AN INEQUALITY FOR LOGARITHMIC CAPACITIES

HEINZ RENGGLI
AN INEQUALITY FOR LOGARITHMIC CAPACITIES

HEINZ RENGGLI

1. Introduction. In his work on capacities, G. Choquet proved that for many capacities the inequality of strong subadditivity holds [1]. It is the purpose of this note to show that a similar inequality holds for logarithmic capacities. More precisely we shall prove the

Theorem. Let A and B be compact sets in the complex z-plane E. By $C(S)$ we denote the logarithmic capacity [2] of a given compact set S, $S \subset E$, where we agree to put $C(S) = 0$ whenever $S = \emptyset$. Then

$$C(A \cup B) \cdot C(A \cap B) \leq C(A) \cdot C(B).$$

2. Proof of the theorem. Let S, $S \subset E$, be a compact set whose boundary consists of a finite number of analytic arcs. By S^* we denote that component of $E - S$ which is unbounded. Then Green’s function of S^* is defined by the properties: it is harmonic in S^*, vanishes at the finite boundary points of S^* and has a logarithmic singularity at infinity. We will denote this function by $g_{S}(z, \infty)$.

First we shall deal with the case when the respective boundaries of A, B and $A \cap B$ consist of a finite number of non-degenerate analytic arcs. We remark that the difference $g_{A \cap B}(z, \infty) - g_{A}(z, \infty)$ is harmonic in A^*, $A^* \subset (A \cap B)^*$, and at infinity. It is furthermore non-negative on the boundary of A^* and hence non-negative in A^* by the maximum principle. Similarly $g_{A \cup B}(z, \infty) \geq g_{B}(z, \infty)$ holds in B^*, $B^* \subset (A \cap B)^*$.

The function

$$h(z) = g_{A \cup B}(z, \infty) + g_{A \cap B}(z, \infty) - g_{A}(z, \infty) - g_{B}(z, \infty)$$

is harmonic in $(A \cup B)^*$ and at infinity. From $(A \cup B)^* = A^* \cap B^*$ it follows that the boundary points of $(A \cup B)^*$ belong either to the boundary of A^* or to the boundary of B^*. Therefore $g_{A \cup B}(z, \infty)$ and either $g_{A}(z, \infty)$ or $g_{B}(z, \infty)$ vanish at these boundary points. With the aid of the remark made above we get the result that $h(z)$ is non-negative in $(A \cup B)^*$.

Therefore

$$g_{A}(z, \infty) + g_{B}(z, \infty) \leq g_{A \cup B}(z, \infty) + g_{A \cap B}(z, \infty)$$

holds in $(A \cup B)^*$. From this general inequality and using the fact that

Received December 16, 1959. Presented to the Amer. Math. Soc. in Jan. 1958, where a less elementary proof based on an inequality for extremal lengths was given.

313
\[
\lim_{z \to \infty} \{g_s(z, \infty) - \log |z|\}
\]
is the constant \(\gamma(S)\) of Robin [2] we deduce
\[
\gamma(A) + \gamma(B) \leq \gamma(A \cup B) + \gamma(A \cap B).
\]
But
\[
C(S) = \exp\{-\gamma(S)\}
\]
by definition. Hence our theorem is proven for the special case.

The general case follows by the usual approximation techniques [2].

REFERENCES

RUTGERS UNIVERSITY
A. A. Albert, *Generalized twisted fields* ... 1
Richard Arens, *Operational calculus of linear relations* 9
John Herbert Barrett, *Disconjugacy of a self-adjoint differential equation of the fourth order* ... 25
Paul Richard Beesack, *Hardy’s inequality and its extensions* 39
Julius Rubin Blum and David Lee Hanson, *On invariant probability measures. II* ... 63
Robert Allen Bonic, *Symmetry in group algebras of discrete groups* 73
R. Creighton Buck, *Multiplication operators* .. 95
Jack Gary Ceder, *Some generalizations of metric spaces* 105
Meyer Dwass, *Random crossings of cumulative distribution functions* 127
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, *Radial distribution and deficiencies of the values of a meromorphic function* 135
William Cassidy Fox, *Harmonic functions with arbitrary local singularities* 153
Theodore Thomas Frankel, *Manifolds with positive curvature* 165
Avner Friedman, *A strong maximum principle for weakly subparabolic functions* ... 175
Watson Bryan Fulks and J. O. Sather, *Asymptotics. II. Laplace’s method for multiple integrals* ... 185
Adriano Mario Garsia and Eugene Richard Rodemich, *An embedding of Riemann surfaces of genus one* ... 193
Irving Leonard Glicksberg, *Weak compactness and separate continuity* .. 205
Branko Grünbaum, *On a conjecture of H. Hadwiger* 215
Frank J. Hahn, *On the action of a locally compact group on E_n* 221
Magnus R. Hestenes, *Relative hermitian matrices* 225
G. K. Kalisch, *On similarity invariants of certain operators in L_p* 247
Yitzhak Katznelson and Walter Rudin, *The Stone-Weierstrass property in Banach algebras* ... 253
Samir A. Khabbaz, *The subgroups of a divisible group G which can be represented as intersections of divisible subgroups of G* 267
Marvin Isadore Knopp, *Construction of a class of modular functions and forms* ... 275
Charles Alan McCarthy, *Commuting Boolean algebras of projections* 295
T. M. MacRobert, *Transformations of series of E-functions* 309
Heinz Renggli, *An inequality for logarithmic capacities* 313
M. S. Robertson, *Applications of the subordination principle to univalent functions* ... 315
David Sachs, *Partition and modulated lattices* 325
Frank S. Scalora, *Abstract martingale convergence theorems* 347
Elbert A. Walker, *Torsion endomorphic images of mixed Abelian groups* 375
Morgan Ward, *The prime divisors of Fibonacci numbers* 379
Charles R. B. Wright, *On the nilpotency class of a group of exponent four* 387