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THE FUNDAMENTAL GROUP OF A UNION OF SPACES

A. 1. WEINZWEIG

1. Introduction. Given a connected® space X and a covering
@& = {X,|»e 4} of X by open sets, to what extent is the fundamental
group G of X determined by the covering &? When & consists of
two connected sets X, X, with connected intersection X,,, then G =
w(X, x,) is completely determined by F; = (X, %), ¢t =1,2 and F,, =
(X, ;) where x,e€ X,,. For if 0., F,— F,, denotes the homomor-
phisms induced by the inclusion X, C X;, ¢ =1,2 then G is obtained
from the free product FioF, by the identifications 6, ,(a) = 0, .,(a) for
all a € F,,., Writing &: F,— G for the homomorphisms induced by the
inclusions X, c X, 1 =1,2 then G is generated by the images of &, &,
and &0, ., = £0,.,. Moreover, if ¢;: F;, - G' i = 1,2 are homomorphisms
such that ¢0,,, = ¢.0,,, then there is a homomorphism : G — G’ and
@, =, 1 =1,2. G is completely determined by these properties. G
is then the reduced free product of the system of groups and homomor-
phisms & = {F}, F,, F,, 0, ,0,.,}. Using the notion of direct limit of a
system of groups due to R. H. Fox [1,3] an alternative statement is
that Z: & — G is a direct limit homomorphism where & = {§,, &}. This
result is usually known as the Van Kampen Theorem [4,5]. A recent
proof in terms of direct limits was given by Paul Olum [3].

More generally, if & consists of connected sets with a common
point #, such that X, N X,, = X,,,, is connected for any \;, \, € 4 then,
writing G = 7(X, x,), F\ = m(X,, %), Fya, = nl(sz, %,) the inclusions
X, C€ Xy Xy C X, Xy, € X induce canonical homomorphisms, O, ang
Fy,,— Fu, & Fi— G, £, Fis, — G tespectively where ¢ =1,2; A, )\,
A, € A. Then

F = {F'\, F)‘l)‘z’ 6)\72‘)\1)‘2 | 1 = 1; 2; Ay Ags Mg,y € A}

is a system of groups and Z: & - G is a direct limit homomorphism
where E = {£,, &, | M M, N € 4}, This is a slight generalization of a
result proved by Richard H. Crowell [1].

The obstacles to further extending these results are twofold. In
the first place, there need not be a point common to all the sets of &
so that there are no canonical homomorphisms induced by inclusion.
Thus, any path joining the base point x, of X,, say, to x, the base
point of X (assuming for the moment that the X,’s are connected) induces
a homomorphism of F) = n(X,, x,) into G. Secondly, the images of the
F,’s, under all such induced homomorphisms do not, in general, generate

Received May 6, 1960.
! By “‘connected”’ we shall always mean ‘‘connected by arcs.”
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764 A.1. WEINZWEIG

all of G but only a normal subgroup F' of G. Both of these difficulties
are overcome by the same device.

In the two theorems stated above, only the fundamental groups of
sets of the covering and of intersections of sets of the covering entered
into the description of G. But a covering is more than just a collection
of sets. Thus the nerve of the covering can be regarded as a polyhedral
approximation to the space. Unfortunately, this approximation is too
coarse for our purposes. The covering &, however, gives rise to another
complex which more accurately reflects the intersection pattern of the
covering. Taking a geometric realization Y of this complex, Y deter-
mines the elements of G not in F. More precisely G/F = H = n (Y, y,).
Moreover, using Y we refine the notion of a system of groups, and
define simplicial systems or S-systems, S-homomorphisms and S-limits.
We then show that the covering gives rise to such an S-system and
that G is the S-direct limit of this S-system. In the special cases con-
sidered above, this reduces to the above descriptions.

2. The intersection complex of a covering. Let & = {X, |\ e 4}
be a covering for the space X by open sets. No assumption is made
about the connectivity of the sets of @. The nerve of the covering
&, N(&) = N is the collection of finite subsets ¢ = {\,, - -+, A} C 4 such
that X, = X, N --- N X,, is nonempty. For each o e N consider the
set of components of X, and let {X,|v e 77} be the collection of all
such components for each o € M. That is, for each v € ¥~ there is a
unique p(v) € N and X, is a component of X,,. 7 is partially ordered
by setting v, < v, whenever X, D X,, and p(v,) is a face of p(v)). The
set of finite linearly ordered subsets of <#” is an abstract complex J(¥7) =
J(F) = I, called the intersection complex of the covering. The function
p: 7" — N defines a simplicial map p: F— N’ where N’ is the first
barycentric subdivision of . %" can also be regarded as the set of
vertices of a geometric realization Y of J. A vertex ve ¥  is a
k-vertex if p(v) is a k-simplex of M. P C ¥~ is the set of j-vertices
where 7 < kand &, (Y,) the subcomplex of & (subpolyhedron of Y) con-
sisting of all simplexes with vertices in 9. The representation of a
simplex of Y (Y3, &, S4) by its vertices will always be considered with
the linear order. Thus if wvw,--- v, denotes an r-simplex then v, <
Ve < Vpe

Choose a fixed point g(v) € X, for each v € 7% For every 1l-simplex
v, of ¥,g(») and g(v,) lie in the connected set X, so that g can be
extended over v,v, into X, and hence to a map g: Y'— X where Y' is
the 1-skeleton of Y.

This is illustrated in figure 1, where & = {X,, X,, Xi}.
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The space X=X U X, U X3
¢ = {Xi, Xe, X3}

X

NE)
Figure 1.

3. Notation.

T = (X, 8(v)) ve P
H=rzn(Y,9), G =mn(X,x) where y, e 7 and = g(¥%)

H; =n(Y}y) H' =m(Y, y)
& H' -G, & H -G
denote the homomorphisms induced by g and
K'=&HY)YCG Kl =E&H)CG.

4. The group F.
A path a in X is admissible if a(0) = x, and a(l) = g(v) for some
v € ¢ The path a then induces a homomorphism F, — G which depends



766 A. 1. WEINZWEIG

only upon the homotopy class? («) of @. The homomorphism induced
by the admissible paths «, written (@),, is said to be admissible and F
denotes the subgroup of G generated by the images of the admissible
homomorphisms.

Any loop @ in X at z, induces an inner automorphism (®),: G — G
depending only upon the homotopy class (w) of w. If a is any admis-
sible path then so is w:-a and since (@-a), = (w).(a), it follows that F
is invariant in G.

5. The homomorphism 7: G — H.

LEMMA 1. Any map f: P— X where P is a finite polyhedron,
gives rise to a simplictal map f*: P* — Y where P* is some simplicial
subdivision of P.

Proof. Let P' be a simplicial subdivision of P such that the
covering by closed stars of vertices of P’ refines the covering {i~(X,) | » € 4}.
For each vertex » € P’ choose {*(p) € %% such that f(st(p)) C Xip. Let
o =(py -+, Ds) be any simplex of P’ with barycentre d(c) and denote
by Xevvion *(b(0)) € 7~ the component of Xi.(,) N +++ N Xy, containing
f(¢). Then {* defines a simplicial map {*: P* — Y where P* is the
barycentric subdivision of P’.

It follows from Lemma 1 that any loop @ in X at «, defines a (not.
unique) edge-path loop @ in Y at y,. If ® is null-homotopic in X, then
applying Lemma 1 with P=1 x I, @ is also null-homotopic in Y. In
particular, any two edge-path loops in Y, ', " defined in this way from
the same loop ®w in X, are homotopic. Thus, to every g € G there cor-
responds a unique element 7(g9) € H and the function 7: G — H so defined
is easily seen to be a homomorphism.

A lassoe (resp. an admissible lassoe) in X is a loop at x, of the
form a-w-a™ where a is a path (resp. an admissible path) and w a loop:
in some X, with g(v) = a(1).® Since the homotopy class (a-w-a™*) of
an admissible lassoe a-w-a' is just the image under the admissible
homomorphism («), of the class (w) € F,, F' can be considered as the
subgroup of G generated by the homotopy classes of admissible lassoes.

For any admissible lassoe a-w-a~!, the edge-path a’ in Y defined
by a according to Lemma 1 can be chosen so that a’(0) = y,, a’(1) € ¥~
and g(a'(1)) = a(l), so that a’a’ can be taken as an edge-path loop in
9, representing T(a-w-a™). Hence t(a-w-a™) = (a’-a’") =1 and F C
kernel 7.

2 We consider only homotopies of paths leaving the end points fixed.
3 Since conjunction of paths is not associative the symbol a-w-a~! is ambiguous. We:

convene that ajas --- ax will denote the path a such that a(t) = a;(kt —2+1) for 1 —1=
kt=1,1=1,---, k.
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Figure 2.

A simple lassoe in Y is a loop of the form B-vw, v, v,v;1- B! where
V0,0, 18 a 2-simplex of Y and B an edge path in Y with B(0) = v,
B(A) =v,. Then if j: H'— H is the homomorphism induced by the
inclusion Y*C Y, j is an epimorphism with kernel L the subgroup of
H*' generated by the simple lassoes (cf. [4. pp. 158-162]).

THEOREM 1. The sequence 0 — F ‘LG H 0 s exact,
where 1 is the inclusion monomorphism.

Proof. It is easy to see that 7€ = 7 whence we have exactness at
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H. To prove exactness at G we need only show that F D kernel 7.
However, since &L) cC F it is sufficient to show that for any a € G,
a’ € H' such that 7(a) =j(a'), af(a’)* € F. Let aea and choose a
representative of a’ of the form wv,w,-v,w;*---v,w;* where v, € 7,
we X — 7, 1=1,++-, k and v,=v, =Yy, Hence we can find real
numbers {, =0 < t, < «++ < ¢, < by = 1 with a(t,) € X, and a(?) € X,,_|
for ¢, , <t =<t,1=1,.--, k. Choosing a path 8, in X, with 8,(0) =
a(ty), B(1) = g(w), let

7 = 8(Yowy) s (VW) « ¢+ g(V; W) G(VW;) Bt e Byt G(VWi) T o e G(WiYo)
where a(t) = a(t,_,A —t)+tt,) 0=t=<1,i=1,.--, k. Then
af@) = (1) - (V) e F (cf. Figure 2).

COROLLARY. G = FK' = FK..

6. S-system and S-direct limits. An alternative statement of Theorem
1 is that G is a group extension of F by H. Whereas H is defined in
terms of the covering &, F'is defined only as a subgroup of G. It is
desirable to obtain a description of G solely in terms of . To this end
we introduce S-systems.

Let & ={F,|ve ¥} be a collection of groups indexed by the
partially ordered set 2% The set of finite linearly ordered subsets of
Z X(#7) is an abstract complex over 7 We will always write the
vertices of any simplex in the linear order. Thus .&# ecan be regarded
as a set of groups indexed by the vertices of a simplicial complex, hence
we call such an & a simplicial set of groups, or more simply an S-set.
& is connected if the complex (") is connected, that is, if the
geometric realization Y of J(277) is connected. In the sequel we consider
only connected S-sets.

Choose a fixed vertex %, in Y and let F, = n(Y%, %,). We define
a 1-cochain 7 of Y with coefficients in the (in general non-abelian) group
F,. It is not our intention to develop the theory of cohomology with
non-abelian coefficients (cf. [2, 3]). We remark only that two 1-cochains
7,7 are cohomologous if there is a 0-cochain p such that, for every
1-simplex v, of Y, 7'(vyv,) = p(v)n(vyv)o(v,)*. To define 7, we first choose
a fixed edge path w, in Y, for each v e ¥ with »,(0) = ¥, ®,1) = o.
Then 7(v,v,) € F,, is defined by the edge-path loop ®, v, @;'. Although
7) clearly depends upon the choices of the paths ®,, different choices lead
to cohomologous 1-cochains. This cohomology class will be called the
standard class of # and any cochain in the standard class, a standard
cochain.*

4 We remark that the standard chain is not in general, a cocycle of Y. It does, how-
ever, define a cocycle in Y! so that the standard class defines an element of H(Y1, F%).
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An S-system is an S-set {F, | v € "} together with a standard cochain
7 and two functions ¢, & where

(i) ¢ assigns to every 2-simplex v, of Y, ¢{(voow,) € F,

(ii) 0 assigns to each 1-simplex of ¥ a homomorphism 0,,: F, — F, .

To avoid special cases, we write F, = 7(Y% %,), ¥~ = 2" U {u} and
denote an S-system by &# = ({F,|ve ¥} ¢, 0, 7).

Let & ={{F,|ve ¥'},¢,6,7> be an S-system and G a group.
An S-homomorphism @: # — G of & into G is a function which
assigns to each v € &7’ a homomorphism ¢,: F,— G such that

() Pu(V0)) s Po, = Pobogs,
(i) Pu (V0 )YV,0)N(Ve0,) ) = P, (E(V40,75))

where v,v, is any l-simplex and v,w,v, any 2-simplex of Y. The smallest
subgroup of G containing the images of ®,, v € 2"’ is called the image
of @, 1If the image is all of G, @ is onto. We write 4 € . # whenever
A=La, 0 a;eF,,, v,e ', i=1,2,---k and

D(A) = 2, ()P, (@) ++ Py (ar) € G .

An S-homomorphism @: & — G is an S-direct limit if @ is onto
and every S-homomorphism @': &% — G’ is covered by @: &% — G. That
is, there is a homomorphism r: G — G' and @} = @, for all ve 7.
We write this as @' =+@. In this case, G is said to be an S-direct
limit of F

ProrosiTioN 1. There is an S-direct limit for every S-system, unique
up to isomorphism.

Proof. Let & =({F,|ve V'},£,6,7> be an S-system and let G
be the group derived from the free product 7" of the groups {F,|ve ¥}
thby o identifications

(i) P00 P (@) = P, (@)
(i) P00 )(0,0)7(V0:) ") = Pi(E(Ve10,))

for every a € F,, v, € V, any l-simplex vw, and any 2-simplex v,v,v, of
Y, where ¢,: F, — I, v € 27"' is the homomorphism induced by the canoni-
cal imbedding of F, in I'. Then @: &% — G is an S-direct limit where
@, is the composition of ¢, with the natural projection I" — G.

The uniqueness follows easily.

To what extent does the S-direct limit of an S-system & =
AF,|ve #7},¢,6,7> depend upon the particular standard cochain 7?
This is answered in the following
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ProposiTioN 2. Let & ={F,|lve ¥} ¢, 6,7 and F'=
{F,|lve ¥}, £, 6,7 be two S-systems, and G any group. There is a
one-to-one correspondence between the S-homomorphisms @: % — G and

@'. &#'— @G and corresponding S-homomorphisms have the same image
in G.

Proof. There is a 0-cochain p of Y with coefficients in F, such
that 7'(ve,) = p(V)(ve,)0(v,)" for every l-simplex vw, of Y;. Then if

@: & — (@G is a given S-homomorphism of % into G
@". 7' — G is defined by ¢, = ¢, and ¢, = ¢,(0(v)),p, for allve

PROPOSITION 3. G is an S-direct limit of & if and only if G is an
S-direct limit of & ’'. Hence the S-direct limit of &% depends only
upon the standard class of the S-set {F,|v e ¥7}.

More generally, two S-systems & ={{F,|lve ¥}, ¢,0,7> and
F'=L{Flwe @', 0,7 are equivalent if

(i) % = 9 as partially ordered sets. Hence ") = J(9#") and
7' is cohomologous to 7, so that we may assume 7 = %’ without loss of
generality.

(ii) There is an isomorphism v,: F] — F, for each ve ¥ = 9~

(iii) There is a function o which assigns to each 1-simplex v, of
Y, p(vw,) € F,, such that

(a) 6:)01)1 = Vv;ollo('vovl)*gvovlvvl
(0) & (wrv) = v, (0(v601)00, (0(v,02))E (V50,0,) 0(Ve0,) )

In this case we write & ~ # ' and say that <{v, o> defines the equival-
ence. This is clearly an equivalence relation.

PRrOPOSITION 4. If & and &' are equivalent then every S-homo-
morphism @: & — G determines an S-homomorphisms @': &' — G with
the same image, and vice versa.

Proof. Let {v, p> define the equivalence between
T = <{Fo|v € 74}1 &, 0, 7]>

and
F = <{Fv,|'v € %’,}7 glr o', 77>

where in view of Proposition 1, we take n =7'. Let o’ be defined om
the 1-simplexes of Y by

0’ (vev)) = Wvo(p(lvovl))¢u(p(vﬂvl)) eaG.
Regarding »w, as an edge-path of Y and setting

0 (vur?) = O'(vgv,) ™, O' (Vv v10,) = O' (V)0 (v,v,)
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' is then a function from the edge-paths of Y into G and in particular,
gives rise to a homomorphism ¢): F, — G. This together with ¢, =
0'(®,) .V, defines an S-homomorphism @': & '—(G. Since p'(F,) C
image @, image @' C image @. The desired conclusion then follows easily.

PropPoSITION 5. Equivalent S-system have isomorphic S-direct limits.

Let &~ be a partially ordered set. A chain in 9" is a finite sequence
Vyy *++, ¥, in ¥ such that v, < v, < .-+ <v,. The chain v, +-+,v, is
maximal if, for any v € ¥~ we have that

@) v,,<v=v, impliesv,,=vorv=w, t=1,--+,k;

(b) v = v, implies v = v, and

(¢) v, = v implies v, = v.

Two chains are contiguous if they are both subchains of the same
chain.

Keeping these definitions in mind, let 7~ < % 9% is cofinal with & if

(i) for any ve ¥ we %, whenever v < w then ve %

(ii) for every v € 7~ there is a w e 9~ with w Z v.

(ili) every maximal chain of <" of length 2, (i.e. with only 2
elements) is contained in %

(iv) if weoz” and v,v,e " and w < v, < v, then there are
w,, w, € 97" such that w < w, < w,. Moreover the two chains w, v, v,
and w, w,, w, are contiguous.

It follows that J(5#7) is a subcomplex of J(777) and that 7, (J(¥"), ¥o) =
(7)), ¥o)%, vo€ W. Let & ={F,|lve ¥}, ¢, 6,7 be an S-system
where 7 is based on the paths w, defined as follows: if w € 9%~ then w,,
is a path in (9#") and if v e ¥ — 97~ then o, = ®,-wv where w is
chosen so that w < v. Then ¥ ' ={{F,|we ', 0,7 is cofinal
with & where 77 = 7 U{u}, F, =m(JCE#), v), ¢, 0, are the
restrictions of ¢ and 0 to J(9#°) and 7 is defined by the paths w,,
we W

PROPOSITION 6. &~ and .# ' have isomorphic S-direct limits

7. The S-system associated with & and g: Y'— X. The collection
of groups {F,|v € V}is clearly an S-set (cf. § 3). Following the conven-
tion introduced in §6 we set F, = H', 7"’ = " U{u} and write {F, |ve 7¥"}.
To each 1-simplex vw, of Y corresponds a path g(vw,) in X, with
8(v:)(0) = g(vo), 8(vw,)(1) = g(v,). Denote by 6,,: F, — F,, the homo-
morphism induced by this path. Each 2-simplex v,w,v, of Y determines
a loop g(vyv)-g(v.v;)-g(vw,)™ in X, and ¢{(vww,) € F, is the class of
this loop. To define 7, we first choose a fixed edge-path in Y, w,,
for each wv,¢e 7%, taking ®, =vy,. Then for each ve 7 — 77
choose a v, € 7 such that » >, and set w, = w,-vw. Then F =

5 We write ni(3(*), o) for the fundamental group of a geometric realization of J(*).



772 A. 1. WEINZWEIG

(F,|lve V'},¢, 60,7 is an S-system. This S-system depends only upon
g and &. The map g is of course, not uniquely defined. However, if
g’ is another such map, and .&# ' the S-system associated with ¢’ and &
then # is equivalent to % ' under the equivalence <v, o> defined as
follows: g(v) and g'(v) both lie in the connected set X,. v,: F) — F, is
the isomorphism induced by some fixed path v/, with v,(0) = g(v), v,(1) =
g'(v). p(vw,) € F, is the class determined by the loop v/, -g'(vev;) - vV, - a(vw,) 7,
for every 1-simplex v, of Y.

An edge path in Y is taken by g: Y*'— X into a path in X.
Admissible paths (§ 4) arising in this way we call simple paths, and the
induced admissible homomorphisms, simple homomorphisms. Moreover,
if €-w-a! is an admissible lassoe where « is simple then we say a-w-a™
is a simple lassoe. The homotopy class (a-w-a™) € G of a simple lassoe
is just the image of (w) € F, under the simple homomorphism («), where

a(l) = g(v).
LEMMA 1. F 1is generated by the images of simple homomorphisms.

Proof. We have already remarked that any admissible path «
defines an edge path o’ in Y with a'(0) =y, a'(1) =, g(v) = a(l), so
that g(a’) is a simple path in X. In the course of proving Theorem 1
we showed that (a-g(@’)™?) =a € F' and that a can be represented as
the product of simple lassoes. Hence (a),=a.g(a’), so that for any
beF, (a),b)=a(ga).(b))a* can be represented as the product of
simple lassoes and the desired conclusion follows.

Let &, denote the simple homomorphism induced by the path g(w,),
ve V and write £ =&, F, = H'— G. One verifies easily that these
homomorphisms define an S-homomorphism

. 7 -G
THEOREM 2. 5: FF'— G 1s an S-direct limit.

Proof. For any simple path g(«), the simple homomorphism g(a), =
& ((a-w,)).&, where a(l) =v. It follows from this, Lemma 1 and the
corollary to Theorem 1 that Z is onto.

Let @: &% — G’ be any S-homomorphism. We must show @ is covered
by Z, that is, we must find a homomorphism vr: G — G’ such that @ =+-5.
It is sufficient to show that whenever A e & with 5(4) =1, 9(4) =1,
for then y(5(A)) = @(4) would define .

Consider any subdivision 0 =s,< s, < ++- <s8,=1 of the unit
interval and denote by v the edge-path s.s,-8:8; - s,_8,. Then every
edge-path B in Y can be considered as 0'(y), the path into which v is
taken by the simplicial map b’ of a suitable subdivision of I, and g(8)
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as b(7) = g(t'(v)) where b maps I into X. Similarly if w is any loop in
X,, 8(w,) - w-g(w,)* can be regarded as b(y) where b: I— X and I is suitably
subdivided. Hence, for any a € F,, ve &/, and more generally, for
any Ae & E(a) or E(A) can be represented by a path of the form
a(7) where a is a map of the unit interval suitably subdivided, into X.
Moreover, to each vertex s;, there corresponds a vertex u, of Y with
a(s;) = g(u,) © =0, --- k, where u, = u, =1y, Identifying s, and s,
we can regard a as a map of a simplicial decomposition of the 1-sphere,
S?, into X.

Let A e & and let Z(A) be represented, as above by a(v), where
a: S— X and S is a simplicial subdivision of S*. If E(4) =1, a(y) is
null-homotopic and so a can be extended over the unit disk.

Choose a subdivision D of the unit disk, such that S is a subpolyhedron
of D and (i) for any vertex t of D — S, a(Stt) c S,, for some u, e 7
(ii) for any ‘‘boundary’’ 2-simplex, that is, a 2-simplex of the form ¢s;s;,
where s;s;,, is a simplex of S and ¢ a vertex in D — S, a(ts;s;,) € X, if

U, < U, ,, otherwise a(ts;s;,) C X,;, . We write X, for the component of
Xu; N Xu, Nn---NX,, containing a(t) where t is a vertex of D — S and
t, «+-, t, are all the remammg vertices of Stt, the closed star of ¢t. Choose

5, a path in X,,, with 8,(0) = a(?), 8,(1) = g(w,).
Let Xv; 1V, € 7" be the component of X, N Xu, containing a(t.t,).
0“1 01 0 1
Then
Q(ULOclwco) * 07y a(ety) - Stl . Q(Vcotlwol)_l

is a loop in Xv“ and defines b,, € Fv; .- Set
071 01

a(totl) = <77(vt051wto)~1’ btotlv 7](?);01;” wt1>
and

(et tits) = <77(vt0¢1w40)_1, btobly v(vzovlwzl)y 77(7’51&210;2)_1: belszy 77(7)&1;2» .

a then assigns to each edge-path in D an element of . In particular,
a(v) =

The function a has the nice property that it takes any null homo-
topic edge-path of D into an element of % whose image under any S-homo-
morphism is 1. To see this, it suffices to show that @(a(t.t,-t.t,-t,t,)) = 1
for any 2-simplex f.t,t, of D. But this follows by a straight forward com-
putation from the definition of a, the properties of an S-homomorphism
and the fact that a(fit,-t.t,-t.t) is a null homotopic loop in X, . Since

v is null homotopic in D it follows that @(a(y)) = @(4) = 1. T(iﬁs com-
pletes the proof.

REMARK. The set 24 is cofinal with <~ for k = 2. Hence the
resulting cofinal S-system has the same S-direct limit.
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2. S-systems and systems. Consider an S-system & ={{F,|ve ¥},
¢, 0,7 with 5: & — G an S-direct limit. Let F' be the subgroup of
G generated by elements of the form &, (a)&,(b)é,(a)™ for a € F,, be F,,
ve % Then F is normal in G and G = FK where K = §,(F,). More-
over, if j: H*— H is the homomorphism defined by the inclusion of
Y'cY then &(kerj)=FNK. Hence G/F=FK/F=K/(FNK)=
H'/(ker j) = H so that G is an extension of F' by H. (cf. Theorem 1).
If ¢ =1, that is, &(vww,) = 1 for every 2-simplex of ¥ then FN K =1
so that K= H and G = F' x H is the direct product extension. If further,
H = {1}, then & =1 and G = F' is generated by the images of the &,
ve A

R. H. Fox defines a system to be any collection _# of groups and
homomorphisms such that if p: M, — M, is in _#, then so are M, and
Mg, A homomorphism @: _# — N of the system _# into the group
N is a function assigning to each group M, in _# a homomorphism
Pq: M,— N such that for every u: M,— M in _#, ¢, = @gt. The
image of @ is the smallest subgroup of N containing the image of every
@, in @, and if this is all of N then @ is onto. @ is a direct limit if
it is onto and every homomorphism @': _# — N’ is covered by @.

Thus if & ={F,|ve ¥}, ¢, 0,7 is any S-system, the collection
of groups {F,|v € &'} together with 6 defines a system. If further,
& =1 and H = {1} then any S-homomorphism of .# is a homomorphism
of this system and the S-direct limit of % 1is the direct limit of this
system. Conversely, let _# be a system where the groups of _# are
indexed by &% Setting 8 < a whenever there is a sequence of groups

and homomorphisms of _#, M, " M, cen M, defines a partial
ordering for .o and J(.o) is the complex of finite linearly ordered
subsets of .97 This sequence need not, of course, be unique. However,
for each 1l-simplex Ba of (%) choose a fixed such sequence and let
0o M, — My be the composition of the homomorphisms occuring in this
sequence. Hence ({M,|a e 277}, ¢, 6,7 is an S-system where 6 has been
defined above and ¢ = 1. If further H = {1} then S-homomorphisms and
the S-direct limit of this S-system are simply the homomorphisms and
the direct limit of the original system.

Thus an S-system is a system with some additional structure, (£ and
H) which plays a significant role in taking S-direct limits. If this
additional structure is trivial (¢ = 1, H = {1}) then this reduces to the
direct limit of a system.

9. Further comments.

A. Consider again the S-system & = ({F,|ve ¥}, ¢, 0, 1) associ-
ated with the covering & and the map g: Y*— X considered in §7.
The function ¢ can be regarded as an obstruction to extending g over Y2,
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If £ =1 then g can be extended to g: Y2?— X and defines a monomorphism
of H into G. As in § 8 above, G = F x H.

B. If & ={X,|\e€ 4} consists of connected sets such that x, € MNres X
and the intersection of any finite collection of sets of & is also in &,
then H ={1}, " = 4 and g: Y'— X can be taken as the constant map
8(Y') ==, Hence¢ =1and®d,,: F, — F, is the homomorphism defined
by the inclusion of X, C X, . It follows then, asin § 8 that the S-direct
limit 5: % — G is just the direct limit of the system {{F,|v e &7}, 6>.
This is Crowell’s result [1].

The following simple extension of this result follows from the re-
marks following Theorem 2 and Proposition 6 on S-systems: If & =
{X\|N e 4} consists of connected sets such that «, € Mie, X, and the
intersection of any two sets of & is connected then G is the direct
limit of the system consisting of the groups

{m( Xy, o), T Xy, N Xiyy To) [N, Ny, M € A}

together with the natural inclusion homomorphisms. When & = {X,, X}},
X, X,, X, N X, connected, then this gives the so called Van Kampen
Theorem [3, 4].

C. Actually Van Kampen proved a more general result. A slight
modification of our methods gives Van Kampen’s complete results.

D. If the groups F,= {1}, ve 7 then G = H.

E. The fact that the covering & consisted of open sets was used
only in Lemma 1 and Theorem 2 to permit the decomposition of a poly-
hedron mapped into X. Any condition on the covering &, permitting
this to be carried out would be sufficient. Thus if & is such that every
point of X is interior to some set of &, everything goes through. This
question is fully discussed in the paper by Olum [3]. His comments are,
with simple obvious modifications, applicable to the more general situa-
tion discussed in this paper.

F. A description in terms of generators and relations can easily be
given but we omit it.

REFERENCES

1. Richard H. Crowell, On the Van Kampen theorem, Pacific J. Math., 9 (1959), 43-50.
2. P. Dedecker, Cohomologie & coefficients non abéliens et espaces fibrés, Bull. Acad. Royale
de Belgique (Class des Sc.) 5¢ Série—Tome XLI (1955-10), 1, 132-1146.

3. P. Olum, Non-abelian cohomology and Van Kampen’s theorem, Annals of Math., 68
(1958), 658-668.



776 A. 1. WEINZWEIG

4. H. Seifert, and W. Threlfall, Lehrbuch der Topologie, Chelsea, (1947).
5. E. Van Kampen, On the connection between the fundamental groups of some related
spaces, Amer. J. Math., 55 (1933), 261-267.

UNIVERSITY OF CALIFORNIA, BERKELEY.



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
Ravpr S. PHILLIPS A. L. WHITEMAN
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
F. H. BrowNELL L. J. Pace
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE COLLEGE
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE COLLEGE AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY HUGHES AIRCRAFT COMPANY

UNIVERSITY OF SOUTHERN CALIFORNIA SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to

individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 11, No. 2 December, 1961

Tsuyoshi Ando, Convergent sequences of finitely additive measures. . . ... .. 395
Richard Arens, The analytic-functional calculus in commutative topological

AlEDTas. .. ... 405
Michel L. Balinski, On the graph structure of convex polyhedra in

Y o PP 431
R. H. Bing, Tame Cantor sets in E3 ... ... ... ...ccciiiiiiiiiieaaaeaaa... 435
Cecil Edmund Burgess, Collections and sequences of continua in the plane.

Ll e 447
J. H. Case, Another 1-dimensional homogeneous continuum which contains

ARLGAFC . v et e e e e e e e e e e e e e e e 455
Lester Eli Dubins, On plane curves with curvature . ...................... 471
A. M. Duguid, Feasible flows and possible connections................... 483
Lincoln Kearney Durst, Exceptional real Lucas sequences ................ 489
Gertrude 1. Heller, On certain non-linear opeartors and partial differential

CQUATTIONS . . o oot e ettt e e e ettt 495
Calvin Virgil Holmes, Automorphisms of monomial groups ............... 531
Wu-Chung Hsiang and Wu-Yi Hsiang, Those abelian groups characterized

by their completely decomposable subgroups of finite rank ........... 547

Bert Hubbard, Bounds for eigenvalues of the free and fixed membrane by
finite difference methods ..........................
D. H. Hyers, Transformations with bounded mth differenc

Richard Eugene Isaac, Some generalizations of Doeblin’s
decomposition ...........ccuueiuiiiiiiinnnnnn.
John Rolfe Isbell, Uniform neighborhood retracts. . . . ...
Jack Carl Kiefer, On large deviations of the empiric D. F.
variables and a law of the iterated logarithm. . . . . ..
Marvin Isadore Knopp, Construction of a class of modula
Jorms. IL. ...
Gunter Lumer and R. S. Phillips, Dissipative operators in

Nathaniel F. G. Martin, Lebesgue density as a set function
Shu-Teh Chen Moy, Generalizations of Shannon-McMilla
Lucien W. Neustadt, The moment problem and weak conv
Kenneth Allen Ross, The structure of certain measure alg
James F. Smith and P. P. Saworotnow, On some classes of

algebras. ...... ... .
Dale E. Varberg, On equivalence of Gaussian measures. .
Avrum Israel Weinzweig, The fundamental group of a uni


http://dx.doi.org/10.2140/pjm.1961.11.395
http://dx.doi.org/10.2140/pjm.1961.11.405
http://dx.doi.org/10.2140/pjm.1961.11.405
http://dx.doi.org/10.2140/pjm.1961.11.431
http://dx.doi.org/10.2140/pjm.1961.11.431
http://dx.doi.org/10.2140/pjm.1961.11.435
http://dx.doi.org/10.2140/pjm.1961.11.447
http://dx.doi.org/10.2140/pjm.1961.11.447
http://dx.doi.org/10.2140/pjm.1961.11.455
http://dx.doi.org/10.2140/pjm.1961.11.455
http://dx.doi.org/10.2140/pjm.1961.11.471
http://dx.doi.org/10.2140/pjm.1961.11.483
http://dx.doi.org/10.2140/pjm.1961.11.489
http://dx.doi.org/10.2140/pjm.1961.11.495
http://dx.doi.org/10.2140/pjm.1961.11.495
http://dx.doi.org/10.2140/pjm.1961.11.531
http://dx.doi.org/10.2140/pjm.1961.11.547
http://dx.doi.org/10.2140/pjm.1961.11.547
http://dx.doi.org/10.2140/pjm.1961.11.559
http://dx.doi.org/10.2140/pjm.1961.11.559
http://dx.doi.org/10.2140/pjm.1961.11.591
http://dx.doi.org/10.2140/pjm.1961.11.603
http://dx.doi.org/10.2140/pjm.1961.11.603
http://dx.doi.org/10.2140/pjm.1961.11.609
http://dx.doi.org/10.2140/pjm.1961.11.649
http://dx.doi.org/10.2140/pjm.1961.11.649
http://dx.doi.org/10.2140/pjm.1961.11.661
http://dx.doi.org/10.2140/pjm.1961.11.661
http://dx.doi.org/10.2140/pjm.1961.11.679
http://dx.doi.org/10.2140/pjm.1961.11.679
http://dx.doi.org/10.2140/pjm.1961.11.699
http://dx.doi.org/10.2140/pjm.1961.11.705
http://dx.doi.org/10.2140/pjm.1961.11.715
http://dx.doi.org/10.2140/pjm.1961.11.723
http://dx.doi.org/10.2140/pjm.1961.11.739
http://dx.doi.org/10.2140/pjm.1961.11.739
http://dx.doi.org/10.2140/pjm.1961.11.751

	
	
	

