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The purpose of this paper is to extend the result of Corollary,
Theorem 2 of the author’s paper on Volterra operators (Annals of Math.,
66, 1957, pp. 481-494 quoted as A; we shall use the definitions and
notations of that paper) to the most general situation applicable: We
are dealing with operators T, where F(x,y) = (¥ — )™ aG(x,y) is a
function defined on the triangle 0 < x =y <1, where m is a positive
integer, ¢ a complex number of absolute value 1, G is a complex valued
function which is continuously differentiable and Cf(x, x) is positive real.
We recall that if fe L, [0, 1], then (T:)(f)(x) :S F(x,y)f(y)dy is again
in L, [0, 1]. The only difference from A is the prfasence of the constant
a which affects none of results except Theorem 2 and its Corollary.
Theorems 1 and 2 of the present paper fill the gap. Theorem 3 shows
that differentiability conditions imposed on F cannot be abandoned
entirely—and also that the integral equation (1) of A cannot be solved
unless K (which corresponds to our F') has at least first derivatives near
Y = .

If ¢ is constant and E is the function identically equal to 1, we
define T4 as T, which H(x,y) = (y — x)°*/I'(¢) (fractional integration
of order ¢).

THEOREM 1. Let ¢, and c, be complex numbers and let r, and r,
be real numbers such that r, = 1, then ¢, T is similar to ¢, T;* if and

only if ¢, = ¢, and r, = 7,.

Proof. The first part of the Proof of Theorem 2 of A applies and

implies that », =7, (=) and |e¢,| =|¢,|. Thus suppose that ¢, T is
similar to ¢,T; or that ¢T}j is similar to
(1) T: = PeTiP~* for |e| =1

where P is a bounded linear transformation of L, [0, 1] onto itself with
the bounded linear inverse P! If T is similar to S = PTP™?, then
f(T) is similar to

(2) f(S) = Pf(T)P

for polynomials and even analytic functions f. Let
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@) = a2
=0
Then
FT7) = e T30 = T,

where g,(t) = ct"'g(ct”) where we have written ¢ for ¥y — x and where

9(z) = g b

with b, = a,/'(r(¢ + 1)). Equations (1) and (2) imply that || f(T5) || <
NP NP f(eTy)]|l. The definition of the norm of a linear transforma-
tion in a Banach space implies the following inequality:

AT = 11 Tomsgen | 2| | 0 = 2700w — o)y ||

for all ke L,[0,1] such that ||k||, =1. On the other hand, Lemma 2
of A implies that

| Tor—geem | = [l et glet?) ||, = [l "g(et™) [];

Thus if k(y) = 1, we obtain

» = I1A(TD) ]

L= H Sl(y — 2)"g9((y — x)")dy

(3) =[PP AT
I PIHIP 18 g(et) |l = B .

We shall find a family of functions g, (and correspondingly f,) depending
on a positive parameter v such that if we use the notations L, and R,
for the corresponding left and right hand sides of (8), L, — <« and B, — 0
as v — oo contradicting the inequality (8): this contradiction then proves
our theorem.

Let us first consider the case where the real part of ¢, Re(c), is less
than 0. Let g,(t) = exp (vt). Since T} is generalized nilpotent for r = 1,
the corresponding function f(T5) exists and (1) indeed implies (2) for
S=17T; and T=¢T5;. Then

R, = ||tg.(et) | = |, [ exp (vetr) | dt
0
and R,— 0 as v— o. On the other hand
L, = (t}r)| (exp (01 — ) — 1fo)od — oo

as v— oo, If finally Re(c) = 0 and ¢ #* 1, then there exist a positive
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integer n such that Re(c”) < 0. But then (1) implies that ¢*T;" is
similar to 77 = Pc¢"T2 P~' which contradicts the preceding result and
the proof of the theorem is complete.

THEOREM 2. Let F(x,y) = (¥ — )" aG(x, y) satisfy, in addition
to the gemeral hypotheses stated above, one of the following:

(1) G is analytic in a suitable region and m is arbitrary;

(2) G(x,y) =Gy — x), GO) +0, G € C* and m is arbitrary;

(3) GeC*and m = 1. Let A be a complex number. Then AI + T,
and Al + TF are similar to the wnique operator Al + caTr and

AIt‘caT?® respectively where ¢ = (SI(G(u, u)“mdu>m.

Here I is the identity operator and T, the adjoint of T, is defined
by

(TH()e) = | K o7 @y

Proof. Note first that A implies that Al + T, is similar to
Al 4 caT? and that Al + T is similar to AI 4+ caT;™ (see Cor. Theorem

2 of A). Observe next that Tyf(x) = So Fw)dy and

T (@) = (Urem) | @ — v-s @) dy

and that if (S._.f)(x) = f(1 — z) then S,_, is an isometry of L,[0, 1] onto
itself and S,_,T#S7:, = Ti™. It remains to show uniqueness. Suppose
that A1 + ¢,a, Tz is similar to A,] + ¢, T;? Then A, = A, (because
of the complete continuity of T and ¢, Ty* is similar to c,a,T5? which
by Theorom 1 implies that ¢, = ¢,, @, = a,, M, = M,.

THEOREM 3. The linear transformation T, + TLt® where 0 < a < 1
of L,[0, 1] into itself ts mot similar to any linear transformation c¢Ty
for complex ¢ and real r = 1.

Proof. Preliminaries. 1. If two linear transformations S and T
are similar, i.e., if there exists P such that S = PTP™!, then there
exists a constant K such that

(4) YK=IT*|S"| = K,
for all positive integers n. It suffices to take K= || P||||P|l.

2. The following inequality is a consequence of the fact that if
0 < Fi(w, y) < Fuy(w, y) then || Tp, || = || Tr,I:



250 G.K. KALISCH
(5) Tz + T&) |l = ] Tl

for all positive integers n.

3. Our next task is to find estimates for || T%||. An estimate from
above is the following:

(6) I T3 = 1/(nl(n)p''*)

for all positive integers m. An estimate from below is furnished by the
following Proposition:

Given the real positive number e there exists a positive number
K = K(e¢) and a positive integer N = N(e¢) such that for all integers
n = N,

(7) 1721 = it Iw) .
Proof of (6). If feL,[0,1],
2@ = | [ — 2= Irem)f@dy -
If (1/p) + (1/g9) =1, Holder’s inequality yields

L@ —ar-raay = ([ @ — a)w=uay) 171,
= (L= @) e £ (0 — D + 1))
so that
17271
= [ 1(T2n@) Pda

=@rey (|| @ - oy r@ay| as
= TP/ — g + D70] @ — oy eromds | 7|
= /I m)*A/((n — 1)g + 1) )(1/((n — Dp + (p/g) + D) IF I}
which implies that
I T2l = A/C)A/((n — 1)g + 1))L/(n — Dp + (p/q) + 1)'7)
which in turn implies (6).

Proof of (7). We first observe that elementary considerations con-
cerning the gamma function imply that given ¢ such that 0 < ¢ <1 and
given a positive real number d there exists an integer N depending on
¢ and d such that for all integers n = N
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(8) I'(n+c¢) < (n+ o)+ I'(n) .

Consider next the function f(z) = r(1 — z)~* € L, [0, 1] such that || f|l, =
l,i.e.,, ¥ =1 —sp and 0 < s < 1/p. Then

Taf(x)y=rI'A—s)A —x2)/'n +1—3)
and

Tzl z rI'A —s)[['(n + 1 — s)(p(n — s) + 1) .

We now choose s (and hence 7) such that for the positive real number
e of (7), 0 <(1/p) —s <e and then we choose d such that 0 < d <
e + s — (1/p) and finally by virture of (8) we obtain N as a function of
e such that for all integers n = N, I'n +1 —s) < (n + 1 — s)'=*"(n)
whence

ITEl = rI'A — 9)[(n + 1 — s)=***I'(n)(p(n — s) + 1)

which upon choosing K = K(e) properly implies (7).
After these preliminaries, we turn to the proof of the theorem. We
distinguish several cases. Let T = T, + T3

Case 1. |c¢| =<1. Consider
By = 11T NIT™ | S | T2 (n ]| TE 1)

where we have used (5) and the fact that » = 1. Take now positive
real numbers ¢ and d such that @ + e + d < 1. Then there exists by
(7) a positive constant K and an integer N such that for all integers
n=N
(9) hy £ (0 + @) C(n + a)/ (W (n)p'?K)

= (n + a) el (n)[(w' I (n)p ' K)
where we have made use of (8) and (6). The last inequality implies

that h, — 0 which in conjunction with (4) implies the truth of our theorem
in the case under consideration.

Case 2. r < 1. TUsing the notations and making similar choices as
under Case 1, (9) becomes

ho < [e]"(n + ayerexaT(m)[(n*rI(rn)p! " K)

which, since |¢|*I"(n)/["(rn) is bounded (in fact converges to 0) for » > 1
as n — oo, again proves the truth of the theorem in the present case.

Case 3, r=1, |¢| > 1. This time we consider the quotient
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o = 1T 111 T |
(10) < SO T2 lile | T2 1D

= (T e PKp'm) S0IC (0 + atn — i) + 1)),

which is valid for sufficiently large =»; again we used (6) and (7).

In order to complete the proof of our theorem, we need the follow-
ing fact:

Given any positive real number ¢ and given the positive real number
a < 1, there exists an integer N = N(e; a) such that for all integers ¢
and n such that 0 <1 =<n < N

11) Ir'm|r'm+amn —4) +1) < 2",

Proof. The case 7 =0 results from elementary considerations
about the gamma function. If ¢ =1, we find N, so that (11) is valid
for ¢ =0 and n = N,. We then find N, so that (8) is true for some arbi-
trary but fixed d, for c=a and for n = N,. Then I'(n)/['(n+(n—1)a+1) =
(I'(n)/'(n + na + 1))/(n + na + 1)*** which for » = max (N,, N,, e7%) = N,
implies (11) for ¢+ = 2 and n = N,. The remaining cases are settled by
induction (except ¢ = % which is obvious); note that we never have to
go above N, at any point. This completes the proof of (11).

The proof is now completed by substituting (11) into (10):

ko < 20'°(1 + e))*/| ¢ ["Kp''?

where e, is the constant e of (11). Thus %k, — 0 upon proper choice of
e; and our theorem is again true in view of (4). This completes the
proof of Theorem 3.
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