂  e <if (G): λ(| ?> |2) = 0}.
We have:

LEMMA 5.2. JίΓ is equal to .Sf and is a closed subspace of ^ ( G ) .

Proof. By letting ψ = / and replacing <p by its absolute value in
(v) above, we have that, | (\φ |, I) |2 ^ ( | ^ |, | φ ()(/, I) or ( λ ( | φ | ) 2 g
λ(| φ |2)λ(/2) = λ(| ̂ > |2). Hence λ(| ψ |2) = 0 implies λ(| ̂  |) = 0, and thus

Conversely if φ e 3% then | ^ | 2 ^ K\φ\ where K is a bound for
\φ\, and it follows that 3T c f̂f

Since | αφ + /3ψ | ^ | α | | ψ \ + | β \ \ ψ |, X is a subspace of <έT(G).
Finally for φn e 3Γ and || φn — ̂ > IU —> 0, it follows from the continuity
of λ that λ(| <p I) = 0, and hence 5ίΓ is closed.

Let ^ — ̂ ^ denote the space of cosets of <g*(G) with respect to
r : Forφ e & - 3Γ letWΦlh^XQφl): \\Φ ||2 = (λ(| ^ | 2 )) 1 / 2 , >̂ e Φ; and

9^,f ef Then:

LEMMA 5.3. .For φ, ψ e ^

( i ) || Φ ||i is ?^eϊϊ defined and a norm on c^ —
(ii) (φ, ψ) is well defined and makes ^ — 3ίΓ into a pre-Hilbert

space;

(iii) H Φ H ^ I I f ||2.

Proof. ( i ) Let φlf φ2 e φ so that φ1 = >̂2 + k where k e S>Γ. Then
- I ΨlQ) + fc(flf) I ̂  I 9>a(flr) I + I HO) I so that | φλ I ̂  I φ21 + I fc |.

Hence λ(| ̂  |) ^ λ(| % | + | fc |) ^ λ(| φ21) + λ( & |) = λ(| ̂ >21). Now by revers-
ing the roles of φx and φ2, it follows that | | Φ | | i is well defined. Also
IIΦ + f Ik = M l φ + ψ I) ^ x(\φ\ + 111) = H\<p\) + M l ψ I ) = IIΦ Ik + || ψ ||lf
and HαΦllx = IKά^lk = λ ( | α ^ | ) = | a\\{\φ\) = | α | | | φ || for φeφ,ψe f,
and a complex. Finally || Φ |U = 0 implies that λ ( | ^ | ) = 0, and hence
that Φ = 0. Thus || φ \\x is a norm on ^ — J^Γ

(ii) If <pi, ̂ 2 e Φ and -^^ ψ2 e ψ, then ^ = φ2 + fc, ψ^ = ψ2 + Z
where fe,ίeX Then (^, ψ2) = (<p2 + k,ψ2 + l) = (<p2, ψ2) + (<p2,1) +
(k, ψ2) + (fc, i). But I (φ2,1) |2 ̂  (^2, φ2) (I, I) = 0, I (fc, ψ2) I2 ̂  (fc, fc) (ψa> ψa) = 0,
and I (fc, ϊ) |2 S (kf k)(l, I) = 0, so that (Φ, ψ) is well defined. If (Φ, Φ) = 0,
then λ(| ψ |2) = 0 for >̂ 6 Φ, and by Lemma 5.2, ̂  e 5ίΓ or Φ = 0. Hence
with respect to (Φ, ψ), ^ — 3T becomes a pre-Hilbert space.
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L\G, λ) will denote the completion of ^ — J%Γ with respect to
HΦIIi; and L\G,X) the completion with respect to | | Φ | | 2 .

LEMMA 5.4.* Let g19 g2, , gn be distinct elements of G. Then there
is a subset A of G satisfying \(A) > 0, and Agt Π Agό = φ, i Φ j .

Proof. Let sf = {JS c G : Bgt Π Bg0 = φ, i = j}. sf is then non-
empty since {e} e Jϊζ and is partially ordered by inclusion. An immediate
application of Zorn's lemma gives a maximal element A. Let C —
AgΎ U Ag2 U U Agn U ( U w Ag^j1). It will be shown that C = G.
Indeed if h e G — C, let A' = 4̂ U {/̂ }. Since A is a maximal element

are indices i0 and j 0 such that k e A'giQ (Ί A'gjo and
Therefore either

Q, k = hgJQ; o r

o> k = h9j0-
But (c) implies that gio=gjo, a contradiction, (a) implies that k — hgiQ9

k = agh where aeA, and hence hgίQ = agJQ or h = α ^ ^ 1 giving fc e Aghg^
which is also a contradiction. The proof that (b) is impossible, is similar
to (a). Hence C — G, and X(A) > 0, since G is then the finite union of
sets, each of measure X(A).

Corresponding to an x e l\G), we are now going to define operators
on U{G, λ) and L\G, λ).

For ψ e & — 3ίΓ and g eG,φg will mean the coset in c^ — ̂ ί contain-
ing <pg. This is well defined since φ,ψ e φ imply φ — ψ = k e J£T Since
φg — ψg = kg is also in J3f it follows that Φg — ψg. For α? = Σ^eβ ^ί^)^ ^ ^(G)
d e f i n e T x φ = Σ ^ e ^ %{9)Φg forφe^ — Jΐ7 F o r <p e φ we h a v e ,

e Σ G

where G2 is some subset of G satisfying Σ^eβ-^ I ̂ (^) I <
Hence

Σ
gSG-G1

1ψ,ύ λ(Σ
\geG1

Σ
* The author is thankful to Professor H. A. Dye who suggested this lemma.
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Since ε was arbitrary we have that || Txφ\\x S \\ % II II ΦJIi
Now let Go be the countable subgroup generated by {g : x(g) Φ 0},

and let {gί9 g2, •••} be an ordering of Go. Let x{n) = Σ?=i»(Λ)ff* β y
Lemma 5.4 there is a subset A of G with λ(A) = c£>0, and Agt Π Agό = φ
for i ^ j" and 1 <L i, j ^ ti. Then

= λ(J Σ

Since || x(w) — α? || —> 0 as n —> oo we have that || Tx 1̂  = || a? ||. Finally
since Γ̂ . is bounded on W — 3ίΓ with respect to | |Φ | | i , it can be ex-
tended to the completion L\G, λ) without increasing its norm. The
extension will be denoted by Γx

(1).
The operator Tx on <Sf - ^T will now be extended to L2(G, λ). For

Φ e ctf — J%Γ, and φ e ψ we have

Σ χ{g)φg I2) ^ λ(( Σ

But {| a (g) |1/2 : g e G } e l\G), and so for any he G the sequence

{I α(0) Γ/2 \φg\(h):geG}e l\G). N o w

and

Σ
,geG

so that

and hence

λ((Σ
WgeG

1121 1 ' 2 1 Σ
g€G

Σ

Σ
Q6G

Σ
geσ

2 ) ^

J
λ ( Σ I χ(s) 1

\gβG

Ml ?>, I2)

II2 f

SO

or

We can therefore extend Tx to a bounded operator on L\G, λ) with-
out increasing its norm. These results are summarized in the following
theorem.
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THEOREM 5.5. The operator Tx on ί r — ^f defined by Txφ =
Σugeσ %(9)Φg> where x = Σpe<? %(9)9 e l1(G)f can be uniquely extended to
a bounded operator T™(T™) on V(G, X)(L\G, λ)), and \\ 2™ ||, ^ || 2™ ||x =

THEOREM 5.6. Lβ£ G Aαve cm invariant mean λ, emd Zeί # = #* e ̂ (G).
J/ ί/^ere is a <p e C^{G) whose nullspace contains the range of il + Lx,
then λ(| ψ I) = 0.

Proof. Since the nullspace of <p contains the range of il + Lx, we
have in particular that 9>((il + Lx)(h)) = 0 for all h e G. Let <?> =
and a; = Σ^e^ oc(g)g. Then

and

(il

Hence

0 = (i

Lxh = Σ χ(a
QβG

+ Lx)(h) = ih+ Σa?(ffA

+ x{e))φ(h) + Σ Hgh'1

Taking complex conjugates and

0 = (-i

= (-<

+ x{e))φ{h) + Y,x{g)φ{(

+ x(e))ψ(h) + Σ t̂o)1/Γfi

)sr^ = Σ χ(
9€G

~λ)g = (i +

M ? ) = ( i "

letting ψ(ί

^ ) = (-*H

Φ))(h) + Σ

- x{e))φ(h) +

0 = ^(ff) we

h a?(e))t(λ) +

gΦe

have,

Σ^to"1)

for all h e G, since a; = aj*.
On the other hand,

Σ

Σ

= ( - i + ί f (e) )#) + Σ %(9)ψ<,(h) = 0

for all he G. This means that {-il + Tx

2))(ψ)e JΓ, and since Tx

2) is
an hermitian operator on L2(G, λ), we must have ψ = 0. Therefore

We now show that the existence of a singular set (not necessarily
inverse closed) in a countable group, implies that the group does not
have an invariant mean. For this purpose we make essential use of a
theorem due to Fφlner [2].

THEOREM (Fφlner). A group G has an invariant mean if and only
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if for any finite set F and e > 0, there exists a finite set A of G such
that I A n xA I/I A \ > 1 - ε for all x e F.

LEMMA 5.7. Let F be a finite subset of a group G such that [F] is
infinite. Then if there is a finite set A with \ A Π %A\j\ A | > 1 — ε
for all x e F, then | A | ^ 1/ε.

Proof. Let F = {flff2, •,/*}> \A\ = r, and assume that r < 1/ε.
Then ε < 1/r, and for any fi e F, \ A n/<A | > (1 - ε)r > (1 - l/r)r =
r — 1, and hence A Π/*A = A or /€A = A (ΐ = 1, 2, , s). It follows
that gA = A for any # e [JF7]. Now since A is finite and [F] infinite,
there must exist elements α0 e A, g19 g2 e F, gλφ g2 such that gxaQ — g2a0.
But this gives gλ = g2, and we have contradicted the assumption that

THEOREM 5.8. If G contains a singular set F with respect to the
ordering {giyg2, •••}, then G does not possess an invariant mean.

Proof. Since F is singular there exists an integer ί0 such that
2 I Fgt n (Fgλ U ^ U U Fgt_λ) | ^ | F\ = s for t > ί0. Assume G does
have an invariant mean, so that Fφlner's condition is satisfied. Let
ε = l/72to(s — 1). Then there exists a finite set A with | A | = r, and

I A Π /«A I > (1 - ε) I A |
72to(s - 1) > 6ί0. Let

for any /, e F. From Lemma 5.7 | A | ^ 1/ε =

Consider the matrix

A = {#Wi, ^ 2 , , gΛr: n, < n2 <

••• \JFgntJ\ ^s for ί > t0.
< nr). Then

fiQn2

f?9nr

± 2 * * * J s9nr

and let B denote the set of distinct elements of this matrix. We are
first going to get an upper bound for \B\ by counting the elements of
the matrix row by row, and then a lower bound for \B\ by counting
them column by column. It will turn out that these bounds are incom-
patible and the proof completed.

The kth row of the matrix is simply fkA, and \f3A — (ftA ΓifjA) | <
3rε. Indeed | A Π /<A) | > (1 - ε)r implies | A - (A Π /*A) | < rε so that

A = (( A - (A n AA)) n (A - (A n f3A))) u ((A - ( A n f<A)) n (A n f3A))

u ((A n/*A) n (A - (A nfjA))) u ((A n/,A) n (A n/,A)) = Λ U A 2 U A 3 U A 4 ,

where the A/s are disjoint. Therefore r = | A | = | Ax | + | A21 + | A31 +
IA41< rε + rε + rε + IA41, and | (f,A nfjA) \ ̂  | A n/*A n/,A | = | A41 >
r — 3rε or |/^A — (/4A ΠfjA) | 3rε. Now the first row of the matrix has
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r elements and, as has just been shown, each additional row adds less
than 3rε additional distinct elements. Adding, we have | B | < r +
(s - l)3re.

The first ί0 columns obviously contain at least s distinct elements,
and from the singularity condition it follows that each additional column
from t0 + 1 through r adds at least s/2 distinct elements to B. Hence
I BI ^ s + (r - ίo)s/2.

Therefore s + (r - to)s/2 < r + (s - l)3rε = r + (s - l)3r/72£0(s -1) =
r + r/24t0. Since r = | A | ^ 1/ε > 6ί0 we have r — £0 > 5r/6. Hence
s + (5r/6)(β/2) < s + (r - to)s/2 < r + r/24ί0. Since s ^ 3, s(l + 5r/12) ^
3 + 5r/4 so that 3+5r/4<r + r/24ί0 or 12 + 5r<4r + r/6ί0=r(4 + l/6ί0)<5r,
and we have obtained the desired contradiction.
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MULTIPLICATION OPERATORS

R. C. BUCK

l Introduction* The prototype for partially ordered linear spaces
is C[X], the space of all real valued continuous functions on a topological
space Xy with the natural ordering defined by: / Ξ> 0 if and only if
f(x)}>0 for all x e X. If V is a real linear space with a partial order
defined by a suitable positive cone P, then V has a canonical embedding
in a function space C[X],

The containing space C[X] has a more elaborate structure than did
the original space V; in particular, C[X] is an algebra. If we take any
aspect of C[X], we may ask how it appears when transferred back to
V. This paper deals with one aspect of this.

Among the linear operators on C[X], an interesting class that arises
in many contexts is the class of multiplication operators. These are
defined by:

T(f) = g where g(x) = φ(x)f(x) x e X ,

and where φ is a specific member of C[X],
The central result in this paper is a simple characterization, in terms

of order, of the linear operators on V which become multiplication
•operators when V is represented in a function space C[X]. This in
turn yields a new and more transparent proof of the Stone-Krein theorem
on ordered algebras.

2 A simpler case* Let V be a real linear space. We assume that
there is a convex cone P with vertex at 0 which defines an order rela-
tion S. in V by x ^ y if and only if y — x e P. On P, we impose three
conditions:

( l ) P n - P = { 0 }
{ 2) P is generating

( 3 ) P is linearly closed in V.

The second condition implies that every element x e V is the differ-
ence of positive elements; the third condition requires that every line
meet P in a (possibly unbounded) closed interval. Note that we do not
impose any further lattice properties on V, nor do we assume that there
is an order unit. If V denotes the dual space of V, consisting of all
linear functional on V, then V has a natural partial ordering derived
from that of V. A functional L is said to be positive if L(x) Ξ> 0 for

Received January 11, 1960. Some of this work was done while the author was a Gug-
genheim Fellow.
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all x ^ 0; the positive cone in V is P\ The space V will not in
general obey all the properties (1), (2), (3).

Let Jΐf(V) denote the algebra of all linear transformations on F.
We single out a subclass § I c ^ ( F ) consisting of the order-bounded
transformations:

DEFINITION 1. An operator T e jSf(F) is order bounded if there is
a constant r such that

(4) -rx ^Tx^rx for all x ^ 0 in F

We observe that SI is a subalgebra of J S ^ ( F ) containing the identity
operator 7; for, if Tλ and T2 are in 21, with associated constants rx and
r2, then it follows readily from (4) that TλT2 obeys (4) with r = 37VV
We wish to show that V has function space representations in which
the algebra 21 becomes multiplication operators. We will prove this first
under the strong restriction that V has an "order unit", and then re-
move this restriction.

Let us suppose that there is an element e e V such that e ^ 0 and

(5) for every x ^ 0, there is λ > 0 such that x g λe.

This restriction can be described geometrically: the point e is a radially
interior point of P, so that every line thru e meets P in a line segment
containing e as interior point.

THEOREM 1. Let Vbea partially ordered linear space obeying (1),
(2), (3) and (5). Let 21 be the order bounded operators on F. Then
there is a compact set Γ and an order preserving representation θ: x—>x
of V onto a subspace of C[Γ], and an isomorphism θ: T—> f of 21 into
the multiplication operators on C[Γ] such that

θ{Tx) = fx

for all xeV,T e 2ί.
Otherwise described, the diagram

, 1*
V >C[Γ]

commutes. Corresponding to Γ, there is a function φ e C[Γ] such that
if Tx = y, then y(p) = Φ(p)x(p), for all p e Γ.

COROLLARY 1. 21 is a commutative subalgebra of
The method we use will be to construct certain appropriate real

homomorphisms of 21. Recall first the important notion of a minimal posi-
tive element (See Brelot [3] for background.)
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DEFINITION 2. An element u Ξ> 0 in V is said to be minimal if
0 ^ x ^ u implies that x = Xu for some real λ.

This can be described geometrically: u is minimal if the ray p
generated by u is extremal in P, and this is so if u cannot be expressed
as the midpoint of two points in P that are not on p. In contrast with
the situation for finite dimensional spaces, a cone P in a general linear
space will usually have no extremal rays (or minimal elements). This
is the case for C[X] when X is the line, but is not the case if X
is discrete. The dual cone P' of positive linear functional on V can
be better behaved; however, if V is the space !/[(), 1], neither P nor
P' have extremal rays.

LEMMA 1. If P is the positive cone in a space V and P contains
a radially interior point, then Pr has a separating family of extremal
rays.

This is more or less familiar. (See Bonsall [2], Kadison [8], Kelly
[9].) One defines a norm in V by

|| a? || = inf {all r with —re ^ x ^ re} .

Let D be the functional L on V such that | | L | | g 1 and L(e) = 1.
This is then a w* compact convex set in the dual space of ζV, \\ \\).
Invoking the Krein-Milman theorem, D has extreme points Lo whose
convex hull is dense in D. These are in fact minimal positive elements
in V, generating extremal rays in P'. Moreover, if L0(x) = 0 for all
Lo, then x = 0.

The key to the proof of Theorem 1 is the observation that minimal
elements of P will yield homomorphism of 2ί onto the reals. If T e SI,
then by (4) there is a number r such that

(6) 0 ^ rx + Tx ^ 2rx all x ^ 0 .

Let x = u, a minimal element of P. Then, we see at once that n is an
eigenvector for T. Denoting the corresponding eigenvalue by λ(T), we
have Tu = X(T)u, holding for all T e 2ί. But, it then follows that
T—>λ(Γ) is a homomorphism of 21 onto the real field k; for, given 2\
and JΓ2, we have

\)u = T^lu)

Unfortunately, except in unusual cases, P will not have any minimal
elements. Let us go over to the adjoint algebra §1* c £f{Vf) consisting
of all operators T* for T e 51. T* is defined on V, the dual space of
V, by:
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( 7 ) T*(L)(x) = L(Tx) a l l r ^ F

and the mapping Γ—* Γ* is an anti-isomorphism of Sί onto Sί*. From
(7) and (5), we see that if T obeys (4), then

(8) -rL g Γ*(L) ^rL all L ^ 0 .

Thus, Sί* is an algebra of order-bounded operators on the partially ordered
space V\ By Lemma 1, since P was assumed to have an order unit β,
there are many minimal elements Lo in P \

Let D be the convex cross-section of Pf consisting of all L ^ 0 with
L(e) = 1. Each extreme point of D is a minimal positive element in Pf

and generates an extremal ray; let Γ be the closure of the set of ex-
treme points in D, in the w* topology arising from the natural norm
topology on V. By the simple argument given above, each Lo e Γ yields
a real homomorphism XLQ of Sί*, defined by the equation

Γ*(L0) = λZo(Γ*)Lo .

Since Sί* is (anti) isomorphic to Sΐ*, λ£o in turn defines a real homomor-
phism hlQ of Sί; using (7), this takes the explicit form:

all x e V
(10) LQ(Tx) = hL(T)L0(x) all T e Sί .

all LoeΓ

By Lemma 1, the functional LQ separate V so that the collection of
homomorphisms hLQ separate Sί. We may conclude that Sΐ is isomorphic
to a product of fields k, and is therefore commutative; this proves the
corollary.

To complete the proof of Theorem 1, we examine (10). We first
represent V in C[Γ], mapping x onto Θ(x) = x where x(L0) = L0(x) for
all Lo e Γ. Since LQ(e) — 1 for all Lo, e is the constant function 1; in
fact, the mapping θ is one-to-one and order preserving. For fixed
TeSΐ, define a function φ on Γ by

(11) Φ(LQ) = hLQ(T) .

Let Tx — y; then, (10) can be rewritten as:

(12) y(LQ) = Φ(L0)x(LQ) .

The representation θ is such that every order-bounded operator T is
carried into a multiplication operator on C[Γ], and the correspondence
is an isomorphism of Sί with a subalgebra of Jίf(C[Γ]), and in fact,
with a subalgebra of C[Γ] itself.

3. The Krein-Stone theorem. Before removing the assumption
that V possesses an order unit e, we insert an immediate application
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of our results. (See Stone [14], Krein [10], Kadison [8]).

THEOREM 2. Let A be a real algebra with unit e and having a
partial order such that if x ^ 0, y ^ 0, then α? + V ^ 0 and xy ^ 0.
Assume further that, as a linear space, A obeys restrictions (1), (2),
(3) and (5). Then, A is commutative and can be represented as a sub-
algebra of a function algebra C[X].

Proof. Consider the left regular representation of A. This sends
a e A into the operator Ua e ^f(A) where Ua(x) = ax for all x e A.
Since A has a unit, this is an isomorphism of A onto a subalgebra
A c £f(A). By virture of (5), we can choose r depending upon a so
that —re ^ a ^ re. If x ^ 0, then —rx g ax ^ rx so that_?7α is an
order bounded operator on the linear space <A, +>. Hence, A c SI, and
since this is a commutative algebra, so is A.

As a matter of fact, it is not necessary in this proof to assume
that A is even associative, since this too can be deduced from the rep-
resentation. Since UaUυ = UbUay it follows that aφx) = b(ax) for all
x e A) with α; — e, we find that A is commutative. Then, a(bc) — a(cb)
while b(ac) — (ac)b and A is associative.

Conversely, we note that Corollary 1 follows from Theorem 2, since
91 itself is an ordered algebra, with I as unit.

Other proofs which have been given for this result rely upon the
construction of appropriate real homomorphisms hoi A. These are linear
functionals on <̂ A, +y which are multiplicative and obey h(e) = 1. It is
natural to look for these among the extreme points of an appropriate
convex set D in the dual space of <A, +>. Since any finite set of dis-
tinct real homomorphisms of A are linearly independent, the collection
of h are precisely the extreme points of the convex set Do which they
generate. Unfortunately, we cannot obtain Do directly. Instead, one
selects a D ID Do, easily described, and then proves D = DQ. For example,
the method adopted in Tate [15], Kadison [8] and Kelley [9] is to select
D as all functionals L on <A, +> such that L(e) = 1 and L(x2) ^ 0 for
all x e A. We note that the proof of D = Do depends strongly upon
the hypotheses on A; one can construct a finite dimensional algebra B
for which D is a closed disc, having a circle for its extreme points, but
such that B has no proper real homomorphisms.

4 Reduction of the general case. Suppose now that V is not as-
sumed to satisfy (5). This is true for example, of the space C0[R] of
functions with compact support, continuous on the real line R. We
reduce this case to the previous one. Let e be an element in P and
form

(13) V(e) = {all x e V such that for some λ, — λe g x g Xe} .
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This is a linear subspace of V; it inherits a partial order from V, and
in its positive cone Pf] V(e), the element e is an order unit. Suppose
that T e 2ί. Then, from (4), if x e V(e), then for the appropriate λ,
we have

-3λre ^ Tx ^

Thus, F(e) is left invariant under all operators T e 21. Accordingly, if
we restrict 21 to V(e), we obtain a representation of 2t in £?(V{e)).
Applying Theorem 1 to the resulting algebra, we find that 2ί is com-
mutative in its action on V(e), and also obtain a representation (homo-
morphic) of 2t as multiplication operators on an appropriate function
space C[Γe], Finally, as e ranges over P, the subspaces V(e) cover V,
and we have proved the following result:

THEOREM 3. Let V be a partially ordered linear space obeying (1),
(2) and (3), but not necessarily (5). Let 21 be its algebra of order bounded
operators. Then, 21 is commutative, and corresponding to any positive
element e in V, there is a compact set Γe, an order preserving linear
representation θ of V(e) into C[Γe] and a homomorphism θ of 2ί into
the multiplication operators on C\Γe] such that θ(Tx) = θ{T)θ{x) for all
x e V(e) and T e 21.

A footnote to this is in order. Although we have shown that the
algebra 21 is commutative, we have not shown that it need contain
more than the multiples of the identity operator I. This can in fact,
happen, although it does not in most of the interesting cases discussed
in the next section. A glance at the finite dimensional case will be
helpful. Let P be a polyhedral cone in %-space, and let u19u2, uN

generate its extremal rays. Each us is an eigenvector for all the order
bounded operators T e 21, and in turn generates real homomorphisms hy

of 21, with

T(uj) = hό{T)u3 .

Suppose that the {u3)ι are such that N > n and every set of n is in-
dependent. Then, it follows that all the hό coincide on 21. Since to-
gether they define a faithful representation of 2t, we conclude that 2ί
consists exactly of the scalar multiples of I. In contrast, if N = n, and
the Uj form a basis, then 2t becomes the algebra of diagonal matrices;;
these, of course, are the multiplication operators in this representation

5. Examples* In this section, we give a number of interesting
illuastrations of Theorem 3, together with a counterexample to show the
necessity of the assumption that P is a linearly closed cone.

First, choose V as the space C0[X] of all real valued continuous
functions on the locally compact space X which vanish at infinity. With
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the usual ordering (/ Ξ> 0 means f(p) ^ 0 for all p e X) this is a partially
ordered linear space satisfying the hypotheses of Theorem 3. Note in
particular that C0[X] does not have an order unit. What are the order
hounded operators on C0[X]Ί Applying Theorem 3, we choose any e ^ 0
in CC[X] and form the subspace V(e). By (13), / e V(e) if and only if
fie is a bounded function on X. Thus, V(e) is isomorphic to the space
of bounded continuous functions on the open support Oe of e. The set
Γe is the Cech compactification of Oe, which contains Oe densely. Any
point p e Oe defines a minimal functional Lp on V(e) so that by (10)
and (12),

(14) L,(Tf) = (Γ/)(p) = Φ(p)f(p)

for all p e 0e and any T e St. If X is σ-compact, we can take e so that
Oe = X, and we find that the only order bounded transformations on
C0[X] are those defined as point-wise multiplication by bounded continu-
ous functions φ on X. If X is not tf-compact, we arrive at the same
conclusion by varying e.

We note that if V is C[X] itself, a simple and direct characteriza-
tion of the order bounded operators is available. Using the fact that
if f(pQ) = 0, then we may write / = f± — f2 where f% ^ 0 and fi(p0) = 0,
it readily follows from the characteristic property of Γthat (Tf)(p0) = 0.
Applying this to / = g — g(p0), we have Tg = φg where φ = Γ(l).

Another interesting special case is obtained by taking V as the
space H of all bounded harmonic functions on an open domain Ω. The
constant function is an order unit for H so that we do not need the
full machinery of Theorem 3. The extremal rays in P are generated
by the R. S. Martin minimal functions (see Brelot [3]) and H is repre-
sented as a subspace of the space of continuous functions on the ideal
boundary Γ of Ω. The order bounded transformations are represented
in turn as C[Γ] itself; for any T e 31, Tf is the harmonic function g ε H
which is described by the (abstract) Dirichlet problem g \ Γ = φf | Γ where
φ is the function in C[Γ] corresponding to T. Note that T is not a
multiplication on Ω itself. With Ω chosen as the unit disc and φ(x, y) = x,
we have Γ(l) = x, T(y) = xy, but T(x) = (l/2){^2 - f + 1}, and T(xy) =
(1/4){3Λ/ - t + y}.

A somewhat more complicated illustration is provided by the space
C[X: E] of all bounded functions / on a locally compact space X with
values in a fixed partially ordered linear space E. We order this by saying
/ ^ g when f(p) ^ g(p) for all p e l We shall also assume that E has
an order unit e and require that each / be continuous when E is given
the norm topology associated with e. If v e E, denote by v the constant
function on X with value v. Note that e is then an order unit for
C[X:E], To apply Theorem 3, we must determine minimal functionals
in the dual space of V. We can find one associated with each point
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pQeX and any minimal functional θ on E; define Lo on C[X: E] by
L0(f) = θ(f(Po))> The following argument proves that Lo is indeed
minimal. Suppose 0 ^ L ^ Lo. Then, for any v ^ 0 in E, 0 ^ I/(i7) =
#(iθ. Thus, v —> L(^) is a positive linear functional on E which is
dominated by θ. Since θ is minimal on E, there is a constant /> such
that L{v) = ρθ(v) = pL0(v) for all v ^ 0 in E (and thus for all v e JE7).
Suppose now that / € C[X: E] with f(p) g /(p0) for all p e X; we shall
say that such a function / takes a maximum value at p0 and that / e <βζQ.
Setting v = f(p0), we have v - f ^ 0 so that 0 ^ L(v - /) ^ L0(v - / ) .
But, L0(τJ - /) - φ - f(Po)) - 0 so that L(/) - L(v) - /oL0(l;) - pL0(f).
Thus, L = ^LQ on the linear span of the special class ^ 0 . Consider
now a general function Fe C[X: E]; since F is bounded, ||-P(p)|| ^ M
for all p 2 X. Define g, gu and g2 on X by:

= F(p) - F(pϋ)

^ peX.

One sees that ^ ^ 0 and gt(p0) = 0, with \\g%(p) \\ ^ 3ilf for all p e l
Moreover,

g(p) - {4M - r̂2(p)} - {4M - Λ(p)}

for all p e X, so that 0 e J^ o - J^o. We conclude that L(F) = ρL0(F)r

so that Lo is indeed a minimal positive functional on C[X: E],
Let Γ be the set of extreme points in the set D of functionals a

on E with α Ξ=> 0 and a(e) = 1. Applying Theorem 3, we find that any
order bounded operator T has the property that

(15) a(T(f)(p0)) - a(T(e)(po))a(f(po))

for all / e C[X: £ ] , p o e l and a e Γ. If we represent the functions /
in C[X: E] as functions / on X x Γ, then

for all (p, a).
The original space C[X: E] is not an algebra, but is a module over

the algebra C[X]. Formula (9) shows immediately that any order bounded
transformation on C[X: E] is in fact algebraic. If ψ e C[X] and
/ e C[X: El then Γ(ψ/) - ψT(f). For,

, a)a(f(p))

= ψ(p)a(T(f)(p))

= cc(ψ(p)T(f)(p))
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for each p e X and a e Γ.
Finally, we use a familiar example to show that the most crucial

hypothesis on the partially ordered linear space V in Theorem 1 and 3
is that P be linearly closed. Take for V the space of all polynomials,
with the ordering: α0 + axx + + amxm > 0 if am > 0. P satisfies the
first and second requirements, but is not linearly closed; in fact

X{%2) + (1 - λ)(-a;) e P only if λ > 0 .

There is no order unit. We can still introduce the algebra SI of or del-
bounded transformations on V. It is easy to see, however, that 31 is
not commutative. Let T be defined on V by T(xn) — qn where qn is a
polynominal of degree less than n. Then, I ± T ^ 0 so that T e SI. In
particular, ϊ\ = x(d2/dx2) and T2 = d/dx are in SI; however, TτT2 Φ T2TX.
In this example, the reason for this can be traced to the fact that P
is so large that there are too many positive linear operators on V, (and
no non-degenerate positive linear functionals).
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SOME GENERALIZATIONS OF METRIC SPACES

JACK G. CEDER

l Introduction* This paper consists of a study of certain classes
of topological spaces (called Mx-, M2-, and Λf3-spaces) which include metric
spaces and CTf-complexes and are included in the class of all paracom-
pact and perfectly normal spaces. It is shown, for example, that like
the case in metric spaces, a subset of an M2- (or Λf3-) space is an M2-
(or ikf3-) space; a countable product of ikΓΓspaces (i = 1, 2, 3) is again
an ΛfΓspace; and separable is equivalent to Lindelof in an il^-space.
Moreover, unlike the case in metric spaces, the quotient space obtained
by identifying the points of a closed subset of an M2- (or M3-) space
is again an M2- (or MB-) space (for metric spaces such a quotient space
need not be first countable). Also, we have M1 —• M2 —> M3, but whether
M3 —• M2 or M2 —> Mλ is unknown.1

These classes of spaces are derived from generalizations of the
following well-known characterization of metrizability in terms of specific
properties of the base:

THEOREM 1.1. (Smirnov [14] or Nagata [12]). A regular space is
metrizable if and only if it has a σ-locally finite base.

Recall that a σ-locally finite family is a union of countably many
locally finite families. It is easily checked that a locally finite family
U of sets has the property, called closure preserving, that for any

Vcz U, (U{Fe F})-= U{F: Ve V} .

This, then, suggests we consider spaces having a σ-closure preserving
base (that is, a base which is the union of countably many closure
preserving families).

DEFINITION 1.1. An MΊ-space is a regular space having a σ-closure
preserving base.

Although conceptually simple, Mi-spaces prove unsatisfactory in some
respects, so we weaken the condition of having a σ-closure preserving
base. We begin by calling a collection B of (not necessarily open!) sub-
sets of X a quasi-base if, whenever x e X and U is a neighborhood of

Received June 12, 1959, resubmitted November 13, 1959. This paper represents part of
the authors doctoral dissertation at the University of Washington, prepared under the
guidance of Professor E. A. Michael, to whom the author wishes to express his gratitude
for his advice and encouragement. The author is also indebted to Professor Jun-iti Nagata
for some helpful correspondence.

1 Nearly all topological terminology appearing in this paper is consistent with that used
in Kelley [4]. Exceptions are that our regular, and normal spaces are assumed to be 2V
spaces.
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x, then there exists a B e B such that x e B° c B c U where JB° denotes
the interior of B).

DEFINITION 1.2. An M2-space is a regular space with a σ-closure
preserving quasi-base.

Now we proceed to weaken the condition of having a σ-closure
preserving quasi-base. Let P be a collection of ordered pairs P = (P l f P.)
of subsets of X, with Pλ c P 2 for all P e P. Then P is called a ^αίr-
δαse for X if P2 is open for all P € P and if, for any x e X and neighbor-
hood U of &, there exists a P 6 P such that a? 6 Px c P2 c £7. Moreovor,
P is called cushioned if for every P ' c P ,

P is called σ-cushioned if it is the union of countably many cushioned
subcollections.

DEFINITION 1.3. An M3-space is a TΊ-space with a σ-cushioned pair-
base.

2» Properties of Λfί-spaces.

THEOREM 2.1. (Michael [6]). A T^space is paracompact if and
only if every open cover U has a σ-cushioned open refinement V (that
is, V = U"=i Vn, where for each n, and V e Vn one can assign a Uv>n e U
such that {{V, Z7F.n): V e Vn} is cushioned).

THEOREM 2.2. The following implications hold: Metrizable —* M1 —+
M2—>MZ-+ paracompact and perfectly normal.

Proof. Metrizable —+ M1 and Mx —> M2 are obvious.
To show M2—> M3, let \Jn=iBn be a σ-closure preserving quasi-base.

For each n, put Pn = {(B°, B): B e Bn}. Then clearly \Jn=ιPn becomes
a σ-cushioned pair-base.

To show Mz -+ paracompactness, let \Jζ=iPn be a σ-cushioned pair-
base. Let U be an open cover and for each n, let W = {Pλ c P2 c Uw>n

for some Ue U, UePn}. For We Wn, pick UWtΛe ί7such that for some
P e Pn, W = Pλ c P2 Uw,n. Then TF = U^U Wn becomes a σ-cushioned
open refinement of U and hence, by Theorem 2.1, X is paracompact.

To show M3 —> perfectly normal, let G be an open set in X For
each n, put F w = (U {Px: P2 c G, P e Pw})". Then G = U?=i^n, so every
open set is an jPσ, whence X is perfectly normal since X is normal by
paracompactness, thus completing the proof of Theorem 2.2.

Example 9.2 furnishes us with a separable and first countable Mr

space which is non-metrizable. The ' 'half-open interval'' space R (the



SOME GENERALIZATIONS OF METRIC SPACES 107

real line R with base the family {[x, y): x, y e R} is paracompact and
perfectly normal and R x R is not paracompact (Sorgenfrey [16] or
Kelley [4]). Hence, by Theorem 2.2, R x R is not M"3, and by Theorem
2.4 it follows that R is not M3. The questions of whether M2 —> Mx or
M3 —>M2 remain unsolved. However, see Proposition 7.7 for a partial
result.

The following three theorems exhibit properties which metric spaces
have in common with M^-spaces.

THEOREM 2.3. If A is a subset of an M2- (or M3~) space X, then
A is M2 (or Ms).

Proof. We prove it only for the M2~case. Let \J^Bn be a cr-closure
preserving quasi-base for X. For each n, put Bή = {Af] B : Be Bn}. To
show B'n is closure preserving in A it suffices to show for x e A and
A c Bny t h a t x 0 {J{(Af}B)~ :B e A} implies x $ (Ό_{A ί l δ B e A}y.

But for any B e i , i U j i ( A n S ) " implies x $ A Π B and x ^ β . So
α $ Π {S : 5 e A) = (U{S : £ e A)- and hence, x φ ([J{A Π B : B e A})~
and B'n is closure preserving. Let U be open about x in A. Then for
some U' open in X we have U = Ur Π A, so there exists 5 in some Z?n

so that xeB°czBc:Bc:Uf. Then with A n B e B ^ w e have x s (B° Π A) c
(A n S ) ° c ( i n S ) c ( [ / ' n A ) = Z7. Hence A is M2, which completes the
proof.

The foregoing proof breaks down in the case of an Mi-space (since
in general (B° f] A)~~ Φ (An B)), and it is unsolved whether a subspace,
or even a closed subspace, of an Mrspace is Mt.

THEOREM 2.4. A countable product of M^spaces is Mt.

Proof. We prove it only for the Mλ case; the other cases follow
similarly. For each n, let Xn be an M^space with a σ-closure preserv-
ing base \JZ=ιB™. Without loss of generality we can assume that, for
all m, n, Xn e B™ and B™ c B™+\ Now put X = Π"=i^w and, for each
n, let

where

f[Bi = {x e X: xi e Bt for i ^ n] .
ί = l

Then Un=î w becomes a σ-closure preserving base for Xy making X an
Mi-space.

We can also prove the following result:
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THEOREM 2.5. Let X be an M^space. Then the following are equi-
valent:

(1) X is separable,
(2) X is Lindelof,
(3) X is satisfies the countable chain condition (that is, every

disjoint family of open sets is countable).

A separable il^-spaee need not have a countable base; for example,
see Example 9.2.

Smirnov [15] has shown that any locally metrizable paracompact space
is metrizable. And Nagata [13] has obtained the stronger result that
a space which is the union of a locally finite family of closed metrizable
subsets in metrizable. We can obtain analogous results as follows:

THEOREM 2.6. If X is paracompact and locally Mi9 then X is Mt.

Proof. We prove it only for the M1 case, and note that the others
follow analogously. For each x e X, there exists an open neighborhood
W(x) of x such that W(x) is Mx. By paracompactness, let {UΛ : a e A}
be an open locally finite refinement of {W(x): x e X}. Then, since an
open subset of an Λfi-space is clearly Mlf each Ua is Mx. Let B* =
Un=iB% be a σ-closure preserving base for Ua such that, for each B e B*t

B c Ua. For each n, put Cn = U {B£ :a e A}. Then it easily follows
that each Cn is closure preserving and U»=iC» is a base for X.

LEMMA 2.7. If X = A1 U A2, where A1 and A2 are closed M2- (or
M3-) subspaces, then X is M2 (or M3).

Proof. First we get X to be regular (Nagata [12]). For the M2

case, let \Jn=iBn and U " = i ^ be ^-closure preserving quasi-bases for Ax

and A2 respectively, with φ e Bl n B* for all n. Now for each n, m,
we put Bn<m = {Bλ U B2: Bλ e Bx

n, B2 e Bl). Then it is easily checked
that \Jn.m=iBn.m ί s a ^-closure preserving quasi-base for X. Hence X is
M2. The Mz case is similar.

THEOREM 2.8. If X is a locally finite union of closed M2- (or M3-)
spaces, then X is M2 (or M3).

Proof. First we apply a theorem of Michael [7, pp. 379-380] and
Morita [10] (see Theorem 8.1 of this paper) to get X paracompact. Let
X be the union of a locally finite family A of closed M2- (or Λf8-) spaces.
Then, for each x e X, there exists an open Ux containing x which inter-
sects only finitely many members of A, say F19 , Fn. Then x e Ux c
U?=iΉ But by Lemma 2.7 \J?=1Ft is M2 (or M9), and then by Theorem
2.3 we see that Ux is M2 (or M3). Now, since X is paracompact and
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locally M2 (or ikf3), we get X to be M3 (or M3) by Theorem 2.6, which
completes the proof.

Whether Theorem 2.9 is true for M"Γspace is unknown.

3 Nagata spaces*

DEFINITION 3.1. A Nagata space X is a !\-space such that for each
x e X there exist sequences of neighborhoods of x, {Un{x)}n=ι and
{Sn(x)}n=u such that:

( 1 ) for each x e X, {Un(x)}ζ=1 is a local base of neighborhoods of x,
( 2) for all x,y e X, Sn(x) Π Sn(y) Φ Φ implies x e Z7n(2/).
The order pair ζ{Un(x)}ζ=1, {Sn(x)}ζ=ιy is said to be a Nagata structure

for X if and only if, for each x, {UJjc)}^ and {Sn(x)}n=ι are sequences
of neighborhoods of x satisfying the above two conditions.

Now having defined Nagata spaces, we get the following relation
between a Nagata space and an ikf3-space:

THEOREM 3.1. A topological space is a Nagata space if and only
if it is first countable and M3.

Proof. Let X be a Nagata space with a Nagata structure
<{Un(x)}n=u {Sn(x)}n=ι>. Define Pn - {(Sn(x)°, Un{x)): x e X} for each n.
Then obviously \Jn=iPn is a pair-base. To show that each Pn is cushioned,
we must show, for any index set A, that (U {Sn(x*)0 a e A})~ c
U {Un(xΛ) :aeA}. Suppose ^ U { UΛ(xΛ) :aeA}. Then Sn(y)° Π Sn(xJ - φ
for all a in A Hence, Sn(yf Π (U {5fn(α?Λ)°: a e A}) = φ and y 0
(U {Swfe)°: α e A})". Thus X is M3 and first countable.

Now let X be Mz and first countable. For each x e X, let {Ww(#)}"=1

be a local base at x. Suppose Uw=iPw is a ^-cushioned pair-base for X.
We can assume that for all n, (X, X) e Pn. For m, w and x e X define

Um.M = Π{P2: TΓm(^) c P . P e Pn}

and

S».»(»)= Π{Pi: Ww(aj) c P l f P e Pn} - U{PX: a? 0 P2, Pe Pn} .

We wish to show that ({Umtn{x)}Z,n=i, {Sm,n(x)}ZfnJ> is a Nagata structure
for X. Obviously {Um>n(x)}Z,n=i and {Sm>w(^)}ΓllW=i are sequences of neighbor-
hoods of x satisfying condition (1) in Definitition 3.1. To show (2),
suppose y 0 Um>n(x). Then there exists a P e Pn such that WJx) c Pi
and ?/ 0 Pa Then, by definition of Sm,n(x), we have Sm<n{y) Π Pi = Φ
But iSTO>n(aj) c Pj, so Sm,n(ίc) Π Sm,w(?/) = φ, which completes the proof.

Now by virture of Theorem 3.1 and the fact subsets and countable
products of first countable spaces are first countable, we obtain the
results that: any subspace of a Nagata space is a Nagata space; a count-



110 JACK G. CEDER

able product of Nagata spaces is Nagata; and in a Nagata space,
separable <—>Lindelof<—>the countable chain condition.

We can also get the following generalization (from X being metric
to X being Nagata) of a well known extension theorem of Dugundji [3]:

THEOREM 3.2. Let A be a closed subset of a Nagata space X and
let f be a continuous map from A into a convex subset K of a locally
convex topological linear space Y. Then f can be extended to a con-
tinuous g from X to K.

Proof. Let <{Un(x)}Z=1, {Sn{x)}ζ^y be a Nagata structure for X.
Without loss of generality we can suppose that, for n < m and y e X,
we have Sm(y) c SΛ(y)9 Um{y) c Un(y), and SM = Uλ{y) = X. Now for
x e X — A, put nx = max {n : for some y e A, x e Sn(y)} and mx =
min {n : Un(x) Π A — φ\. By the paracompactness of X — A, let V be an
open locally finite refinement of {Smχ(x): x e X — A}. For each V e V
pick xv such that V a Sm (xv), and pick av such that xv e Sn (aυ). Now

let {pv : V e V} be a partition of unity subordinate to V, and define
g:X-+ Γby

g(%) = /(#) f or ^ € A
and

g(x) = Σ pv(x)f(av) for x $ A .
76V

Then it can be shown without difficulty that g is the desired extension

of/.

4. Some metrization theorems. The following is a recent characteri-
zation of metrizability by Nagata [13], which has the dual virture of
being obviously satisfied by a metric space and of easily implying many
other known metrization theorems. (The concept of a Nagata space
was actually abstracted from this characterization.)

THEOREM 4.1. (Nagata [13]). A Trspace X is metrizable if and
only if X is a Nagata space with a Nagata structure ({Un(x)}n=i,{Sn(x)}ζ=iy
with the property that x e Sn(y) implies Sn(x) c Un(y) for all x,y e X.

The following theorems are consequences of this result:

THEOREM 4.2. A regular space X is metrizable if and only if X
is an Mi-space with σ-closure preserving base B — U«=iBn such that,
for each x e X and each n, f}{B: x e Bn} is neighborhood of x.

Proof. The sufficiency follows easily from Theorem 1.1. For the
necessity, we put, for x e X and m,
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Un(x) = Γl{B:xeBeBm},

and

Sm(x) = Π{B:xeBe Bm} - \J{B : x $ B and B e Bm] .

Then it is easily checked that ζ{Um(x)}Z=i, {Sm(x)}Z=i> is a Nagata struc-
ture for X with the property that x e Sn(y) implies Sn(x) c Un(y) for
all x,y 3 X. Hence, according to Theorem 4.1, X is metrizable.

COROLLARY 4.3. A regular space X is metrizable if and only if
X has a σ-closure preserving base B = \J%=1Bn where each Bn is point
finite.

Proof. The sufficiency follows from Theorem 1.1 and the necessity
from Theorem 4.2.

The above theorem and corollary have analogues for the case of M2-
and Ms-spaces.

An interesting but unsolved problem poses itself here, namely: is
an Λfj-space with a σ-closure preserving base B = (J»=î n> where each
Bn is point countable, necessarily metrizable?

We also have the following metrization theorem on Mi-spaces:

THEOREM 4.4. (Bing [1]). A Tλ-space X is metrizable if and only
if X is an Mλ-space with a σ-closure preserving base \Jζ=iBn such that,
for any x e X and open set U containing x, there exists an n such
that φ Φ U{£: x e B e Bn) c U.

We can easily generalize this result to the following:

THEOREM 4.5. A Tx-space X is metrizable if and only if X is an
M3-space with a σ-cushioned pair-base (J»=Λ with the property that
for each x e X and open set U containing x, there exists an n such
that φ Φ U{Pi .x e Plf Pe Pn} a U.

5 Completeness, According to Cech [2], a Hausdorff space is topo-
logically complete if it is a Gδ in some compact Hausdorff space, and
a Hausdorff space is completely metrizable if it has a compatible complete
metric. Cech then proves that a metrizable space is completely metrizable
if and only if it is topologically complete. In this section we investigate
topologically complete M"Γspaces.

THEOREM 5.1. (Nagata [13]). A topologically complete Nagata
space is completely metrizable.

Actually Nagata's proof of Theorem 5.1 establishes the following
result.
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THEOREM 5.2. Let X be a paracompact topologically complete space,
and suppose there exists a sequence of open converings {Sn}ζ=1 such thatτ

for every x,y e X, x Φ y implies there exists an m such that
V $ (U{£ '• x e S 6 Sm})~. Then X is completely metrizable.

We can generalize this result by vir ture of the following lemmas:

LEMMA 5.3. Let X be a paracompact space. Then, if there exists
a sequence of open coverings {Fw}~=1 such that xφy implies there
exists an m such that y 0 U { ^ : x e V e "Fm}> then there exists a sequence
of open coverings {Sn}ζ=1 such that xφy implies there exists an m such
that y $ (\J{S: x e S e Sm})~.

Proof. Let Wm be an open locally finite refinement of Vm such
that, if We Wm, then Wa some Ve Vm. For Ve VmJ define Sv =
\J{WeWm:Wcz V}. Let Sm = {Sv:Ve Vm}. Then Sm is cushioned in
Vmand in particular, if xφ \J{Ve Vm:ye V), then x${\J{Sve Sm:y e V})-9

and the conclusion of the lemma follows.

LEMMA 5.4. The diagonal is a G^ in X x X if and only if there
exists a sequence of open coverings {Sn}n=i of X such that for each x, y e X
xφy implies there exists an m such that y $ \J{S: x e S e Sm}.

Proof. Let Δ be the diagonal in X x X. Suppose Δ = Π»=iG«
where each Gn is open in X x X. For each n, put Sn = {S: S open in
X, S x S a Gn}. Then if x Φ y, there exists an m such that (x, y) 0 Gm

and hence y $ \J{S: x e S e Sm}.

Now assume we have such a sequence of open coverings {Sn}£=1. For
each n, put Gn = \J{S x S:S e Sn}. Then clearly Δ = n»=iG», which
completes the proof.

Then obviously we can strengthen Theorem 5.2 to:

THEOREM 5.5. A paracompact topologically complete space whose
diagonal is a Gδ in X x X is completely metrizable.

Now we generalize Theorem 5.1. to:

THEOREM 5.6. A topologically complete Mcspace is completely metri-
zable.

Proof. Let X be an MΓspace. Then X x X is an ikfΓspace and
thus perfectly normal; so the diagonal is a Gδ. Now applying the pre-
vious theorem we complete the proof.

COROLLARY 5.7. A locally compact Mcspace is completely metrizable*
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Proof. It is well known that a locally compact space is open in
any Hausdorff space in which it is densely embedded (Kelly [4], p. 163).
Hence X is open in β(X), the Stone-Cech compactification of X, and, by
Theorem 5.6, X is completely metrizable.

Now we proceed to establish a ' 'completeness-like'? condition that
will make a Nagata space topologically complete.

DEFINITION 5.1. Let X be a Nagata space. Then the Nagata
structure ({Un(x)}ζ=1, {Sn(x)}ζ=Ίy is complete if, whenever {Aw}~=1 is a
decreasing sequence of nonempty closed sets such that for every n
there exists xn and kn such that Akγι c Sn(xn), we have f|»=4» =£ Φ

First we note without proof that:

THEOREM 5.8. Let X be a Nagata space with Nagata structure
({Un(x)}Z=19 {Sn(x)}ζ=iy. Then the following are equivalent:

( 1 ) <{ϊ7Λ(a?)}^i, {Sn(α0]£=i> ίs complete.

( 2 ) Whenever A is a family of closed sets having the finite inter-
section property such that for every n, there exists An e A and xn e X
so that An c Sn(xn), then f\A Φ φ.

(3) If {xm}Z=i is a sequence such that for any n there exists kn, yn

such that kn <Ξ m implies xm c Sn(yn), then {xm}2=i has a cluster point.

THEOREM 5.9. A Nagata space with a complete Nagata structure is
completely metrizable.

Proof. For the proof, we need the concept of the Wallman com-
pactification of a normal space (Wallman [18], Kelly [4, pp. 167-168]).
Let X be normal and let F be the family of all closed subsets of X.
Define w(X) to be the collection of all subfamilies of F which have the
finite intersection property and are maximal with respect to this prop-
erty. For U open in X, we put U+ = {A e w(X): for some A e A, A c U}.
Then {U+ : Z7open in X) is a base for some topology τ. Then ζw(X), τ>
is called the Wallman compactification of X. Then w(X) is compact
Hausdorff and X is densely embedded in w(X) by the homeomorphism
Φ(x) = {A e F: x e A}.

To show that X is completely metrizable we need only show that
X is a Gδ in w{X). Let ({Un(x)}n=u {SU#)}rc=i> be the complete Nagata
structure for X. For each n, put Gn = U {Sn(x)+ : x e X}. Then Gn is
open and obviously φ(X) c Γ\ζ=1Gn. Now suppose A e Πn=ιGn. Then
for each n there exists an xn e X such that A e Sn(xn)

+, which means
that for each n there exists xn e X and Ane A so that An c Sn(xn).
Hence by completeness Π ^ =£ Φ So let x e [}A, then since A is maxi-
mal with respect to the finite intersection property we must have A =
Φ(x) e Φ(X). Hence, φ(X) = Γ)n=iGn, showing that X is a Gδ in w(X).



114 JACK G. CEDER

6* Semi-metric spaces*

DEFINITION 6.1. Let d be a real-valued nonnegative function de-
fined on X x X. Then d is a semi-metric for X provided:

( 1 ) d(x, y) = 0 if and only if x = y ,

( 2 ) (Z(α, y) = e%, a?) for all a?, y e X .

If d is a semi-metric for X, the semi-metric topology is that deter-
mined by: p is a limit point of A c X if and only if inf {d(p, x): x e A} = 0.
A topological space ζX, τ} is semi-metrizable if and only if there is a
semi-metric d such that the semi-metric topology agrees with τ.

We can characterize semi-metric spaces as follows:

THEOREM 6.1. A Hausdorff space X is semi-metrizable if and only

if for all x e X, there exists sequences of neighborhoods {Un(x)}n=i and

{Sn(x)}n=,i such that {Un(x)}n=i is a nested local base of neighborhoods of

x, and for each n and x,y e X, Sn(x) c UJx) and y e Sn(x) implies

x e Un{y)>

Proof. For the sufficiency, put Sn(x) = Un(x) = {y : d(x, y) ^ 1/n}.
For the necessity, define d(x, y) = inf {1/n : x e Un{y) and y e Un(x)}
where we assume E7i(fic) = X for all x e X.

Now by virture of the preceding characterization of semi-metriza-
bility, we obviously have:

THEOREM 6.2. A Nagata space is semi-metrizable.

McAuley [5] has given an example of a regular separable semi-
metric space X which is not hereditarily sparable (that is, subsets are
not necessarily separable). It follows by Theorems 2.3 and 2.5 that X
is not a Nagata space. In fact, it can be shown that X is not even
paracompact. An interesting unsolved problem is whether a paracompact
(or even a regular Lindelof) semi-metric space must be a Nagata space.

McAuley [5] has defined a semi-metric space to be strongly-complete
if, whenever {An}£=1 is a decreasing sequence of nonempty closed sets such
that for every n there exists kn and xn such that Akn c {y : d{xnJ y) ^ 1/w},
then we have Π«=ΛW Φ Φ- (Theorem 5.8 has an analogue for semi-
metric spaces). McAuley has proved the following result concerning
strongly complete semi-metric spaces:

THEOREM 6.3. (McAuley [5]). A regular, hereditarily separable,
strongly complete semi-metric space is metrizable.

The following two theorems, taken together, clarify and improve
the above theorem of McAuley.
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THEOREM 6.4. A regular, hereditarily separable, semi-metric space
is hereditarily Lindelof {hence paracompact).

Proof. Let U be an open cover of X. For each x e X, there exists
nx and Ux e U such that Snχ(x) = {y : d(x, y) < l/nx] c Ux. Put An =
{x e X:nz = n}. Then An has a separable subset {d™}Z=ι and it follows
that An c Um=iSw(cZ^). Now choose C/? e IT such that Sn(d™) c C/J1.
Then

So {C/Γ}n,m=i is a countable subcover of U. So X is Lindelof and hence
normal, but a normal semi-metric space is easily seen to be perfectly
normal, and a perfectly normal Lindelof space is easily seen to be here-
ditarily Lindelof. So we conclude that X is hereditarily Lindelof and
hence paracompact, which completes the proof.

THEOREM 6.5. A paracompact, strongly complete semi-metric space
is completely metrizable.

Proof. Exactly analogously to the proof of Theorem 5.9 we show
that X is a Gδ in w(X). Then we apply Lemma 5.4 and Theorem 5.5,
where we take Sm = {Sm(x))° :x e X} and Sm(x) = {y : d(x, y) < 1/m},
which completes the proof.

7. Closed continuous images. We have the following theorem
about closed continuous images of metric spaces:

THEOREM 7.1. (Stone [17], Morita and Hanai [11]). Let f be a
closed continuous map of a metric space X onto a topological space Y.
Then the following are equivalent:

( 1 ) Y is first countable,
( 2 ) for each y e Y, the boundary of f~\y), df~\y), is compact,
( 3 ) Y is metrizable.

A special case of a closed continuous image of a space X is XIA,
the quotient space of X formed by identifying the points of a closed
subset A. Here, the natural map is clearly closed and continuous.
Then, according to Theorem 7.1, if X is a metric space and A is a
closed subset of X with a non-compact boundary, then XIA is not met-
rizable.

We have the following partial analogue to Theorem 7.1:

THEOREM 7.2. Let X be an M2- (or M3-) space and f a closed con-
tinuous function from X onto any space Y. Then
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(1) if Y is first countable, then for all y e Y, df~\y) is compact,.
(2) if for all y e Y, df~\y) is compact, then Y is M2 (or M3).

Proof. The proof of (1) is somewhat similar to Stone's proof of
(1) — (2) in Theorem 7.1. To prove (2) for the ikf2-case let \Jζ=1Bn be
a σ-closure preserving quasi-base for X. Then | J?=Λ becomes a σ-closure
preserving quasi-base for Y, where An = {/(UίU-Ai) Alf , Afc e Bn}.
The ikf3-case is similar.

The converse of (1) is easily seen to be false by taking the identity
map from a non-first countable M2- (or Λf3-) space onto itself. Also,
Example 9.2 shows that the converse of (2) is false. It is unknown
whether Theorem 7.2 is true for ikfrspaces.

It is also unsolved whether an arbitrary closed continuous image of*
an Mrspace is again Mt. However we can obtain the partial result
that the quotient space of an M2- (or Λf3-) space with respect to a closed
subset is again M2 (or Λf3).

For the M2 case this result would follow if every closed subset A
of X had a "local σ-closure preserving quasi-base" in the sense that
there exists a σ-closure preserving family V such that for every open
U containing A, A c V° c V c U for some V e V. For then, if B were
a σ-closure preserving quasi-base for X, the image under the natural
map of the family V\J {B e B:B {Λ A — φ) would be a σ-closure preserv-
ing quasi-base for XIA. As it turns out, we have the stronger result that
every closed subset has a "local closure preserving quasi-base" as follows:

LEMMA 7.3. Let A be a closed subset of an M2space X. Then
there exists a closure preserving family V of neighborhoods of A such
that for every open U containing A, A c V° c V c U for some V e V.

Proof. Let B = [Jζ=1Bn be a σ-closure preserving quasi-base for X.
Without loss of generality we can assume that the members of B are
closed and Bn c Bm for n < m. For each B e Bn we put

R(B, n) = B- \J{WQ :Af)W=φ,We Bn} .

Now let {Sa : a e E} be the family of all subcollections of B. For each
a e E and n, we put

VΛ.n = \J{R(B, n):Be(SaΠ Bn)}

Vω = \J^VΛ.n and D = {a e E: A c VΛ] .

To show V = {V* : a e D} is closure preserving, let C c ΰ and suppose
xφ \J{Va : a e C}. Then clearly x $ A; so let k be the least integer
for which there exists a B e Bk+1 such that x e B° and B Π A Φ φ.
Then we have Van Π B° — φ for every n > k and a e C. Hence
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& $ (U{K».» :n> k,a e C})~. If k ^ 1 (otherwise we are finished), then
we also have x$ {J{W°: A Π W= φ, We Bh). From the facts that
%$ \}{W«\Aϊ\ TΓ=Φ, JFeJB*} and £ 0 U£B(B, fc): B e (S, Π #*)} it
follows that a? 0 UOS* Π #fc). Since

(\J{VΛm :m^k,as C})~ c (UOS, Π Bk))~ = \J(Sa Π #*)

(because Z?fc is closure preserving), we have that x $ (\J{ Va>n :n^k,ae C})~.
Hence x 0 (\J{Va : a e C})~.

Finally, suppose U is an open set containing A. For each x e A
there exists nx and Bx e Bnχ such that x e B° c Bx c ί7. Then x is in
t h e open set Bl-\J{W :x$ W, W e BnJ which is included in R(BX, nx)°.

Hence x e R(BX, nx)° c R(Bχy nx) c U. So put t ing S* = {Bx: x e A} we

clearly get A c FJJ c VΛ c ί/ with a e D, which completes the proof.

Lemma 7.4 has an analogue for M3-spaces. Now by virtue of the
.remarks preceding Lemma 7.3 we clearly obtain:

THEOREM 7.4. Let X be an M2- (or M3-) space and A a closed subset
of X. Then XIA is M2 (or M3).

It is unknown whether the above theorem is true for ik^-spaces.
However, we can get XIA to be Mλ MX is metrizable, as follows:

LEMMA 7.5. Let A be a closed subset of the metric space X. Then
there exists a closure preserving family V of open sets such that for
every open U containing A, A c V a U for some V e V.

Proof. Let B = U^=Λ be a σ-locally finite base for X such that
Bn c Bm for n < m. For each n put

An = {yeX: dist (y,A) < 1/n} and An = {BnAn:Be Bn} .

Then each 4̂̂  is locally finite. Let {Wa:ae D) be the family of all
subcollections of \Jn=iAn which cover A, and put V= {Va: Va— U Wa,a e D}.
Then obviously for every open U containing A there exists a e D such
that Ad V^cz U. Now consider any C dD and suppose xφ\J{Vcύ: aeC}.
Then x $ A and there exists a k such that x $ A*.; hence (X — Ak) Π W = φ
for T7 e Am Π Wα> with k ^ m and α e C . Since JJ?=Mι i s closure
preserving, it follows that x e (\J{W e Am f) Wa: m < k, a e C})~. Then
we get cc 0 (U{K>: OL e C})~, which completes the proof.

Now we obviously obtain the following:

THEOREM 7.6. Let X be a metric space and A a closed subset of
X. Then XIA is Mλ.

According to Lemma 7.3 every point in an M.-space has a ''local
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closure preserving quasi-base/' It is unsolved, however, if every point
in an Mi-space has a "local closure preserving base" (that is, an open
local base which is closure preserving). Nevertheless, we can establish
the following negative result:

PROPOSITION 7.7. Suppose there exists an ik^-space X with some
point p at which there does not exist a closure preserving open local
base. Then

(1) there exists an Mj-space which is not Mlf

(2) there exists an Λfi-space Y with a closed subset A such that
Y\A is not Mx.

Proof. Let Y = U«=A where nΦm implies XnC\Xm = Φ and
each Xn is homeomorphic to X by a map in. Topologize Y by: 0 is
open<—>OΓ\Xn is open in Xn for all n. Let pn = in(p) and A =
{ye Y:y = pn for some n}. Let i be the natural map from Y onto.
Y\A. Then clearly A is closed and Y is Λf2; hence Y\A is M2. Now
suppose Y\A has a ^-closure preserving base B = {Jζ=1Bn. Then for
each n, {i"τ(B) Π Xn ' A e B e Bn} is closure preserving in Xn. Hence,
there exists an open Vn in Xn so that pn e Vn and A e B e Bn implies
(i'\B) Π Xn) <£ Vn. Now put V = \J^iVn. Since β is a base there
exists some B in some Bk such that Ae Bci(V), whence (i"x(J5) (Ί Xfc) c Vfc,
which is a contradiction. Hence, Y/A is M2 but not Mλ.

8. The Topology of chunk*comρlexes A chunk-complex is a
topological space <iΓ, r> having a family if of closed subsets, called
chunks, such that

(1) U#=#,
(2) for S, Γ e K, either S n Γ = Φ or S n Γ e l f ,
(3) for Se K, {TeK: Γ c S } is finite,
(4) each S e K is a compact metric space <S, #<?)>,
(5) U e τ if and only if for every S e K, S Π C7 is open in <S, ̂ > .
If B is a collection of closed subsets of a space X, then Z? dominates

X provided that, for every subfamily A of B, if C c ( J ^ and A Π C is
closed in A for all A e A, then C is closed in X.

THEOREM 8.1. (Michael [7, pp. 379-380], Morita [10]). If X is
dominated by a collection of paracompact (or perfectly normal) subsets,
then X is paracompact (or perfectly normal).

Using Theorem 8.1, it is easy to show that.

LEMMA 8.2. A chunk-complex is dominated by the set of its chunks,
and hence is paracompact and perfectly normal.
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In this section we establish the stronger result that each chunk-
complex is an Mi-space.

For the proof we establish the following notation: For S e K define
4(S) = {TeK:T(zS, T Φ S}. Define Ko = {S e K: J(S) = φ} and, as-
suming Km has been defined for 0 S m < n, we define

Kn = \S e K:J(S)czXjκλ - U*Q .

Then \Jn=iKn = K> by induction on the number of subchunks. For S e K
put dS = U(4S)), S° = S - dS, and As = {T e K: S c T}. Then obviously
U{S°: S e K] = K. Let N be the set of nonnegative integers and
M={lln:ne ^ -

THEOREM 8.3. A chunk-complex is an M^space.

Proof. Let <ίΓ, τ> be a chunk-complex with a set of chunks K.
First we observe that for each n e N, P e Kn, there exists a countable
family -B(P) = {Pm : on e N} of open sets in P° forming a base for points
in P° so that Pm e P° for all meN. Fix neN,PeKn and 5 e B(P). Let
#: Ap —• M. Then we define a candidate J5ρ for our base as follows:
By normality, let W be an open set containing B and such that
WO (\J{TeK: TnP° - Φ}) = Φ. Now, by induction, for any TeKnΓ\AP

we necessarily have T — P and we define Bζ = B and B* = φ. Now
assume we have defined Bg for all S e Kn+k Π AP with k < m. Then
for any Γ e JfiΓw+77l Π AP we put

j U{ : S e J(Γ) Π AP}

and

Bf = TFΠ {2/ e Γ: pτ$ξ, y) < min b(Γ), Pτ(y, dT -

Finally we put

We note that for all Γ e 4 P w e have (BJ n dT) c Bτ

g, ((B^)~ Π dT) c
and if S 0 AP, (Bg)~ n S = φ.

Now we need to establish the following lemma:

LEMMA 8.4. For all P e Kn and S, T e U?=o^n+* Π AP,
(a) Bg is open in dS,
(Ό) ΪSg C tfg ,

(c) (Bg n T) c ££,
(d)

Proof. By induction on m: if m = 0, then S = T = P and all con-
ditions are obviously satisfied. Now assume that (a), (b), (c) and (d) hold
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for all k < m, and let us prove this for m.
(a) Applying the induction hypothesis on (c) we get for all

R,Q e A(S) Π AP that (B* n Q) c B*. Hence

dS - Bg

s = 9S - U W e J(S)} = \J{R -Bg

R:Re A(S)} .

But each R — Bg

R is closed in R which is in turn closed in dS. Hence
a S - B* is closed in ΘS for SeKn+m.

(b) Then if y e j?*, pB(y, Bg

s) = 0 and pa(y, S - J3*) > 0, so y e B*.
Hence we have B* c Bf for all S e Kn+m.

(c) If S ς£ Γ, then (B* n Γ ) c (B* n (Γ n S)) c (B* n aS) c B*. So
if a? e B$ Π Γ, then a? e some Bg

B with J? e J(S), and then
α? c (Bg

R n (ΓΠ S)) c £ r n * by the induction hypothesis on (c). If S Π T = T,
then B™τ - B/". If S n T Φ T, then SnTe Δ(T), and by (b) we have
B*"τ c JB,Γ. Hence if S £ T, {B* n Γ ) c B*. I f S c Γ , then B* c B,Γ by
(b). Hence (Bg

s n Γ ) c J5J for all S , Γ e Jϊw + m n i l P .
(d) The proof of (d) is exactly similar to (c) above; but here we

use the fact that ((£*)- n S ) c (B?)-.
This completes the proof of Lemma 8.4.
For m,ne N,Pe Kn9 define Vp = {(Pm)g :g:AP->M} and Uΐ -

\J{V?:Pe Kn). Now we will show that
(a) each (Pm)g is open,
(b) \J{V? : ̂  e N} is a base for points in P°,
(c) each F^1 is closure preserving,
(d) each UT is closure preserving.
T h e n , s ince U { ^ ° : P e \Jn=iKn} = K, B = \J{U™ :n,me N} will b e

the desired ^-closure preserving base for K.
(a) each (Pm)g is open. Let Pm = B. It then suffices to show that

for every S e Ap, S n Bg is open in S. But by Lemma 8.4, S Π Bg —
\J{S Π BΊI: T e AP) = Sn B^, which is open in S by construction.

(b) \J{Vψ : m e N) is a base for points in P°. Let P e Kn, x e P°,
and U be on open set containing x. Choose B e #(P) such that a? e B c
5 c (17 n P°). We want to find g:AP->M so that x e Bg α U. By
induction on m, we define g(T) for Γ e Kn+m n AP so that (iίp7)" c J7.
For m = 0 we have T = P and (J5*1)- = 5 c (P n • Z7) for any g : AP -> ikf,
so put flr(P) = 1. Now assume we have defined g(S) for every
S e ί w n AP with k < m so that (JS^)" c ί7. Let T e Kn+m n AF.
Then, by the induction hypothesis, (B*)- = \J{(Bg)~ : Se z/(Γ)} c (C7p Γ).
So by the compactness of Γ there exists β e M so that {i/eΓ: jθΓ(l/> Bg

τ) S
β} c (Γ Π Σ7). Then put flf(Γ) = β. Then we have

{Bτ

g)~ = {Wϊ\{yeT: Pτ{y, &f) < min [g(T)9 pτ(y, dT -

d{ye T:pτ(y, Of) ^ g(T)} c (Γn U) .

Hence x e Bg = \J{B^: Γ e AP) c ?7, with Bg e Vψ and B = Pm.
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(c) each Vp is closure-preserving. First we need the following
result:

LEMMA 8.5. (Michael [8]). Let D = ΐlί^M^ where M% = M for all
i. For all x,y e D, define x ^ y if and only if xt ^ yt for all i. Then
(D, ^y is a partially ordered set with the property that, for each C aD,
there exist clf cm e C so that, for all c e C, there exists ck (1 ^ k ^ m)
such that c ^ ck.

Now let {Bg: g e G} be a subfamily of Vψ with Pm = B. For every
T e AP we must show T Π (Uί^^ : 9 e G}) is closed. First we show that
Bg = \J{(Bg)~ S e Ap}. For this it suffices to show, for every T e AP,
that T Π ( U W ) " : S e AP}) is closed. But by part (d) of Lemma 8.4,
TΓi(\J{(Bg

s)-:SeAP}) = (B*)-. Then

Tn (\J{Bg :geG}) = Tn ( U ί W ) " igeG.Se AF}) = U P ? ) " :'flr e G} .

Now we apply Lemma 8.5 above to the subset A = {(g(S1), , g(Sk)) :geG}
of the partially ordered set ΐli^Mt, where {S19 , Sk} = 4(T) Γi AP.
Notice that, if g(St) ^ h(St) for all i with g,h e G, then we have
(Bf)- c (Bξ)~. Hence by Lemma 8.5 we get glf — ,gn e G such that

T n (\J{B9 :geG}) = \J{{B*)~: g e G} = U

which is closed.
(d) each U™ is closure preserving. Let U be a subfamily of U™-

Then we can express U as {(Pm)g: g e GP, P e P} for some P a Kn and
GpCfo : g : AP->M}. Let Te K. If Pςί Γ, then T$ AP and ((PJ,)~ n T=φ.
But there are only finitely many P e P contained in T. Hence there
exist P\ , Pk e P so that

Γ n (\J{Bg :BgeU}) = Tf] ( U W ^ ) " : 1 ^ ΐ ^ fc, flr e GPI})

which is closed by part (c) above.
This completes the proof of the theorem.

COROLLARY 8.6. A CW-complex (Whitehead [19]) is an M^space.

Proof. Let <ίΓ, τ> be a CT7-complex. Then the family of finite
subcomplexes is a family of chunks, whence the CW-complex (K, τ) is
Mλ. (See Whitehead [19] for terminology).

COROLLARY 8.7. A countable product of CW-complexes is an ML-
space; hence; both paracompact and perfectly normal.

Proof. Apply Theorems 2.2 and 2.4 and Corollary 8.6.

9* Some examples* In the sequel, R will denote the real numbers
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and N the natural numbers. We will also use the notation ζx, y} for
the point (x,y) e R x R to distinguish it from (s, t) which will mean
the open interval {x e R: s < x < t} and [s, t] which will be the closed
interval {x e R: s ^ x ^ ί}.

EXAMPLE 9.1. A non-metrizable first countable Mx-space.
Let R' be the rational numbers. For x e R, put Lx = {(x, yy : (x, y} e

R x R, 0 < y} and X = R U (U{£* : » e JR}). Then we will define a base
for X as follows: For s,teRr and z — ζx, w} e Lx such that 0 < s <w < ί
we put Us.t(z) — K̂ > yy*S<y<t} and let Z7 be the set of all such
Ult(z). For r,s,t e R' and « 6 R such that s < z < t and r > 0, we put

Vr.Us) - (β, ί) U (Uί<w, 2/> : 0 < 2/ < r, w e (β, ί) - {«}}) ,

and let F be the set of all such Vr,t,t(z). Now put B = Z7 U F. Then
it can be easily shown that β is a σ-closure preserving base making X
into a non-metrizable first countable Mi-space.

The following example is more powerful than Example 9.1. But
here the proof of ikfi-ness, which is due to Jun-iti Nagata, is far from
being straightforward. (The space of the example seems to have first
appeared in McAuley [5]; Nagata [13] gives it without proof of ik^-ness
as an example of a non-metrizable, separable Nagata space.)

EXAMPLE 9.2. [Nagata]. A non-metrizable, separable, first counta-
ble ik^-space.

Let X = {<x, yy:<x,y>e Rx R,0<x<l,0^y}. Clearly X - (0,1),
as a subset of R x R, has a ^-closure preserving base B. For n e N
and (j), 0> e X, we define

Unip) = {P} U {<α, y> e X: y < n - ( n 2 - (x - p)ψ\ \x-p\< Ijn) .

Then B U {Un(p) :n e N, ζp, 0)> e X} is a base which clearly generates
a regular topology. Obviously X is separable, first countable, and not
second countable; hence X is not metrizable.

To show the existence of a tf-closure preserving base for X, it suf-
fices to show one for points in (0,1). For m,qeN,m<q, and
0 ^ k ^ 2m+1 - 2, we define

Wq.mΛ - {<£, y) : (fc)2-«-x <x<(k + 2 ) 2 — \ 0 < y ^ 2"̂ } .

Now consider any Un(p). Then we can choose m, k e N so that

(&)2-w-1 < n-1 + p and (ft - A)2'm-1 ^ p < (ft - 3)2-m"1 .

For this m, ft, we put

q = min {i : Whm,h^ c Z
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T — W
-* 1 r r q,m,k—2 9

a, = (fc)2—' ,

α2 = (k - 2)2"ro-1 ,

δx = 2-" .

Now for each ί e N, we choose fc4 so that

(fc, - 4)2-™-4-1 ^ p < (fc, - 3)2"m- i-1 .

Then we put

qt = min {j : TΓi,m+ί,ftt_s c ί/re(p)}\

aM = (fc, - 2)2—'- 1 ,

Now it follows that for each ί,jeN, ί < i implies α ; < α* and b3 < bi9

and obviously bt —• 0 and α4 —* p.
We also choose m', k' e N such that

< ( ) 2 - m ' - 1 and

Then we put

q' = min {i : Wj>m,tk, c

-£i — YY q',<m',k' 9

a[ = (fc^-™'-1 ,

α̂  - (fc' + 2)2~m'-1 ,

b[ - 2-g/ .

Now for i e N, we choose k\ so that

Then put

q[ = min {i : TFj.̂ +ί.fcj c Un(p)} ,

al+2 - (fc; + 2 ) 2 - ' - ' - 1 ,

6ί+1 = 2-«ί .

Then for each i,jeN, i < i implies α{ < αj and b\ < b'j9 and obviously
δί —> 0 and α{ -* p.

Now putting

it can be shown that p 6 Nn(p) c Ϊ7n(p).
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Now consider the countable set

T = {φ')2-m\ (k)2'my : Jc, k\ m,m' e N, (kr)2~mf < (k)2'n) .

For t = <(fc')2"m\ (k)2-my e T, put

Bt = {Nn(p): a[ = (fc')2-*\ a, .=

Then obviously U{#* :t e T) == {Nn(p): n e N, p e (Q, 1)}, which is a base
for points in (0,1). Finally, it can be shown that each Bt is closure
preserving. Hence Uί^ί '-t e T} is a tf-closure preserving base and X
is an Mi-space.

If X is the space in Example 9.2, then it can be shown without
difficulty that X/(0,1) is an il^-space with (0,1) having a closure preserv-
ing local base.

EXAMPLE 9.3. There exists a non-metrizable MΊ-space X with p e X
such that p has an uncountable closure preserving local base and X — {p}
is homeomorphic to R.

Let p $ R and put X = R U {p}. Let {r J^= 1 be an enumeration of
the integers and put B = {1/n :n e N — {1}} U {0}. Let F be the set of
all functions from the integers I to B such that either there exists r e I
such that if s < r, then f(s) — 0 and if r ^ s, then /(s) ^ 0; or for all
r e 7, /(r) ^ 0. For f e F, put ^ = \Jn=ι(rn - /(rn), rw + f(rn)) where
if /(rn) = 0, (rn, rΛ) - φ. Let ί7 = {{p} U Uf:feF} and B be a counta-
ble base for R. Then it is obvious that U U B is a σ-closure preserving
base for X Moreover, it is easy to see that X is not first countable
at p and R is homeomorphic to X — {p}.

It is clear that this construction can be carried out for any non-
compact metric space without isolated points. In particular, carrying it
out for the rational numbers we get a countable non-metrizable Mi-space.

EXAMPLE 9.4. (Michael [9]). We can get another countable non-
metrizable Mi-space by taking the subspace / U {p} of β(I), where I is
the integers and β(I) is the Stone-Cech compactification of land p e β(I)—I.
Here the family of all open sets containing p is closure preserving.
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RANDOM CROSSINGS OF CUMULATIVE

DISTRIBUTION FUNCTIONS

MEYER DWASS

l Introduction* Let Xlf * ,Xn be n independent and identically
distributed random variables, each with continuous c.d.f. (cumulative
distribution function), F(x). Let Fn(x) be the empirical c.d.f. of the n
random variables and let Nx(n) be the number of times Fn equals F.
There is no loss of generality in supposing that the XJs are distributed
uniformly over the interval (0,1), and to be specific, N^ri) is defined by

N^ri) = number of indices, i, for which Fn(ί/n) = ί/n, i = 1, , n.

Similary, let X19 , Xnf , Ylf , Yn be 2n independent random
variables, each with the same continuous c.d.f., F(x), and let Fn,Gn

denote the empirical c.d.f.'s of the X/s and Yt's respectively. Let N2(n)
be the number of times Fn equals Gn. That is.

N2(ri) = number of indices i for which Fn{Xt) = Gn(Xt),

plus

number of indices i for which Fn(Yt) = Gn(Yi), i = 1, •••, n.

The purpose of this paper is to show that

= lim p ( N ^ < t) = 1 - e-4 J

The methods for obtaining these results are practically the same for
Nx and N2, so the first case is treated with somewhat greater detail.
In both cases, the random variables are related to other random variables
on appropriate stochastic processes with independent increments, to
obtain generating functions for the moments of Nt. The Karamata
Tauberian theorem is then applied to describe the asymptotic behavior
of these moments.

2. Some preliminaries on the Poisson process. Let Y(t) be the
Poisson process with stationary independent increments, t Ξ> 0, Y(0) = 0,
£'[i r(l)] = 1. Consider γί, the straight line coming out of the origin
with slope 7 > 1. The random function Y(t) can equal yt at times 1/γ,
2/7, etc. The event that Y(t) = yt is a recurrent event in the sense
of Feller [4]. Because 7 is greater than 1, this recurrent event is an
uncertain one. It was shown by Baxter and Donsker [1] that

Received February 23, 1960. Research done under contract with the U. S. Office of
Naval Research. Contract Nonr-1228(10), project NR 047-021.
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P[Y(t) <yt, all positive t] = 1 - 1/7 .

A completely elementary proof of this fact was given by Dwass [3]-
In other words, the probability that the uncertain recurrent event under
discussion never takes place is 1 — 1/7. To introduce some specific nota-
tion, let N = number of times that Y(t) equals yt. That is,

N = number of indices i for which Y{ijy) = y(i/y) = i, i = 1, 2, ~.

The random variable, N is geometrically distributed, specificially,

P(N = k) = (l/γ)*(l - 1/γ) ,

and for the rth factorial moment we have,

(2.1) EN{r) = EN(N - 1)(N - 2) . . . (N - r + 1) = rl/(r - l)r .

3 A generating function for E[Nfr)(n)]. The link between the
random variables N and Nλ{n) lies in the following lemma.

LEMMA 3.1. The conditional distribution of N given that Y(t) = yt
for the last time at time t = n\y is exactly the same as the distribution
of N^n).

Proof of Lemma 3.1. This follows directly from the well-known
fact that the places where the jumps of Y(t) occur in the interval (0, a)
are distributed as n randomly chosen points in (0, a) under the condition
that Y(a) = n.

Making use of this lemma, we can compute the rth factorical
moment of N in the following iterative way. Let Ah denote the event
that the last crossing of 7t by Y(t) takes place at time kjy. Then

I Ak )P(Ak) .

Since P(At) = (fc/y)*β-*"(l -

and

E(N" I At) - E[Nr(k)], (&, 0,1, 2, .) ,

we have, making use of (2.1), the following theorem.

THEOREM.

(3.1) ± ^
k\

7 / (7 — l ) r + 1

REMARKS.

(a) In (3.1), e-kkklkl should be understood to be 1 when k = 0.



RANDOM CROSSINGS OF CUMULATIVE DISTRIBUTION FUNCTIONS 129

(b) u = eΎ~lh is a strictly decreasing function of 1/γ, for 7 i> 1, and
maps (1, oo) onto (0,1). Let 1/γ = P{u) denote the inverse function.
Then (2.2) can be rewritten,

(3.2) Σ ̂ f- ENr(k)u« = 1 = h(u) ,
^=0 kl P(u)[P~\u) — l]r+1

0 ^ u < 1 .

Since l i m 1 " ^ 7 -1/2
im ^ 7
*-* (a? — I) 2

or equivalently,

it follows that

. _ r!(3.3) lim (1 - u){

If the coefficients of u* in h(u) form an increasing sequence, then
Karamata's Tauberian theorem is applicable and we could conclude that
the sum of the first k coefficients of powers of u in (1 — u)h(u) is asym-
ptotically equal to

J.ίr-lW2 T\

2 )

or equivalently,

lim'
1 \

by the '^duplication formula'? for the gamma function (p. 240 [6]).
Since the asymptotic behavior of the rth factorial moment is the

same as that of the rth ordinary moment, we would have finally,

where f(x) is the probability density function



130 MEYER DWASS

={;2xe~x\ x^O

0, x < 0 '

However, it is not at all clear that the usual conditions for Karamata's
theorem to hold are applicable, and a slightly more delicate argument
is required.

4 The limiting distribution of N^n). Following the discussion in
the last section, the main effort which remains is to justify the appli-
cability of Karamata's theorem.

LEMMA 4.1. Let a^u), (i — 1, , r) be power series having positive,
non-decreasing coefficients. Then a(u) — I L ^ M has the same property.

Proof of Lemma 4.1. a^u) has positive, non-decreasing coefficients
means that the coefficients of (1 — u)at(u) are non-negative.

(1 - u) Π iφ) = Π [(1 - M)α4(M)](l - **)-'-»
i i

is a product of power series all with non-negative coefficients, which
completes the proof.

LEMMA 4.2.

(a) Σ * ^ l 1 6 * = / ( t t )
fco k\

(b) c(l - u)-1'* - f(u) = g(u)

is a power series with positive, non-decreasing coefficients if c is suffi-
ciently large.

Proof of Lemma 4.2. Part (a) follows from (3.1) for r = 0. The
coefficients of (1 — u)~112 are of the order of \\Vk and strictly positive.
The coefficients of —f(u) are strictly increasing and also of the order
of 1/τ/ k . Hence choosing c sufficiently large will guarantee the result.

Finally, we want to state the following form of Karamata's theorem.

LEMMA 4.3. Let a(u) = ΣfcUα^ where {ak} is a non-decreasing
sequence, and suppose (1 — u)ya(u) —*A as u—*l, for 7 ^ 0 . Then

as k —> oo.

Proof of Lemma 4.3. For γ > 1 the result follows from the con-
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ventional form of Karamata's theorem (for example see Theorem 4.3,
p. 192, [5]) by considering that

(1 - uy~ι(l - u)a{u) — A

and that the partial sums of coefficients in (1 — u)a(u) are αfc.
For 0 ^ 7 < 1 we have that

and we can apply Hilfassatz 3, p. 517, Doetsch, [2], to conclude that

α 4l #» = -A—
* Γ(y + 1) Γ(γ)

We can now prove the following.

THEOREM.

tonp(*WL<

Proof. The limiting distribution is determined by its moments,
hence it is sufficient to show that

lim E(^ΆY = 2\° xr+ιe-χ2dx = Γ(r/2 + 1) , r = 1, 2, .

Referring to (3.2) and to Lemma 4.2, we can write

(4.1) h(u) = rl[l+f(u)][f(u)Y

= [c(l - u)-^ - g(u) + l][c(l - uY^ - g(u)Y .

Since g(u) has positive and increasing coefficients then by Lemma 4.1
so does (1 — u)~ml\g{u)\n for m, n positive integers, because

- (1 - u)~Ml\l - u)[g(u)]n

has positive coefficients. Hence by Karamata's theorem, since

(1 - u){m+n)l2(l - uyml2[g(u)]n -> (c - ±X

the coefficients of (1 — u)~mβ[g(u)]n are asymptotically equivalent to

(e-
m + n

2
On expanding the right side of (4.1), an elementary computation yields
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the result that the coefficients of h(u) are asymptotically equivalent to

rl I.ίr-lW2

\\

2

According to the discussion in § 4, we conclude then that

which completes the proof of the theorem.

5* The limiting distribution of N2(ri). In this section we prove the
following.

THEOREM.

The main points of the proof are essentially the same as in the
preceding theorem, so we offer an outline of the method only.

Let Xl9 X2, be a sequence of independent, identically distributed
random variables such that

(1 with probability p,

lθ with probability 1 — p.

and let Sn denote the sum of the first n random variables.
The event that for a positive integer n, S2n — n, is a well-known

recurrent event, representing return to the origin, in a discrete random
walk on the line. Suppose p < 1/2. Then the probability that the
recurrent event never takes place is 1 — 2p. (See Feller, p. 288, [4].)
Using JV exactly as above, let N= number of indices i for which S2i = if

i — 1, 2, •••. As before, JV is a geometric random variable, such that

and hence

ENir) = r

Analogous to Lemma 3.1 is the following combinatorial lemma.

LEMMA 5.1. The conditional distribution N given that S2i = i for
the last time when i = n is exactly the same as the distribution of
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N2(n). We omit the proof which is elementary.
Let Ate denote the event that S2i = i for the last time when i = k.

Then

ENir) = ±E{N{r) \Ak)P(Ak)

— J£ ENjr)(k)( , W(l — p)k(l — 2p) .

Hence

'2fcW.,_ r!
(5.1) / ( ^ ) = ^ , ^ χ , 2 V . Λ fc

where 4p(l — p) = u9 0 ^ p ^ 1/2, is an increasing function of p which
maps (0,1/2) onto (0,1), and where p = h(u) is the inverse function.

We next notice that

lim (1 - u){r+ι)l2f(u) = r! ,
W->1

This follows from the fact that

2p

The application of the Karamata theorem can now be justified ex-
actly as before. In fact if g(u) is defined in terms of f(u) as in § 4,
then the details go through exactly word for word. Hence we conclude
that

limE-
fc-»oo fcvr-x,,* r , l Ί +

hence

>ir)(k) rl V~π

2rΓι

which completes the proof.

6, Final remarks^ The asymptotic distribution of -Ni(w) has been
studied by N. V. Smirnov in "Sur les ecarts de la courbe de distribution
empirique", Mat. Sbornik, 6 (48), pp. 3-26 (1939), (Russian, French
summary). His methods are not based on the Karamata Tauberian



134 MEYER DWASS

theorem and seem considerably more complicated than those of this
paper, though he actually dealt with a more general situation. Also,
the referee has kindly pointed out that the random variable N2(n)
is related to a random variable studied by W. Feller in "The num-
ber of zeros and of changes of sign in a symmetric random walk",
LΈnseignement Mathematique, III, 3, (1957), 229-235.
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RADIAL DISTRIBUTION AND DEFICIENCIES OF

THE VALUES OF A MEROMORPHIC FUNCTION

ALBERT EDREI1, WOLFGANG H. J. FUCHS2

AND SIMON HELLERSTEIN

Introduction* Let f(z) be a meromorphic function. Throughout this
note we make the following conventions.

I. /(0) = 1; this simplifies the exposition without affecting the gener-
ality of the results.

II. We denote by

CLly &2, a3, *

the sequence of the zeros of f(z) and by

hi, b2, h,

the sequence of its poles.
The moduli of the terms of these two sequences are taken to be

nondecreasing and each zero or pole appears as often as indicated by its
multiplicity.

III. The standard symbols of Nevanlinna's theory:

log+, m(r,f), log M(r,f), n(r,f), N(r,f), Γ(r,/), δ(τ,/)

are used systematically; familiarity with their meaning is assumed.
We investigate here the following problem, a special case of which

has already been mentioned by two of the authors [1; p. 295]:
To find sequences {αμ}, {6V} such that if f(z) is a meromorphic function

with zeros {αμ} and poles {bv} (and no other zeros or poles), then

(1) δ ( 0 , / ) > 0 , δ ( c o , / ) > 0 .

The results of the present note show that a simple behavior of the
arguments of the zeros and poles is almost sufficient to induce the in-
equalities (1). We prove

THEOREM 1. Let f(z) be a meromorphic function with positive zeros
and negative poles.

Received April 25, 1960.
1 The research of this author was supported by the United States Air Force, Contract

No. AF49(638)-571, monitored by the Office of Scientific Research.
2 The research of this author was supported by a grant from the National Science

Foundation (G 5253).
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Assume that

(2) Σ — + Σ τ^-7 = + « ,

and that

(3) Σ 1 + Σ 1 < + co,

/or some finite positive value of ξ.
Then

(4) lim sup ^ < — ί — ,
Γ(rf/) ~ 1 + A

where A(> 0) is an absolute constant.
If the condition (3) is omitted, we still have

(5) lim sup —"F, ^ 1
T(r, f)

COROLLARY 1.1. The assumptions of Theorem 1 imply

δ(o,/)^-A-, δ(co,/)̂ _4-^-.

If the condition (3) is omitted, but

0 <a^limmf Mε>ίL^ i i m s u p

we still have

COROLLARY 1.2. Let f(z) be an entire function with real zeros. If

and if

(7) Σ
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for some finite positive value of ξ, then

A
(8) 8(0,/)^

Ϊ+A'

where A is the absolute constant in (4).
The condition (2) of Theorem 1 cannot be omitted; we shall see

that the theorem does not hold for certain meromorphic functions of
finite order, with positive poles and such that

for every K less than one.
Similarly, Corollary 1.2 does not hold for certain entire functions of

finite order, with real zeros and such that

for every tc less than two.
The conditions (3) and (7) are used essentially in our proofs, but it

is possible that our results hold without such restrictions. This conjecture
is plausible if we observe that the assertions (4) and (8) do not contain
the parameter ξ.

Our method gives a little more than has been stated. In the special
case of entire functions it yields

THEOREM 2. Let f(z) be entire. Assume that all its zeros aβ lie
on the radii defined by

reiω°, reiωi, reiω™ (r > 0) ,

where the ω's are real.
Then, there exists a positive constant K, depending only on the

ω's, and such that the condition

(9) Σ _ l = + co,

and the condition

(10) Σ-Γ^-Γ< + ~ ,
μ- I <Zμ I

for some finite value of ξ, imply

(ii) δ ( 0 > / ) -τfτ'
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where A is the absolute constant in (4).
All the previous theorems and corollaries assert that 0 and oo are

among the deficient values of certain functions f(z).
Hence, by Theorem 4 of [1], the lower order μ, of f(z) is positive3.
Assume now that h(z) denotes a meromorphic function which does

not vanish identically, is of order less than μ, but is otherwise arbitrary.
Then, by elementary inequalities of Nevanlinna's theory,

T(r,hf)co T(r,f),

1
m(r,fh) = m{r, f) (1) \ fh

T(r,fh) T(r,f) κ"T(r,fh) T(r,f)

and hence

S(0, fh) - 8(0, /) , δ(<χ>, fh) = δ(co, /) .

This shows that our theorems remain true even if infinitely many
zeros and poles have unknown arguments but are sufficiently rare.

It will be shown in [2] that a radial distribution of zeros and poles
makes it, in general, impossible for the function to have other deficient
values than 0 and oo. Combining the results of [2] with those of the
present investigation, it is possible to obtain information concerning all
the deficient values of certain interesting classes of functions. The
following result is one of the simplest which may be obtained in this
way.

Let f(z) be an entire function of finite order λ. Assume that all
the zeros of f(z) are real and that λ > 2.

Then (11) holds and

for τ Φ 0, τ Φ oo.

l Consequences of an identity of Nevanlinna

LEMMA 1. Let f(z) be meromorphic with zeros {αμ} and poles {6V}.
Assume

(1.1) ! arg αμ | :g γ < •£ (μ = l, 2 , 3, . . . ) ;
Li

(1.2) | a r g 6 v - π | ^ γ < | - (v = 1,2,8, •••);

3 A direct study of the lower order of our functions will be found in [2]. For the
functions in Theorem 1 and its Corollaries, this study yields "best possible" bounds for μ.
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(1.3)

Then, for r large enough,

(1.4) - L Γ l o g I f(reiθ) | cos θdθ ^ cos γ {N(r,±-) + N(r,/)} .
2π Jo I \ / / J

Proof. Put g = 0, 2 = 0 in a well-known identity of R. Nevanlinna
[3; p. 222]. Adapting the formula to our notation, we obtain

(1.5) τ-\*Ίog\Λ
2π Jo

reiβ)\e-«dθ = -£-{ Σ ( — - ^
2 l Λ 2

r n /(O) 2

and hence, in view of the assumptions (1.1) and (1.2)

(1.6) J-ΓΊog|/(rO|cos^0^^-cosγ{ Σ {T^Ύ^^T
2π )Q 2 Liô î rV α j r 2

+ Σ /'(0)
/(0)δvl r2

An elementary evaluation yields

(1.7) — Σ (— ISbdλ = N(T,— \ + — [N(X,— Y— - — V^
2 ι v * Λ | α μ | r2 / \ /"/ 2 Jo V /A^ 2 r2/

Using (1.7) (and the analogous formula for poles) in (1.6), we obtain

+
)

/'(0)

(1.8) A - ^ log I /(re i9)| cos θdθ ^ cos γ |iv(r, -1) + Mr, /)}

—jcosγ x, jr) + N(x, f)}(± - ±)dx-

If r is large enough, this implies (1.4) since, by our assumption
(1.3), the integral in the right-hand side of (1.8) tends to + °° as

2 Lower bounds for m{r,f).

LEMMA 2. Let g(z) be an absolutely convergent product of primary
factors of genus 2.

Assume that the zeros of g(z) lie in the sector Δ{έ) defined by

(2.1) I a rg z I ̂  -|- - ε
b »< sf.)
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Then

dθS (π/3) + (ε/2)
log+

(r/3)-(ε/2) &

Proof. Let

(- reiθ)
>2εsin— rΛ ^—dt .

2 Jo t2(t2 + r2)

denote the primary factor of genus q; we write E(u) instead of E{n, 2).
It follows from the definitions that

log
E(-u) f - 1

and hence, if

u = re ίφ ,

(2.3) log

Φ ξέ 0 (mod π) ,

_ g [ r ^ 4 cos φ — x2 cos S
J o x* — 2x2 cos 2φ +

Let {cv} be the sequence of the zeros of g(z); putting

we have, by assumption

(2.4)

= arg cv

θ I < — — ε
b

If z(= reiθ) is confined to the sector

(2.5)

(2.3), (2.4) and (2.5) yield

< —
" 2 '

log
• ( - vA cos (θ — flv) — a?2 cos 3(0 —

a 4 - 2# 2 cos 2(0 - <9V) + 1
•dx

2 Jo

Hence, in the region defined by (2.5)
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(2.6) log4 g(reiθ)
(- reiθ)

/|c!v' X*

= 2 sin — r 3ί
2 J( tψ + r2)

and this clearly implies (2.2).

LEMMA 3. Let f(z) be a meromorphic function of genus not greater
than 2.

Assume
( i ) that its zeros {aμ} lie in the region Δ(s) defined by (2.1);
(ii) that its poles {6V} lie in the region J*(ε) defined by

I arg z — π | ^ — — ε
6

(iii) Σ

f(reiβ)1 f (JΓ/3) + (8/2)

(2.7) -L\ log
2TΓ J(Jr/3)-(8/2)

where rj{r) —• 0 as r —• + oo.

dθ

, i ) +

Proof. Since the genus of /(z) does not exceed 2, it is possible to
represent the function by

(2.8) f(z) = OP(Z)

ΠEl — , 2

ΠM-ί-,2

where the polynomial P{z) is of degree not greater than 2 [it is obvious
that the infinite products in (2.8) are not necessarily canonical].

Clearly

(2.9) A*) -

where
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(2.10) g(z) = ΠE(-*-, 2)ΠE(- -?-, 2) .

By (2.9)

log+ f(reιβ)
/ ( - re1")

>log+ g(retθ)
g(- reιθ)

- 2 I P'(0) I r ,

and the assumptions (ί) and (ii) of Lemma 3 enable us to apply Lemma
2 to the function defined by (2.10). We thus obtain

(2.11) f(reiθ)

( - retβ)
dθ

~ 2 S ' P ' ( 0 ) ' r •

Now

rλ
J t\t2 + r2) ϊ2 dt ,

and by assumption (iii) the latter integral tends to + co as r —* +
Hence (2.11) yields

(2.12)

where

- L log+

2TZ J W3)-(e/2)

f(reiβ)

n(t)Ξ> (1 -Ύ]{r)) — sin — A
π 2 Jo tψ + r2)

and
Putting

O X

an integration by parts and obvious estimates yield

f- n(t) dt -
Jo tψ + r2)
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Using the latter estimate in (2.12), we obtain (2.7).

LEMMA 4. //, in Lemma 3, we restrict the value of the para-
meter ε by the inequalities

(2.13) — — < ε < — ,
10 6 " ~ 6

then, for all sufficiently large values of r,

(2.14) Γ(r, /) ^ (1 + A){N(T9 -ί) + N(r, /)} ,

where A(> 0) is an absolute constant.

The inequality (2.14) still holds if f(z) is replaced by F(z)\

(2.15) F(z) = eS{z)f(z)

where S(z) is an entire function (which may reduce to a polynomial).

Proof. We apply Lemma 1 to the function f(z)jf(— z) (instead of
f(z)). By (2.13) and the definition of Δ(ε) and J*(ε), we obtain, for
large values of r,

-~\ log
2π Jo

f(reι°)
reiβ)

cos θdθ ^ c o s ( ^

Hence, in view of the trivial relation

2πi«
log

( - retθ)

f(reiβ)
dθ =

we find, for r large enough,

f(reiθ)
JLfjvfr,—^ + N(r,f)\ ,
ΌΌI \ t / )

f{z) 2τr /(
(1 - cos θ)dθ

(2.16) ^ (i _ C O S-j)J-
^ 4 / 2

dθ
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Using (2.7) and inequalities for the means of Nevanlinna, (2.16)
yields

m(r,f(z)) + m\r,—^\ ^ Ul — η{r)) — ε sin 1- cos —-

x{Λr(r,l ) + ΛΓ(rf/)},

and hence, by Jensen's formula,

(l
(2.17) 2Γ(r, /) ^ (1 + cos - | - +

V 60 4ττ

x {^(r,y) + N(r,f)}

Using (2.13), it is easy to obtain an explicit numerical bound for the
coefficient of N(r, l[f) + N(r, f) in (2.17). Since this bound exceeds
2, we obtain (2.14).

In order to see that (2.14) holds if f(z) is replaced by F(z), we
observe that

(2.18) m(r, es^) £ T(r, F{z)) + Γ(r, /(*)) (/(0) = 1).

Now

(2.19) T(r,f)

because, by assumption, f(z) is of genus not greater than 2 [3; p. 235]»
If S(z) is a polynomial of degree not greater than 2, there is nothing

to prove since F(z) is still of genus not greater than 2. In all other
cases

(2.20) Xr 3 ^ m(r, eS{z)) ,

for some X(> 0) and r sufficiently large. Hence we obtain the last as-
sertion of the lemma by combining (2.14), (2.18), (2.19), and (2.20).

3* Proof of Theorem l
Inequality (5) of Theorem 1 follows readily from Lemma 1 and

Jensen's theorem: with 7 = 0 , (1.4) yields

m(r,f) + m(r,ψ) ̂  N(T,^J + N(r,f) ,

2Γ(r, /) ^ 2 {N(r,-L) + N(r,/)} (/(0) = 1),

which obviously implies (5).
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The first part of Theorem 1 is contained in the following Lemma
5 which we now state and prove.

LEMMA 5. Let f(z) be meromorphic. Assume that there exists an
integer q(^ 1) such that

(3.1)

(3.2)

= +

h \q+1 < +

Let p be an odd integer

(3.3) 1 ^ p ^ q .

Consider the sectors Δ^ defined by

(3.4) 2πk

P

π
GOq

and the sectors At defined by

(3.5) arg z — π —
2πkf

p
π

If every zero of f(z) lies in one of the sectors Ak and every pole in
one of the sectors Δί, then

(3.6) lim sup -
T(r, f) - 1 + A

where A is the absolute constant in Lemma 4.

Proof. Consider the odd integer s defined by

(3.7)

in view of (3.3)

Put

P

1 < s .

(3.8) I = ps , ω = exp
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Clearly I is a positive odd integer and, by (3.7)

(3.9) I ^ q < I + 2p S 31 .

In view of (3.1) and (3.2), the function f(z) is of the form

where S(z) is entire.
Consider now the auxiliary function

(3.10)

where Riz) is entire and the genus [q[l] of the primary factors is, by

(3.9), either 1 or 2.

Putting

φμ = arg αμ , ψ, = arg 6V ,

our inequalities (3.4), (3.5), and (3.7) imply

(3.11) I φμl - 2πks | ^ iL , | ψvZ - ^ - 2πk's \ ^ ~ .
60 60

We also notice that our assumptions prevent the possibility of can-
cellation between the zeros of one of the functions /(ω%) (j — 0,1, ,
I — 1) and the poles of another of these functions. Hence

(3.12) N(r, G(z)) - lN(r, f) , N(T, -^—) = w(r, -I) .

Put

H(u) = eRM

'< •£ •[!
and rewrite (3.10) as

(3.13) G(z) = W ) .

The inequalities (3.11), the assumption (3.1), and the first of the
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inequalities (3.9) show that it is possible to apply Lemma 4 to H(u)
{instead of f(z)). Hence

(3.14) T(r, H(u)) ̂  (1 + A){N(T, -Lj) + N(r, H(u))} (r Z> r0) .

On the other hand, the fundamental definitions of Nevanlinna's
theory show that, for any meromorphic function w(z):

N(r, w{z1)) = N(rι, w(z)) , T(r, w(z1)) = Ύ(r\ w(z)) ,

so that (3.13) and (3.14) yield

(3.15) T(r, G(z)) ̂  (1 + A){N(T, -^—) + N(r, G(s))} (rι ^ r0) .

Since

f)^ T(r,G(z)),

we see that (3.6) follows from (3.12) and (3.15).
We obtain the first part of Theorem 1 by taking p = 1 in Lemma 5.

4 Proof of the Corollaries* Corollary 1.1 follows trivially from
the inequalities (4) and (5) and the definition of deficiency.

Corollary 1.2 is contained in the following.

LEMMA 6. Let f(z) be entire. Modify the assumptions of Lemma
5 by:

( i ) omitting all reference to poles;
(ii) omitting the restriction that p be odd (p may be any integer

satisfying the inequality (3.3)).
Then (3.6) still holds.
The proof of Lemma 5 also yields Lemma 6 provided the integer s

(even or odd) is defined by

s ^ < s + l ,
p

instead of (3.7). The definitions (3.8) remain unchanged and (3.9) takes
the sharper form

I ^ Q < 21 .

The other changes in the proof are obvious and need not be
mentioned here.

We obtain Corollary 1.2 by taking p = 2, in Lemma 6.
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5. Best possible character of the conditions (2) and (6)*
Let

(5.1) 8lf S2, 88,

be a sequence of integers such that

(5.2) 8 l ^ 2, sλ+1 > 2sλ (λ = 1, 2, 3,

Consider the entire function

= Π Π (1 - -

Denoting by {αj- the sequence of the zeros of f(z), elementary
estimates yield

(5.3) Σ — < + co , Σ — = + co (*<1).
μ- α μ μ α j

These relations hold for every choice of the sequence (5.1). Hence
we may take the ratios sλ+1/sλ to be rapidly increasing with λ and, using
the well-known formula [4; p. 271]:

nit —)
l o g M ( r , / ) = r Γ }'f!dt,

Jo ί(ί + r)

choose (5.1) so that

(5.4) ,. , log T(r, f) <-- l i m i p f log log M(r) = Q ̂
lim m i losf 7" ^—*°° loo* ^

7"—»oo

It is sufficient to choose the sequence (5.1) in such a way that, for
some arbitrarily large u, n(tf 1//) is constant in u ^ t ^ eu.

Hence, putting

(5.5)
log r

It has been shown elsewhere [1; p. 297, Theorem 4] that the condi-
tion (5.5) implies

δ(τ, F{z)) = 0 ,

except possibly for a single value of τ, finite or infinite.
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Hence the inequalities

δ(0,F(s) )>0, &(<*>, F(z))>0,

are both impossible since one of them would imply the other one. We
thus have

T{r, F) 2 — x Γ(r, F)

although F(z) satisfies all the conditions of Theorem 1 except (2) which
is replaced by the weaker condition (5.3).

Similarly, (5.4) and Theorem 4 of [1] yield

δ(τ,f(z)) = 0 (τΦ «>)

and hence, putting

F*(z) = f(z>)

we have

δ(τ, F*(z)) = 0 (τΦ oo).

In particular δ(0, F*(z)) ~ 0, although F*(z) satisfies all the condi-
tions of Corollary 1.2 except (6) which is replaced by a weaker condi-
tion analogous to (5.3).

6* Proof of Theorem 2. Our proof is a straightforward consequence
of Lemma 6 and of a classical theorem of H. Weyl [5; p. 335, Satz 16].

We consider the arguments ω5 of the radii carrying the zeros of
f(z) and assume

ω0 = 0

this is clearly no restriction.
Let k + 1 (0 5£ k ^ m) be the maximum number of linearly inde-

pendent elements among

(6.1) 2π, ω19 ω2, . ωm .

Renumbering, if necessary, the ω's we may assume:
( i ) that a relation such as

(6.2) μo2π + Σ μsω3 = 0 ,

is impossible for integral values of the μ's, not all zero;
(ii) if k < m, there exist integers ntj and σ(> 0) such that
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(6.3) σωι = 2πnl0 + Σ wlfαλ, (I = k + 1, , m).
J=i J

Put

Mι=t\nlj\
J=i 3

and

(6.4) M = sup {σ, Mk+1, Mfc+2, . . , Mm} .

Since no relation such as (6.2) is possible, WeyΓs theorem asserts
the existence of a sequence

(6.5) Xί9 λ2, λ3,

of increasing integers such that

(6.6) I X^ - Lsj2π \ <£ ̂ ^ (j = 1, 2, . . . k; s = 1, 2, 3, . . . ) ,

where the Lsj are integers. WeyΓs theorem also asserts that the
sequence (6.5) has a positive density. The latter property is unneces-
sarily precise for our purposes; we only need the obvious implication

(6.7) λs+1 < 2λs (s ^ s0).

We set

and observe that the integer K depends only on the ω's.
By the assumptions (9) and (10), there exists an integer q such that

Define h by the inequalities

(6.8) σ\h f£ q < σXh+1 .

In view of the definition of K and (6.7)

(6.9) q < 2σXh .

We now obtain Theorem 2 by verifying that Lemma 6 may be ap-
plied with the value of q chosen above and

(6.10) p = σXh .

It is clear that we only have to ascertain that the zeros of f(z) lie
in regions such as (3.4) with p defined by (6.10).
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Using (6.6) and (6.4) in (6.3), we obtain

(6.11) I σXhωι - Λhι2π | ^ J L (I = fc + l, fc + 2, . m),

where the J ' s are integers.
By (6.6) and (6.4), it is clear that (6.11) holds also for I = 1, 2, fc,

with

Λ Ϊ = σLhι (I = 1, 2, fc).

Hence, by (6.9), (6.10) and (6.11)

V

This shows that the location of zeros allows the application of Lemma
6. Theorem 2 is an immediate consequence.
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HARMONIC FUNCTIONS WITH ARBITRARY

LOCAL SINGULARITIES

WILLIAM C. FOX

1. Introduction* This paper is concerned with a new and more
infoπήative solution of an old existance problem, that of determining
what conditions must be imposed upon the nature of a local harmonic
singularity in order to imply the global existence of a harmonic func-
tion which "has" the given singularity. In 1870, [17, vol. II, p. 133-
143 and p. 144-177], EL A. Schwarz solved the problem for closed surfaces
giving, as sufficient, the condition that the harmonic singularity function
must have vanishing flux across the curve (bounday of a disk) on which
it is given, and he solved the problem for open surfaces which are interiors
of compact manifolds-with-boundaries, with no restriction on the singul-
arity function. In 1909 [4, vol. 3, p. 73-80] Hubert announced that the
problem for open surfaces, with singularities having flux, can be solved
by a special extremal method. Hubert worked out an illustrative ex-
ample and left the general account to be presented in the thesis of his
student Richard Courant. A few months later Koebe [6], in the last
of his series of four papers on the uniformization of analytic curves,
gave the first full account of the existence of harmonic functions with
a prescribed local singularity on open surfaces. Koebe based his proofs
on exhaustion and the results of Schwarz; he did not use Hubert's
special extremal method. Moreover, his convergence arguments still used
the assumption that the singularity's flux is zero. In 1910 and 1912
[2, 3] Courant published accounts of special cases taken from his thesis;
not again did Hubert's special extremal method appear in print. In
1913, Weyl [20] re-proved Koebe's theorem using an extremal method,
namely that of minimizing the Dirichlet integral of what he called the
"concurrence functions." (In all these works the singularity function
was specified in concrete terms, e.g., as the real part of l/zn near the
origin. However, the proofs remain valid for any singularity with
vanishing flux. Accordingly, I have described them in those terms.)

Not until 1953 were any further advances made with respect to
this existence problem. At that time, Sario [13] published a modern
account (based on preliminary notes dated 1949 and 1950) of the alter-
nating series method of Schwarz which went far beyond the work of
Schwarz both in method and in generality. When Sario's results are

Received March 15, I960. Research which led to this paper was supported in part by
the National Science Foundation. A preliminary report was made at the 1957 summer
meeting of the American Mathematical Society.
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restricted to the case of a local singularity, they duplicate those of
Schwarz for closed surfaces and in the case of open surfaces they relieve
Koebe's theorem of the vanishing flux restriction on the singularity.
Sario states further that when the flux does vanish one may conclude
that the function asserted to exist is bounded and has finite Dirichlet
integral on any domain on whose closure it is harmonic.

In this paper, Sario's results are sharpened in various ways. Among
others: a necessary and sufficient condition for the flux to vanish is that
a potential function exists which "has" the prescribed singularity and
whose normal derivatives vanish (in a certain strong sense) on the ideal
boundary. On open surfaces, there always exists a potential function
which "has" the prescribed singularity and which vanishes on the ideal
boundary. These conditions (on the functions' behavior at the ideal bound-
ary) determine the two potential functions uniquely (up to additive
constants) as solutions to certain extremal problems. Concerning either
of these two potential functions, one may always state that it is bound-
ed and of finite Dirichlet integral on any domain on whose closure it is
harmonic, even when the singularity's flux is not zero. Moreover, the
extremal properties shed some light on the role of Sario's assumption
that the given singularity function, harmonic on certain Jordan curves,
vanishes on these curves.

An alternative existence proof is given here also. Its preliminary
part (Theorem 1) on uniform boundedness is of some intrinsic interest.
Although it parallels Sario's Lemma 3 [13, p. 636], it was suggested by
similar arguments used by Koebe in 1909 [6] and in his 1910 recapitula-
tions [7, 8]. Mainly, however, the alternative existence proof is given
here because it also yields the other results described above.

2 Uniform boundedness* The existence theorem of the next sec-
tion makes use of the Ascoli theorem. For this purpose some informa-
tion is needed on the existence of a uniform bound for certain families
of potential functions. In what follows, the term i'local coordinate"
refers to any homeomorphism (from a domain in the sphere onto a
domain in the Riemann surface in question) which is also analytic.

THEOREM 1. In the Riemann surface X, let BΣ c Bo be the images
under a local coordinate of concentric open disks, and let S be har-
monic on the closed "annulus" (Bo — I?/)". If ^ is a set of functions,
u, with each of which is associated a domain D(u) in X containing
(Bo)~ such that

( i ) each function u is harmonic on D(u) — Bτ and is bounded
there by its extreme values on the boundary of Bn

(ii) each function u — S determines a harmonic function U on
(Bo)~ which agrees with u — S on Bo — BI9 and



HARMONIC FUNCTIONS WITH ARBITRARY LOCAL SINGULARITIES 155

(iii) for some point Q of BΣ the set of values {U(Q):ue^} is
bounded,

then there exists a constant K such that \ u \ ̂  K on D(u) — BΣ for
every u in <%/'.

Proof. Let M(u) denote the maximum value of \u\ on the bound-
ary of the inner disk BI9 by hypotheses, the relation | u | ^ M{u) holds
on D(u) — Bχ and there then must exist a point p{u) in the boundary
of Bτ at which | u(p) = M(u). If the set {M(u): u e <u is bounded above
then the theorem is proved. Otherwise, there exists a sequence {un}
in <%/ such that (2.1) limΛ M(un) = + co and (2.2) lim» p{un) — p. On
the outer disk Bo, the function Un (which agrees with un—S on BQ—B^

is harmonic and so is bounded there by its extreme values on the bound-
ary of Bo, so that

(2.3) \Un\^ lub {| un(x)\: x e ΘBQ} + lub {| S(x)\ : x e dBQ}.

If the right hand term in this inequality is abbreviated by the symbol
M, then relation (2.3), by hypotheses, may be written in the form

(2.4) I Un\ ^M(un) + M on Bo.

Thus

(2.5) ίU ZU:m S if 1 + -Jir
M(un) ~ V M(un)

<>»

By (2.1), this implies that the sequence (Un — Un(Q))IM{un) is uniformly
bounded on BQ. Moreover, the sequence unIM(uu) is uniformly bounded
on the ring (Bo — B^. The Ascoli theorem guarantees the existence
of a subsequence of indeces for which the following limits exist uniform-
ly on the domains indicated:

(2.6) limw

 U*~~ U n ^ = Ho, harmonic on BQ,
M(un)

(2.7) limw——— = H, harmonic on B0 — (Br), continuous on (Bo — Br)~.
M(un)

By hypotheses the sequence of numbers {Un(Q)} is bounded. Thus by
(2.1), one may conclude that

(2.8) lim, —f- = 0 and limn ̂ β- = 0,
M(un) M{un)

whence

(2.9) Ht = Km, ~^— - lim, ~J— - Km, ̂ Ά = H on B, - Bt.
M(un) M(un) M(un)
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It is now necessary to show that H0(p) = 1 when p is given by
(2.2). Let pn denote p(un) and let anj — \ un(pj)IM(un)\. In view of the
facts.

(limn anj = IJBΓ^) | uniformly in j , and

[limjanj = I un(p)IM(un) | for each w ,

one may apply the Moore-Smith theorem on iterated limits. It follows
that the double limit limwj anJ exists and equals the common value of
the two iterated limits:

(2.11) limn (Km, anj) = lim, (limn anj) = HQ(p) .

(The last equality follows from (2.8) and (2.9), since the points pn are
all in Bo — Bn for that set contains the boundary of 2?Γ.) Since ann = 1
for all w (by definition of pn), it is the case that | H0(p) \ — 1. Since
iϊo(Q) = 0, this means that Ho is not constant on Bo.

On the other hand, Ho must be constant, in virtue of the following
considerations. Restricted to BIf Ho certainly is bounded by its extreme
values on the boundary of Br. Restricted to the ring Bo — BIy it is
still true that Ho is bounded by its extreme values on the boundary of
Bj because Ho inherits this property from the sequence uJM(un) which
by (2.8) and (2.9) converges to Ho on Bo — BΣ. This means that Ho

must have a local maximum at some point of the boundary of Bn neces-
sarily an interior point of Bo, whence Ho is constant. This contradiction
completes the proof.

3 The existence theorem. The method of exhaustion requires that
the existence problem be solved on subdomains with compact closure
and smooth boundaries. For the present purposes this was started by
H. A. Schwarz in 1870 and was completed by Koebe in 1910, [8], A
portion of the proof is sketched, here to indicate how the hypotheses
enter the arguments.

If r and s are C on the interior of Y except for a closed set of
measure zero then the Dirichlet integral of r relative to s over Y will
be denoted by 5)(r, s; Y). When r = s, the Dirichlet integral will be
written simply ®(r; Y). When 7 is a plane domain, one has

)r\dx dx dy dy

where μ is Lebesgue measure in Y.

LEMMA. Let X' be a compact two-manifold-with-boundary and let
its interior, X Φ X~, be a Riemann surface. If BΣ c J50 are images
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under a local coordinate in X of concentric open disks and if S is
harmonic on the closed "annulus" (Bo — Bz)~ c X, then there exists a
function u, and when S has a single-valued conjugate, there exists
another function v, such that

( i ) they are harmonic on X — Bn

(ii) their differences with S have harmonic extensions from B0—Bτ

to Bo,
(iii) they are bounded on X — BQ by their extreme values on the

boundary of Bo,

(iv) ®(v, T; X - BQ) = + [ Tdv* for every function T, C" on
J 9 5 O

X — Bo and

( v ) ®(%, H; X — Bo) — + I udH* for every function H harmonic
JdB0

on X — Bo.

Proof. By definition of a two-manifold-with-boundary, every bound-
ary point of X~ is contained in a Jordan curve one of whose comple-
mentary domains in X is simply connected. By the Osgood-Caratheodory
extension of the Riemann mapping function, there exists a homeomor-
phism of this domain's closure onto the closed unit disk, a homeomor-
phism which is analytic on the domain itself and which sends an arc
of the boundary of X onto an arc of the unit circle. Thus, it is no
restriction to suppose that each component of the boundary of X is-
an analytic Jordan curve, which in turn makes it possible to form the
"double" of X~. (Of course, when X~ is contained in some larger
Riemann surface Y this argument does not imply that the boundary of
X is analytic in Y, but only analytic relative to the coordinate system
of X itself.)

Let X* denote the double of X~; there is then an analytic homeo-
morphism, a reflection, R of X* onto itself which leaves the boundary
of Xpointwise fixed and which sends Xonto X* — X~. Let Bt — R{B0),
Bf=R(BΣ) and S* = SiR-1). Both S and S*, by hypothesis, have
single-valued harmonic conjugates on the annuluses Bo — Bz and B* — Br

respectively. Since X* is a closed surface, this condition is needed to
warrant the conclusion that a function v*9 harmonic on I * - (5Γ U 5?),
exists such that v* — S and v* — S* have harmonic extensions to Bo and
B* respectively. Moreover these conditions make v* unique up to an
additive constant since the only functions harmonic on a closed surface
are the constants. Therefore v*(R) — v* is not only constant but is
zero because R leaves the (non-empty) boundary of X pointwise fixed.
This implies that v* is bounded on X* — (Bo U B*) by its extreme values
on the boundary of BQ alone, for they are related by the reflection R
to those on the boundary of B*. Of course the normal derivatives of



158 WILLIAM C. FOX

v* vanish on the boundary of X, also because of the relation v*(R) — v* = 0
and the fact that, on neighborhoods of points of the boundary of X, R
is literally a reflection. Thus, if v denotes the restriction of t>* to
X~ — JE?J then (i), (ii) and (iii) have been proved, and (iv) is a conse-
quence of the Green's formula. This use of the "double" of X is due
to Koebe [8].

To construct u, one applies the existence theorem of Schwarz (for
open surfaces) with boundary values being the constant zero. Properties
(i) and (ii) are then immediate; (v) is a consequence of the Green's
formula and the boundary values of u, and the latter implies (iii) also.

It is now possible to prove the main theorem.

THEOREM 2, PART I: Existence. Let X be a Riemann surface, let
B and β be images under a local coordinate in X of an open disk and
its boundary respectively, and let S be harmonic on β. A necessary

and sufficient condition that \ dS* — 0 is that there exists a real func-

tion v
( i ) which is a potential function, on X, whose singularity is S,

(i.e., which is harmonic on X — B and whose difference with
S has a harmonic extension to B~).

(ii) which is bounded on X — B by its extreme values on β,
and

(iii) for which dv* = 0 on dX, i.e.,

[ wdv* = <§)(w, v X- B) - \ wdv* = 0

for every function w, C on X — B~ and continuous on the

closure.
If S is an arbitrary harmonic function on β and if X is open, there
always exists a potential function, u, on X, whose singularity is S,
which has property (ii) and

(iv) for which u = 0 on dX, i.e.,

[ udw* = S)(w, w X- B) -[ udw* = 0
Jθz Jβ

for every function w harmonic on X — B.

THEOREM 2, PART II: Uniqueness: When v exists there then also
exists a function r, harmonic on B~, for which d(S — r)* = 0 on β;
whether or not v exists, there always exists a function s, harmonic on
B~, for which S — s = 0 on β. The functions v and u are determined
uniquely up to an additive constant, among all potential functions on
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X whose singularities are S, by their respective properties (iii) and (iv)
as the functions for which:

(v) The quantity \ (S — r)dw* + I dw* is minimized by w — v
Jβ Jax

among all functions w, harmonic on X — B.
(vi) The quantity \ wd(S — s)* + I wdw* is minimized by w—u

Jβ J9X
among all functions w harmonic on X — B.

In each case the minimum values are \ (S — r)dv* and \ ud(S — s)*
Jβ Jβ

respectively.

Proof. Let B = Bo and let i?7 be concentric with Bo such that S is
harmonic on (J50 — BΣ)'. Let {Dn} be an exhaustion of X such that
(Bo)~ c DIy i.e., {Dn} is a sequence of domains, the union of which is
X, each with compact closure and with boundary consisting of section-
ally analytic Jordan curves. By the lemma, there exists a potential
function un, on Dn whose singularity is S, which vanishes continuously
on the boundary of Dn, and is bounded, by its extreme values on β,
on Dn — Bo. Let Q is a point in BΣ and let an be the value taken at
Q by the harmonic extension to Bo of un — S. If {an} is an unbounded
sequence let {un} be replaced by {un — an}. By Theorem 1 the sequence
{un} is uniformly bounded on each set Dn — BΣ and so contains a sub-
sequence which converges uniformly on each set Dn — BΣ to a function
u which then inherits properties (i) and (ii).

NOTE. When each un is the Green's function of Dn with pole at
Q then an is called the principle part of un and the sequence {an} is
necessarily monotone increasing. By use of Harnack's theorem one sees
that {an} is bounded above if and only if u is the Green's function for
X. This characterization of the Green's function's existence (the con-
vergence of a sequence of principle parts) was first discovered by Koebe
in his proof of the so-called uniformization theorem [9], when Xis simply
connected.

By (v) in the lemma, one may establish the following relations, once
un has been extended continuously to X — Dn to be constant there:

(S)(u, H X- Bo) = Km, ® ( ^ , H; X - Bo)

(3.1) I =]imn®(un,H;D-B0)
I = limw [ undH* = f udH*.

This establishes (iv) here. Note that the additive constants an, should
they be present, do not have any effect, for they disappear in the inte-
grand of the Dirichlet integral.

If S does have a single-valued harmonic conjugate, i.e., if

Us* = o
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then the corresponding functions vn certainly exist, by the lemma, and
so therefore does v by Theorem 1. Moreover

{v, T X- Bo) = limw ® ( ^ , Γ; X - Bo)

(3.2) I =limnS)(vli,Γ;D-Bo)

as required by (iii). In (3.1) and (3.2), one needs to know that the
partial derivatives of un and vn will converge to those of u and v. Con-
versely, given (iii), one may choose w = 1 and obtain

ί dv* = 0.
Jβ

Since v — S has a harmonic extension to (BQ)~ and therefore has a
single-valued harmonic conjugate there, it follows that

( d(v - S)* = 0,
Jβ

whence

( S* = 0

It is worth observing that the choices T — v and H — u lead to the
conclusions

®(w; X - Bz) = f udu*, and

(3.3) Y
®(v; X - BΓ) = I wZv*.

Jβ

Thus both u and v have finite Dirichlet integrals over X — Bo. More-
over, according to (iii) v has the property that 2D(v, T; X — Bo) is finite
even for functions T such that ®(Γ;X— Bo) is not finite. A similar
remark holds for u.

Using the notation

(3.4) Φ(w; X - Bo) = [ wdw* + [ wdw*
Jβ Jθ^

for harmonic w, with the above observations, one may verify that

(3.5) ( udu* = 0 and ί vdv* = 0,
Jθx Jθx

facts which will be used below.
Let ί be a function harmonic on B~. To prove part II one must

establish that the quantities to be minimized in (v) and (vi) exhibit
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quadratic-form properties. For this purpose it is convenient to introduce
the notion of an (S — ̂ -concurrence function as a function W, C on
X — β for which

W + (S - t)χx_B-

is continuous on a neighborhood of β. (Of course, %z denotes the char-
acteristic function of Z.) If w belongs to the class ^ of all functions
C" on X — B~ and continuous on the closure, then w determines an
(S—^-concurrence function, denoted by Ws-t, by the rule that Ws-t = w
on X — B~ and Ws-t is, on B~, the harmonic function determined by
the boundary values w — (S — t). Thus, every Ws-t is harmonic on B~.

If y is a potential function on X whose singularity is S and w is
an arbitrary member of & then

-t; Y3-t - Ws-t; B ) = - \ ( y - w)d{y - (S - t))*,

t; Ys.t - Wa-t; X - B ) = \ ( y - w)dy* + \ (y - w)dy*, and

_t, y x _ , - Ws-t; X)=\(y- w)d(S - « ) * [
Jβ

(3.6)

If w is a member of the class 3ίf of all functions harmonic on X — B,
then

(3.7) ]
M - Wx-t\ B)=- \(y -(S- t))d(y - w)*,

β_t - Ws-t\ X-B)=\ yd(y - w)* + \ yd(y - w)*,
Jβ Jdx

and
Jβ J

.t - Ws-%\ X) = \ (S - t)(Z(y - w)* + ( »d(» - w)*.
Jβ J9X

These relations are consequences of the Green's formula and the facts
that every Ws-t takes, on β, the values w — (S — ί) and w according as
one approaches β from B or from X — B~ and the difference of two
(S — ̂ -concurrence functions is C" on all of X. Therefore

(3.8)

The Dirichlet-variation ©(Y^, Yδ_t — Ws-t; X) vanishes in each

of the following cases:

(a) when y = v and w — y = 0 on β and on dX,

(b) when 2/ = v and ί = r

(c) when y = u and cί(tί; — y)* = 0 on /9 and on dX, and

(d) when y — u and £ = s.

Cases (a) and (c) are immediate, whereas (b) and (d) are consequence
of (iii) and (iv), and the properties of r and of s.

The quadratic form character of the Dirichlet integral makes it easy
to verify that
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(3.9)
(2>(α, a — b; Z) = 0 if and only if

(35(6; Z) - ®(α; Z) = 3)(δ - α; Z).

Since 3)(6 — α; Z) is non-negative the vanishing of the Dirichlet-varia-
tions in (3.8) are equivalent, respectively, with the following:

(3.10)

/(a)' ®(F s_ t; X) g Φ(TΓS_,; X) for all w in <gf for which w - v = 0

on β and on 9X,

(b)' 3>( Vβ-,; X) ^ S(ΐF s_ r; X) for all w in ^

(c)' S)(Z7ff_t; X) S ^(Ws-t) X) for all w in , ^ for which

d(w — %)* = 0 on β and on ΘX, and

(d)' ®(t/s-s; X) S nWss , X) for all w in

In each of these cases, ®(6—α; Z) — 0 implies that & — α is constant, which
establishes the uniqueness claims. The extremal properties stated in (v)
and (vi) are derived from the inequalities (b)', and (d)' by expanding both
sides. In general, when w is in

(3.11) \

®(Ws-t; X) - ®(TF*_t; B) + (Ws-t9 X - B)
= - ( (w-(S-t))d(w-(S-t))* + \ wdw*

Jβ Jβ JX

= + ( wd(S-ί)+( (S-t)dw*-[ (S-t)d(S-t)
jβ Jβ jβ

wdw*
dX

+ \ wdw*.

In (a)', the first and third terms, above, are common to both sides; in
(b)' those terms both vanish since d(S — r)* = 0 on β. In (c)' the second
and third terms, above, are common to both sides, and in (d)' these
become zero because S — s = 0 on β.

The extremal properties of (a)' and (c)' are of no interest because
any two of the harmonic functions involved must differ by a constant.
Whereas v and u were shown to solve (b)' and (d)' by use of (iii) and
(iv), they were shown to solve (a)' and (c)' automatically. Hence any
other of the competing functions also solves (a)' or (c)', whence the
competing functions all differ from u (or v) by constants.

It remains only to verify the existence of r and s. By the Poisson
formula there is a function s, harmonic on Bo, given by the boundary
values S. Since S — s = 0 on the boundary, β, of Bo, it may be con-
tinued across the the boundary by reflection. Therefore, s is harmonic
on (JB0)~ because S is harmonic on (Bo — 2?j)~. When S is the real part
of a complex function S + ίT analytic on (Bo)~ then in a like manner
one may construct a function t, harmonic on (Bo)~, which agrees with
T on the boundary. Since Bo is a disk, t is the imaginary part of a
complex function r+it analytic on (Bo)~. Since T — t = 0 on the bound-
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ary of Bo and is conjugate to S — r, it follows that d(S — r)* = 0 on the
boundary of Bo also, as required to complete the proof.

The evaluation of ®(Ws-t; X) in (3.11) relies upon the assumption
that w is harmonic on I - ΰ s o that the Green's formula may be used
there. This restriction makes it possible to phrase (v) in a compact
form, though it does cause that statement to be incomplete. However, the
supply of functions; harmonic on X — B is sufficiently ample to make it
possible for the existence of v to be proved by a direct approach to the
extremal problem (v) rather than by exhaustion. (Indeed, except for
the restriction to harmonic functions, this is exactly how WeyFs
-existence proof was accomplished, for he minimized the Dirichlet integral
of all (S — r)-concurrence functions.) This fact makes one suspect that
it may be possible to prove the existence of u by a direct approach to
the extremal problem (vi). I will discuss this possibility in another
paper.

From (3.9) and the expansion in (3.6) it is clear that

wdw*(3.12) <$)(y, X - B) ^ ®(w; X - B) = \ wdw* + \
Jβ J3

for every w harmonic on I - B for which w = y on β and on dx. Sario
[14, p. 354] has discovered that, when y = v, the requirement "w = y

r
on dX" may be replaced by the requirement "\ dw* = 0" which is of

r Jβ
course equivalent with "\ dw* — 0", and (3.12) continues to hold. He

Jθx C

uses this fact to show that the existence of v implies I dS* = 0, whereas
jβ

in the present discussion property (iii) is used for this purpose as well
as to characterize v uniquely up to an additive constant. The function
v is Sario's "principal function Pϋ_lβ" By (iii), when y = v, the relation
4(w = y on dX" holds for every C" function w, so that Sario's condition
"I dw* — 0" is not necessary, for the extremal property (3.12) itself.

j β

The fact that (3.12) holds for all w which agree with v on β regardless
of their behavior "at infinity'' was known to Hubert in 1909 [4, vol.
3, p. 78].

The existence of v was announced first by Hubert [4, vol. 3, pp.
73-80] and fully proved first by Koebe [6]. Its extremal property (v)
was discovered and proved by Weyl [20]. The existence of u with
property (i) was proved first by Sario [13]. Properties (ii), (iv) and (v)
for u are new, as well as their unique determination of u.

The results given here may be generalized along the lines of Sario's
linear operators [14, 15] by consideration of more general domains for
the singularity function S and of extremal properties involving other
combinations of the quantities appearing in (v) and (vi). Alternatively,
once the existence of potential functions with an arbitrary local singul-
arity has been settled (as in the present theorem 2) one may build a
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sequence of potential functions each with local singularity in one of a
sequence of " localities" and then combine them with coefficients which
force convergence of the resulting series. Such a technique was first
proposed by Koebe [10] in his proof that every open surface is conform-
ally equivalent with a continuation manifold (needed to fill a gap in his
first proof of the so-called uniformization theorem); a more detailed
version was given by Stoilow [18, p. 59-60],
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MANIFOLDS WITH POSITIVE CURVATURE

THEODORE FRANKEL

0 Introduction and a conjecture* In 1936 J. L. Synge [10] proved
that an even dimensional orientable compact manifold Mn with positive
sectional curvature is simply connected. His proof was an application
of a formula for the second variation of arc length derived by him in
an earlier article.1 In the present paper we continue the study of posi-
tively curved manifolds again using the ideas of Synge and applying
them to an only slightly different situation, namely to the ' 'position'' of
certain submanifolds of M.

Theorem 1 states that two compact totally geodesic (see § 2 for
definitions) submanifolds Vr and Ws of Mn must necessarily intersect if
their dimension sum is at least that of M, i.e. if r + s ^ n. As remarked
above the proof is a straightforward continuation of Synge's method.
Unfortunately totally geodesic submanifolds are not a too common
occurrence.

If Mn is a Kahler manifold2 the situation is much more satisfactory.
There, instead of requiring V and W to be totally geodesic, we need
only ask that they be complex analytic submanifolds (Theorem 2).

Examples of compact Riemannian manifolds of positive sectional
•curvature are the spheres, the real, complex and quaternionic protective
spaces and the Cayley plane. Rauch [8] has shown that if the sectional
curvatures do not differ too much from that of the sphere and if the
space is simply connected, then it is itself topologically a sphere (see
also the recent improvements by W. Klingenberg, Uber kompakte Rie-
mannsche Mannigfaltigkeiten, Math. Ann., 137 (1959), pp. 351-61). Berger
[2] has shown that if Mn is an even dimensional, simply connected
manifold and if the sectional curvature K satisfies 1/4 <̂  K ^ 1, then
the manifold is one of the spaces listed above.

In the list the only Kahler manifolds are the complex projective n-
spaces Pn{C) with the usual Fubini metric. If (elt e2) is a pair of ortho-
normal tangent vectors to Pn(C), then the sectional curvature K(e19 ej
.satisfies 1/4 ^ K(elf e2) ̂  1 with K = 1 if and only if the plane e1 A e%

is a "complex direction." It may very well be that

CONJECTURE. The positively curved Kahler manifolds of complex
dimension n are analytically homeomorphic to Pn(C). The Gauss Bonnet

Received January 11, I960. Work supported in part by the National Science Foundation.
1 For completeness we include in § 1 a derivation of the second variation formula.
2 Since the Ricci curvature of a positively curved manifold is positive, the Kahler

manifold is a "Hodge manifold" and Kodaira's theorem [6] states that the manifold is
algebraic.
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theorem shows that this is true for n = 1. Using Theorem 2, A. And-
reotti has shown that the conjecture is true for n = 2 and his proof is
presented in Theorem 3. It relies heavily on the known classification
of algebraic surfaces.2

Difficulties in attempting to construct counter examples stem from
the fact that the product of two positively curved manifolds has only
nonnegative curvature (in the product metric). If eλ Λ e2 is a product
plane (e.g., if et is "horizontal" and β2 is "vertical"), then K(eu e2) — 0
and this is the only time 0 curvature can occur. Our results in general
do not apply to such spaces.

The last section is devoted to proving the existence of fixed points
for certain maps, thus showing further similarities with Pn(C).

I should like to thank A. Andreotti, E. Calabi and N. Hawley for
discussions of the results.

l Second variation of arc length* Our notation is as follows. Mn

is a complete n dimensional Riemannian manifold and Vr and Ws are
submanifolds of dimension r and s respectively, ^(t) is a geodesic
going from ίf(0) = P e V to ^(l) — Q e W striking Vand W orthogon-
ally; t represents arc length along <̂ \ Xt is a unit vector field that
is displaced parallel along <£* and is tangent to V and W at P and Q
respectively; Xt (if it exists) is thus orthogonal to ^ for all t. Finally
Tt is the unit tangent vector to <g=\

We construct a "variation" of the geodesic ^ as follows. We pass
a small "ribbon" of surface through c^ that is tangent to Xt at c^{t)
for all t such that 0 ^ t <̂  I. This ribbon cuts V and W in two curves.
We now pass curve segments on the ribbon tangent to Xt at ^{t), the
curves varying smoothly from V to W. The ribbon is chosen so "thin"
that no two segments intersect. On each segment we use the directed
arc length a from c^ as parameter and we may suppose that — ε ̂  a ^ +ε.
Each point on the ribbon carries two coordinates {t, a) and we have two-
systems of coordinate curves t = constant and a = constant (the original
geodesic is of course a = 0). We have two coordinate vector fields T —
d\dί and X = d\da defined on the ribbon with T = Tt at (ί, 0) and X = Xt

at this same point. The problem is to investigate the lengths of the
curves a — constant.

We recall some facts and notation of Riemannian geometry (our
notation follows [7]). We let g(Y, Z) denote the Riemannian scalar
product of two vectors Y and Z; if (xlf •••,&») are local coordinates for
M, then g( Yf Z) = Σ« ffu Y'Z3. If Y is a vector at a point and if / is
a function, then the covariant derivative of / with respect to Y, written
Vr(/), is the directional derivative of / in the direction Y. If Z is a
vector field, the covariant derivative of Z with respect to Y is again a
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vector, written VYZ. If Y is also a vector field, the Lie or commutator
bracket of Y and Z is given by [Y, Z] = YZ - ZY =VYZ - VZY. In
particular, if Y and Z are coordinate vectors VrZ — VZY = [Y, Z] — 0.
Hence in the case of our particular vectors we have

(1) VXT = VTX.

Next we have the Ricci operator identity

VΓVZ - VzVr - R(Y, Z) + V[r,z]

where R(Y, Z) is, for each pair (Y, Z), a linear transformation on tangent
vectors. R(Y, Z) is constructed from the Riemann curvature tensor and
in terms of coordinates the transformation of vectors U—>R(Y,Z)U is
given by

V 77* - > Vι V — 7?* VkZιTτA
« to* « V̂ ΛΪ / dxι

R(Y, Z) is skew symmetric; R{Y, Z) = —R(Z, Y). In our case the Ricci
identity becomes

(2) VXVΓ - VTVX - Λ(X, Γ) .

The Riemannian sectional curvature corresponding to the 2-plane
T Λ X is given by

(3) K(T, X) - flf(i2(JΓ, Γ)Γ, X) - -g(R(X, T)X, T) .

Finally we recall that the scalar product is "covariant constant/' i.e.

η^g(Y, Z) = Vxg(Y, Z) = g(VxY, Z) + g(Y, VKZ) .

The length of the curve a — constant is given by

L(a) = [lg(T, Ty'*dt .
Jo

LEMMA ([9]). The first and second variations of arc length are

= 0da

d?L
v da*

Proof.

= g(VxX, T)Q - g(VxX, T)P - \lK(T, X)dt .
Jo

L'(a) = [4-9(T, Ty<*dt = \'vxg(T, Tf'Ht ,
Jo0α Jo
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thus

But g(T, T) = 1 along a = 0 (Γ is unit tangent to <if (t)) and so from
(1) we get

L'(0) - \lg(VzT, T)dt = [g(VτX, T)dt = 0
Jo Jo

since VTX = 0 for a parallel displaced X
For the second variation we continue from (4)

L»(a) = J
X\ g(T, T)112

which expands to

L"(0) = \lVzg(VrX, T)dt - (V(VΓX, Tfdt .
Jo J

But X is displaced parallel along ^ VrX = 0 and so the second integral
vanishes. Thus

L"(0) - [g(VxVτX, T)dt + \lg(VτX, VxT)dt
Jo Jo

but again the second integral vanishes. Using (2) the first term becomes

L"(0) - [g(VτVxX, T)dt + \lg(R(X, T)X, T)dt .
Jo Jo

The first integral transforms by means of

g{VτVxX, T) = Vτg(VxX, T) - g(VxX, VTT) = |rflr(VxX, T)
Ob

and using (3) we get the desired second variation.
The end terms in the second variation are interpreted as follows.

BT(X)P ΞΞ g(VxXy T) is the second fundamental form for V at P corre-
sponding to the normal vector T, evaluated at the tangent vector X.

2 Real manifolds with positive curvature. A submanifold V of a
Riemannian Mn is totally geodesic if any geodesic of M that is tangent
to F a t a point lies wholly in V. This implies that every geodesic of
V (in the naturally induced metric from M) is at the same time a
geodesic of M.
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THEOREM 1. Let Mn be a complete* connected manifold with positive
Eiemannian sectional curvature and let Vr and Ws be compact totally
geodesic submanifolds. Ifr + s^n then Vr and Ws have a non-empty
intersection.

Proof. At first we assume that Vr and Ws are any compact sub-
manifolds. We suppose they do not intersect. Then there is a shortest
geodesic ^{t), say of length I > 0, from V to W and let P and Q be
the points ^(0) and ̂ (l) respectively. Since ^ is the shortest geodesic
from V to W it strikes V and W orthogonally. We will arrive at a
contradiction by exhibiting a variation X for which L'χ(ϋ) < 0, thus
showing that W cannot be minimizing.

Let % be the tangent space to Vr at P. By parallel translation
along ^ we get a subspace % of ^ # , the tangent space to Mn at Q.
Since 5*jf is orthogonal to c^ at P, 5f is also orthogonal to <g* at Q.
Let <W be the tangent space to Ws at Q. Then 3*jf and ^ ~ are two
subspaces of the linear space ^//\ moreover, both % and "W are orthog-
onal to & at Q. Thus the dimension of their intersection is

(5) dim ( %

and thus 5*f and ^ ~ have at least a one dimensional subspace in common.
But this simply means that there is a unit vector Xo tangent to V at
P whose parallel translate is tangent to PFat Q. Let Xt be the parallel

S I

K(T, X)dt of the second varia-
0

tion formula is strictly negative by the curvature assumption.
So far V and W were arbitrary. To evaluate the end terms in the

.second variation we use the fact that V and W are totally geodesic.
The variation vector Xt is given. For the construction of the ' 'ribbon''
we can choose geodesies of M through each Xt; since XQ is tangent to
V at P and since V is totally geodesic, the geodesic through Xo will lie

•entirely in V. Likewise the geodesic through Xz will lie entirely in W.
Thus the curves a — constant will have their endpoints on V and W as
required for the variation. But since Xo and Xz are tangent vectors to
geodesies of M we have VXX = 0 at P and Q. Hence the end terms
of the second variation formula vanish and we have

Li'(0) = - \lK(T, X)dt < 0 Q.E.D.
Jo

as desired.
We note that g(yxX, T)P = g(yxX, T)Q = 0 is merely the statement

that all second fundamental forms for a totally geodesic submanifold
vanish identically.

3 If the curvature is bounded away from 0, K ^ ε > 0, the classical result of Bonnet-
Myers states that Mn is necessarily compact.
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There is at least one situation when totally geodesic submanifolds
arise "naturally." If f:Mn—> Mn is an isometric map of a Riemannian
manifold into itself, then the set of fixed points F = {P e M\f(P) = P}
has as components totally geodesic submanifolds (see [4]). Hence

COROLLARY. If f: Mn —* Mn is an isometry of a compact connected
Riemannian manifold with positive curvature, then no two fixed set
components can have dimension sum Ξ> n.

3 Kahler manifolds with positive curvature. A Kahler manifold M
is a special type of Riemannian manifold whose underlying space is a
complex manifold. There is a linear transformation J on each tangent
space that sends any vector Y into a vector JY orthogonal to Y (J
represents multiplication by ( —1)1/2). J has the properties J 2 = —/and
g(JY, JZ) = g(Y, Z) for all vectors Y and Z (this last property states
that g is a "Hermitian" metric). From J we construct the Kahler
exterior 2-form ω, defined by

ω(Y, Z) = g(JY, Z) .

ω is exterior because ω(Y, Z) = —ω(Z, Y). All that%has been said so
far holds for any Hermitian manifold. The further condition defining a
Kahler manifold can be stated as requiring that o) be covariant constant,
Vπω = 0 for all vectors U; i.e., for any vector fields Y and Z we have

VMY, Z) = ω{VπY, Z) + ω(Y, VπZ) .

Since g is also covariant constant we conclude that J is also, i.e., we
have the operator equation

(6) VπoJ = JoVπ

for any vector U.
A linear subspace ψ" of the tangent space to a complex manifold

at a point is said to be complex if it is invariant under J, J: 3^ —> ψ\
A submanifold is complex analytic if its tangent space at each point is
complex.

When dealing with complex manifolds dimension subscripts will
denote complex dimension.

The following result is easily true for Pn(C) since it holds for the
linear subspaces.

THEOREM 2. Let Mn be a complete, connected Kahler manifold with
positive sectional curvature and let Vr and Ws be compact complex
analytic submanifolds. If r + s ^ n, then Vr and Ws we have a non-
empty intersection.
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Proof. The proof is again by contradiction, starting exactly as in
Theorem 1. We again arrive at a variation vector Xt, parallel displaced
along W and tangent to V and W at P and Q respectively. Now, how-
ever, we have additional information. Since V and W are complex
analytic the vector field J{Xt) is tangent to V and W at P and Q re-
spectively. Further, from (6) we have VτJ(Xt) — JVτXt = 0 since Xt is
parallel displaced. Thus J(Xt) is also parallel displaced and gives us the
same type of variation vector as Xt. We claim

(the second variation corresponding to at least one of

(the fields Xt or JXt is strictly negative

again giving a contradiction.
To prove our claim we suppose

(7) L'i(0) = g(VxX, T)Q - g(VxX, T)P - \κ(T, X)dt ^ 0 .
Jo

By the hypothesis of positive curvature we conclude that

g(VxX, T)Q - g(VxX, T)P > 0 .

We will be finished if we can show g(VJXJX, T)Q - g(VJXJX, T)P < 0.
But this is actually the case as follows from the fact that every second
fundamental form of a complex analytic submanifold of a Kahler mani-
fold is skew-hermitian,4 i.e.

( 8 ) , T)P = -g(VxX, T)P for V

\g(VJXJX, T)Q - -g{VxX, T)Q for W .

The proof of this is simple and we include it here for completeness.
Let & be a complex analytic curve (real dimension 2) on V tangent

to Xo and JX0 at P. Then XQ can be extended to a tangent vector field
X on & and of course JX is an extension of JXQ. Since X and JX
are tangent vector fields to & the commutator bracket [ JX, X] is again
a vector field tangent to ^ , and thus orthogonal to T at P. Using
{JX, X] = VJXX - VXJX and (6) and J 2 = -I we get at P

g(VJXJX, T) = g(JVJXX, T) - g(J[JX, X] + JVXJX, T)

- g(J[JX, XI T) - g(VxX, T) .

Since [JX, X] is tangent to ^p, so is J[JX, X] and so the first term
vanishes and the result follows. Q.E.D.

4 This is a reflection of the fact that Kahler submanifolds of a Kahler manifold are
minimal submanifolds in the sense of the calculus of variations. Thus their mean curvatures
vanish for all normal directions.
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4 K'ahler surfaces with positive curvature. We now consider the
case of Kahler surfaces M2 (real dimension 4). We noticed previously2

that by Kodaira's theorem such a surface is necessarily algebraic.
We recall that an exceptional curve (of the first kind) arises in the

following fashion. There is a surface N2 and a point P e N2 such that
M2 is a quadratic transform [3] of N2 and the exceptional curve is the
quadratic transform of p. Thus exceptional curves result from blowing
up a point p of a surface by means of the Hopf σ-process; i.e., the
point p is replaced by the complex protective line PX{C) of complex
directions at p. Since there clearly are curves that do not intersect the
exceptional curve (hyperplane section of iV2 for example) we conclude
from Theorem 2 that a positively curved compact Kahler surface has no
exceptional curves (of the first kind).

THEOREM 3. A compact Kahler surface M2 with positive sectional
curvature is complex analytically homeomorphic to P2(C).

Proof (Andreotti). As mentioned before2 the Ricci curvature of a
positively curved Kahler Mn is positive. The negative of the exterior
Ricci form represents the characteristic class of the canonical bundle K
over M. By Kodaira's ' 'vanishing theorem'' [5] we conclude Hp(Mn; Ω^K1)) =
0, p φ n, where Kι is the line bundle K ® ® K, i factors and where
Ω0(Kι) is the sheaf of germs of holomorphic sections of K\ Thus the
plurigenera P% = dim H°(Mn; Ω

Q{K1)) all vanish and since M2 is simply
connected the arithmetic genus pa = Pλ — h1>0 = 0 also. We now apply
results in the classification theory of surfaces, i.e., n — 2. By a theorem
of Castelnuovo-Enriques (for references see, for example, Zariski's book,
Introduction to the problem of minimal models in the theory of algebraic
surfaces, Math. Soc. of Japan, 1958, p. 84) we conclude that M2 is
rational. As we have just seen M2 can have no exceptional curves (of
the first kind). By a result of Andreotti [1] M2 is either birationally
equivalent, without exceptions, to P2(C) or else it is a ruled surface.
Since the rulings would be compact curves that do not intersect, Theorem
2 eliminates this last possibility. Q.E.D.

5 Correspondences* A (holomorphic) correspondence of a complex
manifold Nn with itself is a complex analytic n dimensional submanifold
of Nn x Nn.

A holomorphic map /: Nn —» Nn gives rise to a correspondence, the
graph G(f) of /; G(f) = {(pyfp) \p e Nn}. G(f) is of course a special
type of correspondence since / is single valued. Let Δ — {(pf p)\p e Nn}
be the diagonal of Nn x Nn. It is clear that a map / will have a fixed
point whenever G(f) intersects the diagonal Δ. A correspondence will
be said to have a fixed point if it intersects the diagonal.
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THEOREM 4. Every (holomorphic) correspondence of a connected
compact Kdhler manifold Nn with positive curvature has a fixed point.

Proof. Again this is a simple known property of Pn(C).
The correspondence is a complex analytic submanifold Vn of Nn x Nn~

The same is true for the diagonal Δ. We need only show that Vn and
Δ intersect, and this almost follows from Theorem 2. However, as
pointed out in the introduction, Nn x Nn has only nonnegative curvature;
product planes give 0 sectional curvature. This, however, is easily
mended as follows.

In our previous notation Vn = V, Δ = W and Nn x Nn — M. In the
proof of Theorem 2 positive curvature occurs only in the statement

\κ(T, X)dt > 0. Now we can only say.
Jo

L»(0) = (VXX, T)Q - (VXX, T)P - \lK(T, X)dt
Jo

\κ(T, X)dt ^ 0

Again we suppose Lχ(0) ^ 0.

Case 1. (VXX, T)q - (VXX, T)P > 0. Then from (8) we L'JX(O) < 0
and we are finished.

Case 2. (VXX, T)Q = (VXX, T)P and ΓiΓ(T, X)dt = 0. We will then

be finished if we can show [lK(T,JX)dt°> 0. Now [κ(T, X)dt = 0'
Jo Jo

means T A X is a product plane along <g=% in particular at Q e W = Δ.
Choose a real basis for the tangent space to Nn x Nn at Q consisting of
the 2% "horizontal" orthonormal vectors elf Jeu '• ,en,Jen and the 2n
"verticaΓ' orthonormal vectors fifJf19 9fnfJfn' Since T Λ X is a.
product plane the basis can be so chosen that

X - (cos θ)ex + (sin 6>)Λ

Γ = -(sin θ)e1 + (cos θ)fλ .

Thus

J X = (cos θ)Jeλ + (sin ί) Jfλ .

This means that the only possibilities for T A JX to be a product plane
are either cos θ = 0 or sin θ = 0, i.e., either Γ = ± e x or Γ = ± / l β But
βx and Λ being respectively horizontal and vertical cannot be orthogonal
to the diagonal W — Δ while the geodesic tangent T must be. We thus
conclude that if T A X is a product plane then T A JX cannot be. Hence

, JX)dt > 0. Q.E.D.
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The isometries (rotations) of the 3-sphere without fixed points show
that there is no real analogue of Theorem 4.
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A STRONG MAXIMUM PRINCIPLE FOR WEAKLY

SUBPARABOLIC FUNCTIONS

AVNER FRIEDMAN

Introduction. It has been proved by E. Hopf [3], over thirty years
ago, that solutions of second order elliptic equations satisfy the maximum
principle. A similar principle, well known for solutions of the heat
equation, has been, relatively recently, extended to second order parabolic
equations by Nirenberg [5]. In various problems, such as in solving
the Dirichlet problem by the methods of Poincare and Perron, subsolu-
tions have been introduced and the maximum principle has been extended
to such functions. In the elliptic case (see [6]) the subsolutions used
are continuous, whereas in the parabolic case, they may have certain
discontinuities (see [2]). In the elliptic case, they are called L-sub-
harmonic or subelliptΐc functions. Likewise, in the parabolic case, we
call them L-subcaloric or subparabolic functions; L is the elliptic or the
parabolic operator.

Recently, Walter Littman [4] has generalized the concept of L-sub-
harmonic functions to include measurable integrable functions. This gene-
ralization is obtained by expressing the condition LuΞ>0 in an integrated

r

form, namely, \uL*vdx ^ 0 for any twice differentiate v ^ 0 with com-
pact support, L* being the adjoint of L. He then established the maximum
principle in the following sense: If an L-subharmonic function assumes
its essential supremum at a point of continuity, then it is equal to a constant
almost everywhere.

The purpose of this paper is to prove a similar result for measurable
Z/-subcaloric functions. The general outline of the proof is similar to
that of Littman's method. However, the crucial step in the proof is
the construction of two kernal functions with certain required properties.
Our construction is entirely different from that of Littman.

In § 1 we state some definitions and the results of the paper. In
§ 2 we prove Lemma 2. In § 3 we recall some properties of fundamental
solutions. These are used in § 4 to prove Lemma 1. Lemmas 1, 2
immediately yield the maximum principle.

l Statement of the results* Consider the differential operators

Lu EEE Σ atJ(x9 t)-p±- + ±at(x, t A + a(x, t)u - *%L
«J=i dxβXj *=i dxt dt
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176 AVNER FRIEDMAN

L*U = Σ btJ(x, t)-J^~ + Σ Ux, t)%L + b(x, t)u + &L
« Λ i OXOX ί l d # <£XiOXj

where L* is the adjoint of L (thus, bυ = aυ, etc.). Throughout this paper
it will always be assumed that:

are Holder continuous (exponent α) in (#, ί) which varies in a bounded
domain D, and that

in D(Λ > 0)

for any real vector ξ.

DEFINITION. A bounded measurable function u(x, t) in D is called
weakly L-subcaloric (or simply, weakly subparabolic when there is no
confusion about the L) if for any compact subdomain E of D with
piecewise smooth boundary (so that Green's formula holds)

(1) [[ u(x, t)L*v(x, t)dxdt ^ 0

for any function v(x, t) satisfying the following properties:
( i ) v ^ 0 in E,
(ii) v, dv/dvif 8*vldxtdxjf dv/dt are continuous in E and vanish on the

boundary dE of E.
We note that, for the establishment of the maximum principle below,

it is enough that (1) holds only for some special types of domains, namelyf

for cylindrical domains and for certain sections of paraboloids.

DEFINITIONS. For any point P(x°, t°) in D, we denote by C(P) the
set of all points {x1, t1) in D such that there exists a differentiate curve
connecting (x°, t°) to (x1, t1) and along which the ^-coordinate is non-increas-
ing. A function u(x, t) is said to be continuous from below at a point
P — (χ°f t°) if u, as a function in C(P), is continuous at P in the usual
sense. By a neighborhood-from-below of a point P we mean the inter-
section of a neighborhood of P with C(P).

Our purpose is to prove the following theorem.

THEOREM. Let u be a weakly L-subcaloric in D. If u assumes its
essential supremum M (in D) at a point P = (x°, t°) at which u is con-
tinuous from below, and if M Ξ> 0, then u = M almost everywhere in
C(P).

As in [4], the proof follows immediately once we have established
the following lemmas.
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LEMMA 1. Under the assumptions of the theorem, there exists a
neighborhood-from-below N of P such that u = M almost everywhere in
N.

LEMMA 2. Let u be a weakly L-subcaloric function in D. If
u — M almost everywhere in a neighborhood-from-below of some point P
of D, and M ^ 0, then u — M almost everywhere in C(P).

2. Proof of Lemma 2 We shall prove that, given a compact
subset E of D, we can construct, for each point Q — (y, τ) in E a
domain

Ω = Q52:- 8 < t - τ <0,ε\x-y\2 <\t-τ\(ε>0, δ > 0 )

and a function w(x, t) = wy>τ(x, t) having the following properties:
(a) w > 0 in Ω.
(b) w, dw/dXi, d2wldxίdxj, dwjdt are continuous in Ω — {{y, τ)} and

vanish on the boundary ΘΩ — {(y, τ)}.
(c) L*w > 0 in Ω.

Furthermore, ε may be any number between 0 and 1 and δ may be
taken to be dependent only on L, ε and £7, but not on the particular
point Q = (y,τ). Finally, as ε —> 0, the radius of the base (or δ/ε) can
be taken to be bounded away from zero.

Once w has been constructed, a simple argument of [4] can easily
be extended to complete the proof of the lemma. For the sake of com-
pleteness we reproduce it here.

Let S be the set of points (x, t) in C(P) having the property that
u — M almost everywhere in an open-from-below set containing (x, t).
By assumption S is nonempty. Clearly S is open from below. If we
show that S is also closed, then S coincides with C(P). To prove it, we
take any sequence Qm —> R, Qm in S, R in Z), and use the above con-
struction with E = {R, Qly Q2, •}. If we show that u = M almost
everywhere in each domain Ω% corresponding to Qίf then it would follow
that R also belongs to S. (Note that in the construction of the Ω below,
the radius of the base of Ω can be made bounded away from zero as ε—>0.)

For simplicity we denote Ωt by Ω and the corresponding wt by w.
We now modify the definition of w(x, t) in the intersection of Ω with a
neighborhood-from-below N of Qt where u = M almost everywhere. The
modified function is denoted by W, and is taken to satisfy the conditions
imposed on the function v in the definition of subcaloricity (in § 1) with
E replaced by Ω. Denote A = NΓ\Ω,B=Ω — A. Using the definition
of weakly L-subcaloric functions, we get

( 2 )
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Now,

[[ L*Wdxdt = \[ WLldxdt ^ 0

hence

( 3 ) [\ L*Wdxdt^ -[[ L*Wdxdt .

On the other hand, by (2),

ίί uL*Wdxdt ^ (( uL* Wdxdt = -Af ίί L*Wdxdt .

Using (3) we obtain

Since L*W = L*w > 0 in B, u — M must vanish in B almost everywhere.
To complete the proof of Lemma 2 we have to construct a function

w which the required properties (a) — (c). For simplicity we shall do
it in the special case is τ = 0, y — 0; the general case is immediately
obtained by translation.

DEFINITION OF W:

(4 ) w = (δ + tf(~t - εr
2)3r-fc

where r = \x\,r2 = r2 - kll2t,

where & is a positive integer to be determined later. Clearly, w satis-
fies (a), (b). It remains to prove that L*w > 0 in Ω. We have

t)\-t - εr2)2r~fc - fcχt(δ + t)\-t -dw _
dXi

+ t W - ί - ^ 2 ) ^ ~ * - 6ε8w(8 + ί ) 2 ( - td2w

+ 12kεxtXj(S + t)2{- t - εr2)2r-k-2 -k8i3(8 + t)\- t - εr2)3r- f c'2

+ fc(fc + 2)αt«χδ + ί ) 2 ( - t - εr2)3r-fc~4 ,

?HL = 2(δ + t)(-t - erfψ-* - 3(8 + t)2(-t - εr2)2r"fc

or

+ J_fc8'2(δ + t ) 2 ( - ί - εr2)3^"*-2 .
Δ

We now form L*w, and restrict 8 to be sufficiently small and
restrict | x \ to be sufficiently small (depending only on L*), say \x\<^ρ.
Then, the contribution to L*w made by the terms of Ibflw/dXi + bw is
small compared with the corresponding last two terms in dwjdt. Also,
the negative contribution in Σbiβ

2w\dxidx5 corresponding to the fourth
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term in d2wldxβxό (calculated above) can be neglected as compared to
the third term in dwjdt (provided k is sufficiently large, depending on
btJ). Discarding (as we may) the positive contribution corresponding to
the first and the last terms in d2w\dxidx5, we conclude that in order to
prove that L*w > 0, it is sufficient to prove that

( 5 ) keC + W\-t - εr2)4 ^ λ > 0
^ 2 rγΛ

where λ is a constant depending only on L and p (| x | ^ p in Ω).
To prove (5) we take k > 1/ε2, which imples that, in Ω (where

ε r 2 < \ t \ ) ,

k 1 1 2 \ t I SL r2 = r 2 + k 1 1 2 1 ί I ^ 2fc 1 / 2 \t\ .

Hence (5) is a consequence of

kll2εr2 + k(-t- εr2) ^ 2λ 111

which is clearly true if k1'2 ^ 2λ, k ^ 1.

3. Properties of fundamental solutions. Assume that the closure
of a cylinder C :\x\2 < β, — 8 <t < 0 with base B is contained in D.
By our assumptions on L, there exists (by Pogorzelski [7]) in C a funda-
mental solution Γ(x, t; ξ, τ)(t < τ) of L* with pole (ξ, τ); L*Γ = 0 as a
function of (cc, t), and Γ can be constructed as follows:

Let (Bij) be the matrix inverse to (6O ) and define

Z(x, t ; ξ , τ ) = ( τ - t)^'2 e x p { -

Γ(x, t; ξ, τ) - Z(x, t; ξ, τ) + [\ Z(x, x; η, s)Φ(η, s; ξ, τ)dηds
JtjB

where Φ is the solution of the integral equation

L*{x,t)Z(x, t; ξ, τ) - p(χ, t)Φ(x, t; ξ, τ)

+ ^[L*Λtt)Z{x, t; η, s)]Φ(τ], s; ξ, τ)dηds = 0 .

Here,

p(x91) - (4τr)^2/(det (Bi5{x, tψ2 .

Note that

0 < const. ^ σ(χ't; ξj τ>} ^ const. < co .
\x-ξ\2
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In the following we shall be interested in the special case (ξ9τ) — 0.
We define

g(x91) = Γ(x, t; 0, 0)

σ(x91) = σ(x91; 0, 0)

Z(x, t) = Z(x91; 0, 0) .

By simple calculation we get

where o(l) —> 0 as t —* 0. Hence, in particular, g{x, t) > 0 if the height δ
of C is sufficiently small, as we shall assume. We also mention, although
this is not used later on, that for any bounded measurable function
φ{x91) in C, which is continuous at (0, 0) we have (see [8])

(7 ) limί g(x9 t)φ(x9 t)dx = ρ(0, 0)^(0, 0) .
f-*0 JB

We conclude this section with estimating the following expression
(which will appear in the next section)

Since

- ^-Z{xf t) = - 1 - ( Σ BJk(09 0)x*)Z(x91) ,

and since

, btJ(x9 t)BJk{0, 0)xίxkΣ Σ
ί.fc 1=1

I2 Σ [&«(*, *) -
i.l.lc

where o(l) —> 0 as | x \ —• 0, we conclude that

( 9 ) Ii^-Σi dXj 3111

provided | a? | is sufficiently small.
To evaluate I — Ilf we use the definitions of g and Γ, and proceed

to estimate the a^-derivatives of the integral which appears in the
definition of Γ. Noting that

S const, (s - t)-ll2Z(x, t; η9 s)

and using the estimate of [7] for Φ and Dressel [1; Lemma 2\ we find,
that
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11 - ii I ^ λo I α \>Z(x, t) (λ0 > 0, 0 < γ ^ 1) ,

where λ0, 7 depend only on L. In what follows we shall only need the
weaker inequality

•(10) I ^ - λ 0 1 x \yZ(x, t) .

4 Proof of Lemma 1Φ We may assume, without loss of generality,
that the essential supremum M is assumed at the origin. Following the
procedure of Littman [4], we claim that it is enough to construct a function
G(xf t) in a cylinder C: \ x |2 < βf — S < ί < 0, with base B, which satisfies
the following conditions:

(a) G, dGjdxi9 d2GldXidxjf dG/dt are continuous in C — {(0, 0)} and
vanish on the boundary dC — {(0, 0)}.

(b) L^G > 0 in C.
(c) If f(x91) is L-subcaloric in a domain which contains C, and if

/ is continuous from below at the origin and /(0, 0) = 0, then

•L*Gdxdt .

Once G is constructed, the proof of Lemma 1 follows very easily.
Indeed, u — M is L-subcaloric, and using (c) we get

ίί (u - M)L*Gdxdt ̂  0 .

Since, by (b), L*G > 0, we conclude that u — M almost everywhere in C.

DEFINITION OF G(X7 t):

(12) G(x91) = (t + SY(β — r2Yg(x, t)

where g{x, t) is defined in § 3. Clearly (a) is satisfied. We proceed to
establish (b), (c).

Proof of (b).

|<L = -6x.it + 8)\β - rjg + (t + Sf(β - rj^- ,
oxi oxi

— τ2fg + 2&XiXj(t + δ)2(/3 — τ2)g

(t _i_ KΫ(R — r2Y &
\υ f v) \p i ) ,
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fZL = 2(ί + δ)(/3 - rjg + (t + 8)2(/3 - r*f%- .
at at

Recalling that L*g = 0 we obtain

L*G = - 6 ( ί + Sf(β - rΎgZxh - 6(S6M)(t + S)2(/3 - r

+ 24(2δ i^ ίx,)(ί + δ)2(/3 - r2)sr - 12(ί + S)2(/3 -

+ 2(t

Now the first term in L*G is small compared with the second one, if
I a? I (or β) is small. Using (8), (10), (6) to estimate the fourth term, we
conclude that, if it is negative, then its absolute value is smaller than
that of the second term. Hence, if we prove that

(13) (t + δ)r2 + (β - rj > μ(t + S)(β - r2)

for sufficiently large μ depending only on L (provided β is smaller than
an appropriate constant), then L*G > 0.

To prove (13) we note that if μ(β - r2) < r2 then (13) clearly holds.
Hence it remains to consider the case where

μ(β - r2) ^ r2 .

However, in this case

for sufficiently small δ (i.e., if (μ + lfμδ < β), from which (13) follows.

Proof of (c). We modify G as follows: Let

(a?, ί) if - δ < t < -ε

(x, t) + (t + ε) if - ε ^ t ^ 0 .

Clearly σe(x, t) has second continuous ^-derivatives and a first con-
tinuous ^-derivative in C. We next define

gz(x, t) = Z2(x, t) + Γί Z(x, t; η, s)Φ(η, s; 0,
JtjB

G,(x, t) = (ί + δ)2(/3 - r2)3^ε(x, t) .

Gz is differentiable also at the origin where it vanishes. We now proceed
to prove (c).

By the definition of L-subcaloricity (see (1)) we have,
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(14) =

If we prove that

(15) lim (( fx, t)L*G{x, t)dxdt = 0 ,
ε̂ o Jjcs

(16) lim \[ f(x, ί)L*Gε(x, t)dxdt = 0 ,
ε->0 J J C2

where Cs = C f] {-e < t < 0}, then (c) follows from (14).
In what follows we denote any positive constant (independent of ε)

by the same symbol A. To prove (15) we write

(ί fL*Gdxdt = (° ( fL*Gdxdt + Γ ( fL*Gdxdt ,
JjCg* J-εJ|a;|<>7 J-εJ?7<lzl<j3

(17)

where rj is any positive number smaller than β. Since / is continuous
from below at (0, 0) and /(0, 0) = 0, the first integral on the right side of
(17) tends to zero as 57 —> 0, independently of ε.

Here we have made use of (see [7])

(18) I L*G(#, t) I exp for some 0 < v < 1 .

The second integral on the right side of (17), for any fixed η, also tends
to zero as follows by using (18).

Proof of (16). Proceeding similarly to the proof of (15), we find
that all that remains to be proved is that

(19) [ [ I L*Gε I dxdt ^ A < 00

for all ε > 0 (A is independent of ε). Now,

-L*</s = L*(g - gt) - L\Z - Z9) = L*[Z(X, ί)(l - exp

Since

I L * Z I <
tl(»+l+V)/2 exp {—}

for some 0 ̂  v < 1, we find, denoting

(20) | L * G ε | 5 S — A — - e x p

ί + ε (t + εγ
2ί

shortly by [•••],
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The integral of Kx is easily seen to be bounded. Hence it remains
to evaluate

J= ίί K2dxdt .

We split J in the following way:

J = Γ / ( K2dxdt + ( ( K2dxdt = J, + J2 .
J-ε JB J-2I2JB

A s for J19 [•••] ̂  1 a n d h e n c e Jλ ^ A . A s for J2J [•••] ̂  Aε2/t2 a n d
h e n c e

The inner integral is bounded. Substituting z — e2/\ 11 we get

/2 ^ A[~e-A*dz .
J28

We have thus proved that J = Jx + J2 ^ A, which completes the proof
of (19). Hence, the proof of (16) is completed.

REMARK. The maximum principle for subelliptic functions [4] follows
from the maximum principle for subparabolic functions proved in this
paper. Indeed, as is easily seen, a weak subelliptic function is necessarily
a weak subparabolic function.
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ASYMPTOTICS II: LAPLACE'S METHOD

FOR MULTIPLE INTEGRALS

W. FULKS AND J . 0 . SATHER

Laplace's method is a well known and important tool for studying
the rate of growth of an integral of the form

W = je~hfgdx

as h—> oo, where / has a single minimum in [α, 6], It's extension to
multiple integrals has been studied by L. C. Hsu in a series of papers
starting in 1948, and by P. G. Rooney (see bibliography). These authors
•establish what amount to a first term of an asymptotic expansion. All
but one (see [7]) of these results are under fairly heavy smoothness
conditions.

In this paper we examine multiple integrals of the form

= ί e~hfgdx

where / and g are measurable functions defined on a set R in Ep. With-
out making any smoothness assumptions on/and g, and using only the
existence of I(h) and, of course, asymptotic expansions of / and g near
the minimum point of / we obtain an asymptotic expansion of I. The
special features of our procedure are the lack of smoothness assump-
tions and the fact that we get a complete expansion.

Without loss of generality we may assume that the essential infimum
of / occurs at the origin, and that this minimal value is zero. We
introduce polar coordinates: x = (p, Ω) where

p = i x i = Vx\ + x\ + + xl ,

and where Ω — x/\ x | is a point on the surface, Sp-19 of the unit sphere.
Our hypothesis are the following:
(1) The origin is an interior point of R.
(2) For each ρQ > 0 there is an A > 0 such that f(p, Ω) ̂  A if

p ^ ft- (This says that / can be close to zero only at the origin.)
(3) There is an n ^ 0 and n + 1 continuous functions fjc(Ω), k =

0,1, 2, , n, defined on Sp-λ with f0 > 0 for which

f(p, Ω) = P*t UΩ)p* + o(pn+η as p - 0
ft0

Received April 29, 1960. The work on this paper was performed under sponsorship of
the Office of Naval Research, Contract Nonr 710 (16), at the University of Minnesota.
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where v > 0. (This is meant in the following sense: for each ε > 0 there
is a ρ0 > 0 for which

fc=0

whenever ô g />0. Besides giving the asymptotic behavior of / near the
origin (3) implies that the infimum of / in R is indeed zero.)

(4) There are n + 1 functions gk{Ω), k = 0,1, n, for which

o(pn+λ~k) as ^ — 0

where λ > 0. (Thus g is permitted a mild singularity at the origin.
The expansion is meant in the same sense as the one in (3).)

Under these conditions we will prove that if there is a h0 for which
I(h) exists then it exists for all h Ξ> h0 and

where the cfc's are constants depending only on the //s and g/s for
j ^ k. Their evaluation will be described in the proof of this result.
In particular

C = Γ ( ( λ + 1 ) / μ

X

where dΩ is the element of (p — l)-dimensional measure on Sp-λ.
In the course of the proof we will use the following lemmas, which

are given now so as to not interrupt the main thread of the argument.

LEMMA 1. Let f be a measurable function on a set R in Ep, and
let g e Lλ{R). Then the function G(z) defined by

G(z) = ( gdx

has bounded variation on {-co < z < oo}.

Proof. Let g = gx — g2, where

0, g(x) ^ 0

o l ί W <o ! f * )

and define Gx and G2 by

Gt(z) = \ gr^aj, G2(z) = I
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C l e a r l y Gx a n d G2 a r e i n c r e a s i n g a n d b o u n d e d o n { — O D < 2 < C O } , a n d
Γ* Π Π
\JΓ

 = &Ί — Lr2.

LEMMA 2. Let F(t) be a continuous function defined on a possibly
infinite interval {a < t < b}, and let f be a measurable function on a
set R in Ep taking values in the interval {a < t <b}. If g e L^R), and
F(f)g e Lλ{R) and G is defined as in Lemma 1, then

\ F(f)gdx = \bF(t)dG(t) .
JB Ja

Proof. Suppose first that a and b are finite, and that g ^ 0. Form
a partition: a = t0 < tx < < tn — 6, and set

Ej = {x\ ί j_ x <f^tj}9

and let M5 = sup {^_^^ t j } F(t) and m3 = inf{ίj_^^£j} F(t).

Then

( F(f)gdx = Σ t F{f)gdx S Σ M,\ gdx
JR j=l jEj J=l JEJ

Similarly

F(f)gdx ^ ±
B J=l

If we let n —> oo so that max^^w (ί̂  — ί j^) —> 0 then both

ΣJlQj) - G(t^)] and Σ
3=1 3=1

S b

F(t)dG(t), since F is continuous and G monotone.
a

If g is not positive we can write g = gλ — g2 as in Lemma 1, apply
the proof just completed to each of gλ and g2, and combine the results
to complete the proof for the case where a and b are finite.

Suppose for example b is infinite. Then for any finite bf,

\ F(f)gdx = l inv_ ( F{f)gdx = l i m ^ [*'F{t)dG{t)
JB J{/^δ'} Ja

= S °°F(t)dG(t) .
J

A similar argument applies if α = -co.
We now return to the proof of the main theorem. First we note

that if h ^ h0 then e~h°fg forms a dominating function for e~hfg, so that
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I(h) exists.
For each ε > 0 we define the two functions /+(/>, Ω) and /_(/>, Ω) by

f±(p, Ω) = p* tMΩ)ρk ± εpn^ .
fc = 0

These functions are defined in all of Ep. Now given an ε > 0 there is
a pQ so that

( i ) \f(ρ, Ω) - p Σϊ-oΛΦ)^ I < ^ n + v

(ii) I g(p, Ω) - p^ ΣU Λ(β)/0* I < εp^^ for p < Po,
and so that

(iii) both the functions f±(p, Ω) are increasing in p for {0 ̂  p ^ p0}
for each Ω e Sp-.x. This can easily be achieved since f0 is positive (and
therefore bounded away from zero) and the other fk's are bounded.

(iv) the sphere {p g p0} is in R.
We denote {p ̂  0̂} by i20 and write I(h) in the form

respectively. We proceed to estimate I2: by hypothesis (2) there is an
A > 0 so that f^Aiΐρ^ρQ. Thus

J2(fc) I ̂  ί e-Λ/ I flf I dx ̂  e-{7ι-Λo^ί e " ^ \g\dx
JB-B0 JM-BQ

— Ce""71^ where C is a constant.

That is,

I2(h) = O(e-Λ4) as fc — oo ,

so it is clear that the dominant part of I(h) must arise from IΊ(/ι). The
remainder of the proof is largely concerned with estimating 7le

In Ro we define r(p, Ω) by

g(p, Ω) = p*-v

Let

+ M _ ( 0 (0, Λ(fl) ^ 0
fft ( f l ) - JO, 9k{Ω) < 0 ' 0fc {Ω) - 1 -(Kfl), Λ ( f l ) > 0

and

^ ' (0, φ.ίJXO' ^ ' ^

In Ro we now define g+(p, Ω) and fif-(/?, β) by
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g+(p, Ω) = pλ~p Σ 9U®)pk + r+(p,

and

g-(p, Ω) - p^ Σ <Γ(£)/>fc + r~(
fc = 0

Then g = g+ — g~ and

S r
e~hfg+dx — \ e~hfg-dx .

Ro JRQ

Thus we may assume that g ^ 0 in Ro.
We recall the definition of /+ and /_ and define I+(h) and IJJi) by

- ( e~hf+gdx, ί_(Λ) - \ e~hf-gdx .
J BQ J RQ

Since gr ^ 0 we conclude

Next we turn our attention to I+: Let Rt = {x\f+ ^ t] and choose
a so small that RadR0. Then

7+(ft) - ί e~hf+gdx + \ _ e~hf+gdx = 7 | + 7 | ' ,

respectively. Now / + is bounded away from zero in Ro outside any
neighborhood of the origin. Thus by the same argument used on 72 we
get

7|' = O(e-hAf) .

Furthermore e'hί+ is bounded away from zero in Ra, since /+ is
bounded there. Thus e~hf+g e L^Ra) and by Lemma 2,

II = \ae-htdG{t) ,
Jo

where G(t) = I #d#. Integrating by parts we get
Jut

7; - β~ΛαG(α) +

= Λ [ae-MG(t)dt + 0{e~ha) .
J
[
Jo

We next do some preliminary calculations, preparatory to estimating
G(t). For each t, 0 <£ t ^ α, the equation £ = /+(/0, β) has a unique
solution for ^ which is continuous in Ω, since /+ is increasing in p..
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Thus the solution defines a star-shaped curve (or surface) given by p =
p(t, Ω). We proceed to estimate p(t, Ω). Set t = IP then t = f+(ρ, Ω)
can be written in the form

or

U = p[fo(Ω) + Λ(Ω)P +'•• (MΩ) + ε)pψ> .

From here on we assume n > 0, for if n = 0, we can solve directly
for p and the estimates are considerably simpler than those which follow.

Now the right hand side of the last equation is a monotone func-
tion of p,0 ^ p ^ α, hence an inverse function exists. Since, for each
fixed Ω, U is an (n + 2)-times differentiate (it's even analytic!) func-
tion of p, 0 <£ p ^ a, then p is an (w + 2)-times differentiate function
of U, and it can therefore be expanded in a Taylor series with remainder.
Thus since fo(Ω) > 0 we get

p = ψ1(Ω)U+ ψ2φ)U2 + + ψn+1(fl, ε)t^»+ι + φn+1(Ω, ε,

where ψ^Ω) = l/[/0(^)]1 / v. Since the ̂ f c 's are expressible in terms of
the /fc's it is easy to check that ψk depends only on //s for j ^ fc, that
^ Λ is independent of ε for k ^ w, that ψn+1 depends only linearly on ε
and finally that ψn+2 is uniformly bounded for Ω e Sp-lf 0 ^ ε ^ 1, and
0 ^ U g α1/v.

Since Z7 = £1/v we express ^ in terms of t, Ω, and ε by

p(t, Ω) - ψ^

+ ψn+a(fl, ε,

By definition G(ί) = \ gdx, which we can write as

S Cp(t.Ω)
9(P,

Sp^JO

where dΩ represents the element of measure on the sphere S^ : {p = 1}.
We proceed to compute:

S rp(t.Ω)/ n \

(Σ QtiΩψ^-1 + o(p^^))dpdΩ

= ( |V(ί> Ω)(±-j!ψLp«(t, Ω)) + o(p^(t, Ω))]dΩ .

If we substitute for />(£, Ω) the expression previously computed for it,
the preceding integral can be written in the form
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G(ί) = ί [V/v Σ

where yκ is independent of ε for fc = 0,1, 2, , n — 1, and yn is linear
in ε. We may also note that each of the g/s enter the γfc's linearly.
In particular

Now if we write yn(Ω, ε) — yn(Ω) — εy'n(Ω) we have

G(t) = ( f Σ 7fc(β)ί(fc+λ)/v - eYn(Ω)t{n+λ)")dΩ + o(ί(w+λ)/v) ,

= Σ % ί ( f c + λ ) / v - ε^;(w+λ)/' + o(t{n+λ)l")
0

where % = ί vk(Ω)dΩ. In particular % = (l/λ)ί [go(Ω)l[fo(Ω)]λlv]dΩ.

Now by Watson's lemma we can multiply this asymptotic formula
for G by e~ht and integrate termwise to get

1+ = Σ c ^ ~ ( f c + λ ) / v - ecf

nh
{n+λ)lv + o(h-{n+λ)lv)

0

where ck = %Γ((fc + λ + l)/y). In particular c0 = η0Γ((X + l)/v). Since
/+ = / ! + I | ' = 7| + o{e-hΛ'), we have also

By the same argument, since I_ differs from J + only in the sign of ε,
we get

0

Now as we have shown before

T h u s

i+ - Σ cΛfc-( fc+λ)/v ^ Λίfc) - Σ c&fe-(fc+λ)/v ^ /- - Σ c ^
0 0 0

If we multiply through by h{n+λ)lv and let h—>°3 we get

-εc'n ^\xmUl±(h) - Σ cfc/ι-(ίk+λ)/v)^(w

But I(h) = IX{K) + o(e~hA) so that we have also

-ec'n ^ Π
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for every ε > 0. Let ε —* 0 to complete the proof for g ^ 0.
If g may change sign near the origin we can decompose g with g+

and g~ as described earlier. The proof just completed applies to each
of these. We can then subtract the results to obtain the result for g.
Also since g'/s enter into the cj/s linearly, the same formula for the
c's applies whether g is one signed or has a variable sign near the origin.
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AN EMBEDDING OF RIEMANN SURFACES

OF GENUS ONE

A. M. GARSIA AND E. RODEMICH

The Ck embedding of a Riemann surface S will mean here the con-
struction of a Cfc surface Sf in 3-space which is conf ormally equivalent
to S, if angles on the surface S' are measured in the natural way.1

The result to be obtained is:

THEOREM. Any compact Riemann surface of genus one can be C™
embedded in S-space.

As is well known, any Riemann surface of genus one is conf ormally
equivalent to a parallelogram in the plane with opposite sides identified.
The method used here utilizes surfaces which are approximately isometric
to the canonical surfaces determined by parallelograms. The parallelo-
gram for a given conformal class may be picked in a standard way.
We may take the vertices at the points 0, 2π, ω, ω + 2π in the complex
plane. Then the parallelogram is determined by a single complex number
ω. For any surface S conf ormally equivalent to this parallelogram with
opposite sides identified, ω will be called a modulus of S, and the paral-
lelogram a fundamental parallelogram of S. ω is not completely deter-
mined. A complete set of inequivalent canonical surfaces corresponds
to the values of ω = θ + iX in the region

(1) -π< θ S π, 6>2 + λ2>4ττ2

or

0 ^ θ ^ π, θ2 + λ2 = 4ττ2 .

For each value of ω in this region a surface is needed.
A torus has a pure imaginary modulus which is easily computed.

More generally, any surface with a plane of symmetry has pure im-
aginary modulus. Thus there are many ways in which one can construct
a family of surfaces whose moduli fill the line θ = 0, λ ^ 2π.

For finding surfaces with θ Φ 0, we may note first that under a
reflection of space a surface with modulus θ + iX is transformed into
one with modulus — θ + iX. This means that if surfaces whose moduli
represent all points of the region

Received February 23, I960. This research was performed while the first author was
supported by the United States Air Force under Contract No. AF 49(638)-42, monitored by
the Air Force Office of Scientific Research of the Air Research and Development Command.

1 In our considerations compact surfaces of 3-sρace will be considered oriented by the
outward pointing normal.
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(V) 0 < θ ^ π, θ + λ2 ^ 4π2

are available, then every point of (1) with θ < 0 will be found among
the moduli of the reflected surfaces.

One type of surface whose modulus can be computed is a canal
surface, the envelope of a one-parameter family of spheres. In many
cases it becomes difficult, however, to determine when the surface
enveloped by a given family of spheres is really a good surface of genus
one, with no undesired self-intersections. One two parameter family of
canal surfaces has been given [2] which yields all values of ω in (1)
with \θ\ < 0O, where 0O > 0. More complicated families yield these
moduli and also those for which λ > λ0. In all the families which have
been investigated by the authors, the surfaces for which ω is close to
the vertex π + (π+iπ-γ/ίΓ) of (1) have self-intersections. Perhaps there is
a region of values of ω near this point which cannot be realized by
canal surfaces. However, by using the methods of Nash [4] as extended
by Kuiper [3] it should not be hard to show that there, exists an ana-
lytic surface whose modulus is arbitrarily close to any given modulus.

The method used here to prove the existence of embeddings for all
moduli is to construct C°° surfaces which are approximations to singular
surfaces. The singular surfaces used are composed of polygonal faces
joined along edges and at vertices, and have the property that although
points on different faces are distinguished, the faces all lie in the same
plane in space, and may partly or wholly overlap. For each value of
ω in a region including (1') a singular surface is constructed. It is
isometric be the canonical surface of modulus ω.

The singular surfaces are idealizations of figures which may be
physically constructed by folding paper parallelograms and joining the
edges. The physical model approaches the ideal surfaces as the thickness
of the paper approaches zero. From this it follows that the singular
surface can be approximated by a true surface. Such an approximation
is given by the central plane of the paper.

1. The deformation lemma.2 Suppose that we have a C1 mapping
of a surface S onto a surface S' such that all first derivatives of the
mapping do not simultaneously vanish at any point of S. Then the
dilation quotient D of the mapping is a function of position on S defined
as follows: The image oί an infinitesimal circle about the point P of S
is an ellipse of definite eccentricity. D(P) is the ratio of major to minor
diameters in this ellipse. If S and S' are Riemann surfaces and the
mapping is given in a neighborhood of P in terms of local uniformizers
z, z' by z' = f(z), then

2 The methods used in this section are inspired by the work of Teichmuller [5] and

Ahlfors [1].
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(2) D{P) = \£A±\A
l/.l-l/ϊl

if the mapping preserves orientation. For a conformal mapping D = 1.
In general, l g ΰ ^ oo.

Now let S and S' be surfaces of genus one, and let the mapping
be one-to-one. If the moduli of S, S' are ω, ωf respectively, then the
induced mapping of the fundamental parallelograms of S and S' has
the form

zf
 ΞΞ f(z) (mod 2π9 ω') ,

where / is a differentiate function of z and z. The boundary values of
f{z) are related by the condition that equivalent values of z go into
equivalent values of z'. We can choose the fundamental parallelogram
of Sr so that its sides are homotopic to the images under S—>Sf of
the corresponding sides of the fundamental parallelogram of S. Then

( 3 ) /(s + 2π) = f(z) + 2π ,

f(z + ω)=f(z) + ω' .

After these preliminaries we may prove the following

LEMMA. Let S, S' be Riemann surfaces of genus 1. Suppose there
is a one-to-one mapping of S onto S' which is piecewise C\ is conformal
except on a region R of the fundamental parallelogram of S of area
a, and has D g DQ < OD. Then ifω^θ + ix is the modulus of S, S'
has a modulus ωf such that

(4) \ω ~ ω'\ < Vη{η + 2λ)

where

4 A - I)2 .

Proof. Let z = x + ίy, z' = x' + iy'. If P is the fundamental
parallelogram of S and C its boundary, we have, by using (3),

\ f{z)dz = 2π(ω - ωf) .
JG

By Green's theorem,

Since /i = 0 outside R,
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— πi(ω — ωf) = \ I f^dxdy .

N o w apply Schwarz ' inequal i ty :

f Γ f f
( 5 ) πΆω — ω'\2 < 11 dxdx\\ If^dxdy .

To estimate the last integral, we use (2) to get

, f ,s _ Φ - I)2 n * .2 , , m _ (i? ~ I)2 9(a', y;)
41/ 4Z/ d(x, y)

Hence

(f ϋipfcft, < ft

where λ' = Im ωr. Inserting this in (5),

| T 4
π2

To get an inequality without λ' on the right, note that

(V - λ)2 ^ I ω - ω'\2 g ηx'

implies λ' < η + 2λ.
Thus

ω - ω'\ ^ i/^V < Vrj(Y] + 2λ)

Observe that | ω — ωf\ is small, according to the lemma, in two*
cases: (1) if Do is close to 1, and (2) for fixed Do, if a is small. Both
cases will occur in the applications of the lemma.

2. The singular surfaces* The construction of a singular surface
will be described in terms of operations on a paper parallelogram of
modulus ω — θ + iX. If ideal paper of zero thickness is used, the re-
sulting surface is isometric to the canonical surface of modulus ω.

The first operation is to bend the parallelogram into a cylinder of
radius 1 which fits together along the sides of length \ω\. Glueing the
cylinder together along the line where these sides meet gives the proper
identification of the vertical sides of the fundamental parallelogram.
The cylinder must be folded up so that the ends come into coincidence
in the proper way.

If θ = 0, the points at the ends of each generator must be identi-
fied. To do this, first flatten the cylinder by folding along two opposite
generators. Then fold on the center line perpendicular to the generators,
so that the two ends of the cylinder come together. Along the line
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-where the ends meet, there are the edges of four layers of paper. If
these are numbered in order of position, the proper identification of
points is accomplished by joining sheet 1 to sheet 4 and sheet 2 to
.sheet 3.

λ

If Θ =£0, the point at the bottom of a generator must be identified
-with the point at the top of another generator, separated from the
first by the angle θ. The cylinder will be folded flat in such a way
that at each end it is folded along two opposite generators, but the
generators used at the top are displaced from those used at the bottom
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by the angle θ. Then the two ends can be connected as they were for
0 = 0.

One such method of folding the cylinder is illustrated in figure 1.
In l(a) the surface of the cylinder is shown, developed on the plane.
AB, EF and CD, GH are pairs of opposite generators, with CD to the
right of AB by the distance θ. CGC and BFB are perpendicular to the
generators. AB = CD, and the angles BCF, CFG, etc. are right angles.
This determines the construction of l(a). The cylinder may now be folded
into a polygonal surface as shown in l(b). Each line in l(a) becomes
one or more edges in l(b). The part of the cylinder outside the lines
CGC and BFB are flattened into the rectangles DHGC, BFAE. The
part between these lines is flattened into the rectangle BGFC.

Next l(b) is flattened out to give l(c) by bending l(b) along the
lines CG, BF until all faces lie in the same plane. In figure l(c) there

D H

B

E
Figure 2 A
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are six sheets, joined in appropriate ways along their edges. The flat-
tened circles DHD and AEA are now in a suitable position and may be
identified as when θ = 0, after folding l(c) along its vertical center line.
This gives a singular surface consisting of twelve polygonal faces lying
in the same plane. It is a Riemann surface isometric to the original
parallelogram with its opposite sides identified.

A restriction must be placed on ω for this construction to work,
λ must be sufficiently large that the lines AE, DH lie outside the rect-
angle CBGF in l(c). Also the lines CD and BA of l(c) must extend
at least as far as their intersection K. The first condition implies the
second if θ g π/2, which is the only case in which this construction will
be used. All the dimensions of l(c) may be determined by elementary
methods. The first condition on λ is

( 6 ) λ ^ 3Vθ(π - θ) .

For 0 < θ g π/2, the model described may be used when λ satisfies this
inequality.

Another model may be constructed as indicated in figure 2. The
configuration BFBCGC in 2(a) is determined by the angle

a = ctn-'ll - 1/2(1 - θ/π)]

which is marked in six locations. The condition AB = CD determines
the rest of the construction of 2(a). Figure 2(b) is analogous to l(c).
The central quadrilateral is now a trapezoid instead of a rectangle, and
the lines AB, CD in 2(b) are perpendicular. The condition that AE and
DH do not enter FGBC in this diagram allows the construction of the
singular surface to be completed as before. This gives the following
condition on λ:

(7 ) λ ^ 2π - θ

This model will be used for θ > π/2. Note that the two models are
the same for θ = π/2.

By the two constructions just described, we have a family of singu-
lar surfaces associated one-to-one with the values of ω in the region

(0 < θ < π,

R:

~ W - θ, θ ^ π/2

The surface S0(ω) corresponding to ω has modulus ω. The curve which
forms the lower boundary of this region is below the circular arc λ =
T/4π2—θ2 which forms the lower boundary of (1'). Thus all the points
of (1') for which θ Φ π are in R. Another construction to be used later
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for the case θ = π depends on the fact that R is not bounded away
from 0, and the lower boundaries of (Γ) and R do not meet even at
ΰ — π. Note that S0(ω) depends continuously on ω.

3. The C°° surfaces* The singular surface S0(ω) will be transformed
into a family of C°° surfaces S(ω, ΰ), 0 < ϋ < ϋ±(ω) with modulus Ω(ω, ϋ)
which approaches ω as ϋ —> 0. These surfaces will also depend on a
large positive constant K.

For convenience, suppose that S0(ω) is situated in a horizontal plane.
In this plane, around each vertex Vh of S0(ω) construct a circular disc
7fc of radius Kϋ. For each edge of S0(ω), consider the strip of the plane
extending the distance ϋ to each side of the edge. Construct the regions
ζ°e interior to these strips and exterior to the circles TJ.. These are
well defined if K > 1. For fixed K, the γj's and ζ°/s will be disjoint
for sufficiently small ϋ : ϋ < ϋ1(ω)9 if none of the angles in the figure
are too small. This will be true if θ is not too close to 0 or π: θλ(K) g
θ ^ Θ2(K), where Θ^K) — 0 and Θ2(K) — π as i£-> oo.

Form fβ from fJJ by replacing the bounding circular arcs by chords.
Form 7JC from 7l by removing the segments which have been added to
the ξVs.

Let Cfc be the cylindrical region of space with base yk, and let Re

be the cylindrical region with base ξe. The C°° surface S(ω, ϋ) will be
constructed above the plane so that in the mapping from SQ(ω) to
S(ω, ϋ), (1) the parts of the faces of S0(ω) which lie outside the γfc's
and the ξVs are each translated upwards by a certain amount, (2) the
pieces of S0(ω) in ξe are mapped isometrically into Re, and (3) the pieces
in 7k are mapped into Cfc.

Let the twelve faces of S0(ω) be numbered in order from bottom to
top. The ith face is cut into a number of sections by the boundaries
of the γfc's and ξβ's. Raise each section bounded entirely by these
boundaries to the height j/12 above the plane of S0(ω). This includes
the vertical translation referred to above. The remainder of S0(ω) con-
sists of strips of surface containing edges, and a finite number of regions
in each γft.

Each edge strip Sm has width 2$. In extending the mapping to
Sm, the sides of the strip must go into parallel horizontal lines at a
distance less than ϋ, one above the other. Opposing points on the two
sides are to go into points of the parallel lines which lie on the same
vertical line, and the mapping is to be isometric along each side.

Such a mapping can be constructed by mapping Sm isometrically
onto a cylindrical surface of width 2# bounded by the two parallel lines
as generators. For Smaζe, its image shall lie in Re. This surface can be
so chosen that the image of Sm and the adjacent sections of faces of
S0(ω) lies on a C°° cylindrical surface. If several of the S'm's lie along
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the same edge of S0(ω), use the same cylindrical surface for each of
their images. Then the cylindrical mapping may be extended through
the intervening regions which lie in the γ/s.

The image of the region around each edge of S0(ω) may be con-
structed in turn, so as not to meet any of the parts of S(ω, ϋ) previously
constructed, if we take the edges in the right order, for example first
all the edges of the top face, than all the unconnected edges of the
next face, and so on. It remains to construct the images of the regions
about vertices of S0(ω).

Let Vj be the region about a vertex of S0(ω), bounded by the boundary
of yk. It is to be mapped into a piece of C°° surface in Ck which joins
to previously constructed parts of S(ω, ϋ) at the boundary of Ck, so as
to make a C°° surface. Let V3 be any piece of surface with these prop-
erties. Then a mapping from v3 to V3 can be made which agrees at
the boundary with the mapping already constructed, and has a bounded
dilation quotient. S{ω, ϋ) and the mapping from S0(ω) will be completed
when this has been done for each vk.

The resulting mapping is isometric, hence conformal, except in the
regions of vk. The dilation quotient has an upper bound D0(ω, ϋ). If
Ω = Ω{ω, ϋ) is the modulus of S(ω, ϋ), then by the lemma

< 9 ) I Ω — ω I < Vη(η + 2λ) ,

where

v = i ^ r ? A r e a <*•> < ̂ ^ 12πKW'
/ τ~\ -i \ o

<10) <

.since there are twelve vertices, and each vk is a subregion of a disc of
radius Kϋ.

Suppose that this construction is made only for particular values of
<o and ϋ , e.g. ω = ωx = θ± + iX1 , ϋ — #1# Then from this we can derive
β(ω, ΰ) for other values of ω and ϋ- in a useful way.

First, let ϋ- vary. For all sufficiently small ϋ , we may take the
vertex pieces Ffc to be similar to those for ϋ 19 and take the cylindrical
.strips which contain the images of the edges to have a cross-section which
is similar to the cross-section for ϋ = # lβ If we take the mapping from
vk to Vk to be that which is induced by this similarity, then Do in (10)
is independent of ϋ.

Next let λ vary. In SQ(ω), certain sides change in length, but all
angles at the vertices are unchanged. Looking at the skeleton of S(ω, ϋ),
consisting of the Vft's and the cylindrical strips which contain the images
of edges, to get a skeleton for S(θ1 + ΐλ, ϋ) it is sufficient to change
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appropriately the lengths of some of the strips. If S(^x + ΐλ, ΰ) is formed
in this way, Do can be made independent λ.

To go to a value of ω with θ Φ θί9 the angles at the vertices must
change as well as lengths. Looking again at the skeleton of S(ωlf ΰ),
Vj c Ck must be transformed so that the adjacent cylindrical strips are
rotated into different positions about the axis of Ck. We may impose
on V5 the condition that it does not intersect the axis of Cfc. Then the
desired result may be obtained by performing a transformation of Ck

which rotates points about the axis through a variable angle, is isomet-
ric in the sectors adjacent to the cylindrical strips, and is C°° with non-
vanishing Jacobian at all points off the axis.

Let t9 be the transformation which takes the vertex sections Vk{θ^
into Yk(θ). Since all the angles involved are continuous functions of θ,
we may choose tθ so that t9> ti1 is a mapping whose dilation quotient
has a bound D(θ, θf) such that

Km D(θ, θ') = 1

and tβ, ti1 approaches the identity as θ' —» θ.
This transformation of the Vks may be extended to a transforma-

tion of S(ω19 #) into S(ω, ΰ), by transforming the cylindrical strips of
S(ω19 ΰ) linearly into the strips of S(ω, ΰ), and then extending the
mapping over the plane faces. Since the lengths of the edges of S0(ω)
are continuous functions of θ, if the extension to the faces is done
properly the induced mapping Tω>ω, of S(ω, ΰ) into S(ω', ϋ) will have a
dilation with a bound D(ω, ωf, ϋ) such that

(11) lim D(ω, ω\ #) = 1
ω'—>ω

The mapping from S0(ω) to S(ω, ΰ) may be chosen so that D0(ω, ΰ)
is a continuous function of ω. For this, it is necessary to map v5 on
V3 in the right way.

A mapping of SQ(ω^) onto S0(ω) is associated with the mappings
already described:

So(ωJ > S(ω19 ΰ) ~ S(ω, ΰ) > S0(ω) .

Thus the map of v3(ω) on Vό{ω) will be determined by that for ω — ωx

and a mapping of v^ω^ on v3(ω). Since Tω>ω, has the property (11),
DQ(ω, ϋ) will be a continuous function of ω if the transformation between
the vk's also has this property.

To transform a v5 it is convenient to look at this region unfolded.
It is a disc with several segments cut off, and is to be transformed into
another such disc. The mapping is given on the boundary, and is to be
extended to the interior so that the bound D\ω, ωf) for the dilation
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quotient of the mapping from Vj(ω) to v3(ω') approaches 1 as ω' —> ω. One
way to get such an extension is to take the mapping given in rectan-
gular coordinates by harmonic functions with the proper boundary values.

4 The existence theorem for 0 < θ < π. Any modulus ωύ — θQ+iXQ

in (1') with 0 < θ < π lies in the interior of R. Pick K and A so
large that θλ(K) < θ0 < Θ2(K) and A > λ0. Then ω0 lies in the interior
of the closed subregion R1 of R for which

ΘAK) ^ Θ S Θ2(K),

λ ^ A

Let the distance from ω0 to the boundary of R± be greater than ε (ε > 0)
In §3, we have constructed surfaces S(ω, ΰ) for each ωeRλ and

ΰ- < # = min ϋ -Ao)), ω e Rx. By (11) and the lemma, Ω(ω, ϋ) is a continuous
function of ω, so | £?(ω, z?) — α> | is bounded on Rlf for each #. An ex-
plicit bound is given by (9):

I Ω(ω, ΰ)-ω\<C& ,

where, setting Dλ — max D0(ω, ΰ ), ω e R19

=/ 6K1 (A - I)2

A L " ' A
Take # < ε/C. Then in the mapping of Rλ by α> —> i2(α), ^) each point
is moved by less than ε. Hence the image of the boundary is a curve
which winds around ω0 once. It follows that Ω(ωy ϋ) = ω0 for some

5* The existence theorem for θ — π. If a family of singular sur-
faces is available which varies continuously over a region of moduli
containing the right-hand boundary of (1') in its interior, then the pro-
cedure of §§ 3 and 4 may be applied to prove the existence theorem for
θ = π.

As observed in § 2, the lower boundary of R is at a positive distance
from the lower boundary of (1'). Let this distance be d. Also, R contains

Figure 3
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values of ω for which | ω | < d/2. Let ω2 = θ2 + iX2 be such a value.
Now take the singular surface of § 2 for modulus ω, constructed up to
the point of figure l(c) or 2(b). Join to each of its open ends the cor-
responding figure for ω — ω2, as illustrated in figure 3. This gives a
folded cylinder of length λ + 2λ2. When it is folded over the vertical cen-
ter line of figure 3 and has its ends joined properly, it is a singular surface
with modulus ω + 2ω2. If this is done for each ω e R, we get for a region
of moduli the region R shifted up and to the right by a positive distance
less than d, with singular surfaces varying continuously over this region.
The line θ = π, λ ^ τ / 3 π lies in the interior, as required.
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WEAK COMPACTNESS AND SEPARATE CONTINUITY

IRVING GLICKSBERG

l For a locally compact space X let C(X) denote the Banach space
of all bounded continuous complex valued functions on X, CQ(X) the
subspace of functions vanishing at infinity, so that the adjoint CQ(X)*
consists of all finite complex regular Borel measures on X. In a natural
fashion, we may view C(X) as a subspace of C0(X)**.

When X is compact Grothendieck [6 Th. 5] has shown that a
bounded set K c C(X) is compact in the weak topology if (and of course
only if) K is compact in the topology of pointwise convergence on X,
and then both topologies, being comparable, coincide on K. In some
recent work the writer was led to a simple corollary of Grothendieck's
result which yields the significance, when X is only locally compact, of
compactness in C(X) under pointwise convergence:

1.1. Let K be a bounded subset of C(X), X locally compact. Then
K is compact in the topology of pointwise convergence on X {if and)
only if K is compact in the weak* topology of C0(X)** [4, 5.1].

Again both topologies coincide on K. A direct corollary of 1.1 is

1.2. Let X and Y be locally compact spaces, and f a bounded
complex function on X x Y which is separately continuous, i.e., for
which all the maps

x-*f(x, y) and y->f(x, y)

are continuous. Then for μeCQ{X)*,

y -* j/0», y)μ(dχ)

is continuous [4, 5.2],
The continuity obtained in 1.2 allows one to form the iterated

integral

(1.21) j J/(x, y)μ{dx)v{dy), μ e C0(X)*, v e C0(F)* ,

and thus one can extend the notion of convolution of a pair of finite
measures to a locally compact semigroup S in which the operation is
only separately continuous. Moreover 1.2 shows (1.21) is identical with

Received March 24, 1960.
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(1.22) \\f(x,vMdy)μ(dx)

so that convolution is commutative if S is. Consequently we show in
§ 4 how some results of [3] extend to the separately continuous situation;
these in turn yield an analogue of the Weyl equidistribution theorem
which applies to weakly almost periodic functions on locally compact
abelian groups (4.6 below).

Although the fact will not be needed in what follows, note that 1.1
is actually a weak compactness criterion for the complete locally convex
space C(X)β formed from C(X) by endowing it with the strict topology
(cf. [0]). For since the dual C(X)$ consists precisely of the measures
in C0(X)*, the weak topology of C(X)β is just the weak* topology in 1.1 and
the bounded sets of C(X) and C(X)β coincide. But as a consequence
the topology of point wise convergence on C(X), when restricted to
bounded sets, shares some properties of weak topologies of complete
locally convex spaces: conditionally countably compact sets are condition-
ally compact, and have compact convex hulls.

Notation. For a function f, f\E will denote its restriction to E,
while for a set K of functions, K \ E will denote the corresponding set
of restrictions. C(X)P and C(X)w*wi\\ denote C(X) in the topology of
pointwise convergence on X, and in the weak* topology of C0(X)**,
respectively. In general X and Y will denote locally compact (Haus-
dorff) spaces, and, for a function / on X x Y, /(•, y) will be its section
x-^f(x,y) (with f(x, •) defined analogously). As we have indicated / is
separately continuous only if all of sections are continuous. Other
notation is standard.

2 Since the proofs of 1.1 and 1.2 (given in [4]), are quite short, we
shall include them for completeness.

Consider 1.1, and let j ^ ~ be an ultrafilter on K. J^ converges to
some /o in K in C(X)p9 and we need only show ^ converges to /0 in
C(X)W*. On the bounded set K the weak* topology is defined by the
dense set of measures μ with compact carriers Cμ, so we need only show

\fodμ — \im&\ fdμ for such μ. But K\Cμ is compact in C(Cμ)p and thus,

by Grothendieck's theorem, compact in the weak topology, and both

topologies coincide on K| Cμ. Clearly then \fQdμ — \ιm&\ fdμ as desired.

In order to prove 1.2 we have to show the map y—*f( ,y) of Y
into C(X)W* is continuous. But it is a continuous map into C(X)P, so
that any compact neighborhood F of y0 e Y has an image which is
compact in the weak* topology by 1.1. And since the weak* topology
coincides on this image with that of pointwise convergence, the desired
continuity is immediate.
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As a first application of 1.2 we note the following simple proof of
the well known fact (due to Krein and Smulian) that if K is a weakly
compact subset of a complete locally convex linear space E, then the
closed convex hull C^{K) is weakly compact. Take, as our X and Y
of 1.2, K in the weak topology, and the polar V° c E* of a neigh-
borhood V of 0 in E, in the weak* topology. Since x —> ζx, x*> and
#*—>(x,x*y are each continuous in the appropriate topologies, by 1.2
we have, for μeC{K)*,

(2.11) x* -> [<p, x*>μ{dx)
J

continuous on V°. Since V is an arbitrary neighborhood of 0, and E is
complete, a well known result of Grothendieck [5] shows (2.11) repre-
sents a weak* continuous functional on E*, and thus there is an Xμ, in
E satisfying

(2.12) <xμ, x*y = [ζx, x*yμ{dx) , #* e # * .

Let N = {μ: μe C{K)*, μ Ξ> .0, μ{K) — 1}, a weak* compact convex subset
of C(K)*f and endow N with the weak* topology. Since

c, x*yμ{dx)

is clearly continuous on N, (2.12) implies μ—>Xμ, is a continuous map
from iV into E under the weak topology; thus the range of this map is
a convex weakly compact subset of E, which clearly contains K. Since
^(K) is weakly closed by Mazur's theorem, this is all we need to
show.

3 As was noted in the introduction, 1.2 allows one to form the
iterated integral

\\f(x, y)μ(dxMdy)f μ e C0(X)*, v e C0(Γ)* ,

for any bounded separately continuous /. The desirable interchang-
ability of the order of integration would of course be immediate once
/ is, say, locally Borel measurable; however the writer is not aware of
any general answer to the question of measurability of separately con-
tinuous functions (a special case is covered in [7, §39]). Nevertheless
the independence of order is easily obtained from 1.2.

THEOREM 3.1. Let f be a bounded separately continuous complex
function on X x Y. Then

μeC0(X)*,veC0(Y)* .
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Proof. Let μ be fixed. For K a compact subset of Y let Eκ —
{v: \\v\\ ̂  1, v vanishes on subsets of K'}. Clearly (3.11) holds when
v is a finite linear combination of point masses; since these are weak*
dense in Eκ we can prove (3.11) holds for all v in Eκ by showing both
sides are continuous functions on Eκ, taken in the weak* topology of
C0(F)*. By Urysohn's lemma this topology coincides on Eκ with the
weak* topology of C{K)*, and thus the left side of (3.11) is continuous
since the inner integral represents an element of C(K). On the other
hand Eκ is compact in the weak* topology of C(K)* and

(x, v) -> y(x, y)v(dy)

defines a bounded separately continuous function on X x Eκ (by 1.2 and
the definition of the weak* topology). Thus 1.2 implies

'x, y)v{dy)μ{dx)

is continuous on Eκ.
Consequently (3.11) holds for any given μ, and any v with compact

carrier. Since such v are strongly dense in C0(X)*, (3.11) follows.

4. Let S be a compact space which is also a semigroup (group),
and suppose the operation is separately continuous:

x—*xy and y—>xy

are continuous; then we shall call S a compact separately continuous
semigroup (group). For μ and v in C(S)* we can form the convolution
of μ and v, an element μv of C(S)*, by virtue of the Riesz represent-
ation theorem and 1.2:

\f(x)μv(dy) = j \f{xy)μ{dx)v(dy)y feC(S)

Convolution is easily seen to be associative, and endowing C{S)* with
its weak* topology, separately continuous (by 3.1). Moreover 3.1 shows,
convolution is commutative when S is.

Let S = {μ: μ e C(S)*, μ ^ 0, μ(S) = 1}; S forms a compact separ-
ately continuous semigroup under convolution and the weak* topology.
In [3] the writer determined the subgroups of S when S is also jointly
continuous; in the present section we shall see how some of the results,
of [3] extend to the separately continuous situation. (We might remark
that compact separately continuous semigroups arise naturally in the
study of weakly almost periodic functions on, for example, the real line
(cf. [2])).
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That most of these results carry over to the separately continuous
situation is due to the consequences of Grothendieck's theorem given
above. We shall also make mild use1 of a fact due to Ellis [1] which
can be obtained, interestingly enough, from Grothendieck's result [2,
Appendix]: a compact separately continuous group is a compact topo-
logical group. In particular any closed algebraic subgroup of S is a
compact topological group. (However an algebraic subgroup need not
have its closure an algebraic subgroup, as in the jointly continuous
case.)

To begin, let us note some distinctions between the present, separ-
ately continuous, situation, and that of [3], preserving, insofar as
possible, the notation of [3]. When S is separately continuous, only
the same is true of S in general. But all of the ideal structure used
in [3] continues to hold (with one exception: (1.11) of [3] fails); in par-
ticular every abelian separately continuous compact semi-group S con-
tains a least ideal (Γ\xes%S) which is closed, a group, and thus a com-
pact topological group. (In [3] we allowed S to be abelian, or a group;
by virtue of the result cited above nothing new is obtained by allowing
S to be a group here, and we shall insist that S be abelian in all but
our first result.) The following is, in modified form, the key lemma
of [3].

LEMMA 4.1. Let S be a compact separately continuous semi-group,
and let μ, v e S. Then

(4.11) carrier μv — [(carrier μ)(carrier v)]~ .

Proof. The proof given in [3, Lemma 2.1] with A B replaced by
the right side of (4.11) shows the right side has μv-measnre 1. To see
that any open set W which meets the right side of (4.11) has μv(W) > 0,
we argue as follows.

Let xoyoe W, xoe carrier μ, yQ e carrier v. Then if feC(S) vanishes

off Wwhile f(xQyQ) = l, 0 ^ / ^ l , we have [f(xyo)μ(dx)>O since x-+f(xyQ)

is positive near x — xύ. Since y—Λf(xy)μ(dx) is continuous by 1.2, and

positive at y = y0,

0 < \^f{xy)μ{dx)v{dy) = \f{z)μv(dz) ^ μv{W) .

Consequently the right side of (4.11) is indeed carrier μv.
In the remainder of this section we assume that S is an abelian

compact separately continuous semigroup.
1 Essentially we use this to assert that μ in 4.2, when shown to be an invariant nor-

malized measure on a separately continuous compact group, is the Haar measure; of course
this could easily be avoided.
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THEOREM 4.2. Let μ2 = μ e S. Then carrier μ is a compact sub-
group of S, and μ its Haar measure.

If H = carrier μ, then 4.1 shows i ί 2 ' = iJ, and scrutiny of the
proof of [3, Th. 2.2] shows this is an adequate replacement for H2=H.
(Note that 1.2 must be used to obtain the continuity of /'.)

THEOREM 4.3. Let Γ be an algebraic subgroup of S. Then
G=\Jμer carrier μ is an algebraic subgroup of S. If 7] is the identity of
Γ, g = carrier η is a compact topological group, η its Haar measure, and
Γ the set of G-translates of rj. Furthermore if Γ is closed, G is closed.

Proof. G is algebraically a subsemigroup of S by 4.1, while g is a
compact group and f) its Haar measure by 4.2. Let e be the identity
of g. Then for μeΓ, xe carrier μ = [g carrier μ]~ implies ex — x since
this holds for x in g carrier μ. Consequently e acts as an identity on G.

Again let μ e Γ, xe carrier μ, z e carrier μ~u, then zga carrier μ~x by
4.1, so xzg c (carrier ^(carrier μ'1) c g, and thus g = (xzg)g = xzg. Con-
sequently there is a y in zg for which xy — e and G is a group. More-
over x~x = y ezg so z e x~xg; since z was any element of carrier μ~τ,
carrier μ~x c x~τg = yg azg c (carrier μ~x)g c carrier μr1. Thus carrier μ~x

= zg for any z e carrier μ~λ, or carrier μ — xg, for any x in carrier μ,
and carrier μ is a coset of g in G. Now

γ(z)μ(dz) = ^f(xy)v(dx)μ(dy), fe C(S) ,

since μ — rjμ. Since y —> \f{xy)y]{dx) is constant on carrier μ,

= γ(xy)v(dx)

for any y in carrier μ. Thus μ is exactly the translate to yg oί η.
Finally suppose Γ is closed. If xeG~ we can find nets {x8} and

{μB} for which #δ—>x, xs e carrier μ8, μ^eΓ and μ5—>μ eΓ. If x φ carrier μ
then xg Π carrier μ = φ and there is an / in C(S), 0 ^ / ^ 1, which is
1 on xg and 0 on carrier μ. Since

is continuous by 1.2, and assumes the value 1 for y in xg, we have

i ^ j/(tfδz)??(dz) = J/(z)μδ(dz) for δ ^ δ0,

despite the fact that
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Thus x 6 carrier μ c G, and G is closed, completing our proof.
Actually we can obtain all of the analogous result (Th. 2.3) of [3];

it is easy to see that if Γ is closed (as [3] required) then the weak*
closed convex hull &{Γ) of Γ is the image of (G/g)~, using exactly the
map Tη of [3, 2.3] (alternatively we could note that our measures all lie
on a compact topological group G, and apply 2.3 of [3]).

THEOREM 4.4. Let Σ be a closed subsemigroup of S with least
ideal ^\ let2 Sx = (\JμeΣ carrier μ)~, with least ideal I. Then
I = \J^e^ carrier μ.

Proof. Since ^y is a closed subsemigroup of Σ, and thus of S, by
4.3, G — Uμe^ carrier μ is a closed subgroup of S, and thus of Sx. Let
-So — \Jμ.€Σ carrier μ, and algebraic subsemigroup of S with S^ = Slu

Suppose xSi does not contain G for some x in Sλ. Then since
yexS1 Π G implies G = yG c ^SXG c xS19 xS1 Π G = φ. Consequently
there is an / in C(S) which vanishes on xSx and is 1 on G. Since
xeS1 = So", there is a net xδ~>x9 x5 e carrier μ5, μδeΣ. For v i n , / ,

a? carrier vaxS19 so that l/(a?2/Md2/) = 0, and therefore \f(x5y)v(dy)—>0

by 1.2. On the other hand μBv e ^ so that xs carrier v c carrier μδv

c G, and \f(x?>y)v(dy) = 1, a contradiction, whence we conclude that

'G c αSί for all x in Slβ Thus G c I = Π ^ ^ ^ .
Now for a; in So and v in . j ^ , the fact that x carrier v c G shows

xG a G; for 3/ in G then xyeG for all <B in Ŝ  since G is closed and
x—>xy continuous. Consequently xG c G, all a? in Slf and G is an ideal
in Sjj of course G must then contain the least ideal /, whence G = I
and our proof is complete.

By virtue of 4.4 and the remark immediately preceding it we obtain,
by exactly the proof of [3, 3.2],

THEOREM 4.5. Let μeS. Then (l/jW)Σ»=ii"n —* Haar measure on
the least ideal of the closed subsemigroup of S generated by carrier μ.

For the proofs of some of our next remarks (and for definitions of
the basic entities involved) the reader is referred to [2]. Let G be a
locally compact abelian group. Then the weakly almost periodic func-
tions on G form a closed translation invariant subalgebra W(G) of C(G)

• containing C0(G). Moreover W(G) is isometrically isomorphic to C(GW),
where Gw is a compact abelian separately continuous semigroup, the

2 Separate continuity (applied twice) is sufficient to guarantee that the closure of an
algebraic subsemigroup is a subsemigroup.



212 IRVING GLICKSBERG

weakly almost periodic compactification of G, in which G forms (topo-
logically3 and algebraically) a dense open subgroup; the elements in W(G)
are just the restrictions, to G, of the elements of C(GW). (Gw is not
jointly continuous, or a group, unless G is compact.) Naturally each
finite measure μ on G induces an element μ' of C(GW)*, and μ—>μf is
easily seen to preserve convolution, norm and order; in particular μT^O,
|| μ || = 1 imply μr eGw. If we define the carrier, in G, of such a non-
negative μ to be the closed complement of the union of all open sets
of //-measure zero, then carrier μ' in Gw contains the carrier of μ (since
open sets in G remain open in Gw, and C0(G) c W(G)). Finally let the
translate RJ of / be defined by Rgf{gf) =f{g'g), g, g' in G, / in W(G).
We need only apply 4.5 to S = Gw and μ' to obtain

THEOREM 4.6. Let G be a locally compact abelian group, and let
μ ^ 0 he an element of C0(G)* of norm 1. Then there is a non-negative
functional F of norm 1 on W(G) for which

4 r ΣΪ f(9)μn(dg) -> F(f) , f in W(G) „

and F(Rgf) = F(f) for all g in the carrier of μ.
Here μn is, of course, the ordinary n-ίold convolve of μ. As the

reader will observe, a related result can be obtained when G is merely
an abelian topological semigroup, as in [2].

Familiar results from ergodic theory suggest an alternative approach,
to 4.6, but yield a result of a different nature. Indeed if we define
μn*f, for / in W(G), by μn*f{g) = \^f{gg')μnW) then μn*f lies in the
weakly compact closed convex hull K of the set of translates of /,
and ergodic theory shows (l/i\0S£=i£*w*/ converges strongly to an fx in
K with μ*/i = /x. From this alone it is not all apparent that fx should
have the stronger invariance property that Rgfx — fλ for g in the carrier

of μ. But since μP*f(g) = \RgAg')μP(dg'), 4.6 shows

N »=

and f±(g) = F(Rgf), so f± does indeed have the invariance property...
Consequently we have proved

COROLLARY 4.7. Let G be a locally compact abelian group, μ a
non-negative measure of norm 1 on G. Then the operators

3 In the more general context of [2] G is only imbedded continuously in Gw; here
Co((τ)C W(G) guarantees the imbedding is open as well.
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on W(G) converge in the strong operator topology to a projection onto
the manifold of functions left fixed by {Rg: g in the carrier of μ}.

4.8 REMARK. The remaining result of §3 of [3], 3.5, extends to
the present context with no change in proof; beyond this point, how-
ever, there are difficulties in obtaining extensions. In particular §4
makes strong use of the now lacking property that the closure of an
algebraic subgroup of S be a group.

5 For E c C(X) let σ(C0(X)*, E) denote the least fine topology
for which the maps

are continuous. When X is taken to be a locally compact abelian group
G, 1.1 can be applied to some topologies on C0(G)* by virtue of the
Fourier-Stieltjes transformation. Let G~ denote the character group of
G, μ the Fourier-Stieltjes transform of μeCύ{G)*, C0(G)*~ the set of
all such transforms.

THEOREM 5.1. Let K c C0(G)* have a uniformly bounded set of
Fourier-Stieltjes transforms. Then K is σ(C0(G)*, C0(G~)*~) compact
if (and of course only if) K is σ(C0(G)*, G") = ff(C0(G)*, P ( G T ) compact,
where P(G~) is the set of point masses on G~. Moreover K is then
weak* compact if bounded.

We need only note that by virtue of the identity

(for μeC0(G)*,veC0(G~)*),σ(C0(G)*,C0(G~)*~) is the topology
C0(G^)*) (or the weak* topology of C0((T)**) transported to C0(G)*, while
<J(CO(G)*, P ( G T ) corresponds in the same way to σ(C0(G)*^, P(G~)) (or
the topology of pointwise convergence). Thus 1.1 can be applied. For
the final statement, note that C0(G~)*~ contains L^G^y, which defines
the weak* topology on bounded subsets of C0(G)*
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ON A CONJECTURE OF H. HADWIGER

BRANKO GRUNBAUM

l For any convex body (i.e., compact convex set with interior
points) K in the Euclidean plane E2 let i(K) denote the greatest integer
with the following property:

There exist translates Kn, 1 ^ n ^ i(K), of K such that

K Π Knφφ for all n;

Int Kn n Int Km = φ for n=£ m.

It is well known (see e.g., Hadwiger [3]) that 7 S i(K) g 9 for
any K c E2,1 and that the bounds are attained (e.g., i{K) = 7 if Z" is
a circle, i(jfiΓ) = 9 if if is a parallelogram). Hadwiger conjectured,2

moreover, that if K is not a parallelogram, then ί(iΓ) = 7.
We shall establish Hadwiger's conjecture in the following theorem:
/ / K is not a parallelogram, then i{K)—Ί. Moreover, if 7 translates

o K satisfy conditions (1) then one of them coincides with K.
In the proof we shall use some results on centrally symmetric

convex sets; they are collected in § 2. The proof of the theorem follows
in §3. In §4 we make some remarks on related problems in higher-
dimensional spaces. § 5 contains some results on the related problem
on the number of translates of a convex set needed to ''enclose'' the
set.

2* Let K be any centrally symmetric plane convex body with the
origin 0 as center. Then a Minkowski geometry, with norm || ||, is
defined in the plane, for which K is the unit cell.

We note the following propositions:
( i ) For any point x with \\x\\ — 1 there exist points y, z satis-

fying \\y\\ = | | 2 | | = | | x — y \\ = \\y — z\\ = \\x + z\\ = 1. (In other words,

any x e F r o n t K is a vertex of a t least one affine-regular hexagon whose

vertices belong to Front K).

(ii) Let x, yf z be different points belonging to Front K, such that
the origin 0 does not belong to that open half-plane determined by x
and y which contains z. Then \\x — y\\^\\x — z\\, with equality taking
place only in case y,z, and (y — x)l\\y — x \\ belong to a straight-line
segment contained in Front K.

Received November 3, 1958. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and Develop-
ment Command, under contract No. AF 49(637)-253. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

1 Related results, pertaining to more general sets, are given in [4].
2 Oral communication from Dr. H. Debrunner.
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(iii) Let x, y, z, u be different points belonging to Front K, such
that z and u belong to an open half-plane determined by x and y, while
0 belongs to its complement. Then either \\x — y\\ = \\z — u\\ = 2 or
\\x-y\\>\\z-u\\.

Proofs of (i) have been given in [5], [6], [9]; (ii) and (iii) are proved
in [2].

(iv) Let ^ , l < i g 8 , be such that || yi || = 1, \\yt — y51| Ξ> 1 for
1 Φ j . Then K is a parallelogram.

Proof. Since in Minkowski geometry a straight-line segment is a
path of minimal length between two points, the above hypotheses imply
that the perimeter of K is ^ 8 (in the Minkowski metric). But it is
well known (see, e.g., [6], [9]) that the unit cell of any Minkowski plane
has a perimeter ^ 8; moreover, the same proofs easily yield also the
fact that the perimeter equals 8 only if if is a parallelogram, which
ends the proof of (iv).

( v ) If there exists a set Y = {yif 1 <; i <̂  7} c Front K such that

II Vi — Vj II ̂  1 for i Φ j , then K is a parallelogram.

Proof. Let + xi9 i — 1, 2, 3, be the vertices of any affine-regular
hexagon H inscribed in K (such hexagons exist by (i)). We note that:

(a) If two points of Y are opposite vertices of H, then Yϋ(— Y)
contains 8 points satisfying the assumptions of (iv), and therefore K is
a parallelogram;

(b) No pair of points yify3eY can belong to the interior of a
small arc of Front K determined by two neighboring vertices of H, since
in such a case (iii) would imply that || yi — y51| < 1.

Now, if (a) does not hold, it is clear that we may find H such that,
after suitably changing the indices if necessary, the following relations
hold {< denotes equality, or precedence according to a fixed orientation
of Front K):

%i = Vi < y* < %2 < y* < %s < y* < — χi, V2 Φ χ%, y* Φ ~ %i

Then (ii) implies that || y1 — y2 \\ = 1, and that y39xify3f %z belong to a
maximal straight-line segment [α, b] c Front K, with xx •< a < x2. Now,
if ?/4 e [α, b] we have || a — b \\ ̂  2 which establishes if as a parallelo-
gram. Let us therefore assume y±$\a, 6]. Jointly with y±Φ — xλ this
implies that y2 = α, y3 = a — xl9 and || y3 — y2 \\ = 1, since otherwise the
affine-regular hexagon with vertices ±xlf ±a, ±(a — xt) would yield
the situation described in (b). Now || yz — (— xt) || = || a || = 1 and
II2/3 — 2/4II ^ 1 imply, by (ii), that || y3 — y, \\ = 1 and that y4, — xlf and
— a are points of a segment [— α, c] c Front K, which is obviously
adjacent to the segment [— a, — b].
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Using (ii) repeatedly we see that — xx < yδ and y5 Φ — x1 therefore
— b — xλ < yQ and yQ Φ — b — x19 so — b <yΊ with y7 Φ — b. But this

is impossible since it would imply || y1 — y7 || < || xλ + b \\ = 1. Accord-
ingly, y4 must belong to [α, 6], and (v) is proved.

(vi) If P = — P is a parallelogram, if C is a convex set, and if
P = (1/2)[C + (— C)], ίften C = P + x /or α suitable point x.

Proof. Considering the supporting lines of P it is immediate that
C must be a parallelogram with sides parallel to those of P; therefore
P = (1/2)[C + ( - C)] implies that C is a translate of P.

REMARK. The author is indebted to Professor E. G. Straus for the
remark that (vi) has to be used in order to complete the original proof
of the theorem. Professor Straus also observed that if K is a centrally
symmetric plane convex body different from a parallelogram, then
K=(1I2)[C + (— C)] for some C which is not a translate of K. The
following particularly simple proof of this fact was given by Dr. E.
Asplund:

Inscribe an affine regular hexagon H in P (see (i)) and construct a
•curve (1/2)C consisting of translates of the arcs of the boundary of P
which are determined by alternate sides of H. It is easy to see that
(1/2)C is not homothetic to the boundary of P unless P is a parallelo-
gram. On the other hand (1/2)C has constant width 1 in the Minkowski
metric whose unit sphere is P (it is in fact a Reuleux triangle for that
metric) and thus — (1/2)C + (1/2)C is the sphere P as the only centrally
symmetric body of constant width.

The related question of non-trivial decomposability of centrally sym-
metric convex bodies in three-dimensional space seems to be much more
complicated. Using results of Gale [1] it is easily established that
parallelepipeds, octahedra and other centrally-symmetric anti-prisms, as
well as other sets, are only trivially decomposable in the form (1/2)[C +
< - C)].

3 We now turn to the proof of our theorem. First of all we
remark that without loss of generality we may assume K to be centrally
symmetric. Indeed, if K is any convex set, (l/2)[if + (— K)] is cen-
trally symmetric; but, as has been noted by Minkowski [8] and used
also by Hadwiger [3], (x + K)Π(y + K) and (x + (l/2)[iί + ( - K)])Π
(y + (1J2)[K + (— K)]) are simultaneously empty, non-empty, or have
interior points. Therefore, (vi) implies that the general case follows
from the symmetric one.

Assuming now that K is centrally symmetric and that the trans-
lates Kn = zn + K satisfy conditions (1), we construct a new family of
translates {Kl} as follows: If zn — 0 we put K* = Kn; if zn Φ 0, we
define iΓ* = (2zJ\\ zn ||) + K. The family AT* then satisfies the conditions
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(1). Indeed, if* n if obviously contains yn = zj\\ zn || (resp. j / n = 0 if
zn = 0), and for n Φ m we have

(2)

since (1), assumed to hold for the family {Kn}, implies

Int (\zn + K) Π Int( μzm + K) = φ for any λ, μ ^ 1.

Now, (2) implies that \\2yn - 2ym\\ ^2, i.e., \\yn-ym\\^l, and
therefore the theorem follows from (v).

4 The number i(K) may be defined in the same way for convex
bodies in any Euclidean space. Hadwiger proved that ί(K) ^ 3fc for
K c Ek, the bound being attained for fc-dimensional parallelotopes. On
the other hand we have:

If KaE* then i(K) ^ k2 + k + 1.

Proof. As above, we may without loss of generality assume that
K is centrally symmetric with center 0. Let the points xt, 0 ̂  i ^ k,
satisfy || xt — x3 || = 2 for i Φ j , where the norm is taken in the
Minkowski metric determined by K. (The existence of such a family
{Xi} may be established by obvious continuity arguments.) Then the
k2 + k + 1 sets xt — x5 + if, for 0 ̂  ί, j ^ k, satisfy conditions (1).
Thus our assertion is established.

The above estimate i(K) ^ k2 + k + 1 is the best possible; it is
attained if K is, e.g., a simplex. This is obvious for k ^ 3, and may
be established also in the general case.

As a generalization of the result of §1, we conjecture that i(K) is
odd for any K and that any odd value between k2 + k + 1 and 3fc is
assumed. The last part of the conjecture is easily verified for k = 3.

5. We end with a related result. Following [4], we shall say that
a set A encloses a set B if every unbounded connected set which inter-
sects B also intersects A. For any convex body K in the Euclidean
plane let e(K) denote the smallest natural number with the property;

There exist translates Kny 1 ̂  n ^ e{K), such that

Int K n Int Kn = φ for all n

U ifw encloses K.

With this terminology we have
// K is not a parallelogram, then e(K) = 6. For a parallelogram

P, e(P) = 4.
This result may be established by the same methods we used in
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§§2 and 3. Using the conventions of §2, the main step of the proof
(which is used instead of (iv) and (v)) may be formulated as follows:

(vii) If Y= {yt; 1 ̂  i S 5} c Front K with \\ y€ - yi+1 || ^ 1 and
Vi < Vί+i for all i (yQ = yj, and if the origin belongs to the convex
hull of Yf then K is a parallelogram.

We may also mention another theorem of a similar kind, established
by Levi [7]: If K is a convex body in the plane, different from a par-
allelogram, then there exist three translates of Int K such that their
union covers K (and therefore encloses it). For centrally symmetric
sets a stronger theorem of the same type is given in [2].
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ON THE ACTION OF A LOCALLY COMPACT

GROUP ON En

F. J. HAHN

It is known [2, p. 208] that if a locally compact group acts effec-
tively and differentiably on En then it is a Lie group. The object of
this note is to show that if the differentiability requirements are replaced
by some weaker restrictions, given later on, the theorem is still true.
Let G be a locally compact group acting on En and let the coordinate
functions of the action be given by fi(g, x19 , xn), 1 ̂  i ^ n. For
economy we introduce the following notation

Q (g9 ί f χ )

We denote by σ(Qt)(e, 0, a?)) the oscillation of Q4/f/, ί, α?) at the point
(β, 0, a?).

Before proceeding there is one simple remark to be made on matrices.
If A — (α4i) is an w x n matrix such that | ai3 — 8t3 \ < (1/n) then A is
non-singular. If A were singular there would be a vector x such that
Σ«#! = 1 and A# = 0. From the Schwarz inequality it follows that
x\ = (ΣXαίj ~ <$ij)xjY < {Vn) and consequently 1 = 5>* < 1 which is im-
possible. If I ai5 — StJ I ̂  (α/w), where 0 < a < 1, then the determinant
of A is bounded away from zero since the determinant is a continuous
function and the set {atJ: \ ai5 — 8t3 \ ̂  (α/n)} is compact in En2.

THEOREM 1. If T is a pointwise periodic homeomorphism of En

then T is periodic.

Proof. [2, p. 224.]

THEOREM 2. If G is a compact, zero dimensional, monothetic group
acting effectively on En and satisfying

(*) tf(QίjO, 0, x))< —, 0 < ε < 1, for each x in En;
n

then G is a finite cyclic group.

Proof. Since G is monothetic, let a be an element whose powers
are dense in G. It is enough to show that there is a power of a which
leaves En pointwise fixed since the action of G is effective.

Received April 12, 1960. The author is a National Science Foundation Fellow.
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If q is a positive integer we let

mg, χ) = xi + A(g, x) + + A(gq-\ x).

If y = (yt) and x = (xt) let

rpq(π „ ,Λ __ T!{g, xlf * - , αgj-!, ffj, - - , yn) - Γflg, x19 * * , a?j, # J + 1 , - , yn)1 ίAy> x> V)
VJ-XJ

for y5 Φ Xj and zero otherwise. If we let y = f(g, x) then we obtain

)-xt= Tfrg, y) - Tϊ(g, x)

Σ
J=l

=q-Σ*—T&g,x,y)(yJ-xJ).
i=i q

Because of the fact that ft(e, x) — xt and because of (*) it follows that
there is a compact neighborhood U{x) of the identity of G such that if
g, , flβ e E7(aO then | (llq)T&g, x, y) - δ, j I ̂  (α/w), 0 < e < α < 1. It
follows that if Γ is the matrix with entries (Hq)T${g, x, y) then T is
non-singular and its determinant is bounded away from zero uniformly
in qy so the determinant of the inverse is bounded uniformly in q; thus

(/(</, x) - x) - (v - x) = ( δ . Λ ) τ-Hf(gq, χ ) - χ ) .

Since G is monothetic and zero dimensional there is a power of a
such that if g = ap then all the powers of g lie in Z7(α?). Since U(x)
is compact it follows that the vectors f{gq, x) — x are bounded uniform-
ly in q and thus f(g, x) — x = /(αp, a?) — a? = 0. Hence a is pointwise
periodic on En and it follows from Theorem 1 that it is periodic and
consequently has a power leaving En pointwise fixed.

From this it follows quickly that if G is a locally compact group
acting effectively on En and satisfying (*) then it is a Lie group.
This follows from the fact that since G is effective it must be finite
dimensional [1] and then if G is not a Lie group it must contain a
compact, non-finite zero dimensional subgroup H [2, p. 237] which acts
effectively. H has small subgroups which act effectively and it follows
from Newman's theorem [3, 4] that H cannot have arbitrarily small
elements of finite order. Thus H has an element a of infinite order
such that the compact subgroup generated by a acts effectively on En

and satisfies (#) but by Theorem 2 this is impossible.
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RELATIVE HERMITIAN MATRICES

MAGNUS R. HESTENES

l Introduction* The purpose of the present paper is to develop a
spectral theory for an arbitrary m x n dimensional matrix A, which is
analogous to that given in the hermitian case and which reduces to the
usual spectral theory when A is hermitian. The theory is centered around
the triple product AB*C of matrices of the same dimension. Here B*
is the transpose of B in the field of real numbers and the conjugate
transpose of B in the field of complex numbers. The matrix T will
be said to be elementary in case T = TT*T. Elementary matrices play
the role of units and in case of vectors are unit vectors. Given an element-
ary matrix T and a matrix A of the same dimension the matrix TA* T
can be considered to be the conjugate transpose of A relative to T. If
A~TA*T, then A is hermitian relative to T. The polar decomposition
theorem for matrices implies that to each matrix A there is a unique
elementary matrix R such that A is hermitian relative to R, AR* is non-
negative hermitian in the usual sense, and R has the same null space as
A. Every elementary matrix T relative to which A is hermitian is of the
form T=T0 + Ri — R2, where R, + R2 = R and Γo, R19 R2 are mutually
^-orthogonal. Two matrices A and B are ^-orthogonal in case AB* = 0
and A*B = 0. A matrix B will be called a section of A if B and A — B
are ^-orthogonal.

If A is hermitian relative to an elementary matrix T, it is shown
below that A and T can be written as sums of sections

A = A, + + Aq , T = Tx + + Tq

such that Ai = \Tif where λ̂  is a real number. Moreover these sections
can be chosen so that Xt Φ XJf (i φ j). If in this event the decomposition
is unique. If AT* ^ 0, then λ< ̂  0. If in addition A and T have the
same null space then λ4 > 0. In the event T is the identity, this result
gives the usual spectral representation of hermitian matrices.

A matrix A will be said to be normal relative to an elementary
matrix T in case A = AT*T= TT*A,AA*T= TA*A. In this event
the spectral decomposition theorem described above holds, the coefficients
%ι being complex instead of real.

In the development of the theory the concept of #-commutativity
of two matrices plays a significant role. The matrices A and B will be
said to ^-commute (see § 4 below) in case AB* = BA* and A*B = B*A.
If A and B ^-commute, there is an elementary matrix T relative to

Received April 26, 1960. The preparation of this paper was sponsored by the Office of
Naval Research and the Office of Ordnance Research, U. S. Army. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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which they are hermitian. Moreover A, B T can be written as sums of
section At, Bif Tι such that A% = λ4Γ4 and Bt = μtTif where λ, and μt

are real. If Sί is a linear class of m x n dimensional matrices that are
hermitian relative to an elementary matrix T in Sί (including T itself)
and have the property that the product AB*C is invariant under per-
mutations A, B and C, then this class forms an algebra with AT*B as
the product of A and B. The elements A of §ί are all matrices expressi-
ble in the form A = XtTt + + XqTq, where Γlf ., TQ are suitably
chosen sections of T. Throughout the paper the reciprocal A*"1 of A*
plays a role analogous to that of A itself.

The main results obtained in the present paper can be extended to
a closed operator A from a Hubert space 91 to a second Hubert space
sJl\ Whenever it is convenient to do so, the theorems are stated so as to
be valid for operators in Hubert space. The terminology used has been
chosen so as to make this transition as simple as possible. The extension
to Hubert spaces yields a common spectral theory for the gradient of
a function and the divergence of a vector field.

2 Terminology and notations* Throughout the following pages
matrices will be denoted by capital letters A, B, C, P,Q, R, . The
elements can be considered to be real or complex. The conjugate transpose
of A will be denoted by A*. It will be convenient to consider all
matrices to be square, since this can be obtained by the addition of
zero-elements. However, this is not essential. The paper is written so
as to be valid for rectangular matrices, the equality of the dimensions
of two or more matrices being implied by the condition that the opera-
tions used should be well defined.

Occasionally we shall use column vectors and row vectors. A column
vector will be denoted by x,y,z, . Row vectors are conjugate trans-
poses of column vectors. If x*x = 1 then x is a unit vector. Given
two vectors x and y then A = yx* is a matrix of rank 1. Every matrix
of rank 1 is represented in the form A = Xyx*, where λ is a real number
and x, y, are unit vectors. In fact λ can be taken to be positive. The
greek letters, a, β,y, μ, appearing in the text normally denote real
numbers.

A matrix is hermitian if A* = A. A hermitian matrix A is non-
negative, written A ^ 0, if x*Ax ^ 0 for every column vector x. If
A ^ 0, there is a unique matrix B ^ 0 such that B2 = A. The matrix
B will be called the square root of A. A matrix E will be called a pro-

1 E. H. Moore, General Analysis, Part I, Mem. Philos. Soc. (1935), p. 197. See also
Penrose, "A generalized inverse of matrices", Proc. Cambridge Philos. Soc. 5 1 (1953), 406-
413; M. R. Hestenes, ''Inversion of matrices by biorthogonalization and related results," /.
Soc. Ind. Appl. Math. 6 (1958), p. 84; J. von Neumann, On regular rings, Proc. Nat. Acad.
Sci. U. S. A. 22 (1936), 707-713.
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jection if E = E* = E\ The identity matrix will be denoted by I.
The null space of the matrix A will be denoted by $lA.

To each matrix A there is a unique matrix B such that

A = AA*B = AB*A = BA*A , B = BB*A = £A*J3 = A£*J3 .

'The matrix B is the reciprocal of A* in the sense of E. H. Moore1 and
will be called the ^-reciprocal of A. It is also the conjugate transpose
•of the reciprocal A"1 of A. If A is nonsingular, A~τ is the inverse of A.
We shall accordingly use the symbols A*"1, A"1* for the ^-reciprocal of
A. The matrices

<2.1) E = A-1 A = A*A*'1 , E' - AA"1 - A*-1 A*

:are projections and satisfy the relations

(2.2) £"A = AE = A , .tf'A*-1 - A*-1^ - A*"1 .

They will be called the projections associated with A. It should be
noted that the reciprocal of A*A is A"1 A*'1 and that the reciprocal of
AA* is A*"1 A"1. If A is hermitian then A*"1 = A~\ If A is nonsingular
then A"1 is the inverse of A.

A matrix 22 will be said to be an elementary matrix in case RR*R = R.
It is easily seen that R is elementary if and only if R = 22*"1 or equi-
valently if and only if R* = R"1. If R is elementary so also is 22*.
.A projection is an elementary matrix. If 22 is a hermitian elemetary
matrix, then

E+ - i-(222 + 22) , 2?_ =i-(222 - 22)
Δ Δ

.are projections such that

22 = E+- E- , E+E- = E-E+ = 0 , R2 = E+ + E. .

•Conversely, the difference of two projections that are orthogonal is a
hermitian elementary matrix.

A matrix A will be said to be hermitan relative to an elementary
matrix 22 if A = 22A*22. The following result is fundamental.

THEOREM 2.1. Suppose that A is hermitian relative to an element-
ary matrix 22. Then A*"1 is hermitian relative to R and A*^*1 are
hermitian relative to 22*. Moreover, Sϊ̂  c 9^ and %lR* c %lA*. The
matrices A and R satisfy the further relations

(2.3a) A - 2222*A - A22*22 = 22A*22 , 22A*A = AA^R - A22*A

(2.3b) A*22 = 22*A , A22* = 22A* .

.(2.3c) (A*22)2 = A"A , (A22*)2 = AA* .
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(2.3d) A*-'A*R = RA*A*~1 = A12*A*-χ = AA^R = RA~λA = A*~*R*A .

Since A = RA*R we have A* = R*AR* and 9iΛ c 3^, 9^* c 9 V
Moreover

1212*A = RR*RA*R = 12A*12 - A =AR*R

AR*A = RA*RR*RA*R = RA*RA*R = AA*iί - 12A*A .

It follows that (2.3a) holds. The relations (2.3b) and (2.3c) follow from
the computations

A*12 - R*AR*R = 12*A , 12A* - RR*AR* = A12*

(A*12)2 = A*i2i2*A - A*A , (Ai?*)2 = AR*RA* =

It is easily verified that iϋA""1./? is the reciprocal R*AR* = A*. Con-
sequently A*"1 = RA~λR, that is, A*"1 is hermitian relative to R.
Similarly A"1 is hermitian relative to it!*. The relations (2.3d) follow
from (2.3b) and the relations AA~X - A*'1 A*, A~ιA - A*A*-1.

COROLLARY. Suppose A = i2A*iτ!, lϋ = RR*R and set P = A*R, Q =-

(2.4) A = i2P = Qi2 , P =R*QR , Q = RPR* .

The matrix P is nonnegative if and only if Q is nonnegative. More-
over Sftβ = ίϊ^ if and only if

(2.5) R = A*-χi2*A

hence if and only if 9^* = 3lΛ*.
In view of this result we define a matrix A to be nonnegative

hermitian relative to R in case A = i?A*ί2 and A*i? ^ 0.

THEOREM 2.2. Given a matrix A there is a unique elementary
matrix R such that A is nonnegatively hermitian relative to R and
such that R — A*~ιR*A. Moreover

(2.6) R*R = A-1 A = A*A*-1 , RR* - AA~X = A*~'A* .

Let P be the square root of A*A. The matrix R = A*~λP has the prop-
erties described in the theorem. Clearly A*J? = A*A*~τP = P ^ 0..
Moreover

RR*R = A * - ^ ^ - 1 ^ = A * - 1 ^ * ^ - 1 ^ * - 1 ^ = A*-χP = 12 ,

RA*R = RP = A*~Ψ2 - A*-'A*A = A ,

A*-1JB*A = A^ΨA-'A = A*"XP = 12 ,

12*12 = 12*A*-X12*A - A~XA = A*A*-1 ,

1212* = A*"112*A12* = A*"XA* = AA~X .

The uniqueness of 12 follows from the uniqueness of P as the square^
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root of A*A. This proves the theorem.
If R is chosen as described in Theorem 2.2 then the formula (2.4)

for A in terms of P = A*R and R is called the polar decomposition2 of
A.

The matrix R described in Theorem 2.2 will be called the elementary
matrix associated with A.

COROLLARY. Let R be the elementary matrix associated with A and
let S and T he elementary matrices such that

A = SS*A = AT*T

Then V — TR*S is the elementary operator associated with B = TA*S
This follows because

VB*V= TR*SS*AT*TR*S = TR*AR*S = TA*S = B

B*V= S*AT*TR*S = S*(AR*)S^0 .

B*-λV*B = B*~1S*RT*TA*S = B*~1S*RA*S

= TA-1SS*AR*S= TA~1AR*S= TR*S==V.

As a further result we have

THEOREM 2.3. Let R be the elementary matrix associated with A.
If A is normal so also is R. If A is nonnegative hermitian, then R is
a projection. If A is hermitian, then R is hermitian and is the differ-
ence of two orthogonal projections.

If A is normal, its associated projections E, E' coincide. By virtue
of (2.6) we have RR* = R*R and R is normal. If A is nonnegative
hermitian, then R = E. If A is hermitian, let P be the square root of
A2. Then A = RP = PR = PR* = R*P. Consequently R = R*, as was
to be proved.

The following result is of interest.

THEOREM 2.4. Let R be the elementary matrix associated with A.
There exists a unique pair of matrices B, C such that

B + C = R, A = BR^C*-1 = C*-χR*B

and having R as their associated elementary matrix. The matrices B
and C are defined by the formulas

B-1 = A'1 + R* , C-1 = A* + R*

and satisfy the relations

BB*C - BC*B - CB*B , CC*B - CB*C = BC*C
2 See MacDuffee, C. B., "Theory of Matrices", Ergebnisse der Mathematik und ihrer

Grenzgebiete (1933), pp. 77.
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-1 = C-'RB'1 = B-1 + C-1

A*-i = B^R^C = CR*B*-1 , A* = B*RC~1 = C-'RB* ,

A-1 = 5-^0* = C*RB~1 .

Since no direct use of this result will be made, its proof will be?
omitted.

3* ^-orthogonality* Two matricies A and B will be said to be
^-orthogonal in case

(3.1) A*B = £*A - 0 , AS* = JBA* = 0 .

Consider now two matrices A and B and let

(3.2) E = A-XA , £" - AA-1 , F = B~XB , F' = EE" 1

be the associated projections. We have the following

LEMMA 3.1. Two matrices A and B are ^-orthogonal if and only

if
(3.3) EF= FE = 0 E'F' = FΈ' = 0 .

Moreover two matrices A and B are ^-orthogonal if and only if their
associated elementary matrices R and S are ^-orthogonal. Finally A
is ^-orthogonal to B if and only if A"1* is ^-orthogonal to B.

If (3.1) holds, then

= (A~1A)(B*B-1*) = A-^AB^B'1* = 0

E'F' = (A-^A+XBB-1) = 0 .

Hence (3.3) holds. The converse follows from the relations A — AE = EΆr

B = BF — F'B. The last two statements in the lemma follow from the-
first.

LEMMA 3.2. Let A and B be ^-orthogonal matrices and set C =
A + B. Then

(3.4) C* = A* + 5 * , C-1 = A"1 + β-1 , C*-1 = A*"1 + β*-1 .

The rank of C is the sum of the ranks of A and B. The elementary-
matrix associated with C is the sum T = R + S of the elementary
matrices R, S associated with A, B, respectively. The matrix C is-
elementary if and only if A and B are elementary.

By the use of Lemma 3.1 it is seen that

A'XB = B-'A = 0 , AB-1 = BA1 = 0 .

It follows that

(A"1 + B-χ)C = A~XA + B-'B = E+ F
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C(A-' + B-1) = AA-1 + BB-1 = E' + F' .

In view of (3.3) the matrices G = E + F and G' = E' + F' are projec-
tions. Moreover, setting C"1 = A"1 + J5"1 we have

The matrix C"1 is therefore reciprocal of C and the relations (3.4) hold.
To show that T — R + S is the elementary matrix associated with C
observe that R*B = S*A - 0, BR* = AS* = 0, by Theorem 3.1. Hence

T*C = R*A + S*5 = A*i2 + β*S - C*Γ ^ 0 , CΓ* = ΓC* ^ 0 .

T * Γ - J?*i2 + S * S - E+ F=G = C'C , TT* = G' = CC"1 ,

as was to be proved. The remaining statements in the lemma are easily
established.

A matrix A will be said to be a section of a matrix C if there is
a matrix B ^-orthogonal to A such that C = A + B. By virtue of the
last lemma the elementary matrix R associated with a section A of C
is a section of the elementary matrix T belonging to C. A section of
an elementary matrix is elementary.

LEMMA 3.3. Let E, Ef be the projections associated with a matrix
A and let F and Ff be projections such that F'A — AF. Then EF — FE,
E'F' = FΈ'. Moreover Ax — AF is a section of A.

Since AE = A it follows that AFE = FΆE = FΆ = AF. Conse-
quently

EFE = A-1 AFE = A~ΆF =

This implies that E'F = i ^ . Similarly E'F' = F'E'. Observe that

FA'1 = FEA"1 = E7FA-1 - A'ΆFA'1 = A-'FΆA"1 = A^F'E' = A^J

= FEF = EF , f i i ^ ί 7 ' = F'E'F' = E"^' .

Consequently ΛΓ1 = FA"1 = A~XF' is the reciprocal of Ax = AF = FΆ.
The projections Eλ = EF, Eo ^ E - Eλ are orthogonal as are El = £"F',
ίί? = E' - F/. Consequently Ao = A#o = A - A, = £ΌΆ is ^-orthogonal
to Alβ Since Λ = AQ + A.x it follows that A1 is a section of A, as was
to be proved.

LEMMA 3.4. A matrix B is a section of A if and only if A*B =
B*B, JBA* = 5 5 * .

Let

F=B-λB, F' = BB-1 .

If A*JB = J5*JS, £A* = 5J5*

A*F' = A*BB-' = B*BB~1 = J5*
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FA* = B~τBA* = B~lBB* = B* .

Consequently B = AF = F ' i and β is a section of A, by Lemma 3.3.
The converse is immediate.

LEMMA 3.5. Let R be an elementary matrix and set E=R*R.
Let S = RF, where F is a projection. Then S is a section of R if
and only if EF = FE. If r is the rank of R then R is expressible
as the sum R = Rλ + ••• + Rr of r ^-orthogonal sections of rank 1.

If S is a section of R then R*S = S*S = EF = EFE. Consequently
EF = FE. Conversely if EF = FE then

S*S = FR*RF = FEF = EF = R*RF = i2*S

= SR* .

It follows from Lemma 3.4 that S is a section of i?.
In order to prove the last statement in the theorem suppose that

R Φ 0 and choose a unit vector x such that Ex = a?. Then Eλ = xx* is
a projection that commutes with £7. Hence Rx = B£7X is a section of JR
of rank 1. Moreover R — Rλ is a section of i2 of rank r — 1 and is
^-orthogonal to JBi If R — Rλ Φ 0 it has a section i?2 of rank 1.
Clearly R2 is ^-orthogonal to Rλ and R — Rx — JB2 is a section of iϋ of
rank r — 2. By a repetition of this argument it is seen that R is ex-
pressible as the sum of r ^-orthogonal sections, as was to be proved.

4. *-commutativity. Given two matrices A and B the products
A*B and AB* can be considered to be two types of ^-products of A
and B. If these ^-products are unaltered upon interchanging A and B,
that is, if

(4.1) A*B = B*A, AB* = BA* ,

then A and B will be said to *-commute. It should be noted that A
and B ^-commute if and only if A*B and AB* are hermitian in the
usual sense. As a first result we have

LEMMA 4.1. If A and B ^-commute and

(4.2) E = A~XA , E' =

then FΆ = AF, E'B = # # αraZ .KF = FE, E'F' = F'E".
For if (4.1) holds then, since F'B = BF = B, we have

= B*-χB*AF = B*~XA*BF = B*~XA*B - B*~λB*A = F Ά

= FΆB*B*-1 = F'B*AB*-χ = B*AB*~X = AB*B*~' = AF.

Consequently AF = FΆ. Similarly E'B = ££7. In view of Lemma 3.3
the relations EF = FF, £"F' = F'£" hold.
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THEOREM 4.1. Two matrices A and B ^-commute if and only if
they are expressible in the form A = Ao + Alf B = BQ + Bly where Ao is
^-orthogonal to A1 and B, BQ is ^-orthogonal to Bλ and A, Aι and Bλ

^-commute and have the same associated projections

(4.3) E, = A Γ ' Λ = Br'B, , E[ = A1Aϊ1 = B.B,1 .

If A and B ^-commute, then, by Lemmas 4.1 and 3.3, the matrices
Aλ = AF, Bλ = BE are sections of A and B respectively and have Ex —
EF, Έ[ = E'Ff as their associated projections. Moreover AQ — A — Ai
has E — EF, Er — E'Ff as its projections and hence is ^-orthogonal to
B and A1 and hence also to Bx and Bo = B — Bx. Similarly Bo is *-
orthogonal to Blf A, AQ and Aλ. The converse is immediate and the
lemma is proved.

COROLLARY. Suppose that A and B ^-commute. Then A and A*"1

^-commute with B and JB*""1. Moreover A*, A'1 ^-commute with B*
and B~x.

We shall see later that their associated matrices R, S ^-commute
with A, B, R, and S.

THEOREM 4.2. Let R be the elementary matrix associated with a
"matrix A and let S be an elementary matrix that ^-commutes with A.
Then S ^-commutes with R. Moreover A, R, S are expressible uniquely
as sums and differences

(4.4) A = Λ + A+ + A_ , R = R0 + R++ R-, S = So + R+- R-

of ^-orthogonal matrices such that the matrices RQ, R+, i?_ are the ele-
mentary matrices associated with A09 A+, A- respectively and such that
So is ^-orthogonal to AQ and Ro. Conversely if A, R, S can be decom-
posed in this manner the A and R ^-commute with S.

By virtue of the last theorem A and S can be expressible uniquely
as the sum of ^-orthogonal sections A = AQ + Aly S = SQ + S1 such that
Aλ and Sλ have the same associated projections, So being ^-orthogonal
to A and Ao being ^-orthogonal to S. The elementary matrix R associ-
ated with A is expressible in the form R = Ro + Rly where Ro and Rλ are
the elementary matrices associated with Ao and A1 respectively. In
view of these remarks we can restrict ourselves to the case in which
Ao = 0, So = 0 and Ro = 0. Then

E = A-1 A = R*R = S*S , E' = AA~γ = RR* = SS* .

Since A*S is self-ad joint, its associated elementary matrix T is the dif-
ference T — E+ — E- of two orthogonal projections E+ and EL whose
sum is E. The matrix A*ST is nonnegative and self-ad joint. It follows
from Theorem 2.1 that R = ST. The matrices R+ = RE+, i2_ = RE-
are ^-orthogonal elementary matrices such that
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R = RE = i?+ + R- , S = RT = R+ — 1?_ .

Since AR* and AS* are hermitian it follows that the matrices

AR* = ^A(R* + S*) , AR* = —A(R* - S*)

are hermitian and orthogonal. Moreover they are nonnegative because
of the relations

0 g AR* = ARΪ + AR* .

The elementary matrices R+ and i?_ are accordingly the elementary
matrices associated with A+ — AE+ and A_ — AE- respectively. It is
clear that A+ and A^ are ^-orthogonal and that A = A+ + A-. The
matrices A, J?, S are therefore expressible in the form (4.4). The con-
verse is immediate and the theorem is established.

COROLLARY 1. Two elementary matrices R and S ^-commute if
and only if there exist mutually matrices RQ, R+, R_, So such that
R = Ro + R+ + R-j S — So + R+ — i?_. Moreover this decomposition is-
unique.

COROLLARY 2. // the matrix S appearing in Theorem 4.2 is of
rank 1 then the decomposition (4.4) of A takes the simpler form

(4.5) A = μS+A0

where μ is a real number and Ao is ^-orthogonal to S.
For in this case two of the matrices So, R+, R- are zero since S has.

rank 1. If S = SQ9 then (4.5) holds with μ = 0. If S = R+, then
R_ = A- = 0 and A+ is of rank 1. Since S*A+ is a nonegative hermitian
matrix of rank 1 it follows that A+ is of the form A+ = μS, where μ > 0.
If S = —i2_, then A_ is of the form A- = μS with μ < 0.

COROLLARY 3. If Sly , Sr are r mutually ^-orthogonal elementary
matrices of rank 1 that ^-commute with A, then A is expressible in
the form

(4.6) A = μ^ + + μrSr + Ao

where μlf , μr are real numbers and Ao is ^-orthogonal to each
St (i — 1, , r) and hence to S1+ + Sr.

This result follows from Corollary 2 by induction. At the A th step
one applies Corollary 2 with A replaced by A — μ^ — . . . — μ ^ S ^
and with S = Sk.

THEOREM 4.3. If a matrix A ^-commutes with every section of an
elementary matrix S than A is expressible in the form

A = μS + Ao
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where μ is a real number and Ao is ^-orthogonal to S.
If S has rank 1, the theorem holds by virtue of Corollary 2 to

Theorem 4.2. If S is of rank r > 1, then, by Lemma 3.5, S is expres-
sible in the form S = Sx + + Sr where S19 , Sr are mutually
^-orthogonal elementary matrices. Consequently A is expressible in the
form (4.6). It remains to show that μ1 = μ2 = = μr. To this end
choose unit vectors x% and yi such that St = xty*. Then for i Φ j the
vector Xi is orthogonal to Xj and yt is orthogonal to yό. Let α and β
be two nonnull real numbers such that a2 + β2 = 1 and set

α = α ^ + /3x, , y = ayt + βyj .

Then Γ = ίĉ /* is a section of S and is ^-orthogonal to Sk if k φ i, k Φ j .
The matrix

is hermitian if and only if μt = μj9 that is T ^-commutes with A if and
only if μι — μj9 This completes the proof of the theorem.

THEOREM 4.4. A matrix A ^-commutes with an elementary matrix
S and has no nonnull section ̂ -orthogonal to S if and only if A — SA*S.

This result is easily established. The condition that A — SA*S,
when S = / is the condition that A be hermitian. Accordingly one can
consider the condition A — SA*S to be an extension of the concept of
a matrix being hermitian.

In the complex domain we have the following:

COROLLARY. If A is a matrix and S is an elementary matrix such
that SS*A = AS*S=A, then B = {1I2)(A+SA*S) and C=(ll2i)(A-SA*S)
^-commute with S. Moreover, A = B + iC.

5. Principal values and principal sections of matrices* Here and
elsewhere the symbol \\y\\ denotes the length or norm of the vector y.
By the norm | |A| | of a matrix A will be meant the least upper bound
of the quantity ||Aa?|| for all unit vectors x. If R is the elementary
matrix associated with A, then [|A|| is equal to the least upper bound
of \\Ax\\ subject to the condition \\Rx\\ = 1. As is well known there
is a unit vector x such that || Ax \\ = \\ A \\. For such a vector x we
have || Rx\\ = l also. It is well known that || A \\ = || A* ||. If A Φ 0
then || A"11| = || A*"11| is equal to the least number m such that
\\Ax\\^(llm)\\Rx\\.

THEOREM 5.1. Let R be the elementary matrix associated with A.
Given a positive number λ there exists a unique decomposition

(5.1) A - A+ + Ao + A_ , R = R+ + Ro + R-
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on A and R into mutually ^-orthogonal sections such that R+, Ro, R-,
R+ — J?_ are the elementary matrices associated with A+9 Ao, A-, A — XR
respectively. Moreover Ao — XR0 and

ίK O\ || A+x || > λ || R+x || whenever R^x Φ 0

11A-X 11 < λ 11 R_x 11 whenever R_x Φ 0 .

// X ^ || A ||, then A+= R+= 0. // 1/λ ^ || A*"11| then A_ = R_ = 0.
In order to prove this result let B = A — XR and let S be the

associated elementary matrix. Since R *-commutes with A and R, it
^-commutes with B and hence also with S. Since S ^-commutes with
B and R it follows that S ^-commutes with A. Applying Theorem 4.2
to A, R, S and to B, R, S it is seen that they are expressible as sums

A = A+ + A + A_ , R = R+ + Ro + R_

B — J?+ + JB0 — J5_ , >S = R+ + So — i?_ .

of ^-orthogonal matrices such that R+ is the elementary matrix associated
with A+ and B+, jβ_ is the elementary matrix associated with A_ and
B-, Ro is the elementary matrix associated with Ao. It is clear that
Bo = So = 0 since every matrix that is ^-orthogonal to A and R is also
^-orthogonal to B and S. From the relation A = B + XR it follows that

A = λi20, A+ = B+ + XR+ , A_ = E_

Consequently

Since these matrices are nonnegative and hermitian, it is seen that (5.2)
holds. The last statement in the theorem follows from the relations
(5.2).

THEOREM 5.2. A nonull matrix A and its associated elementary
matrix R have unique decompositions of the form

(5.3) A = \B, + + XkBk , B - B1 + + R*

into ^-orthogonal sections, where X19 , Xk are distinct positive numbers.
In order to prove this result let λx = || A | | . By virtue of the last

theorem the matrices A and R are expressible as sums

(5.4) A = XLR, + B , R= R, + S

of ^-orthogonal sections with H J B I ^ λ i . If B Φ 0, choose λ 2 = | | 2 ? | |

and, by Theorem 5.1, again, B and S are sums

B - X2R2 + C , S= R2+ T

of sections. Proceeding in this manner one obtains the representation



RELATIVE HERMITIAN MATRICES 237

described in the theorem.
The numbers \, , λfc appearing in the last theorem will be called

the principal values of A and the matrices Ax = X&, , Ak = λfci?fc

will be called the principal sections of A. The rank of At will be
called the multiplicity of Xt as a principal value of A. It is easily seen
that a number λ > 0 is a principal value of A of multiplicity m if and
only if it is an eigenvalue of R*A (or AR*) of multiplicity m. Similarly
a number λ > 0 is a principal value of A if and only if λ2 is an eigen-
value of A*A (or of AA*) and the multiplicities are the same. It is
easily seen that a number λ is a principal value if and only if the
equation Ax = XRx has a solution x with Rx Φ 0.

It follows from the last theorem that the principal values of A are
the norms of the nonnull sections of A and in particular the norms of
the principal sections of A. A section B of rank 1 of the principal
section At — \Rt of A is expressible in the form B = \yx*, where x
and y are unit vectors. A vector of the form ax (a Φ 0) will be called
a principal vector of A and a vector of the form βy (β Φ 0) will be
called a reciprocal principal vector of A corresponding to the principal
value λ*. It is easily seen that x is an eigenvector of A* A and that y
is an eigenvector of AA*.

THEOREM 5.3. A matrix A is normal if and only if its principal
sections are normal, A matrix A is hermitian if and only if its princi-
pal sections are hermitian. A matrix A is hermitian and nonnegative
if and only if its principal sections are hermitian and nonnegative.

In order to prove this result let A and R be represented in the
form (5.3) with XL > λ2 > > Xk. Let

B = A — XkR = (λj. — XjcjRi + + (λft_2 — λ A )i4-i .

If A is normal so also are R and B. It follows that S = Rλ + R2-\ hi4-i>
the elementary matrix belonging to Bf is also normal. This implies that
iϋfc — R — S a n d .̂* — λ Λ-fiίft are normal. The same argument applied to
B shows that Rk^ and Ak^ = X ^ i ? ^ are normal. It follows that each
princiqal section At = XtRi (1 ^ i ^ k) of A is normal whenever A is
normal. Conversely if Alf •••, Ak are normal so also is A. This proves
the first statement in the theorem. The second statement can be proved
similarly. The third statement is an easy consequence of the second
and the concept of nonnegativeness.

THEOREM 5.4. Let X and Y be elementary matrices such that the
relation

YY*A = AXX* - A

holds for a given matrix A. Then B = Y*AX has the same principal
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values as those of A and have the same multiplicities. If R is the
associated elementary matrix for A, then S = Y*RX is the associated
elementary matrix for B. There exist elementary matrices X and Y
such that B is a nonnegative diagonal matrix and R == YX*.

Setting S, - Y*RiX, S=Sλ+ - + Sfc it is found that B =
\S1 + + XkSk. The ranks of St and Rt coincide and St ^-commutes
with Sj (i Φ j). The last statement can be obtained by selecting a maxi-
mal set of mutually orthogonal principal vectors $u '"9xr of A of unit
length and setting yh = Rxh (h = 1, , r). Let X be the matrix whose
first r column vectors are xlf , xr and the remaining vectors are null
vectors. The matrix Y = RXhas ylf •• ,yr as its first r column vectors.
It is easily seen that X and Y are elementary matrices of rank r having
the properties described in the theorem. In fact the nonzero elements
of B = Y*AX are the principal values of A. One could restrict X to
have only r columns if one so desires. One could modify X and Y so
as to be nonsingular. In this event we would have R = YEX*, where
E = R*R. In either event the column vectors of C = AX are mutually
orthogonal and the lengths of the nonnull column vectors of C are the
principal values of A. This fact can be used to devise a modified Jacobi
method for finding the principal values of A. A discussion of a method
of this type will be given by the author in a forthcoming paper.

6 Further properties of *-commutativity* Throughout the present
section let A denote a given matrix and let R be its associated elementary
matrix. Let

(6.1) A = λ ^ + + λ*i4 , R = Rλ + + RJC

be its decomposition into principal sections, given in Theorem 5.2. As
before we set

(6.2) A, = X.R, , Et - BtRi t El - R.R* , E = R*R , E' -

The first result to be established is given in the following.

THEOREM 6.1. If a matrix B ^-commutes with A, then it ^-commutes
with every matrix of the form

(6.3) 0 = 1 ^ + . . . + vkRk

where vlf * ,vft are real numbers. In particular B ^-commutes with
R and with each principal section A3 (j = 1, , k). The matrix B is
expressible uniquely as the sum

(6.4) B = Bo + Bx + + Bh

of ^-orthogonal sections such that Bt is ^-orthogonal to A3 (j Φ i) and
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B% (i > 0) ^-commutes with A%.
In order to prove this result we may suppose that the principal

sections of A have been ordered so that \λ < λ2 < < λft. Recall that,
by virture of the corollary to Theorem 4.1, the matrix B not only
^-commutes with A but also with

A*-1 =

I t follows that B ^-commutes with

Ca = A - λ^A*-1 = λ22i22 + + λfc2#fc

•where Xi2 — λ, — \(\l\) > 0 (i = 2, - , ft). Moreover λi2 < λ j2 (ΐ < j),
as one readily verifies. Using the recursion formula

one obtains matrices of the form

C, - XJJRJ + + λwi2Λ (i = 2, , fc)

that ^-commute with B. Moreover each Rt is a linear combination of
Cj — A, C2, •• ,C Λ . It follows that J5 ^-commutes with each of the
sections R19 , R^ of R. Consequently B ^-commutes with any matrix
C of the form (6.3).

In order to prove that B is of the form (6.4) it follows from
Theorem 4.1 with A replaced At that B is expressible in the form
B — Ci + Bt where Ct is ^-orthogonal to A< and Bo = B — (BL + +i?fc)
is ^-orthogonal to each Bό and A5 (j = 1, , fc) and hence also to A.
This completes the proof of the theorem.

THEOREM 6.2. If a matrix B ^-commutes with every section of A,
then B is expressible in the form

(6.5) B = Bo + μ,R, + + μkRh

where μlf « «, μk are real numbers and Bo is ^-orthogonal to A.
Let Bo, Bif , Bk be the sections of B given in (6.4). Since every

section of At and hence every section of Rt ^-commutes with B and
Tience with Bi it follows from Theorem 4.3 that Bt is of the form
jj. = μ.R. + Bi0, where μt is a real number and BίQ is ^-orthogonal to
Rt. It is clear from the definition of Bt that BiQ must be zero. This
proves the theorem.

THEOREM 6.3. A matrix B ^-commutes with A if and only if it
^-commutes with R and AR*B = BR*A.

If B *-commutes with A, then B ^-commutes with R and

AR*B - AB*R = BA*R = BR*A .
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Conversely, suppose that B ^-commutes with R and that AR*B = BR*A.
Then A*i2B* = B*RA* and

A*B = R*RA*B = R*AR*B = R*BR*A = B*RR*A = B*A

AB* = RR*AB* = RA*RB* = RB*RA* = BR*RA* = BA* ,

as was to be proved.

COROLLARY. If A is a positive definite hermitian matrix, then B
^-commutes with A if and only if B is hermitian and AB = BA.

This result is immediate since R — I for a positive definite matrix.
It should be observed that if A is hermitian but not definite, then

there are nonhermitian matrices that #-commute with A. For example
the matrices

^-commute even though B is not hermitian. However A is elementary
and B = AB*A, that is, B is hermitian relative to A.

THEOREM 6.4. Let A be a matrix and let T be an elementary
matrix such that TA* T = A. Let B be a matrix that ^-commutes with
T. Then B *-commutes with A if and only if AT*B = BT*A.

The proof is similar to that of the last theorem and will be omitted.

THEOREM 6.5. Given a matrix B that ^-commutes with A there
exists a set of mutually ^-orthogonal elementary matrices T19 •••, Tq

with the property that A and B are expressible in the form

(6.6) A = axTλ + + aqTq , B = β 1 T 1 + •-- + βqTq

where a19 * , α g are equal numbers, β19 •• ,AZ are equal numbers and

a% = ajy βt = βj holds only in case i = j . If at Φ 0, then \ax\ is a

principal value of A. Similarly if βt Φ 0 then \ βt \ is a principal

value.

It is clear that Tt may be replaced by —Tt in the theorem. The
matrices T19 , Tq will be uniquely determined if, for example, one
requires that βt ^ 0 and that a% > 0 if βi = 0.

Let

(6.7) A = X,Rλ + + λ J 4 , B = μβ, + . . . + μmSm

be the decompositions of A and B respectively into principal sections.
Recall that by virtue of Corollary 1 to Theorem 4.2 the matrices Rt

and Sj are expressible as sums

•R« — Rao + Rij+ + Hij- 9 Sj = Sij0 + Rij+ — Rij- .

Let T19 , Tp be all non-null elementary matrices Rίj+ and i?^_ obtained
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in this manner. Adjoin to these the maximal nonnull section of each
Ri that is ^-orthogonal to S and the maximal nonnull section of each
Sj that is ^-orthogonal to R. The elementary matrices T19 , Tq obtained
in this manner are ^-orthogonal and have the property that each Rt and
S3 is expressible uniquely in the form

Ά + + piaTq , Sj = a51Tx + + σjqT
Q

where pik = 0 if Tk is ^-orthogonal to Rίf ptn = 1 if Th is a section of
Rίf ρih = —1 if — Th is a section of Ri9 σjh = 0 if Th is ^-orthogonal to
Sjt σjh = 1 if Th is a section of S3 and <τJft = —1 if —Th if a section of
Sό. Combining this result with (6.7) one obtains (6.6). The last state-
ment of the theorem follows from the construction just made.

As a consequence of this result we have

THEOREM 6.6. Let T be an elementary matrix and let A be a
matrix satisfying the condition A — TA*T. Then A and T can be
represented uniquely as the sum

(6.7) A = a,Tx + + aqTq , T = 2\ + • + Tq

of mutually ^-orthogonal matrices such that at Φ a5 (i Φ j).
This result follows from the last theorem with B = T and the

condition that βt ^ 0. Since no nonnull section of A is ^-orthogonal to
T we have βt = 1, and the theorem follows.

If T is the identity then A is hermitian and alf

 # ,^ α are the
eigenvalues of A. The rank of Tt is the multiplicity of at as an eigen-
value of A. This result suggests that we call a19 , aq the principal
values or eigenvalues of A relative to T, the rank of Tt being the
multiplicity of at.

As an extension of the last theorem we have

THEOREM 6.7. Let T be an elementary matrix and let A and B be
^-commutative matrices such that A= TA*T and B= TB*T. There
is a unique decomposition

τ = τx+ ... + τq

into sections such that A and B are representable in the form

A = a1T1+ ... + aqTq , B = β1T1+ --- +βqTq

where at = aj9 βt — β5 holds only in case i = j .
The proof of this result can be made by a simple modification of

the proof of the last two theorems and will be omitted.
In the complex domain we have the following

COROLLARY 1. Let T be an elementary matrix and let C be a
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matrix such that TT*C = CT*T= C and TC*C = CC*T. Then C and
T have unique decompositions

C = 71T1 + + %Tq , Γ = 2\ + + Γβ

m sections, where y19

 % ,7 g are (Zistmct complex numbers.
For, by the corollary to Theorem 4.4, the matrix C is expressible

in the form C = A + iB, where A and B ^-commute with T. From
the relation TC*C = CC*T it is found that AT*B = JSΓ*A and hence
that A and 5 ^-commute. The corollary follows from the last theorem
with 7j = aό + iβj (j = l,..., q).

If T = /, the result described in the corollary yields the spectral
decomposition for normal matrices.

By the use of an argument like that given in the proof of Theorem
5.4 one obtains the further result described in the following

COROLLARY 2. Let A and B be ^--commutative matrices and let T
be an elementary matrix such that A = TA*T and B = TB*T. There
exist elementary matrices X and Y such that

γγ*T=z Tχχ* == τ

and such that Y*AX, Y*BX are diagonal matrices. I/C — A + iBy

then Y*CX is also a diagonal matrix.

7 Certain classes of matrices. Let £*(A) be the class of matrices
B that ^-commute with A and have no non-null section that is ^orthogo-
nal to A. Let <^(A) be all matrices B such that £f(A) is a subclass
of Sf{B). It is clear that A is in ^(A). We have the following

THEOREM 7.1. Let R be the elementary matrix associated with A
and let

A = λijRi + + XkRk , R= Rι+ +Rκ

be the decomposition of A into principal sections. The class ^(A)
consists of all matrices B that are expressible in the form

(7.1) B = /x1fi1.+ ••• + μ A

where μ19 •• ,μti are real numbers. If B is in ^(A) so also is I?*""1

and its associated elementary matrix S.
This result follows from Theorems 6.1 and 6.2.

COROLLARY. // B is in <&{A) then if (5) c if (A) Moreover

<^{A) if and only if B has the same number of distinct

principal values as A.
As a further result we have

THEOREM 7.2. If B, C, D are matrices in < (̂A) so also isM= BCD.
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In fact

(7.2) BCD - BD*C = CB*D = CD*B = DB*C = DC*B .

The relations (6.2) follow from the fact that B, C, D ^-commute
with each other. Observe that M* = B*CD*. If N is a matrix in
£f (A) then

D = B*NC*D = B*CN*D = B*CD*N = M*2NΓ.

Similarly JYM* = MN*. This proves the theorem.

In view of the formula (7.1) one obtains the following

THEOREM 7.3. Lei

(7.3) B = μλRλ + + μfc#fc , C = ^Λ, + + vkRk

be two matrices in <g%A). ΓΛe^

aB + βC = (aμ, + βvι)Rι + + (aμk + βvk)Rk

is in C^{A) for every pair of real numbers a and β. If we define
the product of B and C by the formula B C = J?i2*C, then

B-C = M f t + + μkvkRk

is in C^{A) and the usual laws of algebra hold. In particular B R =
R B = B. Given a polynomial

reαi coefficients set

pm(A, R) = a0A
{0) + axA^ + . . + α^ A(w) ,

where Am = Λ, A(1) = A, A(Λ) = A A1*-". Then the polynomial

pm{A, R) =

m A relative to R is in ^ ( A ) . Conversely every matrix B in
is expressible as a real polynominal in A relative to R of degree g f c - 1 .
There is a unique polynomial pk(X) with leading coefficient ah = 1 such
that pk(A, R) = 0.

The first three statements in the lemma are immediate. The matrix
B is given by the relative polynomial pk-λ{A, R) whose coefficients
ao,a19 •• ,ak-L are given by the solutions of the equations

ί + a^ + + ak^Xh

k = μh (h = 0,1, , k - 1) .

Finally the polynomial pk(X) described in the last statement in the theo-
rem is the polynomial of degree k whose roots are X19 λ2, •• 9XΛ.

COROLLARY. On the class ^ ( A ) the norm \\B\\ satisfies the rela-
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tion ||fi.C||^||J8
As a final property of the classes ^(A) we have

THEOREM 7.4. If B is in ^(A) there is a matrix C such that A
and B are in <ĝ (C).

This result follows from Theorem 6.5 with

Let T be a given elementary matrix and let A be a matrix in £f(T).
Let S^(A, T) be all matrices in 6^{T) that ^-commute with A. Let
^(A, T) be all matrices B in ^ ( A , T) such that ^ ( A , T) c £S(B, T).
If T is the elementary matrix R associated with A then <^(A, Γ) = <^(A).
Let

A = α ^ + + aqTq , Γ = Tx + Tq

be the decomposition of A and Γ given in Theorem 6.6. Then, as is
easily seen, the class ^(A, T) consists of all matrices of the form

B=β1T1+ - + βaTq

where βlf , βq are real numbers. If we set

— i i -t z i 2 -t- -r qiq

then the class ^(A, T) coincides with the class %\C). Consequently
the results stated above are applicable to the class ^(A). If T is the
identity, then A is hermitian and ^(A, Γ) consists of all hermitian
matrices that commute with every hermitian matrix that commutes
with A.

Consider now an elementary matrix T and let 9ΐ(T) be the class of
all matrices A such that TT*A = AT*T= A and AA*Γ=27A*A.
Given a matrix A in 5R(Γ) let 9Jί(A, Γ) be the class of all matrices B
in 3Ϊ(T) such that AT*B=BT*A and AB*T = ΓB*A. If 5 is in
2Ji(A, Γ) then BA*T= TA*B also. Moreover, TB*T is in 2)ΐ(A, Γ).
Let ^ ( A , Γ) be the class of all matrices £ such that 9Jl(JB, T)z)3Jί(A, Γ).
In view of Corollary 1 to Theorem 6.7 the matrices A and T are ex-
pressible uniquely in the form

A = axTx + + aqTa , T = Γ + - + Γβ ,

where αx, α2, , aq are distinct complex numbers. It is not difficult to
show a matrix B is in ^ ( A , T) if and only if it is expressible in the
form

B = βxTx + + /3gTα ,

where βίf •• ,/5α are complex numbers. If Band Care in ^ ( A , Γ) so
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also are aB + βC, where a and β are complex numbers. Moreover, the
product B-C = BT*C is in ^(A, T). If polynomials of A relative to T
are defined as before, but with complex coefficients, it is seen that the
class &(A, T) is made up of all polynomials of A relative to T of
degree < q - 1. Again we have the relation || B-C\\ ^\\B|| || C | |. These
results generalize the corresponding theory for normal matrices.
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ON SIMILARITY INVARIANTS OF CERTAIN

OPERATORS IN Lv

G. K. KALISCH

The purpose of this paper is to extend the result of Corollary,
Theorem 2 of the author's paper on Volterra operators (Annals of Math.,
66, 1957, pp. 481-494 quoted as A) we shall use the definitions and
notations of that paper) to the most general situation applicable: We
are dealing with operators TF where F(x, y) = (y — x)™'1 aG(x, y) is a
function defined on the triangle 0 ^ x ^ y ^ 1, where m is a positive
integer, a a complex number of absolute value 1, G is a complex valued
function which is continuously differentiable and G(x, x) is positive real.

We recall that if fe Lp [0,1], then (TF)(f)(x) =ΓF(x,y)f(y)dy is again
Jx

in Lp [0,1]. The only difference from A is the presence of the constant
a which affects none of results except Theorem 2 and its Corollary.
Theorems 1 and 2 of the present paper fill the gap. Theorem 3 shows
that differentiability conditions imposed on F cannot be abandoned
entirely—and also that the integral equation (1) of A cannot be solved
unless K (which corresponds to our F) has at least first derivatives near
y = x.

If c is constant and E is the function identically equal to 1, we
define T% as TB which H(x, y) = (y — xy^/Γfa) (fractional integration
of order c).

THEOREM 1. Let cx and c2 be complex numbers and let rx and r2

be real numbers such that rt ^ 1, then cλT
r

F is similar to c2Tp if and
only if cx — c2 and rx — r2.

Proof. The first part of the Proof of Theorem 2 of A applies and
implies tha t rλ — r2 ( = r) and \cλ\ — | c 2 | . Thus suppose that cxT

r

E is
similar to c2T

r

E or that cTE is similar to

( 1 ) TE = PcTr

EP-1 for | c | = 1

where P is a bounded linear transformation of Lp [0,1] onto itself with
the bounded linear inverse P~\ If T is similar to S — PTP"1, then
f(T) is similar to

( 2 )

for polynomials and even analytic functions /. Let

Received February 29, I960. The author was supported in part by the United States
Air Force under Contract No. AF 49(638)-64 and by a grant from the National Science
Foundation.
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Then

J KyJ-EJ — Z-λ^i^ M E — -L g^y—x)

where gx{t) = ctr~1g(ctr) where we have written t for y — x and where

with 6t = aJΓ(r(i + 1)). Equations (1) and (2) imply that | | / ( Γ ί ) | | g
II ί5 II II P~Ί\ Wf(oTi) ||. The definition of the norm of a linear transforma-
tion in a Banach space implies the following inequality:

for all k e Lp [0,1] such that || k \\p = 1. On the other hand, Lemma 2
of A implies that

Thus if k{y) = 1, we obtain

£ = 11 ΓίV - xY-WiV - x)r)dy IL ^ II/(Γί) II
11 JX II

( 3 )

We shall find a family of functions gυ (and correspondingly /„) depending
on a positive parameter v such that if we use the notations LΌ and Rυ

for the corresponding left and right hand sides of (3), Lυ —> oo and Rv —> 0
as v —> oo contradicting the inequality (3): this contradiction then proves
our theorem.

Let us first consider the case where the real part of c, Re(c), is less
than 0. Let gυ(t) = exp (vt). Since Tr

E is generalized nilpotent for r Ξ> 1,
the corresponding function fΌ{Tl) exists and (1) indeed implies (2) for
S = Tr

E and T = cΓj . Then

\1=[\ t'-1 exp (wtr) | dt
Jo

and S ^ O as v~^co, On the other hand

Lυ = (l/rp) Γ(exp (v(l - x)) - Ijvγdx -> oo
Jo

as v—> oo. If finally -B (̂c) ^ 0 and c ^ 1, then there exist a positive
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integer n such that Re(cn) < 0. But then (1) implies that cnTlr is
similar to TE

r — PcnTE

rP'1 which contradicts the preceding result and
the proof of the theorem is complete.

THEOREM 2. Let F(x, y) = (y — x^^aGix, y) satisfy, in addition
to the general hypotheses stated above, one of the following:

(1) G is analytic in a suitable region and m is arbitrary,
(2) G(x, y) = G(y - x), G(0) Φ0, G e C2 and m is arbitrary;
( 3 ) G e C2 and m = 1. Let Abe a complex number. Then AI + TF

and AI + TF are similar to the unique operator AI + caT™ and

AI+caTE respectively where c — [\ (G(u, u)llmdu)m.
Vjo /

Here / is the identity operator and T£, the adjoint of Tκ, is defined
by

(Tί)(f)(x) = [K(^)f(y)dy .
Jo

Proof. Note first that A implies that AI + TF is similar to
AI + caT% and that AI + T* is similar to AI + caTim (see Cor. Theorem

2 of A). Observe next that T£f(x) = \*f(y)dy and
Jo

T*mf(x) = (1/Γ(m)) \\x - yT-'fiy) dy
Jo

and that if (S1_x/)(x) = / ( I — x) then S^x is an isometry of Lp [0,1] onto
itself and iS1_a5Γ|ιSί"ia. = TE

m. It remains to show uniqueness. Suppose
that AJ + c^T™1 is similar to A2I + c2a2TE

2. Then A1 — A2 (because
of the complete continuity of TE) and c^T™1 is similar to c2a2T™2 which
by Theorom 1 implies that cλ = c2, ax = α2, mx = m2.

THEOREM 3. T/̂ β linear transformation TE + T^+α where 0 < α < 1
o/ L f̂O, 1] into itself is not similar to any linear transformation CTE
for complex c and real r ^ 1.

Proof. Preliminaries. 1. If two linear transformations S and T
are similar, i.e., if there exists P such that S = PTP~X, then there
exists a constant K such that

( 4 )

for all positive integers n. It suffices to take K= \\P\\ IIP" 11|.

2. The following inequality is a consequence of the fact that if
0 ^ F,(x, y) S F2(x, y) then || TFl \\ ^ \\ TF21|:
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(5) ll(Γ,+ Γi+β)ΊI^»IIΓί+"ll

for all positive integers n.

3. Our next task is to find estimates for || TS\\. An estimate from
above is the following:

(6) \\TS\\£lKnΓ(nW)

for all positive integers n. An estimate from below is furnished by the
following Proposition:

Given the real positive number e there exists a positive number
K = K{e) and a positive integer N = N(e) such that for all integers

(7) || Γ | | | ̂  KI(n1+eΓ(n)) .

Proof of (6). If/eL,[0,l],

TSf(x) = [ [(y - xf-ηΓ{n)]f{y)dy .
Jx

If {lip) + {ljq) = 1, Holder's inequality yields

» - %Y~ιf{y)dy < (^\y - x)^»'dyj9 \\f\\,

= (1 - a;)<ι"-»«+1''« ||/||p/(((w - l)q + I)1")

so that

II Γ5/H5

P

dx

which implies that

|| Till ^ (l/Γ(w))(l/((n - 1)9 + l)1/9)(l/((^ - l)p + (p/g) + l)1^)

which in turn implies (6).

Proof of (7). We first observe that elementary considerations con-
cerning the gamma function imply that given c such that 0 < c < 1 and
given a positive real number d there exists an integer N depending on
c and d such that for all integers n ^ N
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( 8 ) Γ(n + c)< (n + c)c+aΓ(n) .

Consider next the function f(x) = r ( l - x)~s e Lp [0,1] such t h a t \\f\\p =

1, i.e., rp = 1 — sp and 0 < s < 1/p. Then

TSf(x) = rΓ(l - β)(l - x)»-'IΓ(n + 1 - s)

and

|| Till ^ rΓ(ί - 8)/Γ(n + 1 - 8)(p(w - s) + I)1

We now choose s (and hence r) such that for the positive real number
e of (7), 0 < (IIp) — s < e and then we choose d such that 0 < d <
β + s — (1/p) and finally by virture of (8) we obtain N as a function of
e such that for all integers n^ N, Γ(n + 1 — s ) < ( w + l — s y - ^ Γ O )
whence

|| Tϊ || ^ rΓ( l - 8)1 (n + 1 - sy- +TfaXpfa - β) + l)1/2)

which upon choosing K — iί(e) properly implies (7).
After these preliminaries, we turn to the proof of the theorem. We

distinguish several cases. Let T = TE + Tι

E

+a.

Case 1. I c \ ̂  1. Consider

where we have used (5) and the fact that r ^ 1. Take now positive
real numbers e and eZ such that a + β + d < 1. Then there exists by
( 7 ) a positive constant K and an integer N such that for all integers
n^ N

( 9 ) K^(n + a)1+eΓ(n + a)l(n2Γ(n)pllPK)

^(n + a)1+e+a+dΓ(n)l(n2Γ(n)pllPK)

where we have made use of (8) and (6). The last inequality implies
that hn —> 0 which in conjunction with (4) implies the truth of our theorem
in the case under consideration.

Case 2. r < 1. Using the notations and making similar choices as
under Case 1, (9) becomes

KS\c \n(n + a)^a+dΓ{n)l{tfrΓ(rri)plι*K)

which, since | c \nΓ(n)IΓ(rri) is bounded (in fact converges to 0) for r > 1
as n—> oo, again proves the truth of the theorem in the present case.

Case 3, r = 1, | c | > 1. This time we consider the quotient
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(10)
<=0

± + a(n - ί) + 1)) ,

which is valid for sufficiently large n; again we used (6) and (7).
In order to complete the proof of our theorem, we need the follow-

ing fact:
Given any positive real number e and given the positive real number

a < 1, there exists an integer N = N(e; a) such that for all integers i
and n such that 0 ^ i ^n gL JV

(11) Γ(n)IΓ(n + a(n - i) + 1) ^ 2en~l .

Proof. The case i = 0 results from elementary considerations
about the gamma function. If ί = 1, we find iVΊ so that (11) is valid
for i = 0 and w ^ iSî . We then find JV"2 SO that (8) is true for some arbi-
trary but fixed d, for c=a and for n ^ iV2. Then Γ(n)IΓ(n + (n—l)α + l) ^
(Γ(n)IΓ(n + na + l))/(n + na + l)a+d which for n ^ max (JVlf N2, e~lla) = iV3

implies (11) for i = 2 and w ^ iV3. The remaining cases are settled by
induction (except i = n which is obvious); note that we never have to
go above JV3 at any point. This completes the proof of (11).

The proof is now completed by substituting (11) into (10):

K ^ 2n1+c(l + ex)
nl\c \nKpllP

where et is the constant e of (11). Thus kn —> 0 upon proper choice of
e± and our theorem is again true in view of (4). This completes the
proof of Theorem 3.

UNIVERSITY OF MINNESOTA



THE STONE-WEIERSTRASS PROPERTY IN

BANACH ALGEBRAS

YITZHAK KATZNELSON AND WALTER RUDIN*

Introduction* Let A be a semi-simple commutative Banach algebra
with maximal ideal space Δ. Regarding the elements of A as functions
on Δ, we call a subalgebra B of A self-adjoint if corresponding to every
f e B the function / defined on Δ by f(x) = f(x) is also in B; we call
B separating if to every pair of distinct points x0, xλ e Δ there is an
feB such that f(x0) = 0, f{xλ) = 1.

If every separating self-adjoint subalgebra of A is dense in A, we
say that A has the Stone-Weierstrass property.

The Stone-Weierstrass property is related, to some extent at least,
to the ideal structure of A. For instance, it is obvious that if A has
a unit and a closed primary ideal / which is not maximal, then the
algebra generated by / and the constants is not dense in A. More
generally, suppose A is self-adjoint, I is a closed self-adjoint ideal in A
which is not the intersection of the regular maximal ideals containing
it, and A/1 is the direct sum of its radical and a subalgebra Bo. If h
is the canonical homomorphism of A onto A\I, then I + h~\BQ) is a
separating self-adjoint subalgebra of A which is not dense in A, so that
A does not have the S — W property.

Also, it was pointed out by Herz that the Schwartz counterexample
[9] to spectral synthesis in UiR*) yields immediately an example of a
closed, separating, self-adjoint, proper subalgebra of L\RZ). After
Malliavin's solution of the spectral synthesis problem for L\Γ), where
Γ is any locally compact abelian group, it was natural to investigate
the S — W property for these algebras.

In Part I (whose contents were announced in [5]) this is done for
Γ== Z, the additive group of the integers. The general case is settled
in Part II; the solution shows that the relation between the S — W
property and the ideal structure is, after all, not a very close one. Part
III deals with the relation between the self-adjointness of A and the
total disconnectedness of Δ.

For convenience of notation, we shall phrase our results on group
algebras in A(G) rather than in L\Γ). Here G and Γ are dual groups
of each other, and A(G) is the algebra of all Fourier transforms of
functions in L\Γ). The circle group (the dual of Z) will be denoted
by T, so that A(T) is the algebra of all absolutely convergent Fourier
series.

Since every locally compact abelian group is locally isomorphic to a

Received April 4, 1960. * Research Fellow of the Alfred P. Sloan Foundation.
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compact group, nothing of interest is lost by restricting our attention
to algebras A(G) with G compact.

PART I

LEMMA 1.1. If g and its derivative gτ are in A(T), and if ε > 0,
0 < δ < π, there exists a function φ on T with the following proper-
ties:

( i ) 0 ^ 9 > ^ 1 ;
(ii) φ == 1 in some neighborhood of 0, φ = 0 outside (— δ, δ);
(iii) if h — φg, then \ nh(n) \ < ε (n — 0, ± 1 , ± 2 , •)•
Here h(n) denotes the wth Fourier coefficient of h:

( 1 ) h(n) = — Γ h(x)e~ίnxdx .
2π I-*

Proof. Let u be a continuous odd function on the real line, vanish-

S 2

u(s)ds = — 1,
and put

( 2 ) u(t) = — Γ t6(s)e-ίsίcίs (ί real).
2τr J-°°

Note that
(a) β(0) = 0,
(b) u is continuous,

(c) | | 6 | L < 1 , and
(d) ft(t)->0 as | t |—^ oo.
For r = 1, 2, 3, , put ur(x) = ru(rx). Then ώr(£) = u(t/r), and

the above mentioned properties of ίί show that there exists a sequence
of positive integers r% (which must increase sufficiently rapidly), so that

( 3 ) \ύri(t)+ ••• +urβ)\<l (fc = l , 2 , 3 , . . . treal).

Take τx and Λ so large that rλ > 2/δ and

( 4 )

(The subscripts A indicate that the norms are taken in A(T).) Define

(5 ) v == i- (urχ + + ur) ,

( 6 )

Our construction shows immediately that ψ has properties (i) and (ii)
of the temma. If h = φg, then hf = vg + φg\ Note that |<p(0)| g 2/(ττr1)
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and that

I φ(n) I = I v(n)/n | ^ | v(n) | ^ 1/fc

for n Φ 0, by (3) and (5). Thus

^ WQWA + ( + )\\g\\A < s ,

by (4), and the lemma is proved.

THEOREM 1.2. A(T) does not have the Stone-Weierstrass property.

Proof. We shall construct a totally disconnected perfect set P on
T and a function /, not equivalent to 0, which vanishes outside P, such
that I nf(n) | is bounded.

Once this is done, we let B[P] be the algebra of all twice con-
tinuously differentiable functions g on T such that g\x) = 0 for every
x e P. Since P is totally disconnected, B[P] is a separating (and evi-
dently self-adjoint) subalgebra of A(T). The bounded sequence {nf(n)}
defines a non-zero bounded linear functional U on L\Z), hence on A(T),
and ί7 annihilates £[P]: for g e B[P], the Fourier series of g' converges
uniformly, and we have

(7 ) Ug - Σ ff(-ttWfa) = -^- Γ /W0*0^ = 0 .
2Γ J

Hence B[P] is not dense in A(T), and the theorem follows.
Now to the construction of / and P. Put /0 = 1, and suppose that

fι is constructed, so that

( 8 ) I nfan) 1 ^ 1 - 2 " * (n = 0, ± 1, ±2, . .) .

Let Ii be the largest interval on which ft is identically 1, let x% be the
midpoint of Iif and choose ψt (by Lemma 1.1) such that

( i ) O ^ ^ g l ;
(ii) φ. = 1 in a neighborhood of α?t, ^ = 0 outside (a?€ — δ4, xt + δέ),

where δ, = 2rι~λ\
(iii) if hi = / ^ i , then | t*4(w) | < 2"*-1 for n = 0, ± 1 , ±2, .
Define /<+1 = / f(l - ^ ) . Then

I nfi+1(n) I ̂  I nhn) \ + \ nK%(n) | < 1 - 2" ί" 1 ,

so that our induction hypothesis (8) is satisfied with i + 1 in place of i.
The sequence {/J converges monotonically to a function/. Applying

the Lebesgue convergence theorem to the computation of f(n), (8) shows
that \nf(n)\ ^ | 1 . Our choice of the points xt shows that / = 0 on a
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dense open set V. Let P be the complement of V. Finally, observe
that / = 1 at those points at which every ψ% is 0, and this happens on
the complement of a set whose measure does not exceed 2 ΣίΓ δt < 2π.
Hence / = 1 on a set of positive measure. This completes the proof.

1.3. It was essential in our preceding construction to have P of

positive measure. For suppose m{P) — 0 and B[P] is defined as in the

proof of Theorem 1.2. If {cn} is any bounded sequence such that

Σ-o.crf(-n) = 0 for every g e B[P], and if f(x)~^o(cjn)einx, a

computation analogous to (7) shows that \ y^' = 0 for every g e B[P],

It follows that / must vanish outside P, and since m(P) — 0, cn = 0

for n Φ 0. Then c0 much also be 0, and we conclude that B[P] is dense

in A(T).

1.4. However, measure theoretic conditions on P are not enough.
To show this, we shall now construct a totally disconnected perfect set
P of positive measure, such that B[P] is dense in A(T). Our con-
struction will also show that for every function g e A(T) there exist
differentiate gn such that \\g — gn\\—>0 and g'n—>0 a.e.

Put nk — 2fc+1, iVfc = nλn2 nk9 let k = 1, 2, 3, ,

. _ / 2τr(j - 1)

and let Jfc be the union of those LkJ which have j = 1 (mod % ) . The
desired set P is the intersection of the complements of the /fc.

Since m(/fc) = 2πlnk, we see that m(P) ^ TΓ.
Let ^fc be the characteristic function of Iky and define

gk(t)dt .
o

Then fk(2π) = 2π, hence e ί/fc e A(T), and since fk is constant on each
interval of the complement of /fc, e4/* belongs to the closure B of B[P].

Next, fk(x) — x — hkiNjc-fl), where hk(0) = hk(2π) = 0, hk is linear
on [0, 2πlnk] and on [2πjnk9 2π]9 hh has period 2π, and

i (2π\ 2π 2π

Then ||Λ(a?) - a? || = || K(Nk-xx) || = || M Computation of the Fourier
coefficients of hκ (see 1.5 below) shows that || hk \\ —> 0 as k—* oo. It
follows that

|| = || 1 — e

i{f*{x)-χ) || -» 0

on k —> oo, so that 5 contains the function eίx
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Similarly, e~ix e B, hence B = A(T), and B[P] is dense in A{T).

1.5. Suppose 0 < a < 1/2, 6 > 0. Let h be linear on [0, a] and on
[α, 27r], such that h(0) = h(2π) = 0, and h(a) = 6. Then

2 2ττ — α rc^o % α

Hence ||Λ|| (the norm being taken in A{T)) is bounded by Cb log I/a,
where C is an absolute constant.

1.6. In our proof of Theorem 1.2 we could have chosen the inter-
vals on which φ% = 1 so that the resulting set P satisfies a certain
arithmetic condition which assures that P is a set of spectral synthesis.
The condition we have in mind is due Herz [3; Theorem 6.5]: there
should be an increasing sequence of integers nh such that a point 2πj[nk

either lies in P or its distance from P is at least 2πjnΊc.
. If P is so constructed, let I be the ideal in A(T) of all functions

vanishing on P. Since P is a set of spectral synthesis, I lies in the
closure B of B[P], B/Iis a proper subalgebra of A(T)/I, and the latter
algebra is semi-simple. Also, A(T) has no closed primary ideals. We
conclude:

A(T)\I is a semi-simple Banach algebra, without closed primary
ideals, which is not spanned by its set of idempotents, although its
maximal ideal space, P, is totally disconnected.

PART II

THEOREM 2.1. If A is a semi-simple commutative Banach algebra
which is spanned by its set of idempotents, then A has the Stone-
Weierstrass property.

Proof. Let B be the closure of a separating self-adjoint subalgebra
Bo of A. (Note that we do not assume that B is self-ad joint; see 3.3.)
Let Δ{A) and Δ{B) be the maximal ideal spaces of A and B. Since B
is separating, Δ{A) c Δ(B).

For any f e B, the norm of / is the same whether we consider /
as an element of A or of B. Hence the two spectral norms of / (in A
and in B) are the same, so that

(9) sup |/0*0l= sup|/(aO|(/eJS).
eΔ(B) QΔU)

In other words, the Silov boundary S of B [6; p. 80] lies in Δ(A).
The equation \ef\ — eEef shows that (9) holds with the real or im-

aginary part of / in place of | / | . Since BQ is self-ad joint on Δ(A), this
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maximum modulus property shows that Bo is also self-adjoint as an
algebra of functions on Δ(B). Since Bo is dense in B, Bo separates
points on Δ(B), and the Stone-Weierstrass theorem implies that every
continuous function on Δ{B) can be uniformly approximated by elements
of Bo. Thus S = Δ(B), and we conclude: Δ(B) = Δ(A).

Since A is spanned by its idempotents, Δ(A) is totally disconnected.
Silov's theorem on idempotents [10] thus applies to B and shows that
B contains every idempotent of A. Hence B = A, and the theorem is
proved.

THEOREM 2.2. Let G be a compact abelίan group. Then A(G) has
the Stone-Weierstrass property if and only if G is totally disconnected.

Proof. One half of the theorem is an immediate corollary of
Theorem 2.1.

To prove the other half, suppose G is not totally disconnected. Its
dual group Γ then contains an infinite cyclic group A which can be
mapped isomorphically onto Z. Regarding Z as a subgroup of Rd (the
additive group of the real numbers, with the discrete topology), the
divisibility of Rd [4] implies that our isomorphism of A onto Z can be
extended to a homomorphism of Γ into Rd. The duality theory for
compact and discrete abelian groups now shows that G contains a com-
pact subgroup K whose dual group K is a subgroup of Rd, and that
therefore K is a homomorphic image of the Bohr compactification of R.
It follows that K contains a dense one-parameter subgroup / .

We now use Theorem 1.2 to prove that A(K) does not have the
S — W property.

Note that a continuous function f on K belongs to A{K) if and
only if its restriction to J is of the form

(10) f(φ(t)) = Σ # w (« real),

Σ I a(s) I < °° here φ is a fixed continuous isomorphism of R onto
J. Conversely, every function of the form (10) has a continuous exten-
sion to K.

A lemma of Wiener [11; p. 80] implies that the functions f{φ) of
the form (10) are locally the same as the members of A(T). Let a =
[—π + ε, π — ε], for some fixed ε > 0. Choose Pea, as in the proof
of Theorem 1.2, so that B[P] is not dense in A(T), and let Bx be the
algebra of all / e A(K) such that f(φ(t)) coincides with a function in
B[P] on a. Then Bλ is a separating self-adjoint subalgebra of A{K)
which is not dense in A(K), and A{K) does not have the S — W prop-
erty.

Finally, we take all / e A(G) whose restriction to K lies in Blf and
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we obtain a separating self-adjoint subalgebra of A(G) which is not
•dense in A(G).

This completes the proof.

2.3. Suppose G is a totally disconnected infinite compact abelian
•group, E is a compact subset of G which is not of spectral synthesis
{such sets exist [7]), I is the ideal in A(G) consisting of all / which
Ύanish on E, and Io is the closure of the ideal consisting of all / which
Tanish on a neighborhood of E.

Define B ~ A(G)II0. If the idempotents in B spanned a proper
closed subalgebra Bf of B, the inverse image of B' under the canonical
homomorphism of A(G) onto B would be a proper, closed, separating,
self-adjoint subalgebra of A(G), in contradiction to Theorem 2.2. The
radical of B is ///0, which by a theorem of Helson [2], is infinite dimen-
sional. We conclude:

B is a commutative Banach algebra which is spanned by its
idempotents and whose radical R is infinite dimensional.

We shall show, furthermore, that B has no subalgebra C, algebrai-
cally isomorphic to B/R, such that B is the direct sum C + R.

Thus the Wedderburn principal theorem does not hold for B.
Feldman has constructed an algebra, spanned by its idempotents,

with one dimensional radical R, which is not the direct sum of 12 and
any closed subalgebra; however, his algebra is the direct sum of R and
a non-closed subalgebra [1; Theorem 6.1].

Suppose C is a subalgebra of B, and B = C + R. Let h be the
natural isomorphism of the semi-simple Banach algebra B/R onto C(i.e.,
into B). Let e', e" be the characteristic functions of disjoint compact
sets E\ E" whose union is E, and define B' = e'B, C" = e'C, R' = e'R.
A result of Bade and Curtis [1; Theorems 3.7, 3.9], combined with the
fact that A(G) has no primary ideals, shows that Ef can be chosen so
that

(a) the restriction of h to e' (BjR) = B'jR' is continuous,
(β) Bf is not semi-simple.
Since h"1 is continuous (by the definition of the quotient norm), (a)

implies that C" = h(B'/Rf) is a closed subalgebra of Bf. Since
(a) C contains all idempotents of B\
(b) these idempotents span B' (by the same reasoning that applied

to B), and
(c) C is closed, we conclude that C" = B', so that B' is semi-

simple, in contradiction to (β).
The preceding argument yields a more general result:

THEOREM 2.4. Suppose A is a regular commutative Banach algebra
without primary ideals, and suppose E is a compact subset of the
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maximal ideal space of A. If B — A/IQ(E) is spanned by its idem-
potents and if B is not semi-simple, then the Wedderburn theorem
does not hold for B.

Bade and Curtis, in an as yet unpublished paper "The Wedderburn
decomposition of commutative Banach algebras", have constructed other
examples of commutative Banach algebras in which the radical cannot
be split off algebraically.

PART III

3.1. The standard examples of non-self-ad joint Banach algebras
involve analytic functions of one or more complex variables, and their
maximal ideal spaces are at least two-dimensional. Before turning to>
the construction of examples with totally disconnected maximal ideal,
space, we insert two remarks.

(a) / / A is semi-simple and self-adjoint, then there is a constant
M such that \\f\\ ^ ikf | | / | | for every f e A.

Indeed, considering A as a Banach space over the real field, the
map /—• / i s linear; the closed graph theorem applies (since A is semi-
simple) and shows that this map is continuous.

(b) / / a semi-simple Banach algebra A has a dense self-adjoint
subalgebra B, and if the map f—>f is bounded on B, then A is self-
ad joint.

This is obvious. (It was tacitly used in 2.3, in the assertion that
B' is self-ad joint.) We mention (b) mainly because of the two examples
which follow. In 3.2 we construct an algebra which is not self-adjoint,
although the map /—>/ is bounded on a separating subalgebra; the
algebra constructed in 3.3 contains a dense self-adjoint subalgebra al-
though it is not itself self-ad joint. In both examples, the maximal ideal
spaces are totally disconnected.

3.2. Let {zn} be a sequence of complex numbers, with 0 < | zn | < 1,.
such that zn—>0 as w—>oo, and such that the sequence {zj\zn\} iŝ
dense on the unit circle.

Let A be the algebra of all sequences a = {an}, n = 1, 2, 3, , with,
termwise addition and multiplication, for which the limit

L(a) = lim ^~

exists as a finite number; norm A by

I a 11 = sup

Then A is a Banach algebra. Let B be the set of all a e A for which.
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L{a) = 0. Since L(ab) = 0 whenever a e A and b e B, B is a closed
ideal in A. Furthermore, if eΛ e A is the sequence whose Kth term is
1, while all others are 0, it is easily verified that B is the closure of
the set of all finite linear combinations of the ek; in other words, B is
.spanned by the idempotents of A.

Let h be a homomorphism of A onto the complex field. If h(B) = 0,
then [h(a)f = h(a2) = 0 for every a e A (since α2 e B), a contradiction.
Thus h(eΛ) Φ 0 for some k, and h(ek)h(a) = fc(eΛα) = αΛ^(efc), so that λ(α) =
αfc for all α e l

It follows that A is semi-simple, and that its maximal ideal space
is discrete and countable. By 3.1 (b), B is self-ad joint.

Suppose next that a e A and a is real. Then

L(a) = lim —

Since {| zn \ Jzn} is dense on the unit circle, and since an is real, this
€an exist only when it is 0. Hence a e B.

Thus if a e A and a e A, then a + a e B and i(α — a) e B, so that
α e B. We summarize:

i iδ α commutative semi-simple Banach algebra whose maximal
ideal space is discrete and countable; A contains a proper, closed,
separating ideal B which consists precisely of the self-adjoint elements
of A.

The non-self-adjoint algebra A is, in turn, a closed ideal in the
self-adjoint algebra Aλ which consists of all sequences a such that
j |α | |=sup n |α n /s n | < °°.

The last assertion follows from the inclusions A AX c B c A.

3.3. Our next example is a regular semi-simple commutative
Banach algebra A which is not self-adjoint, although it is spanned by
its idempotents.*

Since the algebra of all finite linear combinations of idempotents is
always self-adjoint, we see that A contains a dense self-adjoint sub-
algebra.

Define wn — \ if n ^ 0, wn = 1 + log (n + 1) if n ^ 1, and let Ao

be the algebra of all functions / of the form

fix) = %^inx

for which the norm

is finite.
* Added in proof. Other algebras with this property were found by Coddington (Proc.

Amer. Math. Soc. 8 (1957), 258-261).
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The inequality wn+m ^ wnwm shows that AQ is a Banach algebra and
it is easily verified that its maximal ideal space is unit circle T. Since
AQ contains every / with two continuous derivatives, AQ is regular, i.e.,
given any two disjoint compact sets CQ and Cx on T, there exists / e Aθ!

such that / = 0 on Co, f — 1 on Cx. Wermer has pointed out that al-
gebras like AQ furnish simple examples of non-self-adjoint algebras with
one-dimensional maximal ideal space.

Given a rapidly increasing sequence of positive integers pk (k =
1,2,3, . . . ) , let

L, ψ) α a , s r t ) ,
let Ik be the union of those LJιk with j = 1 (mod pk), and define P to-
be the intersection of the complements of the sets Ik.

Our desired algebra A is the restriction of Ao to P.
We first prove that A is spanned by its idempotents. As in 1.4,.

gk(t)dt .
0

Then e4/* e AOf and fk(x) — x = hk{pkx), where hk(0) = M2ττ) = 0, fcfc is
linear on [0, 2πlpk] and on [2π/pfc, 2π], and

h ( — λ - 27Γ — 2π

k^ Vic ' Pic Vl

We have

II hk{pkx) Ho = Σ I Mn) I wn
nPk

The Fourier series of hk is exhibited in 1.5, with a — 2π\pk, b —
a simple computation now shows that

\\k(pk)\\Q<
PlC

which tends to 0 as k -^ <». As in 1.4, it follows that || eίx - β^*^ ||0-> 0
as k —* co.

Since βi/fc is constant on each arc contiguous to Ik, the restriction
of ei/fc to P is a finite linear combination of idempotents of A. It fol-
lows that the restriction of eix to P is in the span of the idempotents;
the same is true of e~ix, and hence A is spanned by its idempotents.

It remains to be shown that {pk} can be so chosen that A will not
be self-adjoint. We do this inductively.

Let Pfc be the complement of Iλ U U /*, and let Ak be the re-
striction of Ao to Pk. We claim that Ak is not self-adjoint. To prove
this, note that Ak contains the restriction to Pfc of all f(x) = Σ°-~αweίw;c

with Σ-oo I Q<n I < °° If Ak were self-adjoint, it would follow that Ak

consists of all restrictions of functions in A(T) to Pfc, and since Pfc
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contains an arc, this would imply that A{T) and Ao coincide locally.
Being regular, these algebras would therefore have to be the same, a
contradiction.

Let c(n, k) be the A^norm of the restriction of einx to Pfc, i.e.,

(11) c(n, k) = inf {||/||0: f(χ) - e«»* on P J

(n = 09 ± 1 , ± 2 , . . . ) .

Since c(nf k) = 1 for w S 0 and ^4fc is not self-adjoint, 3.1 (b) shows that
c(n, k) is unbounded as n —> + co. In particular, there exists w* such
that

(12) c(nk, k)>k.

We now claim that there exists Sk > 0 with the following property:
If 0 ̂  n ̂  k, if V is an open set with m(V) < δk, if g e AQ and

g(x) - ein* on Pk - F, then \\g\\0> c(n, k) - 2~*.
Suppose this is false. Then there exists
( i ) an integer n, 0 g % ̂  %,
(ii) open sets Vr with m(Vr) < 2rr (r = 1, 2, 3, .),
(iii) grr e Ao satisfying gr(x) = βίwx on Pfc — F r , such that
(iv) \\gr\\oίίc(n,k)-2-\
By (iv), the diagonal process yields a sequence {rj such that

converges, say to am, for m = 0, ± 1 , ± 2 , •••. Put

(13)

Then # e Ao, and

(14) \\g\\0£c(n,k)-2-«.

For every / e L(Γ), \ grif—* \ θf as i —> oo. Combined with (ii) and (Hi),

this shows that g(x) = e*w:c a.e. on Pk, and since ^ is continuous, this

equality holds everywhere on Pk. But then (14) contradicts (11), the

definition of c(n, k).
Having determined Sk, we choose Pk+1 so that 2π — m(Pk+1) < (l/2)δfc,

i.e., so that m(Ik+1) < (l/2)8ft, and we furthermore subject the sequence
{PJ to the requirement

m(Ik+1) + m(Ik+2) H < δk .

Then m{Ph — P) < δΛ for every k, and it follows that the A-norm
of the restriction of eίWfcX to P is not less than c(nk, k) — 1, i.e., not
less than k — 1, by (12). Since the restrictions of the trigonometric
polynomials to P are dense in A, 3.1 (b) implies that A is not self-
ad joint. This completes the proof.
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3.4. We conclude with a theorem which shows that under certain
conditions the hypothesis of self-adjointness can be dropped from the
Stone-Weierstrass theorem (a special case of this appeared in [8]):

THEOREM. If A is a semi-simple commutative Banach algebra
which is spanned by its idempotents and whose maximal ideal space
contains no perfect subset, then every separating subalgebra of A is
dense in A.

Proof. Let B be a closed separating subalgebra of A, and denote
the maximal ideal spaces of A and B by Δ(A) and Δ(B).

Fix x0, xx 6 Δ(A), %0 Ψ xλ. There exists f e B such that f(x0) = 0,
f(xλ) = 1. Since Δ{A) has no perfect subsets, f{Δ{A)) U {0} is a compact
countable subset of the complex plane [8].

Suppose there is a point y e Δ(B) such that f(y) Φ 0 and f(y) is
not in f(Δ(A)). Then there is a polynomial P(z) =^anz

n such that

i P(f(v)) I > sup {|/(s) ]: z e f(Δ(A))} ,

and the function P(f), which belongs to B, does not attain its maximum
modulus (relative to Δ{B)) on Δ(A). But the Silov boundary of B is in
A(A), as in the proof of Theorem 2.1, and we have a contradiction.

Thus f(Δ(B)) = f(Δ(A)).
We can therefore find disjoint open sets V, W in the plane, such

that 0 e V, 1 e W, f{Δ{B)) c FU W. Define g = 0 on V, g = 1 on W.
The theorem on analytic functions in Banach algebras [6; p. 78] shows
that g(f) e B. That is to say, B contains the characteristic function
of a compact open set E c Δ(A) such that xx e E but x0 $ E.

Since x0, x± were arbitrary, the sets E so obtained form a basis for
the topology of Δ(A). This implies that B contains the characteristic
function of every compact open set in Δ(A), and so B = A.

This proof, unlike our proof of Theorem 2.1, does not use Silov's
theorem on idempotents. In fact, the preceding proof establishes Silov's
theorem in the special case in which Δ(A) contains no perfect set.
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THE SUBGROUPS OF A DIVISIBLE GROUP G WHICH

CAN BE REPRESENTED AS INTERSECTIONS

OF DIVISIBLE SUBGROUPS OF G

SAMIR A. KHABBAZ

Introduction, In [1], page 70, L. Fuchs asks the following question:
Which are those subgroups of a divisible group G that can be repre-
sented as intersections of divisible subgroups of G?

The main purpose of this paper is to give an answer to this ques-
tion.

NOTATION.

Nl: If H is a primary p-group, let S(H) denote the subgroup of ele-
ments of H whose orders are 1 or p.

N2: If G is Abelian, let T(G) be the torsion subgroup of G; let Gp

denote the primary p-component of T(G); and, in case G is divisi-
ble, let F(G) denote a maximal torsion free subgroup of G.

N3: Let the symbol 0 denote a direct sum. Let the symbol < denote
''properly contained in." Let c denote "contained in." Let N\M
denote "the set of elements in N and not in ikf." Let = denote
"is isomorphic to." Let 3 denote "there exists (exist)." Let 9
denote "such that." Let (Na)aeA denote a family of sets Na in-
dexed by members of the set A. Finally if Q is a subset of a group,
let {Q} denote the subgroup of that group generated by the ele-
ments of Q.

N4: Let R denote the additive group of rationals. Let P denote the
set of primes. Let the group C(p°°) be the indecomposable divisi-
ble primary p-group.

N5: Let C = C(2~) © 0(3") 0 C(5~) 0 • •; and if SaP, let Cs =

N6: If G is a group, let P(G) be the set of p e P, such that 3x e G
with order x — p.

N7: Finally, we recall the following convenient and succinct classifi-
cation of the subgroups of i2 [see Kurosh I, page 208]. Let
PifP2fPzf * be the sequence of primes in natural order. A charac-
teristic is a sequence a = (alf a2, α3, •), where a% — a non-negative
integer or oo, A type is a class of equivalent characteristics, two
characteristic a = (a19 α2, α3, •) and 6 = φu b2, 63, •) being equi-
valent if and only if ΣΠ=i I &% — ^ I < °°> where oo — oo = 0.

A c R has type a if and only if it is isomorphic to the subgroup

Received April 15, 1960. This paper constitutes the first part of the author's doctoral
dissertation submitted to the University of Kansas, and was presented before the Amer.
Math. Soc. An abstract of this paper was received by the Society on July 17, 1959.
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of R consisting of those rationale whose denominators in the reduced
form are divisible by no higher power of the prime pt than the
α*th if at < oo, and by every power of pt if at == oo.

Define a Ξ> b if and only if at ^ bt, for i = 1, 2, 3, .
N8: Let SaP. We shall say that A above has type Ts is and only if

α. = 0 for Pi e S and α? = oo otherwise. Then it is well known
that R/B c Cs if and only if B contains a subgroup A of type Ts,
and that the intersection of two subgroups of R containing sub-
groups of type Ts again contains a subgroup of type Ts.

N9: Let the symbol Π<? stand for the phrase "an intersection of divisi-
ble subgroups of G."

LEMMA 1. (Kulikov):
a. A divisible group M is a minimal divisible group containing the

subgroup L if and only if HaM and HΠ L = 0 imply H— 0, H
being a subgroup.

b. If M is a minimal divisible group containing L, then M/L is
torsion and divisible.

LEMMA 2. Let G be divisible and L a subgroup of G. Let M be
a minimal divisible subgroup of G containing L. Thus, using the
notational in N2, we may write, G = ikΓ0 E = Af0 T(E) 0 F{E).
We have:
a. If M is minimal divisible containing L, then S(MP) = S(LP) for

each p e P, and T(M) is minimal divisible containing T(L).
b. Kulikov: If L is torsion, then M is minimal divisible containing

L if and only if S(LP) = S(MP) for all p e P.
c. // L is Π# then T{L) is f\τ{G) and hence f\Q.

Proof.
a. Let x e S(MP)\S(LP). Then {x} n S(LP) = 0, and therefore {x} Π L =

0. By Lemma la, x — 0. Next, T(M) is divisible, and contains
T(L). If JVc T(M) is divisible and contains Γ(L), Γ(ikf) can be
written as Γ(Jkf) = iVφ ϋΓ, where K Π T(I/) = 0; and hence K Π L =
0, so that by Lemma la, K= 0; and hence, iV = T(M).

b. The "only if" part is contained in part a. For the "if" part, as-
sume NczM is divisible and contains L. Then we may write M —
N@K. Then, by hypothesis, K cannot have elements of prime
order, and must therefore be 0.

c. Assume L = Παe^α> where each Ma is divisible and contains L.
Then each T(Ma) is divisible and contains T(L). Moreover, we have
Παe^JWα) = T{ς\aeAMa) = T(L). Rence T(L) is f U ) and hence

fV
LEMMA 3. Let G be a minimal divisible group containing the
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subgroup L, and having a representation of the form G = φ α e4 Ga.
Then GIL (which by Lemma lb is divisible and torsion) contains a sub-
group isomorphic to C(p°°) if and only if for some a e A, GJGa Π L
contains a subgroup of the same kind. In other words: P(GIL) =
UaeAP(GJGa n L) = UaeΛP(Ga + L/L).

Proof. Because of the divisibility of all the groups concerned, it
suffices to check the existence of elements of order p. Suppose
x e GJGa n L has order p. Then G/L Z)Ga + L/L = GJ(Ga n L). Hence,
GIL has an element of order p. Conversely, suppose that for no a e A
does GJ(Gaf]L) contain an element of order p. Then no Ga + L/L
contains an element of order p. Hence, the subgroup of GjL generated
by the (Ga + L)jL contains no elements of order p. But since the Gα's
generate G, the Ga + L/L's generate all of G/L.

THEOREM 1. Let G be a divisible group; let L be a subgroup of
G; let M be a minimal divisible subgroup of G containing L. Suppose
G has a representation of the form G = M 0 E, then L = M Π (ΓLeflAfJ,
where Mω is a divisible subgroup of G containing L for each ω e Ω, if
and only if there exists homomorphisms hω: M—>E for each ω e Ω
such that Πωe.Q ker hω = L.

Proof. To prove the "if" part, let I be the identity map of M;
and for each ω e Ω let gω: M—> G be defined by gω = I + hω. Let Mω =
gω(M). Then LaMω since hω(L) — 0, and therefore Mω is divisible since
it is a homomorphic image of M. Finally, x e Mω Π M implies x e ker h*
(since x — y + hjy) implies hω(y) = x — y e M Γ\ E = 0); and hence,.
L c f\ωeΩMω PiM= Γ\ωβΩ ker hω = L.

To prove the "only if" part, suppose L = M Π (ΓϊωMω). It can be
assumed that each Mω is minimal divisible containing L and, therefore,
also minimal divisible containing M Π Mω. Also, M is minimal divisible
containing M n Mω. Also, M is minimal divisible containing M (Ί Mω; so
there is an isomorphism iω: M—>Mω which is the identity on M Γ\ Mω.
Note that ijx) e M=$iω(iω(x)) = ijx) =Φ ijx) = x =Φ a? e M Π Mω. Let pr
G —> E be the projection determined by the decomposition G = i l ί φ β .
Let /&ω be defined by hω = pίω. Then fcω(cc) = 0, iω(ί») e M, and a? e Λf Π Mω,
are equivalent. Thus f\ωeΩ ker fcω = f | « e ^ Π Mω = L.

REMARK. The underlined portion of_Theorem 1 may be replaced by
Λω: M-^T(E).

COROLLARY 1. Let G be a divisible group; let L be a subgroup of
G; and let M be a subgroup of G which is minimal with respect tσ
being divisible and containing L. Thus, we may write G =
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M ® T(E)®F(E), and P(E) = P(T(E)). Then L is Γϊa if and only
if P(M/L) c P(E).

Proof. The condition P{MjL) c P(E) is easily seen to be equivalent
to the existence of the family {hω}ωeΩ of homomorphisms in Theorem 1.

REMARK. Let G be divisible and torsion free, then L c G is f|e if
and only if L is divisible or, equivalently, is a direct summand of G.

COROLLARY 2. Let G be divisible, and let L be a torsion subgroup
of G. Then L is Γ\G if and only if for each p e P, S(LP) < S(GP)
whenever S(LP) Φ 0, and Lp is not divisible.

Proof. If L is f]G then by Lemma 2c for each p e P obviously Lp

is Π<v a n d , hence, to prove that our condition is necessary, we may
assume that G is primary, and L is not divisible, in which case the
necessity becomes obvious in view of the fact that otherwise G would
be the only minimal divisible subgroup of itself containing L; and, con-
sequently, L = G, since L is Γ[G, contrary to L being not divisible.

To Prove the "only if" part, note that p e P(M/L) implies MP\LP =
(M/L)p Φ 0, since L is torsion. Thus, by hypothesis, p e P(M/L) ^
S(LP) < S(GP) =φ S(MP) < S(GP) = S(MP) 0 S(EP) =φ S(EP) Φθ=$pe P(E).

COROLLARY 3. Let G be divisible and LaG be torsion, reduced
and f]G. Then every subgroup of L is f\G.

COROLLARY 4. Let G be divisible and L be f\G. Let M be a mini-
mal divisible subgroup of G containing L. Let K be a subgroup of G
such that LdKdM. Then K is f}G.

Proof. If G - M © E, then P(M/K) c P(M/L) c P(E).

COROLLARY 5. Let K be any Abelian group of arbitrary cardinal
number A. Then K can be embedded in a divisible group G of power
A^o in such a way that any subgroup of K can be represented as an
intersection of two divisible subgroups of G.

Proof. Let M be a minimal divisible group containing K and let E
be a group isomorphic to M/K. Let G be the direct sum of M and E.
The cardinality of G is clearly ^0^4. and the isomorphism of MjK into
E induces a homomorphism h: M—>E with ker h — K. Thus, Theorem
1 gives the required conclusion.

REMARK. Let LaG, and let L — L x 0 L 2 , where L2 is divisible and
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Lx is reduced. Then, also, G = L2 0 K, where K may be chosen to
contain Lx. It is easy to see that L is Γ\G if a n ( i o nly if ^1 i s Γ\κ-
Thus, in order to avoid excessive wording, we may in the following
theorems assume without loss of generality that L is reduced.

THEOREM 2. Assume LaG is reduced, then L is Γ\G if
 an& on^V

if T(L) is n<? and P(GIL)aP(G), equality holding if L is f\G.

Proof. Let G = M 0 E, where M and E are as in Theorem 1.
Then P(G) = P(T(M)) U P(E), and P(GIL) = P(M/L) U P(E), because
G/L = (MjL) 0 E. Note that if Γ(L) is f\G, then Γ(L) is C\τiG) and
hence P(T(M)/T(L)) cP(T(E)) = P(£7), by Corollary 1. But since Γ(L)
is reduced, P(T(M)/T(L)) = P(Γ(ikf)). Thus the assumption that Γ(L)
is Π^ implies P(G) = P(J^) and, therefore, that the conditions PiGIL) =
P(G), P(GIL)aP(G), and P(M/L)ciP(E) are equivalent. This observa-
tion, together with Lemma 2c and Corollary 1, proves Theorem 2.

COROLLARY 6. Let G be any divisible group. Let C be as defined
in N5, and let G = C φ G . Then any subgroup KaG is f\G.

REMARK. In Corollary 6, C may be replaced by any Abelian group
containing it.

COROLLARY 7. Any torsion free subgroup T of G above is ΠG

Proof. T is contained in a direct summand of G whose compli-
mentary direct summand contains a subgroup isomorphic to C.

REMARK. The following example shows that if L c G is Π<? and if
L c G is isomorphic to L, L need not be f)G. Let G = φΓ=iCβ where
Ct = C(p°°) and where p is fixed. Then,

S(0 Ct) = S(φ Q
ί=-l ί=2

Ίiowever, iS(φΓ=iCi) is not f\G, while S(φΓ=2Cί) is Πs
In this connection we have:

COROLLARY 8. Let LaG be f\Gj and let LaG be isomorphic to
L. Then if T(L) is f\G—this is in particular the case if LaL—L is
also He- Thus, L is f}G if and only if T(L) is p[G.

Proof. For the proof we may assume L is reduced. By Theorem
2, it suffices to show that P(G/L)aP(G). Let M and M be minimal
divisible subgroup of G containing L and L, respectively, so that G =
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M 0 N= M® N. Then we have M\L ~ M/L [see Kurosh I, page 168].
Thus, P(GIL) = P(MIL) U P(N)

= P(M/L) U P(iV)
cP(G/L)UP(G)
cP(G), since L is f\G.

THEOREM 3. Let G be a divisible group and let L(zG be reduced.
Then the following statements are equivalent:
(a) L is f[G.
(b) T(L) is f)G and for any subgroup R of G isomorphic to R, either

Lf]R is zero or of type ^ TP{G).
(c) S(LP) < S(GP) if p e P(G) and for any subgroup R of G isomorphic

to R, either L f] R is zero or of type ^ TP[Q).
(d) T{L) is Γ\G and L c (0 α e^α) Θ T(G) c G, where Ra = R and each

L Π Ra is either zero or of ^ TPiσ).

Proof. By Theorem 2, (a) is equivalent to the conditions T(L) is Π^
and P(GIL)aP(G). These conditions imply (b) since GjL contains a
subgroup isomorphic to R/R Π L, so that P(RIR Π L) c P(GIL) c P(G) and
therefore R Π L is zero or of type ^ TP(έ?) by N8. Properties (b) and (c)
are equivalent by Lemma 2c and Corollary 2. Also (b) implies (d). Finally,
suppose (d) holds. Then, P(T(G)I(T(G)nL)) = P(Γ(G)/Γ(L))cP(Γ(G)) =
P(G) by Theorem 2. Let G = (φ 6 € B β 6 ) Θ (ΘαeA) θ Γ(G). Then Rυf}L
is 0 for all b e B, and for each a e A, RaΓ\ L is 0 or has type ^ TP(Θ>

by hypothesis. Thus, by Lemma 3, P(G/L) = ΠυβBP(Rυl(Rυ Π L)) U
U«6ΛP(Λα/(Λβ Π L)) U P(T(G)I(T(G) n L)) c P(G). By Theorem 2, this
implies (a).

DEFINITION. Define a subset (ίOα€A °f elements of an Abelian group
H to be independent if and only if

nλxai + n2xa2 + + nmxam = 0

implies nx = n2 = = ̂ OT = 0 where each at e A and the nt

7s are
integers.

COROLLARY 10. Assume L c G is reduced, then L is Π<? if a n ( i
only if T(L) is Γ)<? and L contains a subgroup H which contains a.
maximal independent subset of L and which has the form 0ae4Sa,.
where each Sa is isomorphic to a subgroup of R having type TP{Q).

Proof. Assume L is Π<?> then by Lemma 2c T(L) is f\G. Let
MdG be minimal divisible containing L, and assume that M =
T(M) © i^ikf) = T(M) 0 (0αeJ2α), where Ra = R for all α e i Then,
by Theorem 3c and Lemma la, each L Γ\ Ra contains a subgroup Sa of
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type TPiG). Then it is easy to see that φaeASa exists; and that, if
xa e Sa, then (xa)aeA is a maximal independent subset of M and there-
fore, of L.

Next assume the condition holds and let M be as usual. For each
So, let Ra 3 Sa be a subgroup of M of type iϋ. Since any two non-
zero subgroups of R have a non-zero intersection, and since φαe 4Sα

exists, also ®αe J£β exists. Let #α e Sα; then (^) α e i is a maximal inde-
pendent subset of H; and since H contains a maximal independent subset
of L, (#α)αe4 is also a maximal independent subset of L. Thus, we must
have M = Γ(M) © (© α e ^α). Theorem 3d and the fact that T{L) is
Πί? imply that L is Π#

REMARK. Concerning the last definition given above, it is well known
that H contains a maximal independent subset and that if (xa)aeA is
independent, then HI{(xa)aeA} is torsion if and only if (xa)a€A is also
maximal independent. Thus, Corollary 10 may be worded as follows:
Assume L is reduced; then L is f\G if and only if T(L) is Π^ a n d L
contains a subgroup H which has the form ®αe,iSα where Sa is isomorphic
to a subgroup of R of type TP{G) and such that L/H is torsion.

REMARK. The author wishes to thank the referee, R. S. Pierce, for
the present arrangement of the material in this paper, as well as for
many changes in the proofs. The author also owes thanks to W. R.
Scott.
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CONSTRUCTION OF A CLASS OF MODULAR

FUNCTIONS AND FORMS

MARVIN ISADORE KNOPP

1. Introduction* Let G(j) be the principal congruence subgroup, of
level j , of the modular group. In this paper we construct functions
which are invariant under G(j), for each integer j 2t 2.

We begin by defining certain functions λv(i; τ) which, although not
in general invariant under G(j), do possess the transformation properties

(1.01) λv(i; Tτ) = λv(i; τ) + constant, for all T in G{j).

This is the content of the main theorem, Theorem (4.02). Once this
result has been established it is a simple matter to construct invariants
for G(j) by forming certain linear combinations of the λv(jr, τ). This is
done in § 5.

These functions X»(j; τ) are defined as Fourier series which generalize
the Fourier series expansion of λ(τ), given by Simons [6]. To derive the
transformation equations (1.01), we proceed directly from the Fourier
series, extending a method introduced by Rademacher [4], and since
generalized by Lehner [2] and the author [1]. Although in [4] only the
invariant J(τ) for the modular group is treated, the method of [4] has
much wider applicability. Thus, in [2] it is used in the case of the
modular group to overcome the usual convergence difficulties encountered
in constructing forms of dimension —2 by means of Poincare series,
while in [1] it is used to construct forms of nonnegative even integral
dimension (in which case we, of course, do not have the method of the
Poincare series) for the modular group and several other closely related
groups.

We will indicate in section 6 how the method of this paper can be
used to construct automorphic forms of all positive even integral dimen-
sions for the groups G(j). In a future publication these same methods
will be applied to construct automorphic functions and forms for certain
other congruence subgroups of the modular group and for congruence
subgroups of several other groups.

I would like to thank the referee of this paper for his helpful
remarks.

2* Several lemmas. In [4] the principal analytic tool is a rather
delicate lemma in which the terms of a certain conditionally convergent
double series are rearranged. Several variations of this lemma can be

Received January 20, 1960 The author is a National Science Fellow.
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found in [1] and [2]. In this section we derive two generalizations of
the lemma that will be needed in § 4.

LEMMA (2.01). Let a < 0, b < 0, d > c> 0. Let y > 0, r ^ 0, and
v and j be positive integers. Let t = (c — l/26)cZ"1. Then

(2.02) Σ* k1+r(kiy — m)

= liπJ Σ* i.
7 1 + ί . / 7 . r

k1+r(kιy — m)

Σ*+ ^ ^ k1+r(kiy - m) •+r(kiy — m) 1

where the asterisk (*) indicates that the inner sum is taken on those
m such that (m, fc) = 1 and m = 1 (mod ̂ ), ίfeβ sharp (#) indicates that
the outer sum is taken on those k such that k = j (modi2), wnd mf is
is defined by mm' = — 1 (mod&).

LEMMA (2.03). Let y, r, v, and j be as above. Let p be any posi-
tive number. Then

(2.04) Σ q i m Σ * ^ ^
fc=i ̂ -̂ co \m\^N k1+r(kιy — m )

= lim Σ*
\m\£κ k1+r(kiy — m)

REMARK. With care, (2.03) could have been included as a special
case of (2.01). However, it is simpler and somewhat more germane to
our purpose to state them as separate lemmas. It should be noted
that Lemma (2.03) is the same as a lemma in [1], except for the
congruence conditions on m and k.

A geometric interpretation may be helpful. By a "lattice point"'
we will mean a pair of relatively prime integers k, m such that
k = j (modi2) and m = l (modi). Rademacher's lemma [4] shows that
the sum can be taken by first summing over the lattice points of the
half square in the k — m plane defined by 1 ^ k ^ Ky \ m \ ̂  K, and
then letting K—> oo. Lemma (2.03) allows us to first sum over the
lattice points of the rectangle 1 ^ k 5g [pK], \ m \ ̂  K, while Lemma
(2.01) shows that the sum can be taken first over the lattice points
of the trapezoid bounded by the lines k = 0, m = (ak — Kt)/c9 m =
(bk - K)ld, m = (bk + K)/d.

The lemma can actually be proved for other trapezoids, but the
form in which we have stated it will suffice for our application.

Proof of (2.01). We prove the lemma in the case r — 0, the proof
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for r > 0 being virtually the same. We first show the convergence of
the left hand side of (2.02).

— TL-l

k(kiy — m) Q^IKJC n kίy — h — nk

where we have put m = h + nk. Therefore,

s>—2πim'\>ι'JG

_ i

kikiy — m)

s>—2πim'\>ι'JG

1 1 1 1 1 .2-1 Ί / Ί . : ^ 2A V mil ^

= πίk~2 Σ * e-2πίh'"ιlc - 2πik~2 Σ e~2πyp Σ * exp —±ίii-(ι;&' +

Now, the inner sum of the second term is a Kloosterman sum, for
which we have the estimate (see [5])

(2.05) Σ * exp \-^(vh' + ph)\ = O(fc2/3+ε) .

Also, the sum in the first term can be written

Σ * e χ P — πι-(vhf + kh) =

We conclude that

lim Σ * e~2πim'^

and the left hand side of (2.01) converges.
Let Z denote the set of integers. Let zx(K) — [K(dt — c)] and

z2{K) - [K(dt + c)]. We let J*(K, N) = {m e Z\ - N^ m <(bk - K)/d
or (bk + ίΓ)/cϊ < m ̂  ΛΓ} and ̂ ?(K, N) = {me Z\{bk + K)/d <m^N
or -N ^ m < (αfc - ϋΓt)/c}.

We can now state the lemma in the following form

Σ* lim
fc = 1 JV->o k(kiy — m)

Σ* 7 ^ rr

The function defined by

/ x _ Γe"27Γim/v/fc, if (m, fc) = 1 and m = 1 (modi)
gym) — <

ι0 , otherwise

is periodic modulo k. This is easily seen if we recall that k = j (mod j2)
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and therefore j \ k. It follows that

where

Using

(2.07)

In

(2..05) we

the first

Ά•{K, N)

0

see that

g(m) =

Σ* exp

Bι =

double sum of (2.

2-ι

fc

Σ-

Γ

L

O(k

.06)

1 ' , *

2JΓΪ

: - l/ . + S

put

y D

me^{κ,N) k(kiy — m) m e ^ w ) z = 1 k(kiy — m)
^ ' ' ft-l ΛπίlmlJc 1

.m k(kiy — m) me&iK.N) k(kiy — m)

Let Γfc(iΓ) = lim^oo Γfc(iΐΓ, N), zz(K) = [(ϋΓ+ 6fc)/d], and z4(ίQ = [(ίΓ - -
Recalling the definition of j^(K, N) and making use of (2.08), we majr
write

-» 7") K~1 β

LJ -*^l / * ~~

=1 m=z3(κ)+i kiy — m
7c—1 <» 0—2τΐilmlΊc

1=1 m=zά(κ)+i fciy + m

+ J5,fc-1 Σ ί - ^ — + -1

(2.09) fc m=zA(κ)+i\kiy — m fcί^/ + m

zUK) 1

+ -βfcfe Σ
L kiy — m

= S X + S2 + S3 + Si.

To handle Sx, put

TO

77T > Γ ^
j j > .

Therefore,

I Em I g (sin πϊ/A;)-1 g (min {2i/fc, 2(/c - tyk})-1 ύ — (1/i + l/(fe - ί)) -

Now,

Σ
kiy — m m

i2/ — m ^ ? / — m — 1/
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Hence,

Σ
— m

^ A(l/ί + l/(fc - ί)) Σ {W + m2}-1'W + (m +
2 (K)+i

U(k - I)) Γ f̂- = A(i/i
J«3w ^ 2

Now, we are here considering only those k in the range 1 ^ k <Ξ ̂ (
= [ίΓ((Zt - c)]. Since 6 < 0, d > 0, (K + 6fc)/d ^ {# + jfiΓ6(dί - c)}/d =
K/2d. Making use of (2.07), we conclude that

fc-l oo

^ΣBι Σ
ι=ι m{

Therefore,

(2.10) S, = Oik-^K-1 log fc) .

We can estimate S2 in exactly the same way simply by noticing
that (K - bk)/d ^ K/d. We obtain

(2.11) S2 = Oik-v^K-1 log k) .

The estimation of S3 is simpler. We notice that

S.=B fc.fc-1 Σ 7
m=04(sr)+i —

and hence

Therefore,

(2.12) S3 =

We consider S4. Recalling that z^K) + 1 > (K + bk)jd ^ K/2d, we
find that

— m

S 2dK~1{(K — bk)jd — (K + bk)jd) = —

Therefore, using (2.07),
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(2.13) St = B^-k-1 x — - ±
m=z3{κ)+i kiy — m

Collecting our results (2.10), (2.11), and (2.12), we have Tk(K)
-1 log k). Hence,

zΛ (K) o—2τzl\m'\lz zΛ (K)

Σ ί l i Σ* ^ Σ *iy — m)

ίr1 / 3 + ε log i

log K)

In the second double sum of (2.06) put

uΛ(κ, N) = Σ* e~^mΊlc

(2.15) ..^^-,^-%-m)

t2/ — m) »e»( ί , ϊ i A;(A;i2/ — m)

Let U*{K) = l im^» t/,(Z f iV) and «6(ϋΓ) = [(ΛΓί - ak)lc\. Then using
(2.15) and the definition of &?(K, N) we find

fc-1 <» β2πίlmlTc Tc-X oo Λ—2πilrϊilJc

ίΣB Σ 4 ^ 2 5 Σ— m ι=ι m=zfi(2ΓHi/α?/ + m

(2.16) +Bk.k~1 Σ
— m Λî / + m

fc-l Z$(K) o—2πίl7ϊll1c

Σ * Σ ^=1 m=zz(K)+ikiy — m m=z\ϊk)+ι kiy — m

Since (Kt — ak)/c > Kt/c, we can estimate Sδ and S6 in the same
way as Slt and >S7 in the same way as S3 We obtain

(2.17) Sδ + S6 + S7 = O(k-1IΛ+'K-L log k) .

To handle S8 define ί^ as before. Then

«5 I * ί g^ί

— m
*δ(*:)

= Σ m kιy — m —

Recalling that | Em | ̂  (fc/2){l/ί + l/(fc - I)}, we have
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Z5(K)

J£ -

sfu
kiy-

β + '•

ilk

- m

L/(fc f + m2}"1/2{fcy + (m + 1)2}"1/2

+ {fc2^2 + (iΓ/j - αfe)2/c2})

- (K + bk)/d)) + c/tK}

since —ad — be > 0 and fc is in the range K(dt — c) < z±(K) + 1 ^ k ^
+ c). Therefore,

= k-^BZ Σ 4

(2.18) = offc^Σfc-1'^8-—{1/i + l/(fc - l)}{Kk
\ 11 2Z = l

= 0(&-1/3+ε

Finally, we estimate S9.

5(-S") ^

— m

~2

g Σ (kY+mTll'i^y~1k-1{(Kt-ak)lc-(K-bk)ld}
Ύίb Ίn=z%{K)+l

^ KicdykY'ϋdt - c) - (ab + δc)(cW + c)} .

Therefore,

(2.19) 7 ^

k%y — m

Using (2.17), (2.18), and (2.19), we find that

Uk(K) =Hence,

V» lim Σ* 6

.jv) k(kiy — m)

V / fc=21(JΣ')+l

= OIK'1 log i ί "2^) A;-1/34 s) = Oίiί"1 log .
\ fc=«1(JE')+l /

= Oίiί-1'34-5 log K) .

Now (2.06) follows from (2.14) and (2.20) and the lemma is proved.
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Proof of (2.03). We outline the proof for the case r = 0. The left
hand side of (2.04) is the same as the left hand side of (2.02) and its
convergence has already been demonstrated.

The lemma may be stated as follows

(2.21) lim Σ* Mm Σ * ,°

Let

x,— 2πi\>mrlk

Vk(K, N) =
k(kiy — m)

fc-l

Σ*
ι=ι κ<\m\ίn k(kiy — m) ϋ:<imî ^ k(kiy — m)

Then,

Vk(K) = lim yfc(JBΓ, ΛΓ) = fc^g £

fc-l σo p-Ίπilmlk 1 \

^ — )

%y + m/1=1 <m=κ+ikιy + m m=κ+i\kιy — m k%y +

= Si + S; + Ŝ  .

Now Si, and S'2 can be estimated in the same way as Sλ and S3 in
the same way as S3. Once we have these estimates the proof of (2.21)
proceeds exactly as the proof of (2.14) of the previous lemma.

3 The functions λv(j; τ). Let j be an integer ^ 2 and let v be
a positive integer. We define the function

(3.01)

where

a Kloosterman sum, and /x is the modified Bessel function of the first
kind. Recall that the sharp (*) means that we allow only those k such
that k = j (mod j2) and the asterisk (*) indicates that we allow only those
h such that h = 1 (modi) and (h> k) — 1.

We need the following

LEMMA (3.02). (a) If an(v, j) is defined as in (3.01) then

an{v, 3) ~ {vll4n""\2j)-ll2ll6}e~2πi{n-^j exp

= Σ* exp \^ψL(vh* + nh)] ,
L k JΣ
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(b) If I z I < 1, then

Σ z^Σi^nvk-yipl (p + 1)!

is absolutely convergent.

Proof, (a) The first term that occurs in the sum defining an(v, j)
is for k = j . This term is equal to

But

A3Λ{n) = exp [-2πi{n + (j - l)v}IJ] =

Therefore the first term is

It follows that

= I (π/8)

^ C&ln)112 Jt*k-1W*+%('lπ(nv)li*lk) ,

where we have made use of (2.05)

It is a simple consequence of the power series definition of Ix

(3.03) Ip]) = Σ (Vl2)**+1lpl (P + 1)!
0

that Λί^) ^ sinh 57. We also need the fact that sinh η ^ (rj/B) sinh
f or 0 S V ^ B. We find that

I an(v, j) -

^ C&ln)112 Σ^k-ll3+'{{iπ(nv)ll2lk)l(4:π(nvyl2l2j)} sinh (iπ(nv)ll2l2j)

^ C2 exp

Now in ([7], p. 203, formula 2), it is shown that Ix{η) ~ eyil(2πy]Y'\
Therefore,

and the result follows.

(b) Σ (iπ'nvlkψlpl (p + 1)! =
J3-0
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^ {kl2π(nv)112} sinh <

< {kl2π(nvY'2} exp i

The result follows.
Lemma (302a) shows that the series defining λv(i; τ) converges

absolutely for ^{τ) > 0. Therefore, λv(i; τ) is analytic in the upper half
τ-plane.

In order to derive the transformation properties of λv(i; τ) we trans-
form (3.01) into a certain double series. The computations involved are
a repetition of those found in [4, pp. 244-5] and in [1] and [2] and we
omit them. Briefly, the series definition of an(v,j) is inserted into the
series for λv(i; τ), Ix is replaced by the power series (3.03), Lemma (3.02)
is used to justify several interchanges of summation, and use is made
of the Lipschitz formula [3]

ΣΛp{exp[ari(τ/i-λ/fc)]}»

(pll(2π)p+1) Σ (-iτtf + ih\k + li)-*'1 , for p > 0

N

-1/2 + (1/2TΓ) lim Σ (-iτti + ih/k + li)'1 , for p = 0 .

We obtain the double series

(3.04) λvO' Γ) = constant + — Σ # Σ
1 6 Jlθύh

Σ Σ*
1 6 Jc=l

lim Σ {expΓ,, ,y; J - l } .
zΓ-oo ιsjy I Lk(kτ 3—h—klu i-k(k

4. Transformation properties of the λv(i; τ)Φ In (3.04) put m =
h + kl. Since i|fc it follows that m = h (modi). Hence m=sl (modi)
is a consequence of h = 1 (modi). Also (fe, fe) = 1 implies (m, fc) = 1.
It is easy to see that as I runs through all the integers and h through
a residue class modulo k with the restrictions (h, k) = 1 and h = 1 (modi),
then h + kl takes on, exactly once, each integer value m such that
(m, &) = 1 and m = 1 (modi). Then (3.04) becomes

(4.01) Ur, r) = Λ + JLg Hm £ ^ [ J ^ ] - l} .^ Σ lim Σ e { e x p Γ ^ ?
16 *=i ̂ — iw!^^ I L fc(/cτ/,7 — m)

Let α, b, c, d be integers such t h a t ad — be = l,a = d = 1 (modi) ,
and b = c = 0 (modi) . Denote by jΓ«iδ)CiΛ the element of G(j) defined by

•^α.&.c.aw —j"

cr + α

We wish to prove
THEOREM (4.02)1. The function λv(i; r) satisfies the transformation

1 See correction at end of paper.
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equations

(4.03) λ v(i; Γβi6fβid(r)) = xJj; a τ + M - λ v(i; τ) + ω v(j; c, d) ,
V cr + d /

/or αZZ ΓαδiCi(Z m G(i) αweZ ^ ( τ ) > 0. Here ωv(j; c, d) does not depend
on τ, α, or b.

Proof. Let us suppose we have already shown that

; ̂ 4
cτ + d

where α> does not depend on τ. Under this assumption we prove that
ω is independent of a and b.

Let Ta,)b,>Cιd be in G(i). Then, since α — α' = δ — 6' = 0 (modi) and
ad — be — a'd — brc = 1, we have that α' = α + q'j, b' — b + r'j, with
g', r' integers and q'd = rfc. Since (c, cί) = 1 it follows that qr = gc,
r ' = gcZ with q an integer, and therefore a' — a + gcj, 6' = 6 + qdj.
Hence 27

α/,6,iCfίI=27

1,β:f,o,1 !Γα,&ιCiΛ, and clearly

Therefore, ω does not depend on α or δ.
It suffices to prove (4.03) subject to the restrictions d > jc > 0, a < 0,

b < 0. First we may assume c > 0, changing the signs of a,b,c,d if
necessary. It is then simple to compute that TaίbtCtd=TlιSjιOιl TΛ>β>y>8' Tlt-rjtQΛ,
with a — a — sjc, β = rj(a — sjc) + b — sjd, 7 — c, 8 = d + rjc, and we
can choose integers r and $ so large that a < 0, /9 < 0, 8 > ic. But
λ v(i; τ) is clearly invariant under TlιSj,Oιl and TΊ.-^.o.i since these are
translations by sj and —rj respectively. Hence, if Xv(j; TΛ>β>y>h{τ)) =
XX j ; τ) + ω, then λ v(i; Γα,6>β,d(τ)) = λ v (i; τ) + <o.

Now, in order to apply Lemmas (2.01) and (2.03) we assume that
τ is a pure imaginary number. Expanding the expression in the braces
in (4.01) into a power series, we get

λv( j ; τ) = A + A- Σ* Mm Σ* β-M«'/* Σ Λ
16 *=i N->°° \m\zN P=ipl \k(kτlj — m)

(4.04) = A -J- ̂ - V # lίrvi V * Λ-2χlvmΊ* ^K^V

1 6 fc=i jv-»oo imi^jv k{kτjj — m)

16 *=i ̂ -*~ imî ivr j?=2p! \k(kτjj — m )

The separation into two sums is justified since the first is convergent
by Lemma (2.01) and the second is an absolutely convergent triple sum.
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It follows that the second sum can be rearranged in any fashion. Making
use of this fact and noting that the restrictions a < 0, b < 0, d > jc > 0
make it possible to apply Lemma (2.01), with r = 0 and α, 6, c, d replaced
by α, blj, jc, d to the first sum, we obtain

1 (iK(dt-jC)l

λv(i; τ) = A + -A. lim Σ* Σ*
16 κ-*°° I *=i \m-bkijd\£

lim Σ Σ r ^ r

IKW+jc)] s,-2πίvm'llc

Σf Σ*
k=iκ(dt-jc)l+l (aJc-

Σ* TTΓ-F r'2πiv\

+
16

+ Σ* Σ* ^ ' ^ Σ Λ L , ? J [
fc = [.KΓ(d!ί-^c)]+l (ak-Kt)lJc^mSbklJd+K!d p=2 p\ \/c(fCT/j — Ύίl) / J

Therefore,

(4.05)

) = A + ̂ - l im Σ*
1 6 2Γ-»oo t * = i

Σ*
k\5d\

+ Σ* Σ* ^ " ' " " P L , ? ,

Now, let

S*(τ)= Σ1 Σ* e-^v^eχp y w

+ Σ* Σ* β-"^*exp ffw I.

A^little computing shows that

S*(r)= Σ $ Σ * exp 2τrw fe m τ / J

i δ Λ / j d ] ^ £ : / d L kτ/j — m J

Σ* exp
(ak-Kt)IJc^m£bklJd+Kld

Γ
2πiv

L

where —kf = (mm' + l)/fc. We see that kk' + mm' + 1 = 0, so kk' =
—1 (mod m). Now given the relatively prime pair k, m, the pair k', m'
is not uniquely determined. In fact, m' can be replaced by m' + qk,
where q is any integer. Then k must be replaced by k' — qm. The
corresponding term in ̂ ( τ ) is replaced by

e x p \ 2 π i v k + Qm(m + qk)τin = e χ p \ 2 π i J k ' - m ' τ l J _ VI
L kτjj — m J L V kτ/j — m /J

— m
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so that Sκ(τ) is unaffected by the ambiguity in the choice of kf and m'.
Recall that in Sκ(τ) we are summing over the lattice points of the

trapezoid bounded by the lines k — 0, m = bkjjd — K/d, m = bk/jd + K/d,
m = (ak — Kt)ljc. Now, if the pair k, m is replaced by — k, —m, the
pair kf, m' is replaced by — k', —m', and the corresponding term in Sκ(τ)
is unchanged. Therefore, if we extend our region of summation in Sκ{τ)
by reflecting the trapezoid through the origin, Sκ(τ) is multiplied by 2.
The new region of summation is the parallelogram, ^{K)f bounded by
the four lines m = bk/jd ± K/d, m — {ak ± Kt)ljc. Therefore,

(4.06) SE(τ) = i - Σ 1 Σ * exp hπiv ~ k > ~ m>τ'j 1 .
2 to.m)e&{κ) L kτ/j — m Jkτ/j

It follows from this that

7i) - {τlj){jckf + am'
= Σ Σ e χ p 2 : Γ ΐ ϊ

cτ + d / 2 (fc,m)ê (in L (τ/j)(ak — jcm) — (mώ —
J "

If the transformation I — ak — jcm, n = — 2>&/i + md is performed, the
parallelogram &(K) in the k — m plane is mapped onto the rectangle
defined by 11 \ ̂  ί i ί, | n | ^ ίΓ in the I — w plane. Furthermore, since
a = d = 1 (mod j ) , i ) = c = O (modi), and ad — bc — \, there is a one-to-one
correspondence set up between the set of all lattice points (fc, m) in ^{K)
and the set of all lattice points (I, n) of the rectangle 111 ^ ίiΓ, | w | ^ iΓ.
Also, a little computing shows that (ak — jcm)(dkr + bm'/j) +
(md — bklj)(jckf + am1) + 1 = kk' + mm' + 1 = 0. Therefore we can put
Z' == dkr + δm'/i, w' = ί'cfc' + am', and we finally obtain

sJ°*±ϊ) = I Σ Σ*
V T + α / 2
v CT + d 1 2 \ι\£tκ \n\^κ L lτlj — n

(4.07)
= Σ* Σ * exp 2τrw / ~ w Γ / J .

ιsχ L ίr/7 — n J

Therefore, it follows from (4.05) that

. ατ + b
CT + d

= A + — lim \ SJ a + ° ) - Σ # Σ * e-a*4v»'/ι

1 6 -̂>°o I \ CT ' '

v1*
(4.08) - ; •"

= A + ^r lim fΣ1 Σ* exp Ϊ2πiv-I^—^]
L lτ h — n J

— * — i ^ _ j ^ j ^ — j r • 7 . .

l b K^OO Lz=i iwi^^ L 6τ/j

- ' Σ*""3 Σ *
jc=i
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( a k — ) IJ

n'lk\ ^

We now return to (4.01) and apply Lemma (2.03) with r = 0, p = t.
Proceeding in the same way as in the proof of (4.05), we find that

(4.09) \(j;τ)

= A + ± limCΣ* Σ*β—'^expΓ 2 ^ 1 __ Λ
16 κ->cojc=i \m\£κ \ Lk(kτιj — m)Λ /

- A + - L Km j Σ* Σ* exp \2πiv~~k' ~ m'τIΠ - Σ# Σ* e"1'4^'*
16 s:-~ U=i imî jΓ L fcr/^ — m J *=i imi^^

Upon comparing (4.08) and (4.09), we conclude that

1 ([tKl IKiβtMl

(4.10) = — l i m ^ Σ ' Σ * β - * r t v " ' / * - Σ* Σ * e-2ίΓίvm''*
16 fc-^ l * l \ K \bTUd\£Kjd

Σ*

We have proved the required transformation properties when τ is
a pure imaginary number. But \(j; τ) is regular for J?(τ) > 0, and
therefore, by analytic continuation, (4.10) holds for ^(τ) > 0, and the
proof of the theorem is complete.

There are other transformation properties of the \(j; τ) for special
values of v. These can be summarized in the following.

THEOREM (4.11). (a) If v is a multiple of j, then for J^{τ) > 0r

(4.12) λ v ( i ;- l/r) = λ v ( i ;τ) .

(b) If j is even and v is an odd multiple of j/2, then for <J^(τ) > 0,

(4.13) λv(i; -1/r) - σv(i) - \(j; τ) ,

where σv(j) does not depend on τ.

Proof. We again begin by assuming that τ is a pure imaginary
number. Returning to (4.01), applying Lemma (2.03) with r = 0, p = jr

and proceeding as in the proof of (4.05), we obtain

(4.14) λv(i; r) = A + A- lim Σ* Σ* β-«"''*(exp Γ y ^ 1 - l) .
1 6 ^->oofc=i imi^^Γ V Lk(kτlj — m)Λ /

This time, put

S ^ ) Σ* Σ * ^ - ' / f c exp
— m)
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(4.15) = £*Σ* expexp\teiv
=i L kτjj — m

kτ/j + m

where we have separated the terms for m < 0 and m > 0.
It follows that

exp
(4.16) - - - - L -*/'•-"«•

Put I = ft/i and w = ,/m; it follows from (ft, m) — 1, ft Ξ= i (modi2), and
m = 1 (modi) that (ϊ, W) = 1 , J Ξ 1 (modi), and w = i (modi2). Also, we
may put V=jk'—m, n' = (klj + m')lj. For w m ' ^ - l (mod ft), m = l (modi),
and i|ft together imply that m ' = — l ( m o d i ) . Using the fact that
ft/i = l(modi), we find that ft/i + mf = 0 (modi) and n\ as defined above,
is an integer. Furthermore, IV + nnf + 1 = ftft' + mm' + 1 = 0. With
the above definition of V and nr, we have ft' = (V + w/i)/i and m' = jn' — i..
Now, (4.16) becomes

jK K

S ( — llτ) — Y#YΣ Σ expΓariv
=i 2=1 L — £ —

+ Σ'Σ* exp Γariv-^ + nWi-OV-Q/i l
^11=1 L -l + nτlj J

+ Σ Σ exp ariv
(4.17) ^11=1 L -l + nτlj

Σ'Σ* exp J l/i

We see from (4.14) and the definition of Sκ(τ) that

λv(i; T) = A + -A- lim lsκ(r) Σ
l b -K:-^00 I fc=i

Now, if v is a multiple of j , a comparison of (4.15) and (4.17) shows
that Sκ( — llτ) = S^(τ) and therefore (4.12) follows. This is part (a) of
the theorem. In part (b), Sκ( — llτ) = —Sκ(τ), and therefore,

1 JK

Mr, - l/r) + λv(i; r) = 2A - -±- lim Σ s Σ * e-^m'<K = σv(j) .
8 ^-+°° fc=i ITOI^U:

This is part (b) of the theorem. Here again the theorem has been proved
for τ a pure imaginary number, but as before we extend our results
by analytic continuation to all τ such that ^(τ) > 0.
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5 Construction of functions for G(j). In order to construct func-
tions which are invariant under the group G(j), we make use of Theorem
(4.02) and the fact that G(j) is finitely generated. Let Tl9 I = 1, , q(j),
be a set of generators for G(j). Then by Theorem (4.02), we have

(5.01) λv(i; T%(τ)) - λv(i; τ) = clt,{j) , I = 1, , q(j) ,

for any integer v ̂  1.
Let 1 ̂  vλ < v2 < < vm be integers and consider the function

defined by

(5.02) F{τ) = b^ij; τ) + . . . + bm\m(j; τ) .

Then F(τ) satisfies the functional equations

(5.03) F{Tτ(τ)) - F(τ) = b^j) + . . . + bmc^Jj) , I = 1, . . . , q(j) .

Let m ̂  g(i) + 1 and consider the homogeneous linear system in the m
unknowns bl9 , bm

(5.04) biCi.φl + + bmcltym(ί) = 0 , Z = 1, . . . , g ( j ) .

This has m — q(j) linearly independent solutions (b19 ,bm). With
bi, * ,bm chosen to satisfy (5.04), put

(5.05) Sf{i\ blf , bm; vlf , vm; τ) - 6X Xφ'; τ) + . . + 6 m λ v j i ; τ) .

It follows from (5.03) and (5.04) that j£f (i; 6X, , bm; v19 , vOT; Γ,(τ)) =
-S^(i; &i, " , δm; v19 , vTO; τ) for I = 1, , g(i) and therefore, since the
Tτ generate G(j), we have

(5.06) jgf ( i δx, , δm; vlf , vm; T(τ)) = j£f ( j ; 6X, , 6m; vx, . . . , vm; τ) ,

for all Γ in G(j).
In order to show that the function ^f defined by (5.05) cannot

reduce to a constant we prove

LEMMA (5.07). Let dn be the wth Fourier coefficient of the function
-SΓ Then

(5.08) dn ~ {bjl&)v^n-^{2j)-^e-^n-^j exp [^(wvj^/i] .

Proof. We see immediately from (5.05) that dn = ΣΓ=iMw(̂ > i),
with αn(v<9 i) defined as in (3.01). The lemma now is direct consequence
of Lemma (3.02a)

In particular, (5.08) implies that ^f is not a constant.

6. Construction of forms for G(j). Let r be any positive even
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integer. We define the function

an{v,j, r) = {(-iy

where A^n) is defined as in (3.01) and Ir+1 is again a Bessel function
of the first kind. It should be noted that if we put r = 0 in (6.01) we
obtain the function \(j; τ) defined by (3.01).

The computations of § § 3 and 4, using Lemmas (2.01) and (2.03),
•with r > 0, yield the following two theorems.

THEOREM (6.02)2. The function λv(i; τ, r) satisfies the transforma-
tion equations

(CT + dyx^j; Γβi6,Ctd(r), r) s (cτ + dyxJj; α τ + ^ , r)
•(6.03) V c r + d J

= λv(i; r, r) + pv(i; τ, r; c, d) ,

./or αii Γα,6,c,d ^ G(j) and ^"(τ) > 0, where py(j; τ, r; c, d) is a poly-
nomial in τ of degree at most r.

THEOREM (6.04). (a) If v is a multiple of j, then for ^(τ) > 0,

<6.05) τ^λv(i; -1/τ, r) = \(j; τ, r) + py>1{j; τ, r) ,

where pv>1(j; τ, r) is a polynomial in τ of degree at most r.
(b) // j is even and v is an odd multiple of j/2, then for ^(τ) > 0,

(6.06) τ^λv(i; -1/τ, r) = pVι2(j; r, r) - λv(i; τ, r) ,

where pVi2{j) T, r) is a polynomial in τ of degree at most r.
Now, in order to construct forms of dimension r for G(j), we make

use of Theorem (6.02) and proceed as in § 5. We take a linear combi-
nation of the λv(i; τ, r) in such a way that the resulting linear com-
bination of polynominals occurring in the transformation equation connected
with Tlf I = 1, , q(j), vanishes identically. In this case m, the number
of λv(j; r, r) in the linear combination, must be such that m ^
(r + l)-q(j) + 1.

A simple generalization of Lemma (5.07), to cover the present case,
shows that the forms constructed in this way are not identically zero.

7 Conclusion* Other functions of the type dealt with in this
paper can be constructed by generalizing the congruence conditions on
k and h in (3.01) and (6.01). Let nλ and n2 be any integers. If, in

2 See correction at end of paper.
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(3.01), we impose the new congruence conditions k = n, j (modi2), ^ Ξ

w2(modi), we obtain new functions which satisfy (4.03), and which,
therefore, can be used to construct functions which are invariant under

If (n29 i) > 1, the sum defining Ak^(n) is empty and so each Fourier
coefficient is zero. Also the case nx = 0 (modi), n2 = 1 (modi) is unique
and will receive separate treatment in another publication. The distinc-
tive feature here is the fact that, in order to construct functions
satisfying (4.03), we must introduce a pole term at i oo. This situation
occurs, for example, in the Fourier expansion of μ(τ), the reciprocal of
λ(r) (see [6]).

Making the additional assumptions nλ — n2, n\ = l (modi) in (3.01),,
we obtain functions for which we can prove Theorem (4.11).

Correspondingly, if we impose the conditions k = nlf j (modi2),
h ΞΞ n2 (modi) in (6.01), we obtain functions satisfying (6.03), and making
the further assumptions, nλ = n2, n\ = 1 (modi), we obtain functions for
which Theorem (6.04) holds.

It should be noted that all of our functions vanish at the parabolic
cusp at infinity. As the referee has pointed out, it is of interest to
consider the behavior of these functions at the other parabolic cusps of
G(j). This question will be treated at a later time.

Correction to "Construction of a Class of Modular Functions and
Forms". As it stands the proof of Theorem (4.02) is incorrect. The
difficulty arises in the paragraph immediately preceding (4.06), where
we extend the region of summation in Sκ(τ). In the original expression,
for Sκ(τ) we are summing over the points (fc, m) of a certain trapezoid
subject to the additional restrictions (m, k)=l,k = j (modi2), m = l (modi).
In order to extend the region of summation to the parallelogram ^(K)f

we reflect this trapezoid through the origin. That is, when (fc, m) appears
in the summation, we also include the point (—k, — m). The trouble is,
that when j i> 3, (—fc, — m) does not satisfy the proper congruence condi-
tions, but rather the new conditions —k = — j (modi2), —m = — 1 (modi),
or equivalently, — k^f — j (modi2), —m = j — 1 (modi). Hence the ex-
pression (4.06) for Sκ(τ) is incorrect, when j ^ 3. For j = 2, of course,,
this difficulty does not arise.

The situation can be readily rectified if we go back to (3.01) and
modify the definition of the function λv(i; τ). Put bi(v, j) = an(v, j)r

with an(v9j) as in (3.01) and define bή(v,j) to be the same as an(y,j)>
except that the congruence condition on k is changed to k = i2 — j (mod i2}
and the congruence condition on h is changed to h = j — 1 (modi). We
now define λv(i; τ) by

) = Σ bn(v, 3Yπinτl3 ,
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where

K(v, 3) = i[δί(v, 3) + bn(», 3)]

when j = 2, 6+(v, j) = b~(v, j) = 6n(i;, i) = αn(y, j), and no change has been
made.

With this new definition of Xv(j; τ) (4.06) becomes

Sx(τ) = i Σ Σ exp \2πw-k'-m'τlj] ,

where the summation is over all points of ̂ (K) such that (m, fc) = 1.
and either k^j (mod j2), m = l (modi) or k?=j2—j (modi2), m = i—1 (modi)
The remainder of the proof now carries through.

The same remark is necessary in connection with Theorem (6.02).
That is, Theorem (6.02) is incorrect as it stands, but if we modify the
function λv(i; τ, r) in the same way as we modified λv(i; τ), the proof
goes through.

We should point out that Theorems (4.11) and (6.04) are correct as
they are, but in addition Theorem (4.11) is true for the modified λv(i; τ)
and Theorem (6.04) is true for the modified λv(i; τ, r).

Similar modifications have to be made in the definition of the func-
tions mentioned in § 7.
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COMMUTING BOOLEAN ALGEBRAS OF PROJECTIONS

C. A. MCCARTHY

0 Introduction* One of the more important problems in the theory
of spectral operators is to decide when the sum and product of two
bounded commuting spectral operators is again spectral. J. Wermer [7]
has shown that the sum and product of two bounded commuting spectral
operators on Hubert space is again spectral. N. Dunford [4, Theorem 19]
and S. R. Foguel [5, Theorem 7] have shown that if the Boolean algebra
of projections generated by the resolutions of the identity of two bounded
commuting spectral operators on a weakly complete Banach space is
bounded, then the sum and product of these operators are spectral. We
therefore wish to determine conditions that insure the boundedness of
the Boolean algebra of projections generated by two bounded commuting
algebras of projections on a Banach space. We shall show that it suffices
that one of the original algebras be strongly complete, countably decom-
posable, and contains no projection of infinite multiplicity. The example
of S. Kakutani [6] shows that the Boolean algebra of projections gen-
erated by two commuting, strongly complete, algebras of bound 1, but
both of infinite multiplicity on a non weakly complete space, need not
be bounded. By slightly reworking his example, we shall show that the
order of magnitude of our estimates is sharp, even for spaces of finite
dimension. By taking a suitable direct sum of these examples, we
obtain a separable reflexive Banach space on which we have two com-
muting, strongly complete, Boolean algebras of projections, both of bound
1, neither having a projection of infinite uniform multiplicity, but such
that the algebra of projections they generate is unbounded. On this
same Banach space we also show that the sum and product of two
bounded commuting spectral operators need not be spectral.

This paper is divided into four sections: the first is devoted to the
proof of a combinatorial inequality, the second contains our main theorem
on the boundedness of projections, the third section consists of examples.
The last section is an appendix to section two.

l A combinatorial inequality • The required inequality is the
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assertion of the following theorem.

THEOREM 1.1. Let a19 •••,&# be any N complex numbers, and let

Sf be the collection of all subsets S of the set 1, •• ,ΛΓ of indices.

Then for any So in £7,

(1.1) Σ as
< 2]/Nπ-2-»

That is, the sum of any particular subset of the a's cannot exceed in
absolute value the average of the absolute values of sums taken over
all subsets by more than a factor which has order of magnitude N1'2.

It suffices to prove the slightly stronger

THEOREM 1.1. a. Let βlf •••, β2N be any 2N complex numbers, and

^S the collection of all subsets R of {1, • • ,2Λ/r}. Then

(1.2) ΣA

This implies Theorem 1.1, for suppose that N, So, and the α's of that
theorem are given, with So = {su , sn}. Define

β r = aSr, l ^ r ^ n ; β N + r = 0 , 1 ^ r ^ N;

β r = 0, n + 1 ^ r ^ N; / 9 i V + r = a,r , n + l ^ r ^ N

where sn+1, , sN are those integers between 1 and N which are not in
So. Then we have

Σ «- Σft

Also, every S in S? determines 2N J??s in ^ : namely

{r 11 S r ^ n and sr e S} U {r\n + 1 ^ r ^ N and sr e S}

together with any of the 2^ subsets of {n + 1, , N + n}, such that

Σ
ses

so that

Σ a* = Σ

Now if (1.2) holds, then we have

Σ a*
ses0

g 2]/Nπ 2'N Σ Σ
ses
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which is (1.1).
We will now show that it suffices

special case
to prove Theorem 1.1. a in the

= . . . = βN = βN+1 = . . . = ft^ = -

We will first show that if we replace both βt and βJfl^i,j^Nf

by their common average i(ft + βj) and we have (1.2) for this new set
of /3's, then we necessarily had (1.2) for our original β's (Lemma 1.2
below). We then show that we can perform these two-at-a-time aver-
agings in such a way as to eventually make the resulting ft's, 1 ^ i ^ N,
all arbitrarily close to their common average (Lemma 1.3 below). By
the continuity of both sides of (1.2) in the ft's, it then suffices to prove
(1.2) in the case ft = = βN. Similarly, we may assume fty+1 = = . . . =
β2N. By re-indexing the β's if necessary, we may suppose

N

r=i

Λll Σ βr
r=N+l

and by the homogenity of both sides of (1.2), it suffices to prove Theorem
1.2 in the case ft = = βN — 1, βN+1 = = β2N — γ where γ is some
complex number, | 7 I ^ l We will then show that we need only consider
7 = — 1 (Lemma 1.4 below).

LEMMA 1.2. Suppose we set ft == β'2 = 3(ft + ft), β'r = βr, 3 £ r S N.
Then if (1.2) holds for the β"s, then it holds for the β's.

Proof. Partition £% into four disjoint classes:

^ = {R11 e R, 2 e R) , ^ 3 = {R11 φ R, 2 e R} ,

^ 2 = {R\le R, 2<β R} , ^ 4 = {R\ 1 $ R, 2 ψ R) .

If R is in ^g\ or ^ 4 , then Σ r 6i2 /3r = Σre/e A'. Now note that there is
a one-to-one correspondence between ^ 2 and ^ 3 : i? is in ^ 2 if and
only if R' = R U {2} - {1} is in ^ 8 . Then we have

Σ#
rβR

Σ β'r =

—

VII

A

rΣ

Σ

+ A 4

1

-2 Σ A
reRΓlR'

Σ A

Summing over all J? in &2, we have

Σ
reR ^ Σ Σ,βr

reR
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together with equality for R in &x and ^? 4 , this proves the lemma*
Note that the use of the particular indices 1 and 2 is irrelevant for our
purposes; we only need that both indices are no greater than N or that
both exceed N, so that Σ£=i β'r = Σ£=i A .

LEMMA 1.3. Let β19 * ,βN be any N complex numbers. Then by
a finite sequence of two-at-a-time averagings, we may obtain new numbers:
βΊ> , β'κ such that maXij | βl — β'5 \ is arbitrarily small.

Proof. Suppose that all the β's are real and let β be their average.
Let θ — maxr | β — βr |. Partition {1, , N} into three disjoint classes;

R1 = {r\β-θ^βr<β-θβ),

By averaging a βi9 i in Rλ with a βj9 j in Rz, we obtain numbers between
/3 — θβ and β + 0/3; by doing this, we may exhaust either Rx or R3, so
that we may initially assume that one of these, say Rs, is empty. In
this case the cardinality of R2 must exceed that of R19 for otherwise
the sum of the β's would be less than Nβ. Now we may average each
βt, i in Rlf with a distinct βj9 j in R2, and obtain numbers between
β — 2θβ and β. Then if β'r are the resultant set of numbers,
maxr I β — β'r I ̂  2^/3. By repeating this process, we may arrive at
numbers differing arbitrarily little from β. For complex β's, we first
perform two-at-a-time averagings to make the real parts of the β's as.
nearly equal as desired, and then do the same for the imaginary parts.
Notice that when we perform any averagings, neither the maximum
difference of the real parts nor of the imaginary parts can increase, so-
that when we average to make the imaginary parts nearly equal, we
do not increase the maximum difference of the real parts.

We therefore assume β1= = βN = 1 and βN+1 =•••== β2N = 7,
17 I 5̂  1. Now each set R of & determines two integers k and p which
are respectively the numbers of indices of R which do not, resp. do,
exceed N. For such an R, IΣreβA l = \k + pγ\. Since there are (f)
subsets of {1, , N} of cardinality fc, and (f) subsets of {N + 1, , 2N}
of cardinality p, the number of R's for which | Σreaβ r\ — \k + PΊ\ is
(£)(£). Thus in this case (1.2) becomes

N

N S AN(Ύ) = 2 l/ίV£4-* Σ Σ I k + VΊI (ί)(f) .
fc = 0 p-0

Since |fc + p 7 | ^ | f c — p | 7 | | , it suffices to prove that ^(—1) ^ AN(y),
- 1 ^ Ύ ύ 0, and then that A*(-l) ^ iSΓ.
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LEMMA 1.4. AN(-1) ^ AN{i) for all | γ | ^ 1

Proof, We have just seen that it suffices to consider real negative
7; to see that it suffices to consider 7 = — 1, note that for fixed N,

— 1 .4M* = (7) £ Σ I fc + pr I (S)iS) - GAΎ)
2VNπ fc=i p=o

is a piecewise linear continuous function of 7. Where it exists, its
derivative with respect to 7 is

N [fc/|γ|] N N

Σ Σ P(f)(Ώ - Σ Σ
fc 0 O fc [fc/|

έ Σ Σ P(ί)(ί) - Σ Σ P(Z)(S)

= Σ Σ u(f)(?) - Σ Σ* P(Ϊ)(?)
fc=0 p = 0 iV—fc=0 JY—p + l = l

= Σ Σ [P(ί)(f) - (ΛΓ - p + i)(5-*)(S-,+1)]
fc=0 p=0

- 0 .

Thus G (̂7) is a non-decreasing function of 7 and so obtains its minimum
at 7 = — 1.

Finally, we compute GN = GN( — Ϊ). We have

N+l N + l

G>+1 = Σ Σ |fc-Pl(ίT+1)(£+1)
N + l N + l

= Σ Σ I k - v I [(ί)(ί) + CrXί-O + GL,)(ί) + Oί-i)]

= Σ Σlfc-Pl(ί)(f)+ Σ Σ Ifc + 1 - PI(f))f)

+ Σ Σ | f c - p - i | (ί)(r) + Σ Σ I ft - Pi (?)(?)

= AGN + 2 Σ (£)a = 4G, + 20/)
fc=0

We have used the convention (ζ) — 0 if n < 0 or n > N. The third
equality is a simple change of index of summation. The next-to-last
equality comes from noting that

0 if k Φ p

We then have by an easy induction

_,NΓ(N+1/2)
N~ V¥r(N) '
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whence by Stirling's formula, and t h e crudest sort of estimates,

π

so that AN ^ N.

2. The boundedness theorem* Let X be a Banach space, X* its
adjoint, g* and J?" bounded Boolean algebras of projections on X, with
bounds Mx and M2 respectively, such that EF — FE for all i? in g* and
F in ^~\ E will be assumed to be strongly complete [1, Definition 2.1].
I is the identity operator on X and will be assumed to belong to both
gf and &~\ we denote I - E (I - F) by E' (Ff). The operator Σ»OΊK

where the EL are mutually disjoint projections from g* and sup \aL\ < oo,
is a bounded operator on X with norm at most 4M1 s u p | α ι | [4, p. 341].
We use the usual lattice supremum, infimum, and comparison signs for
our projections as well as for closed subspaces of X: Ex V E2 =
Ex + E2~ E1Eif E1AE2 = EλE2, Ex g E2 if and only if EXE2 = Ex; ίΰl, V 9Jϊ2

is the smallest closed manifold in X containing both of t h e closed
manifolds 20^ and 2Ka, 23^ Λ 9Jί2 is t h e intersection of 3D?! and 9Jί2, and
aJϊi ^ 9Jί2 means t h a t aWj. is contained in 33ΐ2. 9Ji(a;) denotes the least
closed manifold of X containing Ex for all E in if. If a? is in X, we
call t h e projection in g% C(#) = A {Ex \ Ex — x} t h e carrier projection
of a;; x is full over E if C(α?) ^ E'.

We assume t h a t there is an integer N for which t h e following
condition (*^) holds:

(*̂ r) Lei a? be in X, and suppose that ^(FiX) A AJ^I ^i(FjX) = 0
for all i, 1 ^ i ^ w, /or some choice o/ ί\, , Fn. Then either
AΓ=i C(F^) = 0, or eίsβ w ^ iV.

This condition holds, for example, if g7 is countably decomposable
and has no projection of infinite multiplicity. The proof requires rather
extensive background material which we will have no other occasion to
use, and so is deferred to an appendix.

We wish to obtain a bound for the norm of V J ^ X which is
independent of M and the particular J&TO'S in ^ and ί y s in J^. Ac-
cordingly, fix Em e g% and Fm e ^~, m = 1, , M; x e X and x* e X*
with I x I ^ 1, I x* I ̂  1. We will estimate ^ Σ ί = A ^

First notice that, without loss of generality, we may assume that
the Fm's are all disjoint: let L be an index running over all subsets of
{1, •• ,Λf}, and define

EL — ViezEi > FL = Aiez FΊ A Aiez Fl

It is well known that the non-zero FL are the atoms of the Boolean
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algebra of projections generated by the FJs, and are mutually disjoint
with sum /. Now we have

l9 £ \/ιEι{

^ VL(\/ieLElFl)

thus we have found a way of expressing \/m=iEmFm with the F's dis-
joint.

Now let J and K be two indices running over all subsets of {1, , M}>
and define

Ej = AjejEj A AJ0JEJ , Gκ = A*eκC(Fkx) A A**κC(Fhx)' .

j} and {Gκ) are both disjoint families of projections with sum /.

LEMMA 2.1. 1. C(F f cx) = y{κ]IceK}Gκ ,
2. GκFkx = 0 if kφ K,
3. IfkeK and Gκ Φ 0, then GκFkx Φ 0,
4. FKX^ΣJΈKEJGXFKX,

5. Σm=i EmFmX = ΣjΈiκΈi{mejnκ}EjGκFmX,

6. For a fixed K, there are most N
integers m for which GkFmx Φ 0.

Proof. 1 — 4 are clear. 5 follows from the fact that the E/s and
Gκ's have sum I, and if m 0 /, then EjEm = 0; if m φ K, then GκFmz =
0; while if m e J n K, then EjGκEmFmx = EjGκFmx.

6. Suppose that GκFmx Φ 0 for m = mly , m^+1. Then by 2,
{mx, , mN+1} S ίί, and by 1, each _FTO^ is full over Gκ. Since Fma; = z
for every 2 in Tl(Fmx)y the disjointness of the Fm's gives

for 1 ^ i ^ iV+ 1, which contradicts (*N).
Now define

a{m, J, jfiΓ) = x*EjGκFmx .

As a corollary to Lemma 2.1, parts 5 and 6, we have

5a. £* Σ£U # Λ ^ = Σ J ΣiΓ ΣtmejniΓ} α(m, J, X),
6a. For a fixed K, there are at most N integers m for which

a(m, J, K) Φ 0.
Let P be any subset of {1, •••, M} and define

β(P, J, K) - Σ Φ, J, K) -
pep

Let TP be the operator Σ J Σ * sgn^(P, J, K)EjGκ, where
if r ^ 0, and 0 if r = 0. TP is an operator on Xof norm at most
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VII Σ.pF,

but on the other hand

(2.1) x*(Σ F^Γpaj = Σ Σ fsgn β(P, J, K)-x
\pEP / J K L

-x*(Σ

We are now in a position to prove the principal theorem of this
paper.

THEOREM 2.2. Let if cmc? j ^ ~ be commuting bounded Boolean
algebras of projections on a Banach space with bounds Mx and M2

respectively, g7 strongly complete. Suppose condition (*N) is satisfied
for some N. Then the Boolean algebra of projections generated by g
and ^~ is bounded, with bound δ / N ^

Proof. For each J, K, there are at most N integers mlf , mN

for which a{m, J, K) Φ 0. Let

as — a(ms, J, K) , 1 ^ s ^ N,

So = {s\mse

and apply Theorem 1.1. We obtain

Σ Φ, J, ^ 2τ/Nπ-2-N Σ a(mt, J, K)
ses

Now for any S, there are 2M'N distinct sets P of {1, •••, M) for which
Σs€5^(^ s , J, K) — Σpepa{v, J, K); namely, {ms \ s e S} together with any
of the 2M"N subsets of integers between 1 and M which are not one of
mlf ••, mN. Thus

and

Σ

Σ
ses

a(m, J, K)

> /, K) Σ Σ a(p, J, K)
pep

^ 2VNπ-2-u Σ a(p, J,
pep

Summing over all /, if, we have for arbitrary x, x* of norm 1, EJs
and Fm's,
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Σ EmFmx , /, K)

Σ a(p, J, K)
pep

= 2\/Nπ 4:M1M2 ,

•which is exactly our theorem.

3 Examples* Inspired by the example of S. Kakutani [6], we
'Construct an example in a finite dimensional space to show that the
order of magnitude of our bound is sharp. We imitate his paper in the
•construction of algebras of projections as much as possible and omit
proofs which essentially appear in his paper.

Let N be a power of 2, N = 2", and let S and S' be the set of
integers {1, • ••, JV}; C(S)9 the continuous functions on S with the sup
norm, is simply the JV dimensional vector space of iV-tuples. Let S* —
S x S', and let our Banach space X be C(S*), but with the minimal
cross product norm induced from C(S) and C(S'). Our X corresponds
to the space C(S)®C(S') of Kakutani, and has dimension JV2. The
•elements of X may be thought of in a natural way as JV x JV matrices
.cc(s, s'). Let ĝ r and J^ be the commuting Boolean algebras of projec-
tions of bound 1 generated respectively by Et and Ft, 1 ^ i ^ JV, both
-of multiplicity N:

8') =
x(8, sr) if s = i ,

0 if s ^ t ,

a?(8, s;) if 8' = i ,

0 if s =£ ̂  .

'Then there is a projection G in the Boolean algebra of projections
generated by 8^ and ^N such that 2G — I takes the element of X
defined by x(s, s') Ξ= 1 into the element p(s9 s') defined by

'where s has the unique representation

s - ε1(s)2
w~1 + 82(s)2n~2 + + εΛ_1(8)2 + ε,(s) + 1, ε,(s) - 0 or 1 .

If we put a measure μ on S which assigns to each point the meas-
ure 1/JV, then the N functions on S, p(s, i), 1 ^ i g N, form an ortho-
normal base for L2(S, //), and the computations on pp. 368 and 369 of
[6] carry over exactly to show that the norm of p(s, s') in X is no less
than l/JV. Since the element of X, x(s, sr), has normal, this says that
the norm of 2G — I is at least VΊJ, or that the norm of G is at least

Let us now take one copy XN of the above example for each JV,
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and form t h e l2 direct sum of t h e XN, which we call X. E lements of
X a re sequences {xN} where xN e XN and

llfor}||= Σ l l ^ l l i J <°°.

The algebras &N and J^ on XN have a natural extension to all of X
by defining ^N(XM) = ^(XM) = 0, M Φ N. Let ξf and j ^ ~ be respec-
tively the commuting Boolean algebras of bound 1 of projections on X
generated by all the g^, resp. ^#, and note that the generated algebra
contains a projection of norm at least iθ/N — 1) on the subspace XN;
we thus see that the algebra generated by g7 and ^ is not bounded.
Since X is an l2 direct sum of finite dimensional (hence reflexive) spaces,
X must be itself reflexive and also separable.

Now let T and T' be operators on X, defined by

τ( Σ ® Ms, *')) = Σ ® 2^3-sx(s, *')

Γ'f Σ ® M«. «o) = Σ ® 5-s'χN(s, s').
\JV=1 / JV=1

Then Γ and Tf a re bounded commuting scalar-type spectral operators
on X. The operator TT' has simple eigenvalues a t t h e distinct points
2~MS~~ί5"3

y I ^= i, j ^ M < oo. The projection EMΛJ corresponding to t h e
eigenvalue 2~M3~ i5" j satisfies

E , J Σ ® X*(8, 8')) = Σ ® SMΛ&,'XN(8, S') ,
\N=1 J N=l

where 8tJ is the Kronecker delta. Thus the Boolean algebra of projec-
tions generated by the EMΛιj contains both if and ^ a n d therefore is
unbounded. TT' cannot be spectral. Also the sum of two spectral
operators on X need not always be spectral. For if this were so, T + Tr

would be spectral, hence (T + T')2; also (T + TJ - Tn = 2TT'.

4 Appendix^ We show that (*N) is satisfied if the Boolean algebra
g7 is countably decomposable and has no projection of infinite multiplicity.
We will make use of the representation theory of such algebras of pro-
jections originally given by J. Dieudonne [3] but used here in the form
due to W. G. Bade [2]:

There is a compact Hausdorff space Ω, the Stone space for if, and
a natural correspondence between if and the Boolean algebra of Borel
sets of Ω. We will allow ourselves to confuse the set a c Ω with the
corresponding projection E(σ) in if. A projection E has multiplicity N~
if there exist N elements xlt •••, xN of X such that EX = \fn=v^(^n)t
and if for every N-1 elements y19 , yN-x of X, EXΦ V^ί23%J. E has
uniform multiplicity N if E has multiplity N, and 0 < Eλ g E implies
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that Ex has multiplicity N. By using theorem of Bade [2, Theorem 3.4],
and assuming that g7 contains no projection of infinite multiplicity, we
can decompose Ω into a finite union of disjoint sets, Ω — ex U U eN

for some N, where en has uniform multiplicity n. It will suffice to
consider the case Ω — eN. In this case, we can find an ^-basis xlf , xN

for X and a dual basis xf,' ,x% such that X = W ζ=$fl(%n)
 a n d

x^E(σ)xn = 0 if m Φ n and is > 0 if m = n and E(σ)xn Φ 0. Let us
write μ(#*, #) for the measure x*E( )x. Then each x in X determines,
essentially uniquely, N scalar functions fn{ω) on £?, /»(ω) being the
Radon-Nikodym derivative of μ(xt,x) with respect to jM(a?*, a?n). Also
each #* in X* determines, essentially uniquely, N scalar functions gn(ω)
on β, flfn(α>) being the Radon-Nikodym derivative of μ(x*, xn) with respect
to μ(xϊ,xn). The product fngn is in U{Ω, μ{xt, xn)) for each n, and
Λ - Σ«=i J/»(ω)flrn(α>)̂ (a?*, a?n).

Note that the measures μ(#*, 05Λ) are all absolutely continuous with
respect to one another, and every measure μ(x*, x) is absolutely con-
tinuous with respect to all of the μ(x£, xn) When we say measurable,
we mean with respect to any, hence all, μ(x%, x).

Now suppose that Flf •• ,F]SΓ+1 are disjoint projections, commuting
with each E e if, and such that for some x and some σ c Ω, σ Φ 0,
each Fnx is full over a. We can assume for simplicity that a — Ω.
The fact that each F is a bounded projection commuting with every E
in % insures that Fz — z for every z in ^(Fx). The disjointness of
the Fn's then gives us Wl(Fnx) A V ^ 2 f t ( ί » for n = 1, , N + 1.

The following two lemmas will allow us to reach a contradiction.

LEMMA 4.1. Let A(ω) be a matrix of measurable functions on Ω.
Then if M(ω) is a fixed minor of A(ω), det M(ω) is a measurable
function. If r(A, ω) denotes the rank of A(ω), then r(A, ω) is a measur-
able function.

Proof. If M{ώ) is a fixed minor of A{ω)f det M(ω) is a sum of
products of measurable functions, hence is measurable. Also the set on
which det M{ώ) Φ 0 is measureable, and so the Boolean algebra of sets
generated by the supports of M(ω) for all minors M of A, is an algebra
of measurable sets. r(A, ω) is a simple function on this algebra, and
so is measurable.

σ(r0, A) will denote the set of ω for which r(A, ώ) = r0. <τ(rOf A, M)
will denote the subset of σ(r0, A) for which the r0-rowed minor M has
non-zero determinant. The σ(r0, A, M) mutually exhaust σ(r0, A). Let
{σ} be a finite collection of mutually disjoint Borel sets such that each
σ is contained in some σ(r, A, ikf), and mutually exhaust σ(r, A) and
hence exhaust Ω.

For the moment, fix σ. Let I be a r-rowed minor of A(ω) for
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which σaσ(r,A,M). Let Pιf fpr be the row indices of M and

Qij m ,Qr the column indices.

LEMMA 4.2. Let g^ω), ***fgN(ω) be N measurable functions such
that on σ, the column N-tuple (g^co), , gN{ω) is pointwise linearly
dependent upon the r columns (a1>qj(ω), , aNtaj(ω)) of A(ω). Then
there exist r measurable functions u^ώ) such that on o>

Σ
3=ι

for n = 1, , N

Proof. The minor M(ω) has non-zero determinant on. Let M~\ω) —
(wPi,qj(ω))> the w's being measurable functions on Ω. We have

Σ

Define

Then, if n is one of the pt, we have

Σ wJ(α)K.βJ(<») = Σ Σ

= Σ K.pfipSflή = gn(ω) .

And if for some o)0 and some n0 not a p«,

Σ Uj(ωo)ano,qj(ωo) Φ gnQ(ω0) ,

then the matrix, evaluated at ω0,

aΏ. a. * * an

a ^ i # # *

has rank r + 1, contrary to the assumption that the gn are linearly
dependent upon the r columns of A with indices qό.

Now let the matrix A have its entires defined by

ai3(ω) =

Then the JV + 1st column is pointwise linearly dependent upon the
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first N columns. Selecting one of the non-zero sets σ and applying
Lemma 6.2, we have the existence of N measurable functions nό{ω) on
o for which we have

Let now t Φ 0 be a subset of σ on which each of the functions Uj(ω) is
bounded. We then have

α?i*2?(τ).Fy+1a! = # i * Σ \ u3{ώ)E{dω)Fόx

which implies

E(σ)FN+1x = Σ (jr^(ω)#(dα>))*>

(this makes sense all the u/s are bounded on τ); that is,

which is the desired contradiction.
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TRANSFORMATIONS OF SERIES OF ^-FUNCTIONS

T. M. MACROBERT

1. Introductory* The transformation [1, p. 25, 2, p. 369]

a, β, 7, 8, - ϊ ; 1 \
-β+l, a-y+l, αr-δ+1,

α - 7 - δ + 1, | α , /3, - I ;

where I is a positive integer, is a special case of a formula of Whipple's.
It, and other transformations of the same kind, can be employed to
obtain transformations of series of E-functions. Two such transforma-
tions are:

)(β)(~l;n) E( p; ar . %)
;p—n), J(m; σ—ri), d(m; a+p+n)
Δ(m;a + σ+n),ρ1,ρ2, ,ρq

(a + l;l)(±-a-β+l;l) t (±a;n)(β; n)(-l;n)
(2) ^ 1 Σ — ( —)

( λ a + l l ) ( β + l l Γ ° l ( β ± l ) KmJ

; a+p+σ+n-1), a19a2, " ,ap . J

Δ(m; a+p+ri), Δ(m; a+σ+ri), ρl9ρi9 ,pq >

Ό(—Z; n) EfΔ(m; y+n), Δ(m; y-a—n), au ,ap . Λ
£on\(a—β+l;n)(a+l+l;n) \j(m'fσ+n)fΔ{m;σ—a—n)fplf' 'fpa ' )

( ) ^ ) (-l; n)
(3) = 1 5 Έ

χ E ί Δ(m; 7), Δ(m; y-a-n), al9 ,ap . Λ
\Δ(m;σ—a),Δ(m;σ+n),p1, ',pq ' )

In these formulae m is a positive integer,

(4) (a; 0) = 1, (α; m) = α(α + 1) . . . (a + m - 1),

and Δ(m; a) denotes the set of parameters

Received February 23, 1960.
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a a + 1 β α + m — 1
m' m ' ' m

The proofs of (2) and (3) are given in §2. The following formulae
are required.

If m is a positive integer

(5) Γ(mz) = (2πY{ll2)-{ll2)mlmίmz-{imΓ(z)r(z +-LΛ .. r(z+m~"1\
V m / \ m /

From this it follows that, if m and n are positive integers,

(6) rio^±n\r/a + l + n\ # # # Γ / α + m - l + n\
V m / V m / V m /

m / \ m / \ m

and

(7) r[a

m ) \ m ) \ m

m / \ m / V m

The Barnes' integral for the 2?-function is [2, p. 374]

where | amp z \ < π and the integral is taken up the ^-axis with loops,
if necessary, to ensure that the origin lies to the left of the contour
and the points alfa%f fap to the right of the contour. Zero and
negative integral values of the parameters are excluded, and the a's
must not differ by integral values. When p < q + 1 the contour is bent
to the left at both ends. When p > q + 1 the formula is valid for

I amp z | < — (p — q + l):r.
Δ

2. Proofs of the transformations. Using (8), (6) and (7), the left-
hand side of (2), with p = q = 0, can be written

w=o ̂ !(α — β + 1; n)(a + I + 1; n)

- ]Q + mξ) 7i) (1 — σ + mξ", ^dg'

m

2πί)
p.σ\_u=o I \ m / \ m
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where

I_Fl
a> @> 1-p + mζ, 1-σ + mξ, -I; 1 \

\oc — β + 1, <x + p — mζ, a + σ — mζ, a + I + 1/ '

From (1) it follows that this can be put in the form

Δ7CIJ γΛ γ τ I pί P + U __mcΛp/O^"τP + ^ _ f - ) l |

p,σLw=o I V m / V m /JJ

where

/α + p + σ - 1 - 2m?, —a, β, - ί; ΐ\
J=F\ 2 -

\α + p — m?, ̂  + σ — m?, β — —a — lj

Now the integral is equal to

Σ-

m
- mζ)Γ{a + σ - mζ)dζ

Γ(a + p + n - m ? ) J ] r ( α + p + σ-l- 2 m ? ) ,

and, on applying (5) to the gamma functions whose arguments contain
— 2m? or — mζ, the right-hand side of (2) with p = q = 0 is obtained.
Formula (2) can then be derived by generalising.

Formula (3) can be proved in the same way. It should be noted
that

(a — γ + 1 + mζ; n) = (— l)w(γ — a — n — m?; w) .

The restrictions on amp z and on the parameters can be removed
by analytical continuation, provided that the functions exist.
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AN INEQUALITY FOR LOGARITHMIC CAPACITIES

HEINZ RENGGLI

1. Introduction* In his work on capacities, G. Choquet proved
that for many capacities the inequality of strong subadditivity holds [1].
It is the purpose of this note to show that a similar inequality holds
for logarithmic capacities. More precisely we shall prove the

THEOREM. Let A and B be compact sets in the complex z-plane E.
By C(S) we denote the logarithmic capacity [2] of a given compact set
S, S c E, where we agree to put C(S) = 0 whenever S = φ. Then

C(A U B)-C(A Π B)^ C(A) C(B) .

2. Proof of the theorem* Let S, S c E, be a compact set whose
boundary consists of a finite number of analytic arcs. By S* we denote
that component of E — S which is unbounded. Then Green's function
of S* is defined by the properties: it is harmonic in S*, vanishes at
the finite boundary points of S* and has a logarithmic singularity at
infinity. We will denote this function by gs(z, oo).

First we shall deal with the case when the respective boundaries
of A, B and A Γϊ B consist of a finite number of non-degenerate analytic
arcs. We remark that the difference gA{\ii{z, ^) — Qj&> C O ) is harmonic
in A*, A* c (A Γl B)*f and at infinity. It is furthermore non-negative
on the boundary of A* and hence non-negative in A* by the maximum
principle. Similarly gAUB(z9 CXD) ̂ > gB(z, oo) holds in J5*, B* c (A Π B)*.

The function

is harmonic in (A U BY and at infinity. From (A U BY = A* n B* it
follows that the boundary points of (A U BY belong either to the boundary
of A* or to the boundary of JB*. Therefore gAUB{z, °°) and either
gA(z, oo) or gB(z9 °°) vanish at these boundary points. With the aid of
the remark made above we get the result that h(z) is non-negative in
(A u BY.

Therefore

9A(Z, °°) + 9B(Z9 °°) ^ 9AUB(Z, °°) + 9AΓ\B(*9 OO)

holds in (A U -B)*. From this general inequality and using the fact
that

Received December 16, 1959. Presented to the Amer. Math. Soc. in Jan. 1958, where
a less elementary proof based on an inequality for extremal lengths was given.
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lim {gs(z, oo) - log|z|}

is the constant γ(S) of Robin [2] we deduce

7(A) + 7(B) ^ y(A U B) + γ(A n B) .

But

by definition. Hence our theorem is proven for the special case.
The general case follows by the usual approximation techniques [2],
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APPLICATIONS OF THE SUBORDINATION

PRINCIPLE TO UNIVALENT FUNCTIONS

M. S. ROBERTSON

l Introduction. Let

(1.1) f(z) = z + a2z
2 + + anz

n + •

be regular and univalent in | z \ < 1 and map | z \ < 1 onto a simply-
connected domain D. Let

(1.2) φ(z) = bλz + b2z
2 + + bnz

n +

also be regular in | z \ < 1. φ(z) is said to be subordinate to f(z) if for
each z of the unit circle | z | < 1 the corresponding point w = Φ(z) lies
in the domain Zλ In this case [2] there exists an analytic function
ω(z) regular in | z | < 1 for which ω(0) = 0, | ω(z) | ^ | z | < 1 and

It is the purpose of this paper to establish the following basic
Theorems A and B which concern analytic functions F(z91) and ω(z, t),
depending upon a real parameter t, and then to use them to obtain
results in the theory of univalent functions. Some of the results are
well known and others are new, but the method of attack seems to be
novel, simple and of sufficient generality to be of interest in itself. The
functions F(z, t) and ω(z, t) will be related to the univalent function f(z)
of (1.1) by means of the subordination concept.

An interesting biproduct of Theorem B is the following statement.
A sufficient condition that f(z), regular and univalent in | z \ < 1, be
convex in | z \ < 1 is that the de la Vallee Poussin means VJz) of (1.1)
be subordinate to f{z) in | z \ < 1 for n = 1, 2, . Recently [3] G. Pόlya
and I. J. Schoenberg showed that this condition for convexity is also
necessary.

THEOREM A. Let

(1.3) ω(z,t) = ±bn(t)zn

1

be regular in \ z | < 1 for 0 ^ t ^ 1. Let

I ω(z, t)\<l for \ z \ < 1, 0 ^ t g 1, ω(z, 0) Ξ= Z .

Let p be a positive real number for which

(1.4) ω(z) = li

Received October 2, 1959.

315



316 M. S. ROBERTSON

exists. Then

(1.5) £0ω(z) ^ 0 for \ z | < 1 .

If ω(z) is also analytic in \ z | < 1 and &ω(0) Φ 0, then

< 0 for I z \ < 1 .

Proof, By Schwarz' lemma we have for 121 < 11 ω(z, t) \ ^ 12: | with
equality only if ω{z,t) = zexipiθ(t), then the function

(1.6) μ(z, t) = ***> *> 7 z

ω(z, t) + z
is regular and &μ{z, t) < 0 for | z | < 1. But when ω(z, t) = z exp iθ(t),
μ(z, t) — i tan (l/20(ί)) is purely imaginary. Thus μ{z, t) is regular and
&μ{z, t) ^ 0 in | z | < 1 with equality occurring only if ω{z, t) ~z exp iθ(t).

For £ > 0, I z I < 1 we may write

(1.7) ^(ω(z,t)-z 2z I = J2^f)ΐ < 0 .
v X ztp ω{z,t) + z) I ίp J "

(1.4) implies that lim^o+^ί^, t) = 3 = ω(z, 0). Therefore, on letting t —>0
in (1.7) we obtain ^ ω ( z ) ^ 0 for \z\ < 1. When ω(z) is also analytic
in I z I < 1 and &ω(0) ΐ O w e have further that &ω(z) < 0 in | z | < 1.
This follows since the maximum, in this case zero, of a non-constant
harmonic function cannot occur at an interior point.

As an illustration of Theorem A, the following example is useful.
Let

? ί £ o s ί s l

Then ω{z, 0) = z, \ ω(z, t) \ ̂  1 in | z \ < 1, 0 ^ t ^ 1.

(1.9) ω(z) = lim {<«*> * ~ ^ °>} = ̂ ^ , t)] =

(l.io) ^r<Φ) = 2&(-^±.) < o, 121 < l .
\ 2 + 1 /

Theorem A is a special case of Theorem B to follow. However,
the proof of Theorem B depends upon Theorem A.

THEOREM B. Let

(1.11) f(z) = z + a2z
2 + + anz

n + ..

be regular and univalent in | z | < 1. For 0 ^ t ^ 1 Zeί JP(2, ί) 6e r e ^ -
Zαr in \ z \ < 1. Let F (z, 0) Ξ= /(#) and! i^(0, ί) = 0: Let p be a positive
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real number for which

(1.12) F(z) = lim j F(z, t) - F(z, 0) |

exists. Let F{z, t) be subordinate to f(z) in \ z | < 1 for 0 ^ t ^ 1.
Then

(1.13)

// in addition F(z) is also analytic in | z | < 1 and &F(0) Φ 0,

Proof. Since JF(Z, £) is subordinate to /(a;) in | z \ < 1 we have

F(z, t) - f{ω(z, t)} , b | < 1 , 0 ^ ί ^ 1 ,

where ω(z, t) is regular and bounded | ω{zf ί) | ^ 1 in | « | < l , 0 ^ ί ^ l .
Since F(z, 0) = f(z) and since f(z) is univalent in | z \ < 1 we have
ω(z, 0) = «. Also since /(0) = 0, F(0, t) = 0 and since /(z) is univalent
we have ω(0, 0 = 0. We now write

( 1 u ) F(z, t) - F(z, 0) = Γf(ω(z, t)) - f(ω(z, 0))Jω(z, t) - ω{zy 0) 1
ztp L ω(z, t) - ω{z, 0) JL ztp J '

(1.12) implies that F(z, t) is continuous from the right at t = 0 and a
similar statement holds for ω(#, t) because of the subordination. Let
t—>0+ in (1.14). The left side of equation (1.14) has for a limit F(z)
by (1.12). On the right side of (1.14) the square bracket has a limit
f\z) Φ 0. Thus

(1.15) ω(z) = lim Γ«*M)-<Φ,0)]

exists and equals F(z)lf(z). Furthermore &ω(0) = &F(0). If F(z) is
analytic so is ω(z). Since the conditions of Theorem A are fulfilled by
0){zy t) we have

(1.16) 4 l
ί («)

When ί7^) is analytic in 121 < 1 and ^ ^ ( 0 ) ΐ θ we also have

(1.17)

2 Applications to univalent functions. The properties of univalent
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functions W — f(z), given by (1.1), which are also star-like with respect
to the origin in \z\ < 1 are well-known [2]. If W = f(z) maps \z\ < 1
onto a star-like domain D of the TF-plane, then by definition the line
segment joining the origin to the point W = f(z) lines entirely within
D for each z in \z\ < 1. One then shows that it is necessary that

(2.1) ^ M M l > o in |«| < 1 .

In establishing (2.1) one is obliged to show first that if f(z) is star-like
with respect to the unit circle it is also star-like with respect to each
smaller circle | z | = r < 1. At this stage one then appeals to an alter-
native definition of a star-like domain/ This requires that the radius
vector, joining the origin to the point f(z), turns always in one direction
as the argument of z advances.

A much simpler proof of the necessity of (2.1) follows immediately
from Theorem B. Since (1 — t)f(z) is subordinate to f(z) for 0 S- t ^ 1,
we have

(2.2) (l-t)f(z)=f{ω(z,t)}

where ω(z, t) satisfies the conditions of Theorem A. Taking p — 1 and
letting

(2.3) F(z, t) = (1 - t)f(z)

in Theorem B we obtain at once F(z) = —f(z)\z Φ 0, so that (2.1) follows
from (1.17) very simply.

More generally we have the following theorem.

THEOREM 1. Let.

f(z) = z + a2z
2 + + anz

n + •

be regular and univalent in \ z | < 1 and such that (1 — teiΛ)f(z) is sub-
ordinate to f(z) in I z I < 1 for an interval 0 ̂  t ^ t0, a a real constant
I a I < π/2, then

(2.4) ^ > o , |* | < 1 .

For the proof of Theorem 1 we take

(2.5) F(z, t) = (1 - te")f(z)

in Theorem B and (1.13) becomes (2.4) in this case. The condition (2.4)
is the one given for spiral-like functions by L. Spacek [7].

The following theorem from an intuitive point of view appears to
be almost self-evident. Our new technique, however, furnishes an easy
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and precise proof.

THEOREM 2. Let f(z) of (1.1) be regular and univalent in \ z \ < 1.
For an interval 0 ^ t ^ t0 let the function

(2.6) ^r[f(euz) + f(e~»z)]

be subordinate to f(z) in \ z | < 1. Then.

(2.7)

(#) is convex in 12 | < 1.

Proof. In Theorem B we choose ^ = 2 and i*7^, 0 to be the func-
tion (2.6). Then

(2.8) F(z) = lim F ^ *> ~ *<«' °> = limlim lim
ί-o 2ί2 ί-o 2^ί βί

Since /'(0) = 1, it follows that F(0) - - 1 so that ^ F ( O ) Φ 0. Thus
(1.17) of Theorem B is equivalent to

(2.9)

It is well known [2] that (2.9) implies that f(z) is convex in | z \ < 1.
For odd functions and an appropriate choice of F(z, t) we obtain a

result perhaps not so intuitively obvious as Theorem 2. It is the follow-
ing theorem.

THEOREM 3. Let

(2.10) /(*) - z + ta^z^-i ,
2

be an odd function, regular and univalent in \z\ < 1. For all real a

and for an interval 0 ^ t ^ ί0 Zeί £fce function

(2.11)

6e subordinate to f(z) in \z\< 1. Then f(z) is convex in \z | < 1.

For the proof of Theorem 3 we take F(z, t) of Theorem B to be
the function (2.11) and select p = 2. A calculation of F(z) in (1.12),
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together with (1.16), leads to the inequality

(2.12) &\(1 - e-zi«zjen«£M _ 2(1 - e~2i«z2)\ ^ 0 , | z \

L zf (z) J

Choose a = amp z. Let | z \ = r < 1. Then (2.12) becomes

(2.13) ^ Γ ( l - r2)2 4 3 f t - 2(1 - r2)] ̂  0 ,
L r2f'(z) J

Similarly, for α = π/2 + amp 2, we obtain

It follows from (2.15) that/(2) is convex for | g | < 1. It is to be noticed
that equality occurs in (2.13) for the convex function

when a = 0. In this case F(z) = 0.
For another application of Theorem B we turn now to a class of

function which need not be convex but which form a subclass of the
class of close-to-convex functions introduced by W. Kaplan [1].

It is well known that if

(2.16) f(z) = z + ±anz
n

2

is univalent and convex in | z | < 1, then | an \ ̂  1 [2]. The author [5, 6]
has shown that if the coefficients are all real and if f(z) is univalent
and convex only in the direction of the imaginary axis for \z\ < 1, then
again \an\ ^ 1, but that if the coefficients are complex the results
\an\ ^ n is sharp. For the class of functions f(z) which are close-to-
convex in \z\ < 1, the inequalities \an\ ^n again hold [4]. We now
consider another class of functions, which are also close-to-convex in
| s | < 1, but not necessarily convex, for which | α n | <£ 1. This class con-
tains the odd star-like functions as a sub-class. The result is stated in
the following theorem.

THEOREM 4. Let the function

(2.17) (1 - t)f(z) + tf(-z)

be subordinate to the univalent, regular function
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(2.18) f(z) = z + a2z
2 + + anz

n + •

in I z I < 1 for an interval 0 ̂  t ^ t0. Then

(2.19) &I *£!<&—Λ
L/(z)-/(-z)J

and the vector {f(z) —/(—«)} £wws continuously in one direction as z
traverses each circle \ z | = r < 1. f(z) is close-to-convex in | 3 | < 1.

Proof. Let ̂  = 1 and let JF(s, ί) be the function in (2.17). Then
F(z) of (1.12) reduces to (l/z)[f(-z) -f(z)] and F(0) Φ 0. (1.13) then
leads to (2.19).

Now let

arg [f(z) - f(-z)] =φ,argz = 0 .

by (2.19).

Since by (2.20) {/(2) — /(—z)} is univalent and star-like in \z\ < 1, it
follows t h a t

(2.21) ψ(z) = dt , 121< ,
t

is convex in | s | < 1. Thus (2.19) may be cast in the form

(2.22) ^\IMλ > o , I z I < 1 , φ(z) convex,
I ψ'(z))

which implies that f(z) is close-to-convex [1] in | z \ < 1. This completes
the proof of Theorem 4.

In a recent paper [3] G. Pόlya and I. J. Schoenberg have shown
that if f(z) of (1.1) is univalent and convex in | s | < 1 then so are the
de la Vallee Poussin means VJz) of the power series (1.1),

(2-23) V.(z) = ^ ΐ5 z + ̂ ΐ ^n + 1 (n + 1)(^ + 2)

+ α z

(n + 1)(^ + 2) (2rc) " '
and if D and Dn denote the convex domains into which the unit circle
is mapped by f(z) and Vn(z), respectively, then Dn c D. In other words,
Vn(z) is necessarily subordinate to f(z) for n — 1, 2, when f(z) is
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univalently convex. By means of Theorem B we can now prove that
the condition Dna D for infinitely many values of n is also a sufficient
condition that f(z) be convex when f(z) is univalent. The theorem of
Pόlya and Schoenberg in its extended form is now stated as Theorem 5.

THEOREM 5. A necessary and sufficient condition that the function

f(z) = z + a2z
2 + + anz

n + ,

regular and univalent in \z\ < 1, be convex in \z\ < 1 is that the de
la Vallee Poussin means Vn(z) in ( 2 . 2 3 ) be subordinate to f(z) in\z\<l
for n = 1, 2, .

Proof of sufficiency. In Theorem B we choose p = 1 and F(z, t) =
Vn(z) where t = (n + I)"1. We define F(z, 0) = lim^0+ F(z, t) =
l im,^ Vn(z) — f(z)f uniformly in | z | ^ r < 1. For p = 1 we shall show
that the limit defining F(z) in (1.12) exists uniformly and is precisely
the analytic function -~{zf"(z) + f'(z)}9 F(0) = - 1 . When this is done
(1.17) will give

and the convexity of f(z) follows. We need the following lemma.

LEMMA. If n and k are positive integers, k ^ n, then

(2.24) (n + l)Γl - / ^ - 1 ) ( w-f + 1

L (n + ΐ)(n + 2) . (n + k)
We establish the lemma by mathematical induction. Let n be an

assigned positive integer. It is readily seen that (2.24) holds for k — 1.
Assuming that (2.24) is true for a value k < n we prove that (2.24)
also holds when k is replaced by (k + 1). Indeed, we have

(2.25) (» + l)Γl n(n-l)...(n-k + l)(n - k) 1
v ' v \ (n + l)(n + 2) (Λ + k)(n + fc + 1) J

= ί n + i f i _ n(n-l) '(n-k + l) (± _ 2k + 1 \ ]
L (w + l)(n + 2) (n + k) V w + Jfc + 1 λl

= ίw + l)Γl - '"•(̂  — 1) (^ — fc + 1) Ί
L (n + l)(w + 2) (w + fc) J

+ (2k + 1) {-n + v>

^ A;2 + (2k + 1) = (fc + I) 2 .
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Turning to the calculation of F{z) we have

(2.26)

F(z) = lim Γ F{z, t) - F(z, 0) 1 = ^ *±l(Vn(z) - f{z))
t->o+L tz J ŵ oo z

= -lim (» + 1) t i l - (

nin-P':'o^'~IC+ΛW'1' * = !'»-« *=i I (n + l)(w + 2) (n + k))

- lim (w + l)z M fχ + M + 1 z v .
n—»oo v=0

Let I z I ^ r < 1. Since f(z) is univalent we have | av+n+1 \ < e{v + n + 1).
Consequently for large n

(2.27) (n + l)z»± av+n+1z* = θ{ ^ } - p M ,
v=o 1(1 —rf)

(2.28) lim p n = 0

uniformly in | z | ^ r.
Let ΛΓ be a positive integer. Then

(2.29) lim (n + l ) s { l - ^ ~ D ' (^ ~ fc + 1) 1 ,-t„-. ^ ;ήΊ I ( n + i)(Λ + 2) (n + A;) /

For w > iV, I 2 I ^ r, by the lemma we have

(2.30) (w + 1) ± U -
(w + l)(n + 2) (n + k)

g t fc2l α* I*1*"1 < e Σ fcV*-1 .

Given ε > 0, we now choose N0(e, r) so that for N > No

(2.31)

From (2.26), (2.28), (2.29), (2.30) and (2.31) it follows that the limit in
(2.26) exists uniformly in | z | ^ r < 1 and is the analytic function

(2.32) F(z) - -

This completes the proof of the sufficiency part of Theorem 5. The
necessity part was shown in [3]. In (2.26) since n is a positive integer
we have let t —* 0 through a discrete set of values of t. This, however,
in no way affects the validity of Theorem B.
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PARTITION AND MODULATED LATTICES

DAVID SACHS

Introduction* The lattice of equivalence relations on a set S, or
equivalently the lattice of partitions on a set S, is perhaps one of the
most interesting lattices from the point of view of abstract algebra.
Partition lattices were studied rather thoroughly by 0. Ore [6], who
also gave a characterization of them in geometric terms. Later, another
characterization of partition lattices was given by U. Sasaki and S. Fuji-
wara [8]. Their characterization makes specific use of the notions of lines
and planes and is somewhat combinatorial in point of view. In this paper
we introduce the notion of a modulated lattice and give a characterization
of partition lattices (Theorem 14) which is remarkably similar to the
lattice-theoretic characterization of the classical projective geometries.
Moreover, our study suggests that there may be continuous analogues
of partition lattices much in the same way as the continuous geometries
of J. Von Neumann are analogues of the classical projective geometries.
After developing some preliminary on modulated lattices, we focus our
attention on irreducible modulated matroid lattices. A simple property
which may or may not be present in such lattices enables us to give
our characterization of partition lattices. Curiously enough, we are able
to give a characterization of partition lattices on an infinite set which
is simpler in appearance than our more general result. We devote some
attention to metric lattices and show that certain continuous modulated
lattices must be continuous geometries. Finally, we mention some problems
and extensions suggested by this paper.

Preliminaries. Let L be a lattice with operations +, , partially
ordered by the relation ^ . The zero (unit) element is written as 0 (/),
and we shall usually assume that these elements are present. We write
(α, b)M and say that the pair (a, b) is modular if and only if (c + a)b =
c+ab for every c ^ b. If the modular relation is symmetric, then the
lattice is said to be semi-modular. If (α, b)M and ab = 0, then we write
(a, b) J_ and say that the pair {a, b) is independent. We say that b
covers c if b > c and there is no x for which b > x > c. A point is an
element which covers 0. An interval [α, b] is the set of elements x
such that a ^ x ^ 6. For the convenience of the reader we include
here some properties of semi-modular lattices, the proofs of which can
be found in [1] and [3]. All maximal chains between two elements
6, c, b < c, are finite and have the same length if there exists one finite
maximal chain between the two elements [3, p. 88], By the length of

Received April 25, 1960. This paper was presented to the American Mathematical
Society under the title "Modulated and Partition Lattices" on January 29, 1960.
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an interval we mean the number of elements in a finite maximal chain
in the interval if there is such a chain. If (x, y)M, then the intervals
[xy, x], [y, x + y] have the same length if one of the intervals has a
finite maximal chain; moreover, if the intervals {xy, x], [y, x + y] have
the same length, then (x, y)M. An element c is said to have dimension
n if the interval [0, c] has length n + 1; it has codimension m if the
interval [c, I] has length m + 1. By an independent complement of c
we mean an element b such that c + b = I, (c, b) JL. By a line we
mean an element which covers a point, and by a plane we mean an
element which covers a line. A hyperplane is an element which is
covered by I.

Let L be a lattice with 0. L is left-complemented if for every
a, δ e L , there exists b' <i 6 such that α + 6' = α + 6, (6', α) J_. A left-
complemented lattice is semi-modular [10]. Later, we shall show that
matroid lattices are left-complemented.

Now let L be a semi-modular lattice. We say that 6 is a modular
element (bM) if (b, c)M for every c e L. The reader can easily verify
that OM, IM and pM if p is a point. In the case of affine geometry
these are the only modular elements. Evidently a necessary and suf-
ficient condition that every element be modular is that L be a modular
lattice.

The meet of two modular elements is modular. For if aM, bM,
c e L and d ^ab, then (d + c)ab = [(d + c)a]b = (d + ca)b = d + cab
since (c, α)M and (cα, b)M.

THEOREM 1. Let aM. If b <£ α cmd (6, e)Λf relative to [0, α] /or
e € [0, a], ίfeew Wkf.

Proof. Notice that (g, h)M in a lattice if and only if (g, h)M rela-
tive to the interval [gh, g + h]. Let c e L, d S b. Then (d + c)b =
(d + c)ba = [(d + c)a]b = (d + ca)b = d + cα6 since αilί and cα ^ α. But
cί + cαδ = d + cδ, and this completes the proof.

// bM, then the intervals [be, b], [c, b + c] are isomorphic, and the
mappings x —> x + c and y —>yb,x e [be, b], y e [c, b + c], are inverse
isomorphisms between the two intervals.

Modulated lattices*

DEFINITION 1. A left-complemented lattice L with unit I is said to
be modulated if for every yM and for every z^y, there exists xM such
that x + z = I,xz = 2/.

Since the zero element is modular, the above conditions cannot be
satisfied vacuously. It is easily seen that every complemented modular
lattice is a modulated lattice. We shall now give an example of a
modulated lattice which is not a complemented modular lattice but is
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describable in terms of such a lattice. Let A be a complemented modular
lattice with operations +, , of length Ξ> 3 for which every interval
sublattice is irreducible and which contains a point p. An example of
such a lattice is a projective geometry of not necessarily finite length or
its dual. We define

L' = A-\p\.

If 7/ is partially ordered in the natural manner, then it is easily seen
that 7/ is a lattice. Moreover, if the join and meet operations are
denoted by U and Π respectively, then the following properties hold:

a U δ — a + δ ,

a n b = ab if ab Φ p ,

aΓ[b = Oiΐab~p.

We observe that
(1) O e L ' J e L ' ;
( 2) x e 7/, x Φ 0, y ^ x implies y e L';
(3) x e L',y ^ x implies the existence of z e U such that z + y — x,

zy = 0.
We obtain (3) by observing that [0, x] is irreducible, and hence y

has at least two complements in [0, x\. By a result due to Wilcox [10],
7/ is left-complemented and

(α, b)M if and only if ab Φ p.

From this we deduce that aM in 7/ if and only if a — I or a > p.
Suppose now that a Φ I and aM. Let b > a. If b ̂  a + p Ξ= C, then
a complement z of b within [α, I] cannot contain a + p so that z > p,
and thus zikf. If δ > c, then 6 + c covers 6 and therefore be = α. By
the irreducibility assumption applied to [α, 6 + c], there exists p' Φ c such
that p' + b = δ + c, p'δ = α. If x + & + c = 7, #(δ + c) = p\ then #δ =
x(b + c)b = p'δ = α, a? + 6 = x + p' + b = 7. Furthermore, #c = &(& + φ =
p'c Φ c. Therefore x > c so that a? > p, and #ikf. Since such an x exists,
7/ is a modulated lattice.

THEOREM 2. Lei L be a modulated lattice, and let a be a modular
element. Then if c <£ α, (c, δ)M relative to [0, α] /or αW δ e [0, α], ami
c ^ a? ̂  a; t/tere exists an element y such that yM, x + ?/ = a, xy = c.

Proof. I t follows f r o m T h e o r e m 1 t h a t cilί. T h e r e e x i s t s ^ e t
s u c h t h a t 2 + x = 7, 2# = c, sΛf. Define ?/ = za. T h e n ^/Λί, α? + y =
x + za = (x + z)a = α; ^ί/ — α?̂ α = xz — c.

Since the meet of two modular elements in a semi-modular lattice
is a modular element, it follows by induction that the meet of a finite
number of modular elements is a modular element. If L has finite
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length, then the modular elements form a lattice; however, this lattice
is not usually a sublattice of L. It will be shown later that the
modular elements of a matroid lattice form a lattice, and our example
given above shows there are other examples as well. We shall callthe
partially ordered system of modular elements 2Ji, and the dual of this
system will be denoted by 3JΪ.

THEOREM 3. If L is a modulated lattice and 2Jϊ is a lattice, then
2JΪ is a left-complemented lattice.

Proof. If 9JΪ is a lattice, then the meets of elements in 9Ji and L
are the same. The join of two elements x, y in 3JΪ will be denoted by
x U y. Notice that x Ό y ^ x + y in L. Let a, 6 e 2JΪ. To prove the
theorem we need to show the existence of an element 6' ^ 6 such that

abf = ab ,

a U V = I

and c(b' U a) — cV U a for every c e 3Dΐ, c ^ a. (This is the dual of left-
complementation.) Since L is modulated, there exists an element b'M
such that (α + 6)6' = 6, a + 6 + δ' = I. Thus αδ = α6', a + δ' = /, and
so α U 6' = /. If c Ξ> α, then c(b' U α) = c; also c(6' + α) = cbf + α, or
c = cbf + a. Thus c ^ c6' U a, and since the reverse inequality is obvi-
ous, we have c = c6' U a. This proves the theorem.

THEOREM 4. // L is modulated and SSSl is a lattice, then (a, b)M
in Wl if and only if a + b = a D b.

Proof. Suppose a + 6 = a U 6. Then if c ^ 6, c(α U 6) = c(a + 6) =
cα + 6, and so c(α U 6) ̂  cα U 6. The reverse inequality is obvious, and
so c(a U 6) = ca U 6. Thus (a, b)M in 9Ji. Conversely, suppose a U 6 Φ
a + b. Then α ( j 6 > α + δ. If we consider the 6' in Theorem 3, then
we see that Va U 6 = 6. But b'(a U 6) > 6, for if 6'(α U 6) = 6, then
a u 6 = (a U δ)(δ' + (α + 6)) = ( α U 6)6' + (α + 6) = a + 6. Hence (α, 6)7kΓ
in SOΐ, and the proof is complete.

If, in our example, A is the dual of a protective geometry, then Wl
is an affine geometry. What we want to show next is that L and 9JΪ
have the same center if every element in L is a join of points. We
first state a few lemmas about left-complemented lattices. The follow-
ing lemma is easily proved:

LEMMA 1. If L is a left-complemented lattice, (6, 6') J_, and c —
cb + cδ' for every c e L, then L is isomorphic to the cardinal product
of [0, 6] and [0, 6'].

LEMMA 2. // L is left-complemented, then an element is in the
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center if and only if it has a unique complement.

Proof. Suppose e has a unique complement e'. Then (e, ef)M. Let
ue — 0. There exists an element x such that (u + e) + x = I,(u + e,x) _L,
Now e + (u + x) = I and e(u + x) = e(w + e)(w + a?) = e[(^ + e)x + w] =
eu = 0. Since e' is the unique complement of e, u + as = e'. Thus if
%e — 0, then u ^ e'. For every x there exists an element b such that
ex + e'x + b = x, {ex + e'x, b) _L. Now ex(efx + 6) = (ex + e'x)(e'x + 6)ex =
e'xex — 0. Hence e(e'x + b) = 0 since e'x + 6 g x. It then follows that
e'x + b S β', and so 6 ^ e'x because 6 ^ x. Thus x = ex + e'x for every
x e L. We now use Lemma 1 to see that e is in the center. The
converse is trivial.

LEMMA 3. Let L be a left-complemented lattice. If e has a unique
complement e', then e has a unique complement.

Proof. Suppose that e + ef = I, (e, e') _]_, and that e' is the only
element with these properties. If our lemma is false, then there exists
an element b such that e + b — 7, eb = 0 and (e, b)Mr. Since there
exists b' ^ b such that e + V = e + b = 7, (e, 6') _L, it follows that 6 > e\
Then there exists x ^ b such that e' -\- x — b and (e', x) _[_. Also, there
exists x' ^ x such that e + x' — e + x and (e, a?') ± . Moreover, there
exists an element y which is an independent complement of e + x'.
Therefore e + (x' + y) = 7 and e(a?' + i/) = e(e + x')(^' + 2/) = e ^ ' — 0
If c ^ e, then (c + as' + #)e = [((c + x') + j/)(e + x')]e = (c + x > = c.
Thus (β, ίc'+ 2/) _L. From the uniqueness of e' we obtain j/ + a?' = e', and
this implies a?' ̂  e'. Therefore xf ^ e'x = 0, and then we have e + x = e.
Thus x ^ eb — 0, e' — b, and the proof is complete.

THEOREM 5. Lei L be a modulated lattice such that every element
is a join of points. If Wl is a lattice, then L and 9JΪ have the same
center.

Proof. If an element e lies in the center of L, then it is modular
and so it lies in 3JΪ. Since e has a unique complement e' in L, e' must
be the unique independent complement of e in 9Ji; thus e lies in the
center of 3K. Conversely, suppose e lies in the center of SOT. Then e
also lies in the center of SOT. Let er be its unique complement in SOT.
Suppose c e L. Obviously c ^ ce + ce'. If p is a point within c, then
since p e SOT, p = pe U pe'. Thus p ^ e or p £Ξ e'. In any case p — pe + pe'.
Hence p ^ ce + ce', and since c is a join of points, c ^ ce + ce'. Con-
sequently, c = ce + ce' for every c e L. Since ee' = 0, e U e' = 7 and
(e, e')M in 3JI; e + e' = 7, and now the result is obvious.

COROLLARY. Let L be a modulated lattice such that every element
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is a join of points. If 3Jί is a lattice, then L is irreducible if and
only if 3JΪ is irreducible.

Matroid lattices.

DEFINITION 2. A lattice L is a matroid lattice if it has the follow-
ing properties:
(4) L is a complete lattice;
(5) Every element in L is the join of points;
(6) If p is a point and p g£ 6, then p + b covers 6;
(7 ) If p ^ Σαe^tf where p and pΛ are points, then there exists a finite

subset B of A such that p ̂  ΣβenPβ 1

A set y of elements in L is said to be increasingly directed if for
every x,y e Y, there exists z e Y such that z ^x,y. We define a
decreasingly directed set in an analogous manner. If L is a lattice satisfy-
ing (4) and (5), then condition (7) is equivalent to the following one:

(8) «Σϊ/ = Σ0w)
yer yer

where Y is an increasingly directed set. We call this property meet
continuity.2 The proof of the equivalence of (7) and (8) can be found
in \β\. We shall now show that a matroid lattice is left-complemented.

LEMMA 4. If p is a point, then (b + p)a — b + pa if b g α, i.e.,
(p, a)M.

Proof. If p ^ 6 or p ^ a, this is obvious. If not, then b + p
covers b so that since b + p ^ a, (b + p)a = b. But obviously then
(b + p)a = 6 + pα.

LEMMA 5. Lei a,b e L. There exists a maximal element bf such
that V g 6, (6', α) 1 .

Proof. Define

S = [x e S; x ^ 6, (a, α) 1] .

S is partially ordered by the relation g in L. If C is a chain in S
and q — ΣceίA then q ^b; moreover, a direct application of meet con-
tinuity shows that qa = 0. If m ̂  α, then (m + ^)α = (m + Σceσc)α =

+ c))α. Since the set of elements of the form b + c is an
1 A rather through discussion of matroid lattices can be found in [3] where they are

called "treillis geometriques". We use the name matroid because it seems to be the more
common term.

2 This property is sometimes called upper continuity.
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increasingly directed set,

(m + q)a = Σ (m + c)a ~ Σ ( m + ca) — m .
ceo ceo

Thus q e S, and the existence of bf follows from Zorn's lemma.

LEMMA 6. If a,b e L, £/^re e#ίs£s 6' ̂  b such that a + b' — a + 6,

Proof. There exists a maximal element 6' <£ δ such that (&', α) J_.
If a + 6' Φ a + 6, then there exists a point p such that p g 6, p -$* a + &'.
Since p is a point, (p, b' + a) ±. This implies that (p + 6', α) _L which
contradicts the definition of 6'.

THEOREM 6. A matroίd lattice is left-complemented and hence
semi-modular.

We state without proof the following structure theorem for matroid
lattices:

Structure Theorem. Every matroid lattice is the cardinal product
of irreducible matroid lattices; moreover, irreducible matroid lattices are
characterized by the fact that any two points have a common com-
plement.3

This is the main result of [7], but the theorem was proved in the
finite length case in [2] and [4]. Using this theorem, we can easily
prove a theorem important for our investigation.

THEOREM 7. If L is an irreducible matroid lattice and aM, then
[0, a] is an irreducible matroid lattice.

Proof. It is obvious that [0, a] is a matroid lattice. Let 6, c be
points in [0, α]. Since L is irreducible, there exists x such that b + x =
c + x = I, bx — ex — 0. Thus b + ax = (b + x)a = a = (c + x)a = c + ax
since αikf, and bax = cax = 0. Therefore b and c have a common com-
plement in [0, α] from which it follows that [0, a) is irreducible.

COROLLARY. If L is an irreducible matroid lattice, I is a line,
and IM, then I contains at least three distinct points.

THEOREM 8. Let L be a matroid lattice. If H is a set of elements
each of which is modular, then Π^e^ h = hr is a modular element.

Proof. The set of all finite meets of elements in H has the same
meets as H, consists of modular elements, and is decreasingly directed.

3 By cardinal product we mean cardinal product in the unrestricted sense, i.e., we do
not require almost all of the entries to be 0.
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Thus without loss of generality we assume that H is decreasingly
directed, and that its elements are indexed. Let b be an element of
finite dimension, and let c ίg hf. Thus c ^ hβ for every β. If for every
hy there is an ha such that ha < hy and bhΛ < bhy, then there exists an
infinite chain between b and 0. But this is impossible since b has finite
dimension. Therefore for some hy, bha = bhy for every ha < hy. Thus
bhf = bhΎf and c + bh' — c + bhy = (c + b)hy ^ (c + 6)/*/. Hence hf is

modular with every finite-dimensional element. Let df be any element
in L. The set D of finite-dimensional elements contained in df is increas-
ingly directed, and its join is d'. If c gΞ /*/, then we have

(c + d')h' = (c + Σ <*V = ( Σ (c + c2)V = Σ (c

+ dλ') = c + f ΣdΛ') = c + f Σ ^ V = c + d'h> '

where we have used meet continuity twice. This proves the theorem.
Theorem 8 shows that Sϊί is always a lattice, in fact a complete

lattice, when L is a matroid lattice. If L is also modulated, then every
element in 3ft is a join of points since 2Jί is left-complemented and every
modular element in L Φ I is contained in a modular hyper plane.

THEOREM 9. If X is an increasingly directed set of modular ele-
ments in a matroid lattice L, then Σ X = x' is a modular element.

Proof. Let b e L, with c ^ b. Then

(c + x')b - (c + Σ » V = ( Σi(c + x))b =

= Σ (β + acδ) = c + ( Σ *&) = c + f Σ «)δ = c +

We shall now restrict our attention to modulated matroid lattices.
It is easily shown that a cardinal product of lattices is modulated if
and only if each of the factors is modulated. In view of the Structure
Theorem we shall therefore concentrate on the irreducible case.

LEMMA 7. Let L be a matroid modulated lattice which is irreduci-
ble. Then any two hyperplanes have a common independent complement.

Proof. Let h\ h" be any two hyperplanes in L. We choose a point
p such that phτ = 0. If ph" = 0, then p is the common independent
complement. If p <Ξ h!\ then we choose a line IM such that I + h" =
7, lh" = p. Now I must contain at least two more points r, s. Neither
r nor s can be contained in h", for then I tίh". If both r and s are
contained in h', then h' ^ p which is false. Hence r or s is a common
independent complement.
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THEOREM 10. // L is an irreducible modulated matroid lattice,
then any two elements of the same dimension {or codimension) have a
common independent complement.

Proof. Let a and b have the same dimension or codimension. From
the meet continuity condition, there exists a maximal element x such
that (a, x) J_, (b, x) ±. Because a and b have the same dimension or
codimension, a + x — I if and only if b + x = I. Suppose then that
a + x Φ I, b + x Φ I. Then a + x and b + x are contained in hyper-
planes, and there exists a point p such that (a + x, p) _L, (b + x, p) J_.
One easily sees that (a, x + p) _L, (b, x + p) ± contrary to the definition
of x.

COROLLARY. If L is an irreducible modulated matroid lattice, and
if aM, bM and a, b have the same dimension or codimension, then [0, a]
is isomorphic to [0, 6].

Proof. If x is a common independent complement of a and b, then
[0, a] and [0,6] are both isomorphic to [x, I].

We shall now restrict our attention to irreducible modulated matroid
lattices of length ^ 5. Let us consider the following property:
(γ) L contains a point p which lies in a plane tM such that three M-

lines contain p and are contained in t.

LEMMA 8. Suppose that L is an irreducible matroid modulated
lattice of length ^ 5 satisfying condition (γ). Let dM be a plane and
let pf be a point contained in d. Then p' is contained in three M-lines
I, m, n where I, m, n S d.

Proof. Suppose that pf = p and d Φ t. Let df be a common com-
plement of t and d. The perspective mapping from [0, t] to [0, d] with
d' as a common complement leaves p fixed for (p + df)d = p + d'd = p
since p g d. The images of the three M-lines in t containing p are
the required lines. (The images are obviously M-lines in [0, d] and
since dM, they are M-lines.) Suppose now that p' is any point in t
distinct from p. If (p + p')M, then p + pf contains a third point p"
because L is irreducible. From the length condition, t is contained in
a 3-space S which is modular. From Theorem 2 we see that there
exist M-planes V, t" ^ S such that V > p, t" > pr and such that p" is
a common complement of V and t" within [0, S], Using our previous
results, we conclude that t" contains three M-lines which contain pf, and
a repeated application shows that t contains three M-lines which contain
p'. If p' is a point for which (p + p')Mr, then we can find a point
q ^ t such that (p + q)M and (q + pf)M. Since q has three M-lines in
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t containing it, we conclude that p' has the same property. Hence
every point in t is contained in three M-lines which lie in t. We now
deduce the conclusion of the theorem by noting that every two ikί-planes
are perspectively isomorphic, and that in the isomorphisms M-lines map
onto M-lines.

THEOREM 11. If L is an irreducible matroid modulated lattice of
length ^ 5 which satisfies (7), then every line in an M-plane d contains
at least three points.

Proof. Let I be such a line. We choose a point p ^ d such that
p <£ I and then apply Lemma 8.

If L is an irreducible modulated matroid lattice of length ^ 5, then
we say it satisfies (δ) if every line in an M-plane contains at least three
points. Thus Theorem 11 says that (γ) implies (δ).

LEMMA 9. Let L satisfy (δ). If sM, s covers z, z covers I, z covers
m, mM and I Φ m, then there exists a point p such that p + I =
p + m = z.

Proof. Since z covers I, m and (I, m)M; I, m cover Im. There exists
an element xM such that x + Im — s, xlm — 0. Clearly the interval
[0, x] is isomorphic to the interval {Im, s\. Since every line in [0, x]
contains three points, there exists an element r such that I + r —
m + γ — z9lr — mr = Im. There exists a point p such that p + Im = r.
T h e n l+p=l + lm + P=l + r — z, a n d s i m i l a r l y m + p — z.

If s is a modular element, then in view of Theorem 1 [0, s] is a
modular lattice if and only if every element in [0, s] is a modular
element.

LEMMA 10. Let L be a matroid lattice, and let C be a chain of
elements each of which is modular and has the property that every
element contained in it is modular. Then ^β is a modular element,
and every element contained in it is modular.

Proof. That Σ C is modular follows from Theorem 9. Let a g Σ C.
The set of elements of the form ac, c e C, is an increasingly directed
set of elements with join Σceσ ac = αΣceσ c = a. Each of the elements
ac is modular, and therefore a is modular.

We now consider the set of all modular elements c such [0, c] is a
modular lattice. According to the preceding lemma and Zorn's lemma,
there must exist a maximal such element. The next lemma tells us
the character of such maximal elements if L satisfies (δ).
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LEMMA 11. Let L be a lattice satisfying (8). // V is a maximal
element with the property that ΓM and [0, Γ] is a modular lattice,
then V is a hyperplane or V = /.

Proof. Suppose that V is not a hyperplane or I. Then there exists
an element Q φ I which is modular and covers V. Since Q φ I, there
exists a modular element s which covers Q. Suppose that I is covered
by Q, and lMf. Define IV = q. Since (I, V)M, I covers q; moreover, q
is modular because q ̂  V. There exists mM such that Qm = q, Q + m = s,
Evidently m covers q. Define z = m + I; then z covers I, m and is not
contained in Q. By Lemma 9 there exists a point p such that p + I ~
p + m = z. Since z SQ> it follows that p SQ- There exists an M-
element R such that R + z = s, Rz — m. Thus Q + p = R + p = s,
Qp = Rp = 0. The mapping x —• (a? + p)Q, a? ̂  i?, is an isomorphic map-
ping from [0, R] onto [0, Q]. Evidently (m + p)Q = (m + Z)Q = Z + mQ =
Z + g = Z. Since m is modular with every element in R, I is modular
with every element in Q. Thus every maximal element in Q is a modular
element, and therefore by Theorem 8 every element in Q is a modular
element. Thus [0, Q] is a modular lattice with QM, and this contradicts
the fact that V was a maximal element with this property.

THEOREM 12. Lei L be an irreducible matroid modulated lattice
with length ^ 5 satisfying (γ) or (8). Ϊ7^w ifbφl and bM, then [0, 6]
is modular lattice.

Proof. If L satisfies (γ), then L satisfies (8). According to the
previous lemma, there exists a hyperplane hM such that [0, h] is a
modular lattice. Now if tM and t is a hyperplane, then [0, t] is a modular
lattice because [0, t] is isomorphic to [0, h]. It b Φ I and bM, then 6 is
contained in a modular hyperplane. The result is now evident.

COROLLARY. If L is an irreducible matroid modulated lattice with
length ^ 5, then L satisfies (γ) if and only if it satisfies (δ). More-
over, L satisfies (γ) if and only ifabφO implies (a, b)M.

Proof. We have already shown that (γ) implies (8). Suppose that
L satisfies (8) and ab Φ 0. There exists an element mM such that
ab + m = I, abm = 0. The interval [ab, I] is isomorphic to [0, m]. Since
m Φ I, [0, m] is a modular lattice, and therefore (a, b)M within [ab, I],
Thus (a, b)M.

If ab Φ 0 implies (α, b)M, then [p, I] is a modular lattice if p is a
point. If hM is a complement of p, then [0, ft] is a modular lattice.
Since h must have at least dimension 3, (γ) follows immediately.



336 DAVID SACHS

Partition lattices* The corollary to Theorem 12 tells us a great
deal about the irreducible modulated matroid lattices of length ^ 5
which satisfy (γ) and also gives us a condition equivalent to (γ) which is
free of the notion of lines and planes. We digress from our abstract
theory to discuss partition lattices.

It is well known [3; p. 265] that partition lattices are matroid lat-
tices. Following Ore [6], we shall call a set of a partition a block and
a partition singular if it contains at most one block with more than
one element. It is implicit in a result due to Ore [6; p. 583] that the
singular partitions are precisely the modular elements. We give here a
proof in line with our ideas. If a partition is not singular, then one
can easily construct a line which is not modular with it. It is also
easily seen that a singular partition which is a hyperplane is a modular
element. Since every singular partition is a meet of hyperplane singular
partitions, we conclude the result if we use Theorem 8.

Let A be a singular partition. If B is a partition containing A, we
can construct a singular partition B' as a complement of B within
[A, I] as follows:

A = [a19 , α J [a] [b] [c]

B = [alf « , α Λ , • • • ] [ & ! , •• ] [ 6 2 , • • • ] • [ & « , • • • ] • • •

B ' = [alf , a Λ , b l f 6 2 , b ω , •] [e] [ / ] • • • .

That is, we select one element from each of the blocks of B that does
not contain the main block of A and combine these elements with the
main block of A into one block. If we let A — 0, i.e., we let A be the
partition with all blocks of one element, then we see immediately that
B' is not unique if B Φ 1,0. This shows that a partition lattice is
irreducible. Thus partition lattices are irreducible, matroid and modu-
lated.

We now consider the case when L is an irreducible modulated
matroid lattice of length ^ 5 and does not satisfy (γ). Since L does
not satisfy (γ), then in a modular plane P some line I contains only two
points. The line I is not an M-line, for an M-line must contain at least
three points since L is irreducible. If tx and ts are the points on ί,
then each must be contained in at least two M-lines in P because P is
an M-element. Since I is not an M-line, P must contain at least four
M-lines. If there is a fifth M-line, then it cannot meet I at tx or t3

because L would then satisfy condition (γ). Thus it must meet I at a
third point which is impossible. Hence there are exactly four M-lines
in P. If these lines are l1912 ̂  tx and lB, lά ̂  ί8, then tlf ί8, lλU, kk, kk, kk
are points distinct from each other. There no other points in P because
every point must be the meet of two M-lines. The plane contains two
more lines lxl3 + l2l4, l^ + l2l3 and no others because there are no points
remaining to make lines. It is easily verified that P is isomorphic to
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the lattice of partitions on a set with four elements. Our next aim is
to show that the lattice 9Jί associated with L is isomorphic to the lattice
of singular partitions of some partition lattice.

LEMMA 12. If h e L is an M-element covered by a hyperplane, then
h is contained in exactly two M-hyperplanes.

Proof. Since L is modulated, h is contained in at least two M-
hyperplanes. Suppose it is contained in three M-hyperplanes hu h2, hz.
Let p be a point such that p g h. There exists an M-element m such
that m + h = I, mh = p. Obviously m is a plane. If mhλ = mh29 then
mhx + h = mh2 + h or /^(m + h) — fea(m + /*>) and therefore hx — h2. Thus
m/^, mfe2, m/̂ 3 are three distinct M-lines containing p in m. But then

L satisfies (γ) which is false.

LEMMA 13. Every point in L has exactly two M-hyperplanes as
complements.

Proof. Since L is irreducible, Ίft is irreducible, and thus every
element in 9Jϊ must have at least two independent complements. This
simply means that every point in L has at least two M-hyperplanes as
complements. Suppose then that the point p has three M-complements
hly h2J h3. Now hλh2 Φ h2h3 because equality would contradict Lemma 12.
Thus hxh2, h2h3, hλh3 are distinct elements that cover their intersection
hjijiz. If m is an M-complement of p + hjι2hz within [p, / ] , then m Ξ> p,
m + hλh2hz = I and mhjι2hz — 0. Evidently m is a plane, and the inter-
vals [0, m] and [hjι2h3t I] are isomorphic. Thus mhlf mh2, mh3, are three
M-lines in m which do not contain p. But this is impossible because
in the lattice of partitions on four elements, any three M-lines contain
all the points.

LEMMA 14. In a matroid modulated lattice if two elements b, c
have the same M-complements, then b = c.

Proof. Suppose b Φ c. Without loss of generality we can assume
that c contains a point p which b does not contain. If m is an M-
complement of p + b within [p, I ] , then m ^ p, m + b — I, mb — 0. But
me ^ p and the contradiction is apparent.

LEMMA 15. Given any two distinct M-hyperplanes h', h" in L,
there exists a point p which is a complement of both hf and h".

Proof. Let I be an M-element which is a complement of h'h". A_
point on I distinct from lhf and Ih" satisfies the condition.
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Let G be the set of M-hyperplanes in L.

THEOREM 13. The 9JΪ lattice of L is isomorphic to the lattice of
singular partitions of G.

Proof. With each point in L we associate the set of elements in
G that are complementary to it. The previous lemmas show that each
point p is associated with a two element set, different points are as-
sociated with different sets, and that every two element subset of G is
associated with a point in L. Moreover, an M-hyperplane contains a
point p if and only if it is not a member of the set associated with p.
Consider the lattice of partitions of the set G. If a is an M-hyperplane
of L, then we map it onto the maximal singular partition [«][•••].
This mapping is obviously one-to-one onto the maximal singular partitions
of G. If p is a point in L and is associated with the subset [/3, 7] of
G, then we map it onto the partition [β, 7] [a] [b] where all blocks
but the first have one element. This mapping is also one-to-one from
the points of L onto the points of the partition lattice of G. Now a
maximal singular partition [a] [ •] contains a point partition [β, 7] [a] [b]
if and only if a φ [β, 7]. From this we immediately see that we have
defined an order preserving mapping in both directions between the M-
hyperplanes and points of L and the Tkf-hyperplanes and points of the
partition lattice on G. According to [5; p. 200], two complete lattices
in which every element is the join of points and the meet of hyperplanes
are isomorphic if the partially ordered sets of hyperplanes and points
are isomorphic. It thus follows that the 3JΪ lattice of L is isomorphic
to the lattice of singular partitions of G.

DEFINITION 3. Let L' be a modulated matroid lattice. A set H of
elements in W is said to be a quasi-ideal if
(8) x e H and y ^ x imply y e H;
(9) x,y e H and {x, y)M in W (i.e., x + y = x U y) imply x (J y e H;
(10) the join of an increasingly directed set of elements in H is also

in H (note that join in the sense of 2JΪ' and U are synonymous
for increasingly directed sets).

H is a maximal quasi-ideal if in addition it satisfies the following prop-
erty:
(11) I $ H; if K is a quasi-ideal and H c K, then K = H or K = W.

LEMMA 16. If H is the set of elements in W contained in a hyper-
φlane h in I/, then H is a maximal quasi-ideal.

Proof. The first three properties are immediately evident even if
h is not a hyperplane. Suppose H c K and H Φ K. Property (10)
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implies that there exists a maximal element m in K not in H and
therefore not contained in h. If m Φ 7, there exists m'M such that mf

covers m. Thus m'h + m — m'; consequently there is a point p ^ h
such that p + m = m'. Thus m' 6 K by (9) which is impossible.

LEMMA 17. T%e maximal quasi-ideals of a lattice of singular
partitions of a partition lattice T are the set of singular partitions
contained in a partition of two blocks.

Proof. It is obvious that the set of singular partitions ^ a singular
partition of two blocks is a maximal quasi-ideal. If we note that two
singular partitions form a modular pair in Tΐτ (the 3K lattice of T) if
and only if their main blocks overlap, then we readily see that the set
of singular partitions g a partition P of two non-trivial blocks is a
quasi-ideal. The quasi-ideal determined by P has two maximal singular
partitions m', m" whose main blocks do not overlap. If a point p is
not in P, then its main block must overlap the main blocks of m' and
m". Then (p, m')M in UJJΓ, and also (p U m', m")M in Έlτ. Thus / is in
any quasi-ideal containing the quasi-ideal determined by P since
p U m ' U ra" = I, and this proves the maximality of the quasi-ideal deter-
mined by P. If Q is any quasi-ideal, then in view of (10) it must contain
maximal elements. The main blocks of these maximal elements cannot
overlap, for otherwise they would be modular in Wtτ and then they
could not be maximal. This observation immediately shows that any
quasi-ideal Q must consist of the singular partitions ^ some partition.
But obviously such a quasi-ideal cannot be maximal unless the partition
has two blocks.

LEMMA 18. Every maximal quasi-ideal in Wl of L is determined
by a hyperplane in L.

Proof. In view of Lemma 17, every maximal quasi-ideal in 9JI of
L has one or two maximal elements since 3Ji is isomorphic to the lattice
of the singular partitions of G. If a maximal quasi-ideal has one maxi-
mal element, then this element must be a hyperplane in L (hyperplanes
in 9Jί are hyperplanes in L), and the lemma is true in this case. Let
Q be a maximal quasi-ideal with two maximal elements mf and m". In
the lattice 3Ή, m' U m" = I. Since (m', m")M' in 2K, m' U m" > m' + m"
in L. Evidently the set of M elements contained in m' + m" is a quasi-
ideal containing Q, hence equal to Q since Q is maximal. If m' + m"
is not a hyperplane, then there is a hyperplane h > m' + m". Since h
determines a maximal quasi-ideal, h and m! + mf' must determine the
same quasi-ideal. But this is impossible, for h contains a point which
is not ^ mf + m". The proof is complete.

THEOREM 14. A necessary and sufficient condition that a lattice L
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of length ^ 5 be isomorphic to a lattice of partitions of a set G is
that
(12) L be an irreducible modulated matroid lattice;
(13) there exist a pair of elements {a, b) such that (α, b)M', ab Φ 0.

Proof. Let L satisfy conditions (12) and (13). Our previous results
have shown that the Tl lattice of L is isomorphic to the lattice of
singular partitions of the set G of modular hyperplanes in L. Further-
more, the maximal quasi-ideals of Tl are in a one-to-one correspondence
with the hyperplanes of L and the partitions of two blocks in the
lattice of partitions of G. Thus there is a one-to-one order preserving
correspondence in both directions between the hyperplanes and points of
L and the hyperplanes and points the lattice of partitions of G. From
this we conclude that the two lattices are isomorphic.

Conversely, if L is a partition lattice, then it evidently satisfies (12).
It is easily shown that a partition lattice of length ^ 5 has two hyper-
planes which do not form a modular pair and do not meet in 0 since
every interval [α, I] of a partition lattice is itself a partition lattice..
The proof is complete.

REMARK. It is impossible for (13) to be satisfied in a matroid lat-
tice of length ^ 4. Hence our condition in Theorem 14 is neither
necessary nor sufficient if L has length ^ 4 although (12) is necessary..

A lattice is said to be simple if it has only trivial congruence
relations. Obviously a simple lattice is irreducible although the converse
is not necessarily true. Ore [6] has shown that a partition lattice is
simple. Thus Theorem 14 is still correct if we replace the word '"irre-
ducible" by the word ' 'simple' \ What we intend to show is that if L
is of infinite length, then condition (13) may be deleted if simplicity
replaces irreducibility in (12).

By a neutral ideal of a relatively complemented lattice L with 0r

we mean an ideal which is the kernel of a homomorphic mapping. Ore
[6] has given the following intrinsic characterization of a neutral ideal:
an ideal N is neutral if and only if for every x,y e L, a e N, there
exists b e N such that xy + b = (x + a)y + b.

LEMMA 19. Let L be a semi-modular lattice. If b covers a and
(α, y)M, then by = ay or by covers ay.

Proof. If (a, y)M, then (c + a)yb = (c + ay)b = c + ay = c + ayb
if c ^yb. Thus (α, by)M. Since b covers α, a = a + by or a + by covers
a. If a = a + by, then ay ^ by and therefore ay = by since b covers
a. If a + by covers α, then by covers aby = ay since if (u, v)M and
u + v covers v, then u covers uv.
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LEMMA 20. Let L be an irreducible modulated lattice of infinite
length satisfying (7). Then the set F of all finite-dimensional elements
is a neutral ideal.

Proof. It is obvious that F is an ideal. Suppose that x,y e L and
a e F. Let h be an M-hy per plane. Since a is finite-dimensional, there
exists a finite maximal chain between x and x + a. Using the results
of Lemma 19 and the fact that yh is an M-element (cf. Theorem 12),
we see that there is a maximal chain between xyh and (x + a)yh of
length no greater than the maximal chain between x and x + a. Since
(x + a)yh = (x + a)y or (x + a)yh is covered by (x + a)y, there exists
a finite maximal chain between xy and (x + a)y. Let b be an indepen-
dent complement of xy within [0, (x + a)y\. Then b e F and (x + a)y + 6 =
xy + b. This completes the proof.

THEOREM 15. A lattice L of infinite length is isomorphic to a
partition lattice if and only if it is a simple modulated matroid lat-
tice.

Proof. The necessity is evident. If L satisfies (γ) and is irreducible,
then it cannot be simple in view of Lemma 20.

REMARK. Every projective geometry of finite length is a simple
modulated matroid lattice, so that our condition in Theorem 15 is not
-sufficient if L has finite length.

Metric lattices* By a valuation on a lattice L we mean a real-
valued function | | defined for each element in L such that
(14) x < y implies \x\ < \y\;
•(15) \χ + y \ + \ x y \ ^ \ x \ + \ v \ ;
•(16) (x, y)M if and only if | x + y | + | xy | = | x | + | y |.
As is well known, every semi-modular lattice of finite length has such
a valuation. If we define d(x, y) = 2\x + y \ — \x\ — \y\, then L be-
comes a metric space [9] in which | (| a \ — \ b |) | ^ d{a, b). Moreover,
d(a + e, b + /) ^ d(a, b) + d(e,f) [9], so that the join operation is a
uniformly continuous function. We shall refer to L as a metric lattice
.and say that L is metrically complete if it is complete in the metric
defined above. A metrically complete lattice L is complete as a lattice
if it contains 0 and / [9].

LEMMA 21. If (α, x)M and (α, y)M, then d(ax, ay) ^ d(x, y).

Proof. We have
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— \a\ — \y\ + \a + y\

\x + y\ - 12/1 .

Similarly, | a(x + y) | — | ax | <£ | x + y | — | x |. Thus 2 | α(# + ?/) | — | ax \ —
\ay\fί2\x + y\ — \x\ — \y\. B u t s ince a(x + y) ^ ax + α^/, | α(# + T/) | ^ ;

I α x + ay |. H e n c e 2 | α a j + α j / | — | α j / | — | α s c | ^ 2 | a j + i / | — | a ? | — | j / | , a n d
t h i s p r o v e s t h e l e m m a .

THEOREM 16. Let L be a metrically complete lattice. If the
sequence (a^ has limit a and (ai9 x)M for every i, then (a, x)M and lim
(aix) = ax.

Proof. For each i we have | a% + x | + | atx | = | α41 + | a? |. Thus-
atx I = I at I + | x \ — \ at + x |. If lim (yt) = y, then lim (| y41) = | y |, for

l(ll/l — \Vi\)\ ̂ d(yfyi). Since lim(α4 + x) = α + a^limflα, + x\) = |α + α?|.
Therefore lim (| a%x |) — | α | + | a? | — | α + α? |. The sequence (α^) is a
Cauchy sequence, for d(α^, α^) ^ cί(αέ, α )̂ since (α«, x)M, (ajf x)M. Since
L is metrically complete, there exists a' such that lim (α^) = α', and
therefore lim (| a%x |) = | α ' | . Now lim (α^ + α^) = lim (αj = α. But since
the join operation is continuous, we have l i m ^ + a%x) — lim(ai) + Xvcciia^) —
a + a'. Therefore α' ^ a. We also have that x = lim (x + atx) =
lim (x) + lim (αta$) = x + a'. Thus α' ^ a? and consequently af ^ax. Since
| α a j | ^ | α ? | + | α | — \a + x\ and | α ' | = | x \ + \ a \ — \ a + x |, it follows
that \ax\ ^ | α ' | . This implies that a' — ax and the result follows.

It is to be noted that our proof requires the metric completeness of
L, and the theorem is false if one does not assume metric completeness
as can be shown in an example in [9]. The reason this is so is that
when one metrically completes a lattice, the join operation is preserved
but the meet operation need not be.

We say that a lattice with more than one element is dense if x > y
implies the existence of an element z such that x > z > y. A left-com-
plemented lattice of length > 1 is dense if and only if it contains nσ
points. It is easily shown that a maximal chain C in [α, b] of a metri-
cally complete dense lattice is isomorphic and isometric to a closed
interval of real numbers.

Let L be a left-complemented lattice. If α, b are contained in [c, d\
and have a common independent complement relative to [c, d], then
they have a common independent complement relative to any interval-
containing [c, d], '

LEMMA 22. Let L be a left-complemented lattice such that every
interval sublattice is irreducible. If a and b are incomparable, then
there exists an element p > 0 such that (a,p)±,(b,p)l_.
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Proof. There exist α', δ' such that α' + b = a + δ, (α', δ) _L, α' ^ α,
6' + α == δ + α, (δ', a) _L, V ^ δ. Therefore α' =£ 0, V φ 0 and (α', V) 1 .
Since the interval [0, af + δ'] is irreducible and contains more than two
elements, there exists x < a' + δ' such that x(a' + δ') Φ xa' + xδ'.
Therefore x > xα/ + xbr. Now there exists u Φ 0 such that xα/ + xδ' + u =
x, (xa' + xδ', u) _L. Since w ̂  a?, ̂ α ' ̂  xα'; therefore uar = ua'xa' = uxa' S
u(xaf + xδ') = 0. Therefore wα' = 0 and also ub' = 0. But m& =
^(α' + δ')α = ^α' = 0, and in a similar way ub = 0. We choose v! such
that t&' + a = u + α, (^', α) J_, u' ^ u. Consequently %' ̂ = 0. There ex-
ists p such that p + δ = uf + δ, (p, δ) J_, p ^ u'. Quite obviously p ^ 0
and (p, a). ±. This completes the proof.

THEOREM 17. Let L be a left-complemented metrically complete
lattice in which every interval sublattice is irreducible. If \a\ — | δ | ,
there exists c e L such that α + δ = α + c = δ + c, αc = δc = αδ, (α, c)Mτ

(δ, c)Λf.

Proof. Without loss of generality we assume that ab = 0. The
case a = b is trivial. Suppose a Φ b. Since α and δ are incomparable,
there exists p > 0, p ^ α + δ, such that (α, p) J_, (δ, p) _L. Let c be a
maximal element with this property.4 If a + c = a + δ, then b + c =
a + b; for | α | = | 6 | , | α + c | = | c | + | α | - | 0 | , | 6 + c | = | c | + | 6 | - | 0 | ,
and therefore \a + c\ = \b + c\. Suppose then that a + b Φ a +. cr

a + δ Φ b + c. I f α + c = δ + c, then a + c = a + δ. Thus α + c and
δ + c are incomparable, and therefore there exists m > 0 , m ^ α + δ,
such that (α + c, m) _L, (δ + c, m) _L It is easily seen that (α, c + m) J_,.
(δ, c + m) j _ , and this contradicts the definition of c.

Let M be an irreducible continuous geometry valuated in such a way
that 11\ = 2, I 0 I = 0. If we define L to be the set of all elements x
with I x I < 1 plus I and valuate L so that 11 \ = 1 and all other elements
have the same valuation as they do in M, then L is a lattice without
points which satisfies the hypothesis of Theorem 17 and is not a con-
tinuous geometry.

We have already studied metric lattices which are modulated because
every semi-modular lattice of finite length has a valuation. To facilitate
our study of the irreducible modulated lattices of finite length, we
introduced the condition (γ) which makes no sense if our lattice has no
points. By the use of Theorem 12 one can show that all the intervals
except possibly the intervals [0, I] where I is a line are irreducible. We
have shown that irreducible lattices which satisfy (7) have the additional
property that ab Φ 0 implies (α, b)M. It is not too difficult to show

4 Let S be a set of elements in L where L is a metrically complete lattice with 0 and
I. Theorem 16 and the fact that every increasing transίinite sequence is countable imply
that there exists a maximal element independent of each element of S.
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that metrically complete lattices which are dense and have this latter
property must be modular lattices if we use Theorem 16. This leads
•one to suspect that modulated lattices which are dense, metrically com-
plete, and which have no reducible interval sublattices are actually
continuous geometries. This is the case as is seen below.

THEOREM 18. Let L be a modulated lattice without points which
is metrically complete and contains at least two elements. If every
interval sublattice of L is irreducible, then L is an irreducible contin-
uous geometry.

Proof. We assume without loss of generality that our valuation
is normalized, i.e., | 0 | = 0, \I\ = 1. Since L is dense and metrically
complete, there are elements of any valuation between 0 and 1; thus
there are modular elements of any value between 0 and 1. We define
a set S of real numbers as follows:

S = [a e S; a e [0,1]; for every yM with \y\ ^ α, the interval [0, y]
is a modular lattice].

,S is non-empty because O e S . Let ω be the least upper bound of S.
Then ω e S. To prove this it suffices to consider those modular elements
y for which \y\ = ω. There exists an increasing sequence (y^ with
limit y such that y%M for each i. Let c e [0, y]. Since cytM and (c, yt)M
for every i, lim {cy^ — cy — c and cM. Thus [0, y] is a modular lattice.
iSuppose then that 1 — ω Φ 0. There exists 8 with 1 > 8 > ω such that
1 — δ ^ δ — ω. To prove the theorem it suffices to show that 8 e S.
Let a be an ikf-element with ω < | a | ^ 8. Let c ^ a. There exists
q ^ a such that | q \ = ω and qM. Evidently qcM since [0, q] is a
modular lattice. Since L is a modulated lattice, there exists d' such
that a + df — I, ad' = qc, d'M. There exists a real number a such that
a - I a I = I c | - | qc |. Then α = | α | + |c + g | - | g | . Thus a S 8 +
δ — ω ^ 1. But there exists r >̂ a with rM such that \r\ —a. Since
| r | — | α | = | c | — |gc | and | r \ + \ d' \ = 1 + 1 rd'\, it follows that
\d'\ + \a\=l-\c\ + \rd'\ + \qc\. Using the fact t h a t | d' \ + | a \ =

1 + I Qc I, we find that | c \ = | rd' |. If we define rdr = d, then a + d — r,
<ad — qc = cd, and dM since rM and d'M. From the irreducibility of
the interval [cd, c + d] there exists z e L such that cί + 2 = c + £ =
c + d, dz = cz = cd, (c, z)M and (d, z)M. Now αz = a(c + c£)z = cz = cd.
Also α + z = α + c + 2 = α + c + d = α + cϊ = r. Since rM and cϊM,
there exists b e L such that c + d + b — r, (c + d)δ = d, bM. Therefore
bz = b(c + d)z = dz = cd, b + z = b + z + d = b + c + d = r. This shows
that I 6 I = I a |. There exists a? € L such that a? + cd = 2 and (a?, cd) _[_.
Then α + # = α + ccZ + # = r = 6 + c d + # = & + #, α χ = azx = cdα? =
0 = 5̂ a; = 6Λ;. The mapping y —> (1/ + ίi?)α, ?/ e [0, 6], is an isomorphism
from [0, δ] onto [0, a]. Now cί —• (d + α;)α = (d + cd + x)a = (d + z)a =
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(c + z)a = c. Since c is the image of d under the isomorphism, c is
modular with every element in [0, a] and so cM. Thus [0, a] is a modular
lattice for every aM with α> < | a | ^ δ. Hence δ is in S which is a
contradiction. Thus ω = 1, and the proof is complete.

Conclusion* It might be of some interest to determine the existence
or non-existence of an irreducible metrically complete modulated lattice
which is dense but is not a continuous geometry. Such a lattice would
be a natural generalization of finite partition lattices in view of our
Theorems 14 and 17. In a subsequent paper we shall show how to repre-
sent lattices satisfying (γ) in terms of protective geometries. Using
this representation, we can show that every interval sublattice of a
matroid modulated lattice is a modulated lattice.
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ABSTRACT MARTINGALE CONVERGENCE THEOREMS

FRANK S. SCALORA

Introduction, The study of probability theory in abstract spaces
became possible with the introduction of integration theories in such
spaces. Thus the idea of the expectation of a random variable which
takes its value in a Banach space was studied by Frechet [6] with what
amounted to the Bochner integral, and by Mourier [13] with the Pettis
integral. Doss [2] studied the problem in a metric space. Kolmogorov
[10] generalized the notion of characteristic function. Generalizations
of the laws of large numbers and the ergodic theorem appear in Mourier
[13] and Fortet-Mourier [5]. In this paper we generalize the concept
of martingale and prove various convergence theorems.

Chapter I is devoted to listing various definitions and theorems which
we shall have to refer to later. In Chapter II we introduce the idea
of the conditional expectation of a Banach space valued random variable.
We also prove the existence of the strong conditional expectation for
strongly measurable random variables. This part of our work was also
done by Moy [14] independently, and without the knowledge of the
author. Chapter III is devoted to the definition and study of weak and
strong ϊ-martingales, with emphasis on the latter.

In Chapter IV we prove a series of convergence theorems for 36-
Martingales with the help of theorems of Doob [1]. The main theorem
says that if {xn, Ĵ Γ, n ^ 1} is an X-Martingale where 36 is a reflexive
Banach space, and if {|| xn\\, n ^ 1} is a uniformly integrable class of
functions, then there is a strongly measurable X-valued function x^ such
that || xn{ω) — x^ω) || —> 0 as n—>oo with probability 1 and {xnJ ^, 1 <Ξ
n ^ oo} is an ϊ-martingale. We close by discussing examples where 36
is one of the standard Banach spaces, lp, LP(I), and C(I).

CHAPTER I.

PRELIMINARY DEFINITIONS

1* Measurability concepts. A. Let {Ω, P, ^) be a probability
space. Thus Ω is an abstract set of points ω, ^ is a Borel field of
subsets of Ω, and P is a probability measure defined on ^ . We recall
that a Borel field of sets is a class of sets which is closed under count-
able unions and intersections, and complementation. A probability
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measure P is a completely additive non negative set function defined
on a Borel field of sets, such that P{Ω} = 1. We will be concerned with
functions cc( ) defined on Ω, and taking their values in a Banach space
X. The sets of ^€ will be referred to as the measurable sets.

DEFINITION 1.1. x is a weak random variable if it is a weakly
measurable function from Ω to X.

DEFINITION 1.2. x is a finitely {countably) valued random variable
if it is constant on each of a finite (countable) number of disjunct
measurable sets Λό\ with Ω = L M J

DEFINITION 1.3. # is a strong random variable if it is a strongly
measurable function from β to ϊ .

DEFINITION 1.4. x is almost separably valued if there is a set A in
^// such that P{A} = 0 and x(Ω — A) is separable.

Note, x is strongly measurable if and only if it is weakly measur-
able and almost separably valued. (Pettis [15] and Hille-Phillips [9]
Theorem 3.5.3, p. 72).

B The measure induced in X. Suppose x is a function from Ω
to X. We define a class of subsets of X in the following way: Let J^
be a Borel field of measurable subsets of Ω, ^ C ^€. Let ^ be the
class of subsets of X with the property that sf e ^ Γ if Szf C X and
{ω: #(ω) e S/} is an ^ set. ^ζΓ is a Borel field.
If j y e J^Γ define Px{j^} = P{ω: α(α>) e j ^ } . Clearly P x is a probability
measure on ^Γ. This gives us a probability triple on X, (X, Px, ^ζ).
Now, let J?r — ̂ ', the class of measurable sets of Ω. In order to
assure that ^ C will contain some interesting subsets of X we shall
have to assume some measurability properties for x, which we now
proceed to do.

a. Suppose that x is weakly measurable. Then f(x) is a real
measurable function for all f e X*, the real first conjugate space of X.
Thus for every real Borel set J5, {ω:f(x{ω)) e B} is an ^£ set. Next
{ω:f(x(ω)) e B) = {ω: x(ω) e f-\B)}. Hence f'\B) is in ^ C for every
/ in X* and real Borel set B. Since / is continuous, f~\B) is open
(closed) if B is open (closed).

Further, ^/fx contains all the weak neighborhoods of X if x is weakly
measurable. In fact, let N(ξo;flf " ,fn;ε) be a weak neighborhood of
X. Then
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N(ξ
t
; f

lt
" , /.; e) = {ξ: | f,(ξ) - /,(£,) |< e, i = 1, , n}

But the inverse image of each of the sets in the intersection by x is
clearly an ^f set since f(x) is a real valued measurable function for
every linear functional /. Thus ^//x contains all of the weak neighbor-
hoods of 36, and hence the smallest Borel field containing the weak
neighborhoods.

Conversely, if ,yf/x contains all the weak neighborhoods of 9c then
x is weakly measurable. To prove this, we must show that f(x) is a
real valued measurable function on Ω for every / in 9c*. If / is the
zero functional then f(x(ω)) = 0 for all α>, and thus f(x) is clearly
measurable. Otherwise /takes on all real values. In this case we show
that {ω: f(x(ω)) e B] is an ^f set for every real Borel set B and linear
functional/. If Bis the open interval (a — ε,a + ε), then {ω: f(x(ω)) e B} —
{ω: \f(x(ω)) — a | < ε}. Since / takes on all real values there is an
element ξ0 in 9c such that f(ξ0) = a. Hence {ω: f(x(ω)) e B) =
{ω: x(ω) e N(ξ0; /; ε)} which is an ^/ί set by hypothesis for ^ C contains
all the weak neighborhoods of 9c. Next, every open set in the reals, in
fact, in any separable metric space, is a countable union of open spheres.
Thus, if B is an open set in the reals B — \Jn Vn where Vn is an open
interval for every n. Since ^/f/ is closed under countable unions
{ω:f(x(ω)) e B) = \Jn {ω: f(x(ω)) e Vn) is an ^// set. Finally, the class
of real sets B for which {ω:f(x(ω)) e B} is an ^fέ set is a Borel field
which contains the open sets, thus it must contain all the real Borel
sets, and so x is weakly measurable. Thus the definition of weak
measurability may be rephrased as follows:

DEFINITION 1.1.* x is weakly measurable if ^f/x contains all the
weak neighborhoods of 96, that is, if {ω: x(ω) e N} is an ^ set for
every weak neighborhood N.

b. Suppose that x is strongly measurable. Then there is a sequence
xn of finitely valued functions, and a set A in ^/ί such that P{A} = 0,
|| xn(ω) — x(ω) \\ —• 0 as n —* oo for ω e Ω — A. Let g be a real valued
continuous function. Then g(x) is a real valued measurable function on
Ω. Consequently, {ω: g(x(ω)) e B} is an ^f set and g~\B) is an ^//x

set for every real Borel set B and real continuous function g. Next let
if7 be the class of real valued functions g defined on 96 such that g(x)
is a real valued measurable function on Ω. Then & contains the
continuous functions and is closed under the limit operation, thus it
contains all the Baire functions on 9c to the reals. Now let A be a
Borel set in 96. Then there is a real number a and a Baire function g
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such that A = {ξ: g{ξ) > a}. Now A = g~\B) where B = (α, oo). Thus
4̂ is an ^ x set since {ω: flr(α?(α>)) e B) is an ^>f set by the measur-

ability of g(x). Therefore if x is strongly measurable, then ^/ίx contains
all the Borel sets of X, or {ω: x(ω) e B) is an ^/ί set for every Borel
set B of X.

C* Independence, Let x and y be (weakly or strongly) measurable
random variables on Ω to 36. We can then define a Borel field ^€x>y of
subsets 3c x 9c in an analogous way. Consider ^ C x ~^y — {A x J5: A e ^fxf

B e ^fy}. Let Px y(A x B) = P{ω: x(ω) e A, y(ω) e B). This probability
is well defined for the set on the right is the intersection of two ^
sets and hence is itself an ^// set. Let Rx>y be the field of finite unions
of sets of ^y//x x ^fίy. Then Px>y can be defined on Rx>y to be a probability
measure in the obvious way in a unique fashion. Next Px>y can be
extended uniquely to ^fx,y, the smallest Borel field of measurable subsets
of X x X containing RXtV (Doob [1] Theorem 2.2, p. 605).

DEFINITION 1.5. x and y are said to be independent if P{ω: x(ω) e
A, y(ω) e B} = P{ω: x(ω) e A}P{ω: y(ω) e B) for A, B subsets of % when-
ever all of the probabilities in the equality are defined; i.e., whenever
the above sets are in ^f. The equality may be rewritten as Px y(A x B) =
Px(A)Py(B).

Notice that this definition can be rephrased to say that the product
relationship holds whenever A is in ^ C and B is in ^fy, for only then
will all of the probabilities in the product be defined. This is the type
of definition that has been given by Kolmogorov; e.g., Gnedenko-Kolmo-
gorov ([7], p. 26). The definition used by Doob [1] differs in that it
says that the product relationship holds whenever A and B belong to
a possibly smaller class of sets, namely the Borel sets. For a full dis-
cussion of the connection between the two types of definition the reader
is referred to Doob's appendix to the above mentioned book by Gnedenko
and Kolmogorov.

THEOREM 1.1. If x and y are independent, thenfτ(x), •••,/„(#) are

independent of gx{y), * m,gm(y) in the sense of Kolmogorov for every

finite set of real valued linear functionals flf ,/w, glf , gm on 9c.

Proof. Let Alf , An, Bιy* ,Bm be real sets such that {ω: f3{x(ω)) e Aό)

and {ω: gτc{y{ω)) e Bk} are ^ sets for j = 1, , n and k = 1, , m.

Then fj-'iAj) is in ^ C and g?(BJ is in ^ . Next, ΠUfί\Aj) e ^€x

and n?- i 9ΛBκ) e ^ . Thus
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P{ω: Ux(ω)) e i , , - . , fn{x(ω)) e An, gMω)) eBu-", gm(y(ω)) e Bm}
n m

= P{ω: x(ω) e Γ\fΓ\A}), y(ω) e f| gΛB*)}

= P{ω: x(ω) e f) fΛAj)}P{ω: y(ω) e Γ\ g^(Bk)}
3=1 fc=l

by the independence of x and y

= P{ω: fλ(x{ω)) e A19 , fn(x(ω)) e An}P{ω: gM*>)) € Blf ,

flrm(jί(ω))e.Bni} Q.E.D.

THEOREM 1.2. // cc αticZ 7/ are weakly measurable and independent,

then /L(#), •••,/«(») are independent of g±(y), m ,gm(y) in the sense of

Doob for every finite set of real valued linear functionals flf •••,/»,

9i, '",9m on ϊ .

Proof. Let Aj and ί?fc in the above proof be real Borel sets; then
{ω: fj(x(ω)) e A3) and {ω: g^yiω)) e 5 J are ^£ sets for /^a?) and gh{y)
are real valued measurable functions by the weak measurability of x
and y. The rest of the proof goes as above.

THEOREM 1.3. If x and y are weakly measurable, and such that
fi(x)> ••>/»(») are independent of g^y), , #w(τ/) /or every finite set of
real valued linear functionals f19 •• yfn9gu , gm on 9c, then x and y
are independent relative to the smallest Borel field of X sets contain-
ing the weak neighborhoods; i.e.,

P{ω: x{ώ) e A, y(ω) e B} = P{ω: x(ω) e A}P{ω: y(ω) e B}

for all A and B in the smallest Borel field containing the weak neigh-
borhoods of X.

Proof. Let A = N(ξQ; flf , fn; ε) and B = JSΓ(%; ̂ , , ̂  δ): then

P{ω: ^(o)) e A, y{ω) e B]

= P{ω: \ft(x(o>)) - A(ξo) \<ε, i = h , n

I gj(y(ω)) - s^o) I < δ, i = 1, , m}

= P{ω: |/f(α?(ω)) - /4(f0) | < ε, i = 1, . . , n)

P{ω: I g3(v(ω)) - g3(ηQ) | < δ, i = 1, . . . , m}

by the hypothesis, and so

P{ω: x(ω) e A, y(ω) e B) = P{ω: a?(ω) 6 A} P{ω: y(α>) e J5}

when A and J5 are weak neighborhoods of 96. Now the class of weak
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neighborhoods is closed under finite intersections and thus the inde-
pendence multiplicative relationship is preserved if we extend this class
to the smallest Borel field containing it (Loeve [12] p. 225).

The notion of independence is easily generalized to aggregates of
random variables. For a fuller discussion of the measurability concepts
mentioned in this section, see Pettis [15] and Hille and Phillips [9].

Note. Let ( ^ ) e ϊ x ϊ . Define || (f, η) \\ = V\\ξ\\2 + \\η\\\ By
this definition, 3 E x ϊ becomes a Banach space. Let / be a real linear
functional on ϊ x 9c. If Λ(ξ) = f[(ξ,θ)] and Mη) = f[(θ,η)], then f,
and /2 are real linear functionals on X, and f[(ξ, η)] = fx(ξ) + f*(rj). If
x and y are weakly measurable X-valued functions on Ω, then fτ{x) and
f2(y) are real valued measurable functions on Ω. Thus the weak meas-
urability of x and y implies the weak measurability of (x, y) on Ω to
36 x X. Similarly, if x and y are strongly measurable, there exist
sequences xn and yn of finitely-valued measurable X-valued functions
such that ||a?n — x || —• 0 and \\yn — v\\ —> 0 as w —> oo with probability 1.
But (xn, yn) gives a sequence of X x 36 finitely-valued functions, and
II («», Vn) ~ (x, y) II = V\\xn-x\\2 + ||!/„ — 1/|Γ—^ 0 with probability 1 as.
w—> oo. Thus, if x and 2/ are strongly measurable, then so is (x, y).

2. Integrability concepts* Let x be a countably valued function
taking the value ξό on the measurable set Δ5. Then x is said to be
Bochner integrable if and only if | |#( )ll is integrable, and by definition

(B) \x{ω)dP=±ξjP{Λ)).
JΩ 3 = 1

DEFINITION 2.1. x{ ) is integrable in the sense of Bochner if there
is a sequence α?Λ( ) of countably valued random variables converging
with probability 1 to #(•), and such that

lim ( \\xm(ω)-xn(ω)\\dP=0.
<m,n->°° J Ω

Then the limit of (B)\ xn(ω)dP exists and by definition
JΩ

(B)\ x(ω)dP = lim (B) [ xn(ω)dP .
JΩ n-*°o JΩ

Since P{Ω} = 1, we may again replace the word countably by finitely.
We will later need the following result apparently proved first by

Pettis ([15] Theorem 5.2, p. 293), and later by Moy ([14] Theorem 1,
PP. 3, 4.)

THEOREM 2.1. If x is strongly measurable relative to the Borel field
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of measurable sets and Bochner integrable and such that I x(ω)dP —

θ for every set A in ^ then x(ω) = θ almost everywhere.

CHAPTER II

GENERALIZATIONS OF THE RADON-NIKODYM THEOREM

AND ABSTRACT CONDITIONAL EXPECTATIONS

1# It is well known that a real or complex valued completely addi-
tive set function which is absolutely continuous on a σ-finite measure
space is actually the integral in the usual sense of a finite measurable
point function (unique almost everywhere). The existence of this point
function is assured by the classical Radon-Nikodym theorem (Halmos
[8] p. 128).

Using a theorem due to Dunford and Pettis ([4], p. 339) it is possible
to get a definition of conditional expectations for more general random
variables such as Dunford and Pettis integrable functions. Since it is
too weak for our purposes, we will no longer refer to it in this paper.

2 Strong conditional expectations* If we restrict ourselves to
Bochner integrable random variables it is possible to get a sharper
version of the conditional expectation.

With this end in mind, let x{ );Ω-+lί be finitely valued; in fact,
let x(ω) = ξj on A5\ j = 1, , k. Then x(ω) = Σ*=i £r &/<*>) where χ^
is the characteristic function of A3.

D E F I N I T I O N 2 . 1 . ^ s { x \ ^ } ( ω ) = ψ = 1 ξ j

is the ordinary conditional expectation (Doob [1]) of χΛj relative to j ^ ~ .
%?s{x\J?r} will be referred to as the strong conditional expectation of
x relative to ^ .

In this section all integrals will be in the sense of Bochner, so we
will remove the letter B preceding the integral sign.

LEMMA 2.1. If x is a measurable finitely valued function on Ω to

X, then [ x(ω)dP= [ &s{x\^}{ω)dP for every A e
JΛ JΛ

Proof.

\

where the integral is in the ordinary sense
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= 1 x(ω)dP . Q.E.D.
JΛ

LEMMA 2.2. If x is a measurable finitely valued function on Ω tσ
then \\^s{x\ J H M II ̂  #{11 x IIIJH (ω) with probability 1.

Proof.

for χ^ = 1 or 0.

= E{\\ x || I JH(ω) . a.e. Q.E.D.

LEMMA 2.3. // xlf , α;fc are finitely valued measurable functions,
and a1 fah are scalars, then

with probability 1.

Proof. Let {AJ: m = 1, « ,p be a decomposition of Ω such that
each Xj takes on only one value on each Am; in fact, let Xj(ω) = ^(A^)
for ω e Am. Then since £f s{# | ̂ "} depends on x and ̂ ^ and not on the
decomposition of Ω, the same representation holds for all the ^s{
Hence

= Σ

Thus

= Σ [<hΦi(AJ + + akφk(AJ]E{χAn
m=l

= «i Σ ^(ΛJ^ϋL., I ^"}(o>) + + α» Σ
l l

= Σ α ^ s t e I ^}(o)) with probability 1. Q.E.D.
3
Σ
3=1

THEOREM 2.1. Lei cc( ): Ω —> ϊ δe integrable in the sense of Bochner
and ^ a Borel field of measurable Ω sets. Then there exists a func-
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tion Ws{x\J^~}( ): Ω—*% which is Bochner ίntegrable, strongly measur-
able relative to j ^ ~ , unique a.e., and

x(ω)dP = I &s{x I JH(ω)dP for all A e

Proof. Let x be strongly measurable and integrable in the sense
of Bochner. Then there exists a sequence xn of finitely valued measur-
able functions such that xjω) —> x(ώ) with probability 1 as n —• oo

1 || xJω) — xjω) II dP—* 0 as n, m —> oo; and 1 xn(ω)dP—* \ x(ω)dP.
JΩ JΩ }Ω

ISίow ^"{Xnl^} is defined for all xn by Definition 2.1. Also

) || dP

= ( II ί f ' K - %m I J?H(α>) II d P by Lemma 2.3.

^ ϊ JS7-CH *„ - a?m | | I J^"}(ύ))dP by Lemma 2.2.

= ( || X"(Q)) _ a- ( ω ) || d P by the definition of ordinary con-

JΩ ditional expectations
—• 0 by the defining property of the xn's as n, m—> oo.

Then according to Hille and Phillips ([9] p. 82, Theorem 3.7.7), there
exists a function, y, which is Bochner integrable, strongly measurable
relative to ^ , unique a.e., and such that

(1) ( |( gf {*n I jr}(ω) - y(ω) \\ dP-> 0 as n - oo
JΩ

Next,

( y(ω)dP - ( x(ω)dP
JΛ JΛ

- \ x{ω)dp\\
JΛ II

^ t \\y(ω)-ϊ?s{xn\jr}{ω)\\dP
JΛ

+ II ί xn(ω)dP - [ x(ω)dp\\ by Lemma 2.1.
II U JΛ II

—> 0 as n —> oo by (1) above and by the definition of I x(ω)dP. Thus
y(ώ)dP — \ x(ω)dP for all A e ^ . We are now justified in calling

A JΛ

y(>) the strong conditional expectation of x relative to ^ and we use
the notation ξ?8{x |J^}( ) Q.E.D.
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DEFINITION 2.2. ί?*{x\^~} is called the strong conditional expect-
ation of x relative to ^".

We shall now examine the properties of the strong conditional ex-
pectation. In what follows we will be concerned mainly with the strong
Yather than the weak conditional expectation.

THEOREM 2.2.

1. If x(ω) — ξ on Ω then &s{x \^}(ω) = ξ with probability 1..

2. g^JΣ CJXJ I βΛ = Σ c0s{x31 Ĵ ~} with probability 1.
U = i ) ? = 1

3. || Ws{x I &~}(ω) || ^ E{\\ x \\ \ J Π with probability 1.
4. // || a?Λ(α>) — α?(tt>) || —• 0 as n—> oo with probability 1, and'

there is a real random variable a(ω) ^ 0 such that \ \ xn(ω) \ \ S
a(ω) with probability 1 and E{a} < oo, then l inv^ &s{xn \

with probability 1.

Proof.
(1) The function x(ω) = ξ has the defining property of

and is measurable relative to any Borel field

(2) ί %"l'ΣWj\^J\(ω)dp= \ (ΣiθjXj(ω))dP by Theorem 2.1.
JΛ u=i J JΛ\;=I /

= ( ( Σ Cj&'ix, I ^-}(ω))dP for all ΛeJ?~.

Thus

l 1 = Σ ^^s{^^ I ^ H with probability 1.

(3) Let α;w be as in the proof of Theorem 2.1. and let A e ^ .
Now 11 gf s{xn I JΠ(α>) \\^E{\\xn\\\ ^~}(ω) with probability 1 by

Lemma 2.2. Thus

But

( II ϊfs{Xn I JΠ(«>) II d P ̂  ( JB7-CN ^
JΛ JΛ

\ II ^ s ^

by Theorem 2.1., and

( JS?{|| xn || I JH(ω)dP = ί II *»
JΛ JΛ

as n
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Ήence

( || ϊfs{x I JH(ω) II dP ^ ( E{\\ x || I ^}(ω)dP for A e j T ,

.and thus || ξ?s{x \J^}(ω) || ^ E{\\x\\\^}{ω) with probability 1.

(4) || if S K I

= II &s{Xn - x I J^Π(ω) II by (2) with probability 1.

^E{\\xn-x\\\jr}(ώ) by (3) with probability 1.

-> 0 as w -> co by Doob ([1] p. 23). Q.E.D.

Next it will be convenient to show that every linear transformation
•distributes over §?s.

THEOREM 2.3. Let x be Bochner integrable, J^" a Borel field of
measurable sets, f a linear (bounded) transformation from 3c to another
Έanach space 2). Then

f[^s{x\^}(ω)] = ^s{f(x)\^}(ω) with probability 1.

Proof. Since / is a linear (bounded) transformation, fix) and
S\^5{x\^)λ are Bochner integrable (Hille-Phillips [9] p. 84). Let

. Then

{x \ JT}(ω)]dP =

(Hille-Phillips [9] Theorem 3.7.12, p. 83)

= (B)\ f(x(ω))dP by the preceding reference
JΛ

'Thus f[%"{x\^~}(oή] = ^s{f(x)\^}(ω) with probability 1 by Theorem
2.1. of Chapter I. Q.E.D.

COROLLARY. Let x be Bochner integrable, ^~ a Borel field of
measurable Ω sets, / e £ * , then

)] = E{f(x)\^}(ω) with probability 1.

A final remark. If ^ S S^, then
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with probability 1. For

( for A e

for A e

= I x(ω)dP for Ae £*; Λ also for A e

U

\
JΛ

= \E{X
JΛ

X\ ̂ }{ω)dP for A e &~. Q.E.D

CHAPTER III.

ABSTRACT MARTINGALES

l Preliminary definitions*

DEFINITION 1.1. Let T be a linear index set. Let xΓ( ): Ω-^% be
integrable in the sense of Bochner for τ e T and ^ Γ be a Borel field
of measurable subsets of Ω f or τ e Γ. Let ^ c c^* if a < τ. Suppose
xT is strongly measurable relative to J?ζ or equal almost everywhere to
such a function. If &s{xT \ ^ } = xσ with probability 1 when σ < r
then {#τ, ^ ' j r e Γ} is a strong Ίί-martingale.

In most of our work we will be concerned with the case in which
T is the set of positive integers, and in this case the martingale will
be denoted by {xn, ^ , n ^ 1} and the martingale equality becomes
<ίfs{%n I ^m) = %m with probability 1 for n > m.

By using the Dunford-Pettis Theorem alluded to in Chapter II, it
is possible to get a definition of weak X-martingales, but because of a
separability assumption in the theorem, they turn out to be strong X-
martingales.

2* General properties of strong X-martingales. From this point we

will denote (B)[ x(ω)dP by ( %(ω)dP, (B)\ x(ω)dP by &{x}> and
]A JA JΩ

by ^{x\^} and omit the word strong when discussing st

]A JA J

by ^{x\^}f and omit the word strong when discussing strong mar-
tingales.

THEOREM 2.1. {xXJ SK, T e T} is an %-martingale if and only if

I xτ(ω)dP — I xσ(ω)dP for σ < τ and A in J ^ .

Proof. If {xτj J*Γ, τ e T) is an ^-martingale, then &{xτ,
with probability 1. Thus for every A in i ζ we have the equality
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xσ{ώ)dP = \ &{xτ I JK}(ω)dP = ί xτ{ω)dP ,
JA JA

the last equality following from the definition of conditional expectations.

Conversely, if I xτ(ω)dP = I xσ(ω)dP, for A in J^, σ < τ, then

( ί f K | J ^ } ( ω ) d P = ί x<r(ω)dP.Λ Therefore, g 7 ^ | ^ } = a?σ with prob-
J A J A

ability 1 by Theorem 2.1 of Chapter I, and hence the process in ques-
tion is an 3£-martingale.

THEOREM 2.2. // {xτ, J^, τ e T) is an ϋ-martingale, and f is a
linear (continuous) transformation from X to another Banach space 2),
then {f(xτ), ^\, τ e T} is a ^-martingale. Thus, in particular, the
conclusion is true for every f in X*. On the other hand, if
{f(Xτ), ^, T e T} is a real martingale for every f in £*, and the xτ

are Bochner integrable, then {xτ, Jϊζ, τ e T) is an ^-martingale.

Proof.
(1) xτ is strongly measurable relative to J?ζ\ thus f(xτ) is also

strongly measurable relative to ^Γ by the continuity of /. Next,
&{f(Xτ)\J^K<o)=f[ξf{xr\Jζ}(ω)] with probability 1 by Theorem 2.3
of Chapter II, where both sides of the equality are in 2). The expression
on the right is equal to f{xσ{ω)) with probability 1 by the definition of
ϊ-martingale. Hence, <^{f{xτ)\^}{(o)=f{xσ{θ))) with probability 1;
thus, {f(xτ), Jζ, τ e T) is a 2)-martingale. In particular, this is true
for all real linear functional /, and in this case, the resulting martin-
gale is a real one.

(2) On the other hand, if xτ is Bochner integrable and strongly
measurable relative to ^ζ, then by hypothesis $?{f(xτ) I ̂ σ} = f{xσ)
with probability 1 for every / i n 9c*. Then we can write

for every / in X* and A in JK. Therefore, ί x
τ
(ω)dP = \ x

σ
(ω)dP for

JA JA

every A in ^ . Hence {xτ, jζT, τ e T} is an X-martingale by Theorem
2.1. Q.E.D.

Note. By virtue of Hille-Phillips ([9] Theorem 3.7.12, p. 83), the
theorem is true for /, a closed additive transformation from ϊ to 2), if
we assume that f(xr) is Bochner integrable for every τ in T.

DEFINITION 2.1. Let 2) be a Banach space. A subset B of 2) is
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called a positive cone if
(1) flefi,
(2) ξ e 5ΐ and a nonnegative imply aξ e ££,
(3) if I e Λ and - £ e ft, then £ = 0,
(4) if I e J8 and 27 6 ft, then f + ^ e ft,
(5) ft is closed. By definition ξ ^ η if and only if f — 27 € ft. The

order thus induced is a partial order (Hille-Phillips [9] Theorem 1.11.1,
p. 15).

DEFINITION 2.2. Let 2) be a Banach space with a positive cone.
Let T and ^ Γ for τ e T be as in Definition 1.1 of this chapter. Let xτ

be a Bochner integrable 2)-valued strongly measurable (relative to ^Γ)
function on Ω for τ e Γ. Then {τ/τ, J*Γ, τ e T) is a 2)-semi-martingale if

) ^ 2/σ(ω) with probability 1 for σ < τ.

DEFINITION 2.3. A function g defined on X with values in 2), a
Banach space equipped with a positive cone, is said to be sub-additive
|f β(ξ + V) ^ #(£) + #0?)> positive-homogeneous if #(α£) = ag(ξ) for α ^ 0.

THEOREM 2.3. If x is a Bochner integrable H-valued function on
Ω, J?~ a Borel field of measurable subsets of Ω, and g a continuous
subadditive positive-homogeneous function on X to 2), a Banach space
with a positive cone, such that g(x) is Bochner integrable, then
g([x(ω)dPj ^^g(x(ω))dP and g{W{x |^~}(ω)) ^ &{g(x) \^~}(ω) with

probability 1. In particular, the conclusion follows for real valued g
without the assumption of integrability on g{x).

Proof. If x and g(x) are Bochner integrable, then by the methods
of Hille-Phillips ([9] Corollary, p. 81, and Theorem 3.7.17, p. 83) there
exists a sequence of countably valued integrable random variables xn

such that II xn(ω) — x{ω) || —> 0, || g(xn(ω)) — g(x(ω)) \\ —> 0 uniformly with

probability 1 as n —> 00, and also I 11 xn(ω) — x(ώ) 11 dP —> 0 and
\\g(xn(ω)) — g(x(ω))\\dP—>0 as n—> 00 for every measurable set A.

Λ Γ Γ Γ Γ
Thus I xn(ω)dP-+ \ x{ω)dP and g(xn(ω))dP-+ \ g(x(ω))dP as n-> 00.

Furthermore, &{x»\ JT}-> g 7 ^ | Jr}9 &{g(χn) \ J"\-> &{g(χ) \ jr} u n i -

f ormly with probability 1 as n -> co, and I 11 g7{ct;w | jr\ — <ξf{χ\ ^ } \ \ dP-> 0,

(Moy [14] p. 7) JJ | 8^M^) | ^ } - &{g(x) \ JT} \\ dP-> 0 as n — co for
every measurable set A. Let #w(ω) = ξj

n for ω in Aj

w, where the Aj

n are
disjunct measurable sets such that

Σ P{Aί] = 1 .
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Then

( xn(ω)dP = Σ ξίP{Ai} = lim Σ &P{A>>}.
JΩ 3=1 iV->ooj=i

Now

jy the subadditivity and positive-homogeneity of g. Further,

f g(xn(ω))dP - Σ 9(ξJn)P{Al} = lim Σ g{Ά)P{A$ .
JΩ 3=1 N^oo 3=i

Hence,

g(\ xn(ω)dp) = g (lim Σ U-P{-Ai}) = Km gif, ξj

nP{Ai})
\JΩ J \N->ooj=i / iV-̂ oo \j=i /

rg Mm Σ ff(^»)-P{^i} = jflί7(a?»(ΰ>))dP ,

since g is continuous and the positive cone in 5) is closed. Similarly,

almost everywhere and thus,

•-»oo j = l

a.e.

Finally, sf(jβ*re(ω)(ίp) — ^ ^ ( ω μ p ) and ί7(g'{ajlι|^"})-»fr(g'{!B|^"}) a.e.

by the continuity of g and the known convergence of the integrals and

conditional expectations in question. Thus,

g(\ x(ω)dP) = g(\im\ xn(ω)dp) = lim g(\ xn(ω)dp

g lim ί g(xn(ω))dP = \ g(x(ω)dP
n-+oo JΩ JΩ

and

{ n \ } ) a.e.
71—*<x>

= lim flr(gf {a, | ^"}) a.e. ^ lim g-M*M) | j^"} a.e.

= &{g(x) I J Π a.e.

If, in particular, fir is a real valued subadditive positive-homogeneous
continuous function, then there exists a finite nonnegative number
Mβ, Mg = sup [g(ξ); \\ξ\\£ 1], such that | g(ξ) | ^ ϋf,(|| f || + 1) (Hille-
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Phillips [9] Theorem 2.5.2, p. 25). Thus, \g(x(ω))\ ̂  Mg(\\x(ω)\\ + l)r

and, since the function on the right is integrable on Ω, it being a finite
measure space, g(x) is Lebesgue integrable, and the conclusion of the
theorem follows. Q.E.D.

THEOREM 2.4. Let {xτ, ζ̂~, τ e T} be an %-martingale, and let g be
a continuous subadditive positive-homogeneous function on 3£ to 2), a
Banach space with a positive cone such that g{xτ) is Bochner integrable
for every τ in T. Then {g(xτ)> *̂Γ, τ e T) is a ^-semi-martingale. In
particular, if g is a continuous subadditive positive-homogeneous func-
tional the conclusion is that the resulting process is a real semi-martin-
gale without assuming that g(xτ) is integrable. Finally {\\ xτ ||, ^, τ e T)
is a real semi-martingale.

Proof. By Theorem 2.3, &{g(xτ)\^}{ω)^g(&{xτ\^}(ω)) a.e..
But the righthand side is equal almost everywhere to g(xσ(ω)) since
{xτ, ^Γ, τ e T) is an X-martingale. Thus, &{g(xτ) | ^~σ}{oή ̂  g(xσ(ω)) a.e.
for σ < τ. Since g(xτ) is clearly strongly measurable relative to
{g{%τ), ^Γ, τ e T} is a 2)-semi-martingale. Q.E.D.

Next we consider some examples.

EXAMPLE 2.1. Let z be Bochner integrable and {^} as before..
Let xτ = if {z 1^0. Then {xτy ^ , r e Γ } is an 3c-martingale. For let
Λ e J^ς, σ < r,

( xσ{ω)dP =[&{z\ &~σ}(ω)dP - ( z(ω)dP
Λ JΛ JΛ

as a consequence of the definition of i?{z|^v}, and

xτ(ω)dP= \ ϊ?{z\jς}(ω)dP= \ z(ω)dP,
Λ JΛ JΛ

the last equality being true for all A e ^ and hence for all A e j^~σ £ ^..

Thus ( xJω)dP = [ xτ{ω)dP for A e ^ . Hence, by Theorem 2.1,.
JΛ JΛ

{xτ, ^, T e T} is an ϊ-martingale.
Before proceeding to the next example we shall have to prove the

following lemma.

LEMMA 2,1. Let x and y be strongly measurable independent
random variables. Let JF* be the Borel field of measurable sets gener-
ated by x; i.e., the smallest Borel field of measurable sets with respect
to which x is strongly measurable. Suppose ^{y \ ^} exists, and define
ξf{y\x} = $?{y\jr }. Then <ίf{y\x} = £?{#} with probability 1.
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Proof. If x and y are independent, then f(x) and f{y) are real
valued independent random variables by Theorem 1.1 of Chapter I for
every / in X*. Thus E{f(y) | J Π = E{f(y)} with probability 1. Next,
let A be an ^ set. Then

by Theorem 3.3 of Chapter II. Thus

&{y\x}(ω)dP= \ ξ?{y}dP,
A JA

for every A in ^~. Hence &{y \ x] — &{y} with probability 1 by
Theorem 2.1 of Chapter I. Q.E.D.

In like manner, it can be shown that if {yn} are mutually independ-
ent, then &{yn\^~} = &{yn} with probability 1 if ^ is the smallest
Borel field relative to which ylf "-fyn-i are strongly measurable.

EXAMPLE 2.2. Let {yjfj^ 1} be mutually independent, ξf{yj] = 9
for j > 1, ^ 7 be the smallest Borel field relative to which yly , yό are
all strongly measurable, and xn — Σ?=il/j Then {xn> ^ , n ^ 1} is an.
3c-martingale.

We show that &{xn\^Z-i} — ®n-i with probability 1.

J\fnt£> ζ^J/y 1 έΐΓ' \ — ζ^ ΐ^* \ 11 01 \ O?^ J/y» \ /γ . . . rp \
lyUlV. <g? \JUn I κj^n-\) — ^ v"n I ί/l> > Un-li — & X"n I *Ίt 9 ^n-lί

Clearly

n n—\

Then

-i} = if K-i + ^ I
- g 'K-i I ^- i } + ϊ?{yn I ^- i } by Theorem 2.2 of Chapter IK
= xn-x + g?{t/w I ^ - J with probability 1 for α;w_! is meas-

urable relative to J^~n-.x.

= xn-λ + tf{yn} with probability 1 by Lemma 2.1

= x n - λ f o r &{yn} = θ ίor n>l .

Thus {o7n, . ^ , n ^ 1} is an 36-martingale.
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CHAPTER IV

MARTINGALE CONVERGENCE THEOREMS

IN A BANACH SPACE

Let ϊ be a Banach space. We will prove various convergence
theorems for 3E-martingales. Thus we will show that if {xn, ̂ , n ^ 1}
is an 3t-martingale, then under certain conditions there will exist an X-
valued random variable x such that xn —> x with probability 1 in various
senses.

THEOREM 1. Let {xn, ̂ , n 2> 1} be an H-martingale, and let
be the smallest Borel field of Ω sets such that ^ C B (j£=i - ^ Let
2/»(α>) = | | & n ( ω ) | | . Then

a 11} ss ... <*

(1) If l.u.b.w E{\\ xn ||} < oo then lim^oo || xn || = y^ exists with prob-
ability 1, and E{yoo) < oo. In fact, the boundedness condition reduces
to \\mn^E{\\xn\\} = K< CXD, and then E{yJ\ ^ K.

(2) a. If the ||a?«||'s are uniformly integrable then

and the process {yn, ̂ , l ^ t ι ^ c o } i s a real semi-martingale dominated
by a semi-martingale relative to the same fields. (Doob [1] p. 297)

b. If l.u.b.n2?{||scn||} < oo so that y^ exists, and if the process
{yn> ̂ ι> l ^ w ^ o o } i s a real semi-martingale, then lim^^^ E{\\ xn ||} = E{yJ\
and the || call's are uniformly integrable.

Proof. If {xn, <β^, n ^ 1} is an ϊ-martingale, then {|| xn ||, ̂ , n ^ 1}
is a real semi-martingale by Theorem 2.4 of Chapter III, and then
E{\\ xL ||} ^ E{\\ xn ||} ^ . . . according to Doob ([l] Theorem 2.1 (ii) p.
311). The other conclusions follow from Theorem 4.1 s of Doob ([1] p.
324-325). Q.E.D.

THEOREM 2. Let {xn, ̂ , n ^ 1} δβ an 1-martίngale. Let 3c δβ
reflexive. Suppose l i n v ^ E{\\ xn ||} = i ί < oo. T/i-βti ίΛerβ is an H-valued
strongly measurable random variable x^ such that xn —> x^ weakly as
n —-> oo ^ίίfc probability 1.

Proof. Since #w is strongly measurable, there is a measurable set
An such that P{AJ = 0 and xn(Ω — ̂ 4n) is separable, for strongly meas-
urable functions are almost separably valued (Hille-Phillips [9] Theorem
3.5.3, p. 72). Let 2)w = xn(Ω — An) and let 2) be the closed linear mani-
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fold spanned by U»=i?)n Then 2) is a separable subspace of X and
xn(ω) e 2) for almost all ω, for each n. Now 2) is reflexive since X is.
(Hille-Phillips [9] Corollary 1 to Theorem 2.10.3, p. 38). Further, since
2} is separable, then so is 2)** for 2) = 2)**. But then 2)* is separable
by Theorem 2.8.4 of Hille-Phillips ([9] p. 34). Now if feψ then
{f(%n)> ^y w ^ 1} is a real martingale by Theorem 2.2 of Chapter ΠL
Also

E{\f(xn) |} ^ #{| |/ll || xn\\} =

because E{\\ xx ||} ^ #{11 ®» 111 ^ ^ ^ by Theorem 1. By virtue of
Doob ([1] Theorem 4.1, p. 319) for every / e 2)* there exists a real
measurable function zf, and a measurable set J r such that P{Af} = 0
and I/(#»(<*>)) — £/(ω) | —> 0 as w -+ oo for ω e Ω — Af. By the separability
of 2)* there is a countable dense subset {/,} of 2)*. Thus for every /^
there is a Λ^ and zfj as we have seen, such that P{Afj} = 0 and
|/Xa?n(ω)) — £//ω) I —> 0 as n —> oo for ω e Ω — Λfj. Let A = (JΓ=i As^
Then

By Theorem 1 there is a measurable set M such that P{M} = 0 and
such that || xn{ώ) || is a convergent sequence for ω e Ω — M. Let J =
Λ U M. Then P{J} = 0. Next, let ω e Ω — A. Then ω e Ω — M so
that ||#n(ά>)|| is a convergent sequence. Thus there is a constant C
such that || xn(ω) \\ ^ C for all w.

Define Qn(/) — f(%n(ω)) for/ e 2)*. The Qw

7s form an equi-continuous
sequence of functions on 2)*, for, given e > 0, gδ = ε/C such that for
every n, \\f — g \\ < 8 implies

I Qnif) - Qn(flf) I = \f(Xn(ω)) - g ( x n ( o ) ) \ ^ \\f - Q \\ \\ xn(o>) \\ < ε\C*C = ε .

Furthermore, since ω e Ω — Afj for every j ,

I Qnifj) - Qn(fj) I - IΛ(&»(α>)) - Λ(ajΛ(ω)) | -> 0 as ti, m -> oo .

But, an equicontinuous sequence of functions converging on a dense set
of a metric space converges on the whole space. Thus for every
feψ,\ Qn(f) - Qm(f) I -> 0 as %, m -> oo; i.e., \f(xn(ω)) - f(xjω)) I -> 0
as n, m —* oo for every ω 6 β — A.

Therefore f(xn(ω)) is a convergent sequence for all ω e Ω — A and
/ e 2)*. The reflexiveness of X and 2) implies that 9c and 2) are weakly
complete. Thus there is an x^ (strongly measurable) such that for every
/ e 2)* and ω e Ω — A we have |/(a?n(ω)) — f(x«>(ω)) \ —> 0 as w —> oo; i.e. a?Λ

converges to ^ weakly with probability 1. Q.E.D.
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Note, #«, is strongly measurable since it is the weak limit of strongly
measurable functions (Hille-Phillips [9] Theorem 3.5.4, p. 74). Theorem 2
may be restated as follows:

1
THEOREM 2*. Let {xn, ̂ , n ^ 1} be an Tί-martingale. Let X be

weakly complete and suppose that 3c* is separable, and limn̂ oo E{\\ xn ||} =
K < oo. Then there is an H-valued strongly measurable random vari-
able x*, such that xn converges to x^ weakly with probability 1.

COROLLARY 1. Let {xn, ̂ n , n ^ 1} be an H-martingale. Suppose 3c
is a Hilbert space, and that lim^oo E{\\ xn ||} = K < oo. Then there
exists a strongly measurable H-valued random variable x<» such that
wn —> x^ weakly with probability 1.

Proof. Since 3c is a Hilbert space, it is reflexive and weakly com-
plete. Hence all of the hypotheses of Theorem 2 are satisfied, and so
the above conclusion follows. Q.E.D.

By making a stronger assumption on the Hull 's we will show that
the last result may be sharpened to give strong convergence with prob-
ability 1.

THEOREM 3. Let {xn, ̂ , n ^ 1} be an Tί-martingale; let 3c be
reflexive. If the | | # w | | ' s are uniformly integrable, then there is a
strongly measurable Ίί-valued random variable x^ such that
|| xn{ώ) — x^ω) || —• 0 as n—*oo with probability 1, and in fact

Kii 1 ^ n ^ oo} is an H-martingale.

Proof. As in the proof of Theorem 2, there is a separable sub-space
2) of 3c, and for each n, xn{ω) e ?) for almost all ω. Also 2) is reflexive,
so therefore 2)** is separable, which implies that 2)* is separable. Now
E{\\ xλ ||} S E{\\ xM\\}<z...£ E{\\ xn ||} S since {|| xn | |, J ξ f n ^ 1} is a

.semi-martingale. Thereforelim^oo {̂11̂ 11} = K^ oo,whilelimw^oJ?{|/(#w)|}^
lim^o. 11/11 E{\\xn ||} = | | / | | K. But the uniform integrability of the
Hull 's makes K< oo (Doob [1] Theorem 4.1, p. 319). Theorem 1 tells
us that there is a y^ such that 111 xn \ \ — y^ \ —* 0 as n —• oo with prob-
ability 1, and such that {yn, J^n, 1 ^ n ^ oo} is a real semi-martingale,
where yn(ω) = \\ xn(ω) \\ and yjω) = lim^«, || xn(ω) | |. In fact,
E^y^ — \\xn\\ |}—> 0 as n—^ oo. By Theorem 2, there is a strongly
measurable ϊ-valued random variable #«, such that \f(xn(ω)) — f(x«>{<o))\—>0
as n—> oo with probability 1 for every / e 2 ) * . Furthermore, if the
|| xn ||'s are uniformly integrable, then so are the f(xn)

fs for every/ e 2)*
because, first of all,

{ω: \f(xn(ω)) | > M} s
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if H/IKO. (If | | / | | = 0 , then trivially the f(xn)'s are uniformly
integrable.) Thus

( \f(xn(ω))\dP^\ \f(xn(ω))\dP
J {ω: \f(xn{ω))\>M] J {ω: | \xn{ω) \\>M/\ \f\ |}

xΛ(ω)\\dP-+0

uniformly in n as ikΓ—> co .

By the uniform integrability of the | | # J | ' s , thus proving the uniform
integrability of the f(xnys for every / e 2)*. Hence {/(&»), ̂ , 1 ̂  n ^ co}
is a real martingale for every / e 2)* by Doob ([1] Theorem 4.1, p. 319).

Next, #oo is strongly measurable (in fact, relative to ̂ Q by Theorem
2. Furthermore, i?{||#oo||} < °°, for, xn—> x^ weakly with probability 1.
Hence \\ x^iω) \\ ̂  lim^^ inΐ \\ xn(ω) \\ for almost all ω. But the right
hand side equals y^Jω) with probability 1 by Theorem 1. Thus || x^iω) || ^
yoo{o)) a.e. Since y^ is integrable, so is ||aJoo||; hence, by Theorem 3.7.4
of Hille-Phillips ([9] p. 80), x^ is Bochner integrable. Thus, by Theorem
2.2 of Chapter III, {xn, ^~, 1 ̂  n g oo} is an X-martingale. Then
{II %n \\> ^n, l ^ t ι ^ o o } i s a semi-martingale by Theorem 3.4 of Chapter
III. But so is {|| a?x ||, •••, \\xn\\, , ̂  relative to J^Γ, •• , ^ , « , ^ « .

We now show that || #«, || — y~> with probability 1. We have already
shown E{\\ x^ ||} ^ E{yJ. But E{\\ xn ||} ^ JE7{|| x . ||} since {|| xw ||, ̂ , 1 ^
•w ̂  oo} is a semi-martingale, and since E{\\xn\\)-^ E{y00} by Theorem 1,
we have E{yoo} ^ E{\\ x^ ||}. Hence, JS?{|| x«, ||} = J ? ^ } . But || ̂ ( ω ) || ^
3/00(0)) for almost all ω. Therefore by Theorem B of Halmos ([8] p. 104),
II Xoo(ω) II = #oo(ω) for almost all ω, and || xn{ω) \\-+\\ Xoo(ω) || with prob-
ability 1, even as Xn-^Xo* weakly with probability 1. Next, let ξ e 2).
Then {xn — ξ, ̂ , n ^ 1} is an ϊ-martingale, for

= &{x»\ <^Q -&{ξ\ <^Q with probability 1 by Theorem
2.2 of Chapter II

= χm — ζ with probability 1, since
{Xm ̂ ίf n ^ 1} ίs an 36-martin-
gale, and by Theorem 2.2 of
Chapter II.

Now by what we have already proved in this theorem, since the
i| #w — ίrll's a r e clearly uniformly integrable, there is a u*, such that
f(xn — ξ) —>/(Ko) with probability 1 for every / e 2)* and || xn(ω) — ξ \\ —>
^oo(ω) with probability 1. But /|>w(α>) — ξ] =/(»»(ω)) — /(!)—>

.f(x~(ω)) - / ( | ) = /[Xoo(ω) - §] as n -> 00 with probability 1. Thus
u^iω) = ̂ ((w) — I with probability 1. Hence || xn(ω) — ξ || —> || ̂ (α)) — 11|
with probability 1. Let {̂ } be a denumerable dense set in 2). Then
there is a ^ such that P ^ } = 0 and || xn(ω) — ξ5 \\ -> || ̂ ( ω ) — ̂  || for
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ωe Ω - Λj. Let A = U~=i Λ T h e n piA) = ° L e t o> e. Ω - A, and
define JRn(f) = || $n(α>) — f || for £ e 2). The Rn's form an equicontinuous
sequence of functions on 2), for given ε > 0, 38 = ε, such that for every
n, II f - 7 I K 8 = * implies | jβ;(f) - ββfo) | = 11| ajΛ(α>) - 1 1 | - II an(ω) - VIII ^
III — VIK ε Furthermore, since ω e Ω — A3 for every i ,

But, as an equicontinuous sequence of functions converging on a dense
set of a metric space converges on the whole space, thus for every
ξe%\Rn(ξ)-\\x^ω)-ξ\\\ = \\\xn{ω)-ξ\\-\\x^ω)-ξ\\\^Own-+*>
for every ω e Ω — A. Now, for ω φ A, let ξ — ̂ ( ω ) . Then || #w(ω) — x^ώ) ||—•
II ̂ ^(ω) — Xoo(o>) || = 0. Thus there is a measurable set A such that P{J} = 0
and such that for ω e Ω — A, || xn(ω) — x^ω) || —> 0 as ^—> 00. Q.E.D»

COROLLARY 2. If Tί is a Hilbert space, or lp, or Lp, 1 < p < 00,
{#w> -^> ̂  ^ 1} is a n Tί-martingale in which the \\%n\\'s are uniformly
integrable, then there is an x^ such that {xn, J^,, 1 S n ^ 00} is an ϊ -
martingale, and \\xn(ω) — xoo(ω)\\-^0 as n—* 00 with probability 1.

Proof. All of the above named Banach spaces are reflexive, and
thus the result follows from Theorem 3.

REMARK. Let ϊ be a Banach space with a partial order induced
by a positive cone. Suppose {xn, J^, n ^ 1} is an X-semi-martingale.
Then, as in Doob ([1] p. 297), xn can be represented in the form

where Δx = θ; Δ5 = ^{x5 \ ^]^ — x3^ ^ θ, j > 1; and {x'n, J^, n ^ 1} is
an X-martingale. Thus convergence problems for X-semi-martingales
can be reduced to convergence of X-martingales if reasonable conditions
can be found for the convergence of the monotone sequence yn = Σ7= 1 Δy.

THEOREM 4. Let {xn,^n,n ?g — 1} be an %-martingale in which X
is reflexive, and let ^1^ = Γ\zL ^ . Then cc_oo exists, such that
II xn(ω) — x_oo(ω) II —> 0 as n —> — 00 with probability 1, ami {a?

?ι ^ — 1} is an H-martingale.

Proof. {|| xn II, ̂ , % ̂  — 1} is a real semi-martingale; thus by Doob
([1] Theorem 4.25, p. 329) l i π v ^ || xn(ω) \\ = y^ exists with probability
1, and —00 SV-oo< 00, while {\\xn\\,-^n, —°° ^nS —1} is a semi-
martingale. By Theorem 4.2 of Doob ([1] p. 328) l i n v ^ f(xn) exists,
for almost all ω and every / e ϊ * . Using the methods of Theorem 2>
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we can show that there is an x^ such that f(xn(ω)) —•/(2c_0O(ft>)) as
n —> — oo for almost all ω and all /. Using the methods of Theorem 3,
we show that {xn, ̂ n, — oo <; n ^ — 1} is an ϊ-martingale, and that
|| x^ || = y_oo and || xn{ω) — ̂ -^(ίo) || —> 0 as w —• — oo with probability 1.
Q.E.D.

THEOREM 5. Let z be a strongly measurable random variable, ϋ
reflexive, with E{\\ z ||} < oo; Zeί ••• J*C n S S ^ S S £

_ ^ S δe I?oreZ fields of measurable Ω sets. Let ^Co — Π~=-~ <^C
be the smallest Borel field of Ω sets with j^Z a \Jζ=-~>J^. Then
limn̂ _-ββ gf {z I j ^ } = g^z I J C 4 , αwd limn^co gf{z | j ^ } = gf {z | ̂ 1} with
probability 1.

Proof. L e t # w = g 7 ^ | ^ } , — 00 ^ n ^ 00. T h e n {a?w, ̂ , — 00 ^

w ^ 00} is an X-martingale by Example 2.1 of Chapter III. Thus by
Theorem 4, l i n v ^ gf {z | ̂ } = g 7 ^ | ̂ CJ\. Next, {|| a?n ||, j ^ , - 00 ^
n ^ 00} is a real semi-martingale, with a last term in which all the
random variables are nonnegative. Thus by Theorem 3.1 of Doob ([1]
p. 311) the II xn ||'s are uniformly integrable. Hence by Theorem 3, there
is a y such that 11 xn(ω) — y(ω) \ \ —> 0 as n-+ 00 for almost all o) and
{xn,l^n<oo1y} is an ϊ-martingale. We finally must show that
Xoo {(o) — y(ω) with probability 1. But this is true for both x«> and y are
equal almost everywhere to functions measurable relative to J C . Also

\ x00(ω)dP = \ ξf{z I JKo}(ω)dP = ί z(ω)dP for J e ^ I and ( y(ω)dP =

I xn(ω)dP =\ ξ?{z\ J^}(ω) dP = ί z(ώ)dP for every Δ e ^ n and thus for

every J e (Jw - ^ Hence I y{ω)dP — \ xoa{ώ)dP for every A e \Jn J\;

thus, ^f(y(ω))dP = \f{x^ω))dP for every J e U ^ a n d / e X*. But

these integrals define completely additive set functions of ^C sets which
are identical on the fields \Jn ̂ n and therefore identical on ^ C (Doob
[1] Theorem 2.1, p. 605). Thus ί y(ω)dP = \ x^dP for every A e JK>.

}Λ JΛ

Hence y(ω) = x^ω) with probability 1 and lim^^^ g 7 ^ | ̂ } = &{z | ^Z}
with probability 1. Q.E.D.

COROLLARY 3. Let z be a strongly measurable random variable,
with E{\\z\\} < 00 and let ylfy2, ••• be strongly measurable. Let Sζ,
be the smallest Borel field with respect to which yn, yn+1 are strongly
measurable. Then l i m ^ if {z | ̂ } = gf {z | Π*=i ^n}, Umn^ ξ?{z \ £έQ =
^{z\c%Q where J%ζ is the smallest Borel field relative to which
Vi,y2, 9"yVn are strongly measurable, £ίC the smallest Borel field con-
taining |Jn

Proof. In Theorem 5, let £ζ = ̂ Cn and 3ifn = jrn% Q.E.D.
Using this corollary it is possible to get a proof of the Banach space
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version of the strong law of large numbers. In fact, such a proof is
virtually along the lines outlined in Doob ([1] p. 341). Mourier [13] has
proved an ergodic theorem, more general than this one, by a more
direct approach.

EXAMPLE 1. Let X = lp, 1 < p < co (real lp). Then

xn(o)) = (ξίn)(ω), , f jΛ)(α>), •) where Σ I fjn)(*>) |* <
J = l

and

If #u is Bochner integrable, then its integral satisfies the equation

where the components are ordinary Lebesgue integrals; thus the com-
ponents of xn are real-valued Lebesgue integrable functions.

The martingale equality becomes

={5/w)(ω)dPf , J^ΓίωJdP, •}, m < tι, A e jTm c

or, alternatively,

= ( |jw)(α>)dP, m < w, Λ 6 ^ c ^ for j = 1, 2,

Thus for every j , {ξ{jn), ^ , n ^ 1} is a real martingale, which can also
be seen by noticing that the mapping from an lp vector to any of its
components is a linear functional. Then if

E{\\xn\\} = \ Ω { ± Ifj">(ω) ήlPdP <z K< - ,

by Theorem 2 there is an x(ω) = {ξ1(ω)f • 9ξi(ω), •} e lp such that for
every η = (ηu ---,yj9---) e I*, 1/p + 1/q - 1, ΣΓ=i %?iw)(^) - ΣΓ-i %&(̂ >)
as ^ —> oo for almost all ω. Note that the boundedness assumption on the
2£{||<B||}'S implies boundedness for E{\ξ$n) |}'s for every j ; thus we could
get convergence in each component by the ordinary martingale convergence
theorems.
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Finally, if the ||α?n | | 's are uniformly integrable, that is, if

-uniformly in n as K-> oo, Λfc = {ω: [Σ~=i I£?M I T * > K). We can get

l y the ordinary martingale convergence theorem that \ ξj{ω)dP —

S JΛ
ξJ(ω)dP for A e ^ , w ^ 1 for every j .

A

However, we get more by Theorem 3, namely, ΣΓ=i I Sj(ω) — &(<*>) \p ~> 0
vrith probability 1 as n —> oo, and also, of course Σ£=i I ^ ί ^ ) 1 "̂̂  ΣΓ-i I l:j(α)) I3'
with probability 1 as n —> oo.

EXAMPLE 2. Let X = I/P(ί), where / is the closed unit interval

withLebesguemeasure, p > l . Ύhenxn(ω)=gn(t, ω) where I \gn(t,ω)\pdt< oo.
JΩ

Now if xn(ω) is strongly measurable relative to ^ , there is a represent-
ation #w(£, ώ) which is measurable over Ω x I such that gn( , ω) = xn(ω)
in LP(I) a.e. in Ω, and any two representations of xn( ) differ over
Ω x I on at most a set of measure zero. (Dunford-Pettis [4] Theorem
1.3.2, p. 336).

If xn( ) is Bochner integrable, then besides being strongly measur-

able, f ||αn(α>)||cZP< oo.

Thus

\ j \ I gn(t, oή \pdt\ PdP= \ | |a?n(α>)||dP< oo .
jolji J }Ω

Hence

S ec ^ f re l i / p

\ \ I Qn(t> ω) I dt\dP ^ I \ \ I ^w(ί, α>) \pdt\ dP < co
β l j l J JfllJl J

by the Holder Inequality. Therefore, by the Fubini Theorem,

\ \ gn(t, ω)dt dP = I I gn(t, ω)dPdt ,

and

S f f f

\ΰn{t, o))dt dP = \\9n(t, ω)dPdt .
Hence
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for almost all t.

If {xni J^l, n ^ 1} is an Lp-martingale, then I xn(ω)dP = \ xm(ω)dP

S P JΛ JΛ

gn(t,ω)dP= 1 gm(t, ω)dP for almost all ί, and
A JΛ

Λ e ^n, m <n. Hence, for almost all t e I (Lebesgue measure) if ^
is generated by countably many sets, {gn(t, *),^nyn ^ 1} is a real marting-
ale.

Next, if
f Γ f ~μ/2>

#{ll». Ill = I Quit, ω)\pdt dP^κ<^ ,
JβLJi J

there is an x(ω) = g(t, ω) e LP(I), I \g(t, ω) \pdt < oo by Theorem 2 such

that I h(t)gn(t, ω)dt —• I h(t)g(t, ω)dt as n —> oo with probability 1 for

every fc e Lq(I), 1/p + 1/g = 1
Furthermore, by Theorem 3, if the || xn ||'s are uniformly integrable,,

then \ I gn(t, ω) \pdt —> \ | g{t, ω) \pdt as n—* oo with probability 1, and even
Ji P Ji

better, I \gjt9 oή — g(t, ω) \pdt —> 0 as n—> oo with probability 1.

The uniform integrability condition says that

uniformly in n as N—• oo,

[ j flrn(t, ω) I 'dtJ^ > N} = ΛN

This implies uniform integrability of the random variables in the real
martingales {gn(t, •), jβ^, n ^ 1}. Thus for almost all t, we can apply
the ordinary Doob martingale theorems, and thus get convergence
theorems in each coordinate.

The functions gn{t, ω) as functions of t might, as a further illustra-
tion, be sample functions of a sequence of measurable stochastic proc-
esses (Doob [1] p. 60) with the property of being absolutely integrable
over Ω x I.

EXAMPLE 3. We have seen in Example 2.2 of Chapter III that if
{Vjf j ^ 1} are mutually independent, as ϊ-valued random variables, with
tfiVj} = θ for i > 1, and ^ is the smallest Borel field relative to which
Vi," ,yj are all strongly measurable, and if #n = Σ?=i!/^ then
{ft™ ^,wΞ>l} is an X-martingale. Theorem 2 tells us that if limn_,«2i7{||a;n||} =
K < oo, then Σti=if(yA<t>)) converges with probability 1. If, further, the
|| xn ||'s are uniformly integrable, then by Theorem 3, ΣJ=iVj(ω) converges,
with probability 1.
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Examples 1 and 2 above illustrate an important point. It is clear
from them that an ϊp-martingale is really a countable collection of one-
dimensional martingales, while an ZZ-martingale is a non-denumerable
collection of ordinary real martingales. Thus, it is possible to prove
convergence theorems for lp or Lp by first proving convergence in each
coordinate, using the Doob theorems on convergence of ordinary martin-
gales. One could prove the convergence theorem for abstract Hubert
space by first proving the theorem for i2 in each coordinate and then
using the fact that there is a one-to-one linear norm preserving trans-
formation between I2 and abstract Hubert space. In fact, one could
prove convergence theorems for any 36-martingale in which ϊ is a
function space or a coordinate space by first proving martingale conver-
gence theorems in each coordinate.

Let {ξtJ t e I = [0,1]} be a separable Brownian motion process (Doob
![1] p. 52, p. 392). Then there is a measurable set Ωo c Ω, such that
P{Ω — Ωo} — 0, and such that for ω e Ωo, ξt{ω) is a continuous function
of t e I. Let x(ω) — ξt(ω) — g(t, ω). Then x( )\ Ω —> C(/), the continuous
function space on the unit interval, and ||#(α>)|| = sup ί 6 z | g{t, ω) |.

We next show that x( ) is strongly measurable. L e t / e X* = C(I)*.
Then there is a function of bounded variation F such that f(x(ω)) =

g(t, ω)dF(t)

= lim Σ Ufa, ω)[F(tj) -
max|{ j —Cj—il-^O j = l

Λvhere 0 = t0 < tx < < tn = 1 and t^λ < uό < t5. But each sum is
dearly measurable in ω, so the limit must be too. Thus x( ) is weakly
measurable, but since C(I) is separable, this is equivalent to strong
.measurability of x.

To show that #(•) is Bochner integrable, we need only show that
JS'ίll^H} < co, for #(•) is strongly measurable. To this end, let ξQ = 0
with probability 1, and let h(ω) = \\ x(ω) \\ = sup i€z \g(t,ω)\.

Then

P{ω:h(ω) ^n}^—-J—
n r π

<Doob [1] p. 392) Thus

/ 9 °° 1 —W2/2σ2

P{ω h{ω) ^ n] ^ σ-J—Σ — β <
r π1 i 72

Hence, 2£{|| a? ||} < oo, and x( ) the sample function of a separable
Erownian motion process is Bochner integrable.

Let ^ be the Borel field of Ω sets generated by ξQ9 ξlί2, ξx; ^ζ the
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Borel field generated by ξOf ξlli9 ξ1/2, ξil4f ξ19 and in general J^ the Boret
field generated by ξ0, £1/2», , fan-1/2n, ξx. ThenJ^Γ c J^Γ c c ^ c
Let fn(t)(ω) = E{ξt \ J^}(ω). Levy ([11]) p. 18) has shown that /n(ί)(α>>
is a polygonal line function of t for almost all ω, and that |/»(t)(α>) — fί(β>)| —•
0 as w —• oo uniformly in t for almost all ω. If we let yn((o) —
fn{t)(ω) e C(I) for ω e Ω, then {ynJ ^ , w ^ 1} is a C(J)-martingale.
Levy's result does not as yet come out of our work because C(I) is not
reflexive.

The validity of the Martingale Convergence Theorem for non-reflexive
spaces is not known to the author. In fact, various, attempts in proving
it have failed. If it were established, then further interesting examples
like the last one for important non-reflexive spaces, e.g., U or I1, could
be given.
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TORSION ENDOMORPHIC IMAGES OF MIXED
ABELIAN GROUPS

ELBERT A. WALKER

In this paper we will answer Fuchs' PROBLEM 32 (a), and the
corresponding part of his PROBLEM 33. (See [1], pg. 203.) The state-
ments of these PROBLEMS are the following.

I. "Which are the torsion groups T that are endomorphic images
of all groups containing them as maximal torsion subgroups?"

II. "Which are the torsion groups T such that a basic subgroup
of T is an endomorphic image of any group G containing T as its
maximal torsion subgroup ?"

Actually, we will answer question II and the following question
which is more general than I.

III. What groups H are endomorphic images of all groups G con-
taining H such that G/H is torsion free?

The solutions will be effected by using some homological results of
Harrison [2]. All groups considered here will be Abelian. The definitions
and results stated in the remainder of this paragraph are due to Har-
rison, and may be found in [2]. A reduced group G is cotorsion if
Ext (A, G) = 0 for all torsion free groups A. If H is a reduced group,
then Ext (Q/Z, H) = H' is cotorsion, where Q and Z denote the additive
group of rationale and integers, respectively. Furthermore, H is a sub-
group of Hf, (that is, there is a natural isomorphism of H into H') and
H'jH is divisible torsion free. This implies, of course, that if T is a
torsion reduced group, then T is the torsion subgroup of T"=Ext (Q/Z, T).

Now it is easy to see that if G is a group such that Ext (A, G) — 0
for all torsion free groups A, then any homomorphic image of G is
the direct sum of a cotorsion group and a divisible group. In fact,
let H be a homomorphic image of G. This gives us an exact sequence

0 — K-* G~~* H-+0

which yields the exact sequence

0 — Horn (A, K) -> Horn (A, G) -> Horn (A, H) ->
Ext {A, K) -» Ext (A, G) -> Ext {A, H) — 0 .

If A is any torsion free group, then Ext {A, G) = 0, and so Ext (A, H) = 0.
Write H= D@Ly where D is the divisible part of H. Then L is
reduced, and 0 = Ext (A, D@L)^ Ext (A, D) ® Ext (A,L) = Ext (A, L), so
that L is cotorsion. Our assertion is proved.
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Now we are ready to give the solutions promised earlier. The
following theorem settles III.

THEOREM. The group H is an endomorphic image of every group
G containing it such that G(H is torsion free if and only if H—D^C,
where D is divisible and C is cotorsion. This is equivalent to the as-
sertion that H is a direct summand of every such G.

Proof. Suppose H is an endomorphic image of every group G con-
taining it such that G/H is torsion free. Let H = D 0 C, where D is
divisible and C is reduced. Then C is a subgroup of the cotorsion group
Ext (Q/Z, C) = C" such that C'/C is torsion free, so that H is a subgroup
of D 0 C" = Hf such that H'/H is torsion free. Therefore H is an
endomorphic image of Hr. Ext ( 4 , ΰ φ C ' ) = 0 for all torsion free groups
A, and as we have just proved, any homomorphic image of Z) 0 C is
the direct sum of a cotorsion and a divisible group. It follows that C
must be cotorsion.

If H = D 0 C, with D divisible and C cotorsion, then Ext (A, H) = 0
for all torsion free groups A, and hence H is a direct summand of any
group G containing it such that GIH is torsion free. If H is a direct
summand of any such G, then clearly H is an endomorphic image of any
such G. Thus our theorem is proved.

The torsion group T is a direct summand of every group containing
it as its maximal torsion subgroup if and only if T = Z) 0 B, with D
divisible and B of bounded order. (See [1], pg. 187.) Thus, by our
theorem, we see that the torsion group T is an endomorphic image of
every group containing it as its maximal torsion subgroup if and only if
T = Z) 0 B, with D divisible and B of bounded order.

The solution of II goes as follows. Suppose a basic subgroup of T
is an endomorphic image of every group G in which T is the maximal
torsion subgroup. Let T = ΰ φ B, with D divisible and B reduced.
Then a basic subgroup of T must be an endomorphic image of D@Bf —
D 0 Ext (Q/Z, B). Therefore a basic subgroup of T must be cotorsion,
since it is reduced, and since it is torsion, it is of bounded order. (See
UL Pg 1̂ 7. The remark by Harrison in [2], pg. 371 is incorrectly
worded.) Writing T as D®B, we see that a basic subgroup of B is a
basic subgroup of T. But any two basic subgroups of T are isomor-
phic, and if B has a basic subgroup of bounded order, then B must be
of bounded order. In fact, the only basic subgroup of B is B itself.
Thus T = D 0 B, with D divisible and B of bounded order. If Γ =
Z) 0 B9 with D divisible and B of bounded order, then B is a basic
subgroup of T. Now D 0 B, and hence B, is a direct summand of any
G in which T is the maximal torsion subgroup. Therefore B is an
endomorphic image of any such G, and hence any basic subgroup of T
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is such an endomorphic image. Thus we see that the answers to ques-
tions I and II are the same.
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THE PRIME DIVISORS OF FIBONACCI NUMBERS

MORGAN WARD

1* Introduction* Let

(U):U0,U19 U2,.--,Un,-.-

be a linear integral recurrence of order two; that is,

P, Q integers, Q Φ 0; Uo, U19 integers. It is an important arithmetical
problem to decide whether or not a given number m is a divisor of
(U); that is, to find out whether the diophantine equation

(1.1) Ux = my , m ^ 2

has a solution in integers x and y. Our information about this problem
is scanty except in the cases when it is trivial; that is when the char-
acteristic polynomial of the recursion has repeated roots, or when some
term of (U) is known to vanish.

If we exclude these trivial cases, there is no loss in generality in
assuming that m in (1.1) is a prime power. It may further be shown
by p-adic methods [7] that we may assume that m is a prime. Thus
the problem reduces to characterizing the set Sβ of all the prime divisors
of (U). 3̂ is known to be infinite [6], and there is also a criterion to
decide a priori whether or not a given prime is a member of Sβ, [2],
[6], [7]. But this criterion is local in character and tells little about
φ itself.

I propose in this paper to study in detail a special case of the
problem in the hope of throwing light on what happens in general. I
shall discuss the prime divisors of the Fibonacci numbers of the second
kind:

(G):2,l,3,4,7, . . . , G n , .-.

These and the Fibonacci numbers of the first kind

are probably the most familiar of all second order integral recurrences;
(F) and (G) have been tabulated out to one hundred and twenty terms
by C. A. Laisant [3].

2. Preliminary classification of primes. Let R denote the rational
field and & — R(VW) the root field of the characteristic polynomial
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(2.1) f { x ) = X 2 - X - 1

of (F) and (G). Then if a and β are the roots of f(x) in ^ ,

Fn= ^-P" , Q an+βn y ( ^ = 0 , 1 , 2 , . . . ) .
a — β

If p is any rational prime, by its rank of apparition in (F) or rank,
we mean the smallest positive index x such that p divides Fx. We
denote the rank of p by pp or p. Its most important properties are:
Fn = o (mod p) if and only if n = o (mod p); p — (5/j>) = o (mod /?). Here
(5/p) is the usual Legendre symbol.

The following consequence of (2.1) and the formula F2n — FnGn is
well known.

LEMMA 2.1. p is a divisor of (G) if and only if the rank of ap-
parition of p in (F) is even.

The formula

(2.2) Gl - 5FI = ( - 1)»4

gives more information. For if p = 1 (mod 4), and p divides (G), (2.2)
implies that (5/p) — 1. On the other hand if p = 3 (mod 4), p must
divide ((?). For otherwise Lemma 2.1 and formula (2.2) with n—pp

imply (-1/p) = 1.

On classifying the primes according to the quadratic characters of
5 and —1 modulo p, they are distributed into eight arithmetical pro-
gressions 20n + 1, 20w + 3, 20w + 7, 20w + 9, 20w + 11, 20w + 13, 20w + 17,
20n + 19. By the remarks above, only primes of the form 20n + 1 and
20n + 9 for which both — 1 and 5 are quadratic residues need be con-
sidered; the following lemma disposes of all others.

LEMMA 2.2. p is a divisor of (G) if p = 3 (mod 4); that is if
p == 3, 7,11, 19 (mod 20). p is a non-divisor of (G) if p — 1 (mod 4) and
p = 2 or 3 (mod 5); that is if p = 13,17 (mod 20).

3* Further classification criteria. Let Q denote the set of all
primes having both 5 and — 1 as quadratic residues; that is primes of
the 20^+1 or 20^+9. For the remainder of the paper all primes considered
belong to £X Let 3̂ denote the subset of divisors of (G) and ^3* =
O — ̂ 3 the complementary set of non-divisors of (G). We shall derive
criteria to decide whether p belongs to β̂ or to ^3*.

If p is any element of O, we may write

(3.1) p = 2* + 1 (mod 2*+1), p - 1 = 2*ί, q odd; k ^ 2 .
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We shall call k the (dyadic) order of p. Thus primes of order two
are of the forms AOn + 21 and 40w + 29, primes of order three, of the
form 80n + 9 and 8(bι + 41 and so on. The difficulty of classifying p
as a divisor or non-divisor of (G) increases rapidly with its order.

Let Rp denote the finite field or p elements. For every peΏ,, the
characteristic polynomial (2.2) splits in Rp:

(3.2) x2 - x - 1 = (x = a)(x - 6), α, bεRp .

If we represent the elements of Rp by the least positive residues
of p, then by a classical theorem of Dedekind's, the factorization of p
in the root-field & of f(x) is given by

(3.3) p = qq', q = (p, a - a), q' = (p, a - b) .

Here q and q' are conjugate prime ideals of & of norm p.
Now assume pε^3*; then rank p of p divides q in (3.1). Consequently

Fq = o (mod p), so that α* = /3«(mod q) in ^ . But then α23 = aqβq =
( - l)α = - 1 (mod q) so that α23 = - 1 (mod q). But then an = - 1 (mod p>
in i2. Conversely, assume that a2q = — 1 (mod p). Then in ^ ? , α2α =
- 1 (mod q) or α2 3 = (α/3)g(mod q), (α - /5)α3i^ = 0 (mod q). But (α — β, q) =
(α, q) = (1) in ^ . Hence Fq = O (mod q) so that Fq = O (mod p) in R.
Thus the rank of p in (F) must divide q and is consequently odd. Hence
pεψ.

It follows that peψ if and only if a2q = - 1 in i?p. Since (α&)23 =
(— lfq = + 1 in Rp, it is irrelevant which root of f(x) = 0 in i?^ we
choose for α. An equivalent way of stating this result is that pεφ* if
and only if aiq = 1 (mod p) but α2g ^ 1 (mod p).

For ease of printing, let

[ujp]n == (tt/fc)2«

denote the 2wic character of u modulo p. Thus [u/p^ is an ordinary
quadratic character, [u/p]2 or (^/p)4 a biquadratic character and so on.
The result we have obtained may be stated as follows:

THEOREM 3.1. Let p be any prime of order k ^ 2. Then if a is
a root of x2 — x — 1 in the finite field RP1 a necessary and sufficient
condition that p belong to ^β* is

(3.3) [alp]^ = - 1 .

There is another useful way of stating this result. Let

(3.4) g(χ) = f{x2k~2) = x2*-1 - x2k~2 - 1 .

Assume that pε^β. Then each of the equations
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x2*-2 = a, x2*-2 = b

where α, b are the roots of f(x) in Rp, has 2k~2 roots in j?p. If c is any-
one of these roots, it follows from (3.4) that c is a root of g(x). Hence
the polynomial g(x) splits completely in Rp. On the other hand since
neither of the equations

x*-1 = a, x*-1 = b

has a root in Rp, g(x2) has no roots in Rp. Evidently, by Theorem 3.1,
these splitting conditions imply conversely that pε^β*. Hence

THEOREM 3.2. Necessary and sufficient conditions that p belong to
φ * are that the polynomial g(x) defined by (3.4) splits completely into
linear factors modulo p, but the polynomial g(x2) has no linear factor
"modulo p.

For example, assume that p = 5 (mod 8) so that k = 2. Then
ϋ(%) — /(#) so the first condition of Theorem 3.2 is always satisfied.
Since g(x2) = x4 — x2 — 1 we may state the following corollary.

COROLLARY 3.1. / / p is of order two, pε^β if and only if the
polynomial x4 — x2 — 1 is completely reducible modulo p.

In like manner if p = 1 (mod 8) so that k ^ 2, we may state the
following corollary

COROLLARY 3.2. If p is of order three or more, a sufficient condi-
tion that pe^S is that the polynomial x4 — x2 — 1 is not completely
reducible modulo p.

Now let

(3.5) p=: u2 + ίv2

be the representation of p as a sum of two squares. Either u or v is
divisible by 5.

LEMMA. The polynomial z4 — z2 — 1 splits completely in Rpif and
only if in the representation (3.5) either u^±l (mod 5) or v=±l (mod 5).

Proof. Since z-4 - 22 - 1 = ((2z2 - 1 ) 2 - 5)/4, z 4 - z 2 - l always splits
into quadratic factors in Rp. But if i denotes an element of Rp whose
square is p — 1, then z4 — z2 — 1 = (z2 + if — (1 + 2i)z2. Hence a neces-
sary and sufficient condition that z4 — z2 — 1 split completely in Rp is
that 1 + 2i = ( ( - 1 ) ( - 1 - 2i)) be a square in Rp.

Now let £ denote the ring of the Gaussian integers, and let p =
(u + 2iv)(u — 2iv) be the decomposition of p into primary factors in X.
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(Bachmann [1]). Then u — 2iv is a prime ideal of norm p so that the
residue class ring %\{u — 2ίv) is isomorphic to Rp. Now — 1 — 2% is
primary in X. Also since p = 1 (mod 4), — 1 is a quadratic residue of
u — 2ίv. Hence 1 + 2ΐ is a square in Rp if and only if — 1 — 2ί is a
quadratic residue of u — 2iv in Z. By the quadratic reciprocity law in
% (Bachmann [1])

/ - 1 - 2ί \ = / u - 2ίv \ _ / u + v \
\u-2iv) \-2-2i) \ - l - 2 i ) '

Now either u or v must be divisible by — 1 — 2i. But (— 1 — 2%)
ϊs a prime ideal in % of norm five. Therefore — 1 — 2% is a quadratic
residue of u — 2ίv if and only if u = 0, v = 1, 4 (mod 5) or V Ξ 0,
u = 1, 4 (mod 5). This completes the proof of the lemma.

On combining the results of Corollaries 3.1 and 3.2 into the lemma,
we obtain

THEOREM 3.3. Let p be congruent to 5 modulo 8. Then a neces-
sary and sufficient condition that pεψ is that in the representation
(3.5) of p as a sum of two squares, either u == + 1 (mod 5) or v =
± 1 mod 5. If p is congruent to 1 modulo 8, a sufficient condition
that pέty is that u = ± 2 (mod 5) or v Ξ= ± 2 mod 5.

4. Applications of the criteria. The theorems of § 3 classify un-
ambiguously all primes of £1 either into 5̂ or into ^β*. But in the
absence of workable reciprocity laws beyond the biquadratic case, they
tell us little more than Lemma 2.1 for primes of order greater than
three; that is, primes of the forms 160% + 9 or 160% + 81. However
the theorems may be extended so as to give useful information about
primes of any order by utilizing the following elementary properties of
the character symbol [u/p]fc:

[uv/p]k = [UIPIJ&VIP]*

{4.1) [uηp], - [u/p]l - [u/p]^

[UIP]JC = 1 implies [u/p]n = 1 for l ^ w ^ ί - 1 .

From (4.1) (iii) and Theorem 3.1 we immediately obtain.

THEOREM 4.1. If p is of order k ^ 3, then a necessary condition
that p belong to ^β* is that

(4.2) [a/p]n = 1 (n - 1, 2, . . , k - 2) .

COROLLARY 4.1. A sufficient condition that p belong to 5̂ is that
(4.2) be false for some n ^ k — 2.
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Now suppose that a solution x = c of the congruence c2 = a (mod p)
is known, p of order four or more. Then by (4.1) (ii) and the theorem
just proved we obtain.

THEOREM 4.2. // p is of order k ^ 4, then a necessary condition
that p belong to ^β* is that

(4.4) [clp]n = 1 , (n - 1, 2, . . . , k - 3).

A necessary and sufficient condition that p belong to ^β* is that

(4.5) [c/p],_2 = - 1 .

There is a method for obtaining α, the root of (2.1) modulo p, which
leads to another useful criterion for primes of low order. For every
prime p of D there exists a unique representation in the form

(4.6) p = r2 — 5s2, 0 < r, 0 < s < τ/4p/5 .

(Uspensky [5]). If this representation is known, a is easily shown to
be the least positive solution of the congruence

(4.7) 2sa = (r + s) (mod p.) .

By using property (4.1) (i) of the character symbol and Theorem
3.1, we see that

[2slp]k^ = - [(r + s)lp]k^

is a necessary and sufficient condition that p belong to ^3*.
If k = 2, the criterion becomes (2sIp) = — ((r + s)/p). But since

P Ξ 5 (mod 8) and p = r2 — 5s2, r is odd and s = 2s' where s' is odd.
Hence by the reciprocity law for the Jacobi symbol, (2s/p) = (s'/p) =
(pis') = (r2/s') = + 1. Hence psψ if and only ((r + s)/p) = - 1. But
((*• + β)/2>) = ((r1 - 5s2)/(r + s)) = ( - 4s2/(r + s)) - ( - l/(r + s)) - ( - l) ( ί +1)/2

since s = 2 (mod 4). We have thus proved

THEOREM 4.3. If p is of order two, so that p is of the form
AOn + 21 or AOn + 29, then p belongs to 3̂ or to ^β* according as r in
the representation (4.6) is congruent to three or one modulo 4.

Now if k > 2, p = 1 (mod 8) so that r in the representation (4.6) is
odd. Hence using the corollary to Theorem 4.1 with n = 1 and the
results established in the proof of Theorem 4.3, we obtain

THEOREM 4.4. If p is of order greater than two, p belongs to β̂
if r in the representation (4.6) is congruent to one modulo 4.

To illustrate, suppose that p = 101. Then p = 5 (mod 8) so that
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Theorem 3.3 is applicable. Since 101 = Γ + 4 52, lOlεφ. Also 101 =
I P - 5 22 and 11 = 3 (mod 4). Hence 101ε$β by Theorem 4.3. In fact
we find from Laisant's table that G50 = 12586269025 = 101 x 124616525.

Again, there are seven primes in £} less than one thousand of order
greater than three; namely 241, 401, 449, 641, 769, 881 and 929. But
only two of these need be discussed; Theorem 3.3 assigns 241, 449, 641,
881 and 929 to 5β. For 241 = 152 + 4.22, 449 = 72 + 4.102, 641 = 252 + 4.22,
881 = 252 + 4.82 and 929 = 232 + 4.102. There remain 401 and 729. Now
401 = 17 (mod 32). Hence k == 4. Since 1122 - 112 - 1 = 31 x 401,
a = 112. Hence by Theorem 3.1, 401εφ* if and only if [112/401]8 = - 1.
Now using the idea in Theorem 4.2, 112 = 24 x 7 and 852 Ξ= 7 (mod 401).
Hence [112/401]8 = [85/401]2. But (85/401) = - 1. Hence 401εφ. This
conclusion is easily checked. For 401 — 1 = 25.16 and by Laisant's table,
F25 = 75025 =£ 0 (mod 401). Hence 401εφ by Lemma 2.1.

Finally 769 = 257 (mod 512) so that k = 8. Using Jacobi's Canon,
a - 43, ind a = 500 m 0 (mod 64) so that 769εφ. Indeed 769 - 1 = 3-256
and F3 = 2. Hence 769ε*β by Lemma 2.1.

We have shown incidentally that every prime p < 1000 in Q of
order greater that three is a divisor of (G).

5 Conclusion* The methods of this paper may be easily extended
to obtain information about the prime divisors of the Lucas or Lehmer
[4] numbers of the second kind an + βn where a and β now are the
roots of any quadratic polynomial x2 — VPx + Q with P, Q integers,
Q(P — 4Q) φ 0. It is worth noting that just as in the special case
P = 1 Q = — l investigated here, there will be arithmetical progressions
whose primes cannot be characterized as divisors or non-divisors by their
quadratic or biquadratic characters alone.

In the absence of any criterion like Lemma 2.1 for a prime divisor
of an arbitrarily selected recurrence (Z7), it seems difficult to characterize
the divisor of (U) in any general way. It would be interesting to make
a numerical study of several recurrences (U) to endeavor to find out
whether the two Lucas sequences 0,1, P, and 2, P, P 2 — 2Q, and
their translates are essentially the only ones for which a global charac-
terization of the divisors is possible.
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ON THE NILPOTENCY CLASS OF A GROUP

OF EXPONENT FOUR

C. R. B. WRIGHT

Introduction* If G is a multiplicative group with elements x,y,
we define the commutator (x, y) by (x, y) = x~λy~λxy and, inductively for
length n, (xlf , xn-19 xn) = ((x19 , xn-i), #n) We also use the notation
(a?, •••,#; 2, , w) for the commutator ((a?, , y), •••,(£, ι w)).
For each positive integer n9 let Gn be the subgroup of G generated by
all commutators of length n.

A group, G, is of exponent 4 in case x* = 1 for every x in G but
y2 Φ 1 for some # in G. Let .F be a free group of rank k, and let F4

be the subgroup generated by fourth powers of elements of F. Let
B(k) — F/F\ Then B{k) is clearly a group of exponent 4 on & gener-
ators. Moreover, every group of exponent 4 on k generators is a homo-
morphic image of B(k).

I. N. Sanov has shown that B(k) is finite. (See [2], pp. 324-325,
or [3]). Unfortunately, his proof gives very little additional information
about B(k). The present paper is devoted to the study of relations be-
tween commutators in the group B(k), a consequence of the relations
obtained being that B(k)Bk = 1.

Preliminaries* Let G be a group of exponent 4, and let α, 6, be
elements of G. Then

( 1 ) (α, b)2 == (α, 6, δ, δ)(α, 6, 6, a)(a, 6, α, α) mod G4

( 2 ) (α, δ, α)2 = (α, δ, α, α, α) = (α, δ, α; α, δ)

( 3 ) (α, δ, c) = (δ, c, α)(c, α, δ) mod G4

( 4 ) (α, δ; c, d) = (a, c; δ, cϊ) (α, d; δ, c) mod G5

( 5 ) (α, δ; c, d; / ) = (α, d; c, /; δ)(α, /; c, δ; d) mod G6

where the bold-face type in (5) has no significance other than to point
out which entries are left fixed while the others are cyclicly permuted—
whenever bold-face type appears in a computation an application of (5)
is about to be made. The relations (1) and (2) can be shown to hold in
J5(2); hence they certainly hold in any group, G, of exponent 4. Relation
(3) is simply the Jacobi identity (which holds in any group) adapted to
exponent 4. Relations (4) and (5) were proved in [4] for the case in
which the entries are of order 2, but the proofs clearly go through
without this restriction, since in proving the relations we are simply
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looking at the first significant terms of (abed)4 and (abedf)4 as collected
by P. HalΓs process. It should be noted that these relations are
' 'identical'' in the sense that they hold for every choice of a, b, c, d
and / in G. This property gives us the freedom of substitution which
we shall use later.

The following result, which appeared in a slightly different form as
the Corollary to Lemma 3.2 in [4], is easily proved using (1) and (3).

(A). Let G be a group of exponent 4. Let

C = (χlf , χif a, xi+1, , xn^)

where xlf , xn-λ and a are in G. Then, modulo Gn+1, C is a product of
commutators of the form (a, ylf , yt, χt+19 , xn-λ), where ylf , 2/«
are xlf , xt in some order.

Finally, we need to know that if a and b are the generators of
B(2), then B(2)5 is generated by (b, a, a; b, a) and (b, a, b; b, a), and
B(2)6 = 1. These results may be verified directly or deduced from
Burnside's original work in [1].

Throughout this paper we shall be concerned with the relations
between commutators in B(k). Our first lemma gives us a method of
reducing our problems to a few relatively tractable cases.

LEMMA 1. Suppose (x19 •••,#„) is a commutator of length n in a
group, G, of exponent 4. If one of x3, , xn is a and one b, then,
modulo Gn+1, (x19 , xn) is a product of commutators of length n of
the following four types:

( i ) (x,y, . . . , α , 6, •••)

(ii) (x,y, •••,&, a, •••)

(iii) (x, y, , a, z, b)

(iv) (x, y, , 6, z, a).

Loosely stated, Lemma 1 says that we may bring a and b more or
less together and keep them out of the first two positions.

Proof of Lemma 1. Observe first that we can rewrite (3) as

(a, b, c) = (a, c, b)(a; b, c) mod G4.

Using this form and working modulo GΊ we have

(x, y, a, z, b, w) = (x, y, a, b, z, w) (x, y, a; b, z; w)

= (xf y, a, b, z, w)(x, y, z; b, w; a)(x, y, w; b, a; z)

ΞΞ (x, y, a, b, z, w)(x, y, z, b, w, a)(x, y, z, w, b, a)

-(x, y, w, b, a, z)(x, y, w, a, b, z) .
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Let G(n, a, b) be the (normal) subgroup of G generated by Gn+1 and
all commutators of length n of types (i) and (ii). Let G*(n, α, δ) be the
(normal) subgroup of G generated by G(n, a, b) and all commutators of
length n of types (iii) and (iv). Then certainly if w is in G(n, a, b) and
g is in G, (w, g) is in G(n + 1, α, δ), and by the relation just proved, if
z is in G*(n, α, δ), then (z, g) is in G*(n + 1, α, 6). Thus it will be suf-
ficient to prove the lemma under the assumption that xn is either a
or b (say b).

We have reduced the problem to showing that if C has length n
and if C = (xί9 x2, , xt9 a, , 6), then C is in G*(n, α, b). If
2 <£ w — i ^ 3, then C is in G*(w, α, 6). We proceed by induction on
n — i. Suppose for induction that for some j ^ 4 and all w ^ i + 2,
C is in G*(n, α, 6) whenever n — ί <j. We shall show that if n — ΐ = i,
then C is in G*(w, α, 6), so that by finite induction we shall have C in
G*(n, a, b) for all i such that 2 ^ n — ί ^ n — 2, i.e., such that
2 ^ i ^ n — 2. Thus the lemma will be proved.

Let i = n — j . By the inductive assumption and (3) we have,
modulo G*(n, α, 6),

where X = (xlf , a?4), and where A = (a, , a?n_4) if n — 4 > i but
A = α if ^ — 4 = ΐ . Now, modulo Gn + 1, using (4), (3) and (5),

(A, Xι) A, xn-3m> %n-2) o) = (A, ^w-3; A, ^έ; %n-2) b)\xiy xns) A, X.) xn-2Ί o)

j Xi9 JL\ Oy Xn-z\ Xn—2) ( Ά , Xί, 0] Xn-2> %n—3> -Λ- /

•(^4., -Λ., X^J 0 , Xn—z't Xn—2) \A-j -X., 0] Xn—2> ffln—z' %i)

But by the inductive assumption (X, xn-z, xn-2', A, xt; b), (A, xi9 b; xn-2, wn-z'> X)$
(xt, xn-3, b; A, xn-2, X) and (A, b; a?n_3, xi9 X; xn^2) are all in G*(n9 a, b).
Further,

(A, Xi9 X) 0, Xn-2> Xn-2)\A9 X, Xι) 0, Xn-z) Xn-2)

= (X, xt9 A; bf xn-,; xn-2) mod Gn+1 .

Thus, modulo G*(n9 a, 6),

(Xy Xl'y Ay X n-£ Xn~2Ί 0)

y Jί.y 0] Xn-2j X<n-3> %i)

L, Xly Xn-27 ^y Λ.\ X n-%)

•(A, X; xn.2y xn-Zy b; xt)(xn-29 xn-ύ A, X; δ; a O
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— \Af 0) Xn-2, X<n—3f %i'f **-)\Af Xι) Xn—2t %n—ZJ •**-'* 0)

*\%n-2i Λ.f A, 0) XW_3J X ί)(Xw_2* b] A, Wn-ii X> %ί)

— \%n-2> o; A, xns) X] Xί)

~ \χn-2> bf A, Xns't Xi', X)\xn-2, o; Ay xn-3*f X, Xί)

= {xn_2, Xn-*; A, xt; b; X)(xn-2, xt; A, b; a?n_8; X)

•(αv-a, A; X, xi9 a?n_8; δ)(X, xt, xn-2; 6, #w_3; A)

Hence, (x19 x2, , xi9 a, , α?w_3, α?n_2, b) is in G*(w, α, 6), as desired.
Thus the lemma is proved.

An immediate consequence of Lemma 1 is the following.

COROLLARY. If C — (x19 •••,$») and if two of x3, , xn are a, then
modulo Gn+1, C is a product of commutators of length n of the forms:

( i ) (x, y , • • - , ( * , α , •••)

( i i ) (x,y, *--,a,z,a) .

We next observe that, using (1),

(xlf ••-,&«> α 2 ) = to, •••,««, α ) 2 ( ^ , , xm, α , α )
= (»i, •••,««,», α) mod G m + 3 .

H e n c e ,

( 6 ) {x19 , x ^ α, α, α; i + 1, , x n ) = (ajj, •••,»„ α 2 , x ί + 1 , •••,«„)

m o d u l o ( τ w + 3 .
W e m a y n o w p r o v e t h e f o l l o w i n g u s e f u l r e s u l t .

LEMMA 2. Let G be a group of exponent 4, and let (x19 •• 9xn) be

a commutator of length n in elements of G. If some three of xZ9 , xn

are a, then modulo Gn+19 (x19 •••,»„) i>s a product of commutators of

the forms:

( i ) (Vi, 2/2, 9 yn-*> α> «» a)

( ϋ ) (Vi, 2/2, " , l/n-4, α, α, yn_3, α) .

Proof. We first derive two shifting relations. Using (1) and (3)
we obtain modulo G7,

(a?, 2/, α, α, α, «) Ξ ((X, y, α)2, «) = (x, y9 a, zf Ξ (X, y; a, zf{x, y, z9 of

= (x, y, z9 a)2 = (x, 1/, 2, α, α, α) .

Hence,
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(7 ) (x, y, a, a, α, z) = (x, y, z, α, α, a) mod G7 .

Thus, modulo longer commutators, a string of three α's can be shifted
to the right.

We also have, modulo G7,

{x, y, a, a, z, a) = (x9 y, α, z, a, a) (x, y, a; z, a; a) == (x, y, a, z, a, a) .

Thus

( 8 ) (x, y9 a, z, a, a) = (x, y, a, a, z, a) mod G7 .

Further, modulo G8,

(x, y, a, a, z, α, w) = (x, y, a, a, a, z, w) (x, y, a, a; a, z; w)

= {%> V, a, a, a, z, w) (x, y, a2; α, z; w)

ΞΞ (x, y, a, α, α, z, w)(x, y, z; a, w; a2)

= (x, y, a, a, a, z, w) (x, y, z, a, w, a, a)(x, y, z, w, a, a, a) .

Applying (7) and (8) we get

( 9) (x, y, α, α, z, α, w) Ξ= (X, y, z, a, a, w, a) mod G8 .

Thus, modulo longer commutators, a trio of α's with one gap may be
shifted to the right.

It is clear from (7) and (9) that it is sufficient to prove the lemma
under the assumption that xn = a. Considering (x19 •••, xn^) now, it is
clear from the Corollary of Lemma 1 that we may restrict ourselves to
the consideration of commutators of the following two types:

I (xlf x 2 , *--,a,a, , χn_19 a)

I I (x19 x 2 , •••,«, x n - 1 9 α , a) .

By (8), commutators of type II are already of type (ii), Further,

(x19 x29 , α, a, , xn-ly a) = (x19 x2, , a\ , xn-19 a) mod G w + 1 .

Now applying Lemma 1 with b replaced by a2 we find that modulo
Gn+i> (#i> ̂ 2> •> a2, •> %n-u ^) is a product of commutators of form
(Vu V2> , α, α, α, •) and commutators of form (y19 y2, , α, α, yn-19 a).
Thus, by (7), any commutator of type I is a product to commutators
of types (i) and (ii) modulo Gn+1. The lemma follows.

The main, theorems*
In this section we derive more consequences of Lemma 1 and find

an upper bound on the nilpotency class of B(k). The first theorem is
much like Lemma 2.

THEOREM 1. Let Gbe a group of exponent 4, and suppose (xi9 , xn)
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is a commutator of length n with entries from G such that some four
(or more) of xlf , xn are a. If n ^ 6, then (x19 , xn) is in Gn + 1.

Proof. If (x19 , xn) Φ 1, then since four entries of (x19 •••,#»)
are α, it follows that at least three of x39 , xn are α. By Lemma 2
and (A) we may restrict attention to commutators of the following types:

( i ) (a,x29 •• ,α?Λ-3,α,α,α)

(ii) (α, a?a, , α, α, αn_3, α) .

Applying (7) and (9), we may confine our study to commutators of the
following types:

( i ' ) (α, x2, a, α, α, x39 , xn^)

( i i ' ) (a, x 2 9 a, a, x 3 , α , •••) .

But now, modulo G7, using (2) and (5),

(α, x, α, α, α, #) = (a, x, a; α, x; y) = (α2, x; a, x; y) = 1 ,

and

(α, a?, α, α, /̂, α) Ξ (α, x, a2, y, a) = (a, x9 y, α2, α)(α, x; α2, y; α)

= (α, x, 7/, α, α, a) = {a, x, a, a,a,y) = 1 .

Thus a commutator of type (?) or (ii;) is in Gn+1. The theorem follows.
Let x19 •• ,flJfc be generators of JB(A ). Then it is easy to show that

a?i, •••, flJi-i generate a group isomorphic to i?(fc — 1). We may thus
consider B(k — 1) as imbedded in B(k).

If A and B are subgroups of a group, G, we define (A, B) as the
subgroup of G generated by all commutators (α, δ) with α in A and
δ in B.

THEOREM 2. .For eαc/& positive integer k,

(B(fc)8*-i, B(fc + 1)) S ^(fc + l W i .

Proo/. We firsts show that the theorem holds for k = 2, then we
proceed by induction on k. Thus suppose first that k = 2. Now as
noted above, JE>(2)5 is generated by [xu x2, xx\ xlf x2) and (x2, a?!, x2; x2, xλ).
But if /̂ is in B(3), then modulo J5(3)7,

\Xl9 X2f Xij Xχ9 X2) y) = (Λ/i, X25 X\y X2\ V) ^ •»•

Similarly, (a?2, a?lf x2; x19 x2\ y) = 1 modulo I?(3)7. Thus the theorem is true
if k = 2.

Now suppose inductively that for some n the theorem is true for
all k such that 2 ^ k < n. We shall show that
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CB(rc)s»-i, B(n + 1)) £ B(n + l ) s n + ϊ .

It will be sufficient to show that if y19 •• ,ysn-1 are chosen in any way
from x19 -- ,xn and if z is in i?(w-j-1), then (y19 , y2n_19 z) is in
B(n + l) 3 n + 1. Now if four of y19 •• ,2/3n_1 are equal, then by Theorem
2 (2/1, *- ,y3n-i,z) is in B(w + l) 3 n + 1 . Thus suppose the contrary, i.e.,
suppose that each of (say) x29 , xn appears three times among ylf , y3n^
and that xλ appears twice. By (A) we may restrict attention to the case
in which y1 = χlm But in this case, since n ^ 3, we must have at least
one (say xn) of x2, , xn appearing three times among y3, , yn, so
that by Lemma 2 we may restrict ourselves to consideration of com-
mutators of the following types:

' 1 ) \Vli Viy ' ' * 9 Vsn—Af %n> %n> %ni %)

( 1 1 ) \V\y Vit * * * y Wπ) %ny Van—if %n> %) 1

where xλ appears twice among y19 , ysn-4 and each of x29 , xn-λ ap-
pears three times. Now by (9),

\Vι> Vϊ) * * 1 %ny %n) Vsn-i? %ni %) ^ \Vit ' ' ' t Vzn-if &nf %n> %> %n)

modulo B(n + l) 3 n + 1 . But (y19 , yzn^ is in B(n — l)3(w-i)-i so that, by
the inductive assumption, a commutator of type (i) or type (ii) is in
B(n + 1)3W+1. The theorem follows.

Finally, we have the principal goal of this paper.

THEOREM 3. For each positive integer k, B(k\k — 1.

Proof, It follows immediately from Theorem 2 that B(k)zh = B(k)2k+ι

so that, since B(k) is nilpotent, B(k)dlc = 1.
One may apply the foregoing results to obtain numerical estimates

of the derived length and order of B(k). It follows immediately from
Theorem 3 that if B(k){m) Φ 1, then 2W < 3fe, so that the derived length
of B(k) is at most log2 (3fc — 1). By means of the Witt formulae (see,
for example, [2], p. 169) one can also obtain an upper bound on the
order of B(k) using Theorems 2 and 3. Such estimates, both of derived
length and order, are easily seen to be imprecise. For example, the
Witt formula calculations give the order of B(S) as at most 2484, whereas
a little direct computation shows that the order is at most 270. Also,
Iog2(3 3 - 1) = 3, but one can show that B(3)'" = 1.

Finally we would like to point out that it can be shown that B(k)k Φ 1,
so that perhaps the upper bound on the class given here is not too
far from the true class. Indeed, the bound is precise for k = 2, and
preliminary work suggests that it may be precise for k — 3.
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