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1. Introducion. A procedure has been given by Arens [1, 2] for
defining a multiplication in the second conjugate space of a Banach
algebra which makes that space into another Banach algebra. This idea
was used with great effectiveness by Day [3] in his study of amenable
semigroups.

We undertake here a rather systematic study of this notion. We
begin in § 8 with a discussion of the second conjugate space L**(®) of
the group algebra L(®) of a locally compact group ® and its radical :t**.
Suppose that @ is abelian and infinite. It is shown that L**(®) is never
semi-simple and never commutative; if & is compact then NR** is the
annihilator in L**(®) of that subset of the first conjugate space L*(®)
which can be identified with the continuous functions on ®. For any
locally compact abelian group & let ¥ be the subspace of L*(®) that
may be identified with the almost periodic functions on &, and let € be
the subspace of L*(®) that may be identified with the continuous func-
tions on & vanishing at infinity. Let 9+ and €' denote respectively the
annihilators of 9 and € in L**(®). Then L**(®)/9* is isometrically
isomorphic as a Banach algebra to the measure algebra on the almost
periodic compactification of &, and L**(®)/€+ is isometrically isomorphic
to the measure algebra on ®. It is then abundently clear that the Arens
multiplication in L**(®) is intimately connected with much studied objects
defined in terms of ©.

In §4 we observe a phenomenon which does not hold in the group
algebra case. In the latter case we started with a commutative, semi-
simple Banach algebra B = L(®) and obtained a second conjugate space
B** neither commutative nor semi-simple. Here we give of an example
where B is commutative and semi-simple and B** is not semi-simple but
commutative.

We can consider B as embedded in B** in the canonical way. In
§ 5 it is shown, for example, that each regular maximal (left, right or
two-sided) and each primitive ideal is contained in an ideal of the same
type in B**., Also if B is commutative its radical is contained in the
radical of B**,

In §6 it is shown that if 7T is a continuous homomorphism of B,
into B,, where B, is a Banach algebra, then T** is continuous homo-
morphism of B** into B;j* where these are considered as algebras.
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Curiously the analogous result fails to be true for anti-homomorphisms.
In §7 it is observed that, as a consequence of the work of Sherman and
Takeda [12], B** is a B*-algebra in the Arens multiplication for every
B*-algebra B.

2. Notation. Let B be a Banach algebra (over the real or complex
field). Let B* and B** denote the first and second conjugate spaces
of B. Let x,y, --- denote elements of B; f,g, --- denote elements of
B*; F, G, -+ denote elements of B**, For each f € B*, x € B we define
{f,x> e B* be the rule {f,2)(y) = f(xy), ye B. For each F e B**,
f e B* we define [F, f]e€ B* by the rule [F, fl(x) = F(f, x>), € B.
For each pair of F,G € B** we define F'G € B** by the rule FG(f) =
F([G, f]). These notions were introduced by Arens [1,2] who showed
the definition of F'G as the product of F' and G yields an associative
multiplication on B** which makes B** into a Banach algebra.
Throughout we let = denote the natural embedding of B into B**. As
noted by Arens [1], 7 is an isometric isomorphism when B** is considered
as a Banach algebra under the above definition of multiplication.

For some purposes Arens [2] considered also the following definition
of multiplication in B**. For each f € B*, x € Bdefine {f|x> e B* by the
rule {f|2X(y) = f(yx), ye B. For each F'e B**, fe B* define [F'|f]e B*
by the rule [F'|f](x) = F({f|x)), * € B. Finally for F e B** G e B**
define F-G € B** by the rule F-G(f) = F(G|f]), f€ B*. Again the
definition of F.G as a product makes B** into a Banach algebra. Arens
calls the multiplication in B regular provided F-G = GF for all F, G € B**.
Clearly, if B is commutative, B** is commutative under either definition
of multiplication if and only if the multiplication in B is regular.

As was noted in [2] the multiplication F'G is w*-continuous in F' for
fixed G € B** and 7(x)G is w*-continnous in G for fixed x ¢ B. If the
multiplication in B is regular, then FG is also w*-continuous in G for
fixed F.

We use R** to denote the radical of the second conjugate space of
the algebra under consideration, regardless of the symbol use to denote
that algebra. We also use the symbol %) for the closed subspace of the
first conjugate space of a Banach algebra generated by the multiplicative
linear functionals on the algebra, regardless of the symbol used for the
original algebra.

3. Group algebras. The principal object of concern in this section
is the second conjugate space, L**(®), of the group algebra, L(®), of
a locally compact group ® (with respect to right Haar measure). We
consider L**(®) as a Banach algebra under the definitions of § 2.

We consider first the case of a discrete infinite group ©. In this
connection see Day [3]. As in [3] we define the operator I, 6 € ®, on
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L*(®) by the rule [(f)(7) = f(07), fe L*(®), vye®. For ye & let »”
be the characteristic function of the singleton v considered as an element
of L(®) and let f, be that characteristic function considered as an ele-
ment of L*(®). Since L*(®) may be identified with the bounded complex-
valued functions on & and, for g € L*(®), the value of g(x”) is the same
as g(v), v € ®, after the identification, we shall use the symbols g(x?)
and g(v) interchangeably. Let & = {F e L**(®)| F(l,f) = F(f), for all
vye®, fe L*(®)}. Let ¢ be the element in L*(®) corresponding to the
function identically one on &. Let I, = {F' e | F(e) = 0}. The follow-
ing formulas were established in [3, pp. 527, 530].

@3.1) [, f1(7) = F(,f), ve®, FeL*©).
(3.2) GF =G()F, Fe g, Ge L*(©).

The second conjugate space L**(®) can be identified with the space
of all bounded complex-valued finitely additive set functions defined for
all subsets of &.

It is clear from formula (3.2) that & and &, are left ideals of L**(®).
Let Fe&and Ge L**(®). For a, Be @, [G, 1,£1(B) = G(lel(f)) = G(lupf)
whereas 1[G, f1(8) =[G, fl(aB)=G(lsf). Therefore FG(l,f)=F (G, l.f])=
F(G, f1) = FG(f). Thus & is a two-sided ideal of L**(®). Next let
F,, F, e L**(®). From (3.1), [F, e] = Fy(e)e and therefore F,F,(e) =
Fi(e)Fy(e). It follows that &, is also a two-sided ideal of L**(®).

As in [3, p. 510] let m(®) be the space of all real-valued bounded
functions on @ and m(®)* be its conjugate space. Each p e m(®)* gives
rise to a functional F e L**(®) by the following rule. If fe L*®)
write f = f, + if, where f,, f, € m(®) and set F(f) = u(f)) + i(f,). An
invariant mean g [3, p. 514] gives rise to an F e & and two different
invariant means g, and g, correspond to different functionals F, and F,
by this process.

3.1. THEOREM. Let & be an infinite discrete group, and let L(®)
be its group algebra. Under any of the following conditions, L**(®)
18 mot semi-stmple and is mot commutative.

(i) The commutator chain, S DO, - - -, ends at the identity subgroup
m a finite number of steps; in particular when & is abelian.

(ii) © ¢s an amenable group and contains an element of infinite
order.

(ili) © s locally finite; that is, every finite subset of & generates
a finite subgroup of &.

Proof. For the notion of an amenable group see [3, p. 515]. Ac-
cording to see Day [3, p. 535] under any of the conditions (i), (ii), (iii)
there are at least two distinct invariant means on m(®). As noted above
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this shows there exists F), F, ¢ ¥ where Fi(¢) = Fy(¢) =1 and F, + F,.
Then F, — F, is a nonzero element of &,. Formula (3.2) shows that
i = (0). Hence L**(®) is not semi-simple.

Also & has only zero in common with the center of L**(®). For
let 0 = F'e . By the above there exists G € & such that G(¢) = 1 and
G, F' are linearly independent. By (3.2), FFiG = F(e)G and GF = G(e)F.
Thus F'G + GF.

In the special case of &, the additive group of integers where we
make a detailed investigation (Theorem 3.5) it is shown that &, is a
very small part of the radical of L**(®).

3.2. THEOREM. Let & be a discrete group, and let L(®) be its
group algebra. Let & = {F e L**(®)|the set function p corresponding
to F vanishes on finite sets in ®}. Then & is a two-sided ideal of
L**(®) and L**(®) = nL(®) P R.

Proof. For ve®, l,.f.(B) = f(vB), B € G and therefore l,f, = f1qe
Now by formula (3.1) [F, f,1(v) = F(f,-,). Thus if Fe R [F,f,]=0
for all 6 € . Therefore GF(f,) =0 and GF € & for all G e L**(®).
Hence & is a left ideal of L**(®).

Let G e L**(®), and Fe & For each ve O, let ¢, be a complex
number such that ¢,G(f,) = |G(f,)|. Then for any finite subset ¥(1),+--,v(n)
of distinct elements of ©,

3 Gembuw) = 2G| < 1G] (\ 3% evmfon

=Gl .

This shows that G(f,) # 0 for at most a countably infinite set (1), ¥(2),- -
of distinct elements of &, and for these >, |G(fyw)| < . Fix ce®.
For k=1,2,..- define g, on & by the rule gy(a) = G(f,-,,) for a =
o(v(7), 7=1,+++,k and g, (@) =0 otherwise. Clearly g,e L*(®).
Since [G, f.l(@) = G(f,,) we have || g, — [G, fo]l| = supsx [ G(fy5) | — 0.
Then as F(g,) = 0, we have F|[G, f,] =0 or FG(f,) =0. Since ¢ was
arbitrary in ®, we see that & is a right ideal.

Let G € L**(®). As was noted above, G(f,) # 0, for at most a count-
able set 7(7), 7=1,2,- -+, of distinct elements of & and >3, [G(fyy)| < .
Consequently if we define & by the rule x(v) = G(f,), then z e L(®).
Also (G — z(@))(f,) =0 or G — 7wz e & Since &N 7L(®) = (0), we see
that L**(®) = 7L(®) @ .

3.3. THEOREM. Let © be an infinite discrete group and K be the
ideal of Theorem 3.2. Then R** C &, Let @ be an amenable group.
Then R properly contains R** and L**(®)/R** can be written as the
direct sum of two ideals D, $, uhere D, is a maximal two-sided
ideal and D, is the set of all scalar multiples of a central idempotent.
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Proof. By Theorem 3.2, & is a two-sided ideal of L**(®) and
L**(®)/R is semi-simple. Thus & contains the radical of L**(®).

Suppose that & is amenable so that & has an invariant mean. This
gives rise to F, ¢ & where Fiy¢) = 1. If, for 6 € &, Fi(f,) = a # 0 then
Fi(g) = na for the characteristic function g of a set of n elements and
F, is not bounded. Therefore F, e & But F} = F, by formula (3.2) so
that F, ¢ R**,

Let )\ denote the natural homomorphism of L**(&) onto L**(®)/R**.
For any Fe(, Ge L**(8), we have FG — GF e and (FG — GF)(e) = 0.
Then FG — GF e &, c R** by Theorem 3.1. Hence MJ) lies in the
center of L**(®)/R**. Let F e ¥ where MF') #+ 0. This requires that
F(e) # 0 and that M(F(e)F, — F') = 0. It follows that the ideal 9, = M)
consists of all scalar multiples of the central idempotent MF,). Moreover
9, must be a minimal left, right and two sided ideal of the semi-simple
algebra L**(®)/R** so that we can write that algebra as the direct
sum O, P D, where 9, is the annihilator of O, and 9, is a maximal left,
right and two sided ideal.

3.4. THEOREM. Let ® be a discrete group. Let I be the w*-closure
i L**(®) of {n(x")|v € ®}. Then I', in its w*-topology is the Stone-
Cech compacti fication of & and s, under the multiplication of L**(®),
a semigroup containing as o dense subsemigroup a copy of &. If ®
contains an element of infinite order then right multiplication in I’
18 mot continuous.

Proof. We can view L*(®), the space of all bounded functions on
& as a commutative Banach algebra of continuous bounded functions on
® under the usual conventions. Now, for v e &, w(x)f = f(2) = f(7),
f € L*(®) so that the functional #(x?) on L*(®) is evaluation at the point
v. Then 7m(x") is a multiplicative linear functional on L*(®) and, more-
over, the w*-closure I" of the set of all m(x?) is [7, p. 55] the set of all
nonzero multiplicative linear functionals on L*(®). These are the
Fe L**(®) for which the corresponding bounded finitely additive set
function ¢ takes on the values 0 and 1 only (see Smulian [11]). In this
connection note that if g corresponds to m(2”) then w(€) =1 if and only
if y € €, The other F' e I" correspond to £ which vanish on finite sets,
i.e. all other Fre I lie in & Also, [6, p. 167], I" is the Stone-Cech
compactification of &.

Let F, € L**(®) correspond to the set function 4, k = 1, 2, 3 where
F,F,eland F, = F\F,., We show that F,e I'. Let Q be any subset
of @ and let ¢y e L*(®) be the characteristic function of the set O c ©.
Since l,(¢g) = ¢ n We have, by formula (3.1), [F, ¢gl(v) = p(v'Q).
Let +» be the characteristic function of the set of ¥ for which z4,(v90) = 1.
Then
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(33) Q) = File) = | +)dp()
= (D) = 1)

Thus the set function £, cannot taken on values other then 0 or 1. Clearly
¢:(®) = 1so that F, e I'. Hence /" is a semigroup in the multiplication
of L**(®). Let B,ve ®. It is easy to see that w(xf)z(x’) = m(x?). Thus
a copy of ® is a dense subsemigroup of 7.

Suppose & contains an element of infinite order. Then & contains
a copy » of the additive group of integers. Let F e I" correspond to
a set function g vanishing for all sets in ® disjoint with  and let
ve . We show first that n(x)F'=Fr(x"). For any fe L*(®), n(x")F(f)=
n(@")[F, f1 = F(f, ")) while Fr(x")(f) = F(lz(x"), f]). It is then suf-
ficient to show that, for each a € 9, {f, X (a) = [#(x?), f](«). The left
hand side is f(ya) while the right hand side is f(av). Since v and a
permute, we have the desired result. Next we show that each such F
is in the w*-closure of {m(x”)|v € $}. Let y, be the set function g
restricted to subsets of . Since p, corresponds [11] to a multiplicative
linear functional on the Banach algebra of all bounded complex-valued
functions on §, there is a directed set ¥(j) of elements of $ such that

(3.4 lim g(v(3)) = | g@)d()

for all bounded functions on . Let f be a bounded function on .
From (3.4) we obtain

65  lmr@Y)f) = | Fomm) = | F0dEm) = F(7) .

We define F) € I' where the corresponding set function p, is zero
on finite subsets of O, (PB) =1 where P  is the set of positive
integers. Note that g, being a 0-1 set function is zero for sets disjoint
with . Define F, e I" to correspond to the set function g, where
1a(Q) = 1(Q7?) for any subset Q of &. If ae®, a¢ H, the set a'P
lies outside . If ae  then a*P =L modulo a finite set. Thus
t(a™P) =1 if and only if @ €  and otherwise g, (@) = 0. According
to formula (3.3),

(3.6) F.F\(pp) = (D) =1.
Note that () =0. A calculation similar to (3.6) yields
(3.7) FiFy($g) = 0.

By our earlier remarks there exists a direct set v(j) of elements of $
such that w(x*?’) — F, in the w*-topology. Then z(x*")F,— F,F,. As
noted above, w(x¥)F, = F,r(x¥"”). If multiplication on the right were
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continuous in I" we would have F.F, = F,F,. This contradicts (3.6) and
3.7).

The semigroup /" has the further property that G.G, = w(xf), B e ®
for G,, G, € I' if and only if each G, is of the form =(x*), a € ®. For
suppose G.G, = w(xf) where G, corresponds to the 0-1 set function v,
kE=1,2. By (3.3), v,({r|v(vy Q) =1}) = 1 if and only if B e Q. Apply-
ing this result to X, the singleton {8}, we have a contradiction if v,
vanishes for all singletons. Hence G, = w(x*) for some a € ®. Then
using the same Q, we see that 1 = y,({Ba"}) so that G, = w(x®), where
8 = Ba~'. In particular I" is never a group if ® is infinite.

We shall see in Corollary 3.13 that the radical of L**(®) is infinite-
dimensional for every locally compact abelian group which is not discrete.
We conjecture this for all infinite locally compact abelian groups. How-
ever, in the infinite discrete case, we have been able to prove this only
for & the additive group of integers.

3.5. THEOREM. Let & be the additive group of integers. Then the
radical of L**(®) is infinite-dimensional. In fact R**|Y, is infinite-
dimensional.

Proof. Let T be the operator on (m) = L*(®) defined by the rule
(Tr)m) = f(n + 1). Let e, € L*(®) for k a positive integer and 7 an
integer be defined by the rule ej(n) = 1 if » = r mod k and ej(n) = 0 for
all other values of n. Let &, = {Fe L**(®)|(T*)*F=F and F(e;) =0 for
r=0,1,-++,k—1}. For k =1 this is just the ideal &, defined earlier in
the case of the present .

Let F'e 4, fe€ L*(®)and 7, s be integers. First {f, 27 X(s) = f(r + s)
so that {f,«") = T"f. Then [F,f](x") = (T")*F(f). Let X¢,a" be an
arbitrary element of L(®). We have

[F, f1(Zean) = 2 e (T F(f) .
Now since F e ,, this yields
(3.8) F,f1= 5 (T F(fek -
Let G e L**(®). From (3.8) we obtain
(3.9) GF = 3 G(e)(T)°F .
It follows readily from (8.9) that & is a left ideal of L**(®) and that

It = (0). Hence each &, is contained in the radical of L**(®).
Note that

(3.10) On = €y + AT
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Let FeJ,, Then F(e,) =0 and, as (T*")*F = F, F has the same
value at each of the summands on the right of (3.10). It follows that
Jem+1 D Jem. The desired result is established if we show each ym+1 con-
tains an element not in Jym.

As noted in the proof of Theorem 3.1, there exist at least two
distinct nonzero elements F), F, e L**(®) where Fy(e) =1, T*F,=F,,
k=1,2. Let U be the operator on L*(®) defined by the rule U(f)(n) =
f(n2»Y), Let H= U*(F,— F,). In turn we have (77" "'f)(n) = f(n + 2™+,
(UT™"'f)m)= f((n+1)2*') and thus UT*""'=TU. Therefore (T*""")*H =
(T™'"Y*U*(F, — F,) = U*T*(F, — F,)=H. Also U(€n,) =0 unless
r = Omod 2™*"" in which case U(e}...) =e. Thus H(e}..,) = 0 for each
r and therefore H € J,n... We shall show that H ¢ J,,..

Select f e L*(®) such that Fi(f) # Fy(f). Define g € L*(8) by the
rule ¢g(2™*'n) = f(n) and g(s) = 0 otherwise. Clearly Ug = f so that
H(g) + 0. Now T*"g(k) = g(k+2™). Therefore UT*"g(k) = g(k2™"+2™) = 0.
Hence (T*")*H(g) = (Fy, — F;)UT*(9) = 0. From this we see that H¢ Jym.

We next direct our attention to the case of L**(®) where ® is a
locally compact abelian group which is not discrete. Certain preliminary
material will be needed for this purpose.

3.6. LEMMA. Let B be a Banach algebra, and let f € B* be multi-
plicative on B. Then the functional ¢ € B*** defined by ¢(F) = F(f)
1s multiplicative on B**.

Proof. For z, ye B, {f,2)(y)=f(xy)=f()f(y). Thus {f, )=
f@)f. Next for FFe B** and « € B, |F, flx) = F(f, ©>) = f(®)F(f),
and consequently [F, f] = F(f)f. Therefore for any F' and G in B**
FG(f) = F(G, f]) = F(G(S).

For a subspace J of a Banach space X, we define J* =
{* € X*|2*(y) = 0, y € J}. For the definition of Y see § 2.

3.7. THEOREM. Let B be a commutative Banach algebra. Then 9*
18 a two stded ideal of B**. Moreover, the algebra B**|)+ is com-
mutative and semi-simple.

Proof. Let Fe®Pt and let G e B**, By Lemma 3.6, if f is a
multiplicative linear functional on B, then FG(f) = F(f)G(f) =0. The
relation F'G(f) = 0 then holds for any linear combination of multiplica-
tive linear functionals, and so, by continuity, for any fe%. Thus
FG e 9*. The identical argument shows GF € 9+ and thus 9+ is a two
sided ideal of B**,

In view of the definition of multiplication in a quotient algebra, to
show the commutativity of B**/9)*, it is sufficient to show that for
any pair F,G e B**, FG —GF € $*. For any multiplicative linear
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functional £, by Lemma 3.6, FG(f) = F(f)G(f) = GF(f). Thus FG —
GF € 9.

Let « denote the natural mapping of B** onto B**/9*. For f a
multiplicative linear functional on B, define f, on B**/9)* by f(F + 9') =
F(f). The functional f, is clearly well defined. Also f, is multiplica-
tive, since by Lemma 3.6 f,((F'+ D) G + DY) = f(FG + DY) = (FG)(f) =
F(f)G(f) = fF + DG + D).

Suppose that «(F') is in the radical of B**/%*. Then for any
multiplicative linear functional f on B, 0 = f(a(F)) = F(f). Consequently
Fe 9t so a(F) =0. Thus B**/9* is semi-simple.

We say that a Banach algebra B has a weak right identity if there
exists a net {e,|a € A} in B and an M > 0 such that ||e,|| < M, a e
and lim f(xe, — ) = 0 for each x € B, f € B*.

3.8. LEMMA. The Banach algebra B has a weak right tdentity if
and only if B** has a right identity.

Proof. Suppose B has a weak right identity {e,|a € 2}, with
lle.]] < M, ae A, Since also ||me,|| < M, ac 2, the w*-compactness
of the ball of radius M in B**, implies the existence of a subnet {ez |3 € B}
such that w*-lim we; = E' ¢ B**, We shall show that E is the required
right identity for B**. Let fe B*, x € B. Then [E, f|(x) = E(f, )) =
lim meed f, ®) = lim f(xeg) = f(x). Consequtently [E, f] = f for all fe B*.
Thus FE(f) = F(E, f]) = F(f) and FE = F for all F € B**.

Suppose that B** has a right identity E. By Goldstine’s theorem
[5, p. 424], there is a net {mwe,|a € A}, with {|7e, || < || E||, @« € A, and
w*-limne, = K. Let fe B*. Since E is a right identity in B**,
F(f)= FE(f) = F(E, f]) for all Fe B** and thus [E, f] =f. Hence
for any € B, and fe B*, f(z) = [E, f|(x) = E(f, 2)) = lim we({f, D) =
lim f (xve,). Consequently B has a weak right identity.

3.9. LEMMA. If B 1is a commutative Banach algebra then m(B) 1is
n the center of B**,

Proof. One verifies that, for fe€ B* x e B, we have [7(x), f] =
{f,x). Then Fz(x)(f)= F(f,x))=[F, fl(x) = n(x)F(f) for each F e B**,

3.10. THEOREM. Let B be a commutative semi-simple Banach algebra,

and let F be a closed linear manifold in B*. The following statements
are equivalent:

(i) For each fe B*, and = € B, {f, 2DeR.
(i) B**F*+ = (0).
(iii) Fim(B) = (0).
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Proof. Suppose that (i) holds. Let G e B** and let FF'e §*. For
any fe B* [F,f]=0, since [F, fl(x) = F(f, %)) =0 for all ze B.
Thus GF(f) = 0 for any f € B* and so GF = 0, and (i) implies (ii).

Suppose that (ii) holds. Let F e §* and « € B. Then =m(x)F = 0.
However, by Lemma 3.9. 7(z) is in the center of B** and thus Fr(x) = 0,
and so (ii) implies (iii).

Suppose that (iii) holds. Let fe B* and z € B. For any F e -+,
0 = Frn(x)(f) = F(=(x), f]), and thus [7(x), f] € §. However, as noted
in the proof of Lemma 3.9, for B commutative, [n(), f] = {f, x>, so
{f, > and (iii) implies (i).

3.11. COROLLARY. Under any of the conditions of Theorem 3.10,
[t s contained in the radical of B**. In particular, if (1) is satisfied
for =19, then F* is the radical of B**.

Proof. The first statement of the corollary is immediate from
Theorem 3.10. The second statement is then a consequence of Theorem
3.7, which implies that the radical of B** is contained in .

3.12. THEOREM. Let & be a locally compact abelian group which
18 mot discrete, and let L(®) be the group algebra of &. Then L**(®)
1s not commutative and is nmot semi-simple.

Proof. Let ® be the closed subspace of L*(®) which can be identi-
fied with the collection of bounded continuous functions on &. Since &
is not discrete, it is an immediate consequence of the Hahn-Banach
theorem that Dt == (0).

We note for any fe L*(®), and z e L(®), that {f, 2>e®. For if
y € L(®) then

i) = flay) = | F@|o@pw@rapda = |{[ resasdaly@is .

Thus {f, ) may be identified with the function on & whose value at
Be®is S fl@)x(aB)da, and that function is continuous. We have thus

shown that condition (i) of Theorem 3.10 is satisfied with D playing the
role of . Thus by Corollary 3.11, (0) = D* is in the radical of L**(®)
and consequently L**(®) is not semi-simple.

To see that L**(®) is not commutative let F'# 0, F e D', Since
L(®) has an approximate identity, Lemma 8.8 yields a right identity &
for L**(®). Then F = FE, while from (ii) of Theorem 3.10, EF = 0.

3.13. COROLLARY. Let & be a locally compact abelian group which
is not discrete, and let L(®) be the group algebra of ©. Then the
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radical of L**(®) is infinite-dimensional.

Proof. For any integer m, there are n mutually disjoint compact
neighborhoods in &, whose union is not all of &. The characteristic
functions of these sets thus correspond to % elements of L*(®) which
are linearly independent modulo ©, in the notation of the proof of
Theorem 3.12. Consequently, by the Hahn-Banach theorem, there are
at least n linearly independent elements in ®*, and thus in R**., Hence
the radical of L**(®) is infinite-dimensional.

3.14. THEOREM. Let & be an infinite locally compact abelian group,
and let L(®) be the group algebra of ®&. Then L**(®) is not commuta-
tive and mot semi-simple.

Proof. For & discrete, the result is a part of Theorem 3.1 and for
® not discrete, the result is Theorem 3.12.

3.15. THEOREM. Let & be a compact abelian group, and let L(S)
be the group algebra of &. Then the radical of L**(®) may be identt fied
with any of the following sets:

(i) &={FeL"™®)| L*@)F = (0)}

(ii) D%, where ) is the closed subspace of L*(®) generated by the
multiplicative linear functionals on L(©S).

(ili)) D, where D is the closed subspace of L*(®) which can be
identi fied with the collection of continuous functions on O,

Proof. If & where discrete, it would be finite since it is compact.
Thus L(®) is finite-dimensional and is then isomorphic as an algebra to
L**(®), so the latter is semi-simple. In this case it is clear that each
of the representations given for the radical of L**(®) reduces to zero.

Suppose & is not discrete. From the proof of Theorem 3.12 and
from the equivalences of Theorem 3.10, it follows that Dt C & c R**.
Also from Theorem 3.7, we see that L**(®)/9)* is semi-simple so R** < Y*.
However, the Peter-Weyl theorem [7, p. 155] asserts that © = %), and
consequently Dt = 9+. We thus see that D' = S = R** = YL,

We shall show in Lemma 8.19 that the equality 3** = 9+ which
was demonstrated for L**(®) with ® a compact abelian group fails when
® is not compact.

3.16. LEMMA. Let B be a commutative semi-simple Banach algebra.
Then there is a continuous isomorphism of B into B**|*.

Proof. Let a be the natural mapping of B** onto B**/J)‘. Since
the composite mapping ar is clearly an algebra homomorphism, and is
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continuous, it sufficies to show that if aw(x) = 0, then x = 0. Suppose
an(x) = 0. Then zn(x) € Y and 0 = z(x)(f) = f(x) for each multiplicative
functional f. Thus, by the semi-simplicity of B, x = 0.

The question whether the mapping azm is in general bicontinuous
remains. The bicontinuity is clear if the spectral radius on B is a com-
plete norm. It is also possible to show the bicontinuity in concrete cases,
where all the computations can be made. One such example is when
B is the collection of all complex-valued functions with % continuous
derivatives made into a Banach algebra in the usual way [6, p. 119].
We are grateful to the referee for the following example where ar is
not bi-continuous. Let C,(R) be the algebra of all complex continuous
functions on the reals R vanishing at infinity with || f]||. as the usual
sup norm. Let B be the subalgebra of C,(R) consisting of all absolutely
integrable functions. We norm B by setting || f|| = || f|l- + [|.f |l where
[| £, is the L, norm of f. In this norm B is a Banach algebra. As a
function algebra on R, B is conjugate closed and adverse closed so that
the multiplicative linear functionals on B are just the evaluations at
points of R. Let #, be the functional defined by £,(f) = f(¢). An easy
computation shows that, for a finite sum Za,z,,, || Za.,, || = 2la,|. Let
9), be the subset of ¥ consisting of these finite sums; %), is dense in ).
For f e B, the norm of azn(f) is the same as the norm of =(f) as a
functional over %) and hence as functional over %),. Therefore || az(f)| =
|fll.. It follows that am is not bi-continuous.

3.17. THEOREM. Let & be a locally compact abelian group. Then
L**(®)/D+ is isometrically isomorphic to the algebra of all regular
Borel measures on the almost periodic compactification of &, with
multiplication taken as convolution.

Proof. It is an immediate consequence of the fundamental approxi-
mation theorem for almost periodic functions [8, p. 126] that when &
is a locally compact abelian group, the subspace ¥ can be identified with
the collection of almost periodic functions on ©&. Let 9% be the almost
periodic compactification of & [13, p. 124, ff.], [7, p. 165 ff.], and let
a be the associated homomorphism of & onto a dense subset of M.
Then « induces an algebraic isomorphism v of the complex valued con-
tinuous functions €(MM) onto the almost periodic functions on &, which
we identify with 9), by the following rule: ¥(f)(t) = f(a(t)), t € ®, f e C(I).
Since the sup norm is involved when ) is identified as a Banach algebra
consisting of the almost periodic functions on ®, and since ® is dense
in M, it is clear that v is an isometry. Also since [13] 7 is an isomor-
phism of C(IMN) onto 9, its adjoint mapping v* is a linear space isometric
isomorphism of Y* onto (C(M))*. As usual we may consider (C(IMM))*
as an algebra, where the elements are regular Borel measures and
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multiplication is convolution [5, p. 265] [10, p. 229].

Let B be the linear space isometric isomorphism of L**(®)/9* onto
9* defined by B(F + 9+) = F'|Y), the restriction of F' to §). The mapping
v*B is taken an isometric linear space isomorphism of L**(®)/9)*+ onto
(C(M))*, and the proof reduces to showing that v*4 is an algebra isomor-
phism. Since the range of ¥v*8 is (C(M))* it is sufficient to show that
VBUF + DG + 94) and Y*BEF + DH7*BG + P') have the same
Fourier-Stieltjes transform for each F,G e B**. Let g € C(IN) be an
arbitrary character of M. From the definition of 7, vg is a character
of @. Thus, by Lemma 3.6,

Y*B(F + DG + DH)N9) = BFG + D )(v9) = FG(vg) = F(v9)G(79)
= Y*BF + DY) BG + DH)g) = v*BE + D) BG+D1)9)

and the desired relation holds.

A further identification of a quotient algebra of L**(®) may be made
relating the algebra L**(®) to a familiar object study [10], namely the
algebra of countably additive regular Borel measures on ®.

8.18. THEOREM. Let & be a locally compact abelian group. Let €
be the subspace of L*(®) which may be identified with the continuous
Sfunctions on & which vanish at infinity (or all continuous functions
if & 1is compact). Then G+ is a two-sided ideal of L**(®) and L**(©)/E+
is isometrically isomorphic as an algebra to M®), the algebra of all
countably additive regular Borel measures on &.

Proof. If & is compact, the Peter-Weyl theorem yields € = ), and
® is its own almost periodic compactification so Theorem 3.17 yields the
result. We therefore suppose that ® is not compact. Let fe€, e L(®).
It was noted in the proof of Theorem 8.12 that {f, > could be identified

with the continous function on & whose value at 8¢ ® is | fla + B)x(a)da.

We show next that this function vanishes at infinity which will establish
that {f, x)cC.

Let ¢ >0, and let & be a compact symmetric neighborhood of the
identity e of ®, such that |f(a)| <¢/2] x| if a¢ K. Suppose U is a

compact symmetric neighborhood of e such that uI w(e) | da=]lx]|—¢/ 2] F1)-

Note that if B¢ R + U and aell then a + B¢ R and |fla+B)| =
¢/2||x|l. Then for B¢ & + U, a compact set,

[t + sret@ial < | 7@+ &)o@ da + ||+ B)| o) da
= 2lle )| Jot@da+ /1] |a@)]da < e,

Hence for F e Gt and f e €, [F, flix) = FKf,2)) =0, © ¢ L(®) and
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so [F,f] =0. Consequently for G ¢ L**(®), GF(f) = G([F, f]) = 0, so
GF e €+, Thus €' is a left ideal in L**(®).

Suppose next that fe € and F e L**(®). Now F restricted to €
yields a functional on the collection of continuous functions on & vanish-
ing at infinity, and as such is representable by a countably additive
regular Borel measure v on ®. We thus have

(3.12) F(o) = [o(@av@, g e € .

As we noted earlier, {f, 2>e€ if fe € and z € L(®). Then if we
use the representation of {f, 2> as a function on &, and use (3.12) we
have

[F,71w) = FF2) = | F ap@anta) = | {{ Fle+ @@} duia)
= [ {l 7@+ pavie}=@as

since both measures are completely additive regular Borel measures and
the Fubini theorem applies. Consequently, [F, f] may be identified with

the function on & whose value at 8 ¢ ® is S fla + B)dv(a), which func-

tion is clearly continuous on &. We next sh%w that the above function
vanishes at infinity.

Let ¢ > 0 be given. Let & be a symmetric compact neighborhood
of e such that | f(@)| < ¢/2]|v]|, if « ¢ & Suppose that U is a compact

symmetric neighborhood of e such that Sul dv(a)| = ||v]] — ¢/2]|f]]. Then,
for B¢ & + 1,

[ @+ max@| = | 7@+ l1av@) |+ | 7@+ 8 1dus)]
&) u ~u
= e2lvl| jave)] + 71| lave) <e.

Hence [F, f]€ @ whenever fe®. Thus if Fe G, Ge L**(®)and fe€,
FG(f) = F(G,f])) =0, so FG ¢ €%, Consequently €+ is a right ideal
of L**(®), and thus is a two sided ideal. From Banach space theory,
there is an isometric linear space isomorphism between L**(®)/€+ and
€*. Also under the identification noted earlier €* is isometrically iso-
morphic as a linear space to M(®). The composite isometric isomorphism
N is defined by MF + €) = v, where F(f) = Sf(a)du(a) for all feG.

It remains for us to see that M\ is an algebra isomorphism when
L**(@)/€+ is given the quotient space multiplication induced from the

multiplication in L**(®) and multiplication in M(®) is convolution.
Let F,e L**(®) and let v,=\F;+ €4, 9=1,2. Then let
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MF, + CH)(F, + € )) = \MF\F, + € ) =y,, Whence for all fe @,

|F@dv, = FE(f) = FF, ) = [ Fl@ds @),

since as noted earlier [F),, f] € €. But
72, £Yivi@) = [{(£8 + @)@ = [ .

Since f ranges over all continuous functions vanishing at infinity v, =
vixy, and M(G, + €Y F, + €1)) = MF, + Y)x\(F, + €L).

We are now in a position to show that the equality 9+ = R** which
held for a compact abelian group fails in the case of an abelian group
which is not compact.

3.19. LEMMA. Let & be an abelian locally compact group that is
not compact. Then R** < P+ and the inclusion is proper.

Proof. It follows from Theorem 3.7 that R** — YP+. Consider first
the case when ® is not discrete. Suppose R** = Y+, As above let €
be the subspace of L*(®) generated by those elements which may be
identified with continuous functions on & which vanish at infinity. It
follows from Theorem 3.18 that R** c €+. Thus Y < €+, and con-
sequently € — ¥). As noted in the proof of Theorem 3.18, %) can be
identified with the collection of almost periodic functions on &. How-
ever, since & is not compact, € N Y = (0) is a consequence of the theory
of almost periodic functions on groups.

For suppose f+# 0, fePNE. Pick ¢ > 0 so that | f(a,)| > 3¢ and
| f@)] <e, for a ¢ &, for some compact set & There is [13, p. 133] a
finite set B;, 1 =1, -+, %, in & so that for any v e ®, there is an
integer j, 1 <7 =<n such that |f(v'a) — f(B;i'a)| <e, for all & € ®.
Thus for arbitrary v, we may pick a = ya,, and | f(a,) — f(Bi'vay) | < ¢
for arbitrary v, for some 7, 1 < j <n. In particular if v is taken so
that v ¢ 8,Ra;*, =1, -+, n, as is possible since & is not compact, we
have a contradiction. Thus € c ¥ is impossible and the proof of the
lemma is complete.

3.20. LEMMA. Let & be a locally compact abelian group. Then
each of the algebras L**(®)/R** and L**(®)/D*+ has an identity.

Proof. Since, by the second isomorphism theorem for rings, L**(®)/2*+
is a homomorphic image of L**(®)/R**, it suffices to show that L**(®)/R**
has an identity. Now L(®) has an approximate identity, so by Lemma
3.8, L**(®) has a right identity E. It is immediate that E + R** is
an identity for L**(®)/R**.
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3.21. THEOREM. Let ® be a locally compact abelian group. Then
the algebra L**(®)/R** = L(®) if and only if & is a finite group.

Proof. If ® is a finite group L(®) is a finite-dimensional Banach
space so L**(®) = L(®) and R** = (0).

Suppose & is not discrete. Then by Lemma 3.20, L**(®)/R** has
an identity while L(®) does not so L**(®)/R** = L(®) is impossible.
Suppose finally that & is infinite and discrete. We saw in Theorem 3.3
that, for an infinite discrete abelian group &, L**(@)/R** could be
written as the direct sum of two ideals &, and &, where &, is a maximal
ideal and &, is the set of all scalar multiples of an idempotent. Suppose
we had L(®) = L*(®)/R**. Then we would have L(®) = M P I where
X is the set of scalar multiples of an element z # 0 which annihilates
M. Since a closed ideal in L(®) is invariant under translation, there is
a complex function )\ on & such that z(a + B) = Ma)z(B) for all a, Be .
It is immediate that )\ is a homomorphism of & into the complexes. As
z # 0, ) is bounded, so is a character on ®. Thus |Ma)| =1, ac@.
Hence if 2(B) # 0, || 2]| = Saeg | 2(@ + B)| = Saeg | Ma) || 2(8) | is possible
only if @ is a finite group. Thus L**(@)/R** = L(®) is impossible for
® an infinite discrete abelian group.

3.22. THEOREM. Let ® be a locally compact abelian group. Then
L**(®)/9* = L(®) if and only if © 1is finite.

Proof. If ® is finite L(®) is reflexive and ¥ = L*(®) by the Peter-
Weyl theorem so the stated isomorphism holds.

If ® is not a discrete group, then L(®) has no identity, while Lemma
3.20 gives an identity for L**(®)/9*, so there can be no isomorphism.

Suppose that ® is a discrete group and L**(®)/9* = L(S). Theorem
3.17 yields a compact group 9, the almost periodic compactification of
@, such that L**(®)/Y+ = M(9), the algebra under convolution of the
regular Borel measures on . Thus L(®) = M (D). Let 4 be the chara-
cter group of & and let 7" be the character group of . Since L(®) =
M(D) we may identify the maximal ideal space of M (D) as 4, and the
topologies coincide in the two interpretations. Now /" may be interpreted
as a subset of the maximal ideal space of M(9), and thus as a subset
of 4, and the topology of I" as a topological group coincides [10, p. 232]
with the topology as a subset of 4. Also [10, p. 235] /" is an open
subset of 4. As a topological group 7" is discrete, since £ is compact.
As a topological group I” is discrete, since O is compact. Thus the points
of I" are open sets in 4. But 4 is a compact topological group, since
® is discrete. Since 4 has an open set consisting of a point, 4 is a
discrete group. Therefore, being both compact and discrete, 4 is a finite
group and so & is a finite group.
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4. A further example. The examples given in § 3 were principally
of the nature that the given Banach algebra B was commutative and
semi-simple, while the algebra B** was not commutative and not semi-
simple. The present section is concerned with an example in which the
Banach algebra B is commutative and semi-simple, while the algebra
B** is commutative but not semi-simple.

Let B be a Banach space, and let ¥ be a total subspace of B*.
We denote by (B, %) the weak topology on B determined by the sub-
space ¥, that is, the smallest topology on B which makes all the members
of ¥ continuous. Similarly, we use the notation ¢(B**, ¥) for the cor-
responding topology in B**.

4.1. THEOREM. Let B be Banach space, and let  be a closed subspace
of B* which s total. Then a necessary and sufiicient condition that
n(B)® F+ = B** is that the unit ball S of B be relatively compact
with respect to the topology d(B, F). The above decomposition can occur
only if B 1s isomorphic to conjugate space.

This is a slightly more explicit form of a part of Theorem 17’ of
Dixmier [4, p. 1069]. Since the same arguments used by Dixmier give
the present version, we omit the details.

4.2. THEOREM. There exists a semi-simple commutative Banach
algebra, for which the algebra B** is commutative but not semi-simple.

Proof. Let B =1, the space of absolutely convergent sequences
of complex numbers, with its usual norm, and let multiplication in B
be defined coordinatewise, i.e. {a,}{b;} = {asb,}. It is readily verified
that B is a complex commuatative semi-simple Banach algebra. It is
also readily verified that any multiplicative linear functional f is of the
form f({a:}) = a,, for some integer m. Let 9) be the closed subspace of
B* generated by the multiplicative linear functionals. Note that B*
may be identified with (m), the space of all bounded sequences with the
sup norm. Under this identification %) becomes the closure in (m) of
the collection of all sequence with a finite number of non-zero terms,
i.e. 9 may be identified with (¢,), considered as a subspace of (m). The
topology o(B, 9)) is then the same topology on B as its w*-topology when
B is considered as the conjugate space of (c¢,). Since the space 9 is
total, and since Alaoglu’s theorem asserts that the unit ball of B is
compact in o(B, 9)), Theorem 4.1 asserts that B** = n(B) @ P*.

We next show that condition (i) of Theorem 3.10 is satisfied. For
our calculations we make the identifications indicated above. Let fe B*
and x € B. Say f={c;} € (m) and let 2 = {2}, ¥ = {¥x} be in l,. Then
o)) = fxy) = Sicwey,. Thus, in (m), {f, 2> = {e,x,}. However,



864 PAUL CIVIN AND BERTRAM YOOD

as {z,} € I, and {c,} € (m), {c,x,} € (¢,) and so {f, x> e .

Theorem 3.10 then asserts that B**Y+ = (0) and P+=(B) = (0), and
Corollary 38.11 asserts that 9 is the radical of B**. The relation
B** = 1(B) @ 9+ together with the above comment shows that multi-
plication is commutative in B**. Furthermore, since B is not reflexive,
B** is not semi-simple.

In the foregoing example, the relationships B** = t B Y+ = tBHR**
were observed. This is in contrast to the situation noted in § 3, where
we saw in Theorems 3.31 and 8.82 that for an infinite locally compact
abelian group one could not even have either L**(®)/R** = L(®) or
L**(®)/9* = L(®).

5. On the embedding of ideals. We consider here what happens
to ideals in B under the natural embedding © of B into B**. Recall
that multiplication F'G in B** is w*-continuous in F' if G is fixed and
that 7(x)G is w*-continuous in G if x € B is held fixed.

5.1. LEMMA. Let Iy be a right (left) ideal of B. Let R.(K,) be

the w*-closure of w(JN7(I)). Then KK, is a right (left) ideal of
B**,

Proof. Let Fe &, F=w*limzn(z,), 2,€S,. Let Ge B**, G =
w*-lim 7(y,), ¥s € B. Then FG = w*-lim n(x,)G. Hence FG ¢ &, if we
can show that 7(x,)G € &, for each index a. But 7(x,)G=w*-lim 7 (x,)T(Ys).
However .y € &, so that z(x,)G € &,. Let F e ®, and use the same
notation. Then 7(yg)F = w*-lim n(y)7n(x,) € &, and hence GF ¢ &,.

5.2. THEOREM.

(a) If {3 1s a proper regular right (left) ideal of B then the
w*-closure of w(X)(X)) s a proper regular right (left) ideal of B**.

(b) If P is a primitive ideal of B then the w*-closure of m(P) is
contained in a primitive ideal of B**.

(¢) If & is a milpotent right (left) ideal of B, then the w*-closure
of n(X) 1s a milpotent right (left) ideal of B**.

Proof. Let R.8,) be the indicated w*-closure in (a). By Lemma
5.1, 8.(8,) is a right (left) ideal of B**. Let j be a left (right) identity
for B modulo J.(3;). We show that 7n(j) ¢ (8,). Since &, is a proper
right ideal, dist (7, ,) = 1. Let fe B*, f(j) =1 and f(&,) = 0. Then
n(x)(f) =0, x €, and F(f) =0, F e &, while z(y)(f) = 1.

Consider the . case, where n(j)m(x) — m(x) € n(J,) for all = € B.
Thus w(j)F — F e &, for all F e B**, Hence 7(j) is a left identity
for B** modulo &,.
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Let % be primitive ideal. We can write fL = (I : B) = {x e Blyx e M
for all y € B} where I is a regular maximal right ideal of B. Let &
be the w*-closure of w(M) and let O be the w*-closure of 7(P). Now
w(y)m(x) € & for all y e B, x € B. Thus n(y)F e & for all ye B, Fe
and then GF e & for all G e B**, Fe Q. By (a), & is contained in a
regular maximal right ideal T of B** so that Q c (W: B**). This
completes the proof of (b).

Let & be a nilpotent right ideal of B, 3™ = (0). Let & be the
w*-closure of n(X) and F,e &, k=1,.--,n. We show F,F,---F, =0.
Let F,=w*-lim7(x,), ¥, € Y. For any ©,,++,2, , €y, 0=m(x,) - - T(x,, ) 7(2)
converges (w*) to 0 = n(x,)+ -+ -w(x,-,)F,. Let F,_; = w*-lim w(xg). Then
w(x)- - -7w(x,_,)w(xs) converges (w*) to n(x,).--m(x,_,)F,_, so that 0=
w(x,).--m(x,_,)F, ,F,. We can continue in this fashion to obtain
FF,.--F, =0.

In the commutative case we can be more specific.

5.3. THEOREM. Let B be a complex commutative Banach algebra
and M be a regular maximal ideal of B. Then the w*-closure & of
(M) is a regular maximal two-sided ideal of B**.

Proof. There exists a multiplicative linear functional f e B* such
that M ={x € B|f(x) =0}. Let® = {F e B**|F(f)=0}. Clearly & c L.
Let 7 be an identity for B modulo M. Now the smallest linear mani-
fold containing M and 7 is B. Thus the linear manifold ¥ in B**
generated by £ and 7(j) contains w(B). However & is w*-closed and &
is the direct sum of & and the one-dimensional space generated by 7(j).
Therefore € is w*-closed. By Helly’s theorem, n(B) is w*-dense in B**
so that £ = B**, It follows that £ is a maximal closed linear manifold
of B** and that = W®W. In view of Lemma 3.6, & is a maximal two-
sided ideal of B**,

5.4. LEMMA. If e 1is an tdentity for B then w(e) is an identity
for B**,

Proof. One verifies that, for f e B*, {f,e> = f = [n(e),f]. From
this it readily follows that w(e)F' = F'm(e) = F for every F ¢ B**,

Suppose now that B** is commutative and B has an identity. By
Lemma 5.4, so does B**. Let W{(M,) be the space of maximal ideals
of B(B**). Each M, e M, determines a unique maximal ideal 7*(M,) of
B by the rule «[n*(M,)] = w(x)(M,), ©* € B. This is the ‘‘adjoint trans-
formation’ of I, into M induced by the mapping 7 of B into B** (see
[7, p. 76]). As shown there, 7#* is continuous.

5.5. THEOREM. Let B** be commutative and B contain an identity.
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Then ©* maps M, continuously onto M; ©* is a homeomorphism if and
only if every maximal ideal of B** is w*-closed.

Proof. Let M e M. By Theorem 5.3, the w*-closure of n(M) is
an element M, € M, and it is clear that 7#*(M,) = M. Thus 7* maps M,
onto M. Let W, be the set of M, e M, which are w*-closed. Since
(W) =M, we have B, =9I, if #* is one-to-one. Suppose that
B, = W,. Let M, and M, € IR, where n*(M,) = =*(M,)). Clearly M, D
w(w*(M,)) so that the w*-closure of the latter set is, by Theorem 5.3,
M,. Hence M, = M,.

That 7* can be a homeomorphism in the case of a non-trivial algebra
B is seen from the example of §4 (adjoin an identity to that B). In
general 7* is not one-to-one. For a case in point consider B = C(X)
where X is compact. It is known that B** is of the form C(Y) where
Y is compact (see [1, Theorem 4.8] or § 7). Suppose that z* is one-to-
one. From the relation x(7*(M,)) = n(x)(M,) it follows that 7(B) contains
all continuous functions on M, or 7#(B) = B**, But this implies that
X is a finite set.

5.6. THEOREM. Let R(N**) be the radical of B(B**). Then n(R) =
R** N w(B) if B is commutative or satisfies the descending chain condi-
tion for left ideals.

We believe this theorem true for any Banach algebra B. First we
have a preliminary result.

5.7. LEMMA. An element x € B is left (right) quasi-regular if and
only if w(x) is left (right) quasi-regular in B**,

Proof. Let L, (R,) be the operation on B of left (right) multiplica-
tion by « and let I be the identity operator acting on B. For Fe B**
let L.(R;) be similarly defined. Note that {f, ) (¥) = f (L.(¥)) so that
{f,x>=L}(f), f e B* x,yec B. Then, for Fe B**, n(x)F(f)=[F, fl(x) =
F(f,«>) = L*F(f). Hence n(x)F = L;*(F). A similar argument shows
that Fn(x) = R} *(F).

Suppose that 7(x) is right quasi-regular in B** where 7w(x) + F' —
n(x)F =0. For any G € B** we have G — (7(x) + F — n(x)F)G =G
which can be rewritten as

(5.1) I** = Li*)I** — L)(G) =G .

It follows that I** — L** is a mapping of B** onto B**. By the theory
of linear operators I — L, maps B onto B. Hence there is exists y € B
such that (I — L)y = —« or « +y — a2y = 0.

Suppose that 7(x) is left quasi-regular where n(x) + F' — Fr(x) = 0.
Arguing as before we have
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(5.2) (I** = RZ)I** — RB)(G) =G

and can show that z is left quasi-regular.

It follows that, for x € B, the spectrum of x as an element of B
is the same as that of 7(x) as an element of B**. Moreover x is in
the radical of B if m(x) lies in the radical of B**.

We turn to the proof of Theorem 5.6. Suppose that B is commuta-
tive and ¢ € R. By Lemma 3.9, w(x) lies in the center of B**., Let
©0(G) denote the spectral radius of an element G € B**. Since x(x)
permutes with G, o(m(2)G) =< p(n(x))o(G) = 0. It follows that =m(x)G is
quasi-regular for all G € B** whence 7(x) € i#**., Next suppose that B
satisfies the descending chain condition on left ideals and « € R. Then
2 lies in a nilpotent left ideal. It follows from Theorem 5.2 that m(x) € N**,
By Lemma 5.7, n(R) D R** N n(B).

6. Extension of mappings. Let B, and B, be two Banach algebras.
It turns out that if T is a continuous homomorphism of B, into B, then
T** is a homomorphism of B/** into B,**. This phenomenon fails, in
general, for anti-homomorphisms.

6.1. THEOREM. Let B, and B, be two Banach algebras. Let T be
a continuous homomorphism of B, into B,. Then T** is a homomor-
phism of B** into B;*.

Proof. Let F,G e B** and g € B;. We wish to show that T**(F'G)=
T**(F)T**(G). We have

(6.1) T**(FG)9) = FG(T*(9)) = F(G, T*(9)

and

(6.2) T**(F)T**(G)g) = T**(F)N[T**(G), 9]) = F(T*([T**(G), 9]) .
Thus the desired relation follows if we verify

(6.3) (G, T*(9)] = T*([(T**(G), 9])

for all G € B**, g € B¥. Let x € B,. Now [G, T*(9)](x) = G(KT*(g), x>)
and T*([T**(G), 9D(@) = T**(G)y, T(x))) = GT*(g, T(x)). Therefore
(4.3) holds if we can show

(6.4) {T*(9), p = T*Kg, T(=)))

for all g e B, x e B,. Let ye B,. Then {T*(g), 2>(y) = T*@9)(xy) =
9(T (xy)) while T*(Kg, T(x)>)(y) = g(T(x)T(y)). Since T is a homomor-
phism, (6.4) is valid.

6.2. THEOREM. Let T be a continuous anti-homomorphism of B,
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into B,, Then T** is an anti-homomorphism if and only if F,G,=
G, F, for any pair F,, G, in the range of T**.

Proof. For the notation see §2. Suppose that the F.,G, = G, F,
condition holds. Let F,G e B** and fe Bf. Then T**(FG)f)=
F(G, Tf]) while

T**@)T**(F)f) = T**(F)- T**(G)(f)
=T T*G) | fD) = FT*((T*G)|f]) .

To see that T** is an anti-homomorphism it is sufficient then to show

(6.5) G, T*(O] = T*(T**(@) | f]

for all Ge B**, feBf. Let xe B. We have [G, T*(f)l(x)=
GKT*(f), x») while T*[T**(G)|fN(x) = T**(G)KSf| T(2)). Therefore

to show (6.5) it is sufficient to show

(6.6) KT*(f), 2) = T*KSfI T(®)))

for all fe B, xeB,. Let yeB. <{T*),2Xy)=f(T(xy)) and
T*(f| T@)))y) = f(T(y)T(x)). Since T is an anti-homomorphism (6.7)
is verified.

Assume that T** is an anti-homomorphism. Suppose that there
exists F, G, € T**(B}*) such that F\-G, + G,F,. There exist F, G ¢ Bf
where T**(F)= F,, T**(G) =G, and, for some f e B,*, T**(F).T**
G)f) # T**G)T*(F)f). But T**(F)-T**(G)f) = F(T*[T**@G)|f]
while T**(G)T**(F)(f) = T**(FG)(f)= F(G, T*(f)]. It follows that, for
some x € B, T*([T**(G) | f D) # |G, T*(f))x). However T*([T**(G)|f])
(@) = T**G)Sf| T(x)) = G(T*Kf| T(»)»)) while [G, T*(f)|(x) =GKT*
(f),2>) so there must exist y € B, where T*(f| T(x)>)(y) # {T*(f),
2)(y). However these are equal, which completes the proof.

It is readily verified by the above technique that an involution on
B i.e. a conjugate linear anti-automorphism of period two, can be ex-
tended to an involution on B** if the multiplication on B is regular.

6.3. COROLLARY. If B, is a closed subalgebra of the Banach algebra
B, and the multiplication in B, 18 regular then so is that in Bi.

Proof. Let T be the imbedding of B, into B,. By Theorem 6.1,
T**(FG) = T**(F)T**(G) for F,G e B,. Now likewise T**(G-F) =
T**(G)-T**(F) = T**(F)T**(@) since multiplication in B, is regular.
Therefore T**(G-F) = T**(FG). Since T** is one-to-one, the conclusion
follows.

6.4. COROLLARY. If there is a continuous homomorphism T of the
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Banach algebra B, onto the Banach algebra B, and if the multiplication
wn B, 1s regular then so is the multiplication in B,.

Proof. By Theorem 6.1, T**(FG)=T"**(F)T**(G) forall F,G € B;**.
If we give both B, and B, their transposed multiplication we see that
T**(G-F) = T**(G)- T**(F). But T**(G-F)= T**(FG). Since the
range of T** is all of B, the conclusion follows from Theorem 6.2.

7. On B*-algebras. Let B be a B*-algebra. We show that the
following theorem is contained implicitly in the work of Sherman and
Takeda [12] on the second conjugate spaces of such B.

7.1. THEOREM. Let B be a B*-algebra. Then B** is a B*-algebra
wn the Arems multiplication. The multiplication in B is regular.

Proof. We know that B is also a C*-algebra [9, p. 281]. Follow-
ing Takeda [12] we consider a canonical faithful *-representation x — w*
of B as operators on a specially chosen Hilbert space H where H is the
direct sum of Hilbert spaces H, defined for each state f. Let B* be
the image of B under this representation. Takeda shows that each
S € B* can be represented in the form

n

(7.1) S (@) = 3 (@), 70)

k=1

where each &, 7, € H. Conversely any functional of the form (7.1) must
be bounded on B.

Following Takeda further we let W be the closure of B* in the
weak operator topology. He shows how W can be identified with B**

so that if F'e B** corresponds to the operator T and f is given by (7.1)
then

(7.2) F(£) = 3(TED), 1) -

A consequence is that the w*-topology on B** is the same as the
weak operator topology on W. Now consider the multiplication in B**
induced by the operator multiplication 7,7, of two operators in W con-
tinuous in each factor in the weak operator topology if the other factor
is held fixed. It follows by a remark of Arens [2, p. 844] that the
multiplication in B** corresponding to the operator multiplication in W
must be the Arens multiplication in B**. Furthermore the multiplica-
tion in B is regular [2, Theorem 3.3].

7.2. COROLLARY. Let B be a complex commutative semi-simple
Banach algebra which is complete in its spectral radius morm. Then
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B** 43 commutative and semi-simple.

Proof. As an example consider A the Banach algebra of all complex-
valued functions continuous in |z| <1 and analytic in |z]| <1 where
l|f1l =sup|f(z)|. Corollary 7.2 asserts without further computation that
A** is commutative and semi-simple.

From the hypotheses on B we may assume that B is a closed sub-
algebra of the commutative B*-algebra C(It) of all complex continuous
functions vanishing at infinity on the space 9t of regular maximal ideals
of B. As noted in Theorem 7.1 the multiplication in C(IM) is regular,
so that, C(IM)** is both commutative and semi-simple. By Corollary 6.3,
B** is algebraically isomorphic to a subalgebra of C(I)**.
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