WIRTINGER-TYPE INTEGRAL INEQUALITIES

W. J. COLES

1. Introduction. The following inequalities (and other similar ones) are known:

(i) if \(u'(x) \in L^2 \) and \(u(0) = 0 \), then
\[
\int_0^{\pi/2} u^2 dx \leq \int_0^{\pi/2} u''^2 dx \tag{4}
\]

(ii) if \(u''(x) \in L^2 \) and \(u(0) = u(\pi) = 0 \), then
\[
\int_0^\pi u^2 dx \leq \int_0^\pi u''^2 dx \tag{3}
\]

in each case, equality occurs if and only if \(u(x) = A \sin x \). P. R. Beesack [1] has generalized these two types of inequalities by considering the underlying differential equations \(y'' + py = 0 \) and \(y^{(4)} - py = 0 \) respectively, together with the equations satisfied by \(y'/y \). In [2], a relation was obtained between the equation \(y^{(2m)} - py = 0 \) and the inequality
\[
(-1)^n \int_a^b pu^2 dx \leq \int_a^b u^{(m)} dx .
\]

In this paper we let \(Ly \) be the general self-adjoint linear operator of even order
\[
\sum_{i=0}^{n} (f_i y^{(i)})^{(4)}
\]

and extend the methods of [2] to relate the equation
\[
L y = 0
\]
and the inequalities
\[
0 \leq \sum_{i=0}^{n} (-1)^{n+i} \int_a^b f_i u^{(i+2)} dx
\]

and
\[
0 \geq \int_a^b \frac{1}{f_n} \cdot u^2 dx + (-1)^n \int_a^b \frac{1}{f_0} \cdot u^{(m)} dx .
\]

2. Notation and lemmas. Let \(y_i = f_i y^{(i)} \), \(v_i = \sum_{i=0}^{k} y_{n-k}^{(i-k)} \), \(u_{i,j} = v_{n-i}/y^{(j)} \), and \(y_{i,j} = y^{(i)}/y^{(j)} \) \((i = 0, \cdots, n)\).
Then
\[(4) \quad v_i = v_{i-1} + y_{n-i} \quad (i = 1, \ldots, n).\]

Let \((k_0 \cdots k_n)\) be an \((n + 1)\)-tuple consisting of 0’s and 1’s, such that \(\sum_{i=1}^{n} k_i\) is even. Let
\[
(5) \quad c_i = \begin{cases} a, & k_i = 0 \\ b, & k_i = 1 \end{cases}; \quad d_i = \begin{cases} a, & k_{i+1} = 1 \\ b, & k_{i+1} = 1 \end{cases};
\]
\[c_i^* = a + b - c_i; \quad d_i^* = a + b - d_i; \quad p_i = (-1)^{\sum_{j=0}^{i} k_j}; \quad q_i = (-1)^{i} p_i; \quad (i = 0, \ldots, n).\]

We now and henceforth assume that (1) has a solution on \([a, b]\) such that
\[(6) \quad p_i y^{(n-i)}(x) > 0 \quad \text{on } (a, b) \quad \text{and at } c_i^*; \quad p_i y^{(n-i)}(c_i) \geq 0 \quad (i = 2, \ldots, n); \quad q_i v_i(d_i) \geq 0 \quad (i = 0, \ldots, n - 1);\]
and that the \(f_i(x) \in L[a, b],\) with \(\int_a^b f_i(x) dx \neq 0,\) and
\[(7) \quad (-1)^{n+i} f_i(x) \leq 0 \quad \text{on } [a, b] \quad (i = 0, \ldots, n - 1); \quad f_n(x) \geq 0 \quad \text{on } [a, b].\]

Lemma 1. We have
\[(8) \quad p_i y^{(n-i)}(x) > 0 \quad \text{on } (a, b) \quad \text{and at } c_i^* \quad (i = 1, \ldots, n).\]

Proof. By hypothesis the lemma is true for \(i = 1.\) Suppose that, for some \(i\) such that \(1 \leq i \leq n - 1,\) the statement holds. Integrating and multiplying by \((-1)^{k_{i+1}}\) we have
\[p_{i+1} y^{(n-i-1)}(x) = p_{i+1} y^{(n-i-1)}(c_{i+1}) + (-1)^{k_{i+1}} \int_{c_{i+1}}^{x} p_i y^{(n-i)}(t) dt > 0\]
on \((a, b)\) and at \(c_{i+1}^*.\) This completes Lemma 1.

Lemma 2. We have
\[(9) \quad q_i v_i(x) \geq 0 \quad \text{on } [a, b], > 0 \quad \text{at } d_i^* \quad (i = 0, \ldots, n - 1).\]

Proof. We proceed by induction on \(i \quad (i = n-1, \ldots, 1, 0).\) Now \(v'_{n-1}(x) = v_n(x) - y_0 = - y_0,\) so
\[q_{n-1} v_{n-1}(x) = q_{n-1} v_{n-1}(d_{n-1}) - (-1)^{n+k} \int_{a_{n-1}}^{x} (-1)^{n} f_{n} p_{n} y dt \geq 0;\]
since $|y| > 0$ and $\int_a^b f_\psi(x)dx \neq 0$, the inequality is strict at d^*_{n-1}.

Now suppose that, for some $i (n - 1 \geq i \geq 1)$, the statement holds. Then, integrating (4) and multiplying by q_{i-1},

$$q_{i-1}v_{i-1}(x) = q_{i-1}v_{i-1}(d_{i-1}) + (-1)^{i+1}k_i \int_{d_{i-1}}^x q_{i}v_i dt$$

$$- (-1)^{i+1}k_i \int_{d_{i-1}}^x (-1)^i f_{n-i}p_i y^{(n-i)} dt$$

so $q_{i-1}v_{i-1}(x) \geq 0$ on (a, b) and > 0 at d^*_{i-1}. This completes Lemma 2.

3. The formal identity. Since (at least formally)

$$u_{ii} = v'_{n-i-1}/y^{(i)} + f_i$$

we have

(10) $u_{ii} = u_{i+1,i} + u_{i+1,i+1}y_{i+1,i} + f_i$.

Now we use (10) and induction to derive the formal identity

(11) $0 = \sum_{i=0}^{n-1} (-1)^{n+i} \left\{ u_{i+1,i}y^{(i)} \right\}^b_a$

$$+ \int_a^b u_{i+1,i+1}(u^{(i+1)} - y_{i+1,i}u^{(i)})^2 dx$$

$$+ \sum_{i=0}^{n} (-1)^{i} \int_a^b f_i u^{(i)}^2 dx ;$$

then we will justify the formal steps.

First,

$$\int_a^b u_{i+1,i}u^{(i)}^2 dx = \int_a^b 2u_{i+1,i}u^{(i)}u^{(i+1)} dx$$

$$= \int_a^b 2u_{i+1,i}u^{(i)}^2 dx - \int_a^b u_{i+1,i}u^{(i)} dx ,$$

so

(12) $\int_a^b (u_{i+1,i} + u_{i+1,i+1}y_{i+1,i})u^{(i)}^2 dx$

$$= \int_a^b (u_{i+1,i} + u_{i+1,i+1}y_{i+1,i})u^{(i)}^2 dx$

Since $v_n(x) \equiv Ly \equiv 0$, $u_{n0}(x) \equiv 0$; using (10) and (12) with $i = 0$,

$$0 = \int_a^b u_{10}^2 dx + \int_a^b u_{11}(u' - y_{10}u)^2 dx + \int_a^b f_0 u^2 dx - \int_a^b u_{11}u^2 dx .$$
Suppose that, for some k such that $1 \leq k \leq n - 1$,

\begin{equation}
0 = \sum_{i=0}^{k-1} (-1)^i \left\{ u_{i+1,i} u^{(i)^2} \right\}_a^b \\
+ \int_a^b u_{i+1,i+1}(u^{(i+1)} - y_{i+1,i}u^{(i)^2}) dx \\
+ \sum_{i=0}^{k-1} (-1)^i \int_a^b f_i u^{(i)^2} dx + (-1)^k \int_a^b u_{k+1} u^{(k)^2} dx \, .
\end{equation}

Using (10) and (12) with $i = k$, and substituting for the last term in (13), we obtain (13) with k replaced by $k + 1$. Hence (13) holds for $k = 1, \ldots, n$; with $k = n$, using the fact that $u_{nn} = f_n$, and multiplying by $(-1)^n$, we have (11).

Lemma 3. Let $u(x)$ be a function such that

\begin{equation}
\nu^{(n)} \in L_2[a, b]; u^{(i)}(c_{n-i}) = 0 \quad (i = 0, \ldots, n - 1) .
\end{equation}

(Note that (14) implies that the zero of $u^{(i)}$ at c_{n-i} is of order ≥ 1 ($i = 0, \ldots, n - 2$) and $> \frac{1}{2}$ ($i = n - 1$). Then (11) is valid.

Proof. Our concern is with possible zeros of $y^{(i)}$ ($i = 0, \ldots, n - 1$) on $[a, b]$; by Lemma 1, the only possible zero of $y^{(i)}$ is at c_{n-i}. Let i be such that $0 \leq i \leq n - 1$, and suppose that $y^{(i)}$ has a zero of order r at c_{n-i}. Then $r \leq n - i$. For if $r > n - i$ then $y^{(i+k)}(c_{n-i}) = 0$ ($k = 1, \ldots, n - i$), and so $c_{n-i} = c_{n-i-1} = \cdots c_i$; thus $y^{(n)}(c_i) = 0$. But, by Lemma 2, $v_i(c_i) \neq 0$ (since $c_i = d_{i}^{*}$), and $v_i(x) = f_n(x)y^{(n)}(x)$. Thus $r \leq n - i$.

Now, since $c_{n-i} = \cdots = c_i$, $w^{(i)}$ has a zero of order $\geq r$ at c_{n-i} ($i = 0, \ldots, n - 2$), and of order $> \frac{1}{2}$ ($i = n - 1$). The lemma now follows, as does the fact (to be used in the proof of Lemma 5) that $u_{i+1,i}(c_{n-i})u^{(i)^2}(c_{n-i}) = 0$ ($i = 0, \ldots, n - 1$).

Lemma 4. On $[a, b]$, $(-1)^{n+i-1}u_{i,i}(x) \leq 0$ ($i = 1, \ldots, n$).

Proof. By Lemmas 1 and 2,

\begin{align*}
(-1)^{n+i-1}u_{i,i} &= (-1)^{n+i-1}(-1)^{n-i}q_{n-i}v_{n-i}/p_{n-i}y^{(i)} \\
&= -q_{n-i}v_{n-i}/p_{n-i}y^{(i)} \leq 0
\end{align*}

Lemma 5.

\begin{equation}
(-1)^{n+i}u_{i+1,i}u^{(i)^2} \mid_a^b \leq 0 \quad (i = 0, \ldots, n - 1) .
\end{equation}

Proof. Since $c_j = d_{j-1}^{*}$,

\begin{equation}
(-1)^{n+i}u_{i+1,i}u^{(i)^2} \mid_a^b = (-1)^{n+i+k-n-i}u_{i+1,i}u^{(i)^2} \mid_{d_{n-i-1}}^{d_{k-n-i-1}} .
\end{equation}

Evaluation at c_{n-i} gives zero, and
on \([a, b]\) and so at \(d_{n-1}\).

4. The inequality. We now state

Theorem 1. Let \(f_i(x) \in L[a, b] \ (i = 0, \ldots, n)\), with \(\int_a^b f_0(x)dx \neq 0\).

Let \(f_i(x) \ (i = 0, \ldots, n)\) satisfy (7), and let \(y(x)\) be a solution of (1) which satisfies (6). Let \(u(x)\) satisfy (14). Then

\[
(2) \quad 0 \leq \sum_{i=0}^{n} (-1)^{n+i} \int_a^b f_i(x)u^{(i)}(x)dx.
\]

Further, equality obtains if and only if \(u(x) = cy(x)\) and (6) is modified to make \(q \cdot v_i(d_i) = 0 \ (i = 0, \ldots, n-1)\).

Proof. The Theorem follows immediately from the lemmas, except for the last statement, which follows from the fact that equality obtains if and only if \(u^{(i+1)}(x) = y_{i+1}(x)u^{(i)}(x) \ (i = 0, \ldots, n - 1)\) and \(v_i(d_i) = 0 \ (i = 1, \ldots, n)\).

5. The reciprocal inequality. We now derive a set of inequalities which includes (3); we prove

Theorem 2. Let the \(f_i(x) \ (i = 0, \ldots, n)\) and \(y(x)\) satisfy the hypothesis of Theorem 1; in addition, let \(f_i(x) = 0\) or \(f_i(x) \neq 0\) on \([a, b]\) \((i = 0, \ldots, n)\). Let \(u(x)\) satisfy

\[
(15) \quad u^{(n)} \in L[a, b]; \ u^{(i)}(d_i) = 0 \quad (i = 0, \ldots, n - 1).
\]

Then, for each \(k \ (1 \leq k \leq n)\) such that \(f_{n-k}(x) \neq 0\),

\[
(16) \quad 0 \geq \int_a^b \frac{1}{f_n(x)} u^2(x)dx + (-1)^k \int_a^b \frac{1}{f_{n-k}(x)} u^{(k)}dx.
\]

Proof. The proof is similar to that of Theorem 1, so we present it here in less detail. Let \(r_{ij} = y^{(n-i)}/v_j\); then, formally,

\[
(17) \quad r_{ij} = r_{i+1,j} + r_{i+1,i} v_{i+1}/v_i - r_{i+1,i} f_{n-i-1}.
\]

Thus

\[
(18) \quad \int_a^b r_{ij} u^{(i)} dx = \int_a^b u^{(i)} dx + \int_a^b r_{i+1,i} (u^{(i+1)} - \frac{v_{i+1} u^{(i)}}{v_i})^2 dx
\]

\[
- \int_a^b f_{n-i-1} r_{i+1,i} u^{(i)} dx - \int_a^b r_{i+1,i+1} u^{(i+1)} dx \quad (i = 0, \ldots, n-2),
\]
and

\begin{equation}
\left[\frac{1}{a} \frac{\partial}{\partial x} \right] f_n = \frac{1}{a} \left(f_{n+1} - f_n \right)
\end{equation}

\[+ \int_a^b r_{i+1,i} w_i^2 \, dx + \int_a^b \frac{1}{a} w_i \, dx \]

\[\alpha = \sum (- D_m r_{i+1,i+1} + r_{i+1,i+1}) \]

\[\text{(i = 0, \ldots, n - 1).} \]

Repeated application of (18) to \(\int_a^b r_n w_i \, dx \) gives

\[\int_a^b \frac{1}{a} f_n \, dx = \sum_{i=0}^{k-1} (-1)^i \left\{ r_{i+1,i} w_i^2 \right\} \]

\[+ \sum_{i=0}^{k-1} (-1)^i \left\{ r_{i+1,i+1} \left(w_i^{(i+1)} - \frac{v_{i+1} w_i^i}{v_i} \right) \right\} \]

\[- \int_a^b f_{n-i-1} r_{i+1,i} w_i \, dx \]

\[+ (-1)^{k-1} \left\{ \int_a^b r_{k,k-1} \frac{v_k}{v_{k-1}} \, dx \right\} \]

\[- \int_a^b \frac{1}{a} f_{n-k} (w_i^{(k)} - r_{k,k-1} f_{n-k} w_i^{(k-1)}) \, dx \]

\[+ \left\{ \int_a^b \frac{1}{a} w_i^{(k)} \, dx \right\} \quad (k = 1, \ldots, n). \]

We now show that, if \(f_{n-k}(x) \neq 0 \), (20) is valid. Let a \(v_i \) have a zero of order \(r \); such a zero must be at \(d_i \). Now, \(r \leq n - i \). For we have

\[v_i' = q_{j+1} q_{j+1} v_{j+1} + (-1)^{j+1} f_{n-j-1} b_{j+1} y_{j(n-j-1)} \]

since \(y_{j(n-j-1)}(d_j) \neq 0 \), if \(v_i'(d_i) = 0 \) then \(f_{n-j-1} \equiv 0 \), and \(v_i' \equiv v_{j+1} \). Thus, if \(r > n - i \), \(v_i^{(n-i-1)} = v_{n-1} \) and also \(v_i^{(n-i-1)} = v_n \equiv 0 \). The first of these implies that \(v_i^{(n-i)} = v_{i-1} = v_n - y_0 = -y_0 \neq 0 \), a contradiction. Further, we have \(d_i = \ldots = d_{i+r-1} \), so \(w_i^{(i)} \) has a zero of order greater than \(r - \frac{1}{2} \) at \(d_i \). This suffices to justify (20). We note in addition that \(r_{i+1,i} u_{i+1}^{(i+1)}(d_i) = 0 \) (i = 0, \ldots, n - 1).

Now by hypothesis \((-1)^{i+1} f_{n-i-1} \leq 0 \) (i = 0, \ldots, n - 1). Lemma 4 implies that \((-1)^{i} r_{i+1,i+1} \leq 0 \) (i = 0, \ldots, n - 2). Finally,
$$(-1)^i r_{i+1,i} u^{(n)}|^b_a = - p_{i+1} y^{(n-i-1)} u^{(i)}|^b_a;$$
evaluation at d_i^* gives a non-positive quantity; evaluation at d_i gives zero. Hence the inequality (16) follows from (20).

6. Concluding remarks. If we want (16) for only one particular value of k ($k < n$), we need correspondingly less hypotheses on $y(x)$ and its derivatives, $u(x)$ and its derivatives, and $f_i(x)$ ($i = 0, \ldots, n$), since only $k + 1$ of the functions in each of these sets are actually involved in any of the proofs.

Since $(-1)^{n-i} f_i(x) \leq 0$, from (2) we may delete any combination of terms excluding the last, and to the right-hand side of (16) we may add any terms of the form

$$(-1)^i \int_a^b \frac{1}{f_{n-j}} u^{(i)} dx$$

Thus, e.g., (2) implies

$$0 \leq (-1)^k \int_a^b f_{n-k} u^{(k)} dx + \int_a^b f_n u^{(n)} dx,$$

which perhaps corresponds more obviously to (16) than does (2).

Finally, the set of allowed values of $(k_0 \ldots k_n)$ can be split into halves such that one half, together with the inequality $Ly \geq 0$, and also the other half, together with $Ly \leq 0$, will produce the inequalities.

BIBLIOGRAPHY

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errett Albert Bishop</td>
<td>A generalization of the Stone-Weierstrass theorem</td>
<td>777</td>
</tr>
<tr>
<td>Hugh D. Brunk</td>
<td>Best fit to a random variable by a random variable measurable with respect to a σ-lattice</td>
<td>785</td>
</tr>
<tr>
<td>D. S. Carter</td>
<td>Existence of a class of steady plane gravity flows</td>
<td>803</td>
</tr>
<tr>
<td>Frank Sydney Cater</td>
<td>On the theory of spatial invariants</td>
<td>821</td>
</tr>
<tr>
<td>S. Chowla, Marguerite Elizabeth Dunton and Donald John Lewis</td>
<td>Linear recurrences of order two</td>
<td>833</td>
</tr>
<tr>
<td>Paul Civin and Bertram Yood</td>
<td>The second conjugate space of a Banach algebra as an algebra</td>
<td>847</td>
</tr>
<tr>
<td>William J. Coles</td>
<td>Wirtinger-type integral inequalities</td>
<td>871</td>
</tr>
<tr>
<td>Shaul Foguel</td>
<td>Strongly continuous Markov processes</td>
<td>879</td>
</tr>
<tr>
<td>David James Foulis</td>
<td>Conditions for the modularity of an orthomodular lattice</td>
<td>889</td>
</tr>
<tr>
<td>Jerzy Górski</td>
<td>The Sochocki-Plemelj formula for the functions of two complex variables</td>
<td>897</td>
</tr>
<tr>
<td>John Walker Gray</td>
<td>Extensions of sheaves of associative algebras by non-trivial kernels</td>
<td>909</td>
</tr>
<tr>
<td>Maurice Hanan</td>
<td>Oscillation criteria for third-order linear differential equations</td>
<td>919</td>
</tr>
<tr>
<td>Haim Hanani and Marian Reichaw-Reichbach</td>
<td>Some characterizations of a class of unavoidable compact sets in the game of Banach and Mazur</td>
<td>945</td>
</tr>
<tr>
<td>John Grover Harvey, III</td>
<td>Complete holomorphs</td>
<td>961</td>
</tr>
<tr>
<td>Joseph Hersch</td>
<td>Physical interpretation and strengthening of M. Protter’s method for vibrating nonhomogeneous membranes; its analogue for Schrödinger’s equation</td>
<td>971</td>
</tr>
<tr>
<td>James Grady Horne, Jr.</td>
<td>Real commutative semigroups on the plane</td>
<td>981</td>
</tr>
<tr>
<td>Nai-Chao Hsu</td>
<td>The group of automorphisms of the holomorph of a group</td>
<td>999</td>
</tr>
<tr>
<td>F. Burton Jones</td>
<td>The cyclic connectivity of plane continua</td>
<td>1013</td>
</tr>
<tr>
<td>John Arnold Kalman</td>
<td>Continuity and convexity of projections and barycentric coordinates in convex polyhedra</td>
<td>1017</td>
</tr>
<tr>
<td>Samuel Karlin, Frank Proschan and Richard Eugene Barlow</td>
<td>Moment inequalities of Pólya frequency functions</td>
<td>1023</td>
</tr>
<tr>
<td>Tilla Weinstein</td>
<td>Imbedding compact Riemann surfaces in 3-space</td>
<td>1035</td>
</tr>
<tr>
<td>Azriel Lévy and Robert Lawson Vaught</td>
<td>Principles of partial reflection in the set theories of Zermelo and Ackermann</td>
<td>1045</td>
</tr>
<tr>
<td>Donald John Lewis</td>
<td>Two classes of Diophantine equations</td>
<td>1063</td>
</tr>
<tr>
<td>Daniel C. Lewis</td>
<td>Reversible transformations</td>
<td>1077</td>
</tr>
<tr>
<td>Gerald Otis Losey and Hans Schneider</td>
<td>Group membership in rings and semigroups</td>
<td>1089</td>
</tr>
<tr>
<td>M. N. Mikhail and M. Nassif</td>
<td>On the difference and sum of basic sets of polynomials</td>
<td>1099</td>
</tr>
<tr>
<td>Alex I. Rosenberg and Daniel Zelinsky</td>
<td>Automorphisms of separable algebras</td>
<td>1109</td>
</tr>
<tr>
<td>Robert Steinberg</td>
<td>Automorphisms of classical Lie algebras</td>
<td>1119</td>
</tr>
<tr>
<td>Ju-Kwei Wang</td>
<td>Multipliers of commutative Banach algebras</td>
<td>1131</td>
</tr>
<tr>
<td>Neal Zierler</td>
<td>Axioms for non-relativistic quantum mechanics</td>
<td>1151</td>
</tr>
</tbody>
</table>