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EXTENSIONS OF SHEAVES OF ASSOCIATIVE
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JOHN W. GRAY

Introduction* Let X be a topological space, A a sheaf of associa-
tive algebras over X and A a sheaf of two-sided //-modules considered
as a sheaf of algebras with trivial multiplication. It was shown in [1]
that the group F(A, A) of equivalence classes of algebra extensions of
A with A as kernel occurs naturally in an exact sequence

> H\X, A) — F(A, A) -> Ext2(Λ, A) - H\X, A) ->

where ZP(X, A) denotes the Cech cohomology of X with coefficients in
A. In this paper the same question will be discussed for the case in
which A has a non-trivial multiplication. It will be shown that under
appropriate hypothese F(A, A) occurs in a similar exact sequence, except
that in the other terms of the sequence, A must be replaced by the
"bicenter" KA of A. A precise statement of the main result of this
paper is given in Theorem 2. The methods used here are an adaptation
of those used by S. MacLane in [2].

l The extension problem. Let R be a sheaf of rings on a to-
pological space X. If C and D are sheaves of R-modules, then HomR

(C, D) will denote the sheaf of germs of iϋ-homomorphisms of C into
D and Extl (C, D) will denote the wth derived functor of HomB (C, D).
If A is a sheaf of associative R-algebras, then, as usual, A* will denote
the opposite of R-algebras and Ae — A®RA* will denote the enveloping
sheaf of A. A is a sheaf of Ae-modules, the operation of Ae on A being
given by the formula (λ®ju*)(γ) = Xyμ.

Now, let M'A = HomA*(A, A)@HomA{A, A)

where © denotes the direct sum. Then MAy being the direct sum of
sheaves of rings, is itself a sheaf of rings and A can be considered as
a sheaf of left and right Ml-modules as follows : Let a — {σ17 σ2) e MA.
Then the left action is given by σ(a) = σx(a) and the right action by
(a)σ — <τ2(α). Let

MA = {σ e MA | a (σb) = (aσ) b for all α, b e A} .
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Then MA is a subsheaf of subrings of M'A. MA will be called the sheaf
of germs of bimultiplications of A. Note that we cannot assert that A
is a sheaf of Mj-modules since we do not know that (σa)τ = σ(aτ). If
a and τ satisfy this relation then they are called permutable bimultiplic-
ations. The natural ring homomorphisms A —> ΉomA*{A, A) and A —>
HomA(A, A) given respectively by left and right multiplication induce a
ring homomorphism μ: A-+ MA whose image is a sheaf of two-sided
ideals. The kernel KA of μ will be called the bicenter of A and the
cokernel PA of μ will be called the sheaf of germs of outer bimultip-
lications of A. PA is a sheaf of rings and KA is a sheaf of left and
right P^-modules. As above, KA is not a sheaf of Pj-modules. Elements
σ and τ of PA such that (σa)τ — σ(aτ) for all a e KA will be called
permutable. Note that σ and τ are permutable if and only if represen-
tative elements σ and τ in ikf̂  are also permutable.

An extension of a sheaf Λ of R -algebras by a sheaf A of i?-algebras
is an exact sequence.

(1) 0 — A - ^ ~ > Γ - ^ Λ - > 0

of sheaves of i?-algebras and R-algebra homomorphisms. As in [i |, we
shall say that such a sequence is locally trivial if there exists a covering
<?/ = {Ua} of X such that the restriction of the sequence to each UΛ

splits as an exact sequence of sheaves of R-modules. Hence if (1) is
locally trivial then there exist R -module homomorphisms ja:A\ Ua >
Γ\ Ua with p j a = identity. Furthermore, since A is a sheaf of two-sided
ideals in Γ, the map μ: A > MA extends to a map μΓ: Γ > MA.
Thus, we may define the composition

ΘΛ = (coker μ)oμΓoja :j\Ua — PA\ UΛ .

Since (jβ - jΛ) :Λ\U«β > A \ U«β, we see t h a t θβ = ΘΛ on UΛβ = UΛ Π Uβ.

Hence {θa} determines an element θ e Hom^ (A, PA). We shall say that
this θ is induced by the extension (1). Clearly θ is an algebra homo-
morphism whose image consists of permutable elements. Note that this
implies that KA is a sheaf of Λe-modules via the operation of PA on KA.

If θ e Hom^ {A, PA) is an algebra homomorphism whose image con-
sists of permutable elements, then, with respect to the usual equivalence
relation, we wish to classify the extensions which induce θ in the
manner described above.

2. The complexes. From [1], we recall that a sheaf B of R-
modules is said to be weakly R -protective if each stalk Bx is an Rx-
projective module and it is said to be R -coherent if there exists a
covering <%/ = {Uω} such that for each Ua there are integers p and q
and JS-homomorphisms so that the sequence
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R*\UΛ >Rq\ UΛ >B\Ua >0

is exact. Also, as in [1], C*(X, B) will denote the direct limit over
coverings <%/ indexed by Xof the Cech cohomology complexes C*(^/, B).
If SQ(A) = R and Sn(Λ), n > 0 denotes the n-ίold tensor product of A
with itself, then we define

Lίj(B) = C\X, HomR (S,(A), B)) .

PROPOSITION 1. If X is paracompact Hausdorff and if A is weakly
R-protective and R-coherent, then, for each n ^ 0,

0 > L*n(KA) > L*n(A) — L* n(MΛ) -^U L*n{PA) > 0

is an exact sequence of complexes, the mappings being those induced
by the exact sequence of sheaves

0 >KA >A^MA-^PA >0

Proof. In [1] it was shown that if A is weakly ϋ?-projective and
R-coherent then so is Sn(A) and hence the sheaves ExtR (Sn(A), B) — 0
for ί > 0, n ^ 0 and for all B. Hence, for each n ^ 0, there is an
exact sequence of sheaves

0 > HomR (Sn(A), KA) > HomR {Sn{A), A) > HomR (Sn(A), MA)

>HomR(Sn(A),PA) > 0 .

If X is paracompact Hausdorff then C*(X, —) is an exact functor and
hence we get the indicated sequence of complexes.

We would like to consider each of the complexes LίJ(—) in the
preceding proposition as a bicomplex in some manner which reflects a
given structure of KA as a sheaf of Je-modules and which coincides
with the usual structure of HomR{Sn{A), —) as a complex. This is too
much to ask, but such a structure on LiJ(A) can be approximated as
follows: Let θ e Horn {A, PA) be an algebra homomorphism whose image
consists of permutable elements. If θ is regarded as an element of
L01(PA), then by exactness there is an element σ e LOil(MA) such that
π*(σ) = θ. Let σ be represented by cocycle {aa} on some sufficiently
fine covering <?/. Given this date, we can define a "coboundary"
operator δσ on Lm n(A) by the following formula. Let k e Lm n(A) be
represented by a cochain {kaoι...tCύJ on ψ/. Then

(λ 1 λ n + 1 ) = σoύQ(X1)kaQ^^ιΰύjX2 λ n + 1 )

Σ (-l)%0 .n(\ λΛ ί + i λ n + 1)
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We shall see that the restriction of δσ to L*j(KA) is in fact a good
coboundary operator.

In order to investigate the properties of δσ and the relations be-
tween δσ and the Cech coboundary operator δ, we must introduce some
more notation.

(2.1) To avoid constantly writing variables we make the following
convention: If r is a function of p variables and s is a function of q
variables, both with values in an algebra, then r s is the function of
p + q variables defined by

r s(λ l f.. Xp+q) = r(\t...Xp) 8(Xp+1 Xp+q) .

(2.2) m will denote ambiguously the multiplication in all of the algebras
which appear here.

(2.3) Since θ is an algebra homomorphism,
π*(σ»*σ* ~ ^ ° ^ ) = 0 Hence there exists an / e L02(A) which is repre-
sented by a cochain {fa} on <%/ such that

(2.4) Since π*(8σ) = 8 π*(σ) = 0, there exists an h e L1Λ(A) which is
represented by a cochain {h^} on <%/ such that

μ*haβ = (Sσ)aβ .

(2.5) If σ' e L0Λ(MA) also satisfies π*(σ') = θ, then π%{a' - σ) = 0 and
hence there exists a σ e L0Λ(A) which is represented by a cochain {σa}
on <%s such that

μ* σa = σ'Λ — σa .

Using these notations the following result in easily checked:

PROPOSITION 2. If k e Lmn(A) is represented by {fcΛo....,ΛJ on ^ ,
then

(2.6) 8σ8σkao Λfn = f a o ' K o , . . . , a m — kaQt..mtOim fΛQ

(2.7) $

(2.8) K'K -. = KK.....m + σΛokΛo_Um + ( - l ) " + % 0 ΛmσΛo .

COROLLARY. LiJ(KΛ) is a bicomplex with respect to the pair of
differential operators 8, δσ. The total differential operator is given by
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δ = (-l)W +δσ .

This differential operator depends only on θ.
Finally, we shall need to know something about the behavior of δ

on products of low dimensional cochains, where Cech cochains are
multiplied by multiplying the values (suitably restricted when necessary)
on corresponding elements of the nerve of a covering according to the
convention of 2.1. It is easy to verify the following statements by ex-
plicit calculation.

PROPOSITION 3. If r e LP P(A) and s e L° q(A) are represented on w
by {ra} and {s*} respectively, then δ(r s) e LliP+β(A) and

(2.9) δ(r s)Λβ = (δr)Λβ sΛ + rα (δs)Λβ + (δr)Λβ (δs)Λβ .

If t e Llp{A) and u e Llq(A) are represented on ^/ by {£αβ} and {uaβ}
respectively then 8(t u) e L2'p+q(A) and

(2.10) (δ(ί tt))Λβγ = $t)Λβy uΛy + tay-$u)aβy + φt)»βy-(δu)aβy - taβ utaβ uβy

Finally, if r e Lm p(A) and s e Lm q{A) then Sσ satisfies the good co-
boundary formula.

(2.11) δσ(r-s) - (δσr)-s + ( - l ^ r δ ^ .

3 The obstruction* We shall regard the complex Lij(KA) as
being filtered by the second degree and we define FP(L) = Y,j^pL

iJ(KA).
In analogy with the proceedings of [1], the classical results for exten-
sions of algebras suggest that each algebra homomorphism θ e Hom(Λ,
PA) whose range consists of permutable elements determines an ' "obst-
ruction" in H\Fι(L)); this obstruction being zero if and only if there
exists an extension which induces θ in the manner described in § 1. A
representative cocycle for such a cohomology class would be an element
of U\KA)®D'\KA)®U'\KA).

Let σ e L?Λ(A) satisfy π*σ = θ and let

/ e L°\A) and h e U\A) be defined as in 2.3 and 2.4. Then the
components of a representative cocycle of the 'Obstruction" to θ are
defined as follows:

( i) Since μ*φh) = 'bμjb = 0, there exists an element aeL21(KA)
which is represented by a cochain {aaβy\ on <%? such that

(ii) A standard elementary calculation shows that μ*(δσ/) = 0.
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Hence there exists an element c e L° %KA) which is represented by a
cochain {ca} on <%/ such that ca — 8σfoύ.

(iii) An equally elementary calculation shows that μ*\§f — 8σh —
h h] = 0. Hence there exists an element 6 e L12(KA) which is repre-
sented by a cochain {baβ} on ^/ such that

THEOREM 1. Lets = α 0 δ 0 c . Then s is a cocycle of F^L) whose
cohomology class depends only on θ.

DEFINITION. The cohomology class of s will be denoted by 06(0)
and will be called the obstruction to θ.

THEOREM 2. Let X be paracompact Hausdorff and let A be weakly
R-projective and R-coherent. Then Ob{θ) = 0 if and only if there is
an extension of A by A which induces θ. If OB{Θ) — 0, then the set
FΘ(Δ, A) of equivalence classes of extensions which induce θ is in one-
to-one correspondence with the set of elements of the group H\FιK),
and hence the following two sequences are exact.

(1) 0 > H\ΈίomR (S*(A), KA)] > Ext] . (A, KA) > IP(X, KA)
> F$(Λ, A) > Ext j . (A, KA) > H\X, KA) >

( 2 ) 0 >H*[ΈίomR(SΛΛ),KA)] > FB(A, A) >

Proof of Theorem 1. It is clear that 8a = 88h = 0, and, by 2.6,
that 8σc = 8σ8σf — 0. Thus, to prove that s is a cocycle we must show
that δδ = 8σa and that δc = — δσ6. To derive the first expression, we
have by definition that

(8b)Λβy = ~(88fUy + (88σh)«βy + 8(h-h)Λβy

The first term is zero and the second and third terms can be expanded
by 2.7 and 2.10 respectively. After obvious cancellations, this yields

(δ&)Λβy = 8σ(8h)aβy + {8h)a^hay + K^{8h)ΛβΊ + (8h)aβy-(8h)aβy

Since 8h = a e L21(KA), on a sufficiently fine covering multiplication by
{8h)aβy is zero and hence δδ = δσα. Similarly, since c — 8σf, 8c can be
expanded by the equation, 2.7, for commuting δ and δσ. The resulting
expression can be simplified by using equations 2.6 and 2.11 and the
definition of δ in (ii). This yields easily that

(8c)Λβ - 8σ[(δf)Λβ - 8JιΛβ - hΛβ-hΛβ] - -8Jbaβ .

Thus s is a cocycle.
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The definition of s depends on the choices of b, hy and / . We shall
show that changing any of these changes s by a coboundary and that
any cocycle cohomologous to s can be obtained by such a choice.

Suppose that h! satisfies μjιf = Sσ a n d / ' satisfies μ*ff — σ σ — σom.
Then h' -h = he Lι\KA) and / ' - / = / e L02(KA). If s' denotes the
cocycle corresponding to σ, h' and / ' , then it is easy to see that

8' - s = (δ + Sσ)h + ( - δ + δ σ )/ = S(h + f) .

Conversely, if ftφ/ is any 2-cochain of F^L), then h + h and f + f
are admissable liftings of δσ and σ-σ — (7om respectively and this change
alters s by δ(Λφ/). Hence, in this manner we obtain all cocycles
cohomologous to s.

It remains to show that if π*σ' = 0, then Λ/ and / ' can be chosen
so that the corresponding cocycle sr = ar + bf + c' = s. Since π*(σr

— a) — 0, there is a <τ 6 L0Λ(A) such that /̂ ^σ = σ' — σ. Let hr = h +
Sσ and f' = f + Bσσ + σ-σ. Then it is immediate that K and / ' are
liftings of Sσf and σ' σ' — σ' m respectively and that α' = 8h' — a. The
difference δ σ ,/ ' — δ σ / can be expressed by 2.8. Using 2.6 and 2.11, it
is easily seen that this difference is zero and hence & — c. The only
difficult point is to show that bf — b. By definition

V = -δf + §σ,h
f + h'-h'

Using the definitions of / ' and hf and rearranging terms, we arrive at
the equality

bj - baβ = [SJσaβ - ίSσσaβ] + [σa haβ + haβ-σa + %σσβ-haβ + haβ-%σaβ]

+ [σΛ-δσaβ + δ<7αβ.JΛ + ίσaβ-8σaβ - 8(σ-σ)aβ] .

The third bracket is zero by the formula 2.9 for the Cech coboundary
of a product and the first bracket equals —haβ σβ — σβ haβ by the rule
2.7 for interchanging δσ and δ. Hence the sum of the first two brac-
kets is zero and therefore br = b.

Proof of Theorem 2. Suppose 0 > A —*—> Γ ~^—> A > 0 is an
extension. By Proposition 3.1 of [l], the hypotheses imply that any
such extension is locally trivial considered as an extension of sheaves of
R-modules. Hence there exists a covering ^ — {UΛ} which carries R-
module homomorphisms j Λ A\ U« > Γ\ Ua with p j a = identity. If
σΛ:Λ\UΛ-*MΛ\UΛ is defined by [σa(X)](a) = jΛ(X)-a and (α)K(λ)] =
α itf(λ ) then {σa} determines an element σ e L0>1(MA) which is a lifting
of the homomorphism θ induced as in § 1 by the given extension. If
we define haβ =jβ — j Λ and fa = 3*3* — iαom, then the corresponding el-
ements h e U \A) and fe LOt\A) satisfy μji = 8σ and μ+f = σ σ —
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Elementary calculations show that for this choice of h and /
we get that s = α © 5 φ c = 0 and hence Ob(θ) = 0.

Conversely, if Ob(θ) = 0, then on some sufficiently fine covering ^ ,
we may choose {/J e^C°(<?/, HomR (S2(Λ), A)) and {haβ} e σ(U, HomR{Λ, A))
so that Kf« = 0, (8h)aβy = 0 and (δf)Λβ = 8σhaβ + hΛβ-haβ. As in [1],
we define Γ to be the sheaf which is the quotient of \Ja(A®A)\ Ua by
the relation

(a + haβ(X), X)a ~ (α, λ)β for (α, λ) e A © Λ | C/tfβ .

Multiplication in Γ is given by the formula

(α, λ)β-(α', V), - (ααr + *Λ(λ)α' + α<τα(λ) + /β(λ, V), λλ')β .

It is easy to show that this multiplication is associative since 8σf = 0
and that it agrees with the equivalence relation since 8f = δσh + h h.

It follows then, exactly as in MacLane [2] that the set of equivalence
classes of extensions which realize a given θ with Ob(θ) = 0 is in one-to-
one correspondence with the set of elements of the group H\Fι(L)).
The exact sequences are derived exactly as in [1] from the exact
sequences of complexes

0 > FLL > F°L > EV > 0

and 0 > F2L > FιL > EV > 0 .

4 Examples. ( 1 ) If KA = 0 then all obstructions are zero and
all terms involving KA in the exact sequence containing FΘ(A, A) are
zero. Hence there is a unique extension of A by A which induces a
given θ e HomΛ(Λ, PΛ). As in MacLane [2], this extension can be de-
scribed as the "graph" of θ; i.e., the pull-back of the pair of maps θ:
A >PA, π: MA > PA.

( 2 ) If KA = A, then the map μ: A • MA is the zero map and
hence MA = PA, Consequently, if θ e Hom^ (A, PA) is given, then σ may
be chosen equal to θ and so δσ and σ*σ — σom are both zero. Therefore,
any cocycle / © ϋ e L f l i 2 (A)φL u (A) is a lifting of these two terms. It
follows that Ob{θ) = 0 and that FΘ(Λ, A) = H'iF'L). Thus the results
of [1] are a special case of the results of this paper.

( 3 ) We wish to discuss more thoroughly a remark in §3.3 of [1].
Let X be paracompact Hausdorff and let A be a weakly iϋ-projective
and R-coherent sheaf of R-algebras. Suppose that A is a sheaf of R-
algebras and that

0 >A >Γ > A >0

is an exact sequence of R-modules. Let <%s = {Ua} be a sufficiently fine
covering of X and let {ja} e C°(^, HomR (Λ,Γ)) determine the locally
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trivial structure of Γ and let haβ = (8j)aβ. An algebra homomorphism
θ e Homfi {A, PΛ) whose image consists of permutable elements will be
called compatible with the locally trivial structure of Γ if there exists
a lifting σ e L01(MA) of θ which is represented by a cochain {σa} on ^/
such that μjv = %σ. Furthermore, an element / e L° 2(A) will be called
a multiplication compatible with θ and h if μ#f = o*σ — σom, 8f ~
8σh + h h and 8σf = 0. The set of equivalence classes with respect to
the usual equivalence relation of such multiplications will be denoted by
Fθth(Δ, A). We wish to calculate Fθth{A, A).

Proceeding as in §2, let / e L° 2(A) be a cochain such that μ*f ~
σ σ — σom. Corresponding to f®h there is an obstruction cocycle
s(h) = c 0 b φ 0. The only relevant changes of s(h) are given by varying
/ by an element / e L02(KA). Such a change alters s by a coboundary
in F2L. Hence we obtain the result:

THEOREM. Corresponding to θ and h, there is an obstruction
cohomology class Ob(θ, h) e H3(F2L) which is zero if and only if there
exists a multiplication compatible with θ and h. If Ob(θ, h) — 0 then
Fθ>h(Λ, A) is in one-to-one correspondence with the elements of the
group H2[HomR(SΛΛ),KA)].
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