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1. Introduction and summary. Consider a partial differential equa-
tion

u  O*u
(1.1) @<—8?°_, M’ e, U, y,t> =0

with boundary conditions of the type

6%% _ aziu

== =0 (1=0,1, -+, 4);
oy _ oy e

(1.2) A
aiu = p = o0
i o= L) (i=0,1,--,k).

By means of a Fourier sine-series expansion with respect to one of the
independent variables, say v,

wy, 1) = 3, X,(0) sin (),

X, (t) = %S:u(y, t) sin (ny)dy

(1.3)

there corresponds to the system (1.1), (1.2) an infinite system of ordinary
differential equations in the X,’s

k
(1.4) @,,(t, X,(t), dd)t(l, oo, ddffl , X1), > =0

with the boundary conditions

IX
1.5 n
(1.5) at

= 2| ) sin )y
T Jo

=0

where

(1.6) Dn(t, 83,8, oo, 8k, 8, «00) = ESY(D<§, st sin (ty),
T Jo =1

S\ it cos (iy), -+, 3} st sin (i), , t) sin (ny)dy -
i=1 =1

Disregarding for the moment all questions of convergence of the
series and permissibility of term by term differentiation and integration,
the two systems (1.1), (1.2) and (1.4), (1.5) are equivalent; so that a
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496 GERTRUDE I. HELLER

partial differential equation has thus been reduced to an (albeit infinite)
system of ordinary differential equations.

D. C. Lewis [1], has put this method on a rigorous basis for second-
order differential equations of the form

*u o*u ou ou
1.7 ——*‘:@<-y -— U, ;t>
(€7 o oy ot oy Y
with boundary conditions of the type
u(0,t) = w(w,t) =0

wy, 0) = fly) L

(1.8) l
ot le=o

= 9(¥)

where the functions f, g and @ are assumed to satisfy certain conditions
which are stated below. Lewis constructs a system of solutions X,(t)
of the infinite system of the type (1.4), (1.5) corresponding to (1.7),
(1.8) and proves that the function

wy, 1) = 35 X(0) sin ()

is (in a certain generalized sense) a solution of (1.7), (1.8).

Following a suggestion of D. C. Lewis to generalize his result, the
present paper does so by applying his method to operators in Hilbert
space.

After introducing the notation and definitions of §2, we establish
in § 3 some results concerning solution of the equation 7w = 0 where T
is a (non-linear) operator in Hilbert space. 7' is of the form T'= L — SN
where L and N are linear, and S satisfies a Lipschitz condition—with
respect to a “partial norm,” which assigns to an element of the Hilbert
space a real-valued function rather than a real number.

Sections 4, 5 present, as applications, Lewis’ theorem and some
existence theorems for non-linear higher order partial differential equa-
tions of the form

ak ( 02 62 >m
— - U
ot \atr oy’
_ @( a’m-l-lcu am+ku . am+k.u amJ.—Ic—lu
otmE” agmtetgy T gtray™ ' otmE

,"‘,'Uf,’!l,t)-

We will conclude this introduction by restating Lewis’ result for
later reference:

THEOREM (D. C. Lewis). Let @(p,, p,, %, ¥, t) be a real-valued func-
tion defined and wuniformly continuous in y and t in a domain Q =
Py Py, Y, )| |u| Sh, 0y =<7 05t <7} Suppose there exists a
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positive constant 0 such that

(19) [@(pl, D2y Uy Y, t) - @(ﬁl’l—)m ﬁ, Y, t)l
<0[lp1—ﬁll+lp2_1—72|+|u—@_‘”
Jor |[u|Zh, |B|Zh, 0=sy<sm, 05t

Let f(y), 9(y) be defined on 0 <y < 7; let f(y) moreover be differ-
entrable and let the Lebesque integrals

\raray,  {lewirdy

exist and be = 3h*Am* and suppose that f(0) = f(x) = 0.
Then there exists a positive 0 < T such that the differential equation

2 2,
(1.10) L TH (DL, Py, )
ot* oy’ ot oy
has a unique solution u(y,t) in the generalized semse explained below,
defined for 0 <y = xw, 0 £t < o, which satisfies the boundary conditions
0
(L1 w0, 8) =w(mt) =0, wy,0) =/, —;ti L =9w).

By solution in the generalized sense is meant that (in the domain
0sy=m 0=t =o0) uly,t) is continuous, the first partial derivatives of
% exist almost everywhere, and there exists a sequence of functions
u,(y, t), each of class C"” for 0 <y <7, 0=t < o such that

lim u,(y, t) = u(y, t) uniformly in y and t on 0=y =7, 0=¢ =< 0g)
x 2

ng <?l — %) dy =0

neo JO ay ay

1im8”(@i — % Yay =0
nee Jo\ OF ot

T a 2, 12, 2
limg g [6“" DUy _ cﬁ("”“n, Oy ,un,y,t>]dydt:0.
) e T oy ot oy

uniformly in ¢ on (0 = ¢ < 0)

2. Notation and definitions. Greek and small latin letters denote:
real numbers; real-valued functions; and elements of Hilbert space, func-
tion spaces, and measure spaces. Capital latin letters denote subsets of,
and operators defined in, these spaces. The symbols ¢, <, U, N, {x|+-+}
resp. have the usual meanings: element of, subset of, union, intersection,
the set of elements X for which ... holds, resp.

The abstract space considered here is a complete and separable
Hilbert space H over the field of real numbers. The inner product of
two elements u, v of H will be denoted by (u, v); the norm of w by ||u|l.
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If u, is a sequence of elements of H, converging (in the norm) to an
element u of H, that is, if lim,..||% — u,|| = 0, then we denote this
by #,— 4. If ue H, and p is a positive real number, then C,(u) de-
notes the closed p-neighborhood of wu: Cy(u) = {v|||v — || < p}.

Let I be any measure space (a set with a completely additive, non-
negative measure # defined on some o-ring of subsets of I), with finite
total measure o: () = ¢ < . Let L*(I) have the usual meaning of
the set of real-valued functions defined and square-summable on I. Two
such functions f, g which are equal almost everywhere (everywhere with
the possible exception of a set of measure zero; in notation, p.p.) are
identified and considered to represent the same element of L*(I); thus,
strictly speaking, the elements of L*([) are not functions but equivalence
classes of functions.

The scalar product and norm in L*(I) are defined in the usual way:

(2.1) (f,9) = | fod
2.2) 171 = (] rrar)” .

By f.—f we shall mean lim,..||f — f.||=0; by f.—f (p.p.) we
shall mean, as usual, that for almost all ¢ € I, lim,_.. f.(¢) = f(t); by
fn—f uniformly p.p. we shall mean that f,(f) converges to f(f) uni-
formly on a subset of I whose complement has measure zero.

If fe LXI) and a is a real number such that f(f) < a (p.p.) then
a is said to be an essential upper bound of f. The essential maximum
of f(t), denoted by e.m. f, is defined as the greatest lower bound of the
set of all essential upper bounds of f. With this notation, f, — f uni-
formly p.p. if and only if em. |f — f,|— 0.

DEeFINITION 2.1. By a partial norm on H we shall mean a map Z
from H to L*I), with the following properties:

2.1.1. For every w € H, Zu is a unique element of LXI) which is
nonnegative almost everywhere on I: Zu = 0 (p.p.);

2.1.2. For any u,v € H we have Z(u + v) £ Zu + Zv (p.p.);

2.1.3. For any u € H and real number @, Z(au) = |a | Zu (p.p.);

2.1.4. Z is isometric: for any u € H, || Zu || = ||u||; i.e. S (Zuydp =
I
[ |

Note that when I consists of a single point with measure one, then
the partial norm Z reduces to the ordinary norm || || of H.
Throughout §§ 2 and 3 we shall suppose a fixed partial norm Z.

DerFiNITION 2.II. The Z-norm, denoted by || ||, is defined on H as
follows. If w e H, then ||u]|; = e.m. (Zu). If a sequence of elements
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U, € H converges to w € H “in the Z-norm,” i.e. if ||u — u,]||; — 0, we
denote this by u, — u.

Note that the Z-norm is not always finite, but otherwise satisfies
all the conditions of a norm: ||u ||, =0 if and only if u =0, ||u + v|; =
l|wl|lz + vz, and if @ is any real number then |laull, =|a]|- || %]l
This Z-norm, of course, defines a metric, and hence a topology, on H.
The following remarks discuss the relation of the two topologies deter-
mined on H by its two norms.

REMARK 2.II1.1. If wu, —Z 5w then it is eagsily seen that u, — u.

REMARK 2.1I1.2. If w, — u, then there exists a subsequence u,, of
u, such that Z(u — u, ) — 0 (p.p.). For, if w, — u then || Z(u — u,)|| =
| — u, || — 0, and then by a well-known theorem there exists a subse-
quence %, such that Z(u — u,,)— 0 (p.p.)

REmMARK 2.111.3. The Z-norm makes H a complete metric space.
That is, if lim, ...}l %, — u;|]; = 0, then there exists a unique element
u such that u, —— u.

To see this, first note that lim, .. | %, — %;|| =0 and hence u, is
a Cauchy sequence (with respect to the “ordinary” norm). Then, by
the completeness of the space H (again with respect to the “ordinary”
norm), there must exist a unique # € H such that u, — u.
Then, by Remark 2.III1.2. there exists a subsequence Uy, such that
Z(u — Uy,)— 0 (p.p.) as k— oo. Clearly, by 2.1.2.,
Z(w — Uy) S Z(U — Wyy) + Z(Un, — U;)  (P.D.) -

Letting 7 and k¥ go to «, we get lim, ..Z(x — u;) =0 (p.p.). To show
that the convergence is uniform p.p., note that

2 — ug) = Z(U — Uysn) + Z(hyer — Uy)
= Z(w — uyyp) +l=§gg_Z(u;+z —u;)  (p.p.)
forj=1,2,.--, k=1,2,.-.. Letting k£ — o, we get
Z(w — uy) = flgg__Z(uj+z —u;)  (p.p.)
and hence
| —u,ll, =em. Z(u — uy) = ZEP})em gy — Uy)

= sup || Uz — Usllz -
1=1,2.¢0.

But l_Slltp. Hu_H-l - u,llz—»O as J"" co, S0 ||u - uj“z—’o-
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REMARK 2.II1.4. ||u|| < V' a|lu|, (where ¢ is the total measure
of I); for

lull =11 2wl = (| (Zwrap)” = (| Huitdp)” = v lull, .

REMARK 2.IIL.5. If ¢ is a nonnegative real number and u,v e H
are such that Zu < ¢Zv (p.p.), then |[u || < ¢l||v||; for ||« || =S (Zuydp <
I
ol @opdp = ¢ lv]p.

REMARK 2.II1.6. If u,v are any two elements of H, then by 2.1.2.,
Zu = Z(w — v) + Zv (p.p.); or Zu — Zv < Z(uw — v) (p.p.). Also, by
2.1.3., Zv — Zu < Z(v — u) = Z(u — v) (p.p.). Hence

| Zu — Zv | < Z(u — v) (p.p.).

We conclude this section with a brief review of some of the standard
terminology in operators, linear manifolds, ete.

By an operator T in H is meant a mapping which assigns to each
element u of a certain subset of H, a unique element 7u of H. The
domain of definition of T is denoted by D(T); the range of T, that is,
the set of elements Tw, is denoted by R(T); the nullspace of T, that
is, the set of elements u € D(T) for which Tw = 0, is denoted by _#(T).

Ift T,T,, T, --+ are operators and a is a real number, then the
operators aT, T, + T,, T.T,, lim,_..T, are defined as follows:

D(aT) = D(T), (aT)u = a(Tu) ;
D(T,+ T)) = D(T,) n D(T,), (T) + Tou = Tyw + Tyu
D(T\T)) = {u|we D(T,) and T € D(TY)}, (T.Tou = T(Tyu)
D(lm 7,) = {u!u e () D(T,) and lim (T,0) exists} ,

N 00

(tim T,,)u = lim (T,u) .

The graph G(T') of an operator T is the subset of H x H consisting
of all ordered pairs of the form <{u, Tw) with u € D(T). If the operator
T, is an extension of the operator 7, (that is, if D(T.,)c D(T,) and
Tw = Tw for w e D(T))—in other words, if G(T))c G(T), then we
denote this by T, T.,.

If T is an operator in H and A is a subset of D(T), then TA de-
notes the set {Tu|u e A}.

An operator T is called linear if D(T) is a linear manifold (a set
A is a linear manifold if u, v € A implies that au + bv € A for any real
numbers @ and b) and if, for any u,v € D(T) and real numbers a¢ and
b, T(aw + bv) = aTu + bTv—in other words, T is linear if and only if
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G(T) is a linear manifold in H x H.

A linear operator T is said to be closed if its graph G(T) is a closed
subset of H x H; that is if given a sequence of elements u,, u,, -+- of
D(T) such that %,—u and Twu,— v, it follows that w € D(T) and
Tu = .

Let 7" be a linear operator with the property that, whenever a
sequence of elements w, ¢ D(T) converges to zero and Tw, converges
to some element v, then v = 0. It is easily seen that under these con-
ditions the closure of G(T) in H x H is again the graph of a linear
operator, call it T. It is clear that T is the smallest closed linear ex-
tension of T (smallest in the sense that any other closed linear ex-
tension of 7 is an extension of T).

If A is a subset of H, then the intersection of all linear manifolds
containing A is itself a linear manifold, this is called the linear span
of A and is denoted by [A]. If A and B are two linear manifolds, then
the linear span of their union, [A U B], is easily seen to be simply the
set {u +v|ue A,ve B}, If the two linear manifolds A and B are
disjoint (i.e. their intersection A N B contains only the zero element),
then the decomposition of an element of [A U B]| as a sum u + v with
% € A, v € B is unique; in that case the linear span [4 U B] is also called
the direct sum of A and B, written as A B.

If A and B are disjoint linear manifolds, then the projection of
A@ B onto A along B is the linear continuous operator P defined by:
D(P)=A®B;if ueAd, ve B, then P(u + v) =u. Note that P is
idempotent: P? = P.

If A is a closed linear manifold, then the orthogonal projection onto
A is the projection of H onto A along the orthogonal complement of A
(that is the set {u|(u, v) = 0 for all v € A}).

A linear operator T is said to be reduced by a closed linear mani-
fold G if PT c TP, where P denotes the orthogonal projection onto G.

3. On the solution of Tu = 0 for certain non-linear operators 7.

THEOREM 3.I1.

3.1.1. Let L be a linear operator, A a linear manifold < H such
that D(L) = A& 4+ (L).

3.1.2. Suppose there exists a constant v such that for any u € A we
have (Zu) < v|| Lu |[* (p.p.)

3.1.3. Let S be an operator in H. Suppose there exists a constant
a < YI', where I' = max (v, d), such that for any w,v € D(S) we have
Z(Su — Sv) < aZ(u — v) (p.p.)
3.1.4. Let ¢ be an element of D(S)N _+(L).
3.1.5. Suppose there exists a set B H with the following proper-
ties:
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3.1.5(a). ¢ € BC D(S) and S(BN Clp)) < R(L), where p=
I'||S$ll/(1 — al) (and C($) = {ul|lu — ¢|| < 0});

3.1.5(b). If weH, u,e BNDL)NCLP) for n=1,2,.-+ and
u,,—Z—> u, then u € B;

3.L5(c). If wue BN CY(¢), Su= Lv, and v — p e A, then v e B.

Then there exists a unique solution u of the system

3.1) (L—S)u =0 and Uu—ded.
This solution u will belong to C.($) N B.

Proof. Let @ denote the projection of D(L) onto A along _+(L).
That is, D(Q) = D(L); if u € D(L), then we know there exist unique
ve A and we (L) such that v = v + w; we define Qu = v.

Let K denote that right inverse of L whose range R(K) = A. That
is, D(K) = R(L), LK = the restriction of the identity operator I to R(L),
and KL = Q. Clearly, K is linear.

Now note that the equation

(3.2) U =¢ + KSu

has exactly the same solutions as the system (8.1). For, suppose first
that u satisfies (3.2). Then u — ¢ = KSue R(K) = A. Also,pe _4 (L)
D(L); further KSu € R(K) = Ac D(L); hence by the linearity of L,
#=¢+ KSueD(L) and Lu = L$ + LKSu. But L¢ =0; and since
LKclI, LKSuv = Su. Thus (L —S)u =0 and % satisfies (8.1). Con-
versely, let u be a solution of (8.1). Then Su = Lu € R(L) = D(K) and
KSu = KLu = Qu = u — ¢. Thus w satisfies (3.2).

We shall prove the theorem by showing the existence and uniqueness
of solutions to equation (3.2). We shall prove the existence by the
method of successive approximations.

Define a sequence of elements of BN Ci¢) N D(L) as follows. Let
u® = ¢. Clearly u'” e BN Cy(¢p) N D(L). Supposing that for n < k, u™
is defined and is an element of BN C.¢) N D(L), let u®™ = ¢ + KSu®,

Clearly, u** is well-defined, for u® € BN Cy¢) C D(S) and Su® e
S(BN Cy¢)) c R(L) = D(K). Also u*™ — ¢ e R(K) = A and Lu® =
L¢ + LKSu™ = Su™, hence by 3.1.5.(c) u**" € B. Further, using 3.1.2,
3.1.3, Remarks 2.II1.4 and 2.II1.5, and the definition of p in 8.1.5.(a), as
well as our inductive assumption,

fu®? — ¢l = || KSu™ || < V'va || Su® || < I || Su® ||
= Su™ — Sl + [|Sl) = Nl u™ — || + || Sp||)
=I(ap +||S¢l)=p.
Thus «**" is an element of BN C(¢) N D(L).

So we have now a sequence of elements u™ of BN C,(¢) N D(L),
satisfying
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(3'3) u'” = (b y u(n+1) = ¢ + KSM(W’) n = O; 17 27 v
Clearly, using again 3.1.2,3 and Remarks 2.II1.4,5, as well as (3.3),

H u(nJrl) . u(n) H — ” KSu(n) . Ksu(n_l) ”
= || K(Su” — Su")|| < I'|| Su™ — Su==1||
s al||u™ —u»v| .

By induction on #n this yields
([ — g™ || < (@) || u® — u® || < (alyo .
Since al” < 1 it follows that u™ is a Cauchy sequence. Further, since

Z(u“‘) _ u(m) — Z(KSu”“” . KSu‘"‘”) < 1/77” Sute-v — Su(n—l)”
= aVTlus — w2 (p.p),

it is clear that lim, ;.. ||u® — u™ ], = 0 and hence by Remark 2.II1.3
there exists a unique # € H such that Z(uw — u™)— 0 uniformly p.p.

Then it follows from 8.1.5(b) that u# € B. Obviously, u e CJ¢).
Hence by 3.1.5(a) Su € R(L) = D(K). Further,

1 KSu — KSw»|| < I'||Su— Su || £ al lu — u® |,

hence KSu™ — KSu. Now taking the limit as # — oo on both sides of
the second equation in (8.3), we get w = ¢ + KSu. Thus w satisfies (3.2).

We must still show that the solution of (8.2) is unique. Suppose,
on the contrary, the existence of two solutions #,v. Then w — v =
K(Su — Sv), and hence

N — vl =11 KSu — S| = I'[|Su — Sv|| < al' [Ju — o] .

But al” < 1; hence it follows that || — v|| =0 and u = v.
This completes the proof of Theorem 3.I.

TueoreM 3.11.

8.I1.1. Let L, N be linear operators, A a linear manifold such
that D(L)y = A® 4+ (L). Let D(L)c D(N).

8.11.2(a). Suppose there exists a constant v such that for any u € A
we have (ZNu)* = v|| Lu |} (p.p.).

3.11.2(b). Suppose there exists a constant B such that for any
u € D(N) we have Zu < BZNu (p.p.).

8.I1.3. Let S be an operator in H. Suppose there exists a constant
a < 1/I", where I' = max (v, 6), such that for any u,v € D(S) we have
Z(Su — Sv) £ aZ(u — v) (p.p.).

3.11.4. Let ¢ be an element of _+ (L) N D(SN).

3.11.5. Suppose there exists a set B < H with the following proper-
ties:
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3.11.5(a). ¢ € BC D(SN) and S(NBN C(N¢))C R(L), were p =
I'||SNg ||/(1 — al');

3.11.5(b). If u,ve H, u,c D(IL)YNB and Nu, € C,(N¢) for n =
1,2, +++, 4, —>u and Nu, ——> v, then u € B and Nu = v;

3.11.5(c). If uwe B, Nue C(Ng), SNu = Lv, and v — ¢p € A, then
v € B.

Then there exists a unique solution u of the system

(3.4) (L—SNyu =0 and u—¢peAd.
This solution w will belong to N7'C(N¢) N B(i.e. Nu € C,(N$)and u € B).

Proof. From 3.11.2(b) and Remark 2.II1.5 it follows that, for any
# e D(N), ||ull = B]|| Nu||. Hence if, for some #, Nu = 0, then u = 0.
Hence N has a unique inverse N, defined on the range of N.

It is now easily seen that the system (8.4) is equivalent to the
system

(3.5) (LN*—Sy=0 and v-— NpeNA

in the sense that there is a one-to-one correspondence between the so-
lutions of (8.4) and the solutions of (3.5), the correspondence being given
by v = Nu.

We wish to prove that the system (3.4) has a unique solution. We
shall do this by showing that L' = LN, A* = NA, S, ¢ = N¢p, B' = NB
satisfy the conditions of Theorem 3.I. Then we can apply that theorem
and this will give us the existence and uniqueness of solutions of (3.5),
which we have seen to be equivalent to the existence and uniqueness
of solutions to (3.4).

Now we must show that L', A%, ¢', B, as defined in the preceding
paragraph, and S, satisfy the conditions of Theorem 3.I1.

3.1.1. Clearly, L' is linear. Also, A! is a linear manifold contained
in D(L'). Further, A* and _s~(L') are disjoint. For, suppose u € A' N
A (L"). Then u = Nv with v € A, and Lv = LN*Nv = L'u = 0. Thus
ve AN _ 4 (L); but by 3.I1.1, A and _s(L) are disjoint, and hence v =
0. But then w = Nv =0. Thus A' and _# (L") are indeed disjoint, and
since they are both subsets of D(L') it is clear that A* @ _+(L') < D(LY).

We must still show that D(L') c A*@P +(I). Let u be any ele-
ment of D(L'). Thatis,uw € D(LN™). Then N7*u e D(L)=A® _+"(L).
Hence there exist v € A, w e _¢°(L), such that N-'u =v + w. Then
% = Nv + Nw; clearly Nve NA = A', I'!Nw = LN'Nw =20, or Nw €
4 (LY). Hence uw € AP  _+ (L), as was to be proved.

3.1.2. If ue A" then N* u ¢ A and hence by 3.I1.2(a)

(Zuy = (ZNN7uy = v | LN | = v || Lu | (p.p.) .



ON CERTAIN NON-LINEAR OPERATORS 505

3.1.3. is clearly identical with 3.II.3.

3.1.4. By 3.I1.4., L'¢* = LN'Nop = L =0, so ¢' € 4" (L}). Also,
¢ = Np e D(S).

3.1.5(a). By 3.IL.5(a), $ € BC(SN). Hence ¢* = Np ¢ NB = B; if
% € B' = NB, then N-'u € BC D(SN) and hence w e D(SNN—)c D(S)
and so B'c D(S). Also, by 3.IL.5(a) again, S(B'N C,(¢") = S(NBnN
C.(N¢)) € R(L). Further, R(L) c R(L"), for if u € R(L), then w = Lv for
some v € D(L)c D(N) (by 3.11.1.) and so v = LN*Nv = L'Nv € R(LY).

3.1.5(b). If we H, u,c BN DIH)N(C¢p") for n=1,2, .-+ and
Uy ——> u, then N~u, ¢ D(L)N B and, by 3.11.2(b)

Z(N 7w, — N7'uy) < BZ(u, — ) (p.p.)

and hence lim, g || N7'u, — N7u, ||, = 0.

Hence by Remark 2.1I1.8. there exists a unique element v € H such
that N—'uw, —— v. Then it follows from 3.I1.5(b) that v € B and Nv =
u; hence uw € NB = B' as desired.

3.15(c). If w e B'nCy¢"), Su = L'w, and v — ¢* € A', then N-'u € B,
NN~u € C(N¢), SNN-*y = LN~v, and v — Npe NAor N v — ¢ € A.
Then by 3.11.5(c) N7'v ¢ B and hence v € NB = B!, as was to be proved.

This completes the proof of Theorem 3.II.

THEOREM 3.III.

3.1I1.1(a). Let L, N be linear operators, A a linear manifold such
that D(L)y =A@ -+ (L). Let D(L)< D(N).

3.IIL.1(b). Suppose that if u, € D(L) for n =1,2, -+, 4, — 0, and
Lu, — v, then v = 0. Thus there exists a smallest closed extemsion L
of L; let L' denote the restriction of L to D(L) N D(N).

8.111.2(a). Suppose there exists a constant v such that for any
u € A we have (ZNu)® < v|| Lu|]® (p.p.).

3.I11.2(b). Suppose that there exists a constant B such that for any
% € D(N) we have Zu =< BZNu (p.p.).

3.II1.3. Let S be an operator in H, with D(S)D R(N). Suppose
there exists a constant o < 1/I°, where I" = max (v, o), such that for
any w,v € D(S) we have Z(Su — Sv) < aZ(u — v) (p.p.).

3.1I1.4. Let ¢ be an element of _4 (L) N D(SN). Suppose there
exists a sequence of elements ¢, € _1(L) such that Np, ——s N.

38.II1.5. Suppose there exists a set B C H with the following proper-
ties:

3.II1.5(a). ¢ € B D(SN) and S(NB N C(N¢)) C R(L'), where p =
I'|| SN ||/ (X — al');

8.IIL.5(0). If w,ve H, u,e D(N) for n =1,2, «++, u, — u and
Nu, 2> v, then u € D(N) and Nu = v; if in addition u, € D(L')N B
and Nu, € C(N¢) for n =1,2, -+, then u € B;

3.I1L.5(c). If we B, Nue C(N¢), SNu=L'v, and v —pec A’ =
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{w|there exists a sequence of elements w, € A such that w,— w and
lim,_... Lw, exists}, then v € B.

Then there exists a unique element u with the following property:

(3.6) There exists a sequence of elements u, € D(L. — SN) such
that Nu, — Nu and (L — SN)u, —0; and u — ¢ € A'.

This unique “solution” u will belong to N7*C.(N¢p) N B (i.e. Nu € C,(No)
and u € B); if in addition w € D(L), then u 1is a solution of (3.4).

Proof. First we shall show that L', A’, N, S, ¢, B satisfy the hy-
potheses of Theorem 3.II.

3.11.1. Clearly L' and N are linear. It is also clear that A’ < D(L').
Further A’ and _¢"(L’) are disjoint. For, suppose u e A’ N _+(L').
Then, since u € A’, there exists a sequence of elements u, € A such
that u,—w« and lim,..Lu, exists. But % is also in _s#"(L’), hence
lim,..Lu, = L'u = 0. Now by 3.111.2(a),(b), and Remarks 2.111.4,5,

Hua Il = B Nuy |l = B Lua || -

Hence %, — 0 and so v = 0. Thus A’ and _¢(L’) are disjoint, and it is
now clear that A’ @ (L)< D(L)).

We must still show that D(L')c A’ _+(L'); that is, that any
element of D(L') is also an element of A'@P _+(L'). Let w e D(L).
Then there exists a sequence of elements wu, € D(L) such that u, —u
and lim,..Lu, exists. (In fact, Lu,— L'u). Let v, = Qu,, where @
again denotes the projection of D(L) onto A along ._4(L). Since v, € 4,
we have (again from 38.I11.2(a),(b) and Remarks 2.111.4, 5)

lvn — v |l = Bl Nv, — Nog || < BT || Lw, — L || .

Thus v, is a Cauchy sequence. Let v =lim,...v,. Then Lw, = Lu, — L'u;
hence v € A', and L'v = L'u; this last means that « — v € _#"(L’). Hence
ueAD 4+ (L), as was to be proved.

Obviously, D(L') < D(N).

3.11.2(a). Let w e A’. Then we know there exists a sequence of
elements u, € A such that «, — « and Lu, — L'u. By 3.II1.2(a),

ZN(u, — ) = VT || L(u, — w) || (p.p.)

and hence lim, ;.|| N(u, — %) ||, = 0. Also by 3.II1.2(b), Z(u, — ;) <
BZN(u, — ug) (p.p.) and hence also lim, ;.|| (%, — %,)||; = 0. Then by
Remark 2.II1.3. there exist two unique elements u,, v such that %, — u,
and Nu,—— v. Then by Remark 2.111.1., %, — u,. But u, — u; hence
u, = u. Also, by 3.II1.5(b), v = Nu, and so Z(Nu — Nu,) — 0 uniformly
p.p. Then, by Remark 2.II1.6, | ZNu — ZNu, | — 0 uniformly p.p., or,
ZNu,, — ZNu uniformly p.p. But by 3.II1.2(a),



ON CERTAIN NON-LINEAR OPERATORS 507

ZNu, <V || Lu,||  (p.p.),
hence

ZNu < 1/71132]1 Lu, || =V v|| L'u|l .

The remaining assumptions of Theorem 3.II. are obviously satisfied.
Hence there exists a unique solution u of

3.7 (L' — SN)u =0 and u—¢peA.

We now want to show that w satisfies (8.6). Clearly there exists a
sequence of elements v, € A such that v, -4 — ¢ and Lv, — L'u. Now
let u, = v, + ¢, (see 3.111.4). Then

ZNw — u,) = ZN(w — v, — $,) = ZNu — ¢ — v,) + ZN($ — ¢,,) .

By 8.II1.4., N(¢ — ¢,) —— 0. Also, u — ¢ — v, € A’; and hence, as we
have seen in the preceding paragraph,

ZN(w — ¢ —v,) S VT ||L(u—¢ —v)|| =V I || L'u — Lo, || ;

thus also N(u — ¢ — v,) —— 0. Hence it follows that N(u — u,) — 0.

It now follows from Remark 2.II1.1. that Nu,— Nu; and from
3.I111.8. and Remark 2.II1.5. that SNu, — SNu. Hence (L — SN)u, —
(L’ — SN)u = 0. Thus # does indeed satisfy (3.6). It is clear that if,
in addition, u € D(L), then u satisfies (3.4).

We must still prove the uniqueness of “solutions” of (3.6). Let u, v
be two such “solutions.” Thus, u —p e A’, v — ¢ € A’, and there exist
sequences of elements wu,, v, € D(L — SN) such that Nu, — Nu,
Nv, - Nv, (L — SN)u, — 0, and (L — SN)v, — 0. By 8.IIL.3.,

Z(SNu,, — SNu,) = aZN(u, — %) ;

and hence by Remark 2.1I1.4., SNu, is a Cauchy sequence. Thus
lim,.. SNu, exists. Clearly then, since (L — SN)u,—0, lim,.. Lu,
exists. But from 3.IIL.1(b) and the definition of L’ (see also the defi-
nition of T in §2) it is then easily seen that lim, . Lu, = L'u.

Let @ again denote the projection of D(L) onto A along _s~(L).
Then 4 — ¢ — Qu,, € A’ and hence by 8.111.2(b), Remarks 2.II1.4, 5, and
3.11.2(a) for L’ (proved above),

| — ¢ — Qu, |l < BII N(u — & — Qu,) ||
= BrIL(uw — ¢ — Quy) |t = B[ L'u — L, || .

Thus, Qu, —u — ¢ and NQu, — Nu — ¢). Similarly Qv, —v — ¢ and
NQv, — N(v — ¢). Hence Qu,— Qv,—u — v. Also, N[u, ~ Qu, —
(v, — Qv,)] — 0. But by 8.II1.2(a), 3.111.3, and Remarks 2.I11.4, 5.
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| NQu, — Qu,) || = I'|| L(Qu,, — Qu,) ||

= I"|| L(tp, — v) || = I [I| (L — SN)uw, ||
+ [[(L — SN, || + || SNu,, — SNw, (]

= I'[[I(L — SN)u, || + [ (L — SN)v, ]
+ al || N(u, — v,) ||

< I'llI(L — SN)u, || + || (L — SN)v,|l]
+ al’ || N(u, — Qu, — (v, — Qv,))||
+ al’ || MQu, — Qv,) || .

Thus,

| N(Qun — Qua) || = 1—1—— {'I(L — SN)u, || + [[(L — SN)v,|l]
—al’

Now the right hand side of the above inequality — 0 as n — oo, hence
N@Qu, — Qv,) — 0; then by 3.II1.2(b), Qu, — Qv,—0. But v — v =
lim,_.. (Qu, — Qv,), so u = v. This completes the proof of Theorem 3.1II.

THEOREM 3.1V.

3.IV.0. Let G,G,, -+ be a sequence of pairwise orthogonal closed
linear manifolds whose direct sum is H. Let P, denote the orthogonal
projection onto G,. Suppose that the partial norm Z and the subspaces
G, are related as follows: for any u € H,

oo

(Zu) = E_ll (ZP,u)*  (p.p.) .

3.1V.1(a). Let L, N be linear operators, A a linear manifold such
that D(L) = AP _+°(L). Let D(L)c D(N).

3IV.1(b). Let L and N be reduced by each G,, n=12,---
(P,Lc LP,, P,NC NP,). Suppose that P,AC A, forn=1,2, ---. Sup-
pose that (L) NG, s closed, for n —=1,2, «--.

3.1V.2(a). Suppose there exists a constant v such that for any u € A
we have (ZNu) < v || Lu | (p.p.).

3.1V.2(b). Suppose there exists a constant B such that for any
u € D(N) we have Zu = BZNu (p.p.).

3.IV.38. Let S be an operator in H, with D(S)>D R(N). Suppose
there exists a constant a < 1/I", where I' = max (v, 0), such that for
any u, v € D(S) we have Z(Su — Sv) < aZ(u — v) (p.p.).

3.IV.4. Let ¢ be an element of 4 (L') N D(SN), where L' denotes
the restriction of Yo ,LP, to D(w.LP,)ND(N); suppose that

» NP¢p —— N as n— oo.

3.IV.5. Suppose there exists a set B H with the following proper-

ties:
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3.1V.5(a). ¢ € BC D(SN) and SNBcC R(L') (where L' is defined
an 8.1V.4);

38.IV.5(b). If u,ve H, u,e D(N) for n =1,2, «++, u, —>u and
Nu,, —2> v, then w € D(N) and Nu = v. If in addition u, e D(L')N B
and Nu, € C(N@) for n =1,2, .-+, where p = I'||SNo||[(1 — al"), then
u € B.

3.IV.5(c). If we B, Nue C(Np), SNu=L'v, and v —pec A =
{u|u e DL, and Pue A for n=1,2, ..}, then ve B.

Then there exists a unique w € B satisfying

(3.8) u—¢e A" and there exists a seqzyl,ence of elements
%, € D(L — SN) such that Nu, — Nu and (L — SN)u, — 0.
Proof. We first show that L', A’, N, S, ¢, B satisfy the hypotheses

.of Theorem 3.II.

3.1I.1. The operator L’ (see 3.1V.4) is the following: D(L’) =
{u|luwe D(N), Pue D(L) for n =1,2, .-+, and >\ ,LP,u exists}, and
for any uw e D(L), L'u = > LP,u. It is easily seen that L’ is linear,
reduced by each G,, n = 1,2, ---, and that L ¢ L', Also, D(L') < D(N).

The set A’ (see 3.IV.5(c)) is given by A" = {u|u € D(N), P,u € A for
n=1,2, .-, and 3.7, LP,u exists}. It is easily seen that A’ is linear;
and of course A' < D(L)).

A’ and _4°(L') are disjoint, for suppose u e A' N _#(L"). Then,
since we A', Pue A for n=1,2,.--. On the other hand, L'u = 0;
hence P,L'u = LP,u = 0. Thus P,ue An .+ (L)forn=1,2, ... Hence
Pu=0forn=1,2,-.-- and so v = >,7, Pu=0.

From the last two paragraphs it follows that A’ @ ./ (L") c D(L).
We must still show D(L)c A’P _s(I/). To see this, let u be any
element of D(L'). Thenforn =1,2,.--, Pue D(L)=A&G 4+ (L) (by
3.IV.1(a)). Hence there exist elements v, e A, w, € _t+(L), such that
Py = v, + w,. Clearly, since any projection is idempotent, P,u = Pl =
P, + Pw,; P, € Aby 3.1V.1(b), LP,w, = P,Lw, =0 or P,w,e _1+"(L).
But the representation of an element of A .7 (L) as a sum of an
element of A and an element of ./7(L) is unique, so P,v, = v, and
P,w, = w,. That is, v,, w, € R(P,) = G,. Further, by 8.1V.2(a),(b),

i =BV'y éLPiu‘] .

23w = p2N(Zm) = aV T [E{Z )| = oV

But u e D(L'), so >, LP,u converges and hence lim, ... || >f. ,LPu|l =
0. Hence lim, ;.|| ;| = limy e [| N(Xiopv:) |, = 0. Then, by
Remark 2.II1.3., there exist unique elements v, v’ such that >7_,v; s
and N Z?Zlvi—zev’. Clearly v = >\=.v;. By 38.I1V.5(b), v € D(N) and
Nv =" Also, P,v=P, >, =P >, Pv,=>,P,Pv,=Pw,=v,€A,
and S LPw =37 Lv, = 32 LP,u = L'u; thus, ve A" and L'v = L'u,
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or, u—ve .+ (L) Hence ue A'Pd 1+ (L), as was to be proved.
3.11.2(a). Let u be an element of A’. Then P,u € A and hence
(ZNPu) < v|[LPul®  (p.p.).
Applying 8.I1V.0 and 3.IV.1(b) gives

(ZNuy = 3, (ZP,Nuy = 3, (ZNPauy < v S| LPalP  (p.p.) -
Now note that P,LP,u = LP« = LP,u, so LP,ue R(P,)=G,. Also
L'w = 3, LP,u; hence LP,u = P,L'u. Therefore
S LPul* = S| P L'w |l = [| L'u|]*.
Thus,
(ZNu) = v || L'ul*  (p.p.)

as was to be proved.

It is immediately seen that the remaining conditions of Theorem:
3.II. are satisfied. Hence we can apply that Theorem and obtain the.
existence of a unique solution # of

(3.9) (' ~SN)u =0 u—¢ed.

We shall now prove the equivalence of (3.8) and (3.9). Suppose:
first that u satisfies (8.9). Let u, = >\n.,Pu. Clearly u, = >\, Ppec A
and hence, by 2.1.2, 3.IV.0, 3.IV.1(b) and 3.IV.2(a),

ZN@w — u,) < ZN(u —p— <u -3 P,.¢>)) + ZN(¢ - P,.qs)
A (s~ S0+ (- 50)
=V i P.L'u

i=n-+1

‘ . [( ZN$): — i (ZNPiqS)Z]U2 (p.p.)

Thus from 3.IV.4. it follows that Nu, — Nu. Also we know from
Theorem 3.II. that the only solution of (3.9) belongs to B D(SN);
hence by 3.IV.3. and Remark 2.IIL.5., it follows that SNu, — SNu..
Therefore

lim (L' — SN)u,, = lim Lu,, — lim SNu,, = L'u — SNu =0 .
Hence w satisfies (3.8).

Conversely suppose # € B to be a solution of (3.8). Thus, we sup-
pose that 4 — ¢ € A’, and that there exists a sequence of elements.
#,€ D(L — SN) such that Nu,—— Nu and (L — SN)u, —0. From
3.IV.3. and Remark 2.III.5. it then immediately follows that SNu, —
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SNu; hence also Lu,— SNu. Note that by 3.1V.5(a) SNu € SNBc R(L');
hence there exists v € D(L') such that SNu = L'v, and, since we have
seen that D(L') =A@ _+ (L), it is clear that we can choose v so as
to belong to A’. Then, letting @ denote, as usual, the projection of
D(L) onto A along . #7(L),

Z(v — Qu,) < BZN(v — Qu,) = 8V V|| L'v — Lu, ||
and hence by Remark 2.I11.4., Qu,— v. Further
Pyu — v) = lim Py(u, — Quy,) .

Now u, — Qu, ¢ #"(L), so Pu, — Qu,) € _+(L)N G,. Hence, since by
3.IV.1(b) 4+ (L) NGy is closed, Pyu —v)e .+ (L)NG,. Hence, since
U —ve D(N), wu—ove ¥ (L'). Thus we now have two decompositions
of the element u of D(L’) as a sum of an element of A’ and an element
of #(L': u=w—¢)+¢=v+ (u—v). But we have seen that
D(L") = A" P -+ (L'), so this decomposition is unique and hence v — ¢ =
v. Hence, (L' — SN)u = L'(w — ¢) — SNu = L'v — SNu = 0, as was to
be proved.
This completes the proof of Theorem 3.IV.

4. Applications. In this section we shall apply the results of § 3,
specifically Theorem 3.IV., to non-linear partial differential equations of
the form

(4.1) ""‘(62 > )mu(y, )

A
0 < oty oy, L grthy  gmrk-ly .
otmk ’ atm+k—1ay ’ ’ 6tk6ym’ ptmtE—1 ! ’
am+k~1u 0m+k-2u au >
s gy —, U, Y, t
atk—laym ftrtE—2 oy Y

(the partial derivatives of w that are permitted to occur on the right
hand side are &*'u/0t'0y’ with j <m and 7 + j < m + k), where @ is
a real valued function of ((m + 1)(m + 2))/2 + k(m + 1) + 2 real vari-
ables, continuous in the last two (y and t), and satisfying a Lipschitz
condition in all the other variables, in a domain defined by |u| < h,
0Zy=srm 0=t

We are interested in solutions u(y,t) of (4.1), valid for 0 <y < x,
0 <t =0 <7, which satisfy the initial conditions

du . .
4.2) = f3(¥) (1=0,1,---,2m + k — 1)
ot =0

and the boundary conditions
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azi +1 w

y=x oyttt ly==

1<2+1<m).

i3 2% 4
(4.3) o 2% 0"

0%y
ayzi y=0 ay2i+1 =a

— g 2% =0
y=0 oy

Under certain conditions, we shall obtain results on the existence
and uniqueness of solutions, in a certain generalized sense, of the system
(4.1), (4.2), (4.3). Before we give a precise definition of this, it will be
useful to introduce the following notation.

DEFINITION 4.I. A real-valued function # of one or two variables,
defined on some domain R, is said to be of class S? on R if and only if

(a) wu is of class C** (all derivatives up to order ¢ — 1 exist and
are continuous) on R;

(b) all derivatives of order ¢ exist almost everywhere on R and are
of class LAR) (see §2),

(¢) all derivatives of order ¢ —1 are absolutely continuous on R
(if % is a function of two variables, say v and ¢, this will mean that
these derivatives are absolutely continuous functions of y for almost all
values of ¢).

DEeFINITION 4.I1. A real-valued function u(y, t) of the two real vari-
ables ¥y and ¢, defined on a domain R, ={(y,t)|0<y=rx 0=t < g}
is said to be of class T? on R, if and only if

(a) u is of class S? on R,;

(b) for almost all ¥ on the interval (0 <y < rm) it is true that
o'u/0y® (considered as a function of ¢ alone) is of class S*~* on the interval
0=t=<o0), for+=0,1,---,q.

Note that for p <gq, T? = S%
Now let us define what we mean by a “solution in the generalized
sense.”

DEeFINITION 4.III. A real-valued function u(y,t) of the two real
variables y and ¢, defined on a domain R, = {(y,§)|0Zy =<7, 0=t < g}
for some positive ¢ < 7, is said to be a solution in the generalized sense
(abbreviated as G-solution) of the system (4.1), (4.2), (4.8), if and only
if the following conditions are satisfied:

4.111.1.

(a) u is of class T2*** on R,;

(b) wu satisfies (4.3);

(c) u satisfies (4.2).

4.111.2. There exists a sequence of functions u'(y,t), u(y,t), ««-,
such that

(a) each u" is defined and of class T;n** on R,;

(b) each u” satisfies (4.3) for (1 <27 + 1 < 2m + k);
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(c) %—:’;ﬁ € S*+k-i-1 on the interval 0 =y <7w)for ¢ =0,1, ---,
t=0
2m +k —1;
@ i [awu amun] 0 unif ] R, for(j < Liti<
im _ — =0 uniformlyon R, for(j=m—1,71+75=
we L OE10Y 00y y J I
m+ k—1);
. | 6m+ku 6m+kun 2 . . .
(e) lewgo[ T P ]dy = 0 uniformly in ¢ on (0 <

t < o), for © < m;
. (o ak 62 62 m am+lcu'rb 2
f hmsg[——<—— )u”—@( , v, u”, ,t)]d dt = 0.
® tm i |5 Be ~ o P vr)| v

THEOREM 4.1. Let m >0, k = 0, be arbitrary but fixed integers.
Let » = ((m + 1)(m + 2))/2 4 k(m 4+ 1).

4.1.1. Let @(py, Dy +++, Pr, Y, t) be a real-valued function of (A + 2)
real variables defined, continuous in y and t, and satisfying a Lipschitz
condition with Lipschitz constant 0 in the first N wvariables, on the
domain 2 ={p, -+, 00n,¥ 0|0y =7, 0=t £ 7} where h and T are
positive constants (Lipschitz condition in the p/’s: if 0 <y =rw, 0 <t T,
then |¢(p17"'ap)uy’ t)“@(ﬁl!""ﬁ)\’y’ t)l = 9[|p1—"ﬁ1|+"'+ ‘p/\ - ﬁhl])'

4.1.2. Let there be given 2m + k real-valued functions f(y),
Fi), o+, faomsea(y), each fAy) being defined and of class S*™ '~ on
the interval (0 =y < m). Let

8% = max Y[M]ﬂdy .

§=0,1,...,2m+k-1Jol gtmtr-1-

413. Let h >V (@2m + k)dc, where c is defined by Lemma 4.111,

Then, for some positive real number ¢ < T, there exists a unique
G-solution of (4.1), (4.2), (4.3) with b = 0, on R,. This solution u will
satisfy |[wy, )| Shom 0=Zy=<rm 0=t <o,

COROLLARY 4.I1. Lewts’ theorem, stated in §1.

Proof of Corollary. It is the special case m =1, k = 0, of Theo-
rem 4.1.

Proof of Theorem 4.1. We wish to obtain Theorem 4.1 by an
application of Theorem 3.IV.

We shall take for the Hilbert space of §3 the space [L*(R,)]* (that
is, the space of ordered M\-tuples <u,, «++, u,> of functions u; defined and
of class L* on R,) where ¢ will be determined later. The subspace
obtained by setting u; = 0 for © = 2,8, ---, A (which space is, of course,
isomorphic to L*(R,) by the natural isomorphism % «— <{u, 0, «++, 0>) will
be denoted by H*.
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The sequence G, of pairwise orthogonal subspaces of H is defined
as follows: G, = {{w\(f) sin (ny), 2,(t) sin (ny), «- -, 2,(t) sin (ny)> | z,(t) is of
class L? on the interval (0 <t <o) for 1 = 1,2, --.,7\}. Since the func-
tions sin (ny) are pairwise orthogonal on the interval (0 <y < 7), the
spaces G, are clearly pairwise orthogonal. We shall use ¢, to denote
sin (ny), normalized to norm 1: :

(4.4) b, = %Sin (ny) .

The orthogonal projection of H onto G,, denoted by P,, is given by
4.5)  Puluy, ++-, w0
= {([[mtn. t.a0)tutw), -+, (a0, 08,00)800) >

We define the partial norm Z as follows:

@8 Ly oy ud> = [ty oydy + - + [, vray]”

It is easily seen that Z is indeed a partial norm on H (see Definition
2.1), and that the G,’s and Z satisfy Condition 3.IV.0 of Theorem 3.IV.

We shall also consider the orthonormal basis for L*R,) consisting of
the normalized cosine functions:

@) V) = V) =9/ Zeos @) n=1,2,-- .

1/ T’

If u is an element of L*R,), then it is easily seen that there exists a

unique element u* of L*R,) such that g w (Y, thr(y)dy = S u(y, t)p.(y)dy
T 1] 0

(0.p.) for n =1,2, -+, and S w* (Y, Poy)dy = 0 (p.p.). We now define

the operator U in L*(R.) by Uu = w*. U is clearly linear and isometric;
hence U has a unique inverse U~! on the range of U, which is the class

of functions v such that va(y, t)dy = 0 for almost all ¢.
0

Roughly speaking, the operators N, S, L of Theorem 3.IV will be
the following:

k +k
NKu, 0, «++, 0> = <@””“, —M_u>
8tm+k atmﬂc—lay

S<u1’ cty ’bl,)\> = <@(u1(y, t) (ng)(y, t): M) uk(yr t), Y, t)’ 0; ct 0>
2 62 m
L<u, 0, +--, 0 < - , ,.--,o>.
< )= 6t’° ot w0

Let us now define L, S, N precisely.

DEeFINITION 4.IV. D(N) = {(u 0,-+,0 t % is of class 7T7* on R,;
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4 satisfies (4.3) with b = 0; and

converges, uniformly p.p. to a bounded function, for t +j5=m + k
and j < m, where u,(t) = | u(y, bWy}
0
In that domain N is defined by

m+k, -tk m+k
Nu, 0, -+ v, 0> = <6 U o™y, 0" Ey,

otmtE ’ 6tm+k—lay ’ atm—}-k—zayZ’
+% 2 2 2
- My, e Bu,U,lau ’au,a_u_’ U_la_u u>
A TR ot? otoy oy* ot o0y

It must still be verified that the above definition is meaningful; that
is, that (&**¥+'y[ot'oy”*') belongs to D(U™) = R(U), for 25 +1 = m,
1+2j+1=<m+ k. That is, we must show that

gz ai’+21+1u

"W dy =0 (p.p.) .

But this is easily seen, for by (4.3)

0™y,

Sn ai+2]+1u . ai+2]u .
y=r oy

o oty U oty

y=x di [azju

y=0 - dtt oy*

|=0
y=0

for 27 +1<m, ++27+1=Zm+ k.

DeriNITION 4.V. D(L) = K, 0, +++,0>|u is of class Tr** on R,,
<4, 0, «++,0>€ D(N), u satisfies (4.8) for 2¢ < 2m, and 8*u/ot!|,-, € S*™* ¥+~
on the interval (0 £y =<7x) for 1 =0,1, ---,2m + k — 1}.

In that domain L is defined by

2 82 m
Lu, 0, +++, 05 = <atk W——) u00>

DEFINITION 4.VI.
B:D(N)ﬂKu,O,---,0>|]u(y,t)|§h (p-p-)}-
D(S) =
S<vm+k,07 M) v00> = <@(wm+k.0(y, t) ct woo(y; t)’ Y, t)’ Ov tty 0>

Where ’wm, = vi.?j and wi,uﬂ = Uvi,21+1-
DEeFINITION 4.VII.

— {Cu, 0, +++, 05| <w, 0, -+, 0> € D(L) and 0'u/ot!|,., =0 for i =
0,1,+++,2m + k — 1}.
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DErINITION 4.VIII. Let 72(t) denote the solution of the ordinary
differential equation

dlc dz m
48 _~< > =0
(4.8) dt* \dt* T
which satisfies the initial conditions
dr | _ 01, _
4.9) 5 e = 8,; forj=0,1, 2m+k—1.

LEMMA 4.II1. There exists a constant ¢, depending only on m, o,
and k (and not on n) such that

(4.10) d”'/r? :<: cnm«kp.—l—i

dt*
fory:k,k+1,---,2q+k,i:O,l,-o-,Zm—l—k—l,
(4.11) ]__"g TL| < ommeai

fOT ‘U:O,l’---,k—l, 'i:O’l, “°’2m+k——1'
The proof of Lemma 4.III. is given in §5.

DEFINITION 4.IX. f(y,t) = S [ a7 (t)]|du(y) Where a,; =
|7 @bdy; = <f,0, -+, 0.

We now wish to show that L, S, N, A, ¢, B as given by Definitions
4.IV-VII and 4.IX satijsfy the assumptions of Theorem 3.IV.

3.IV.0. has already been verified.

3.IV.1. It is clear that L. and N are linear and that A is a linear
manifold. Also, by definition, D(L)<C D(N). We shall next show that
L and N are reduced by each G,. \

If <u,0,.--,0>e D(N), then it is clear that P,<{u, 0, ---, 0> € D(N);
and

P,N<u, 0, ++-, 0>

omtEy, o™ ry ou _1 0u
—P< ’ U r"';—‘rUl"’—yu>
otmt® ot™ oy ot oy

= ([T . cpan)s., (|| St mman)pw), -,

(17229 g ey, ([T 2Ly Joutw), -

(1, v, v9.d) ¢n(y>> .

Recalling that 8%u/oy* is zero at y =0 and at y =7 for 2¢ < m (see
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Definition 4.1V), that ¢, is zero at ¥y =0 and at y =z, and that
d*p,/dy* = —n’*p,, we obtain by repeated partial integration

0" u(n), t) _ “gi_g"
SO stior® Pu()dy = (—n7) Ir U, Dba()d
for 27 <m, 1+27=m+k

and

@ y(y, ¢ B i
S __ﬂn_(u Py = (= Lo\ "ty by
for 2j +1=<m, i+2/+1=<m+k.
Hence, letting z,(f) denote S‘Tu(rj, t)b.(m)dn,
0

PN, 0, -+, 0) = <d 20 @), n L ), -

tm+lc tmJ k—1

dxn(t) Gu(Y), 10 ()Du(Y), Ta(t)Pu(y) >

= (T @owon, U 22
A P (xn(tm(y»] : xn<t)¢n<y>>
= N<xn(t)¢n(y): 0: tt 0> = NPn<ua 0; ) O> .

Thus N is indeed reduced by each G,.
In an entirely similar manner, we obtain that if {u, 0, ---, 0> € D(L),
then P,{u, 0, ---,0> e D(L) and

P,I<u, 0, -+, 0)
=<(I; [Z( —1 L%%]@(v)dr)m) 0,40

={[z(F)w dtw o | 7, D [,0), 0, - 0
= ()0t [ (| wtn om0, -0

= (&%~ =) [([ur nscoan)en] o, -, 05
= LP<u,0,+:+,0>,

Thus, L and N are reduced by the G,’s. Obviously, P,AcA. If
{u, 0, +++,0>e +(L)NG,, then it is easily seen that wu(y, t) is (almost
everywhere) of the form x(t)¢,(v), and that x(f) is a solution of equation
(4.8). Hence



518 GERTRUDE I. HELLER

a(t) =m,§_l(%]zzo>r;(t) :

3=0
Conversely it is clear that any element of the form

2m+k—1
< ; Czr?(t)¢n(y); 0; ttty 0> ’
where the ¢;’s are real numbers, belongs to _#"(L)NG,. Thus +(L)NG,
is a finite dimensional linear manifold, and hence must be closed. This
completes the proof of 3.IV.1(b). Of 3.IV.1(a) we must still show that
D(L)= A& _+(L).

By definition, Ac D(L). A and _4°(L) are disjoint; for suppose
{u,0,---,00e AN _»" (L). Then LP<u,0,+++,0> = P,L{u,0,+-+,0>=0,
and hence P, u,0, -+, 0> € D(L) N G,; therefore () =S w(y, bo(y)dy

0
is of the form

2m+k—1 i
T (8) = 3, (ddf;‘

=0

M)fr?(t) .

On the other hand, <{u,0,---,0> € A, so

diz, _ S”( o'u
t=0 o\ Ott It

dtt
Hence z, =0 for n =1,2,---, and therefore w = 0. Thus AP _+"(L)C
D(L).
We must still show that D(L)c A@ -+ (L). Let<u,0,--+,0>e D(L).

Let again ,(t) = S:u(% t)du(7)dn. Define w(y, t) = S5, wa(t)Pa(y) Where

>¢n(y)dy:0 for 1=0,1,«-+,2m+k—1.
=0

amyk—1/ gt

=0

By Lemma 4.111.,
= ul dw, :lz — 2z[ dx, dir; :r
Z’I’L [ Zn ;( dtt t=0> dat’
) |
< 21 n m-+max(J, k)—1—1%
= 350G o

oo am+k—1 4
< Sem+ b)Y o L

=0

2
) n2(l+7n+maxu.k)—1—i)
t=0

which last is finite for I < 2m and 1 4 j < 2m + k, since {u, 0, -+-,0> €
D(L). It is now easily seen that <w,0, -+--,0> e D(L), and of course
L{w,0,+-+,0>=0. Further it is clear that <{u — w,0,---,0> ¢ A,
Hence <u,0,---,00 e AP _+"(L). This completes the proof that 3.IV.1.
is satisfied.
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3.1IV.2(a). Let <u,0,---,0>c A. Let

o®) = [y oy, Et) = L) a0

and
7u(t) = | £l Phusaeit — s .

It is easily seen that

dﬁn—ggn()d’“mwl(t ds  for i=0,1,-+,2m +k—1

att dtt
2m+k n _
T = |0 T = s )
Hence
dlc dZ . m .
(*12) ar (gp t )=t
and
(4.13) %ZL —0 (G=0,1,--,2m+ % —1).
t=0

But z,(t) also satisfies (4.12) and (4.13) and hence «, = 7,. Thus using
Lemma 4.III., we obtain, for £ =0,1, .-+, 2m + k — 1,

= | fae) Lrimal =) g

Phadihad T 1/2
dtf* = [0 gofi(s)ds] e Ekmm,—m)

Hence

I o m mtk—j dix z
(ZNCu, 0, - =+, 09 = 3, (ZPNCw, 0, -+, ) = 5 3275 (nr- L2 )
n=1 0 dtt

n=1 j=0 i=

S 5550 [ s owm e

= oo’ 3 [ E10)ds = noot (| I, 0, -+, 0D [
Thus 3.1V.2(2) holds with
4.14) 7= a¢h .

Note that ¢ > 1, so ¥ > o; and hence I" = max (v, o) = 7.
3.IV.2(b). Let <u,0,+++,0> € D(N). Then

(NG, 0, -+, 03 = 5 35 (w L2 )z S

n=179=0 {=0 dtt

:(Z<u70, "'70>)2 ( )
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Hence 3.IV.2(b) is satisfied with 8 = 1.

3.IV.3. Let w =< tUpigor ***) U, V=1L Vp gy **+, Vop be two ele-
ments of D(S). Define u},;, v}, as follows:

Uiny = Wiy Vi = iy 2ij=m, t+2j=m-+ k)
u’z{,zj+1 = Uui,2j+1 77;,21‘71 = Uvi,2]+1
2j+1==m, 1+27+1==m+ k).
Then, recalling Definition 4.VI., and our assumption of a Lipschitz con-
dition in @
(Z(Su — Sv)) = g"(Su — Svydy
0
= So[¢(u:n~' k,o(yr t); "ty ugO(y; t)’ Y, t)
- @(v;n+k,0(yy t)y ct ,U(:(J(ya t)r Y, t)]zdy
< ([0l ao — Vna] o+ [l — vh [Ty
m mt+k—j
=20 335 [, - vy
2=0 ¢=0 0
=205 5 [Ty — vy =0z~ 0F (00 .
Thus we have
Z(Su — Sv) < aZlu — v) (p.p.)
with
(4.15) a=0"\.

Note that ¢ has not yet been determined, and so far ¢ can be any real
number in the interval 0 < ¢ < 7. If we further restrict ¢ to

1
(4.16) < AT

then we will have al” = ay < 1, and so 3.IV.3 will be satisfied.
3.IV.4. From assumption 4.1.2. and Lemma 4.III. we obtain, for
J=<mand j+1<m+Fk

i [ @ m% 1 T”(t)T < Z n¥ [Z a ,cnm+max<z,k)—z_1:|2
n=1 dtt i=o nt = : N3
=(2m + k) }J Z cha M1
mLk —-1(z 2m+k—t—1

= Je dy2m+k i—1
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It is now easily seen that ¢ = <{f,0, ---,0> e D(N). Further,
s ol= || Lay | [+ (Lar]"

= [n‘ S n2<2 amrz‘(t)> ]1/ <1V @2m + k)s .
Thus, recalling 4.1.3.,
(4.17) I f(y, )| <V T@m + k)ed < h,

and hence ¢ € B. Also, ¢ obviously belongs to ../"(L'). We have already
seen that ZN¢ is (essentially) bounded; it is easily seen that the con-
vergence of Y, (ZNP,$)* is uniform,

3.IV.5(a). By Definition 4.VI, BC D(N) = D(SN). Thus, ¢ € BC
D(SN). To see that SNBC R(L'), we shall show that R(L') = H.

Given any element <{u, 0, -+-, 0> of H!, let £,(t) = S”u(y, t)p.(y)dy. Let
#,(t) = Stgn(s)r;m,m(t —s)ds and let v = So_z,(Obu(y). Then it is
clear ths:t {v,0,--+,00€e DXz, LP,) and that >, LP,v,0,.--,0> =
{u,0,+-+,0>. We must still show that <v,0, --+,0> € D(N). Recalling
that, for 7 =0,1, ---,2m + k — 1,

— |['eu(s) Lrimait = 5) g

é I:O.S Ei(s)ds] cn max(j-k—m,—m) ,
0

dt’

we see that for j <m and 7 + 5 < m + k the series

5w

is majorized, term by term, by the series
5 ¢o | o)
n-=1 0

which of course has a finite sum, namely czagngd[u(y, )’ dydt. It is now
0Jo
easily seen that <{v,0, +++,0> € D(N) and hence <{u, 0, ---,0> e R(L").
3.IV.5(b). Let <u",0,---,00e D(N) for n =1,2, .-+,

<un’ O’ ctty 0>'—Z—>u = <um+k.0, ct u00> y
and N{u", 0, -+, 0> —25p = Vpminor *** Voop. That is,

418)  lim [So(umk — wrydy + g:(um,m,l,ydy

n—ro0

Foeer + Sﬁuﬁody] =0 uniformly p.p.
1)
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. x Gmtioym \2
(4.19) }32 [S(’(vmm,o - W> dy
x L pmthyn \2
+go<vm+k—1.1 - U7 m) dy + -
+ g:(’voo — u")“dy] =0 uniformly p.p.

Two things are obvious: first, all u;,’s are zero except for Uiz}
second,

(4.20) Umtr,0 = Voo »

Let w; . = v;4y and w; 4511 = Uv;,44,. Then (4.19) can be written as

. 4 am+k 7\ 2
(4.21) lim [So<wm+k.o - W%—) dy
z oty n 2
| (e — )+
+ g:(’woo — u*)dy ] =0 uniformly p.p.

For j<m and 7 +Jj<m+E,

v 4+ Jqm =y
Howi,jﬂ(% t)ydn — a—b?ia(%t)‘ n=0
v piFIitiymn ,t
= ‘So[wi,ﬂ—l()?! t) — Wﬁl—)]dﬁ ’
. ot Ity(n, t) T 2
- . _oTTwa,Y)
= [ﬁgo[ww,ﬁ#l(v! t) atiav’“ ] dﬁ] ’

which last converges to zero uniformly almost everywhere in ¢, by (4.21).
Hence

lim 0"Hum(n, 1)
nom 0007’

n=y

"
Sowi,j+1(77y t)dy

uniformly p.p. on R,. But then it follows from (4.21) that
v
iy, ) — w0, 6) = ["wesur, 08y (0,
or,
aw“ . . . .
(4.22) W = W; 1t (G<m,1+3<k+m).

Similarly, for j<m, 1 +5<m+ k,
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TP oy, 7 |
So[&wle(y, ez — ——W T=0 dy

= S:[S:<wi+1.j(y, T) — W)df]zdy

orttoy!

x(o 6i+j+lun

which converges to zero as n — <o, by (4.21) and Remark 2.III.1. Hence
we obtain

(4.23) ﬁ;‘;—f=w, Gm, i+i<m+k).

Combining (4.20), (4.22), (4.23) yields

oty
4.24 = O U,
(4.24) Wi = oty

Let w,(t) = Mum.o(y, DY)y, 2i(?) =S:u‘(y, t)a(y)dy. Note that,
forg<m,i1+5j=m<+k 1=1,2,---, v=1,2 ...,

i <njﬂ>§ 2 i [nfﬂ (@, — x;)]2+ 2 i <nj dixt )2 .

" dt’ n=v dtt n=y dit
Also,
< d’ o
2n=y[nj ditt (Oﬁn x!, ] = znz:“l[nf 7 (x,, — 2 ]
= i+t
:2S0[6t16y1 ( m+lco—"bl/)]
—9o\" ity P
=2 [w., W] dy
Thus
dZ b4 ai-}-]ul 2 o dixl .
(4.25) F:‘(” “ar ) =20 ot'oy’ yr2x (v

It ¢ is any positive number, then by (4.21) there exists an integer .

such that
Ed ai+1ulg ]2 e
Wiy — ———— | d = .p.).
S[ ' oy | < (@p)

Since <{u,, 0, --+, 0> € D(N), there exists an integer #. such that

f:.a(n’ Mf < i— (p.p.) .



524 GERTRUDE 1. HELLER

Hence

oo d’L » 2
P <"j dgtci ) <e

and so the convergence of the series

(v

is uniform p.p., for j<m and 2+ 5 =<m + k. It now follows easily
that 4 = {Up14.0, 0, +++, 0> € D(N); and by (4.23) Nu = v.

If in addition <u", 0, --+,0> € B, then |u™(y, t)| < h and hence obvi-
ously | %y,1xo¥, t)| = |lim, .. u(y, t)| < h; hence u € B.

3.1V.5(c). Suppose <u,0,::--,00e B, N,0,.--,0> ¢ C(N¢),
SN{u, 0, +«+,0> = L', 0, -+, 0>, and P,({(v,0, ++-,0> — ¢p) e A for n =
1,2, .-+, First, note that <v,0, ---,0) e D(L')c D(N); thus in order
to prove that <v,0, ---,0> ¢ B all we must show is that |v(y, )| < k.
Clearly, |v(y, )| = |v(y,¢) — f(y, 0)| + | f(y,¢)]. Now

otw, &) = £, 01 = | {2 or, 0 — 02, )1 |

[ )al

<V T ZN(K,0, +++,0> — ¢)

< V'al||L<,0,++,00|| = V'&l|| SN<w, 0, - - -, 0|
< V&l [||SN{w, 0, -+, 0> — SNg || + || SNg |[]
sVl [a|| Nu, 0, -+, 0> — N¢ || + || SNg |[]

< VAl [ap + || SNg|[] = v =l LSN2 AL
1—al’

Also we have shown in (4.17) that
Fly, ) =V T @m + k)ed .

Hence

Lo, )| = VAP ALSNEUL | 7 em + kyes .
1 —al’

We know that V7 (2m + k)ed < h; hence the problem now is, can
we choose a positive o < 7, satisfying (4.16) and

(4.26) var WSNell v zem + kyes .
1 —al’

NQW, v is a constant multiple of ¢ (see 4.14); a does not depend on &
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(see 4.15); while ||SN¢|| is a continuous function of o, zero at ¢ = 0.
Thus the function
_ /77 IISNa|
g(c) = V'zll T
is continuous on 0 < ¢ < 7, and ¢(0) = 0. Hence there certainly exists
a positive ¢ < 7, satisfying (4.16) and (4.26).

This completes the proof of Theorem 4.1.

In Theorem 4.I. we considered the system (4.1), (4.2), (4.3) with the
restriction b = 0. This restriction can be omitted if we restrict the
derivatives occurring on the right hand side of (4.1) to derivatives of
the form #"**u/dt'oy” with 27 = m, ¢+ 27 =<m + k. Thus if (4.1) is
replaced by

k 2 2 m
(4.12) U <_6_ — L)
ot* \ ot? oy’
:@<am”‘cu, om Fu y "y 83uv ou y azuy a2uy%’uvy7t>
ot™TE - gtmE2gyr ot’  otoy* ot*  oy* ot
we obtain

THEOREM 4.IV. Let the conditions of Theorem 4.1 be satisfied,
except that M= m/2 +1)(m/2 +k+1) if m s even, and )=
((m + 12+ k + 1)(m + 1)/2 if m is odd.

Then, for some positive real number ¢ < T there exists a unique
G-solution of (4.1a), (4.2), (4.3) with arbitrary a and b, on R,.

Proof. The proof runs along the same lines as that of Theorem
4.I, and we shall here merely indicate the major modification necessary
in that proof. This modification consists of replacing (4.4) by

{(4.4a) b, = '/3 sin n(y + «,)
T
where
(4.27) o, = 1 arc tg (— ﬁb—) .
n a

5. Proof of Lemma 4.III. Throughout this section we shall use
the standard abbreviations f’, f”, ---, £, for df/dt, d*f|d¢?, - - -, d*f|dt*.

LEmMA 5.1. Let f(t) be a real-valued function of class C* on the
interval (0 £t =< a). Let n be a positive integer. Let x(t) be a solu-
tion of the equation
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(5.1) a"(t) + n’x(t) = f(¢)
valid for 0 <t < a, and satisfying the initial conditions
(5.2) 2(0) = 2'(0) =0 .

Then, for 0 <t<aand £=0,1,2, ---
(5.3) |29()| = S w7 | £ 9 (8) | + an*= sup | f(s) |

Proof. The proof will be by induction on f. We first consider the
cases £ =0 and ¢ =1. It is easily seen that

&(t) = S £(s) % sinn(t —s)ds  and /() = S F(s) cos n(t — s)ds.
Hence, for 0 <t < a
=) Sasup|f®)  and &) < asuplf)],

which is exactly (5.83) for £ =0 and ¢ =1.
Now suppose that (5.3) has been proved for ¢ < v = 1. Then,

™+ 0(t) | = '<;l; + n2> () — nPa ()

= 1) — o) | S £ + 0|2
=170+ w [ S 170w | + an sup 1761

A

v—1
S| £9@) | 4+ an sup |£6)]
which is (5.8) with ¢# =v + 1. This completes the proof of Lemma 5.1.

LEMMA 5.I1. Let f and x be as in Lemma b5.1., except that x(t)y
need not satisfy the initial conditions (6.2). Then, for 0 =t < a and
‘u i 0, 1’ ves,

6.4 |29 ()| = n] 2(0) | + n | &(0)]
+ SO | + v sup | £9)]

Proof. Merely note that the function z*(t) = z(t) — 2(0) cos (nt) —
2'(0)1/n sin (nt) satisfies all the assumptions of Lemma 5.1.

LEMMA b.III. For every positive integer q and positive real number
o there exist two real numbers ¢(q, a), d(gq, a) (depending only on q and
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a, and not on n or f) such that, if f(t) is a function of class C* on
0=t =a) and if 2(t) is a solution of

(5.5) (g; + wYalt) = £(0)

valid for 0 <t < a, then
5.6) |aw(t)| = w[olg, ) S0 000) |+ dla, ) sup |F6) |
1=0 0ss=a
for 0st<aand p=0,1,---,2¢q .

Proof. The proof will be by induction on q. If ¢ =1, then from
Lemma 5.I1., (5.6) follows immediately with ¢(1,a) =1, d(1,a) =1 + a.

Now suppose (5.6) proved for ¢ < p. Let x(t) be a solution of (5.5)
with ¢ = p+ 1. Then g(t) = 2”(t) + n*x(t) satisfies (5.5) with ¢ = p,
and hence, by our inductive assumption we have, for j = 0,1, .-, 2p,

1991 = 02| elp, ) 5w 1 g(0) | + dlv, @) sup £ 9)| |
= pi-? ac(p, a)zgnzp—lvi | 2%2(0) + nx®(0)] + d(p, a)(ilslfaj f(s) I]
= [ e(p, a) (S 1200 + 5 nr - [290)|)

+ d(p, @) sup | f(s) I]
= w0 | 20(v, a) 022 9(0) | + dlp, @) 53p | 76)] ]

Thus we have seen that, for 0 <t <a, and 7=0,1, .-, 2p

61 17| = w200, 0) S 0(0)| + dlp, @) sup 1 6) ]
On the other hand, by Lemma 5.11.,
(3.8) |2#(t) | = n* [ 2(0)] + w7 | 2'(0) |
+ S g(0) |+ e sup | g(s) |

for 0<t<a, £=0,1,2,---. When g =2p + 2, then the highest
order derivative of g occurring on the right hand side of (5.8) is at most
2p, so that we can apply (5.7); thus, for £ =20,1, -+-,2p + 2,

| ()| = n* [2(0) | + n+" [ 2'(0) |
n /gznu—z—]nj—p [20(1}, a) ':21%217-#1—7: I x(i)(o) ! + d(p, a)oséggl | f(S) I:|

+ ant-in-? [20(10, a) §In2p+l—i |24(0) | + d(p, @) sup | £ (s) I]
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2p+1
< prrt S e 2 9(0) |
i=0

+ [(r = D) + a2 [ 200, @) S a0(0))
+ d(p, @) sup | 76) ]
< ppmn [(1 +2(2p + 1 + a)(p, a))z(:g)ﬂn“ I 2®(0) |
+(@p + 1+ a)d(p, a) sup |f(s) I] .

Which is (6.6) for g=p+ 1 and c¢(p +1,a) =1+ 22p + 1 + a)e(p, a)
and d(p +1,a) = (2p + 1 + a)d(p, a).
This completes the proof of Lemma 5.I1I.

LEMMA 5.1V. For every positive integer q, nonwnegative integer k,
and positive real nmumber a there exists a real number e(q,a, k) (de-
pending only on q, a, k, and not on w) such that, if x(t) is a solution

of

dlc dZ 2 q _
(5.9) e (W + n> &(t) = 0

valid on (0 =t < a), then on (0 £t = a),

G10) 0] S e (g, 0, k) W a00)
fO/" /’t:kak"l_ly "'12q+k
and
(5.11) |2t | < nve(g, a, k) S, waE | g9(0) |
i

Jor p=0,1,--- k—1.

Proof. Applying Lemma 5.II1. to z®(¢t) we get, for =k, k + 1,
«,2¢ +k, and (0 =1 =< a),

29—1
I x(/J«)(t) l — | (x(lc))(p.-—-k) [ é ,np.fk—llc(q’ a) qg% n?q—lvi | w(kvri)(o) i
2¢+k—1 . .
= e, @) 5 w200
ik

Also, for ¢t < k, we have, on (0 <t =< a)
@] < [@%(0)| + agup |a* ()| < -
0<t=a

= [@®(0)[ + a|x® V()| + -+ + a* |55 (0) |
+ a**sup | x(t) |

0st<a

20+k—1
< max (1, a)-c(q, ayn z i g O(0) |
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Thus (5.10) and (5.11) hold with

e(q, a, k) = max (1, a*)-¢(q, a) .

Proof of Lemma 4.I1I. Apply Lemma 5.IV. with g =manda =0
to the functions 7* of Definition 4.V.
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