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1. Introduction and summary. Consider a partial differential equa-
tion

ou 9w
By o( T, T e, t) = 0

with boundary conditions of the type

Pul _u| _, (G=0,1, -, 7);
oy |y=o oy |y=r

(1.2)
o'u .
LA — — v k).
B | oo = W) (=01, k)

By means of a Fourier sine-series expansion with respect to one of the
independent variables, say y,

Wy, 1) = 3 X,(¢) sin (my) ,

X, (t) = %S:uw, t) sin (ny)dy

1.3)

there corresponds to the system (1.1), (1.2) an infinite system of ordinary
differential equations in the X,’s

k
(1.4) @,,(t, X.(¢), dd)zfl L eee, ddfk(l , Xo(t), ) =0

with the boundary conditions

d'X,

(1.5) =

= 2 [ "7 sin ey
T Jo

where

(1'6) @n(ty 3(1), S}, ct Sf, 8[2], ° ') = £S$@<i Slic sin ('I/y)’
T Jo 1=1

M

ist cos (iy), -+, 3, 8¢ sin (iy), ¥, t) sin (ny)dy .
i=1

1

1

Disregarding for the moment all questions of convergence of the
series and permissibility of term by term differentiation and integration,
the two systems (1.1), (1.2) and (1.4), (1.5) are equivalent; so that a
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496 GERTRUDE I. HELLER

partial differential equation has thus been reduced to an (albeit infinite)
system of ordinary differential equations.

D. C. Lewis [1], has put this method on a rigorous basis for second-
order differential equations of the form

ot’ oy’

o*u o0u ouw Oou
1.7 —_ = @(_y -—, U, Y, t)
(1.7 2t oy Y

with boundary conditions of the type
u(0,t) = u(z,t) =0

Wy, 0 =) | = o)

(1.8)

where the functions f, g and @ are assumed to satisfy certain conditions
which are stated below. Lewis constructs a system of solutions X,(t)
of the infinite system of the type (1.4), (1.5) corresponding to (1.7),
(1.8) and proves that the function

w(y, t) = 2; X,(t) sin (ny)

is (in a certain generalized sense) a solution of (1.7), (1.8).

Following a suggestion of D. C. Lewis to generalize his result, the
present paper does so by applying his method to operators in Hilbert
space.

After introducing the notation and definitions of §2, we establish
in § 3 some results concerning solution of the equation Tw = 0 where T
is a (non-linear) operator in Hilbert space. T is of the form T'= L — SN
where L and N are linear, and S satisfies a Lipschitz condition—with
respect to a “partial norm,” which assigns to an element of the Hilbert
space a real-valued function rather than a real number.

Sections 4, 5 present, as applications, Lewis’ theorem and some
existence theorems for non-linear higher order partial differential equa-
tions of the form

676 ( 62 62 >m
—_— =) u
ot \at* oy’
omtEy, am+ku am%—lcu omtE—ly
B <atm+k "otmtEigy T ottoy™ Bt

y""ury,t)-

We will conclude this introduction by restating Lewis’ result for
later reference:

THEOREM (D. C. Lewis). Let @(p,, p., 4, ¥, t) be a real-valued func-
tion defined and uniformly continuous in y and t in a domain Q2 =
D, Doy, Y, t)|[|w| S h, 0SSy =7 0=t =<1} Suppose there exists a
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positive constant 0 such that

(1'9) l¢(p1; D2y Uy Y, t) - ¢(ﬁ1; I—sz 11, Y, t)[
<6[lp1—f)—1l+lpz_ﬁ2,+lu'—ﬁ”
Jor |[u|<h, |B|=h, 0=y=sm 0=t=T7.

Let f(y), g(y) be defined on 0 <y < w; let f(y) moreover be differ-
entiable and let the Lebesque integrals

S:[f "(Wldy , S:[g(y)]zdy

exist and be < 3h*[A7* and suppose that f(0) = f(x) = 0.
Then there exists a positive ¢ < T such that the differential equation

ot* oy’

2 2
(1.10) A R
ot = oy
has a unique solution u(y,t) in the generalized semse explained below,
defined for 0 <y < 7w, 0 <t < o, which satisfies the boundary conditions
0

1) w0, =uz =0, ww0)=,0), | =90

By solution in the generalized sense is meant that (in the domain
0=sy=m 0=t =0) u(y,t) is continuous, the first partial derivatives of
u exist almost everywhere, and there exists a sequence of functions
u.(y, t), each of class C” for 0 <y <7, 0 =t =< ¢ such that

lim u,(y, t) = u(y, t) uniformly in y and t on 0 <y =7, 0= =< 9)

T 2
limS <_6£ _ bu, ) dy =0
n—oo JO ay ay

T 2
lims (?ﬁi _ %)dy -0
n—oo Jo\ OF ot

n (o 2 2
limg S ["’”un _ Oun a?(ﬁ“i, Ny, yt)] dydt =0 .
ol o o ot oy

uniformly in ¢ on (0 =t =< 0)

2. Notation and definitions. Greek and small latin letters denote:
real numbers; real-valued functions; and elements of Hilbert space, func-
tion spaces, and measure spaces. Capital latin letters denote subsets of,
and operators defined in, these spaces. The symbols ¢, c, U, N, {&|---}
resp. have the usual meanings: element of, subset of, union, intersection,
the set of elements X for which ... holds, resp.

The abstract space considered here is a complete and separable
Hilbert space H over the field of real numbers. The inner product of
two elements u, v of H will be denoted by (u, v); the norm of u by || u|l.
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If u, is a sequence of elements of H, converging (in the norm) to an
element u of H, that is, if lim,..||# — «,]|| =0, then we denote this
by #,—u. If we H, and p is a positive real number, then C,(u) de-
notes the closed p-neighborhood of u: Cy(uw) = {v|||v — u || < o}.

Let I be any measure space (a set with a completely additive, non-
negative measure ¢ defined on some o-ring of subsets of I), with finite
total measure o: (#(I) =0 < . Let L*I) have the usual meaning of
the set of real-valued functions defined and square-summable on I. Two
such functions f, g which are equal almost everywhere (everywhere with
the possible exception of a set of measure zero; in notation, p.p.) are
identified and considered to represent the same element of L*(I); thus,
strictly speaking, the elements of L*(I) are not functions but equivalence
classes of functions.

The scalar product and morm in L*(I) are defined in the usual way:

(2.1) (£, 9) = | fodp
2.2) 171 = (], ram) "

By fo—f we shall mean lim,..||f — fu |l = 0; by f.—f (p.p.) we
shall mean, as usual, that for almost all ¢ € I, lim,... f.(t) = f(t); by
Jn—f uniformly p.p. we shall mean that f,({) converges to f(f) uni-
formly on a subset of I whose complement has measure zero.

If fe LXI) and a is a real number such that f(¢) < a (p.p.) then
a is said to be an essential upper bound of f. The essential marimum
of f(t), denoted by e.m. f, is defined as the greatest lower bound of the
set of all essential upper bounds of f. With this notation, f, — f uni-
formly p.p. if and only if em. |f— f,|— 0.

DEeFINITION 2.I. By a partial norm on H we shall mean a map Z
from H to L*(I), with the following properties:

2.1.1. For every w € H, Zu is a unique element of L3*(I) which is
nonnegative almost everywhere on I: Zu = 0 (p.p.);

2.1.2. For any w,v € H we have Z(u + v) < Zu + Zv (p.p.);

2.1.3. For any u € H and real number a, Z(au) = |a| Zu (p.p.);

2.1.4. Z is isometric: for any w € H, || Zu || = ||u|]; i.e. S (Zuydp =
I
[l
Note that when I consists of a single point with measure one, then

the partial norm Z reduces to the ordinary norm || || of H.
Throughout §§ 2 and 3 we shall suppose a fixed partial norm Z.

DEFINITION 2.II. The Z-norm, denoted by || ||,, is defined on H as
follows. If w € H, then ||u]||; = e.m. (Zu). If a sequence of elements
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u, € H converges to w € H “in the Z-norm,” i.e. if ||u — u,||; — 0, we
denote this by u, — u.

Note that the Z-norm is not always finite, but otherwise satisfies
all the conditions of a norm: ||u ||, = 0 if and only if u =0, [[u + v|; =
lullz + llvllz, and if @ is any real number then |laull, =|a]|: |||,
This Z-norm, of course, defines a metric, and hence a topology, on H.
The following remarks discuss the relation of the two topologies deter-
mined on H by its two norms.

REMARK 2.II1.1. If w,—— u then it is easily seen that u, — u.

REMARK 2.II1.2. If u, — u, then there exists a subsequence u, of
u, such that Z(w — u,)—0 (p.p.). For, if u, — u then || Z(u — u,)|| =
|| — u, || — 0, and then by a well-known theorem there exists a subse-
quence %, such that Z(u — u,,)— 0 (p.p.)

REMARK 2.111.3. The Z-norm makes H a complete metric space.
That is, if lim, ;.. | %, — %;]||;, = 0, then there exists a unique element
% such that u, 2.

To see this, first note that lim, ;.. %, — %;|| =0 and hence u, is
a Cauchy sequence (with respect to the “ordinary” norm). Then, by
the completeness of the space H (again with respect to the “ordinary”
norm), there must exist a unique u € H such that u, — u.

Then, by Remark 2.II1.2. there exists a subsequence Uy, such that
Z(% — Up,) — 0 (p.p.) as k— oo, Clearly, by 2.1.2.,

2 — uy) = Z( — ) + Z(th, — uy)  (D.D.) .

Letting 7 and k go to <, we get lim,..Z(uw — u;) =0 (p.p.). To show
that the convergence is uniform p.p., note that

2w — Uy) = Z(U — Uyiy) + Z(Ugrp — Uy)
= Z(u — Uyip) +l:51U;I_)._Z(uJ+z — Uy) (p.p.)

for 7=1,2,.--, k=1,2,-.-. Letting &k — o, we get
Z(u — uy) é,fﬂ?..z(u”‘ — Uy) (p.p.)
and hence
lu —u,yll, =em. Z(u — u,) < lfluzpem Z(Uyry — Uy)
= 8up [luse — o1z -

But _Sup |y, — u,|l, —0 as j— oo, so ||u — u, ||, — 0.
=1,2,e"+
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REMARK 2.II1.4. ||u|| <V o|lull, (where o is the total measure
of I); for

lull =l Zull = (| uyape)” = ({ llultag)” = v ul, .

REMARK 2.II1.5. If ¢ is a nonnegative real number and u,v e H
are such that Zu < ¢Zv (p.p.), then ||u|| < ¢||v||; for || u|? =S (Zuydp =
I
ol @Zopdp = e lv].
I

REMARK 2.II1.6. If u,v are any two elements of H, then by 2.1.2.,
Zu = Z(uw —v) + Zv (p.p.); or Zu — Zv < Z(u — v) (p.p.). Also, by
2.1.3., Zv — Zu < Z(v — u) = Z(u — v) (p.p.). Hence

| Zu — Zv | £ Z(u — v) (p.p.).

We conclude this section with a brief review of some of the standard
terminology in operators, linear manifolds, ete.

By an operator T in H is meant a mapping which assigns to each
element v of a certain subset of H, a unique element Tw of H. The
domain of definition of T is denoted by D(T); the range of T, that is,
the set of elements 7w, is denoted by R(T); the nullspace of T, that
is, the set of elements » € D(T') for which Tu = 0, is denoted by _#"(T).

It 7,T, T, --- are operators and a is a real number, then the
operators aT, T, + T,, T,T,, lim,_..T, are defined as follows:

D(aT) = D(T), (@T)yu = a(Tu) ;
D(T,+ T)=D(TY)nD(T), (T.+ Thu="Twu+ T
D(T.T) = {u|u e D(T,) and T e D(T}, (T.Tu = Ty(Tow)
D(lim T,) = {u]u e () D(T,) and lim (T,u) exists} ,

n—ro0

(lim T,,)u — lim (T,w) .

The graph G(T) of an operator T is the subset of H x H consisting
of all ordered pairs of the form <{u, Tw) with v € D(T). If the operator
T, is an extension of the operator 7, (that is, if D(T,) c D(T,) and
Tw = Tyu for w € D(T,)—in other words, if G(T,) cG(T,), then we
denote this by T, c T,.

If T is an operator in H and A is a subset of D(T), then TA de-
notes the set {Tu|u e A}.

An operator T is called linear if D(T) is a linear manifold (a set
A is a linear manifold if u,v € A implies that au + bv € A for any real
numbers a and b) and if, for any u,v € D(T) and real numbers ¢ and
b, T(au + bv) = aTu + bTv—in other words, T is linear if and only if
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G(T) is a linear manifold in H x H.

A linear operator T is said to be closed if its graph G(T) is a closed
subset of H x H; that is if given a sequence of elements u,, u,, -++ of
D(T) such that w,—u and Tu,—wv, it follows that w e D(T) and
Tu = v.

Let T be a linear operator with the property that, whenever a
sequence of elements u, € D(T) converges to zero and Twu, converges
to some element v, then v = 0. It is easily seen that under these con-
ditions the closure of G(T) in H x H is again the graph of a linear
operator, call it T. It is clear that 7 is the smallest closed linear ex-
tension of T (smallest in the sense that any other closed linear ex-
tension of 7T is an extension of 7).

If A is a subset of H, then the intersection of all linear manifolds
containing A is itself a linear manifold, this is called the linear span
of A and is denoted by [A]. If A and B are two linear manifolds, then
the linear span of their union, [A U B], is easily seen to be simply the
set {u +v|ue d,ve B}. If the two linear manifolds A and B are
disjoint (i.e. their intersection A N B contains only the zero element),
then the decomposition of an element of [A U B] as a sum u + v with
u € A, v € B is unique; in that case the linear span [4 U B] is also called
the direct sum of A and B, written as A P B.

If A and B are disjoint linear manifolds, then the projection of
A@P B onto A along B is the linear continuous operator P defined by:
D(P)=A®B; if we A, ve B, then P(u + v) =u. Note that P is
idempotent: P* = P.

If A is a closed linear manifold, then the orthogonal projection onto
A is the projection of H onto A along the orthogonal complement of A
(that is the set {u|(u, v) = 0 for all v e A}).

A linear operator 7T is said to be reduced by a closed linear mani-
fold G if PT c TP, where P denotes the orthogonal projection onto G.

3. On the solution of Tu = o for certain non-linear operators 7.

THEOREM 3.1.

3.1.1. Let L be a linear operator, A a linear manifold < H such
that D(L) = AP 4+ (L).

3.1.2. Suppose there exists a constant v such that for any u € A we
have (Zu) < v || Lu ||’ (p.p.)

3.1.3. Let S be an operator in H. Suppose there exists a constant
a < 1/I', where I' = max (v, 0), such that for any w,v € D(S) we have
Z(Su — Sv) £ aZ(u — v) (p.p.)

3.1.4. Let ¢ be an element of D(S)N _+"(L).

3.1.5. Suppose there exists a set Bc H with the following proper-
ties:
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3.1.5(a). ¢ €e BC D(S) and S(BN CA$)) < R(L), where p=
ISl — ar’) (and Cy®) = {u ||l — ¢|| = o);

38.1.5(b). If weH, u,e BND(L)NCyp) for m=1,2,+++ and
u,,——z—+ u, then u € B;

8.1.5(c). If we BN CL(¢), Su = Lv, and v — ¢ ¢ A, then v € B.

Then there exists a umique solution u of the system

3.1) (L—S)u =0 and u—¢deAd.
This solution w will belong to C$) N B.

Proof. Let Q denote the projection of D(L) onto A along _4(L).
That is, D(Q) = D(L); if w € D(L), then we know there exist unique
veA and we (L) such that v = v + w; we define Qu = v.

Let K denote that right inverse of L whose range R(K) = A. That
is, D(K) = R(L), LK = the restriction of the identity operator I to R(L),
and KL = Q. Clearly, K is linear.

Now note that the equation

3.2) u=¢+ KSu

has exactly the same solutions as the system (3.1). For, suppose first
that u satisfies (3.2). Thenu — ¢ = KSue R(K) = A. Also, ¢pe 4 (L)C
D(L); further KSu € R(K) = Ac D(L); hence by the linearity of L,
#=¢ + KSue D(L) and Lu = L$p + LKSu. But L¢ =0; and since
LKclI, LKSu = Su. Thus (L —S)u =0 and % satisfies (8.1). Con-
versely, let u be a solution of (3.1). Then Su = Lu € R(L) = D(K) and
KSu = KLu = Qu = u — ¢. Thus u satisfies (3.2).

We shall prove the theorem by showing the existence and uniqueness
of solutions to equation (3.2). We shall prove the existence by the
method of successive approximations.

Define a sequence of elements of BN C¢) N D(L) as follows. Let
u'” = ¢. Clearly u'” e BN C,(¢) N D(L). Supposing that for n < k, u™
is defined and is an element of BN Ci¢$) N D(L), let u*+Y = ¢ + KSu®,

Clearly, u®* is well-defined, for u® e BN Cy¢) < D(S) and Su™ e
S(BN Cy¢))c R(L) = D(K). Also u*? —¢pe R(K)=A and Lu®+ =
L¢ + LKSu™ = Su™, hence by 3.1.5.(c) u*** € B. Further, using 3.1.2,
3.1.3, Remarks 2.I11.4 and 2.IIL.5, and the definition of o in 8.1.5.(a), as
well as our inductive assumption,

lu — g | = | KSu™ || < v/ 50 || Su® || < I']| Su® |
s I(|Su™ — S|l + || Spl)) = MNe||u® — ¢ | + || Sp ||)
=I'(ap +[|Spl)=p.
Thus #** is an element of BN C,(¢) N D(L).

So we have now a sequence of elements u™ of B C,(¢)N D(L),
satisfying
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(3.3) " =¢, u™ =¢ + KSu™ n=2012-..
Clearly, using again 3.1.2,3 and Remarks 2.1I1.4,5, as well as (3.3),

[u»t — y™ || = || KSu™ — KSu»" ||
= || K(Su™ — Su || < I'|| Su'™ — Su®2 ||
S al||u™ — w2V .

By induction on 7 this yields
lu = w® || < @y [ — u® || < @)'p .
Since al” < 1 it follows that ™ is a Cauchy sequence. Further, since

Z(u"” _ u(n)) — Z(KS%““” _ KSu‘""l’) < -I/FH Sult=v _ Su(n—nn
= aVT|lu*? — w2 (D),

it is clear that lim, ;.|| 4™ — u™ ||, =0 and hence by Remark 2.III.3
there exists a unique # € H such that Z(u — «™)— 0 uniformly p.p.

Then it follows from 3.1.5(b) that w e B. Obviously, u e CJ(¢).
Hence by 3.1.5(a) Su € R(L) = D(K). Further,

| KSu — KSu || < I'|| Su — Su || < o [|u — u ||,

hence KSu™ — KSu. Now taking the limit as » — oo on both sides of
the second equation in (3.3), we get u = ¢ + KSu. Thus u satisfies (3.2).

We must still show that the solution of (3.2) is unique. Suppose,
on the contrary, the existence of two solutions #,v. Then # — v =
K(Su — Sv), and hence

lw — vl =[KSu—Sv)|| = I'[|Su — Sv|l = al'[|lu—v]l.

But al” < 1; hence it follows that || — v|| =0 and u = v.
This completes the proof of Theorem 3.I1.

THEOREM 3.1I1.

3.II.1. Let L, N be linear operators, A a linear manifold such
that D(L) = A@ _+(L). Let D(L)c D(N).

8.11.2(a). Suppose there exists a constant v such that for any u € A
we have (ZNu)® < v|| Lu||* (p.p.).

3.11.2(b). Suppose there exists a constant [3 such that for any
u € D(N) we have Zu < BZNu (p.p.).

8.11.3. Let S be an operator in H. Suppose there exists a constant
a < 1/I", where I' = max (v, ¢), such that for any u,v € D(S) we have
Z(Su — Sv) £ aZ(u — v) (p.p.)-

38.11.4. Let ¢ be an element of _4 (L) N D(SN).

3.11.5. Suppose there exists a set B C H with the following proper-
ties:
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3.11.5(a). ¢ €e BC D(SN) and S(NBN C(N¢))cC R(L), were p =
I'||SNg ||/(1 — al');

3.11.5(b). If w,ve H, u, € D(L)N B and Nu, € C(N¢) for n =
1,2, ++, u, — u and Nu, —2>uv, then w € B and Nu = v;

3.11.5(c). If ue B, Nue C(N¢$), SNu = Lv, and v— ¢ € A, then
v € B.

Then there exists a unique solution u of the system

(3.4) (L—SN)u =0 and u—¢dpeAd.
This solution w will belong to N7*C(Ngp) N B (i.e. Nu € C,(No)and u € B).

Proof. From 3.I1.2(b) and Remark 2.II1.5 it follows that, for any
% € D(N), ||u]| <B]|| Nu||. Hence if, for some %, Nu = 0, then u = 0.
Hence N has a unique inverse N, defined on the range of N.

It is now easily seen that the system (3.4) is equivalent to the
system

(3.5) (LN7*—=S8S» =0 and v — Np € NA

in the sense that there is a one-to-one correspondence between the so-
lutions of (8.4) and the solutions of (3.5), the correspondence being given
by v = Nu.

We wish to prove that the system (3.4) has a unique solution. We
shall do this by showing that L' = LN, A* = NA, S, ¢ = N¢, B* = NB
satisfy the conditions of Theorem 3.I. Then we can apply that theorem
and this will give us the existence and uniqueness of solutions of (3.5),
which we have seen to be equivalent to the existence and uniqueness
of solutions to (3.4).

Now we must show that L, 4%, ¢', B*, as defined in the preceding
paragraph, and S, satisfy the conditions of Theorem 3.I.

3.I.1. Clearly, L' is linear. Also, A' is a linear manifold contained
in D(L'). Further, A* and _#"(L') are disjoint. For, suppose u € A' N
A (LY). Then v = Nv with v € 4, and Lv = LN*Nv = L'u = 0. Thus
ve AN _4°(L); but by 3.11.1, A and _#(L) are disjoint, and hence v =
0. But then w = Nv =0. Thus A' and _y(L') are indeed disjoint, and
since they are both subsets of D(L') it is clear that A* @ ¢ (L') < D(LY).

We must still show that D(I') c A*@ +~(L). Let u be any ele-
ment of D(L'). Thatis,uw € D(LN™). Then N*u € D(L)= A& _+(L).
Hence there exist v € A, w e (L), such that N-'u = v + w. Then
u = Nv + Nw; clearly Nv e NA = A', L!Nw = LN*Nw =0, or Nw €
N(L"). Hence u € A'P 1+ (L), as was to be proved.

3.1.2. If ue A'; then N' w e A and hence by 3.I1.2(a)

(Zuy = (ZNN7uy < v || LN7w | = v|| L'w|*  (p.p.).
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3.1.3. is clearly identical with 38.IL.3.

3.1.4. By 3.11.4., L'¢* = LN7'N$p = Lp =0, so ¢ € 4 (L'). Also,
¢ = N € D(S).

3.1.5(a). By 3.I1.5(a), $ € BC(SN). Hence ¢* = Np € NB = B*; if
% € B' = NB, then N~y ¢ BC D(SN) and hence u ¢ D(SNN-)c D(S)
and so B'c D(S). Also, by 38.IL.5(a) again, S(B'N Cy(¢") = S(NBN
C(N¢)) c R(L). Further, R(L) c R(L"), for if w € R(L), then v = Lv for
some v € D(L)c D(N) (by 3.I1.1.) and so v = LN*Nv = L'Nv € R(L").

3.I.5(b). If we H, u,e BNDIL)N(CAP') for n=1,2,... and
Uy ——> u, then N~'u, ¢ D(L) N B and, by 3.11.2(b)

Z(N'u, — N'uy) < BZ(w, — Uy) (p.p.)

and hence lim, ;... || N7'u, — N~u, ||, = 0.

Hence by Remark 2.II1.8. there exists a unique element v € H such
that N—'w, ——v. Then it follows from 3.I1.5(b) that v € B and Nv =
u; hence u € NB = B! as desired.

3.1.5(c). If w e B'N Cy¢"), Su = L'v, and v — ¢' € A, then N'ue B,
NN~'u € C(N¢), SNN-u = LN, and v — Npe NAor N'v — p € A.
Then by 3.11.5(c) N~'v ¢ B and hence v € NB = B!, as was to be proved.

This completes the proof of Theorem 3.II.

THEOREM 3.III.

3.II1.1(a). Let L, N be linear operators, A a linear manifold such
that D(L) =A@ .+ (L). Let D(L)c D(N).

3.II1.1(b). Suppose that if u, € D(L) for n =1,2, «++, u, — 0, and
Lu, — v, then v = 0. Thus there exists a smallest closed extension L
of L; let L' denote the restriction of L to D(L) N D(N).

3.111.2(a). Suppose there exists a constant v such that for any
u € A we have (ZNu) < v || Lu|* (p.p.).

3.I11.2(b). Suppose that there exists a constant 3 such that for any
u € D(N) we have Zu < BZNu (p.p.).

3.1IL.3. Let S be an operator in H, with D(S)D R(N). Suppose
there exists a constant a < 1/I", where I' = max (v, ¢), such that for
any u,v € D(S) we have Z(Su — Sv) < aZ(u — v) (p.p.).

3.1I1.4. Let ¢ be an element of _y°(L')N D(SN). Suppose there
exists a sequence of elements ¢, € _4(L) such that N, —— Ne.

3.II1.5. Suppose there exists a set B C H with the following proper-
ties:

3.1I1.5(a). ¢ € Bc D(SN) and S(NB N C(N¢)) < R(L'), where p =
I'[|SNg||[/(1 — al);

8.1IL.5(b). If u,ve H, u,e D(N) for n =1,2, +++, u, —> u and
Nu, —=- v, then u € D(N) and Nu = v; if in addition w, € D(L') N B
and Nu, € C(N¢) for n =1,2, -+, then u € B;

3.II1.5(c). If we B, Nue C(N$), SNu=L'v, and v —pe A’ =
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{w|there exists a sequence of elements w, € A such that w, — w and
lim,_.. Lw, exists}, then v € B.
Then there exists a unique element w with the following property:

(3.6) There exists a sequence of elements w, € D(L — SN) such
that Nu, — Nu and (L — SN)u, —0; and u — ¢ € A'.

This unique “solution” wu will belong to N-'C,(Ngp) N B (i.e. Nu € C(Ng)
and u € B); if in addition w € D(L), then u is a solution of (3.4).

Proof. First we shall show that L', A’, N, S, ¢, B satisfy the hy-
potheses of Theorem 3.II.

38.11.1. Clearly L' and N are linear. It is also clear that A’ < D(L/).
Further A’ and _#°(L') are disjoint. For, suppose u € A’ N _+"(L').
Then, since u € A', there exists a sequence of elements u, € A such
that %, —w and lim, .Lu, exists. But u is also in _#°(L'), hence
lim, .Lu, = L'v = 0. Now by 3.1I1.2(a),(b), and Remarks 2.1I1.4,5,

lua Il = Bl Nug || = B[] Lun ||

Hence u, — 0 and so w = 0. Thus A’ and _#"(L') are disjoint, and it is
now clear that A’ @ (L") c D(L').

We must still show that D(L')c A’ _+(L'); that is, that any
element of D(L') is also an element of A’ 1+ (L'). Let u € D(L’).
Then there exists a sequence of elements u, € D(L) such that u, —u
and lim,..Lu, exists. (In fact, Lu,— L'u). Let v, =Qu,, where @
again denotes the projection of D(L) onto A along _s~(L). Since v, € A,
we have (again from 3.II1.2(a),(b) and Remarks 2.1I1.4, 5)

lve — vl = Bl Nv, — Nu || < BI|| Lw, — Loy || .

Thus v, is a Cauchy sequence. Let v =lim,..v,. Then Lv, = Lu, — L'u;
hence v € A', and L'v = L'u; this last means that u — v € _#"(L'). Hence
ue AP 4+ (L), as was to be proved.

Obviously, D(L') < D(N).

3.11.2(a). Let u € A’. Then we know there exists a sequence of
elements u, € A such that %, — « and Lu, — L'u. By 3.I11.2(a),

ZN(u, — ) = VT || L(u, — w) || (p.p.)

and hence lim, ;.|| N(u, — %) ||, = 0. Also by 3.II1.2(b), Z(u, — uz) <
BZN(u, — u;) (p.p.) and hence also lim, ;.|| (%, — %;)||; = 0. Then by
Remark 2.II1.3. there exist two unique elements u,, v such that u, LN U,
and Nu, —— v. Then by Remark 2.III.1., U, — U,. But u, — u; hence
u, = u. Also, by 3.II1.5(b), v = Nu, and so Z(Nu — Nu,) — 0 uniformly
p.p. Then, by Remark 2.111.6, | ZNu — ZNu,, | — 0 uniformly p.p., or,
ZNu,, — ZNu uniformly p.p. But by 3.1II1.2(a),
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ZNu, =V v || Lu,||  (p.p.),
hence

ZNu < 1/71£m||Lu,,u =vVy||L'u]| .

The remaining assumptions of Theorem 3.II. are obviously satisfied.
Hence there exists a unique solution u of

3.7 (L' = SN)u =0 and u—¢eA.

We now want to show that wu satisfies (8.6). Clearly there exists a
sequence of elements v, € A such that v, -4 — ¢ and Lv, — L'u. Now
let u, = v, + ¢, (see 3.I11.4). Then

By 3.II1.4., N(¢ — ¢,) —— 0. Also, v — ¢ — v, € A"; and hence, as we
have seen in the preceding paragraph,

ZNw—¢ — ) VT || L(w—¢—2,) || =VT|L'u— Lv,|| ;

thus also N(u — ¢ — v,) —— 0. Hence it follows that N(u — u,) — 0.

It now follows from Remark 2.III.1. that Nu, — Nu; and from
3.1I1.8. and Remark 2.II1.5. that SNu, — SNu. Hence (L — SN)u, —
(L’ — SN)u = 0. Thus u does indeed satisfy (3.6). It is clear that if,
in addition, u € D(L), then u satisfies (3.4).

We must still prove the uniqueness of “solutions” of (3.6). Let u, v
be two such “solutions.” Thus, u —pe A, v — Pp e A/, and there exist
sequences of elements u,,v, € D(L — SN) such that Nu, —Z, Nu,
Nv, = Nv, (L — SN)u, — 0, and (L — SN)v, — 0. By 3.IIL.3.,

Z(SNu,, — SNu;) < aZN(u, — Uy) ;

and hence by Remark 2.II1.4., SNu, is a Cauchy sequence. Thus
lim,_.. SNu, exists. Clearly then, since (L — SN)u,— 0, lim,_. Lu,
exists. But from 3.III.1(b) and the definition of L’ (see also the defi-
nition of 7 in §2) it is then easily seen that lim,_. Lu, = L'u.

Let @ again denote the projection of D(L) onto A along _4(L).
Then v — ¢ — Qu, € A’ and hence by 3.II1.2(b), Remarks 2.111.4, 5, and
3.11.2(a) for L’ (proved above),

lw — ¢ — Qu, |l = Bl Nlw — ¢ — Quy,) ||
= Br|L'(w — ¢ — Qu,) || = BI' || L'u — Lu,|| .

Thus, Qu, —u — ¢ and NQu, — N(u — ¢). Similarly Qv, — v — ¢ and
NQv, — N(v — ¢). Hence Qu, — Quv,—u —v. Also, N[u, — Qu, —
(v, — Qv,)] — 0. But by 8.II1.2(a), 3.1I1.3, and Remarks 2.11.4, 5.
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I NQu, — Qu,) || = I' || L(Qu, — Qua) ||

=I"|| Lty — v,) || = " [[I(L — SN)u,, ||
+ [[(L — SN, || + || SNu,, — SNwv, (]

= I'[Il(L — SN)u, || + [[(L — SN)v, l]
+ al’ || N(u, — va) |

= I'[I[(L = SN)u, || + [| (L — SN)v,|l]
+ al' || N(u, — Qu, — (v, — Quy)) ||
+ ol || N(Qu, — Qv,) || .

Thus,

| N(Qu, — Qu,) || < ~1—1— {I' (L — SN)u, || + [ (L — SN, |[]
—al’

+ al’ || N(w, — Qu, — (v, — Qu,)) ||} .

Now the right hand side of the above inequality — 0 as n — oo, hence
NQu, — Qv,) — 0; then by 3.III.2(b), Qu, — Qv,—0. But u—v =
lim, .. (Qu, — Qv,), so w = v. This completes the proof of Theorem 8.III.

THEOREM 3.IV.

3.IV.0. Let G,G,, --- be a sequence of pairwise orthogonal closed
linear manifolds whose direct sum is H. Let P, denote the orthogonal
projection onto G,. Suppose that the partial norm Z and the subspaces
G, are related as follows: for any u € H,

(Zuy = 5, (ZPu) (.0 .

3.1V.1(a). Let L, N be linear operators, A a linear manifold such
that D(L) = A@ _+(L). Let D(L)c D(N).

3.IV.1(b). Let L and N be reduced by each G, n=1,2,---
(P,Lc LP,, P,Nc NP,). Suppose that P,AC A, forn=1,2, «---. Sup-
pose that (L) NG, s closed, for n =1,2, «--..

3.1V.2(a). Suppose there exists a constant v such that for any u € A
we have (ZNu)* < v|| Lu|* (p.p.).

3.IV.2(b). Suppose there exists a constant B such that for any
u € D(N) we have Zu < BZNu (p.p.).

3.IV.3. Let S be an operator wn H, with D(S)>D R(N). Suppose
there exists a constant « < 1/I", where I' = max (v, o), such that for
any u,v € D(S) we have Z(Su — Sv) < aZ(u — v) (p.p.).

3.IV.4. Let ¢ be an element of _4(L') N D(SN), where L' denotes
the restriction of Sy, LP, to DXy LP,)N D(N);, suppose that

;‘ZlNPid)ia No as n— .

3.IV.5. Suppose there exists a set B C H with the following proper-

ties:
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3.1V.5(a). ¢ € BC D(SN) and SNBC R(L") (where L' is defined
an 3.IV.4);

38.IV.5(b). If w,ve H, u,e€ DIN) for n=1,2, «++, u, —>u and
Nu,, —=- v, then uw e D(N) and Nu = v. If in addition u, e D(L')N B
and Nu, € C(N) for n =1,2,---, where p =I'||SN¢|||1 — al’), then
u € B.

3.IV.5(c). If we B, Nuec C(Np), SNu = L'v, and v —pe A" =
{fu|ue DL, and Puec A for n =1,2, .-}, then v e B.

Then there exists a unique u € B satisfying

(3.8) u — ¢ e A" and there exists a seq*;tence of elements
u, € D(L — SN) such that Nu, —— Nu and (L — SN)u, — 0.
Proof. We first show that L', A’, N, S, ¢, B satisfy the hypotheses

.of Theorem 3.II.

3.II.1. The operator L’ (see 3.IV.4) is the following: D(L’) =
{u|we D(N), Pue D(L) for n=1,2, ..., and >\=,LP,u exists}, and
for any w € D(L'), L'u = X7, LP,u. It is easily seen that L’ is linear,
reduced by each G,, » =1,2, .-+, and that L c L'. Also, D(L’) C D(N).

The set A’ (see 3.1V.5(c)) is given by A’ = {u|u ¢ D(N), P,u € A for
n=1,2,--+, and > ,LP,u exists}. It is easily seen that A’ is linear;
and of course A’ D(L').

A’ and _#°(L') are disjoint, for suppose ue A’'N._ /" (L'). Then,
since we A', Pue A for n=1,2,---. On the other hand, L'u = 0;
hence P,L'u = LP,u = 0. Thus P,ue€ AN .4+ (L)forn =1,2, --- Hence
Pu=0for n=1,2,+-- and so w = >;o,P,u = 0.

From the last two paragraphs it follows that A’ @ . »(L') < D(L').
We must still show D(L)c AP .1 (L'). To see this, let u be any
element of D(L'). Thenforn =1,2,.--, Pue D(L)=A& _+(L) (by
3.IV.1(a)). Hence there exist elements v, e A, w, € _/"(L), such that
Pu = v, + w,. Clearly, since any projection is idempotent, P,u = Pu =
Py, + P,w,; Pw, e A by 3.1V.1(b), LP,w, = P,Lw, =0 or P,w,e _1"(L).
But the representation of an element of A .+ (L) as a sum of an
element of A and an element of /(L) is unique, so P,v, = v, and
P,w, = w,. That is, v,, w, € R(P,) = G,. Further, by 3.I1V.2(a),(b),

But w € D(L'), so > ,LP,u converges and hence lim, ;... || >f.,LPu || =
0. Hence lim, ;.|| 2ip;ll; = lim, e || N(Zi2nv:) ||, = 0. Then, by
Remark 2.I11.3., there exist unique elements v, v' such that >7-,v; 2w
and N Z;”:lvi—z—av’. Clearly v = >zv;. By 3.IV.5(b), v e D(N) and
Nv =7v'". Also, Pv=P,>>w,=P>2,Pv,=>2,P,Pv,=Pw, =v,€ A,
and o LPwv = >y Lv, = >\, LP,uw = L'u; thus, ve A’ and L'v = L'u,

2(50) = 62N(%v) = 8V | L(Sv)| = 8V S LPu

i=n

|
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or, u —ve 4 (L'). Hence ue A'P _+ (L), as was to be proved.
3.11.2(a). Let % be an element of A’. Then P,u € A and hence

(ZNPuy < v || LPul*  (p.p.).
Applying 3.IV.0 and 3.IV.1(b) gives
(ZNuy = 3 (ZP,Nuy = 3\ (ZNPuy < v 3| LBl (p.p.) -
Now note that P,LP,u = LP = LP,u, so LP,u e R(P,) =G,. Also
L'w = 3\ LP,u; hence LP,u = P,L'u. Therefore
SNLPu|P =S| P LulP = || L'u|P.

Thus,

(ZNu) < v|[L'wl|*  (p.p.)

as was to be proved.

It is immediately seen that the remaining conditions of Theorem:
3.II. are satisfied. Hence we can apply that Theorem and obtain the.
existence of a unique solution u of

(3.9) (L' —=SN)Yu =0 u—¢eA.

We shall now prove the equivalence of (3.8) and (3.9). Suppose:
first that u satisfies (3.9). Let u, = >\, Pu. Clearly u, = >»,Pdpec A
and hence, by 2.1.2, 3.1V.0, 3.1V.1(b) and 3.IV.2(a),

ZN@ — w,) = ZN(u — ¢ — (u, — 3, P)) + ZN(¢ — 3 Pp)

=v7||L(u—¢ = (u.— 3 Pe))| + ZN(s — 5 Po)
=V i=%lP¢L’u \ + [(ZN¢>>2 - Z (ZNP@)”]W (p.p.)

Thus from 3.IV.4. it follows that Nu, —> Nu. Also we know from
Theorem 3.II. that the only solution of (3.9) belongs to B D(SN);.
hence by 3.IV.3. and Remark 2.III.5., it follows that SNu, — SNu..
Therefore

lim (L' — SN)u,, = lim Lu,, — lim SNu,, = L'u — SNu =0 .
Hence u satisfies (3.8).

Conversely suppose w € B to be a solution of (8.8). Thus, we sup-
pose that 4 — ¢ € A’, and that there exists a sequence of elements.
u,€ D(L — SN) such that Nu, —— Nu and (L — SN)u, —0. From
3.IV.3. and Remark 2.II1.5. it then immediately follows that SNu, —



ON CERTAIN NON-LINEAR OPERATORS 511

SNu; hence also Lu,— SNu. Note that by 3.1V.5(a) SNu € SNBcC R(L');
hence there exists v € D(L') such that SNu = L'v, and, since we have
seen that D(L') = A’ @ _+(L'), it is clear that we can choose v so as
to belong to A’. Then, letting @ denote, as usual, the projection of
D(L) onto A along #(L),

Z(w — Qu,) < BZN(v — Qu,) = BV v || L'v — Lu, ||
and hence by Remark 2.I11.4., Qu, — v. Further
Py(u — v) = lim Py(u, — Qu,) .

Now u, — Qu, € -+ (L), so Pyu, — Qu,) € +"(L)N G,. Hence, since by
3.IV.1(b) +"(L)N Gy is closed, Py(u —v)e .+ (L)NG,. Hence, since
4 —ve€D(N), w—ve +#(L'). Thus we now have two decompositions
of the element u of D(L’') as a sum of an element of A’ and an element
of +(L'): u=w—¢)+¢d=2v+(u—2v). But we have seen that
D(L')y = A" @ 4" (L"), so this decomposition is unique and hence % — ¢ =
v. Hence, (L' — SN)u = L'( — ¢) — SNu = L'v — SNu = 0, as was to
be proved.
This completes the proof of Theorem 3.IV.

4. Applications. In this section we shall apply the results of §3,
specifically Theorem 3.IV., to non-linear partial differential equations of
the form

(4.1) a’°<62 o )mu(y, t)

A
o <6m+ku mEy, omthy,  gmrk=ly
- otm+E ! atm+k—1ay’ ’ atkaym’ om+E-1’ *
m+k—1 m+k—2,
0 u’6 uv"':‘g"b'b',u’yrt)
ot*toym™ ' tmrE-2 oy

(the partial derivatives of % that are permitted to occur on the right
hand side are 9'*/u/ot'9y’ with j < m and 7 + j < m + k), where @ is
a real valued function of ((m + 1)(m + 2))/2 + k(m + 1) + 2 real vari-
ables, continuous in the last two (y and t¢), and satisfying a Lipschitz
condition in all the other variables, in a domain defined by |u| =< h,
Osy=srm 0=st=r.

We are interested in solutions u(y, ) of (4.1), valid for 0 <y < =,
0 <t <0 <7, which satisfy the initial conditions

u . .
4.2) = f,(¥) (1=0,1,--,2m +k—1)
ot! =0

and the boundary conditions
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621'4 -Hu

y=r oYy®r+t |y=x

1=2i+1<m).

%u 9%+
(4'3) @ ayaz -0 6yzi+1

0%y
=a

—a % =0
¥=0 oy

Under certain conditions, we shall obtain results on the existence
and uniqueness of solutions, in a certain generalized sense, of the system
(4.1), (4.2), (4.3). Before we give a precise definition of this, it will be
useful to introduce the following notation.

DEFINITION 4.I. A real-valued function % of one or two variables,
defined on some domain R, is said to be of class S? on R if and only if

(a) w is of class C** (all derivatives up to order ¢ — 1 exist and
are continuous) on R;

(b) all derivatives of order ¢ exist almost everywhere on R and are
of class L R) (see §2),

(¢) all derivatives of order ¢ — 1 are absolutely continuous on R
(if » is a function of two variables, say ¥ and ¢, this will mean that
these derivatives are absolutely continuous functions of y for almost all
values of t).

DEFINITION 4.II. A real-valued function u(y, t) of the two real vari-
ables ¥y and ¢, defined on a domain R, ={(y,t)|0 <y <=, 0=t =< g}
is said to be of class T} on R, if and only if

(a) u is of class S? on R,;

(b) for almost all ¥ on the interval (0 <y < 7) it is true that
o‘u/oy’ (considered as a function of ¢ alone) is of class S?~* on the interval
0=t<a), for2=0,1,---,q.

Note that for p <gq, T? = S%
Now let us define what we mean by a “solution in the generalized
sense.”

DEFINITION 4.III. A real-valued function u(y,t) of the two real
variables y and ¢, defined on a domain R, ={(y,t)|0 =y <7, 0=t < g}
for some positive ¢ < 7, is said to be a solution in the generalized semse
(abbreviated as G-solution) of the system (4.1), (4.2), (4.3), if and only
if the following conditions are satisfied:

4.111.1.

(a) wu is of class T2*** on R,;

(b) u satisfies (4.3);

(c) wu satisfies (4.2).

4.11I1.2. There exists a sequence of functions u'(y,t), u*(y,t), ««-,
such that

(a) each u"™ is defined and of class T;»** on R,;

(b) each u" satisfies (4.3) for (1 <2t + 1 < 2m + k);
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(c) % € 871 on the interval 0 =y <w)for¢t=0,1, ---,
2m + k —1;

(d) lim [ 0w _ 0" ] =0 uniformlyon R, for(j<m—1,1+35 <
ottoy’ ottoy’ - -

| amﬂcu am+lcun 2 . . .
SO[ Sy gy ]dy = 0 uniformly in £ on (0 <

t <o), for © < m;
. (o ak 62 62 m am+kun 2
£ 11mH[__<_— >u”—(0<————,---, " ,t>]d dt = 0.
() n—o J0 JO Gt" 6t2 ayz 6tm+k w y y

THEOREM 4.I. Let m >0, k =0, be arbitrary but fixed integers.
Let » = ((m + 1)(m + 2))/2 + k(m + 1).

4.1.1. Let @(p, Dy, = ++, Dr, Y, t) be a real-valued function of (A + 2)
real variables defined, continuous in y and t, and satisfying a Lipschitz
condition with Lipschitz constant 0 wm the first )\ wvariables, on the
domain 2 ={(p, -+, 00,Y,t) |0y =<7 0=t =1} where h and T are
positive constants (Lipschitz condition in the p’s: if 0 <y <z, 0<t<r,
then |¢(p17'° 'rpx’y’t)_ @(ﬁly"'yﬁ)ﬂy’ t)l = 0[|p1 - pl] Foeeet ka - ﬁkl])‘

4.1.2. Let there be given 2m + k real-valued functions fy(y),

Fi®), =y fansna(y), each fly) being defined and of class S™*'~* on
the interval (0 =y < m). Let

& = max SE[M]Zdy .

i=0,1,.++,2m+k—1J0 dyz"""”‘_l_i

413. Let h >V w@2m + k)dc, where ¢ is defined by Lemma 4.II1.

Then, for some positive real number o < T, there exists a unique
G-solution of (4.1), (4.2), (4.3) with b =0, on R,. This solution u will
satisfy |u(y,t) | =hom 0Zy<rm 0=t <o.

COROLLARY 4.II. Lewis’ theorem, stated in §1.

Proof of Corollary. It is the special case m =1, k = 0, of Theo-
rem 4.1,

Proof of Theorem 4.1. We wish to obtain Theorem 4.I by an
application of Theorem 3.IV.

We shall take for the Hilbert space of §3 the space [L*(R,)]* (that
is, the space of ordered M\-tuples {u,, «+-, u,» of functions u; defined and
of class L* on R,) where ¢ will be determined later. The subspace
obtained by setting u;, = 0 for ¢+ = 2,3, ---, M (which space is, of course,
isomorphic to L*(R,) by the natural isomorphism % «— {u, 0, «-+, 0>) will
be denoted by H'.
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The sequence G, of pairwise orthogonal subspaces of H is defined
as follows: G, = {{x,(t) sin (ny), x,(¢) sin (ny), + + +, @,(¢) sin (ny))> | z(t) is of
class I? on the interval (0 <t <o) for 1 =1,2, --.,)\}. Since the func-
tions sin (ny) are pairwise orthogonal on the interval (0 <y < 7), the
spaces G, are clearly pairwise orthogonal. We shall use ¢, to denote
sin (ny), normalized to norm 1:

_ /2«
(4.4) b, = 1/ = sin (ny) .
The orthogonal projection of H onto G,, denoted by P,, is given by

4.5)  Pluy, <+, up
= {0, t9.0n)euw), -+, ([, D))

We define the partial norm Z as follows:

@8 Ky oo w> =[ [, trdy + -+ + [, tydy|”

It is easily seen that Z is indeed a partial norm on H (see Definition
2.1), and that the G,’s and Z satisfy Condition 3.IV.0 of Theorem 3.IV.

We shall also consider the orthonormal basis for L*R,) consisting of
the normalized cosine functions:

(4.7) YY) = 1/ v Ya(y) = COS (my) n=12---
T

If u is an element of L*R,), then it is easily seen that there exists a

unique element u* of L*R,) such that S w*(y, thr(y)dy = S u(y, t)p.(y)dy
T [} 0

(p.p.) for n =1,2, .-+, and S w*(y, hr(y)dy = 0 (p.p.). We now define

the operator U in L} R.) by Uu = u*, U is clearly linear and isometric;
hence U has a unique inverse U~ on the range of U, which is the class

of functions v such that rv(y, t)dy =0 for almost all ¢.

Roughly speaking, theooperators N, S, L of Theorem 3.IV will be
the following:

achu _ am+ku
NCu, 0, «++, 0> = W’Ulm””’u>

S<u1’ %y u)\> = <@(u1(y’ t) (Uuz)(y, ) NEREP ux(y, t), Y,1),0, <00, 0>

L, 0, +++, 0 < 7 ,0,~-,0>.
<u »= 6t’° 6t2 ay K
Let us now define L, S, N precisely.

DEFINITION 4.IV. D(N) = {<u, 0, -+, 0 ‘u is of class T2** on R.;
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u satisfies (4.8) with b = 0; and

converges, uniformly p.p. to a bounded function, for 1 +j57=m + k
and j < m, where w,(t) = | u(y, k. ()dy]}-
0
In that domain N is defined by

k m+k -+ K
N<u10)"'70>: am+u;U—1 0 v ’ 0 L ’
otm ot =gy otm ey
1 O™tE 0" 4 0 o’u 0 1 0
v m+k_;u/ 30 /L:yUl w ’ Q:y_u"Ul_l’u’>'
ot 0y ot otoy = oy* ot oy

It must still be verified that the above definition is meaningful; that
is, that (8"*¥+y/ot'oy”**) belongs to D(U™) = R(U), for 25 + 1 < m,
1+27+1=<m+ k. That is, we must show that

© Att+ed+1
g 4 u dy =0 (p.p.) .

But this is easily seen, for by (4.3)

0*u
v=x  Oy*

Sx ai+2]+1u at+2]u
o oty U oty

v=r i [azju
v=0  dtt oy*

|-
y=0

for 27 +1=m, ++25+1=m+ k.

DeriNITION 4.V. D(L) = {u,0, -+, 0>|u is of class Ty»** on R,,
<u, 0, «++,0>e D(N), u satisfies (4.3) for 27 < 2m, and 0'u/dt'|,-, € S°m+*—4-1
on the interval 0 =y <7) for t =0,1, -+, 2m + k — 1}.

In that domain L is defined by

ak 62 02 m
L, 0, .”’0>:<5’7(5t7- 5&;> u, 0, ...,0>_

DEFINITION 4.VI.
B=D(N)N{w,0, -+, 0>||u(y, )| =k  (p.p.)}.
DS)=H
S<vm+k,or °t v00> = <$(wm+k.0(yy t) ] 'woo(y’ t)v Y, t), Oy M) O>

Whel‘e wmj == vi‘gj and wmi“ == Uvi'21+1-
DEeFINITION 4.VII.

A={u,0,:+,0|<u,0,--+,00e D(L) and 8'u/ot!,-, =0 for 7 =
0,1, .-+,2m + k — 1}.
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DEFINITION 4.VIII. Let #7(t) denote the solution of the ordinary
differential equation

drc dz m
48 __( ) —0
(4.8) dt* \dt* T
which satisfies the initial conditions
Jaam
(4.9) AL s, forj—0,1,---,2m+k—1.
dt? le=o

LEMMA 4.JII. There exists a constant ¢, depending only on m, o,
and k (and mot on n) such that

(4.10) % < epmintei
Sfor p=kk+1,+-+,2¢9+%k, 1=0,1,--+,2m + &k — 1,
(4.11) (gﬁ < epmiii

for p=0,1, e, k—1,i=0,1,-+-,2m + k— 1.
The proof of Lemma 4.III. is given in §5.

DErFINITION 4.IX. f(y,t) = S [0, ri(t)]pn(y) where a,; =
|7 )y & = <5,0, -+, 0.

We now wish to show that L, S, N, A, ¢, B as given by Definitions
4 IV-VII and 4.IX satisfy the assumptions of Theorem 3.IV.

3.IV.0. has already been verified.

3.IV.1. It is clear that L and N are linear and that A is a linear
manifold. Also, by definition, D(L)< D(N). We shall next show that
L and N are reduced by each G,. \

If <u,0,.--,0> € D(N), then it is clear that P,{u,0, -+, 0> € D(N);
and

P,N{u, 0, «-+,0>
_p<6’"+’°u T X

e atm gy | ot oy

(Soa“(”’ D g0y )euw), (S 6“(’7' ) «lﬂn(v)d77>¢n(y), ,

(1, v, 9.ca) ¢n(y>> .

Recalling that 8%u/oy* is zero at ¥y =0 and at y =7 for 2t < m (see
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Definition 4.IV), that ¢, is zero at ¥y =0 and at y = xw, and that
d*p,[dy* = —n*p,, we obtain by repeated partial integration

"0 u(y, 1) oy B[
), St .o = () |, O
for 27 <m, 1+ 27<m+k

and

" 0" (1), B) — g @ S
S o ationit Va7 = n(—n’) P73 L1, Oba()dy
for 2§ +1=m, i+2/+1=m+k.

Hence, letting «,(t) denote qu(r, t)p,.(n)dy),
0

n(t) dm+e-1 n(t)
dgm+r ¢"(y)’ dtm+E—1 ¢‘n(y)

P,N{u,0,+-+,0> = <d
dx,(t)

_ gm+k 3 gmii

0 -1
2 @), U2 (xn(tmw»] , xn(tm(y))
= N<xn(t)¢n(y), 0: °t Yy 0> = NPn<u’ 07 ct 0> .

Thus N is indeed reduced by each G,.
In an entirely similar manner, we obtain that if {u, 0, ---, 0> € D(L),
then P,<u,0, ---,0> e D(L) and

P,L<u, 0, +++, 0>

<S[i< (=1 L%m]qﬁm)dv)%(y), 0, 0

=7 L, opumanpaw), 0,0
N <Z< tafca—;m) [(}u(v t)qsn(??)dv)cﬁn(y)], 0, «--, 0>

= 2= L) [([uer .man o] 0, -0
— LPu, 0, -+, 05 .

Thus, L and N are reduced by the G,’s. Obviously, P, Ac A. If
{u,0,+++,00e _+(L)NG,, then it is easily seen that u(y, t) is (almost
everywhere) of the form x(t)¢,(¥), and that x(f) is a solution of equation
(4.8). Hence
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¢

Conversely it is clear that any element of the form
2m+k—1
S enttibv), 0,4+, 0>,

where the ¢;’s are real numbers, belongs to _+"(L)NG,. Thus +(L)NG,
is a finite dimensional linear manifold, and hence must be closed. This
completes the proof of 3.IV.1(b). Of 38.IV.1(a) we must still show that
D(L)=A&® _+(L).

By definition, Ac D(L). A and _4"(L) are disjoint; for suppose
{u,0,+++,00e AN _»"(L). Then LPu,0,-+,0>= P,L{u,0,+++,0>=0,
and hence P, u,0, ---,0> e D(L) N G,; therefore x,(t) = S u(y, t)pa(y)dy

0
is of the form

2m+k—1 13
x(t) = >, (dx"

dtt
On the other hand, <{u,0, ---,0> € A, so

d'z, _ S"( o'u
t=0 o\ 9tt |t=0

dtt
Hence z, =0 for n =1,2,---, and therefore u = 0. Thus AP +"(L)C
D(L).
We must still show that D(L)c A -+ "(L). Let <{u,0,--+,0>e D(L).

Let again ,(t) = S:u(% t$a(n)dn. Define w(y, t) = 337, wn(t)ba(y) Where

.

=0

Yoy =0 for i=0,1, -, 2m+k—1.

2m-+k—1 di
wt) =" 3 (Ll

e

By Lemma 4.111.,

S Rl e

dz,
dtt

o 2m+k—1 dixn
Sem+ b S (e

t=0> CS;? ]2

2
)cnm+max(1,k)—l—t]

< n” (

t=0

II/\

2
> n2(l+m+ma1(1.k)—1—t)
t=0

which last is finite for | < 2m and 1 + j < 2m + k, since <{u,0, +++,0> e
D(L). It is now easily seen that <w, 0, -+-,0> € D(L), and of course
L{w,0,+++,0>=0. Further it is clear that <{u — w,0,.--,0> € A.
Hence <u,0,---,00 e AP _+"(L). This completes the proof that 3.IV.1.
is satisfied.
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3.IV.2(a). Let <u,0,---,0>e A, Let

2t = [uw, 00wy, &0 = L (L w) a0,

and
7u(®) = [ 6Pttt — 9)ds .

It is easily seen that

d7]n _Sén()demH: 1(t—-3)ds fori=0,1,~--,2m+k_1

dtt dtt
2m+k 2m+k,
T = |0 Tt = s+ 20
Hence
dlc d2 . m .
and
(4.13) d:l’z; =0 (G=0,1,-,2m+k—1).

But 2,(t) also satisfies (4.12) and (4.13) and hence z, = 7,. Thus using
Lemma 4.III., we obtain, for £ =10,1, --+,2m + k — 1,

ﬂ"_ = !S - /r?’"“ﬂ 1(t S) ’ < g” 2 12 max (p—k—m,—m)
di &.(s) 7 ds| < [0 Oén(s)ds] cn .
Hence

Ms

oo m m+k—j
(NG, 0, -+, 00 = 3, (ZPNCu, 0, -+, 03 = 3, 38 (w1 &2 )’
=1 1520 =0 dt

a
,S_ Z Z Z o SO g?ﬂ(S)dS cznzmax(i+j-k—m,j—m)
n J )

3
il

= \oc* 3 SG w(8)ds = noc? [ L<w, 0, «« -, 03 [[* .
n 0
Thus 3.IV.2(a) holds with
(4.14) v = age’h .

Note that ¢*» > 1, so ¥ > o; and hence I' = max (v, ) = 7.
3.IV.2(b). Let <u,0, +-+,0> e D(N). Then

(ZNGu, 0, ++-, 00 = 5 3 "5 (Lo = St

7=17=0 i=0 dtt

= (Z<u: 0: M) 0>)2 (p'p') .
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Hence 3.IV.2(b) is satisfied with B8 = 1.

3.IV.3. Let u = {Unmigor ***) %oy UV =Vmixn, ***, Voop b€ two ele-
ments of D(S). Define ul,, v}, as follows:

Ui gy = Wiy Vigy = Vi 2i=m, 1+25=m+ k)
U g1 = Ut; 544 Viggrn = UViggn
2ij+1=m,i1+2j+1=<m+k).
Then, recalling Definition 4.VI., and our assumption of a Lipschitz con-
dition in @
(Z(Su — Sv)) = g"(Su _ Svydy
0
= So‘[¢(u:n¢k0(yr t)r tcty uaﬂ(yy t)’ yy t)
- ¢(,Ufm+k,0(y1 t)y ct ,U(;O(yi t)r Y, t)]zdy
< (Ol ao = Vs + -+ [l — oldy
m mtk—j (n
<20 35| Tty — oty
2=0 2=0 0
=Y S S:[ui, — o ldy = N (Zw — v))  (p.p.) .
7 [
Thus we have
Z(Su — Sv) = aZ(u — v) (p.p.)
with
(4.15) a=0Vx.

Note that ¢ has not yet been determined, and so far ¢ can be any real
number in the interval 0 < ¢ < 7. If we further restrict ¢ to

1
(4.16) g < '0—2‘0—‘/7\,——‘3—' ,

then we will have al” = ay < 1, and so 3.IV.83 will be satisfied.
3.IV.4. From assumption 4.1.2. and Lemma 4.III. we obtain, for
jJ<mand j+1==m+Ek

dl 2m+k—1

2 2
2 anﬂ"?(t)] é Z ,nZJ [Z anic,nm+max(l,k)~i~1:|
dtt i=o n i
é (2m + k) 2 Z cZazinﬂ?m'{-k*l—i)

S 3

= @m + k)t S, lgr<w> dy = 2m + k)'¢’e* < oo .

= ) dy2m+1c i-1
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It is now easily seen that ¢ = {f,0, ---,0> € D(N). Further,
swol= || Lay| s+ (L)ar]"

- [n by n2<2 amr;l(t)) ]1 < V7T @2m + k)es .

Thus, recalling 4.1.3.,
(4.17) lfy, )| =V m@m + k)ed < h,

and hence ¢ € B. Also, ¢ obviously belongs to ../"(L’). We have already
seen that ZN¢ is (essentially) bounded; it is easily seen that the con-
vergence of >\, (ZNP,$)* is uniform.

3.IV.5(a). By Definition 4.VI, Bc D(N) = D(SN). Thus, ¢ € BC
D(SN). To see that SNBc R(L'), we shall show that R(L') = H'.
Given any element <u, 0, --+,0> of H', let &,(t) = S w(y, t)p.(y)dy. Let
2,(t) = S‘Sn(s:)'rz,,”,c (t — s)ds and let v = > 2,(t)p.(y). Then it is
clear that <v,0, ---,0> e D(>\v.;, LP,) and that >, LP,<v,0,---,0> =
u, 0, «++, 0. We must still show that (v, 0, ---,0> e D(N). Recalling
that, for y=0,1, ---,2m + k — 1,

= || ta(e) L et = 0) as|

é I:O'S gi(s)ds]/ cn max (j ~k—m,—m) ,
0

dt’

we see that for j <m and 7 + Jj < m + k the series

|-G |

is majorized, term by term, by the series
i c’o Sg 2(s)ds

which of course has a finite sum, namely ¢ O'S S [u(y, t)]zdydt It is now

easily seen that <{v,0, ---,0> € D(N) and hence <{u, 0, ---, 0> e R(L").
3.IV.5(b). Let <u",0,.--,0>€ D(N) for n =1,2, ---,

<uny 07 ey, O> —Z—) U = <um+lc.0’ cc u00> y

and N<{uw", 0, ---,0> L= Dpik0y ** % Vogp. That is,

@18 lim | | o — w0y + | a2y

n—r00

Foeee + Szugody] =0 uniformly p.p.
0
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. T am+ kun 2
@19t o, —
r _ am+kun 2
+S0<vm+k—l,1 - U~ m) dy + «--
+ E:(v"" — u”)’dy] =0 uniformly p.p.

Two things are obvious: first, all u;,’s are zero except for U,ix.o;
second,

(4.20) um+k'0 == ’voo .

Let w;.; = v;5; and w; 54, = Uv;454,. Then (4.19) can be written as

. L3 omtyn \2
(4-21) }'112 [So(wm+k'0 - W"'ﬂ;‘—> dy
x omtkymn 2
[ (e — sy -
+ S:(woo — u”)zd?/] =0 uniformly p.p.

Forj<mand 1 +J5<m+Ek,

H:wi.nl(’?r t)dy — % ::
= [ESZ[wi.JH("]; t) — ﬁ%——%}-]z an ]112 ’

which last converges to zero uniformly almost everywhere in ¢, by (4.21).
Hence

i 207, )
ne  OL1ON)?

n=vy

v
gowi,_ﬁ—l(y]’ t)d77

7n=0
uniformly p.p. on E,. But then it follows from (4.21) that
w;i(Y, t) — w0, 1) = S:wi,j+1(77y t)dy (p.p.),

or,

(4.22) i’;"Tzw, (G<m,iti<k+m).

Similarly, for j <m, 1 4+ 35 <m + k,
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x| t _ ai+]un(y’ T) z’=t]2
R = s L
. o t ai+]+1u’n(y’ T) 2
= So[go<wi+l.j(y, T) — ooy )df] dy
(o al+j+lun S
s o [ [ [wnstn, 0 - Tl D Jacay

which converges to zero as n — «, by (4.21) and Remark 2.III.1. Hence
we obtain

(4.23) W —wiy  GEm iri<mtR).

Combining (4.20), (4.22), (4.23) yields

ai+Ju
4.24 W, = ——mik0
(4.24) ! atioy’

Let x,(t) = X;um.o(y, Dd(y)dy, xi(t) =§:u’(y, t)pa(y)dy. Note that,
forj=m,i1+3j=m+¥k 1=12 .-+, v=12 ...,

é/ <n1 dix?“ )2 = 27:: [fn,f di. (x, — 90;)]2 + 2 f“ <?’b’ dixt, >2 )

n dtt = dt n=vy dtt
Also,
o d oo
2 s 1 ] < [ J — ol
%[n 7F (x, —2b)| = 27; n 7 (%, xn]
. 2 rs 6)51’-/ .
- So[@tiﬁyj (0 — “)] %
. T _ 6i+Juz 2
=2 So[wi,, ooy ] dy .
Thus
dix, 7 ot rIyl 2 dixzt
4.25 ; < S[ Y — ] ; .
( ) wzzlu<n dtt ) 2 0 Wis ot'oy’ +22<’)’L dtt )

It ¢ is any positive number, then by (4.21) there exists an integer I.
such that
x Pitiyte ]2 e
Wy — —— | d — .p.).
So[ ' oty v <+ (p.p.)

Since <{u,, 0, -+, 0> € D(N), there exists an integer . such that
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Hence

o di 2
pY <nj dgtgin ) <e

and so the convergence of the series

is uniform p.p., for 7<m and 72+ 7 < m + k. It now follows easily
that 4 = {Upix0, 0, -+, 0> € D(N); and by (4.23) Nu = .

If in addition <u", 0, ---,0> € B, then |u"(y, t)| < h and hence obvi-
ously | Up+x.0¥, t)| = |lim,_ .. u™(y, t)| < h; hence u € B.

3.IV.5(c). Suppose <u,0,---,00e B, N<u,0,---,0> e C(N¢),
SN{u, 0, «++,0> = L'{»,0, ---, 0>, and P,({v,0, -+-,0> — ¢) € A for n =
1,2, --.. First, note that <v,0, ---,0) e D(L')c D(N); thus in order
to prove that <v,0, ---,0> e B all we must show is that |v(y,?)| < h.
Clearly, [v(y,t)| = |v(y,?) — f(y, )|+ |f(y,?)]. Now

w6 = £ )1 = || 2- 1ot 6 — 70, D) |
(2o -syal

<V TZNK»,0, «++,0> — ¢)
<V'al || Lv,0,---,0>|| = V'&l"|| SN, 0, - - -, 0|

N

< V7T [ap + || SNo || = v 7 ISNelL
1 —al’

Also we have shown in (4.17) that
If, 1) =V 7w @m + k)es .

Hence

Lo, O = vVar SN | 7 em + k)es .
1 —al’

We know that 17 (2m + k)c§ < h; hence the problem now is, can
we choose a positive ¢ < 7, satisfying (4.16) and

(4.26) var WSNell v mem + ks .
1 —al’

Now, 7 is a constant multiple of ¢ (see 4.14); a does not depend on &
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(see 4.15); while ||SN¢]|| is a continuous function of o, zero at ¢ = 0.
Thus the function

1

—al’

is continuous on 0 < ¢ < 7, and g(0) = 0. Hence there certainly exists
a positive ¢ < 7, satisfying (4.16) and (4.26).

This completes the proof of Theorem 4.I.

In Theorem 4.I. we considered the system (4.1), (4.2), (4.3) with the
restriction & = 0. This restriction can be omitted if we restrict the
derivatives occurring on the right hand side of (4.1) to derivatives of
the form o'**ufot'oy*’ with 27 < m, © + 27 <m + k. Thus if (4.1) is
replaced by

(4.12) ( — ) .
at" ot? oy*
<am o _omtw o Ou du du o >
atm K ’ 6tm"-k 2ay2 b ’ at3 ’ atayzv at2 , ay2 ’ 6t ’ , ,
we obtain

THEOREM 4.IV. Let the conditions of Theorem 4.1 be satisfied,
except that A= m/2 + 1)(m/2 +k+1) 1f m 1is even, and )=
((m + 1)/2 + k + 1)(m + 1)/2 if m is odd.

Then, for some positive real number o < T there exists a unique
G-solution of (4.1a), (4.2), (4.3) with arbitrary a and b, on R,.

Proof. The proof runs along the same lines as that of Theorem
4.1, and we shall here merely indicate the major modification necessary
in that proof. This modification consists of replacing (4.4) by

(4.42) b, = / 2 snn(y + a,)
T
where
(4.27) o, = 1 arc tg <— ﬂl) .
n a

5. Proof of Lemma 4.III. Throughout this section we shall use
the standard abbreviations f’, f”, -+, f*, for dfldt, d*f|dt*, - - -, d*f|dt*.

LEMMA 5.1. Let f(t) be a real-valued function of class C= on the
interval (0 <t < a). Let n be a positive integer. Let x(t) be a solu-
tion of the equation
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(5.1) a"(t) + n'z(t) = f(¢)
valid for 0 <t < a, and satisfying the initial conditions
(5.2) 2(0) =2'(0)=0.

Then, for 0 <t <a and p=0,1,2, -

5.3) |2(0)] < 5w £ 9(8) | + ant sup| f(9)] -

Proof. The proof will be by induction on p¢. We first consider the
cases =0 and ¢ =1. It is easily seen that

w(t) = S £(s) % sinn(t —s)ds  and  @(t) = S £(s) cos n(t — s)ds.
Hence, for 0 <t < a
#()| o sup|f)|  and  |@(®) = agup|fe),

which is exactly (5.3) for £ =0 and ¢ = 1.
Now suppose that (5.3) has been proved for ¢t < v =1. Then,

[2*(t) | = ‘(% + nz) x> I(t) — nPx™1(t)

= 1F00(E) — wat(E) | < |00 + w200
<170+ w [ S0 170 | + an sup | £5)] ]

IA

S £ | + o’ sup | £(6) |
which is (5.8) with £ =v 4+ 1. This completes the proof of Lemma 5.1.

LEMMA 5.II. Let f and x be as wn Lemma 5.1., except that x(t)
need not satisfy the initial conditions (5.2). Then, for 0 <t < a and
/,l = O’ 1’ LN

5.4) |#9(t) | < n*[2(0) | + m | (0)|
+ S O] + an sup | £6)] -

Proof. Merely note that the function z*(t) = x(t) — x(0) cos (nt) —
2'(0)1/n sin (nt) satisfies all the assumptions of Lemma 5.1,

LEMMA 5.III. For every positive integer q and positive real number
o there exist two real numbers c(q, a), d(q, a) (depending only on q and
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a, and not on n or f) such that, if f(t) is a function of class C= on
0=t =a) and if x(t) 18 a solution of

(5.5) (& + w)at) = 7y

valid for 0 <t < a, then
5.6) ot = [de, ) Sur 00|+ d(g, @) sup |6
=0 0=s=a
for0st=aand p=0,1,..-,2¢q.

Proof. The proof will be by induction on q. If ¢ =1, then from
Lemma 5.11., (5.6) follows immediately with ¢(1,a) =1, d(1,a) =1 + a.

Now suppose (5.6) proved for ¢ < p. Let x(t) be a solution of (5.5)
with ¢ = p 4+ 1. Then g(t) = 2"(t) + n’x(t) satisfies (5.5) with ¢ = p,
and hence, by our inductive assumption we have, for 7 = 0,1, «-., 2p,

[~ 2p—1
gV ] = n'"?|c(p, @) pZza wT g (0) | + d(p, @) sup | £(s) l]
= w2 [ (v, ) S w2 |17(0) + ww(0) | + d(p, @) sup | £(3) |
L =0 <s=Za
r 2p+1 . . 2p—1 .
= w2 [ep, @) (S we 4|20 O)| + S [29(0)|)
| =2 1=0

+ d(p, @) sup | f(s) I]
= w2 | 2e(p, @) S 200) | + d(p, ) sup | 76)] ] -

Thus we have seen that, for 0 <t <a, and j=0,1, --+,2p
61D 1970 = 0w | 2ew, 0) S| 500) | + d(p, ) sup [ £6)] ] -
On the other hand, by Lemma 5.1I1.,
5.8) le®(@) | = n* | 2(0)| + n+" | a'(0)|
+ S g9 |+ ant sup |g(s)|

for 0<t<a, £=0,1,2,.--. When ¢ =2p+ 2, then the highest
order derivative of g occurring on the right hand side of (5.8) is at most
2p, so that we can apply (5.7); thus, for £ =0,1, -+, 2p + 2,

le® ()| = n* | %(0) | + n+* | 2'(0) |
+ S et [20(10, a) S [ 29(0) | + d(, @) sup | f(s) I]
=0 1=0 =s=a

o+ antiner [20(10, a) Elnm“‘i |2©(0) | + d(p, @) sup | £(s) I]
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2p+1
é n#—ﬂfl Z n?p +1—4 lx(i)(o) I
i=0

(= D) + aln 26w, @) S 2 0)|
+ d(p, ) sup | £(5) ||
= o[+ 2P + 1+ @elp, @) S e #(0)|
+@p + 1+ a)d(p, @) sup | £6) || -

Which is (6.6) for ¢g=p + 1 and c¢(p +1,a) =1+ 2@p + 1 + a)e(p, a)
and d(p + 1,a) = 2p + 1 + a)d(p, ).
This completes the proof of Lemma 5.1II.

LEMMA 5.IV. For every positive integer q, nonnegative integer k,
and positive real mumber a there exists a real number e(q,a, k) (de-
pending only on q, a, k, and not on n) such that, if x(t) is a solution

of
(.9) a* ( @’

Y a(t) = 0
4 (g ) o) =

valid on (0 =t < a), then on (0=t = a),

(5.10) @) | < ne s te(g, a, ) Y mE @0 (0)|
i—k
Jor p=Fkk+1,---,29+Fk
and
(5.11) | 2(t) | < nve(q, a, k)zqg\:l P 6 9(0) |
i

for p=0,1,+- k—1.

Proof. Applying Lemma 5.1II. to z*'(¢) we get, for p==Fk, k+ 1,
«e,29 +k, and (0 =¢ < a),

| x(#)(t) | — l (x(k))(uflc) I é nu—k—-qc(q’ a) 2:2;:)1%21171—12 l x(lcfi)(o) |
o uek—aq T g1t | @)
= re(g, @) 3y W B 0(0)]
Also, for ¢ < k, we have, on (0 =t =< a)
x| < [2*(0)] + asup |x*V(@)| < ---
0<st=<a

= [a®(0)[ + alx®V(0)] + «-+ + @ [2*V(0) |
+ a**sup [x*(t) |
0st<a

$k—
< max (1, a*)-c(g, " 3, et g(0) |
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Thus (5.10) and (5.11) hold with

e(q, a, k) = max (1, a*)-c(q, @) .

Proof of Lemma 4.1II. Apply Lemma 5.IV. with g = manda =0
to the functions 7" of Definition 4.V.
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