ON THE ACTION OF A LOCALLY COMPACT GROUP ON E_n

FRANK J. HAHN
ON THE ACTION OF A LOCALLY COMPACT GROUP ON E_n

F. J. HAHN

It is known [2, p. 208] that if a locally compact group acts effectively and differentiably on E_n then it is a Lie group. The object of this note is to show that if the differentiability requirements are replaced by some weaker restrictions, given later on, the theorem is still true. Let G be a locally compact group acting on E_n and let the coordinate functions of the action be given by $f_i(g, x_i, \cdots, x_n), \, 1 \leq i \leq n$. For economy we introduce the following notation

$$Q_{ij}(g, t, x) = \frac{f_i(g, x_1, \cdots, x_j + t, \cdots, x_n) - f_i(g, x_1, \cdots, x_j, \cdots, x_n)}{t}.$$

We denote by $\sigma(Q_{ij}(e, 0, x))$ the oscillation of $Q_{ij}(g, t, x)$ at the point $(e, 0, x)$.

Before proceeding there is one simple remark to be made on matrices. If $A = (a_{ij})$ is an $n \times n$ matrix such that $|a_{ij} - \delta_{ij}| < (1/n)$ then A is non-singular. If A were singular there would be a vector x such that $\sum_i x_i^2 = 1$ and $Ax = 0$. From the Schwarz inequality it follows that $x_i^2 = (\sum_i (a_{ij} - \delta_{ij})x_j)^2 < (1/n)$ and consequently $1 = \sum x_i^2 < 1$ which is impossible. If $|a_{ij} - \delta_{ij}| \leq (\alpha/n)$, where $0 < \alpha < 1$, then the determinant of A is bounded away from zero since the determinant is a continuous function and the set $\{a_{ij}: |a_{ij} - \delta_{ij}| \leq (\alpha/n)\}$ is compact in E_{n^2}.

Theorem 1. If T is a pointwise periodic homeomorphism of E_n then T is periodic.

Proof. [2, p. 224.]

Theorem 2. If G is a compact, zero dimensional, monothetic group acting effectively on E_n and satisfying

$$(*) \quad \sigma(Q_{ij}(e, 0, x)) < \frac{\varepsilon}{n}, \quad 0 < \varepsilon < 1, \quad \text{for each } x \in E_n;$$

then G is a finite cyclic group.

Proof. Since G is monothetic, let a be an element whose powers are dense in G. It is enough to show that there is a power of a which leaves E_n pointwise fixed since the action of G is effective.

Received April 12, 1960. The author is a National Science Foundation Fellow.
If q is a positive integer we let
\[T_i^q(g, x) = x_i + f_i(g, x) + \cdots + f_i(g^{q-1}, x). \]
If $y = (y_i)$ and $x = (x_i)$ let
\[T_i^q(g, x, y) = \frac{T_i^q(g, x_1, \cdots, x_{j-1}, y_j, \cdots, y_n) - T_i^q(g, x_1, \cdots, x_j, y_{j+1}, \cdots, y_n)}{y_j - x_j} \]
for $y_j \neq x_j$ and zero otherwise. If we let $y = f(g, x)$ then we obtain
\[
\begin{align*}
 f_i(g^q, x) - x_i &= T_i^q(g, y) - T_i^q(g, x) \\
 &= \sum_{j=1}^n T_i^q(g, x, y)(y_j - x_j) \\
 &= q \cdot \sum_{i=1}^n \frac{1}{q} T_i^q(g, x, y)(y_j - x_j).
\end{align*}
\]
Because of the fact that $f_i(e, x) = x_i$ and because of (*) it follows that there is a compact neighborhood $U(x)$ of the identity of G such that if $g, \cdots, g^q \in U(x)$ then $| (1/q) T_i^q(g, x, y) - \delta_{i,j} | \leq (\alpha/n)$, $0 < \epsilon < \alpha < 1$. It follows that if T is the matrix with entries $(1/q) T_i^q(g, x, y)$ then T is non-singular and its determinant is bounded away from zero uniformly in q, so the determinant of the inverse is bounded uniformly in q; thus
\[
(f(g, x) - x) = (y - x) = \left(\delta_{i,j} \frac{1}{q}\right) \cdot T^{-1} \cdot (f(g^q, x) - x).
\]

Since G is monothetic and zero dimensional there is a power of a such that if $g = a^p$ then all the powers of g lie in $U(x)$. Since $U(x)$ is compact it follows that the vectors $f(g^q, x) - x$ are bounded uniformly in q and thus $f(g, x) - x = f(a^p, x) - x = 0$. Hence a is pointwise periodic on E_n and it follows from Theorem 1 that it is periodic and consequently has a power leaving E_n pointwise fixed.

From this it follows quickly that if G is a locally compact group acting effectively on E_n and satisfying (*) then it is a Lie group. This follows from the fact that since G is effective it must be finite dimensional [1] and then if G is not a Lie group it must contain a compact, non-finite zero dimensional subgroup H [2, p. 237] which acts effectively. H has small subgroups which act effectively and it follows from Newman’s theorem [3, 4] that H cannot have arbitrarily small elements of finite order. Thus H has an element a of infinite order such that the compact subgroup generated by a acts effectively on E_n and satisfies (*) but by Theorem 2 this is impossible.

Bibliography

INSTITUTE FOR ADVANCED STUDY
PRINCETON, NEW JERSEY
A. A. Albert, **Generalized twisted fields** .. 1
Richard Arens, **Operational calculus of linear relations** 9
John Herbert Barrett, **Disconjugacy of a self-adjoint differential equation of the fourth order** ... 25
Paul Richard Beesack, **Hardy’s inequality and its extensions** 39
Julius Rubin Blum and David Lee Hanson, **On invariant probability measures. II** ... 63
Robert Allen Bonic, **Symmetry in group algebras of discrete groups** 73
R. Creighton Buck, **Multiplication operators** ... 95
Jack Gary Ceder, **Some generalizations of metric spaces** 105
Meyer Dwass, **Random crossings of cumulative distribution functions** 127
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, **Radial distribution and deficiencies of the values of a meromorphic function** 135
William Cassidy Fox, **Harmonic functions with arbitrary local singularities** 153
Theodore Thomas Frankel, **Manifolds with positive curvature** 165
Avner Friedman, **A strong maximum principle for weakly subparabolic functions** ... 175
Watson Bryan Fulks and J. O. Sather, **Asymptotics. II. Laplace’s method for multiple integrals** ... 185
Adriano Mario Garsia and Eugene Richard Rodemich, **An embedding of Riemann surfaces of genus one** .. 193
Irving Leonard Glicksberg, **Weak compactness and separate continuity** 205
Branko Grünbaum, **On a conjecture of H. Hadwiger** 215
Frank J. Hahn, **On the action of a locally compact group on \(E_n \)** 221
Magnus R. Hestenes, **Relative hermitian matrices** 225
G. K. Kalisch, **On similarity invariants of certain operators in \(L_p \)** 247
Yitzhak Katznelson and Walter Rudin, **The Stone-Weierstrass property in Banach algebras** ... 253
Samir A. Khabbaz, **The subgroups of a divisible group \(G \) which can be represented as intersections of divisible subgroups of \(G \)** 267
Marvin Isadore Knopp, **Construction of a class of modular functions and forms** ... 275
Charles Alan McCarthy, **Commuting Boolean algebras of projections** 295
T. M. MacRobert, **Transformations of series of \(E \)-functions** 309
Heinz Renggli, **An inequality for logarithmic capacities** 313
M. S. Robertson, **Applications of the subordination principle to univalent functions** ... 315
David Sachs, **Partition and modulated lattices** ... 325
Frank S. Scalora, **Abstract martingale convergence theorems** 347
Elbert A. Walker, **Torsion endomorphic images of mixed Abelian groups** 375
Morgan Ward, **The prime divisors of Fibonacci numbers** 379
Charles R. B. Wright, **On the nilpotency class of a group of exponent four** 387