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1. Introduction and preliminaries. Let I be a distribution func-
tion (d.f.) on m-dimensional Euclidean space R™, and let X;, .-, X,
be independent chance vectors with common d.f. 7. The empiric d.f.
S, is a chance d.f. on R™ defined as follows: if x = (x,, -+, X,), BS(2)
is the number of X;’s, 1 < ¢ < n, such that, for j =1, --., m, the jth
component X;Y of X, is less than or equal to z;.

When m = 1, the distribution of D, = sup, | S.(x) — F'(x)] is the same
for all continuous F', and Kolomogorov [5] first computed the limiting
distribution of #'?D, as n— . Chung [1] gave a bound on the error
term which was sharp enough to yield a law of the iterated logarithm
for the empirie d.f. and, in fact, the more precise complete characteriza-
tion of monotone functions of upper and lower class. (The more recent
literature contains several asymptotic expansions of Kolmogorov’s distribu-
tion.) It was proved by Dvoretzky, Kiefer and Wolfowitz [2] that there
is a universal constant C such that, for all » > 0 and » = 0,

(1.1) P{n'*D, = r} < Ce™™";

since lim, P{n'?D, = 7} is asymptotically 2¢ (1 + o(1)) as 7 — oo, the
estimate (1.1) cannot be improved upon in this general form.

Much less is known when m > 1. The limiting d.f. of »'*D, was
proved to exist by Kiefer and Wolfowitz [4]; of course, its form depends
on F' (and is unknown except in a few trivial cases), unlike the case
m = 1. It was also proved in [4] that there exist positive constants ¢,
and ¢, such that, for all F, » > 0, and r = 0,

(1.2) P ni’D, = 7} < che on

whereby P,{A} we denote the probability of the event A when X, has
d.f. F. Possible choices of the constants ¢, were shown to be

(1.3) ¢, = .0157, ¢, = .000107, - - (limpe,, = 0) .

It was also shown in [4] that, for m > 1, one cannot have ¢, =2 in
(1.2); specifically, if m =2 and F™* distributes probability uniformly on
the line segment {(x,, 2,): , = 0, 2, = 0, x, + «, = 1}, then as r — o we have
(1.4) lim, Py, {n'*D, = r} = 8r% (1 + o(1)) .
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Thus, even for a single F' we cannot hope to achieve (1.1) in the case
m > 1.

The main object of the present paper is to prove the next best thing,
namely,

THEOREM 1-m. For each m and & > 0 there is a constant c(e, m)
such that, for all F, n >0, and r = 0, we have

(1.5) P n'*D, = 7} < ¢(e, m)e~ 97",

(The labeling of the Theorem as 1-m is to make clear the induction on
m in the proof.)

The result (1.5) clearly represents a marked improvement over (1.3),
and in view of (1.4) this result (1.5) is the best possible of this form.
Whether or not the ¢ in the exponent can be improved, e.g., to a term
like ¢r~* log » when m = 2, as in (1.4), is not known, and the methods
of the present paper do not seem capable of shedding any light on the
subject.

The weaker result which is obtained by replacing the left side of
(1.5) by its limit as » — o can be proved more quickly, and the reader
will have no difficulty in recognizing how the proof of the present paper
can be shortened if only that result on the corresponding limiting Gauss-
ian process (see [4]) is desired.

Theorem 1 yields an easy proof of a law of the iterated logarithm:

THEOREM 2. For every m and every continuous F,

(1.6) P,{lim sup »**D, [ (2'log log n)'* =1} =1.

(The same result holds for D} = sup, [S,(x) — F(x)| or for D, = sup,
[F(2) — Su()].)

In fact, the conclusion that the upper limit is = 1 follows at once
on applying Chung’s result to a one-dimensional marginal d.f. and empiric
d.f. On the other hand, the proof that, if N\ > 27', the probability is
zero that #'°D, = (M log log »)"? for infinitely many #, is proved in a
classical way. For example, the proof on page 48 of [1] requires only
trivial modifications to apply to the present case, using the estimate (1.5)
for ¢ sufficiently small and the fact that for some positive constants b
and ¢ we have P,{D, < bn* = ¢ > 0 for all n; the latter is an imme-
diate consequence of Theorem 1-m or of the results of [4]. It is
unnecessary to give more details of the proof of Theorem 2.

Obviously, our estimate (1.5) is not precise enough to yield a finer
result analogous to Chung’s. In fact, it is clear that the value of
which divides the functions [27'log log 7 + A log log log n]"* into upper and
lower classes depends on F. For example, when m =2 and F = F'*,
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the d.f. of »'2D, is that of n'* (D, + D;) for m =1 (see [4]) and, follow-
ing Chung in obtaining an error term in the approach to the limiting
distribution and in the characterization of the upper and lower classes,
we obtain 3/2 for the critical value of ». On the other hand, if F distri-
butes probability uniformly on the main diagonal 2, = x, of the unit
square, D, has the same distribution as in the case m = 1, and Chung’s
result then yields » = 1 as the critical value.

The method used to prove Theorem 1-m is an improvement of the
method used to prove Theorem 1 of [4], the line of argument being
similar. Lemma 2 extends equation (2.4) of [4], where the case k = 2,
7 =1 was considered. Lemma 3-m improves the estimate of equation
(2.5) of [4]. Lemma 1 is needed in order to obtain, in Lemma 6-m, an
improvement on the estimate of equation (2.24) of [4]. However, the
present paper is self-contained, and we shall not make use of the results
of [2] or [4] in the proof.

The idea of using an argument like that of Lemma 2 is well known
in such a context as that of the study of the maximum of partial sums
of independent summands, where it is of course much easier to apply
than in the case of ‘‘tieddown’’ processes such as the random functions
S,.(x) — F(x) studied here. In fact, it is just as easy to obtain such results
for processes with independent increments in the case of m-dimensional
‘“¢ime’’ as it is in the classical case of one-dimensional time. For ex-
ample, if X;,;, +-+,; , 1 =1, =n, 1=j=m, are independent random
variables which are symmetric about 0 (these assumptions are easily
relaxed) and

Si!if...}i - Z sz’"'m
1799 m =l 1783

j=vg

1Sjsm

we obtain, on using the classical argument m times,

P{ max Sil! cee Vi, Z ’r} é 2""’P{Snl, cee
1iysng
1S7=m

Iy 2 7'} .

Similary, the standard semi-martingale inequality on FE{I,U,}, where
U, = max,., Y, (with {Y;} a semi-martingale), A ={U, = r}, and I, is
the indicator of A, has an obvious analogue for semi-martingales with
m-~dimensional time. Such results also carry over to the case of m-di-
mensional continuous time; for example, if Y(¢, -+ ,t,) is a separable
Gaussian process (m-dimensional time) with mean 0, independent sta-
tionary increments for ¢ in the positive orthant, and Y({) =0 if ¢ is
outside the positive orthant, we have

P{sup Y(t, «++ tn) =1} < 2"P{Y (T}, ++-,Tn) =1}.
0st;=Ty
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The results of the present paper yield inequalities for other processes
with m-dimensional time, which require somewhat greater effort.

In the proof of Theorem 1-m we require one rather elementary
result on the tails of the binomial distribution. Let X, X,, --- be in-
dependent random variables with P,{X, =1} =1 — P,{X, = 0} = p, where
0 <p<1and we now use the subseript p to designate the underlying

probability law. Write X, = 3., X;/n. It is well known that, for some
C >0,

(1'7) Pp{n1/2 IXn - pl = 7'} < Cev2r2

for all » > 1, r =20, and p. In fact, (1.7) is much weaker than (1.1).
The central limit theorem implies that, for » and » fixed, the limit of
the left side of (1.7) as n — oo is less than C exp {—7*/p(1 — p)}, but it
is well known (see the next paragraph or [6], p. 285) that the 2 in the
exponent on the right side of (1.7) cannot be replaced by ¢'/p(1 — p) for
all n, p, and 7, where ¢’ > 0. What we require is that the right side
of (1.7) can be replaced by C, exp {—r’g(p)}, where g(p) — « as p— 0.

We shall prove this inequality with g(p) = log (p~'¢™?) for p < e
The factor e™* in the expression for g(p) can be improved slightly. How-
ever, the result cannot be improved by very much, since for » = »n'*(1 — p)
we obtain exp {—#?(log p™)(1 — p)~?} for the left side of (1.7); thus, g(p)
cannot be taken to be ¢ + log p™ with ¢ > 0. If g(p) is allowed to de-
pend upon 7, it is easy to obtain a better bound. This is also true if
one desires separate inequalities for the positive and negative deviations.
But for » ~ »'*(1 — p) and p — 0, it is again true that little improve-
ment over our bound is possible, for the positive deviations.

LEMMA 1. For 0<p<e™, all n >0, and all »r =0,
(1.8) Pw*|X, — pl =7} <C, exp{—r[logp™ — 1]},
where C, depends only on p .
Proof. We proceed along classical lines. In fact, for the negative
deviations we need only note, putting p' =1 — p, that
(1.9) Pwx(X, — p) < —1} = Pyin*(X, — p) = 1},

and from [3], equations (VI. 10.12) and (VI. 3.5), we obtain easily that
this last probability is bounded by

(1.10) C;exp {—r*2(1 — p')} = C; exp {—7*/2p}
< Cyexp{—rlogp™ — 1]},

where here and in the sequel C,, C}, and C} depend only on p but may
change meaning in different appearances. We need a slightly better
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bound than that just cited, for the positive deviations. Writing
WK;n,p) = P{nX, =k}, and letting the integer % be defined by
n+Dp—1<h=(m-+ 1)p, we have, for k > h,

bIe;m, D) — S jog  OIMD) g Pt —it D

1.11) 1lo - -
(L1 gb(k;n,p) i“F b —1;m,p) S 11— g

Since the summand is decreasing in j, we may bound the sum from
above by integrating directly, with respect to j, from h to k. On com-
bining terms, we obtain, for » = C,(which is all we need consider),

b(k; n, p) p(n +1—h)
(1.12) log 2222 < (k— h)log =2—— "~
b(h; n, p) ) (1—ph

1—Ik)log ML= g0 ® < 0v it (b —h) — klog £

+(n+ Yog ——— og - < G+ ( ) og —

Consider the function

W) g =e @+ p)log (1 L) RERE D

on the interval [0, 1 — p,]. We see easily that ¢(0) = g(1 — p,) = 0,
that g is concave and decreasing for

0=o=[A—p)2 log (pte ™) - p,

and that g is convex beyond this last point. We conclude that g(x) £ 0
on [0, 1 — p]. Putting « = (k — h)/n and p, = hjn, we conclude that
the expression (1.12) is no greater than

(114) C;}r o [IC — h]2 log‘ (pl 1641)
n

for o <k < n. Finally, since |p, — p| < n?, equation (1.14) yields

(1.15) log_bM <oy — [k — h]'log(p~le™)
b(h; n, p) "

Equations (1.10) and (1.15), together with the well known estimate
Siizo bk + 75 m, p) < bk; m, p)(k + 1)1 — p)/[k + 1 — (n + 1)p] relating
tail probabilities to individual terms ([5], equation (VI. 8.5)), immediately
yield (1.8).

2. Proof of Theorem 1-m. As indicated in [4], for any disconti-
nuous d.f. F there is a continuous F for which the left side of (1.5) is
at least as large. Hence, we can and do assume that F' is continuous
n all that follows. We can then transform the coordinates one at a
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time, without changing the d.f. of D,, so that the marginal (one-dimen-
stonal) d.f. of X, 1 <5 < m, s uniform on the interval [0, 1]; we
hereafter assume F' to be of this form. We denote the unit m-cube, in
which all X; thus fall with probability one (w.p.1), by I™.

In all that follows we need only consider values » for which
R(s,m) < r < n'?, where R(e,m) is a fixed positive number. For
P.(n'?D, > »"*} =0, and if (1.5) is true for » > R(e, m) we can increase
¢(e, m) to make it hold for all » = 0.

Let k be a real number = 2 and let 5 be an integer, 1 <5<k — 1.
Define

Ve =A{®y +o+,20): (0 — DIk =, < jlk},
ij: = {(xu ey xm): Xy :J/k} .

We first show that if S,(x) — F(x) is < rn~"* everywhere on W,_, , and
= rn~Y* somewhere on the slab V,,, then there is appreciable conditional
probability that it is almost this large somewhere on the hyperplane
W, To this end, define the events
2.1) Byi(r) = {sup[S,e) — F@)] 2 "} ,

ij

Colr) = {suplS,(@) — F@)] = rn-2} .
W_;k

Denote the complement of an event C by C.

LEMMA 2. We have, for 2=r =0 k=2, and 1=53=k—1,

2.2) Po{Cn(r(1 = 2 25))1Csr) Bt}

21_ (I‘;_J)2 .
re

Proof. 1If Byf(r) occurs, there is w.p.1l a smallest value x| of
2, (7 — 1 £ kx{ < J) for which S,(x) — F(x) = rn~'?, for some &, *++, X,;
for «, = «!, there is then a smallest value z; of x, for which this in-
equality is satisfied, and so on. Thus, we obtain a well-defined random
vector X' = («f, ---, 2,) for which S,(X') — F(X') = rn~* whenever
B,(r) occurs. Moreover, the event {z| = a,, +*+, *,, = a,} depends only
on {S,(x), ', < a}. When a = (a,, -+, a,), write @ = (a,, +++,a,). We
shall now prove that, for j — 1 < ka, < 7,

(2.3) P, {S,,(j/k, @) — F(lk, @)= r (1 - kL_j)n—uZ

X' = ;8,(0) — F@) = 7% Gy} 21— B0
r
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which clearly implies (2.2).

Suppose the event conditioning (2.8) occurs. Since C,_,(r) occurs,
a, is actually > (§ — 1)/k, and there is w.p.1 at most one X, with first
coordinate a,. Hence, if I denotes a vector consisting of m — 1 ones,
we have

(2.4) nS(a,, 1) < nF(a, 1) + ro* + 1.

Hence, the number N of X, ..., X, which have first coordinate greater
than a, is at least

(2.5) M=nl—a)—rn?—1.

If M <0, we thus have rn™'?= — n™ + (k — 7)/k, from which we
obtain, for r = 1,

(2.6) S.(3lk, @) — F(jlk, @)
Z [Su(a, @) — F(ay, @)] + [F(ay, @) — F(j[k, )]
=t — k2 (1- 2 ; Jrne — e — gy
= (1-— z_j)'rn“”.

On the other hand, if M > 0 we have N > 0. Let @ be the event
that, of the N random variables X; whose first coordinate is > a,, at
least

nF(jk, @) — F(a,, @)] — 20"k — j)~'r
take on values in the region
{(xly ccy xm): @y < Xy éj/k! Ly é Qyy ¢ vy Tpy é a’m} .

Clearly, if we show that, for v equal to any integer = M,

(2.7) PrQIX' = a; Si(a) — F(a) = rn™; Cyoy 1(r); N = v}
>1 - (k=3) ,
/,.2

this together with (2.6) yield (2.3).
Define

— F(J/k’ 6) - F(a/n d—)
- 1—a, )

4

If » =0, (2.7) is trivial. We therefore assume p > 0, and define
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¢ — MEG[k, @) — F(a, @)] — 20k — j)"'r — vp
[vo(1 — p)I? |

Since v = M, (2.5) implies that

¢ < o —2(k — 5)7"] + pn™"
B [vp(l — p)n~]”

Since the. event X’ = a depends only on {S,(x), x, < a,}, the probability
(2.7) is simply the probability that, of v independent Bernoulli trials
with probability p of a ‘‘success,”” the number Y of successes satisfies

Y — EY
[E(Y — EY)]"

v

t.

Since p = (kK — j)™* and y/n < 1, it follows that t < —r(k — )" for r = 2.
Hence, (2.7) follows at once from Chebyshev’s inequality.

Next, let Bj(r) and Cjx(r) be defined by replacing S,(x) — F(x) by
F(x) — S,(x) on the right side of (2.1). In a manner almost identical
to that used to prove Lemma 2, we obtain

LEMMA 2'. We have, for r = 2,

(2.8) P{C(r(1 = 25)) G BL)

S R Gk )
= p

In fact, this is even easier, since the case N = 0 now requires no
calculation. We replace (2.5) by an upper bound on N, Q by the event
that at most n[F(j/k, @) — F(a,, @)] + 2n**r(k — j)~* observations fall in
the region of probability p, obtain a positive lower bound on ¢, and thus
a lower bound on P{Y — EY < t[E(Y — EY*]'*}.

Our next lemma requires an induction on m, which we exhibit in
its number.

LEMMA 3-m. For ¢ > 0 there is a number c, (s, m) such that, for
all F, n, r=0, k=2, and j <k,

(2.9) Po{Cy(r) U Cir(m)} < c(e, m)e= 2",

Proof. Of course, for m =1 the result (2.9) is weaker than (1.7)
(or (1.1)). For m >1, consider S,— F on the set W,U{r:x,
> jlk, x, = 1}. This clearly has the same distribution theory as an (m — 1)-
dimensional sample d.f. minus the corresponding continuous d.f. The
desired result thus follows from Theorem 1-(m — 1).
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Since

PL{Cu(8)
.10 P,{B,, < PAC,_, & .
@10 Bl = 5 16 @ By LG

we obtain at once from Lemmas 2, 2/, and 3-m,

LEMMA 4-m. For & > 0 there is a number c,', m) such that, for
all F,n, k=22, <k —1, and r = 2(k — j),

@.11) PF{sup 18,(@) — F(2)] = mrw}
ij

=< ¢y(€’, m) exp{——W(l —_2 _>2(2 — e’)} .
k—3
It now becomes evident that, by taking % large, we can prove
Theorem 1-m by using the estimate (2.11) for those V), for which k& — j is
large, provided we can also find an appropriate estimate for the region
where k — 7 is small, i.e., near x, = 1. Actually, we shall see that it
suffices to find such an estimate for the region where x is close to (1,
1, .-+, 1), and the appropriate estimate is obtained in Lemma 6-m below.

We first require a preliminary result which essentially improves the
estimate (2.11) when j is small.

LEMMA 5-m. There is a number c,(m) such that, for all F,n =1,
k=38, and r = 2k[1 — 2/(k — 1)]™,

2.12) Pp{ﬁup 18,(x) — F(x)| = 7%“/2}

= ci(m)exp {—7'2[1 — lc4—7—n 1 ] log (ke‘l)} .

Proof. Let T, =Vy Ths= Wy Tno={E:0, =k 2,=1, «--,
2, = 1} for ¢ > 1. Asin the proof of Lemma 3-m, we see that S, — F
on T,_, has the same distribution theory as an (m — ¢)-dimensional
sample d.f. minus the corresponding continuous d.f. with uniform margi-
nal d.f.’s, on the subset of the (m — ¢)-cube where the first coordinate is
< k™'. Hence, applying the argument (2.10) m times, where the last
term on the right side of (2.10) is now zero, where in each successive
application we use Lemma 2 or 2’ to obtain 3/4 as a lower bound on the
denominator of the expression on the right side, and where in the ¢th
application the right side numerator and left side of (2.10) are, respec-
tively, probabilities of maximum deviations greater than or equal to
r[1 —2/(k — 1)]n* on T,-, and greater than or equal to
r[1 —2/(k — 1)]**»n™"* on T, ..., We obtain
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—1/2 4 m —1 m
(2.13) Py sup |Sy(x) — F(2)| =2 rn™"; < 3 ¢k, m, r[1 — 2/(k — 1)]™),
1%
where ¢(p, n, 2) is the probability that the number Z of successes in n
independent Bernoulli trials with probability p of success satisfies

| Z — np| = z2n?.

Lemma 1 and (2.13) thus imply (2.12).
We are now ready to prove that large deviations of |S,(x) — F(x)|
have suitably small probability if « lies in the region

Up={2:1-8=2,=1, 1 <qg=m}

and & is a small positive number.

LEMMA 6-m. There is a number c(m) such that, for all F, n,
8§ < 1/4, and r = 267'[1 — 38]™, we have
(2.14) PF{sup 18,(@) — F()| = m—m}
Us
< c,(m)exp {—r*4—™(1 — 6md)log ("¢ ")} .
Proof. For a in U, let Q, ={x:z, = a, 1 < q < m}, and for any
sequence ¢ = (G, »+-, 0,) of 1’s and —1’s, not all 1’s, let
Qo) ={x:xelI™ om, <00, 1=<q=m}.
Thus, @, and the 2™ — 1 sets @,(¢0) are disjoint sets whose union is I™

minus the union of m hyperplanes {x: 2, = a,}. Define the event

Do, s) = {1 [number of X,, « -+, X, falling in Q.(a)] — n§e _dF|z nms}.

a

If the event

Bi(r) = {sup |S,(@) — F(&)| = "}

occurs, we define, in the manner of the definition of the random vector X'
of the proof of Lemma 2, a random vector X' such that X" € U, and
[S(X") — F(X")| = rn~*?, With probability one there is at most one
X, with any coordinate equal to the corresponding coordinate of X', so
that w.p. 1 the event B;(r)N{X" = a} entails the event

(2.15) U.D.(a, r[(2" — 1)).
For any fixed o, let Y; = (Y%, -+, Y;™) be defined by Y;?® = X;@
(resp., =1 — X;@) if 0,=1 (resp., = —1). Let G be the d.f. of Y,

when F'is the d.f. of X), and let S, be the sample d.f. of Y}, «-+, Y.
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Let b,(o, 8) =1 — 8 (rep., &) if g, =1 (resp., = —1), and let V (o, 8) =
{Z:0 =2, b0, 8), 1 =q=m}. The event User;Du(0, s) is, w.p. 1,
equivalent to the event

(2.16) {Vs(u%IS;(w) —G@)| = s} .

Since at least one g, is —1, at least one b,(0,8) equals 5. Hence, if
k = 87, the set V (o, 8) is a subset of a set obtained from Vi, by rela-
beling coordinates. Hence, by Lemma 5-m, the event (2.16) has prob-
ability no greater than

cs(m)exp{—si 1l — 6ms]log(é'e ")} .

The union (over o) of 2™ — 1 such events (with s = /(2™ — 1)) is equiv-
alent to the union over a in U; of the events (2.15), and thus contains
the event B;(r), w.p. 1. This proves (2.14).

Proof of Theorem 1-m. (The proof which follows is valid for m = 1,
and does not require the use of (1.1), although the latter implies the
desired result when m = 1.) Suppose m =1, and let ¢ > 0 be given.
Choose & to be the largest positive number which is < 1/6m and such
that 4 ™(1 — 6md) log (67'¢?) > 2. Let k be the smallest positive number
such that k= < §/2 and such that 2/(k — j) < ¢/5 for j/k <1 — 8/2, and
let & = ¢/5 in (2.11). The coefficients of —#* in the exponentials of (2.14)
and (2.11) are thus =2 —e¢ provided j/k <1 — §/2. Thus, writing
Veo={r:2, =<1 ~— 8}, wesee that V, is contained in a union of fewer
than k sets V, (namely, those for which j/k <1 — §/2), for each of
which the coefficient of —#* in (2.11) is= 2 —e. Thus, r = R(s, m)
implies

2.17) Py {S}}D |Su(@) — F(z)| = m_m} < c(e, mpe e

where R and ¢, depend on ¢ and m but not on », F, or n. Interchang-
ing the roles of the first and qth coordinates, we obtain (2.17) with V;
replaced by V,. Since the union of U; and the Vs (1 £q < m) is I™,
we obtain (1.5) for » = R’(¢, m) and thus (by possibly increasing c(e, m))
for all » = 0.
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