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REVERSIBLE TRANSFORMATIONS

DANIEL C. LEWIS, JR.

l Introduction and summary of results* The concept of a re-
versible transformation has played a fairly important part in the
writings of G. D. Birkhoff on Dynamics. It is shown here in Theorems 1
and 2 that this concept is categorical if, and only if, it is formulated
relative to a specified group. For, according to Theorem 1, lack of this
specification leads to the conclusion that every transformation is reversi-
ble, while Theorem 2 provides an example to show that some, but not
all transformations, are reversible when the group is suitably restricted.
The same is true regarding the representation of a transformation as
the product of two involutory transformations.

Theorem 3 states that any linear transformation of a finite di-
mensional vector space onto itself which is reversible in the group of
linear transformations can be expressed as the product of two linear
involutory transformations. It is not known if an analogous theorem
holds for non-linear transformations and suitably restricted groups. A
converse proposition is to the effect that any transformation expressible
as the product of two involutory transformations is reversible in any
group containing the two involutory factors. This proposition is well
known and indeed is quite trivial.

The rest of the paper mainly concerns the utility of the property
of reversibility in detecting points which are invariant under iterates
of a reversible transformation. G. D. Birkhoff had used these methods
when the transformation was factorable into two involutory transfor-
mations. It is shown here that this assumption of factorability is
superfluous as long as the transformation is known to be reversible in
a suitable group.

2* Definition and significance of reversibility • A one-to-one
transformation T of a set S onto itself is said to be reversible in a
group G of one-to-one transformations of S onto itself, if TeG and if
there is a tranformations UeG such that Γ"1 = UTLf-1. In the
important special case, where U is involutory, i.e., U'1 = U, this re-
lationship may be written (UT)(UT) = /, where / is the identity.
Hence, if we set V= UT, we see that V is also involutory. Moreover
we have T= U~1V= UV, so that T is the product of two involutory
transformations. Conversely, if T is the product of two involutory
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transformations, T= UV, with U2 = V2 = J, we can write Γ"1 = VU
= (U2)VU = U{UV)U= UiUVW-1^ UTU~\ so that T is reversible
in the group generated by U and V.

These facts were noticed by G. D. Birkhoff [3] in whose writings
there are repeated references to reversible transformations, especially
the case in which U — U'1. These begin with his celebrated paper of
1914 on the restricted problem of three bodies and end in a posthumous
paper of 1945 written jointly with Jaime Lifshitz. The group G with
which he was concerned was usually a group of analytic transformations.
It should be emphasized that the group G under which a transformation
is stated to be reversible should always be specified. For according to
the following theorem every transformation is reversible in the group
of all one-to-one transformations.

THEOREM 1. Every one-to-one transformation T of a set S onto
itself can be represented in the form T = UV, where U and V are
involutory transformations of S onto itself. Hence, every one-to-one
transformation of S onto itself is reversible in the group of one-to-one
transformations of S onto itself.

Comment. This theorem is not of a topological nature. S does not
even have to be a topological space. If S is a topological space and if
T is continuous, the U and V, whose existence is asserted by the
theorem, do not have to be continuous.

Proof of Theorem. An ' 'orbit" of a point P of S is defined as
the set, , T~2P, TιP, P, TιP, T2Pf . P is called the "initial point"
of the orbit. Evidently orbits of two points P and Q coincide with
each other if and only if Q — T*P for some integer k (positive, negative,
or zero); and, if this condition is not fulfilled, the two orbits are disjoint.
S may thus be conceived as the union of a (possibly uncountably in-
finite) set W of disjoint orbits.

By the axiom of choice, we define a point-set M by attributing to
it just one point from each orbit of W, and, in the sequel, we regard
PeJI ίas the initial point of its orbit. The transformation V is defined
in such a way that every point of M is invariant under V and (more
generally) in such wise that (with PeM) it sends T*P into T~kP for
every integer k. This definition is consistent; for, if T*P = ThP for
distinct integers k and h, it follows that P = ThlcP and hence that
T-jcp = τ~hpm Thig definition also makes V involutory; for it sends
T~kP into TkP. Moreover we observe that

(1) TVTV=I.

For, if Q is an arbitary point of S, we many write Q = ThP for some
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point Pe M and some integer fc, and then

V sends Q = TkP into T~kP

T sends T~kP into Γ"fc+1P

F sends Γ"*+1P into T*~ιP

T sends T ^ P into T*P = Q .

Thus TFTF sends Q into itself and (1) is established. We next define

(2) U= TV,

which, according to (1), is involutory. Since V is also involutory, as
previously noted, we have F" 1 = F, so that from (2) we obtain T —
UV, as we desired to prove.

We next state a theorem which definitely shows that, when the group
G is more restricted, not every transformation is reversible. A fortiori
it can not be expressed as a product of two involutory tranformations
in the group.

THEOREM 2. A linear transformation of an n-dimensional vector
space onto itself, expressed by the equation y = Ax, where A is a non-
singular n x n-matrix, can not be reversible in the group G of all
non-singular linear transformations unless the set of eigenvalues of
A is unchanged when each eigenvalue is replaced by its reciprocal.

Proof. If our linear transformation is reversible in the specified
group, our definition requires the existence of a non-singular matrix B
such that A~x — BAB -1. But the eigenvalues of A are the same as
those of BAB'1, and hence also the same as those of A"1. But the
eigenvalues of A'1 are the reciprocals of those of A. Hence the
theorem.

We leave to the reader the simple task of showing that the set of
reversible linear transformations (in the linear group) is far from
vacuous.

A corollary of Theorem 2 is to the effect that a non-singular trans-
formation T of class Cfc (k ̂  1) of a neighborhood of an invariant point
in Euclidean ^-dimensional space onto such a neighborhood is not
necessarily reversible in the group of all such transformations of class
Ck. For we can develop the functions defining the transformation T
by Taylor's theorem. It is then easily seen that the linear terms
define a tranformation of the type considered in Theorem 2, which is
reversible if T is reversible. On the other hand a transformation Γcan
be set up having arbitrary linear terms and hence certainly can not be
reversible if the linear terms are deliberately chosen so as to violate
the condition of Theorem 2.
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Strictly speaking the discussion of the last paragraph concerns
germs of transformations instead of transformations themselves. This
is because not all transformations considered need be defined in the
same neighborhood and hence need not form a group. However equiva-
lence classes (the germs) of these transformations may be introduced in
a well known and obvious way so as to form a group G. Namely, two
transformations are said to be equivalent if they coincide in a neighbor-
hood of the invariant point. A non-singular transformation T of a
neighborhood of an invariant point 0 onto a neighborhood of 0 is said
to be reversible in a group G of germs of transformations of such
neighborhoods into themselves, if T belongs to a germ of G and if
there is a transformation U also belonging to a germ of G such that

T- = uτu-\

3 On the factorization of reversible linear transformations.

THEOREM 3. If a linear transformation is reversible in the group
of linear transformations, it can be written as the product of two in-
volutory linear transformations.

Proof. Given that A'1 — BAB'1, where A and B are non-singular
n x ^-matrices it is sufficient to show that there is an in volutory matrix
C such that

(3) A-1 = CAC .

For, then we could set D = AC, which, by (3), would be in volutory and
thus A — DC'1 — DC, giving the required factorization.

A slight extension of the argument used in the proof of Theorm 2
shows that the elementary divisors associated with a characteristic root
λ of A must be, if A is reversible, similar to the elementary divisors
associated with the characteristic root λ"1. Hence, expressing A in
Jordan canonical form, we write

(4) A =

(a 0 0 ••• \

0 a 0 •••

0 0 β •••

Here a, a, β, stand for certain square blocks of elements, while 0
is a general symbol standing for a square or rectangular block of zeros.
Moreover the explicit forms of a and a, which are matrices of the same
order, are given as follows:
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(5)

fX 1 0

0 λ 1

0 0 λ

α =

\0 0 0 λ j

a —

fx-1

0

0

1

x-1

0

0
1

λ- x

... o

... o

... o

\0 0 0

If the eigenvalue λ is + 1 or — 1, it is self reciprocal, and the
block α may be missing from the scheme indicated in (4). Otherwise
a must be present as shown.

It is clear from (4) that our matrix A is the direct product of
smaller matrices. Hence it is sufficient to establish (3) in the following
two cases:

Case 1.

(6)
a 0

0 a

where a and a are given by (5) and λ need not be ± 1.

Case 2.

(7) A = a

where a is again given by (5) but λ = ± 1.
We consider first Case 1. Let y(θ) denote the square matrix of

the same order as a, the element in whose fcth row and hth column is

(k Z i ) ( = l)h~ιθh+Ίc~\ Here we use the usual notation for the binomial

)coefficients, namely p) = for integers p and q with p ^ 0
ql(p —

and 0 <£ q ^ p. If q < 0 or q > p, we set P j = 0, a consequence of

which is that all the elements below the main diagonal of 7(0) are
zero. We also similarly define a matrix ξ(θ), of the same order as a,

the element in whose ftth row and hth column is ( h ) ( - iγ^θ11^-1.

We recall three elementary properties of the binomial coefficients:

+ 1

Q

II
P

V

p - 1
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Ill
k <n

Σ(-DΊ

where δka = 0 if k Φ q and δM = 1. (Properties II and III many be
established by applying the binomial theorem to the appropriate ex-
pressions in the following identities and then equating coefficients of like
powers of z: (1 + z)'\\ + z)p = (1 + s)*-1 is used for II and [1 - (1 + z)f
= (-z)k is used for III).

Using Property I, we show by a routine calculation, the details of
which are left to the reader, that ay(X) — ξ(X). Using Property II and
the fact that

I λ - λ2 λ3

0 λ - λ2

a'1 = 0 0 λ

we find similarly that 7(X)a~1 = f(λ). Thus, we have

and we may similarly prove that

Again a routine calculation based on Property III shows that τ(λ) and
γίλ"1) are inverses of each other. We therefore let Γ = γ(λ) and Γ"1

= 7(λ-χ), so that a-1 = Γ~λaΓ and a~ι = ΓάΓ~\ Hence from (6) we
see that

or1 0

0 α

Γ 0

0 Γ-

Γ 0

-1 o
0 Γ

a OWΓ-1 0

0 a)\O Γ

0 I\(a O\/O /\/Γ-1 0

Γ"-Ί\I 0/VO α/U OAO

Γ\

0
n ./o

- o Λ

Since (p_x Q j is obviously involutory, we have thus completed the proof

of (3) in Case 1 by taking C = (°r^ J \

The proof in Case 2 also uses the matrix γ(λ) defined above; only
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here, since λ = ± 1 , Γ — γ(± 1) must be its own inverse. We then
easily find from (7) that A'1 — or1 = ΓaΓ, which establishes (3) also
Case 2 by taking C = Γ.

Both cases having been settled, the proof of Theorem 3 is now
complete.

It is not known if Theorem 3 remains true when, istead of con-
sidering linear transformations, we consider germs of non-singular
transformations of a neighborhood of the origin into other neighbor-
hoods of the origin, which tranformations are assumed to be either
analytic or differentiable up to a certain order.

4 Invariant points of the iterates of a reversible transformation.
The factorization of a reversible transformation T into two involutory
factors has been considered useful in finding points that are invariant
under the iterates of T in accordance with the following Theorem 4
proved by G. D. Birkhoff and Jaime Lifshitz. In Theorem 7, however,
we give a generalization of Theorem 4, which shows that, for this
purpose, we may dispense with such a factorization.

THEOREM 4. Suppose that T, U, V are one-to-one transformations
of a set S onto itself, that T = UV, and that U and V are both
involutory. Let A be the set of points, each of which is invariant
under U and let N be the set of points, each of which is invariant
under V. Then any point common to TkA and TιA is invariant under
rpm-k). any pOιnι common to TkA and TιN is invariant under y2"-^-1;
and any point common to TkN and TιN is invariant under T2[ι~k).
Here k and I represent any two integers, positive, negative, or zero.

Notice that, like Theorem 1, this theorem is not of a topological
nature; S does not have to be a topological space. We here omit the
proof of Theorem 4 partly because, as stated above, a prior proof has
been given by Birkhoff and Lifshitz (even though these authors did not
explicitly formulate the theorem in precisely these terms) and partly
because several of our following theorems contain Theorem 4 as a special
case. It should also be stated that a proof of a special case of Theorem
4 also appears on the last page of a paper of G. D. Birkhoff written
in 1931 (cf. Reference 3). It is remarkable that this simple proof is
not really much simpler than the proof of the following considerably more
general theorem.

THEOREM 5. Suppose that T, U, W are one-to-one transformations
of a set S onto itself and that T and U are related as follows

(8) T-1 = UTU-1 ,
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(so that T is reversible in any group of transformations containing
both T and U). Let A be the set of points, each of which is invariant
under U and let M be the set of points, each of which is invariant
under W. Then any point common to TkA and TιM is invariant
under T'W

Comment. In comparing this theorem with Theorem 4, we take
V= UT. Theorem 5 in the special case, in which U and hence V,
because of (8), are involutory and in which W = U, M = Λ, reduces to
the first part of Theorem 4. In the special case in which W = V, M
= N, U, and hence V, being still involutory, Theorem 5 reduces to the
second part of Theorem 4. The third and last part of Theorem 4 is, of
course, an obvious consequence of the first part of Theorem 4, by in-
terchanging the roles of T and Γ"1, of U and V, and of A and N.

Proof of Theorem 5. From (8), we have T"u- fc ) = UT{ι~h)U-\
which may also be written

(9) Tk~ιU = UTι~\

Suppose Pe(TkA) Π (TιM). Then there exist points Q and R, such
that Q e A and Re M and such that

(10) P = TkQ

and

(11) P= TιR .

Moreover, by definition of A and M, we also have

(12) UQ - Q

and

(13; WR=R.

We wish to show that TlW~YUTl~™P - P.
Eliminating P from (10) and (11) we have

(14) R - Th~ιQ .

Because of (12) and (13) we are permitted to replace in (14) Q by UQ
and R by WR. Thus we have WR = Tk~ιUQ. From (9) we get WR
= UTι~kQ. Remembering from (10) and (11) that Q = T~kP and R =
T~ιP, we have WT~ιP = UTι~21cP. Taking the image of this point
under TιW'x, we obtain the desired result.

In order to obtain a more symmetrical theorem it is convenient to
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note the following trivial

LEMMA. Assuming that T and U satisfy (8) a necessary and
sufficient condition that

(15) T-1 = WTW-1

is that W~λU commute with T.

- 1Proof. From (8) we see that (15) is valid if and only if UTU
= WTW-\ which is equivalent to {W~ιU)T = T{W~ιU), as stated in
the Lemma.

THEOREM 6. Let T, U, W satisfy (8) and (15) and let A and M
be defined as in Theorem 5. Then any point common to Tk A and
TιM is invariant under W^UT^1'^ or, what is the same thing,
y»2(l-fc) f ^ - l JJ

Theorem 6, which is a trivial consequence of Theorem 5 and the
lemma, is slightly less general than Theorem 5, but it has the ad-
vantage of remaining true when the elements of the pairs (U, W) and
(I, k) are interchanged.

By taking W — UTm, where m is any integer, we find that U~ιW
= Tm, which certainly commutes with T, so that, by the lemma, (15)
is valid. We many thus specialize Theorem 6 as follows:

THEOREM 7. Suppose that T and U are any one-to-one transfor-
mations of a set S onto itself and that T and U are such that T~λ —
UTU'1 so that T is reversible in any group of transformations
containing both T and U. Let A be the set of points, each of which
is invariant under U and let M be the set of points, each of which
is invariant under UTm. Then any point common to T*A and TιM
is invariant under T2{ι~k)~m.

This theorem, while more special than Theorem 5, is still more
general than Theorem 4, as we see by considering the cases m = 0
and 1.

We have, of course, never assumed U to be ίnvolutory in Theorems
5, 6, or 7. Nevertheless it will appear in the sequel that both U and
V — UT must be involutory in a significantly important subset Σ of S,
if the intersection of TkA and TιM is not empty.

THEOREM 8. Suppose that the one-to-one transformations T and
U of the set S onto itself are such that (8) hold. Let 2 &e the set of
points, each of which is invariant under U2. Then 2 i>s invariant
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under T and U, and the set A defined in Theorem 5 is a subset

Proof. As in the proof of Theorem 5, we first establish (9) in
certain special cases so that we have both

(16) T~ιU= UT and TU = UT-1 .

If Pe Σ we have (by definition of Σ) U2P = P. Therefore TU2P
= TP. But, with the help of (16) we may write TU2P = (TU)UP -
(UT~1)UP= U{T-XU)P^ U{UT)P = U%TP. Hence, we have U2TP =
TP. This shows that TP is invariant under U2, and hence (by definition
of Σ) TPeΣ Hence Σ ί s invariant under T.

That Σ ίs a l s o invariant under U is even more obvious. For, from
U2P= P, we have immediately UΨ = UP or U\UP) = UP.

Finally A c Σ because, if PeΛ, then UP = P and hence £ΛP =
C/P = P so that also Pe Σ

In non-vacuous applications of Theorem 5, the set Σ i s not empty,
because then TkA has a point P in common with another set, namely,
TιM, and this implies the existence of a point Q e ^ c Σ s u c h that
(10) holds. By Theorem 8, all the sets TA, T2Af T*A, . . . are also
subsets of Σ Since (ΓfcΛ) Π (TιM) Φ 0, Σ Π (ΓZM) is not empty and
hence also Σ Π (Γ^W), Σ Π (Γ^M), •••, Σ Π Af are not empty. It
follows that in proving Theorem 5 we can restrict our transformations
to the set Σ o n which the property U— U~λ is valid, and where
accordingly T — UV with V— V~x. When so restricted the original proofs
of Birkhoff may be adapted to our more general situation. But such
an alternative proof of Theorem 5 would not be simpler than the one
actually offered.

As a final remark, it may be said that Theorem 5, general though
it already is, can be made still more general. In fact, in following the
proof of this theorem up to (14), we notice that we are permitted
(thanks to (12) and (13)) to replace in (14) Q by U«Q and R by WβR,
where a and β are arbitrary integers. This would lead to a more
general theorem reducing to the stated theorem when a = β = 1. I
have not carried out a formulation of such more general theorems
because of a doubt that they could be at all significant.
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