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STRONGLY CONTINUOUS MARKOV PROCESSES

S. R. FOGUEL

Introduction. This paper is a continuation of [3]. We deal here
with Markov processes with continuous parameter, while in [3] the dis-
crete parameter case was studied. The notion of a "Markov Process"
(here and in [3]) is different from the standard one: A stationary pro-
bability measure is assumed to exist, but the Chapman-Kolmogoroff
Equation is replaced by a weaker condition. The exact definitions are
given in § 1.

All problems are discussed from a Hubert space point of view and
convergence will mean, always, either strong of weak convergence.

l Notation and background* We shall repeat here, for comple-
teness, the notation of [3] and some of the results.

Let (£?, Σ, μ) be a given measure space where μ(Ω) = 1, and μ^O.
The measure will be called the probability measure. The space of real
square integrable functions is denoted by L2.

Let Xt(ω) be a family of measurable real functions where 0 g t < oo
and ω e Ω. This will be called the Markov process and we assume:

If A is a Borel set on the real line and tλ < t2 < ί3 then the con-
ditional probability that XH e A given Xh and Xtί) is equal to the con-
ditional probability that Xn e A given Xh.

Also we assume that the process is stationary. Namely:

μ(Xh+s e Ax n Xt2+s e Aa) = μ(Xh e A, Π Xh e A2)

for all tlft298 positive real numbers and AλA2 Borel sets.
For any set σ c Ω, χσ denotes the characteristic function of this

set. Let Bt be the closed subspace of L2 generated by the functions
Xxt£A- The self adjoint projection on Bt is denoted by Et. Finally, let
Tt be the transformation from BQ to Bt defined by

where we used additivity to extend it to whole of J50. In [3] the follow-
ing equations are proved:

1.1 Eh

EhEh = EhEh i f ti<t2<U.

1.2 a. || Ttx\\ = || a? || , for xeB0 .
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b. TtB0 = Bt .

c (Th+8x, Th+Sy) - (Γfla;, T ^ ) , for x e Bo y e Bo .

See Theorem 2.1 and Lemma 2.4.

Let Pt be the operator on Bo defined by Pt — E0Tt.

THEOREM 1.1. The operators Pt form a semi group of contractions
on Bo. The adjoint semi group is given by Pf = TτxEt.

Proof. It is clear that || Pt \\ ̂  1. Let x and y be vectors of Bo
and choose z e BQ so that Tsz = JE',?/. Thus s = TςλEsy. Then

(P,Pt&, y) = {E0TsE0Ttx, y) - (TsE0Ttx, y)

- (TsE0Ttx, Esy) - ( # 0 ? X «) - ( 2 X «) .

Where we used Equation 1.2c. On the other hand

(Ps+tx, y) = (E0T9+tx9 y) = (E0EsTs+tx, y) - (EsTs+tx, y)

= (Γ s + ί ^, #.!/) - (Γ 8 + ί^, Γs^) = (Ttx, z) .

Here we used Equations 1.1 and 1.2c. Now

(P.0, i/) = (Γβa;, y) - (Γ.a?, S.i/) - (x, z) - (α, T r 1 ^ ) .

The fact that Pt is a semi group is our version of the Chapman-
Kolmogoroff Equation.

In most of this paper it will be assumed that the semi group Pt is
strongly continuous. We shall say, in this case that the Markov process
is strongly continuous.

THEOREM 2.1. The Markov process is strongly continuous if and
only if

lim μ(X0 e A Π Xt e A) = μ(X0 e A) .
t-»0

Proof. Note that

μ(XQ e A n Xt e A) = (TtχZoeΛ, χXoeA) - {Pχz,eA,

Thus

μ(X0 6 A) - ^Uo e i n l { 6 i ) = (χ X o e. - PtXχ^ Xχoe A)

and this converges to zero if Pt converges to the identity operator
strongly. On the other hand
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Ύ ||2 ii p v M2 I II v II2 9( P Ύ v ϊ
A JίχoeA II — II J^t/,xo€A II I I i X.XOEA II ^\rt/Lx0

€ AI JixoeAj
^ 2 ( | | XχoeA II2 — (PtXxoeA> XXQEA))

= 2(μ(X0 e A) - μ(XQ e A Π Xt e A)) .

Thus the condition of the Theorem implies that Ptx converges to x
for a set of functions, x, that span BQ and because || Pt || g 1 this must
hold for every x in 5 0 .

2 Limit of transition probabilities as t —> oo. This section is an
extension of § 3 of [3]. Throughout this section we assume:

CONDITION D. There exist a finite a measure φ7 on the real line,
and an e > 0 such that if A is a Borel set and φ{A) < ε then

EoXxtβA Φ XxteA

This condition was given in ]3] and is similar to Doeblin's condition
as given in [1] page 192. Another form of the condition is: if φ(A)<ε
then

| | ψ v i|2 II v ||2 \ | | pΎ ||2
II -LtXχoeA II — II X,χQeA II > II ̂ tXx^A II

In this form it is seen immediately that t can be replaced by any larger
number. Thus one can choose t to be of the form %δ for any fixed
δ > 0. (n a positive integer). For a fixed δ > 0 Xnδ form a discreet
Markov process for which a Doeblin condition holds. Let HB be the
space of all functions in BQ such that

x e f\Bn8, TJcBx e f]BnB fc = 1, 2, • .

In [3] Theorem 3.7 it was proved that if x is orthogonal to H5 then
TkS x tends weakly to zero as k tends to infinity (k integer).

THEOREM 1.2. x e HB if and only if Ttx = x for some t > 0. Thus
H8 is the same for all δ and will be denoted by H. The space H is
generated by a finite number of disjoint characteristic functions and
is invariant under Tt for all t > 0.

Proof. It is enough to prove first statement for the rest follows
from Theorem 3.8 and Corollary 2 of Theorem 3.11 of [3].

In Corollary 2 of Theorem 3.11 of [3] it was shown that if x e HB

then TkSx = x for some x. Thus it is enough to show that if Ttx — x
for some t > 0, then x e ί ί δ . Now if Ttx = x then

( T t + a x , T a x ) - ( T t x , x) = \\x ||2 - || T a x ||2
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Thus

In particlar

Thus

X 6 f\Btk .

But by Theorem 2.2 of |3]

f)Btk = f \ B 8 n .
Now

or

Again by Theorem 2.2 of [3]. Thus it suffices to show that Tmδx e Bo

for then Tm8x e dζ=0BnB by the same Theorem. Now

sup (Tm8x,z)= sup (Tmh+ktx9z
x)

zeB0,\\z\\=l 1 B 1 1 ! 1

= ^ sup i [ i_ i(Γ. ίa;, z1) = || TmSx ||

for

Tmί,x e f\Bn, c BH if kt > mδ .

Thus

TTOδ# G J50 and xe H8 .

Notice that on H Pt = Tu and Pt is a unitary operator.

In the rest of the paper we shall assume that the process {Xt}, is
strongly continuous.

LEMMA 2.2. On the space H Tt is the identity operator for all t.

Proof. Let χ be one of the atoms generating H. Thus χ is a
characteristic function that is not the sum of two characteristic functions
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in H. Let t be so small that (Ttχ, χ) Φ 0. Now Ttχ is also a char-
acteristic function in H and || Ttχ || = || χ ||. Thus Ttχ = χ because χ is
an atom. Also for every nTntχ = Pntχ = (Pt)

nχ = χ, hence Ttχ = PtX^X
for all £.

THEOREM 3.2. Let xe BQ and let y be the projection of x on H,
then

weak limit Ptx — weak limit Ttx = y .
ί~>oo ί->oo

Proof. By the previous lemma it suffices to show that if x is
orthogonal to H then Ttx tends weakly to zero. Let z e BQ,\\ z || = 1 be
a given vector and let ε > 0. Choose δ0 so that || Tδx — x \\ g ε/2 if
δ ^ δ0. By Theorem 3.7 of [3] if w is large enough then

\(Tniox,z)\ gε/2.

Thus

Γnβo)a?, «) + (Γw δ ox, z) |

Now

|| (Tt - Γwa0)a? ||2 - 2 || x ||2 - 2(Ttx, Tn,ox)

= 2 || x ||2 - 2(Γt-.w8oίc a?) - || Γέ.nδox - x ||2

by Equation 1.2.c. If n is so chosen that

t-n80<80 then || (Tt - Twδo)x || ^ ε/2 .

3. Differentiability* In this section we do not assume Condition D.
The process {Xt} is assumed to be strongly continuous. It is known
that in this case the function Ptx is differentiate at the origin for x in
a dense subset of Bo. The derivative, Q, of Pt is an unbounded closed
operator. Let D{Q) be the domain of Q. The simplest case is when
Q is bounded. A necessary and sufficient condition for this is that the
semi group Pt is continuous in the uniform topology. (See 2 Theorem
VIII. 2)

THEOREM 1.3. The operator Q is everywhere defined if and only
if the expression

χ μ(X0 e A n Xt e A)
μ(XoeA)

tends to zero uniformly, for all Borel sets A.
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Proof. If | | I - PJI — 0 then

A Π Xt € A) _ < II J _ P

Thus the condition is necessary. Conversely let

ff = Σα*& where Σ^IIZ*II 2 = 1 and χ{ = Zχoe^, Λ Π Ay =

Then

1 - (P^, a;) = ΣXα.to;, χy) - ( P ^ , χy))

By Schwarz's inequality. Let us consider each term separately.

I = Σα? Σ
I j

F o r a fixed i w e h a v e

Σ I (zo Zi) - ( ^ Z o Zy) I = Σ ( ^ z ^ z, ) + II li II2 - (Ptχ<> z, )
y y^iy

where 1 is the identity function. Now

(Ptχi91) - {Ttχif 1) - (TtXi, Ttl) - (χ4,1) - || χ, ||* .

Thus the sum over j is equal to

and

(P,Z<. to) I ̂  2 sup ( l

For the second term we get

Σα? I (Z*. Zy) ~ (PtXi> Zy) I = Σ ^ Σ I (Zo

and
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Σ I (lu χs) - (Ptχit xt) I = II xs II2 - (Ptχi, χ , ) +

= IIZ/ II1 - ( ^ L , L-) + ΣίP.Zi, Xi) - (PtXi, xd
i

= II Xi II2 - (Pa, 7ώ + (Pth Xi) - (P,Xi, xi)

And the second term has the same bound. Thus

1 — (Ptx, x) ^ 2 s u p ί l — M '̂if2

Now

II ± f,Ό -— ,JC 11 — j JriJu II ~r 11 X 11 ~™~ ώ\± td/f JO)

By assumption this tends to zero uniformly. Hence || Ptx — x \\ tends
to zero uniformly, for x in a dense subset of J50, and hence everywhere
because || Pt \\ ^ 1.

REMARKS. It is enough to assume the condition of the Theorem
for a family of Borel sets, A, such that the functions χA generate Bo.
It follows, from the fact that Q is bounded, that

e A)

Theorem 1.3 is well known for processes with countable state space.
A brief discussion of this case is given in [1] page 265.

The function Ptx is differentiate for many x's exen if Q is unbound-
ed. In order to study this we will need:

LEMMA 2.3. Let Rt be strongly continuous semi group of operators,
defined on a reflexive space X. If x e X then Rtx is differentiate if
the expression (1/ί) || Rtx — x\\ is bounded for all t.

This is included in Theorem 10.7.2 of [4]

Let y e L2 and ΩΎ be a subset of Ω such that χ^ezv Then

where Ω2 = Ω — Ωlm Now χQl EQy is the projection of y on the subspace
generated by characteristic function, in Bo, of subsets of Ωlu Thus

\\χOl-E0y\\= sup {Σ(?Λ Xi)di I Xi = XxQeAt e 5 0 and A{ are disjoint

Borel sets, such t h a t Xo e A{ c Ω19 and Σ α ! II Xi II2 = 1}
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But

Hence
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= sup
Xi

disjoint Borel sets and Xoe A< c £?

A similar expresion holds for || χΩ2-E0y ||2.

THEOREM 3.3. Lei A δe α Borel set. The function PtXxoβΛ is dif-
ferentiate at zero if and only if the two expressions below, are
bounded:

Borel sets and A{ f] A = φ> .

2 ^-supίΣt2 I
(μ(Xt e A Π Xo e A,) - //(Xo e A,)) A, disjoint

Borel sets and At c AI .

Proof. By Lemma 2.3 and the above discussion it is enough to
show that

, disjoint and A, Π A = φ}

and

— SUP {
t2 I

( j P * χ x ° ^ " A, disjoint and A, c A \
J

are both bounded. But these expressions are equal to 1 and 2 respec-
tively.

REMARK. If A is an atom for Bo then the second expression is

1 ίχ(Xt e A n Xo e A) -
ί2\ μ(XQeA)
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A more precise information is available in the following special
case.

THEOREM 4.3. Let x e Bo. Then x e D(Q) and (Qx, x) = 0 if and
only if (1/£2)(|| x\\2 — (Ptx, x)) is bounded. In this case Q*x exists and
is equal to —Qx.

Proof. If y e Bo then

\\V - Pty\\* = \\y\\2 + \\Pty\\* - 2(Pty,y)

)) = \\y- Tty\\>

thus

a 11 Tty -y\\_ / ^ Ξ M J g -> 1' pM " y l!

Also if y and z are any two vectors in Bo then

(Pt - l)z, y) - ±-(Ttz - z, y) = ±-(Ttz, y - Tty)

= ±-{Ttz -z,y- Tty) + λ-{z,y- Pty)

where we used Equation 1.2.c for the third equality.
Let x be such that (1/£2)(|| x ||2 — (Pt%, x)) is bounded. Then from

(a) we get

|| -1 (Ptx - x) ||2 < 2

{χ-ζiX'x)

and is bounded by assumption. Thus we know from Lemma 2.3 that
x e D(Q). Moreover

(Qx, x) = - l i m t (χ~ P»x\ = o .

Conversely let xe D(Q) and (Qx} x) = 0. If y e D(Q) then it follows
from (b) that

= lim4- (Ttx -x,y~- Tty) + ^r(x,y - P4

the second term tends to —(x, Qy) while the first is bounded by
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t t )

as t —* 0 this tends to

(4(Qs, x)(Qv, y))112 - 0 .

Thus

(Qχf y) = - (χf Qy)

or

x e Z)(Q*) and Q*£ = - Qaj .

Now

ft
(a? — Ptx, x) = (QPux, x)du g t max | (QPux, x) \

JO w ^ ί

= t max I (Pttα, Qa?) | = t max | (Pux — x, Qx) \

^ const, t2

because || Pux — x || ^ const. t6.

REMARK. If x is a characteristic function then it is easy to see
that Qx = 0 if (Qx, x) == 0.

The referee called my attention to the fact that this theorem
generalizes to arbitrary semi groups of contraction operators, when Tt

is replaced by the group of unitary operators which project down to Pt

as in sz Nagy theorem (See Riesz Nagy appendix to the third edition).
Some simple changes have to be done to take care of the complex case.
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