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Introduction. In their paper [3], Hewitt and Zuckerman study the
measure algebra _~ (G) where G is a topological semigroup of the follow-
ing type: G is a linearly ordered set topologized with the order topology, is
compact in this topology, and multiplication is defined by xy = max (x, ¥).
In this study, we will suppose that G has the above properties except
that compactness will be replaced by local compactness. (See § 8.5 [3]).
As the reader will readily observe, we are heavily indebted to Hewitt
and Zuckerman for their initial study of these measure algebras. For
completeness, we have listed, without proof, a few of their results; they
are stated in their paper for compact semigroups but the proofs easily
carry over to locally compact semigroups.

In §2 we study G and @a. The characterization of the Gel’fand
topology on G is somewhat simpler than that of Theorem 5.5 [3]. The
major result of this study is Theorem 3.4, stating that every closed ideal
in _# (G) is the intersection of maximal ideals; i.e., spectral synthesis
holds for _# (G). Malliavin [7] has recently shown that spectral synthesis
fails for _.# (G) when G is a non-compact locally compact commutative
group." Theorem 3.4 shows that this result cannot be generalized to
locally compact commutative semigroups. In §4, a generalization of
Theorem 6.7 [3] is indicated; see Theorem 4.5. This is used to obtain
additional facts about .# (G) (§5). In 5.8 we show that our theory is
not a special case of the theory of function algebras.

1. Preliminaries.

1.1. We will be concerned with linearly ordered sets; i.e. sets ordered
by transitive, irreflexive relations < . For elements x and ¥ in such a
set X, we define Jz, ¥y ={re X: 2 <2<y} and [z,y]={re X: v <2
< y}. The half-open intervals [z, y[ and ]z, y] are defined analogously.
We also define | — o, 2] = {#e X: z2<x} and ] —o0, 2] = {re X:2 < 2}
with analogous definitions for [z, oo[,]x, o[, and ] — o, [. The sym-
bols — and o will never denote actual elements of X. The order
topology for X is the topology having the family {] — oo, 2[}iex U

Received May 5, 1960. Supported by a National Science Foundation pre-doctoral fellow-
ship. The author is indebted to Professor Edwin Hewitt for his advice and encourage-
ment during the preparation of this paper, which constitutes part of a Ph. D. thesis. Con-
versations with Dr. Karl R. Stromberg were also helpful. Presented to the American
Mathematical Society, January 27, 1960.

t Actually Malliavin shows that spectral synthesis fails for Li(G); the result for .#(G)
follows easily from this.
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{lz, oo[}.ex for a sub-base.

For terminology not explained here in measure theory, topology, and
harmonic analysis, see [1], [5], and [6], respectively. If A is a subset
of B, we will write A £ B; A C B will mean that 4 is a proper subset
of B. For sets A and B, we write A — B={x:2xe A,x¢ B}and A4B =
(A — B) U (B— A). The empty set will be denoted by 0. For any set
A, x4 will denote the characteristic function of A.

1.2. STANDING HYPOTHESES. Let G be a set linearly ordered
by the relation <. Suppose also that G has the order topology and that
under this topology G is locally compact. For z,y e G, we define zy =
max (x,y). With this multiplication G is a locally compact topological
semigroup.

1.3. Let €(G) denote the linear space of all complex-valued continu-
ous functions on G that are arbitrarily small outside of compact sets. For
fe Cy(G), let || f]] = max,eq | f(x)|. Let .#(G) consist of all countably
additive, complex-valued, regular, finite Borel measures on G. Let € (G)
be the linear space of all complex-valued bounded linear functionals L
on €(G). For each L e CF(G) there is a unique »e _#(G) such that

(1.3.1) L(f) = Saf (x)dMx)

for all fe €(G). Also for each e _#(G), 1.8.1 defines a member of
€f(G). Under this correspondence, _Z(G) = €F(G). We will associate
L with »\, M with pu, ete.

Let v e _#Z(G). Then for Borel sets E = G, we define

1.3.2) |M(E) = sup{ SN (By) | : {E)r, is a Borel partition of E}
k=1

Then the set-function |\ | belongs to _#(G) and
(1.3.3) I =IXM(G) =1L
where L e CF(G) is defined by 1.3.1. See [2].

1.4. THEOREM. Let L and M be in CF(G). For all f € €(G), let

(L4.) LsM(f) = | | fenana)dp) .
Then LxM € C¥(G), and
(1:42) LMl S L1 1M

1.5. For ), e #(G), we define Mp to be the unique measure in
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_#(G) that corresponds to L¥M € € (G) .

1.6. THEOREM. Under the convolution defined in 1.5 and the or-
dinary linear operations, _# (G) is a commutative Banach algebra.
We omit the proof; see § 2 [3].

1.7. For ae @G, let ¢, e _#(G) be defined by

liface &,

(1.7.1) WB) =10 ‘

for Borel sets E =S G. For ve _#Z(G)and A = G a Borel set, M e _7(G)
is defined by M(E) = MA N E) for all Borel sets E < G.
The proofs of the following four lemmas are routine and uninteresting.

1.8. LEMMA. Let ES G be a Borel set and ne 7 (G). Then
for any ¢ > 0, there exist a,be E such that

(1.8.1) MEN]—w,a)<e and MNEN]D o) <e.

1.9. LEMMA. Let X be a linearly ordered set and U = X be a finite
unton of open intervals. Then U is the pairwise disjoint umion of
open intervals:

U=Q]ai, bl

where intervals of the form [inf X, b,[, la,, sup X |, and [inf X, sup X] are
also admaissible if inf X or sup X exist. Moreover, a, ¢ U except possibly
in the case where a; = inf X, and b, ¢ U except possibly in the case that
b, = sup X.

1.10. LEMMA. Let X be a compact linearly ordered set and U< X
be an open set. Then U is the pairwise disjoint union of open intervals:

U = U loa bl

where intervals of the form [inf X, b, , Ja,, sup X], and [inf X, sup X]
are also admissible. In addition, a, & U except possibly im the case
that a, = inf X, and b, ¢ U except possibly in the case that b, = sup X.

1.11. LEMMA. Let X be a locally compact linearly ordered set.
Suppose that K = X is compact and that U s an open set such that
Kc Uc X. Then there exist finitely many pairwise disjoint closed
compact intervals {[a,, b}, such that U 2 Ur.[a;, b] 2 K. Also there

1=1
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exist finitely many pairwise disjoint open intervals {Jus, v[}i—, such that
U 2 Ul Jus, v 2 K and each closed interval [u,, v;] is compact. Inter-
vals of the form [inf X, v[, Ju;,, sup X], and [inf X, sup X] are also
admissible whenever Inf X or sup X exists.

2. The spaces G and @o.

2.1. A Dedekind cut {4, B} of G is a pair of subsets of G such that
ANB=0, AUB=G, and © <y whenever x € A and ye B. Let G
denote the set of all semicharacters of G.

2.2 THEOREM. Let {A, B} be a Dedekind cut of G such that A + 0.
Then the function

lifxed,

(2.2.1) Y s®) = g if veB

is a semicharacter of G. Conversely, every semicharacter on G has the
Sform 2.2.1.

2.8. THEOREM. Let {A, B} be @ Dedekind cut of G such that A # 0.
Then the mapping

(2.3.1) 70 = MA) = | das(e)dNE) (e 2(@)

18 @ homomorphism of _#Z(G) onto the complex mnumbers. Moreover,
every homomorphism of _#(G) onto the complex numbers has the form
2.3.1.

Proof. This is essentially proved in Theorems 8.2 and 3.3 [3];
however the proof in [3] that 7, is multiplicative can be simplified. Let
N, e _#(G). According to Theorem 2 [8], Mxt((E) = M x p{(x, ¥) G x G:
xy € E} for Borel sets £ & G where \ X t is the product measure of \
and p. Hence if {4, B} is a Dedekind cut of G, then

T Ok p) = Mxp(A) = N x ¢z, ) € G x G: max (x, y) € A}
= x A x A)=MAA) = TOTLL).

2.4. THEOREM. The Banach algebra _#(G) is semisimple.
Proof. In virtue of 2.3 we need to prove that if MA) =0 for all

Dedekind cuts {4, B}, then ) is identically zero. Suppose that MA) =0
for all Dedekind cuts {4, B}; evidently MI) = 0 for all intervals I. If
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A is not identically zero, then MK) % 0 for some compact set K & G.
By regularity there is an open set U 2 K such that |»| (U — K) < [MK)].
For each z € K, let I, be an open interval such that x e [, € U. Let
I, +-+, I, be a finite subset of {1 },cx covering K. Let V = Ur,[,; clearly
K< Vc U Byl9, Visthe pairwise disjoint union of a finite number

of open intervals. Hence (V) = 0. Thus

IMV — K)| = [MV) — MK)|
= [MK)| > MU = K) 2z M(V = K) =2 [ MV — K)|

which is a contradiction. Hence )\ is identically zero.

2.5. Theorem 2.3 identifies completely the homomorphisms of _Z (G)
onto the complex numbers. Relation 2.3.1 associates each homomorphism
w4 0f _# (G) with the semicharacter +r, ,. Hence we will usually consider
G as consisting of the homomorphisms 7,. For » e _#Z(GF), we define X
on G by

(2.5.1) M) = T (V) = MA) (r. €G);

% is the Fourier transform of .

For =, m, e G, we will write T, < 7wy, if and only if A c A'.
Under this ordering, G is obviously linearly ordered. Evidently G is
isomorphic to the maximal ideal space of _# (G). The Gel’fand topology
for G is the weakest topology for which all the functions \ are con-
tinuous.

Henceforth we will write m,; for m_. . and 7, for m_.. , (a € G).

2.6. DEFINITION. Let G, = G U {m} where 7, < 7 for all 7 ¢ G.
The symbol 7, may be taken to correspond to the zero homomorphism
of _# (@), the zero semicharacter of G, and the Dedekind cut {0, G}.

2.7. THEOREM. The Gel’fand topology on G coincides with the
order topology.

Proof. Let w, € G where A-=G, )\ e # (@), and ¢ > 0. Using 1.8,
we can find b € A and ¢ ¢ A such that || (16, ¢[) < e. Clearly &, € |y, @.f.
For my e |y, Ty [, we have

M@ — N7s)| = IMA) — MB)|
=[MA4B)| = [MA4B) = |M(b ) <e.
Thus X is continuous at =, € @(A # (@) in the order topology. Similarly
% is continuous at 7, in the order topology. Hence the Gel’fand topology

is weaker than or equivalent to the order topology.
For b,c e G,b < ¢, it is easy to verify that
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& — € = Yimpp. zoql and §, = Limyp, =gl -

Hence sets of the form

2.7.1) o ol B <,
and
(2.7.2) 170ty el

are open in the Gel’fand topology. All sets of the forms 2.7.1 and 2.7.2
comprlse a basis for the order topology. It follows that the order topology
on G is weaker than or equivalent to the Gel’fand topology on G.

2.8. THEOREM. The set G, with the order topology is a totally
dzsconnected compact Hausdorﬁ‘ space. For ne _#(G), let X be defined

on G, to agree with % on G and such that Mmy) = M0) = 0. Then X is
continuous on G,

Proof. Let <7 consist of all subsets of G, of the form:

(2.8.1) 1%ar» Tl (@ <b),
(2.8.2) [7o, 7ol
(283) ]ﬂa[r EG] .

Each set in &# i§ open and closed and <7 is a base for the order topology
on G,. Hence G, is totally disconnected. The remainder of the proof
is omitted.

2.9. DEFINITION. Let I be an interval of G, and let & be a continuous
function on G,. Then we define:

@9.1) Vi D) = sup { 5 [hme) = h(m)|: 1 S 7 % o0 S mell.

In particular, we define V(h) = V(k; @0) and say that % has finite varia-
tion if V(h) < 0.

2.10. Let % be a continuous function on G, and let Ty STy S o0
< Ty, Ta, eG Then

(2.10.1) Vh; (74, 7)) = é Vi [Ty T4l) -

Let % be a continuous, real-valued function on @0 of finite varia-
tion. For 7w, € G, let hy(xw,) = V(k; [7y, 7,]). Let th =h, — h. Thenh,
and h, are continuous, non-decreasing functions on G,.

3. The closed ideals of _#Z (G).

3.1. LemMA. Let n,, 7y € Gy, where w, < @5, and let v e _Z(G).
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Then
(3.1.1) IM(B —A)=V(R; [74 7)) .

In particular, [N = M (G) = VXV).
Proof. It is easy to show that V(X ; [m,7s]) < M| (B — A).

Let ¢ > 0. Let E,.--, E, be pairwise disjoint non-void Borel sets
whose union is B— A. Fori=1,-.--,m, let K, & E, be a compact
set for which |\|(E; — K;) < ¢/m. By induction (and using the second
part of 1.11) we obtain pairwise disjoint open sets U,, ---, U, such that

(i) K, U, < U,cG— (Ur-inuK; U Uj';il_]j)’
(ii) MU — K;) < ¢/m,
(iii) U, is a finite union of pairwise disjoint open intervals ;

t1=1,.++,m. Now Ur,U, is the finite union of pairwise disjoint open
intervals, say {I}};_,, such that each I} is a subset of some U,. For
j=1,--,r let I, =I; N (B — A). Evidently Uj-.I, = Ur(U; N (B —
A)); we may suppose that each I, is non-void. Let 4,;,={xeG: z <y
for some y e I}(7 =1, ---, 7). Relabelling if necessary, we may suppose
that A, c A, C -+ C A,,. LetA,, ,={re G:x <yforallye I}. Then
Ty STy < Ty STy, < Ty, S 2o < Ty, =7 and I, = Ay — Ay, for
j=1,«--,7r. Now

VR [ ) 2 5 8a,) — M) = 2 IMAw = A)]

> glx(f,); gglx(m N (B — A))

whereas
S IME)| = 3 IME — K) + MU, 0 (B — 4))
— MU N (B = A) —K)| < 2+ JIMT 1 (B — 4))]
so that

3 ME)| < 28+ VR [70 ).

It follows that [N (B— A)=< V(N; [7,, 75]) since {E}r, and e are
arbitrary.

3.2. LEMMA. Let R be an interval of éo of the form 2.8.1 or 2.8.3.
Suppose that ne _#7(G) and that NMx) # 0 for all T e R. Then there
exists a v € _#(G) such that
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forre R,

(8.2.1) P(x) = { M)
0 forxéR.

Proof. Suppose that R = |z, 7] and let X = [z, y[. Evidently
X is a locally compact subsemigroup of G. Throughout this proof, ele-
ments of X will be denoted by #; whenever the symbol %, occurs, itis
tacitly assumed that A & X and that {4, X — A} is a Dedekind cut of
X. The functions X will be considered defined on G or X rather than
G, or X,. For Borel sets EC X, let ME)=ME N X) + M] —oo, @)
¢,(F). We have X € _#(X). We now show that

(3.2.2) MR = NTay . ap) for 7oe X .

Indeed X(%,) = X(4) = MA N X) +M] — o0, ) e(4) = MA) + M]— oo, x[)
=MAU] —oo, z]) = i(n‘AU]_m, o). Since 7T, -ws . € B whenever 7, € X,
it follows from 38.2.2. that

(3.2.3) ME)#0 for 7, e X.

By Theorem 4.15.1 (9) [4], X € _#(X) has an inverse D € _#(X). For
Borel sets £ < G, let

WE) = (E N X) — 5(X)s, (E) .

Evidently v e _#Z(G). It is now routine to verify 3.2.1.

If R=1]n,,n,], we let X =[x, o[ and repeat the preceding proof
with the appropriate modifications.

3.3. NoTATION. For subsets A and B of G (or @0), we write A < B
if reAand ye B imply x <y and A< B if x e A and y € B imply
2 < y. Note, in particular, that 0 < 4 and 4 < 0 for any set 4. Let
P={n,-+-,7,} be a finite subset of CA#O where m, < T, < +»+ < Ty
We will sometimes write Z()/C ; P) for > rt li(r:m) — i(r:i)l s M € AZ(G),.

For 7, e Gy, let I, = {» € .7 (G): MA) = 0}. Note that I, = _7(G).
Since each I,(w, e @) is the kernel of the homomorphism 7, the set
{I}:,e4 is precisely the set of all regular maximal closed ideals in _Z(G).

The following theorem characterizes the closed ideals in _Z(G).

3.4. THEOREM. Let I < 7 (G)be a closed ideal. Let H = {z € Gy
NM7) =0 for all v e I}. Then H is closed in G, and

(8.4.1) I=N1I.

nJEH

Proof. Obviously H = Mie:(X)72(0) is closed and I & N exls -
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Let ) be a fixed element of M.zl LetZ ={ze G,: Nx) = 0}.
Clearly Z is closed iAn G, H< Z, and m, ¢ Z. By Lemma 1.10, the comple-
ment Z' of Z in G, is a pairwise disjoint union of open intervals:

Z' = L‘J] T4, Tp,[

where one of these intervals may be of the form ]z, ,7s]. Moreover,
m,, € Z for all @ and 7z, € Z for all @ except possibly when 75, = 7.
We assume in the following that 7, ¢ Z’; elementary modifications are
necessary when 7w, € Z’.

We first prove

(3.4.2) Vh) = > V(Z; [Ray 7s,]) -

Using 3.1, we have SL.V(; [7s, Ts, D) = 2 M (Bs — 4Ad) = M (G)
=VQR). Let ;, <7, < ov+ < T, T; € Go, and call this partition P’. Let
P=P U({r;}. Let a,a,- ++,a, be precisely those a such that
]ﬂAwi, ani[ NP+ 0. For this paragraph we write 4, for A, and B, for B,,.
We may suppose that |z, s, < ]TL'AHI, 7er[ (t=1,+--,k—1). For
1=1,+-,k, let P,=]n,, 7wz NP. Let Z, =[x, 7, ]NP. For =1,
ceek—1,let Z, = [n,, w4, ) NP. Let Z, = x5, 7g] NP. Clearly some
or all of the Z, may be void. Evidently we have:

(1) P=Z,UPUZUPU - UP,UZ; UP,UZy;

(11) Z0<P1<Z1<P2< tee <Pk—1<Zk—1<Pk<Zk;

(i) Z n P=UkZ;

(iv) Pc]lny, @l (2=1,--,k)

(v) the intervals given in (iv) are pairwise disjoint.
Now let P* =P U {%,, Tp,, Tup Tppy *** » Ty T, Clearly Z, < {m,} < P,
< {7'531} =Z = {TCAZ} <P< =22, = {ﬂAk} <P, < {n.Bk} =< Z,. Using
the notation established in 3.3, we now get

b3

1=1

) = Uw)| = 2R P) = SR P
=SSR m U P U -

By 2.9, we have 3 (N {7} U P U {m,)) < VR [74, 7))
for 1 =1, .-+, k. Combining these inequalities, we obtain

S 1R = R (@) £ 5 VE; [7ay m) = S VO 7,0 7))

Since the partition P’ was arbitrary, we have V(}) < 3. V(X ; [m,,, 75 ])
and hence 3.4.2 is proved.

Let ¢ > 0. We shall ultimately show that there is a ¢ € I such that
Ix — ]| < 3e. Since ¢ is arbitrary and I is closed, this will prove that
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» el It will then follow that M.,exls & I, completing the proof. By
3.4.2, there exist o, +-+ , &, such that 3=, VN [77:,,“, xgwi]) +e= V(X).
We shall henceforth write A; for A,, and B, for B,,. Then

(3.4.3) VR — S VE; [ m) S ¢

We may suppose that A, c B, A, c B, --- £ 4, C B,. By 1.8, there

exist x;, ¥, € B, — A, such that

(3.4.4) IM (B — A — [, 9:]) < “;7 (i=1,+,m).

Let U; = |z, ¢, ®,n [ ; obviously U; is open and closed. Note also that
U Sy, 75, [S2Z'. Let U= UL U; U isopen and closed (and hence
compact). Also U< Z' £ H' where H' denotes the complement of H
in @0. Thus for each 7w, e U, there is a A, e I such that )\, (A4) =
A7) # 0. Note that 7, ¢ U since 7, ¢ H and 7, ¢ U since 7, ¢ Z".
By the continuity of X, on G, and Theorem 2.8, there exists an open
and closed set V, such that

(a) m e Vy

(b) me V, implies X (7) # 0;

() VucU;

(d) V, has the form 2.8.1.2
Since U is compact and U.,erV, = U, there is a finite set {V ,}{-, such
that U, V,, = U.

For V,, = Ifta, 1, Tyl , let V3, =7, 7oyl and V', = Imy, wel. Let
7" be the family of sets consisting of all V,,, V3, and Vi. For ze U,
let R, =N{Ve:meV}. Clearly there exist only finite many distinct
R, — say {R}i.

The following assertions are easily shown:

(@) ULR,=T;

(b') each R; has the form 2.8.1%

(¢) the family {R;}._, is pairwise disjoint;

(d") for each i, there exists a \; € I such that 7 € R, implies N«(7) = 0.
By Lemma 8.2%, there are y; € _#(G) such that

1 itrzer,,
() = { M(7)
0 if 7¢R;;

=1, .+, k. Let pt =Sk Axvax\; clearly ¢ e I. Evidently

2 If ngeZ’, then V4 can be of the form 2.8.3.
3 If ng€ Z’, then Ry can be of the form 2.8.3.
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pum) =

. {X(n)if neU,
0 ifwe¢U.

We observe that

Mr) if T =m,or T =m,;.

Using this, Lemma 8.1, and relation 3.4.4, we have

B.45) VR = [mypn Tal) = M@0 | + 1My

[ MTay) — Mza) | + |M7s,) — May,)|

VX5 [7a, T + V(N5 [70,,, T5,))

IM(Q —oo, ] — A) + IM(Bi—] —oo,y])

m

I

A 1A

We also have from 8.1 that
(3.4.6) VX[m0 7a]) + VN 74y, 7oyl
= M ((B; — A) — [, yi]) = —=— .
m

Using 2.10, 3.4.5, and 3.4.6, we obtain

B4 VN — sy, m]) = VN — g5 [74, 7oyl) + V& — f5 (70,0, 7}
+ VN — 5 [7,0, 75)) = VN [Ty, Ty
2¢e

+ V(X - ﬂ; [n'.xi[! 71-’.1!5]]) + V(x ; [ﬂ:yt]! TCB,:]) é —7n/_ *

We used the fact that ft is zero on [z, 7] and [z, 5] since these
sets are disjoint from U. Finally, using 2.10, 3.1, and 3.4.7, we get

=zl = VE = ) = V& = /5 [75,, w) + V&~ 5 [m, 7))
+ 3 VR = 5 [Fpy mad) + 3 VO — g5 7, 7))

= VE; [7a, 7]) + V(70 70D + 3 VE; [75, 7D
+ 5 VO = 5[ 7)) £ M@ = Ba) + M (A) + 35 M (4 — Bio)
+ 2= \(6) = ZIM(Bi— 4) + 26 = V)
— 3 VR [ra 7)) + 22 -

Now applying 3.4.3, we obtain ||» — ¢|| < 8¢. This completes the proof.
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3.5. ExAmpPLES. LetG = 10,1] and A € _#(G) be ordinary Lebesgue
measure. Then the ideal I = {(xp 4 an: pe _#(G) and «a is a complex
number} is dense in _Z(G) since X vanishes only at 7, I is the ideal
generated by . If G = [0, 1] and ) is Lebesgue measure, then I = {axp:
re #Z(@Q)} is the ideal generated by N and I is dense in {\ € _Z(G):
M{0}) = 0O}

4. The Herglotz-Bochner theorem for _~Z(G). This section gener-
alizes § 6 [3].

4.1. DEeFINITION. Let % be any bounded, real-valued, nondecreasing
function on G,. Let 4 denote a partition {t.}i—, of G where ¢, < ¢, < +--
< t,. For an arbitrary complex-valued function f on G, let

S(s 4) = £ (&) himp) — W] + 3 76 ) — b, ]

4.2. THEOREM. Let f eC(G) and h be as in 4.1. Then there
exists o unique number L(f) such that for every ¢ > 0 there exists a
4, as in 4.1 with the property that |L(f) — S(f, 4)| < ¢ for all 42 4,.
We write this relation as L(f) = lim,S(f, 4).

4.3. THEOREM. The function L defined in 4.2 for all f e €(G) is
a bounded nonmegative linear functional on €(G).

4.4. DEFINITION. Let % be a continuous function on @0 and let
T4 s € Gy, my < Ty Then we define

(44.1) Vil 7 7)) = sup {5 VI 7. 7
x1§y1<x2§y2< b <xm§ym7
Tu S a1y Ty, 1 = Ty (%4, ¥l compact} .
In particular, we define V (h) = V (h; |7, 7s]). We also define
(4.4.2) Volh; [ma, 74]) = 0

for =, e G,.

4.5. Let h be a real-valued continuous function on @0 having finite

variation and let 7, <7, = ..+ = T4. Then
k
(4.5.1) Vc(h; [nlAly ﬁAk]) = % Vﬁ(h’; [nAi—l’ n“ii]) )

4.6. THEOREM. Let h be a continuous function on G, having finite
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variation and such that M(w,) = 0. Then there exists a N € _7(G) such
that X = h if and only if

(4.6.1) V(k) = Vi(h)

The proof is a tedious lengthy extension of the proof of Theorem
6.7 [3] and uses 4.2, 4.8, 3.1, 4.5, and 1.11 in the case that % is non-
decreasing. The general case is proved by applying 2.10.

4.7. EXAMPLES. Let G be the real line under the usual ordering.
Then a function » on G, is the Fourier transform of some measure
M € _#Z(G) if and only if h is continuous, has finite variation, and h(x,) = 0.

Condition 4.6.1 is not always satisfied by continuous functions % on
éo having finite variation and satisfying #(z,) = 0. Let G = [0, 1] x 10, 1]
where (a,8) < (¢,d) if a <c¢ orif a =¢ and b <d. Let h on G, be
defined by

Mr,) = sup{a € [0, 1]: (a,x) € A for some z € ]0,1[}.

The function & is continuous, V(k) = 1, and V,(h) = 0. The linear func-
tional L obtained from A in 4.8 turns out to be the zero functional.

5. Some consequences of the Herglotz-Bochner theorem. Theorems
5.1 and 5.2 are routine applications of 4.6.

5.1. THEOREM. Let ¢ be a continuous function jfrom a subset
H 2 {0} of the complex plane to the complex plane such that ¢$(0) =0
and

(5.1.1) for every M > 0, there exists a Ky > 0 such that
|p(z) — p(w)| = Ky |z — w| for z, we H, || =M, |[w| =M.

(I.e., ¢ satisfies a Lipschitz condition for arbitrarily large disks.) Then
for every e _#Z(G) for which (range N) S H, there exists a v e _Z(G)
such that D = goX.

5.2. THEOREM. Let ¢ be a continuous function from [0, of to [0, oof
that is mon-decreasing, absolutely continuous on all intervals [0, M],
and such that $(0) = 0. Then for every nonnegative measure » € _#Z(G)
there exists a nonmnegative v € _7(G) such that v = ¢o\.

5.3. COROLLARY. Let M€ _Z(G). Then there exists a v € 7Z(G)
such that d(x) = |Nx)| for all 7 e G,.

5.4. COROLLARY. Let )\ ¢ V,//A(G). Then there exists a v e _7Z(G)
such that 9(x) = M) for all © e Gy; here Z denotes the complex conju-
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gate of z. In other words, _#(G) is self-adjoint (see page 88 [6]).

5.5. COROLLARY. Let N e _#Z(G) be a nonnegative measure. Then
there exists a nonnegative v € _#Z(G) such that vy = \.

5.6. It is natural to ask whether Theorem 5.2 is valid for more
general measures A; one might hope that the result would be valid at
least for M € _#Z(G) for which X is nonnegative. If this were the case,
5.5 would also generalize. However, we will see in 5.7 that this is not
the case whenever G is infinite. Theorem 5.7 also shows that the
Lipschitz condition assumed for ¢ in 5.1 cannot be replaced by absolute
continuity. (The function ¢(x) =1/ is absolutely continuous on all
intervals [0, M] but does not satisfy 5.1.1.)

5.7. THEOREM. Suppose that G 1is infinite. Then there exists a
» € _Z(G) such that X\ is momnegative on G, and such that \ # vy for
all v e _2Z(G).

Proof. Suppose G has an infinite subset {x;};, such that x;, < x;,
for all 7. Let M be the discrete measure defined by

L if n odd

n
)y =
(o) — -—-—1————if n even .

(n—1y

It can be shown that )\ satisfies the conclusions of the theorem. If G
does not have an infinite subset as above, then G has an infinite subset.
{x;}z, such that x, > x;,, for all . This case is treated in a similar
manner.

5.8. It is evident from 5.7 that _#(G) (G infinite) is not isomorphic
as an algebra to the algebra €(X) for any locally compact space X.
In the contrary case, .#(G) would be isomorphic to €«(G) and the
isomorphism would be X —X. However, if he @0(@) is nonnegative,
then for some A, € CS,(,(@), we have h = h.

Finally, the result of 8.3 [3] holds for locally compact G. That is,

5.9. THEOREM. A measure » € _7Z(G) is idempotent if and only
if N ts of the form:

(6.9.1) N = &g, — &g, + <o+ + (—1)’,,

1

where ¢, < ¢, < »++ <C4.
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