STRONGLY CONTINUOUS MARKOV PROCESSES

SHAUL FOGUEL
Introduction. This paper is a continuation of [3]. We deal here with Markov processes with continuous parameter, while in [3] the discrete parameter case was studied. The notion of a "Markov Process" (here and in [3]) is different from the standard one: A stationary probability measure is assumed to exist, but the Chapman-Kolmogoroff Equation is replaced by a weaker condition. The exact definitions are given in § 1.

All problems are discussed from a Hilbert space point of view and convergence will mean, always, either strong or weak convergence.

1. Notation and background. We shall repeat here, for completeness, the notation of [3] and some of the results.

Let (Ω, Σ, μ) be a given measure space where $\mu(\Omega) = 1$, and $\mu \geq 0$. The measure will be called the probability measure. The space of real square integrable functions is denoted by L^2.

Let $X_t(\omega)$ be a family of measurable real functions where $0 \leq t < \infty$ and $\omega \in \Omega$. This will be called the Markov process and we assume:

If A is a Borel set on the real line and $t_1 < t_2 < t_3$, then the conditional probability that $X_{t_3} \in A$ given X_{t_1} and X_{t_2} is equal to the conditional probability that $X_{t_3} \in A$ given X_{t_2}.

Also we assume that the process is stationary. Namely:

$$\mu(X_{t_1+s} \in A_1 \cap X_{t_2+s} \in A_2) = \mu(X_{t_1} \in A_1 \cap X_{t_2} \in A_2)$$

for all t_1, t_2, s positive real numbers and A_1, A_2 Borel sets.

For any set $\sigma \subset \Omega$, χ_σ denotes the characteristic function of this set. Let B_t be the closed subspace of L^2 generated by the functions $\chi_{x,t}$. The self adjoint projection on B_t is denoted by E_t. Finally, let T_t be the transformation from B_{t+s} to B_t, defined by

$$T_t \chi_{x,t} = \chi_{x,t+s}$$

where we used additivity to extend it to whole of B_0. In [3] the following equations are proved:

1.1 $E_{t_1}E_{t_2}E_{t_3} = E_{t_1}E_{t_3}$ if $t_1 < t_2 < t_3$.

1.2 a. $\| T_t x \| = \| x \|$, for $x \in B_0$.

Received August 3, 1960. This paper was supported by a contract from the National Science Foundation.
b. \(T_t B_0 = B_t \).
c. \((T_{t_1 + s} x, T_{t_1 + s} y) = (T_{t_1} x, T_{t_1} y) \), for \(x \in B_0 \) \(y \in B_0 \).

See Theorem 2.1 and Lemma 2.4.

Let \(P_t \) be the operator on \(B_0 \) defined by \(P_t = E_0 T_t \).

Theorem 1.1. The operators \(P_t \) form a semi group of contractions on \(B_0 \). The adjoint semi group is given by \(P_t^* = T_t^{-1} E_t \).

Proof. It is clear that \(||P_t|| \leq 1 \). Let \(x \) and \(y \) be vectors of \(B_0 \) and choose \(z \in B_0 \) so that \(T_t z = E_t y \). Thus \(z = T_t^{-1} E_t y \). Then

\[
(P_t P_s x, y) = (E_0 T_s E_0 T_t x, y) = (T_s E_0 T_t x, y)
\]

\[
= (T_s E_0 T_t x, E_s y) = (E_0 T_t x, z) = (T_t x, z)
\]

Where we used Equation 1.2c. On the other hand

\[
(P_{s+t} x, y) = (E_0 T_{s+t} x, y) = (E_s E_t T_{s+t} x, y) = (E_t T_{s+t} x, y)
\]

\[
= (T_{s+t} x, E_s y) = (T_{s+t} x, T_s z) = (T_t x, z)
\]

Here we used Equations 1.1 and 1.2c. Now

\[
(P_t x, y) = (T_t x, y) = (T_t x, E_s y) = (x, z) = (x, T_t^{-1} E_t y)
\]

The fact that \(P_t \) is a semi group is our version of the Chapman-Kolmogoroff Equation.

In most of this paper it will be assumed that the semi group \(P_t \) is strongly continuous. We shall say, in this case that the Markov process is strongly continuous.

Theorem 2.1. The Markov process is strongly continuous if and only if

\[
\lim_{t \to 0} \mu(X_0 \in A \cap T_t x \in A) = \mu(X_0 \in A)
\]

Proof. Note that

\[
\mu(X_0 \in A) = || \chi_{x_0 \in A} ||^2
\]

\[
\mu(X_0 \in A \cap T_t x \in A) = (T_t \chi_{x_0 \in A}, \chi_{x_0 \in A}) = (P_t \chi_{x_0 \in A}, \chi_{x_0 \in A})
\]

Thus

\[
\mu(X_0 \in A) - \mu(X_0 \in A \cap T_t x \in A) = (\chi_{x_0 \in A} - P_t \chi_{x_0 \in A}, \chi_{x_0 \in A})
\]

and this converges to zero if \(P_t \) converges to the identity operator strongly. On the other hand
Thus the condition of the Theorem implies that $P_t x$ converges to x for a set of functions, x, that span B_0 and because $\|P_t\| \leq 1$ this must hold for every x in B_0.

2. Limit of transition probabilities as $t \to \infty$. This section is an extension of § 3 of [3]. Throughout this section we assume:

CONDITION D. There exist a finite a measure φ, on the real line, and an $\varepsilon > 0$ such that if A is a Borel set and $\varphi(A) < \varepsilon$ then

$$E_0 \chi_{x \in A} \neq \chi_{x \in A}.$$

This condition was given in [3] and is similar to Doeblin’s condition as given in [1] page 192. Another form of the condition is: if $\varphi(A) < \varepsilon$ then

$$\|T_t \chi_{x \in A}\|^2 = \|\chi_{x \in A}\|^2 > \|P_t \chi_{x \in A}\|^2.$$

In this form it is seen immediately that t can be replaced by any larger number. Thus one can choose t to be of the form $n\delta$ for any fixed $\delta > 0$. (n a positive integer). For a fixed $\delta > 0$ $X_{n\delta}$ form a discreet Markov process for which a Doeblin condition holds. Let H_δ be the space of all functions in B_0 such that

$$x \in \bigcap_{n=0}^{\infty} B_{n\delta}, \, T_{k\delta}x \in \bigcap_{n=0}^{\infty} B_{n\delta} \quad k = 1, 2, \cdots.$$

In [3] Theorem 3.7 it was proved that if x is orthogonal to H_δ then $T_k x$ tends weakly to zero as k tends to infinity (k integer).

Theorem 1.2. $x \in H_\delta$ if and only if $T_t x = x$ for some $t > 0$. Thus H_δ is the same for all δ and will be denoted by H. The space H is generated by a finite number of disjoint characteristic functions and is invariant under T_t for all $t > 0$.

Proof. It is enough to prove first statement for the rest follows from Theorem 3.8 and Corollary 2 of Theorem 3.11 of [3].

In Corollary 2 of Theorem 3.11 of [3] it was shown that if $x \in H_\delta$ then $T_{k\delta}x = x$ for some x. Thus it is enough to show that if $T_t x = x$ for some $t > 0$, then $x \in H_\delta$. Now if $T_t x = x$ then

$$(T_{t+a} x, T_a x) = (T_t x, x) = \|x\|^2 = \|T_a x\|^2.$$
Thus
\[T_{t+1}x = T_t x. \]
In particular
\[x = T_1 x = T_2 x = \cdots. \]
Thus
\[x \in \bigcap_k B_{tk}. \]
But by Theorem 2.2 of [3]
\[\bigcap_{k=0}^\infty B_{tk} = \bigcap_{n=0}^\infty B_{tn}. \]
Again by Theorem 2.2 of [3]. Thus it suffices to show that \(T_{m^\delta}x \in B_0 \)
for then \(T_{m^\delta}x \in \bigcap_{n=0}^\infty B_{n^\delta} \) by the same Theorem. Now
\[
\sup_{z \in B_\delta, ||z||=1} (T_{m^\delta}x, z) = \sup_{z^1 \in B_{k^\delta}, ||z^1||=1} (T_{m^\delta+k^\delta}x, z^1)
\]
\[
= \sup_{z^1 \in B_{k^\delta}, ||z^1||=1} (T_{m^\delta}x, z^1) = || T_{m^\delta}x ||
\]
for
\[T_{m^\delta}x \in \bigcap_{n=0}^\infty B_{n^\delta} \subset B_{kt} \quad \text{if} \quad kt > m^\delta. \]
Thus
\[T_{m^\delta}x \in B_0 \quad \text{and} \quad x \in H. \]
Notice that on \(H \) \(P_t = T_t \), and \(P_t \) is a unitary operator.

In the rest of the paper we shall assume that the process \(\{X_t\} \), is strongly continuous.

Lemma 2.2. On the space \(H \) \(T_t \) is the identity operator for all \(t \).

Proof. Let \(\chi \) be one of the atoms generating \(H \). Thus \(\chi \) is a characteristic function that is not the sum of two characteristic functions
in H. Let t be so small that $(T_t \chi, \chi) \neq 0$. Now $T_t \chi$ is also a characteristic function in H and $\| T_t \chi \| = \| \chi \|$. Thus $T_t \chi = \chi$ because χ is an atom. Also for every $n T_n \chi = P_n \chi = (P_t)^n \chi = \chi$, hence $T_t \chi = P_t \chi = \chi$ for all t.

Theorem 3.2. Let $x \in B_o$ and let y be the projection of x on H, then

$$\text{weak limit } P_t x = \text{weak limit } T_t x = y .$$

Proof. By the previous lemma it suffices to show that if x is orthogonal to H then $T_t x$ tends weakly to zero. Let $z \in B_o$, $\| z \| = 1$ be a given vector and let $\varepsilon > 0$. Choose δ_0 so that $\| T_\delta x - x \| \leq \varepsilon / 2$ if $\delta \leq \delta_0$. By Theorem 3.7 of [3] if n is large enough then

$$\| (T_{n\delta_0} x, z) \| \leq \varepsilon / 2 .$$

Thus

$$\| (T_t x, z) \| = \| ((T_t - T_{n\delta_0}) x, z) + (T_{n\delta_0} x, z) \| \leq \varepsilon / 2 + \| (T_t - T_{n\delta_0}) x \| .$$

Now

$$\| (T_t - T_{n\delta_0}) x \| ^2 = 2 \| x \| ^2 - 2 (T_t x, T_{n\delta_0} x) = 2 \| x \| ^2 - 2 (T_{t-n\delta_0} x, x) = \| T_{t-n\delta_0} x - x \| ^2$$

by Equation 1.2.c. If n is so chosen that

$$t - n\delta_0 < \delta_0 \text{ then } \| (T_t - T_{n\delta_0}) x \| \leq \varepsilon / 2 .$$

3. **Differentiability.** In this section we do not assume Condition D. The process $\{X_t\}$ is assumed to be strongly continuous. It is known that in this case the function $P_t x$ is differentiable at the origin for x in a dense subset of B_o. The derivative, Q, of P_t is an unbounded closed operator. Let $D(Q)$ be the domain of Q. The simplest case is when Q is bounded. A necessary and sufficient condition for this is that the semi group P_t is continuous in the uniform topology. (See 2 Theorem VIII, 2)

Theorem 1.3. The operator Q is everywhere defined if and only if the expression

$$1 - \frac{\mu(X_0 \in A \cap X_t \in A)}{\mu(X_0 \in A)}$$

tends to zero uniformly, for all Borel sets A.
Proof. If \(\| I - P_i \| \to 0 \) then

\[
1 - \frac{\mu(X_0 \in A \cap X_i \in A)}{\mu(X_0 \in A)} = \frac{(\chi_{x_0 \in A_i} - P_i \chi_{x_0 \in A}, \chi_{x_0 \in A_i})}{\| \chi_{x_0 \in A_i} \|^2} \leq \| I - P_i \| .
\]

Thus the condition is necessary. Conversely let

\[
x = \sum a_i \chi_i \quad \text{where} \quad \sum a_i^2 \| \chi_i \|^2 = 1 \quad \text{and} \quad \chi_i = \chi_{x_0 \in A_i}, A_i \cap A_j = \phi .
\]

Then

\[
1 - (P_i x, x) = \sum a_i a_j ((\chi_i, \chi_j) - (P_i \chi_i, \chi_j))
\]

\[
\leq \left(\sum a_i^2 \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \|^2 \right)^{1/2} \left(\sum a_j^2 \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \|^2 \right)^{1/2}.
\]

By Schwarz's inequality. Let us consider each term separately.

\[
\sum a_i^2 \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \| = \sum a_i^2 \sum_j \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \| .
\]

For a fixed \(i \) we have

\[
\sum_j \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \| = \sum_{j \neq i} (P_i \chi_i, \chi_j) + \| \chi_i \|^2 - (P_i \chi_i, \chi_i)
\]

\[
= \sum_j (P_i \chi_i, \chi_j) - (P_i \chi_i, \chi_i) + \| \chi_i \|^2 - (P_i \chi_i, \chi_i)
\]

\[
= (P_i \chi_i, 1) - (P_i \chi_i, \chi_i) + \| \chi_i \|^2 - (P_i \chi_i, \chi_i)
\]

where 1 is the identity function. Now

\[
(P_i \chi_i, 1) = (T_i \chi_i, 1) = (T_i \chi_i, T_i 1) = (\chi_i, 1) = \| \chi_i \|^2 .
\]

Thus the sum over \(j \) is equal to

\[
2 \| \chi_i \|^2 \left(1 - \frac{(P_i \chi_i, \chi_i)}{\| \chi_i \|^2} \right)
\]

and

\[
\sum a_i^2 \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \| \leq 2 \mathbf{s} \left(1 - \frac{(P_i \chi_i, \chi_i)}{\| \chi_i \|^2} \right) .
\]

\[
\sum a_i^2 \| \chi_i \|^2 = 2 \mathbf{s} \left(1 - \frac{(P_i \chi_i, \chi_i)}{\| \chi_i \|^2} \right) .
\]

For the second term we get

\[
\sum a_j^2 \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \| = \sum a_j^2 \sum_i \| (\chi_i, \chi_j) - (P_i \chi_i, \chi_j) \|
\]

and
\[
\sum_i \left(\langle \chi_i, \chi_i \rangle - (P_t \chi_i, \chi_i) \right) = \| \chi_i \|^2 - (P_t \chi_i, \chi_i) + \sum_i (P_t \chi_i, \chi_i) \\
\quad = \| \chi_i \|^2 - (P_t \chi_i, \chi_i) + \sum_i (P_t \chi_i, \chi_i) - (P_t \chi_i, \chi_i) \\
\quad = \| \chi_i \|^2 - (P_t \chi_i, \chi_i) + (P_t 1, \chi_i) - (P_t \chi_i, \chi_i) \\
\quad = 2(\| \chi_i \|^2 - (P_t \chi_i, \chi_i)).
\]

And the second term has the same bound. Thus
\[
1 - (P_t x, x) \leq 2 \sup_i \left(1 - \frac{(P_t \chi_i, \chi_i)}{\| \chi_i \|^2} \right).
\]

Now
\[
\| P_t x - x \|^2 = \| P_t x \|^2 + \| x \|^2 - 2(P_t x, x) \\
\quad \leq 2((I - P_t)x, x) \leq 4 \sup_i \left(1 - \frac{(P_t \chi_i, \chi_i)}{\| \chi_i \|^2} \right).
\]

By assumption this tends to zero uniformly. Hence \(\| P_t x - x \| \) tends to zero uniformly, for \(x \) in a dense subset of \(B_n \), and hence everywhere because \(\| P_t \| \leq 1 \).

Remarks. It is enough to assume the condition of the Theorem for a family of Borel sets, \(A \), such that the functions \(\chi_A \) generate \(B_o \). It follows, from the fact that \(Q \) is bounded, that
\[
1 - \frac{\mu(X \in A \cap X_t \in A)}{\mu(X_t \in A)} \leq (\text{const})t.
\]

Theorem 1.3 is well known for processes with countable state space. A brief discussion of this case is given in [1] page 265.

The function \(P_t x \) is differentiable for many \(x \)’s even if \(Q \) is unbounded. In order to study this we will need:

Lemma 2.3. Let \(R_t \) be strongly continuous semi group of operators, defined on a reflexive space \(X \). If \(x \in X \) then \(R_t x \) is differentiable if the expression \((1/t) \| R_t x - x \|\) is bounded for all \(t \).

This is included in Theorem 10.7.2 of [4]

Let \(y \in L_2 \) and \(\Omega_{t} \) be a subset of \(\Omega \) such that \(\chi_{\Omega_t \in \Omega_0} \). Then
\[
\| \chi_{\Omega_t \in \Omega_0} \cdot E_t y \|^2 = \| \chi_{\Omega_1} \cdot E_t y \|^2 + \| \chi_{\Omega_2} \cdot E_t y \|^2
\]
where \(\Omega_2 = \Omega - \Omega_1 \). Now \(\chi_{\Omega_1} \cdot E_t y \) is the projection of \(y \) on the subspace generated by characteristic function, in \(B_n \), of subsets of \(\Omega_i \). Thus
\[
\| \chi_{\Omega_1} \cdot E_t y \| = \sup \{ \Sigma(y, \chi_{\Omega_1}) \alpha_i \mid \chi_{\Omega_1} = \chi_{\Omega_{t} \in A_t} \in B_n \text{ and } A_i \text{ are disjoint Borel sets, such that } X_{\Omega} \in A_i \subset \Omega_i \text{, and } \Sigma \alpha_i \| \chi_{\Omega} \|^2 = 1 \}.
\]
But

\[| \sum (y, \chi_i)a_i | \leq \sum \frac{|(y, \chi_i)|}{||\chi_i||}|a_i||\chi_i| \leq \left(\sum \frac{(y, \chi_i)^2}{||\chi_i||^2} \right)^{1/2}. \]

Hence

\[||\chi_{a_1} \cdot E_0 y||^2 = \sup \left\{ \sum \frac{(y, \chi_i)^2}{||\chi_i||^2} : \chi_i = \chi_{x_0 \in A_i} \in B_0, \right\} \]

where \(A_i \) disjoint Borel sets and \(x_0 \in A_i \subset \Omega_1 \).

A similar expression holds for \(||\chi_{a_2} \cdot E_0 y||^2 \).

Theorem 3.3. Let \(A \) be a Borel set. The function \(P_t \chi_{x_0 \in A} \) is differentiable at zero if and only if the two expressions below, are bounded:

1. \(\frac{1}{t^2} \sup \left\{ \sum \frac{\mu(X_i \in A \cap X_0 \in A_i)^2}{\mu(X_0 \in A_i)} : A_i \text{ disjoint} \right\} \)

Borel sets and \(A_i \cap A = \emptyset \).

2. \(\frac{1}{t^2} \sup \left\{ \sum \frac{(\mu(X_i \in A \cap X_0 \in A_i)^2 - \mu(x_0 \in A_i)^2)}{\mu(x_0 \in A_i)} : A_i \text{ disjoint} \right\} \)

Borel sets and \(A_i \subset A \).

Proof. By Lemma 2.3 and the above discussion it is enough to show that

\[\frac{1}{t^2} \sup \left\{ \sum \frac{(P_t \chi_{x_0 \in A} - \chi_{x_0 \in A})^2}{||\chi_{x_0 \in A_i}||^2} : A_i \text{ disjoint and } A_i \cap A = \emptyset \right\} \]

and

\[\frac{1}{t^2} \sup \left\{ \sum \frac{(P_t \chi_{x_0 \in A} - \chi_{x_0 \in A}, \chi_{x_0 \in A_i})^2}{||\chi_{x_0 \in A_i}||^2} : A_i \text{ disjoint and } A_i \subset A \right\} \]

are both bounded. But these expressions are equal to 1 and 2 respectively.

Remark. If \(A \) is an atom for \(B_0 \) then the second expression is

\[\frac{1}{t^2} \left(\chi(X_i \in A \cap X_0 \in A) - \frac{\mu(X_0 \in A)}{\mu(X_0 \in A)} \right)^2 \frac{\mu(X_0 \in A)}{\mu(X_0 \in A)} \]

\[= \left(\frac{1}{t^2} \left(1 - \frac{\mu(X_i \in A \cap X_0 \in A)}{\mu(X_0 \in A)} \right) \right)^2 \frac{\mu(X_0 \in A)}{\mu(X_0 \in A)}. \]
A more precise information is available in the following special case.

Theorem 4.3. Let \(x \in B_0 \). Then \(x \in D(Q) \) and \((Qx, x) = 0 \) if and only if \((1/t^2)(||x||^2 - (P_t x, x))\) is bounded. In this case \(Q^* x \) exists and is equal to \(-Qx \).

Proof. If \(y \in B_0 \) then

\[
|| y - P_t y ||^2 = || y ||^2 + || P_t y ||^2 - 2(P_t y, y) \\
\leq 2(|| y ||^2 - (T_t y, y)) = || y - T_t y ||^2
\]

thus

\[
\frac{|| T_t y - y ||}{\sqrt{t}} = \sqrt{2}\frac{(y - P_t y, y)}{t} \geq \frac{|| P_t y - y ||}{\sqrt{t}}.
\]

Also if \(y \) and \(z \) are any two vectors in \(B_0 \) then

b. \[
\left(\frac{1}{t} (P_t - 1)z, y \right) = \frac{1}{t} (T_t z - z, y) = \frac{1}{t} (T_t z, y - T_t y) \\
= \frac{1}{t} (T_t z - z, y - T_t y) + \frac{1}{t} (z, y - P_t y)
\]

where we used Equation 1.2.c for the third equality.

Let \(x \) be such that \((1/t^2)(||x||^2 - (P_t x, x))\) is bounded. Then from (a) we get

\[
|| \frac{1}{t^2} (P_t x - x) ||^2 \leq 2\frac{(x - P_t x, x)}{t^2}
\]

and is bounded by assumption. Thus we know from Lemma 2.3 that \(x \in D(Q) \). Moreover

\[
(Qx, x) = -\lim_{t \to 0} t \frac{(x - P_t x)}{t^2} = 0.
\]

Conversely let \(x \in D(Q) \) and \((Qx, x) = 0 \). If \(y \in D(Q) \) then it follows from (b) that

\[
(Qx, y) = \lim_{t \to 0} \frac{1}{t} ((P_t - 1)x, y) \\
= \lim_{t \to 0} \frac{1}{t} (T_t x - x, y - T_t y) + \frac{1}{t} (x, y - P_t y)
\]

the second term tends to \(- (x, Qy)\) while the first is bounded by
\[
\left| \frac{1}{t} (T_t x - x, y - T_t y) \right| \leq \frac{\| T_t x - x \| \| y - T_t y \|}{\sqrt{t}} = \left(\frac{2(x - P_t x, x)}{t} \cdot \frac{2(y - P_t y, y)}{t} \right)^{1/2}
\]

as \(t \to 0 \) this tends to

\[(4(Qx, x)(Qy, y))^{1/2} = 0 .
\]
Thus

\[(Qx, y) = - (x, Qy)
\]
or

\[x \in D(Q^*) \text{ and } Q^* x = - Qx .
\]

Now

\[
(x - P_t x, x) = \int_0^t (Q P_u x, x) du \leq t \max_{u \leq t} |(Q P_u x, x)|
\]

\[= t \max_{u \leq t} |(P_u x, Qx)| = t \max_{u \leq t} |(P_u x - x, Qx)|
\]

\[\leq \text{const. } t^2
\]

because \(||P_u x - x|| \leq \text{const. } u .\)

Remark. If \(x \) is a characteristic function then it is easy to see that \(Qx = 0 \) if \((Qx, x) = 0 .\)

The referee called my attention to the fact that this theorem generalizes to arbitrary semi groups of contraction operators, when \(T_t \) is replaced by the group of unitary operators which project down to \(P_t \) as in s. Nagy theorem (See Riesz Nagy appendix to the third edition). Some simple changes have to be done to take care of the complex case.

Bibliography

University of California Berkeley
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errett Albert Bishop, A generalization of the Stone-Weierstrass theorem</td>
<td>777</td>
</tr>
<tr>
<td>Hugh D. Brunk, Best fit to a random variable by a random variable measurable with respect to a σ-lattice</td>
<td>785</td>
</tr>
<tr>
<td>D. S. Carter, Existence of a class of steady plane gravity flows</td>
<td>803</td>
</tr>
<tr>
<td>Frank Sydney Cater, On the theory of spatial invariants</td>
<td>821</td>
</tr>
<tr>
<td>S. Chowla, Marguerite Elizabeth Dunton and Donald John Lewis, Linear recurrences of order two</td>
<td>833</td>
</tr>
<tr>
<td>Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra</td>
<td>847</td>
</tr>
<tr>
<td>William J. Coles, Wirtinger-type integral inequalities</td>
<td>871</td>
</tr>
<tr>
<td>Shaul Foguel, Strongly continuous Markov processes</td>
<td>879</td>
</tr>
<tr>
<td>David James Foulis, Conditions for the modularity of an orthomodular lattice</td>
<td>889</td>
</tr>
<tr>
<td>Jerzy Górski, The Sochacki-Plemelj formula for the functions of two complex variables</td>
<td>897</td>
</tr>
<tr>
<td>John Walker Gray, Extensions of sheaves of associative algebras by non-trivial kernels</td>
<td>909</td>
</tr>
<tr>
<td>Maurice Hanan, Oscillation criteria for third-order linear differential equations</td>
<td>919</td>
</tr>
<tr>
<td>Haim Hanani and Marian Reichaw-Reichbach, Some characterizations of a class of unavoidable compact sets in the game of Banach and Mazur</td>
<td>945</td>
</tr>
<tr>
<td>John Grover Harvey, III, Complete holomorphs</td>
<td>961</td>
</tr>
<tr>
<td>Joseph Hersch, Physical interpretation and strengthening of M. Protter’s method for vibrating nonhomogeneous membranes; its analogue for Schrödinger’s equation</td>
<td>971</td>
</tr>
<tr>
<td>James Grady Horne, Jr., Real commutative semigroups on the plane</td>
<td>981</td>
</tr>
<tr>
<td>Nai-Chao Hsu, The group of automorphisms of the holomorph of a group</td>
<td>999</td>
</tr>
<tr>
<td>F. Burton Jones, The cyclic connectivity of plane continua</td>
<td>1013</td>
</tr>
<tr>
<td>John Arnold Kalman, Continuity and convexity of projections and barycentric coordinates in convex polyhedra</td>
<td>1017</td>
</tr>
<tr>
<td>Samuel Karlin, Frank Proschan and Richard Eugene Barlow, Moment inequalities of Pólya frequency functions</td>
<td>1023</td>
</tr>
<tr>
<td>Tilla Weinstein, Imbedding compact Riemann surfaces in 3-space</td>
<td>1035</td>
</tr>
<tr>
<td>Azriel Lévy and Robert Lawson Vaught, Principles of partial reflection in the set theories of Zermelo and Ackermann</td>
<td>1045</td>
</tr>
<tr>
<td>Donald John Lewis, Two classes of Diophantine equations</td>
<td>1063</td>
</tr>
<tr>
<td>Daniel C. Lewis, Reversible transformations</td>
<td>1077</td>
</tr>
<tr>
<td>Gerald Otis Losey and Hans Schneider, Group membership in rings and semigroups</td>
<td>1089</td>
</tr>
<tr>
<td>M. N. Mikhail and M. Nassif, On the difference and sum of basic sets of polynomials</td>
<td>1099</td>
</tr>
<tr>
<td>Alex I. Rosenberg and Daniel Zelinsky, Automorphisms of separable algebras</td>
<td>1109</td>
</tr>
<tr>
<td>Robert Steinberg, Automorphisms of classical Lie algebras</td>
<td>1119</td>
</tr>
<tr>
<td>Ju-Kwei Wang, Multipliers of commutative Banach algebras</td>
<td>1131</td>
</tr>
<tr>
<td>Neal Zierler, Axioms for non-relativistic quantum mechanics</td>
<td>1151</td>
</tr>
</tbody>
</table>