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PARTITION AND MODULATED LATTICES

DAVID SACHS

Introduction* The lattice of equivalence relations on a set S, or
equivalently the lattice of partitions on a set S, is perhaps one of the
most interesting lattices from the point of view of abstract algebra.
Partition lattices were studied rather thoroughly by 0. Ore [6], who
also gave a characterization of them in geometric terms. Later, another
characterization of partition lattices was given by U. Sasaki and S. Fuji-
wara [8]. Their characterization makes specific use of the notions of lines
and planes and is somewhat combinatorial in point of view. In this paper
we introduce the notion of a modulated lattice and give a characterization
of partition lattices (Theorem 14) which is remarkably similar to the
lattice-theoretic characterization of the classical projective geometries.
Moreover, our study suggests that there may be continuous analogues
of partition lattices much in the same way as the continuous geometries
of J. Von Neumann are analogues of the classical projective geometries.
After developing some preliminary on modulated lattices, we focus our
attention on irreducible modulated matroid lattices. A simple property
which may or may not be present in such lattices enables us to give
our characterization of partition lattices. Curiously enough, we are able
to give a characterization of partition lattices on an infinite set which
is simpler in appearance than our more general result. We devote some
attention to metric lattices and show that certain continuous modulated
lattices must be continuous geometries. Finally, we mention some problems
and extensions suggested by this paper.

Preliminaries. Let L be a lattice with operations +, , partially
ordered by the relation ^ . The zero (unit) element is written as 0 (/),
and we shall usually assume that these elements are present. We write
(α, b)M and say that the pair (a, b) is modular if and only if (c + a)b =
c+ab for every c ^ b. If the modular relation is symmetric, then the
lattice is said to be semi-modular. If (α, b)M and ab = 0, then we write
(a, b) J_ and say that the pair {a, b) is independent. We say that b
covers c if b > c and there is no x for which b > x > c. A point is an
element which covers 0. An interval [α, b] is the set of elements x
such that a ^ x ^ 6. For the convenience of the reader we include
here some properties of semi-modular lattices, the proofs of which can
be found in [1] and [3]. All maximal chains between two elements
6, c, b < c, are finite and have the same length if there exists one finite
maximal chain between the two elements [3, p. 88], By the length of
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an interval we mean the number of elements in a finite maximal chain
in the interval if there is such a chain. If (x, y)M, then the intervals
[xy, x], [y, x + y] have the same length if one of the intervals has a
finite maximal chain; moreover, if the intervals {xy, x], [y, x + y] have
the same length, then (x, y)M. An element c is said to have dimension
n if the interval [0, c] has length n + 1; it has codimension m if the
interval [c, I] has length m + 1. By an independent complement of c
we mean an element b such that c + b = I, (c, b) JL. By a line we
mean an element which covers a point, and by a plane we mean an
element which covers a line. A hyperplane is an element which is
covered by I.

Let L be a lattice with 0. L is left-complemented if for every
a, δ e L , there exists b' <i 6 such that α + 6' = α + 6, (6', α) J_. A left-
complemented lattice is semi-modular [10]. Later, we shall show that
matroid lattices are left-complemented.

Now let L be a semi-modular lattice. We say that 6 is a modular
element (bM) if (b, c)M for every c e L. The reader can easily verify
that OM, IM and pM if p is a point. In the case of affine geometry
these are the only modular elements. Evidently a necessary and suf-
ficient condition that every element be modular is that L be a modular
lattice.

The meet of two modular elements is modular. For if aM, bM,
c e L and d ^ab, then (d + c)ab = [(d + c)a]b = (d + ca)b = d + cab
since (c, α)M and (cα, b)M.

THEOREM 1. Let aM. If b <£ α cmd (6, e)Λf relative to [0, α] /or
e € [0, a], ίfeew Wkf.

Proof. Notice that (g, h)M in a lattice if and only if (g, h)M rela-
tive to the interval [gh, g + h]. Let c e L, d S b. Then (d + c)b =
(d + c)ba = [(d + c)a]b = (d + ca)b = d + cα6 since αilί and cα ^ α. But
cί + cαδ = d + cδ, and this completes the proof.

// bM, then the intervals [be, b], [c, b + c] are isomorphic, and the
mappings x —> x + c and y —>yb,x e [be, b], y e [c, b + c], are inverse
isomorphisms between the two intervals.

Modulated lattices*

DEFINITION 1. A left-complemented lattice L with unit I is said to
be modulated if for every yM and for every z^y, there exists xM such
that x + z = I,xz = 2/.

Since the zero element is modular, the above conditions cannot be
satisfied vacuously. It is easily seen that every complemented modular
lattice is a modulated lattice. We shall now give an example of a
modulated lattice which is not a complemented modular lattice but is



PARTITION AND MODULATED LATTICES 327

describable in terms of such a lattice. Let A be a complemented modular
lattice with operations +, , of length Ξ> 3 for which every interval
sublattice is irreducible and which contains a point p. An example of
such a lattice is a projective geometry of not necessarily finite length or
its dual. We define

L' = A-\p\.

If 7/ is partially ordered in the natural manner, then it is easily seen
that 7/ is a lattice. Moreover, if the join and meet operations are
denoted by U and Π respectively, then the following properties hold:

a U δ — a + δ ,

a n b = ab if ab Φ p ,

aΓ[b = Oiΐab~p.

We observe that
(1) O e L ' J e L ' ;
( 2) x e 7/, x Φ 0, y ^ x implies y e L';
(3) x e L',y ^ x implies the existence of z e U such that z + y — x,

zy = 0.
We obtain (3) by observing that [0, x] is irreducible, and hence y

has at least two complements in [0, x\. By a result due to Wilcox [10],
7/ is left-complemented and

(α, b)M if and only if ab Φ p.

From this we deduce that aM in 7/ if and only if a — I or a > p.
Suppose now that a Φ I and aM. Let b > a. If b ̂  a + p Ξ= C, then
a complement z of b within [α, I] cannot contain a + p so that z > p,
and thus zikf. If δ > c, then 6 + c covers 6 and therefore be = α. By
the irreducibility assumption applied to [α, 6 + c], there exists p' Φ c such
that p' + b = δ + c, p'δ = α. If x + & + c = 7, #(δ + c) = p\ then #δ =
x(b + c)b = p'δ = α, a? + 6 = x + p' + b = 7. Furthermore, #c = &(& + φ =
p'c Φ c. Therefore x > c so that a? > p, and #ikf. Since such an x exists,
7/ is a modulated lattice.

THEOREM 2. Lei L be a modulated lattice, and let a be a modular
element. Then if c <£ α, (c, δ)M relative to [0, α] /or αW δ e [0, α], ami
c ^ a? ̂  a; t/tere exists an element y such that yM, x + ?/ = a, xy = c.

Proof. I t follows f r o m T h e o r e m 1 t h a t cilί. T h e r e e x i s t s ^ e t
s u c h t h a t 2 + x = 7, 2# = c, sΛf. Define ?/ = za. T h e n ^/Λί, α? + y =
x + za = (x + z)a = α; ^ί/ — α?̂ α = xz — c.

Since the meet of two modular elements in a semi-modular lattice
is a modular element, it follows by induction that the meet of a finite
number of modular elements is a modular element. If L has finite
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length, then the modular elements form a lattice; however, this lattice
is not usually a sublattice of L. It will be shown later that the
modular elements of a matroid lattice form a lattice, and our example
given above shows there are other examples as well. We shall callthe
partially ordered system of modular elements 2Ji, and the dual of this
system will be denoted by 3JΪ.

THEOREM 3. If L is a modulated lattice and 2Jϊ is a lattice, then
2JΪ is a left-complemented lattice.

Proof. If 9JΪ is a lattice, then the meets of elements in 9Ji and L
are the same. The join of two elements x, y in 3JΪ will be denoted by
x U y. Notice that x Ό y ^ x + y in L. Let a, 6 e 2JΪ. To prove the
theorem we need to show the existence of an element 6' ^ 6 such that

abf = ab ,

a U V = I

and c(b' U a) — cV U a for every c e 3Dΐ, c ^ a. (This is the dual of left-
complementation.) Since L is modulated, there exists an element b'M
such that (α + 6)6' = 6, a + 6 + δ' = I. Thus αδ = α6', a + δ' = /, and
so α U 6' = /. If c Ξ> α, then c(b' U α) = c; also c(6' + α) = cbf + α, or
c = cbf + a. Thus c ^ c6' U a, and since the reverse inequality is obvi-
ous, we have c = c6' U a. This proves the theorem.

THEOREM 4. // L is modulated and SSSl is a lattice, then (a, b)M
in Wl if and only if a + b = a D b.

Proof. Suppose a + 6 = a U 6. Then if c ^ 6, c(α U 6) = c(a + 6) =
cα + 6, and so c(α U 6) ̂  cα U 6. The reverse inequality is obvious, and
so c(a U 6) = ca U 6. Thus (a, b)M in 9Ji. Conversely, suppose a U 6 Φ
a + b. Then α ( j 6 > α + δ. If we consider the 6' in Theorem 3, then
we see that Va U 6 = 6. But b'(a U 6) > 6, for if 6'(α U 6) = 6, then
a u 6 = (a U δ)(δ' + (α + 6)) = ( α U 6)6' + (α + 6) = a + 6. Hence (α, 6)7kΓ
in SOΐ, and the proof is complete.

If, in our example, A is the dual of a protective geometry, then Wl
is an affine geometry. What we want to show next is that L and 9JΪ
have the same center if every element in L is a join of points. We
first state a few lemmas about left-complemented lattices. The follow-
ing lemma is easily proved:

LEMMA 1. If L is a left-complemented lattice, (6, 6') J_, and c —
cb + cδ' for every c e L, then L is isomorphic to the cardinal product
of [0, 6] and [0, 6'].

LEMMA 2. // L is left-complemented, then an element is in the
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center if and only if it has a unique complement.

Proof. Suppose e has a unique complement e'. Then (e, ef)M. Let
ue — 0. There exists an element x such that (u + e) + x = I,(u + e,x) _L,
Now e + (u + x) = I and e(u + x) = e(w + e)(w + a?) = e[(^ + e)x + w] =
eu = 0. Since e' is the unique complement of e, u + as = e'. Thus if
%e — 0, then u ^ e'. For every x there exists an element b such that
ex + e'x + b = x, {ex + e'x, b) _L. Now ex(efx + 6) = (ex + e'x)(e'x + 6)ex =
e'xex — 0. Hence e(e'x + b) = 0 since e'x + 6 g x. It then follows that
e'x + b S β', and so 6 ^ e'x because 6 ^ x. Thus x = ex + e'x for every
x e L. We now use Lemma 1 to see that e is in the center. The
converse is trivial.

LEMMA 3. Let L be a left-complemented lattice. If e has a unique
complement e', then e has a unique complement.

Proof. Suppose that e + ef = I, (e, e') _]_, and that e' is the only
element with these properties. If our lemma is false, then there exists
an element b such that e + b — 7, eb = 0 and (e, b)Mr. Since there
exists b' ^ b such that e + V = e + b = 7, (e, 6') _L, it follows that 6 > e\
Then there exists x ^ b such that e' -\- x — b and (e', x) _[_. Also, there
exists x' ^ x such that e + x' — e + x and (e, a?') ± . Moreover, there
exists an element y which is an independent complement of e + x'.
Therefore e + (x' + y) = 7 and e(a?' + i/) = e(e + x')(^' + 2/) = e ^ ' — 0
If c ^ e, then (c + as' + #)e = [((c + x') + j/)(e + x')]e = (c + x > = c.
Thus (β, ίc'+ 2/) _L. From the uniqueness of e' we obtain j/ + a?' = e', and
this implies a?' ̂  e'. Therefore xf ^ e'x = 0, and then we have e + x = e.
Thus x ^ eb — 0, e' — b, and the proof is complete.

THEOREM 5. Lei L be a modulated lattice such that every element
is a join of points. If Wl is a lattice, then L and 9JΪ have the same
center.

Proof. If an element e lies in the center of L, then it is modular
and so it lies in 3JΪ. Since e has a unique complement e' in L, e' must
be the unique independent complement of e in 9Ji; thus e lies in the
center of 3K. Conversely, suppose e lies in the center of SOT. Then e
also lies in the center of SOT. Let er be its unique complement in SOT.
Suppose c e L. Obviously c ^ ce + ce'. If p is a point within c, then
since p e SOT, p = pe U pe'. Thus p ^ e or p £Ξ e'. In any case p — pe + pe'.
Hence p ^ ce + ce', and since c is a join of points, c ^ ce + ce'. Con-
sequently, c = ce + ce' for every c e L. Since ee' = 0, e U e' = 7 and
(e, e')M in 3JI; e + e' = 7, and now the result is obvious.

COROLLARY. Let L be a modulated lattice such that every element
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is a join of points. If 3Jί is a lattice, then L is irreducible if and
only if 3JΪ is irreducible.

Matroid lattices.

DEFINITION 2. A lattice L is a matroid lattice if it has the follow-
ing properties:
(4) L is a complete lattice;
(5) Every element in L is the join of points;
(6) If p is a point and p g£ 6, then p + b covers 6;
(7 ) If p ^ Σαe^tf where p and pΛ are points, then there exists a finite

subset B of A such that p ̂  ΣβenPβ 1

A set y of elements in L is said to be increasingly directed if for
every x,y e Y, there exists z e Y such that z ^x,y. We define a
decreasingly directed set in an analogous manner. If L is a lattice satisfy-
ing (4) and (5), then condition (7) is equivalent to the following one:

(8) «Σϊ/ = Σ0w)
yer yer

where Y is an increasingly directed set. We call this property meet
continuity.2 The proof of the equivalence of (7) and (8) can be found
in \β\. We shall now show that a matroid lattice is left-complemented.

LEMMA 4. If p is a point, then (b + p)a — b + pa if b g α, i.e.,
(p, a)M.

Proof. If p ^ 6 or p ^ a, this is obvious. If not, then b + p
covers b so that since b + p ^ a, (b + p)a = b. But obviously then
(b + p)a = 6 + pα.

LEMMA 5. Lei a,b e L. There exists a maximal element bf such
that V g 6, (6', α) 1 .

Proof. Define

S = [x e S; x ^ 6, (a, α) 1] .

S is partially ordered by the relation g in L. If C is a chain in S
and q — ΣceίA then q ^b; moreover, a direct application of meet con-
tinuity shows that qa = 0. If m ̂  α, then (m + ^)α = (m + Σceσc)α =

+ c))α. Since the set of elements of the form b + c is an
1 A rather through discussion of matroid lattices can be found in [3] where they are

called "treillis geometriques". We use the name matroid because it seems to be the more
common term.

2 This property is sometimes called upper continuity.
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increasingly directed set,

(m + q)a = Σ (m + c)a ~ Σ ( m + ca) — m .
ceo ceo

Thus q e S, and the existence of bf follows from Zorn's lemma.

LEMMA 6. If a,b e L, £/^re e#ίs£s 6' ̂  b such that a + b' — a + 6,

Proof. There exists a maximal element 6' <£ δ such that (&', α) J_.
If a + 6' Φ a + 6, then there exists a point p such that p g 6, p -$* a + &'.
Since p is a point, (p, b' + a) ±. This implies that (p + 6', α) _L which
contradicts the definition of 6'.

THEOREM 6. A matroίd lattice is left-complemented and hence
semi-modular.

We state without proof the following structure theorem for matroid
lattices:

Structure Theorem. Every matroid lattice is the cardinal product
of irreducible matroid lattices; moreover, irreducible matroid lattices are
characterized by the fact that any two points have a common com-
plement.3

This is the main result of [7], but the theorem was proved in the
finite length case in [2] and [4]. Using this theorem, we can easily
prove a theorem important for our investigation.

THEOREM 7. If L is an irreducible matroid lattice and aM, then
[0, a] is an irreducible matroid lattice.

Proof. It is obvious that [0, a] is a matroid lattice. Let 6, c be
points in [0, α]. Since L is irreducible, there exists x such that b + x =
c + x = I, bx — ex — 0. Thus b + ax = (b + x)a = a = (c + x)a = c + ax
since αikf, and bax = cax = 0. Therefore b and c have a common com-
plement in [0, α] from which it follows that [0, a) is irreducible.

COROLLARY. If L is an irreducible matroid lattice, I is a line,
and IM, then I contains at least three distinct points.

THEOREM 8. Let L be a matroid lattice. If H is a set of elements
each of which is modular, then Π^e^ h = hr is a modular element.

Proof. The set of all finite meets of elements in H has the same
meets as H, consists of modular elements, and is decreasingly directed.

3 By cardinal product we mean cardinal product in the unrestricted sense, i.e., we do
not require almost all of the entries to be 0.
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Thus without loss of generality we assume that H is decreasingly
directed, and that its elements are indexed. Let b be an element of
finite dimension, and let c ίg hf. Thus c ^ hβ for every β. If for every
hy there is an ha such that ha < hy and bhΛ < bhy, then there exists an
infinite chain between b and 0. But this is impossible since b has finite
dimension. Therefore for some hy, bha = bhy for every ha < hy. Thus
bhf = bhΎf and c + bh' — c + bhy = (c + b)hy ^ (c + 6)/*/. Hence hf is

modular with every finite-dimensional element. Let df be any element
in L. The set D of finite-dimensional elements contained in df is increas-
ingly directed, and its join is d'. If c gΞ /*/, then we have

(c + d')h' = (c + Σ <*V = ( Σ (c + c2)V = Σ (c

+ dλ') = c + f ΣdΛ') = c + f Σ ^ V = c + d'h> '

where we have used meet continuity twice. This proves the theorem.
Theorem 8 shows that Sϊί is always a lattice, in fact a complete

lattice, when L is a matroid lattice. If L is also modulated, then every
element in 3ft is a join of points since 2Jί is left-complemented and every
modular element in L Φ I is contained in a modular hyper plane.

THEOREM 9. If X is an increasingly directed set of modular ele-
ments in a matroid lattice L, then Σ X = x' is a modular element.

Proof. Let b e L, with c ^ b. Then

(c + x')b - (c + Σ » V = ( Σi(c + x))b =

= Σ (β + acδ) = c + ( Σ *&) = c + f Σ «)δ = c +

We shall now restrict our attention to modulated matroid lattices.
It is easily shown that a cardinal product of lattices is modulated if
and only if each of the factors is modulated. In view of the Structure
Theorem we shall therefore concentrate on the irreducible case.

LEMMA 7. Let L be a matroid modulated lattice which is irreduci-
ble. Then any two hyperplanes have a common independent complement.

Proof. Let h\ h" be any two hyperplanes in L. We choose a point
p such that phτ = 0. If ph" = 0, then p is the common independent
complement. If p <Ξ h!\ then we choose a line IM such that I + h" =
7, lh" = p. Now I must contain at least two more points r, s. Neither
r nor s can be contained in h", for then I tίh". If both r and s are
contained in h', then h' ^ p which is false. Hence r or s is a common
independent complement.
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THEOREM 10. // L is an irreducible modulated matroid lattice,
then any two elements of the same dimension {or codimension) have a
common independent complement.

Proof. Let a and b have the same dimension or codimension. From
the meet continuity condition, there exists a maximal element x such
that (a, x) J_, (b, x) ±. Because a and b have the same dimension or
codimension, a + x — I if and only if b + x = I. Suppose then that
a + x Φ I, b + x Φ I. Then a + x and b + x are contained in hyper-
planes, and there exists a point p such that (a + x, p) _L, (b + x, p) J_.
One easily sees that (a, x + p) _L, (b, x + p) ± contrary to the definition
of x.

COROLLARY. If L is an irreducible modulated matroid lattice, and
if aM, bM and a, b have the same dimension or codimension, then [0, a]
is isomorphic to [0, 6].

Proof. If x is a common independent complement of a and b, then
[0, a] and [0,6] are both isomorphic to [x, I].

We shall now restrict our attention to irreducible modulated matroid
lattices of length ^ 5. Let us consider the following property:
(γ) L contains a point p which lies in a plane tM such that three M-

lines contain p and are contained in t.

LEMMA 8. Suppose that L is an irreducible matroid modulated
lattice of length ^ 5 satisfying condition (γ). Let dM be a plane and
let pf be a point contained in d. Then p' is contained in three M-lines
I, m, n where I, m, n S d.

Proof. Suppose that pf = p and d Φ t. Let df be a common com-
plement of t and d. The perspective mapping from [0, t] to [0, d] with
d' as a common complement leaves p fixed for (p + df)d = p + d'd = p
since p g d. The images of the three M-lines in t containing p are
the required lines. (The images are obviously M-lines in [0, d] and
since dM, they are M-lines.) Suppose now that p' is any point in t
distinct from p. If (p + p')M, then p + pf contains a third point p"
because L is irreducible. From the length condition, t is contained in
a 3-space S which is modular. From Theorem 2 we see that there
exist M-planes V, t" ^ S such that V > p, t" > pr and such that p" is
a common complement of V and t" within [0, S], Using our previous
results, we conclude that t" contains three M-lines which contain pf, and
a repeated application shows that t contains three M-lines which contain
p'. If p' is a point for which (p + p')Mr, then we can find a point
q ^ t such that (p + q)M and (q + pf)M. Since q has three M-lines in
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t containing it, we conclude that p' has the same property. Hence
every point in t is contained in three M-lines which lie in t. We now
deduce the conclusion of the theorem by noting that every two ikί-planes
are perspectively isomorphic, and that in the isomorphisms M-lines map
onto M-lines.

THEOREM 11. If L is an irreducible matroid modulated lattice of
length ^ 5 which satisfies (7), then every line in an M-plane d contains
at least three points.

Proof. Let I be such a line. We choose a point p ^ d such that
p <£ I and then apply Lemma 8.

If L is an irreducible modulated matroid lattice of length ^ 5, then
we say it satisfies (δ) if every line in an M-plane contains at least three
points. Thus Theorem 11 says that (γ) implies (δ).

LEMMA 9. Let L satisfy (δ). If sM, s covers z, z covers I, z covers
m, mM and I Φ m, then there exists a point p such that p + I =
p + m = z.

Proof. Since z covers I, m and (I, m)M; I, m cover Im. There exists
an element xM such that x + Im — s, xlm — 0. Clearly the interval
[0, x] is isomorphic to the interval {Im, s\. Since every line in [0, x]
contains three points, there exists an element r such that I + r —
m + γ — z9lr — mr = Im. There exists a point p such that p + Im = r.
T h e n l+p=l + lm + P=l + r — z, a n d s i m i l a r l y m + p — z.

If s is a modular element, then in view of Theorem 1 [0, s] is a
modular lattice if and only if every element in [0, s] is a modular
element.

LEMMA 10. Let L be a matroid lattice, and let C be a chain of
elements each of which is modular and has the property that every
element contained in it is modular. Then ^β is a modular element,
and every element contained in it is modular.

Proof. That Σ C is modular follows from Theorem 9. Let a g Σ C.
The set of elements of the form ac, c e C, is an increasingly directed
set of elements with join Σceσ ac = αΣceσ c = a. Each of the elements
ac is modular, and therefore a is modular.

We now consider the set of all modular elements c such [0, c] is a
modular lattice. According to the preceding lemma and Zorn's lemma,
there must exist a maximal such element. The next lemma tells us
the character of such maximal elements if L satisfies (δ).
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LEMMA 11. Let L be a lattice satisfying (8). // V is a maximal
element with the property that ΓM and [0, Γ] is a modular lattice,
then V is a hyperplane or V = /.

Proof. Suppose that V is not a hyperplane or I. Then there exists
an element Q φ I which is modular and covers V. Since Q φ I, there
exists a modular element s which covers Q. Suppose that I is covered
by Q, and lMf. Define IV = q. Since (I, V)M, I covers q; moreover, q
is modular because q ̂  V. There exists mM such that Qm = q, Q + m = s,
Evidently m covers q. Define z = m + I; then z covers I, m and is not
contained in Q. By Lemma 9 there exists a point p such that p + I ~
p + m = z. Since z SQ> it follows that p SQ- There exists an M-
element R such that R + z = s, Rz — m. Thus Q + p = R + p = s,
Qp = Rp = 0. The mapping x —• (a? + p)Q, a? ̂  i?, is an isomorphic map-
ping from [0, R] onto [0, Q]. Evidently (m + p)Q = (m + Z)Q = Z + mQ =
Z + g = Z. Since m is modular with every element in R, I is modular
with every element in Q. Thus every maximal element in Q is a modular
element, and therefore by Theorem 8 every element in Q is a modular
element. Thus [0, Q] is a modular lattice with QM, and this contradicts
the fact that V was a maximal element with this property.

THEOREM 12. Lei L be an irreducible matroid modulated lattice
with length ^ 5 satisfying (γ) or (8). Ϊ7^w ifbφl and bM, then [0, 6]
is modular lattice.

Proof. If L satisfies (γ), then L satisfies (8). According to the
previous lemma, there exists a hyperplane hM such that [0, h] is a
modular lattice. Now if tM and t is a hyperplane, then [0, t] is a modular
lattice because [0, t] is isomorphic to [0, h]. It b Φ I and bM, then 6 is
contained in a modular hyperplane. The result is now evident.

COROLLARY. If L is an irreducible matroid modulated lattice with
length ^ 5, then L satisfies (γ) if and only if it satisfies (δ). More-
over, L satisfies (γ) if and only ifabφO implies (a, b)M.

Proof. We have already shown that (γ) implies (8). Suppose that
L satisfies (8) and ab Φ 0. There exists an element mM such that
ab + m = I, abm = 0. The interval [ab, I] is isomorphic to [0, m]. Since
m Φ I, [0, m] is a modular lattice, and therefore (a, b)M within [ab, I],
Thus (a, b)M.

If ab Φ 0 implies (α, b)M, then [p, I] is a modular lattice if p is a
point. If hM is a complement of p, then [0, ft] is a modular lattice.
Since h must have at least dimension 3, (γ) follows immediately.
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Partition lattices* The corollary to Theorem 12 tells us a great
deal about the irreducible modulated matroid lattices of length ^ 5
which satisfy (γ) and also gives us a condition equivalent to (γ) which is
free of the notion of lines and planes. We digress from our abstract
theory to discuss partition lattices.

It is well known [3; p. 265] that partition lattices are matroid lat-
tices. Following Ore [6], we shall call a set of a partition a block and
a partition singular if it contains at most one block with more than
one element. It is implicit in a result due to Ore [6; p. 583] that the
singular partitions are precisely the modular elements. We give here a
proof in line with our ideas. If a partition is not singular, then one
can easily construct a line which is not modular with it. It is also
easily seen that a singular partition which is a hyperplane is a modular
element. Since every singular partition is a meet of hyperplane singular
partitions, we conclude the result if we use Theorem 8.

Let A be a singular partition. If B is a partition containing A, we
can construct a singular partition B' as a complement of B within
[A, I] as follows:

A = [a19 , α J [a] [b] [c]

B = [alf « , α Λ , • • • ] [ & ! , •• ] [ 6 2 , • • • ] • [ & « , • • • ] • • •

B ' = [alf , a Λ , b l f 6 2 , b ω , •] [e] [ / ] • • • .

That is, we select one element from each of the blocks of B that does
not contain the main block of A and combine these elements with the
main block of A into one block. If we let A — 0, i.e., we let A be the
partition with all blocks of one element, then we see immediately that
B' is not unique if B Φ 1,0. This shows that a partition lattice is
irreducible. Thus partition lattices are irreducible, matroid and modu-
lated.

We now consider the case when L is an irreducible modulated
matroid lattice of length ^ 5 and does not satisfy (γ). Since L does
not satisfy (γ), then in a modular plane P some line I contains only two
points. The line I is not an M-line, for an M-line must contain at least
three points since L is irreducible. If tx and ts are the points on ί,
then each must be contained in at least two M-lines in P because P is
an M-element. Since I is not an M-line, P must contain at least four
M-lines. If there is a fifth M-line, then it cannot meet I at tx or t3

because L would then satisfy condition (γ). Thus it must meet I at a
third point which is impossible. Hence there are exactly four M-lines
in P. If these lines are l1912 ̂  tx and lB, lά ̂  ί8, then tlf ί8, lλU, kk, kk, kk
are points distinct from each other. There no other points in P because
every point must be the meet of two M-lines. The plane contains two
more lines lxl3 + l2l4, l^ + l2l3 and no others because there are no points
remaining to make lines. It is easily verified that P is isomorphic to
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the lattice of partitions on a set with four elements. Our next aim is
to show that the lattice 9Jί associated with L is isomorphic to the lattice
of singular partitions of some partition lattice.

LEMMA 12. If h e L is an M-element covered by a hyperplane, then
h is contained in exactly two M-hyperplanes.

Proof. Since L is modulated, h is contained in at least two M-
hyperplanes. Suppose it is contained in three M-hyperplanes hu h2, hz.
Let p be a point such that p g h. There exists an M-element m such
that m + h = I, mh = p. Obviously m is a plane. If mhλ = mh29 then
mhx + h = mh2 + h or /^(m + h) — fea(m + /*>) and therefore hx — h2. Thus
m/^, mfe2, m/̂ 3 are three distinct M-lines containing p in m. But then

L satisfies (γ) which is false.

LEMMA 13. Every point in L has exactly two M-hyperplanes as
complements.

Proof. Since L is irreducible, Ίft is irreducible, and thus every
element in 9Jϊ must have at least two independent complements. This
simply means that every point in L has at least two M-hyperplanes as
complements. Suppose then that the point p has three M-complements
hly h2J h3. Now hλh2 Φ h2h3 because equality would contradict Lemma 12.
Thus hxh2, h2h3, hλh3 are distinct elements that cover their intersection
hjijiz. If m is an M-complement of p + hjι2hz within [p, / ] , then m Ξ> p,
m + hλh2hz = I and mhjι2hz — 0. Evidently m is a plane, and the inter-
vals [0, m] and [hjι2h3t I] are isomorphic. Thus mhlf mh2, mh3, are three
M-lines in m which do not contain p. But this is impossible because
in the lattice of partitions on four elements, any three M-lines contain
all the points.

LEMMA 14. In a matroid modulated lattice if two elements b, c
have the same M-complements, then b = c.

Proof. Suppose b Φ c. Without loss of generality we can assume
that c contains a point p which b does not contain. If m is an M-
complement of p + b within [p, I ] , then m ^ p, m + b — I, mb — 0. But
me ^ p and the contradiction is apparent.

LEMMA 15. Given any two distinct M-hyperplanes h', h" in L,
there exists a point p which is a complement of both hf and h".

Proof. Let I be an M-element which is a complement of h'h". A_
point on I distinct from lhf and Ih" satisfies the condition.
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Let G be the set of M-hyperplanes in L.

THEOREM 13. The 9JΪ lattice of L is isomorphic to the lattice of
singular partitions of G.

Proof. With each point in L we associate the set of elements in
G that are complementary to it. The previous lemmas show that each
point p is associated with a two element set, different points are as-
sociated with different sets, and that every two element subset of G is
associated with a point in L. Moreover, an M-hyperplane contains a
point p if and only if it is not a member of the set associated with p.
Consider the lattice of partitions of the set G. If a is an M-hyperplane
of L, then we map it onto the maximal singular partition [«][•••].
This mapping is obviously one-to-one onto the maximal singular partitions
of G. If p is a point in L and is associated with the subset [/3, 7] of
G, then we map it onto the partition [β, 7] [a] [b] where all blocks
but the first have one element. This mapping is also one-to-one from
the points of L onto the points of the partition lattice of G. Now a
maximal singular partition [a] [ •] contains a point partition [β, 7] [a] [b]
if and only if a φ [β, 7]. From this we immediately see that we have
defined an order preserving mapping in both directions between the M-
hyperplanes and points of L and the Tkf-hyperplanes and points of the
partition lattice on G. According to [5; p. 200], two complete lattices
in which every element is the join of points and the meet of hyperplanes
are isomorphic if the partially ordered sets of hyperplanes and points
are isomorphic. It thus follows that the 3JΪ lattice of L is isomorphic
to the lattice of singular partitions of G.

DEFINITION 3. Let L' be a modulated matroid lattice. A set H of
elements in W is said to be a quasi-ideal if
(8) x e H and y ^ x imply y e H;
(9) x,y e H and {x, y)M in W (i.e., x + y = x U y) imply x (J y e H;
(10) the join of an increasingly directed set of elements in H is also

in H (note that join in the sense of 2JΪ' and U are synonymous
for increasingly directed sets).

H is a maximal quasi-ideal if in addition it satisfies the following prop-
erty:
(11) I $ H; if K is a quasi-ideal and H c K, then K = H or K = W.

LEMMA 16. If H is the set of elements in W contained in a hyper-
φlane h in I/, then H is a maximal quasi-ideal.

Proof. The first three properties are immediately evident even if
h is not a hyperplane. Suppose H c K and H Φ K. Property (10)
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implies that there exists a maximal element m in K not in H and
therefore not contained in h. If m Φ 7, there exists m'M such that mf

covers m. Thus m'h + m — m'; consequently there is a point p ^ h
such that p + m = m'. Thus m' 6 K by (9) which is impossible.

LEMMA 17. T%e maximal quasi-ideals of a lattice of singular
partitions of a partition lattice T are the set of singular partitions
contained in a partition of two blocks.

Proof. It is obvious that the set of singular partitions ^ a singular
partition of two blocks is a maximal quasi-ideal. If we note that two
singular partitions form a modular pair in Tΐτ (the 3K lattice of T) if
and only if their main blocks overlap, then we readily see that the set
of singular partitions g a partition P of two non-trivial blocks is a
quasi-ideal. The quasi-ideal determined by P has two maximal singular
partitions m', m" whose main blocks do not overlap. If a point p is
not in P, then its main block must overlap the main blocks of m' and
m". Then (p, m')M in UJJΓ, and also (p U m', m")M in Έlτ. Thus / is in
any quasi-ideal containing the quasi-ideal determined by P since
p U m ' U ra" = I, and this proves the maximality of the quasi-ideal deter-
mined by P. If Q is any quasi-ideal, then in view of (10) it must contain
maximal elements. The main blocks of these maximal elements cannot
overlap, for otherwise they would be modular in Wtτ and then they
could not be maximal. This observation immediately shows that any
quasi-ideal Q must consist of the singular partitions ^ some partition.
But obviously such a quasi-ideal cannot be maximal unless the partition
has two blocks.

LEMMA 18. Every maximal quasi-ideal in Wl of L is determined
by a hyperplane in L.

Proof. In view of Lemma 17, every maximal quasi-ideal in 9JI of
L has one or two maximal elements since 3Ji is isomorphic to the lattice
of the singular partitions of G. If a maximal quasi-ideal has one maxi-
mal element, then this element must be a hyperplane in L (hyperplanes
in 9Jί are hyperplanes in L), and the lemma is true in this case. Let
Q be a maximal quasi-ideal with two maximal elements mf and m". In
the lattice 3Ή, m' U m" = I. Since (m', m")M' in 2K, m' U m" > m' + m"
in L. Evidently the set of M elements contained in m' + m" is a quasi-
ideal containing Q, hence equal to Q since Q is maximal. If m' + m"
is not a hyperplane, then there is a hyperplane h > m' + m". Since h
determines a maximal quasi-ideal, h and m! + mf' must determine the
same quasi-ideal. But this is impossible, for h contains a point which
is not ^ mf + m". The proof is complete.

THEOREM 14. A necessary and sufficient condition that a lattice L
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of length ^ 5 be isomorphic to a lattice of partitions of a set G is
that
(12) L be an irreducible modulated matroid lattice;
(13) there exist a pair of elements {a, b) such that (α, b)M', ab Φ 0.

Proof. Let L satisfy conditions (12) and (13). Our previous results
have shown that the Tl lattice of L is isomorphic to the lattice of
singular partitions of the set G of modular hyperplanes in L. Further-
more, the maximal quasi-ideals of Tl are in a one-to-one correspondence
with the hyperplanes of L and the partitions of two blocks in the
lattice of partitions of G. Thus there is a one-to-one order preserving
correspondence in both directions between the hyperplanes and points of
L and the hyperplanes and points the lattice of partitions of G. From
this we conclude that the two lattices are isomorphic.

Conversely, if L is a partition lattice, then it evidently satisfies (12).
It is easily shown that a partition lattice of length ^ 5 has two hyper-
planes which do not form a modular pair and do not meet in 0 since
every interval [α, I] of a partition lattice is itself a partition lattice..
The proof is complete.

REMARK. It is impossible for (13) to be satisfied in a matroid lat-
tice of length ^ 4. Hence our condition in Theorem 14 is neither
necessary nor sufficient if L has length ^ 4 although (12) is necessary..

A lattice is said to be simple if it has only trivial congruence
relations. Obviously a simple lattice is irreducible although the converse
is not necessarily true. Ore [6] has shown that a partition lattice is
simple. Thus Theorem 14 is still correct if we replace the word '"irre-
ducible" by the word ' 'simple' \ What we intend to show is that if L
is of infinite length, then condition (13) may be deleted if simplicity
replaces irreducibility in (12).

By a neutral ideal of a relatively complemented lattice L with 0r

we mean an ideal which is the kernel of a homomorphic mapping. Ore
[6] has given the following intrinsic characterization of a neutral ideal:
an ideal N is neutral if and only if for every x,y e L, a e N, there
exists b e N such that xy + b = (x + a)y + b.

LEMMA 19. Let L be a semi-modular lattice. If b covers a and
(α, y)M, then by = ay or by covers ay.

Proof. If (a, y)M, then (c + a)yb = (c + ay)b = c + ay = c + ayb
if c ^yb. Thus (α, by)M. Since b covers α, a = a + by or a + by covers
a. If a = a + by, then ay ^ by and therefore ay = by since b covers
a. If a + by covers α, then by covers aby = ay since if (u, v)M and
u + v covers v, then u covers uv.
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LEMMA 20. Let L be an irreducible modulated lattice of infinite
length satisfying (7). Then the set F of all finite-dimensional elements
is a neutral ideal.

Proof. It is obvious that F is an ideal. Suppose that x,y e L and
a e F. Let h be an M-hy per plane. Since a is finite-dimensional, there
exists a finite maximal chain between x and x + a. Using the results
of Lemma 19 and the fact that yh is an M-element (cf. Theorem 12),
we see that there is a maximal chain between xyh and (x + a)yh of
length no greater than the maximal chain between x and x + a. Since
(x + a)yh = (x + a)y or (x + a)yh is covered by (x + a)y, there exists
a finite maximal chain between xy and (x + a)y. Let b be an indepen-
dent complement of xy within [0, (x + a)y\. Then b e F and (x + a)y + 6 =
xy + b. This completes the proof.

THEOREM 15. A lattice L of infinite length is isomorphic to a
partition lattice if and only if it is a simple modulated matroid lat-
tice.

Proof. The necessity is evident. If L satisfies (γ) and is irreducible,
then it cannot be simple in view of Lemma 20.

REMARK. Every projective geometry of finite length is a simple
modulated matroid lattice, so that our condition in Theorem 15 is not
-sufficient if L has finite length.

Metric lattices* By a valuation on a lattice L we mean a real-
valued function | | defined for each element in L such that
(14) x < y implies \x\ < \y\;
•(15) \χ + y \ + \ x y \ ^ \ x \ + \ v \ ;
•(16) (x, y)M if and only if | x + y | + | xy | = | x | + | y |.
As is well known, every semi-modular lattice of finite length has such
a valuation. If we define d(x, y) = 2\x + y \ — \x\ — \y\, then L be-
comes a metric space [9] in which | (| a \ — \ b |) | ^ d{a, b). Moreover,
d(a + e, b + /) ^ d(a, b) + d(e,f) [9], so that the join operation is a
uniformly continuous function. We shall refer to L as a metric lattice
.and say that L is metrically complete if it is complete in the metric
defined above. A metrically complete lattice L is complete as a lattice
if it contains 0 and / [9].

LEMMA 21. If (α, x)M and (α, y)M, then d(ax, ay) ^ d(x, y).

Proof. We have
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— \a\ — \y\ + \a + y\

\x + y\ - 12/1 .

Similarly, | a(x + y) | — | ax | <£ | x + y | — | x |. Thus 2 | α(# + ?/) | — | ax \ —
\ay\fί2\x + y\ — \x\ — \y\. B u t s ince a(x + y) ^ ax + α^/, | α(# + T/) | ^ ;

I α x + ay |. H e n c e 2 | α a j + α j / | — | α j / | — | α s c | ^ 2 | a j + i / | — | a ? | — | j / | , a n d
t h i s p r o v e s t h e l e m m a .

THEOREM 16. Let L be a metrically complete lattice. If the
sequence (a^ has limit a and (ai9 x)M for every i, then (a, x)M and lim
(aix) = ax.

Proof. For each i we have | a% + x | + | atx | = | α41 + | a? |. Thus-
atx I = I at I + | x \ — \ at + x |. If lim (yt) = y, then lim (| y41) = | y |, for

l(ll/l — \Vi\)\ ̂ d(yfyi). Since lim(α4 + x) = α + a^limflα, + x\) = |α + α?|.
Therefore lim (| a%x |) — | α | + | a? | — | α + α? |. The sequence (α^) is a
Cauchy sequence, for d(α^, α^) ^ cί(αέ, α )̂ since (α«, x)M, (ajf x)M. Since
L is metrically complete, there exists a' such that lim (α^) = α', and
therefore lim (| a%x |) = | α ' | . Now lim (α^ + α^) = lim (αj = α. But since
the join operation is continuous, we have l i m ^ + a%x) — lim(ai) + Xvcciia^) —
a + a'. Therefore α' ^ a. We also have that x = lim (x + atx) =
lim (x) + lim (αta$) = x + a'. Thus α' ^ a? and consequently af ^ax. Since
| α a j | ^ | α ? | + | α | — \a + x\ and | α ' | = | x \ + \ a \ — \ a + x |, it follows
that \ax\ ^ | α ' | . This implies that a' — ax and the result follows.

It is to be noted that our proof requires the metric completeness of
L, and the theorem is false if one does not assume metric completeness
as can be shown in an example in [9]. The reason this is so is that
when one metrically completes a lattice, the join operation is preserved
but the meet operation need not be.

We say that a lattice with more than one element is dense if x > y
implies the existence of an element z such that x > z > y. A left-com-
plemented lattice of length > 1 is dense if and only if it contains nσ
points. It is easily shown that a maximal chain C in [α, b] of a metri-
cally complete dense lattice is isomorphic and isometric to a closed
interval of real numbers.

Let L be a left-complemented lattice. If α, b are contained in [c, d\
and have a common independent complement relative to [c, d], then
they have a common independent complement relative to any interval-
containing [c, d], '

LEMMA 22. Let L be a left-complemented lattice such that every
interval sublattice is irreducible. If a and b are incomparable, then
there exists an element p > 0 such that (a,p)±,(b,p)l_.
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Proof. There exist α', δ' such that α' + b = a + δ, (α', δ) _L, α' ^ α,
6' + α == δ + α, (δ', a) _L, V ^ δ. Therefore α' =£ 0, V φ 0 and (α', V) 1 .
Since the interval [0, af + δ'] is irreducible and contains more than two
elements, there exists x < a' + δ' such that x(a' + δ') Φ xa' + xδ'.
Therefore x > xα/ + xbr. Now there exists u Φ 0 such that xα/ + xδ' + u =
x, (xa' + xδ', u) _L. Since w ̂  a?, ̂ α ' ̂  xα'; therefore uar = ua'xa' = uxa' S
u(xaf + xδ') = 0. Therefore wα' = 0 and also ub' = 0. But m& =
^(α' + δ')α = ^α' = 0, and in a similar way ub = 0. We choose v! such
that t&' + a = u + α, (^', α) J_, u' ^ u. Consequently %' ̂ = 0. There ex-
ists p such that p + δ = uf + δ, (p, δ) J_, p ^ u'. Quite obviously p ^ 0
and (p, a). ±. This completes the proof.

THEOREM 17. Let L be a left-complemented metrically complete
lattice in which every interval sublattice is irreducible. If \a\ — | δ | ,
there exists c e L such that α + δ = α + c = δ + c, αc = δc = αδ, (α, c)Mτ

(δ, c)Λf.

Proof. Without loss of generality we assume that ab = 0. The
case a = b is trivial. Suppose a Φ b. Since α and δ are incomparable,
there exists p > 0, p ^ α + δ, such that (α, p) J_, (δ, p) _L. Let c be a
maximal element with this property.4 If a + c = a + δ, then b + c =
a + b; for | α | = | 6 | , | α + c | = | c | + | α | - | 0 | , | 6 + c | = | c | + | 6 | - | 0 | ,
and therefore \a + c\ = \b + c\. Suppose then that a + b Φ a +. cr

a + δ Φ b + c. I f α + c = δ + c, then a + c = a + δ. Thus α + c and
δ + c are incomparable, and therefore there exists m > 0 , m ^ α + δ,
such that (α + c, m) _L, (δ + c, m) _L It is easily seen that (α, c + m) J_,.
(δ, c + m) j _ , and this contradicts the definition of c.

Let M be an irreducible continuous geometry valuated in such a way
that 11\ = 2, I 0 I = 0. If we define L to be the set of all elements x
with I x I < 1 plus I and valuate L so that 11 \ = 1 and all other elements
have the same valuation as they do in M, then L is a lattice without
points which satisfies the hypothesis of Theorem 17 and is not a con-
tinuous geometry.

We have already studied metric lattices which are modulated because
every semi-modular lattice of finite length has a valuation. To facilitate
our study of the irreducible modulated lattices of finite length, we
introduced the condition (γ) which makes no sense if our lattice has no
points. By the use of Theorem 12 one can show that all the intervals
except possibly the intervals [0, I] where I is a line are irreducible. We
have shown that irreducible lattices which satisfy (7) have the additional
property that ab Φ 0 implies (α, b)M. It is not too difficult to show

4 Let S be a set of elements in L where L is a metrically complete lattice with 0 and
I. Theorem 16 and the fact that every increasing transίinite sequence is countable imply
that there exists a maximal element independent of each element of S.
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that metrically complete lattices which are dense and have this latter
property must be modular lattices if we use Theorem 16. This leads
•one to suspect that modulated lattices which are dense, metrically com-
plete, and which have no reducible interval sublattices are actually
continuous geometries. This is the case as is seen below.

THEOREM 18. Let L be a modulated lattice without points which
is metrically complete and contains at least two elements. If every
interval sublattice of L is irreducible, then L is an irreducible contin-
uous geometry.

Proof. We assume without loss of generality that our valuation
is normalized, i.e., | 0 | = 0, \I\ = 1. Since L is dense and metrically
complete, there are elements of any valuation between 0 and 1; thus
there are modular elements of any value between 0 and 1. We define
a set S of real numbers as follows:

S = [a e S; a e [0,1]; for every yM with \y\ ^ α, the interval [0, y]
is a modular lattice].

,S is non-empty because O e S . Let ω be the least upper bound of S.
Then ω e S. To prove this it suffices to consider those modular elements
y for which \y\ = ω. There exists an increasing sequence (y^ with
limit y such that y%M for each i. Let c e [0, y]. Since cytM and (c, yt)M
for every i, lim {cy^ — cy — c and cM. Thus [0, y] is a modular lattice.
iSuppose then that 1 — ω Φ 0. There exists 8 with 1 > 8 > ω such that
1 — δ ^ δ — ω. To prove the theorem it suffices to show that 8 e S.
Let a be an ikf-element with ω < | a | ^ 8. Let c ^ a. There exists
q ^ a such that | q \ = ω and qM. Evidently qcM since [0, q] is a
modular lattice. Since L is a modulated lattice, there exists d' such
that a + df — I, ad' = qc, d'M. There exists a real number a such that
a - I a I = I c | - | qc |. Then α = | α | + |c + g | - | g | . Thus a S 8 +
δ — ω ^ 1. But there exists r >̂ a with rM such that \r\ —a. Since
| r | — | α | = | c | — |gc | and | r \ + \ d' \ = 1 + 1 rd'\, it follows that
\d'\ + \a\=l-\c\ + \rd'\ + \qc\. Using the fact t h a t | d' \ + | a \ =

1 + I Qc I, we find that | c \ = | rd' |. If we define rdr = d, then a + d — r,
<ad — qc = cd, and dM since rM and d'M. From the irreducibility of
the interval [cd, c + d] there exists z e L such that cί + 2 = c + £ =
c + d, dz = cz = cd, (c, z)M and (d, z)M. Now αz = a(c + c£)z = cz = cd.
Also α + z = α + c + 2 = α + c + d = α + cϊ = r. Since rM and cϊM,
there exists b e L such that c + d + b — r, (c + d)δ = d, bM. Therefore
bz = b(c + d)z = dz = cd, b + z = b + z + d = b + c + d = r. This shows
that I 6 I = I a |. There exists a? € L such that a? + cd = 2 and (a?, cd) _[_.
Then α + # = α + ccZ + # = r = 6 + c d + # = & + #, α χ = azx = cdα? =
0 = 5̂ a; = 6Λ;. The mapping y —> (1/ + ίi?)α, ?/ e [0, 6], is an isomorphism
from [0, δ] onto [0, a]. Now cί —• (d + α;)α = (d + cd + x)a = (d + z)a =
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(c + z)a = c. Since c is the image of d under the isomorphism, c is
modular with every element in [0, a] and so cM. Thus [0, a] is a modular
lattice for every aM with α> < | a | ^ δ. Hence δ is in S which is a
contradiction. Thus ω = 1, and the proof is complete.

Conclusion* It might be of some interest to determine the existence
or non-existence of an irreducible metrically complete modulated lattice
which is dense but is not a continuous geometry. Such a lattice would
be a natural generalization of finite partition lattices in view of our
Theorems 14 and 17. In a subsequent paper we shall show how to repre-
sent lattices satisfying (γ) in terms of protective geometries. Using
this representation, we can show that every interval sublattice of a
matroid modulated lattice is a modulated lattice.
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