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1. Introduction. Starting with a simple Lie algebra over the
complex field C, Chevalley [2] has given a procedure for replacing C
by an arbitrary field K. Under mild restrictions on the characteristic
of K, the algebra so obtained is simple over its center, and it is our
purpose here to determine the automorphisms of each such quotient
algebra g. In terms of the group G defined in [2] and also in §3 below
and the group A of all automorphisms of g, the principal result is that,
with some exceptions, which occur only at characteristic 2 or 3, A/G is
isomorphic to the group of symmetries of the corresponding Schlifli dia-
gram. As might be expected, the main step in the development is the
proof of a suitable conjugacy theorem for Cartan subalgebras (4.1 and
7.1 below). The final result then quickly follows.

Definitions of the algebras and automorphisms to be considered are
given in §2 and §3. Sections 4, b and 6 contain the main development
and § 7 treats some special cases. The last section contains some remarks
on the extension of the preceding results to other algebras. In 4.6, 4.7,
4.8, 7.2 and 7.3 the results are interpreted for the various types of
algebras occurring in the Killing-Cartan classification, thereby yielding
results of other authors [4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18] who have
worked on various types of algebras from among those usually denoted
A, B,C, D,G and F. For other treatments in which all types are con-
sidered simultaneously, the reader is referred to [4; 16, Exp. 16] where
the problem is solved over the complex field, however by topological
methods which can not be used for other fields, and to [14] where general
fields occur but only partial results are obtained. General references to
the classical theory of Lie algebras over the complex field are [1, thesis;
3; 16; 19].

2. The algebras. Let us start with a simple Lie algebra g, over
the complex field C, a Cartan subalgebra Y,, the (ordered) system X of
(nonzero) roots relative to §,, the set @ of fundamental positive roots, and
for each pair of roots r and s, define ¢,, to be the Cartan integer
2(r, 8)/(s, s), and p,, to be 0 if » + s is not a root and otherwise to be
the least positive integer p for which = — ps is not a root. Then Cheval-
ley [2, Th. 1] has shown that there exists a set of root elements {X.}
and a set {H,} of elements of Y, such that the equations of structure
of g, are:
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21 H.,=-—H, and if r, s and t are roots such that r +s+t=0
and r is at most as long as s or t, then

H, + (s, s)/(r,r)H, + &, O)/(r,)H, = 0.
2.2 HH,=0.
2.3 HX, =c,X,.
24 XX ,=H,.
25 XX, = +p. X, tf r+s+0.

The equations 2.1 imply that each H, is an integral linear combina-
tion of the elements H,(a ¢ @), which form a basis for §,. Just as in
[2] the base field C can now be replaced by an arbitrary field K (because
the structural constants are all integers), yielding an algebra g over K,
an Abelian subalgebra b, a set of numbers {7, &, in K, and a set of
roots relative to Y defined by #(H,) = ¢,,. We use the notation {X,, H,}
for the generating set of g, the subscript » referring to a root of the
original system 2.

2.6 Assume that g is one of the algebras just constructed, but if
Y has roots of unequal length or if ¥ is of type A, assume that K is
not of characteristic 2, and if X is of type G, assume further that K
18 not of characteristic 3. Then

) if p,s # 0, them P, #+ 0, whereas if c,, + 0, then ¢, + 0 unless
r= 4 s and K is of characteristic 2;

(2) mo H, is in the center of g;

(8) the center © of g consists of those H in § such that #(H) =0
for all r im X

(4) if Y=Yjc and g = gf, then H is a Cartan subalgebra of g;

(5) g is stmple.

Proof. (1) From known properties of root systems if » = + s then
?,; and ¢,, take on values other than 0, 41 only if 2 has roots of dif-
ferent lengths: the values - 2 and =+ 3 if X is of type G, and +2if X is one
of the other types. The possibility of these numbers becoming 0 in K
has been ruled out by the assumptions. On the other hand &, =2 which
is 0 if and only if K is of characteristic 2.

(2) If K is not of characteristic 2, then H, X, =2X, + 0, and if K
is of characteristic 2, then there is a root s not orthogonal to », whence
HX, =c,X,+ 0 by (1. Thus H,. is not in the center.

(3) Assume that X = H 4+ Y¢, X, is in the center. Then multiplica-
tion by X_, yields ¢, = 0 because of 2.4, whence

0 = XX, = HX, = #(H)X,
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so that 7(H) = 0. The converse is easily checked.

(4) 9 is Abelian, and if X = H 4 Y¢, X, is in the normalizer of Y,
then ¢, = 0 just as before and X is in §. Hence } is a Cartan subalge-
bra of b.

(5) Let m be an ideal in ) and Y a nonzero element of m. Then
by repeated multiplication by elements of the form X, (a € @) (now con-
sidered to be in g) we arrive at a nonzero X which is in m and com-
mutes with all X,. By (1) this implies that X is a scalar multiple of
X,, d being the unique root such that d + a is not a root for each a
in . Thus X, is in m and by repeated multiplication by elements of
the form X_, (a e @) we get all X, in m, whence m =g. Hence g is
simple.

In regard to the cases excluded by the assumptions of 2.6, let us
observe first that if K is of characteristic 2 and X is of type A, theng
is nilpotent while if 3 is of type G, then g is isomorphic to the algebra
g of type D,, as is seen by an examination of the multiplication tables.
In the other cases g is not simple because those X, and H, for which
r is a short root span an ideal as is seen from 2.1 to 2.5 and the follow-
ing properties of ¥: if » is a long root and s is a short one, then ¢, is
0 or (7, r)/(s,s); if r + s is also a root then it is a short one (because
(r +s,r+s)=(1+e¢,)(r,r) + (s, s) which is not a multiple of (r, 7));
if » and s are short roots and » + s is a long root, then

Des = (r + 5,7 + 8)(r, 7)

(check for X of type B, or G,).

In the sequel, each algebra g of 2.6 is called a classical Lie algebra,
and the algebra H and the set of elements {X,, H,|r e X}, now consider-
ed to be in g, which occur in the explicit mode of construction describ-
ed are called standard Cartan subalgebra and standard set of generators,
respectively. (Actually the subset {X,| = a € @} is enough to generate
g.) In addition the notations 7,;, ¢, and 7 are used in reference to g
rather than g. Observe that 7 is defined in a natural way on 9 because
of (3) of 2.6.

A consequence of (4) of 2.6 which should be borne in mind is that
7 # 0 if r = 0, although it may happen that 7 = § with » =+ s.

3. The groups. Following Chevalley [2], let us now describe certain
automorphisms of classical Lie algebras. Let g be such an algebra and
{X, H.|re2} a standard set of generators. For each » in ¥ and each
k in K, let x.(k) be the automorphism of g which has the same effect
as expad kX, on each generator, with the sole exception: if K is of
characteristic 2, then z.(k)X_, = X_, + kH, + k*X, (see [2, p. 24]), and
then let G’ be the group generated by all such automorphisms as 7 runs
through ¥ and k£ through K. Then for each we W, the Weyl group
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of 2, there is w(w) in G' such that w(w)X, = + X,, and o(w)H, = H,,
for each r in X [2, p. 85]. If x is a homomorphism of the additive
group generated by the roots of X into the multiplicative group K* of
K, then there is an automorphism %2 of g such that kX, = y(r)X, for
each r in Y. The group of such automorphisms is denoted 9, and the
subgroup corresponding to those homomorphisms which can be extended
to the group of weights relative to Y is denoted ©’. Let G be the
group generated by G’ and . One has [2]:

3.1. G is normal in G, =9NG, G=G'9, and G/G' is isomor-
phic to |,

Finally, if »r — ' is a permutation of @, the set of fundamental
roots, such that c,, = ¢,, for all @ and b in @, then there is a graph
automorphism ¢ of g defined by: ¢X, = X, if +a is in @ (see one of
[3, p. 116; 16, p. 11-04; 19, p. 94] for the proof of existence and [1, p.
361] for an interesting discussion). Although the automorphisms of
this paragraph are defined in [2] to act on g, we can (and shall) think
of them as acting on g. Nothing is lost in the passage from g to g: if
2 is an automorphism of g which induces the identity on g then, in the
notation prior to 2.6, X, = X, mod ¢ for each », whence xH, = H, by
2.4 and then xX, = X, by 2.3, implying that x is the identity.

The following observation will be used later:

3.2. Let S be a standard set of gemerators of g and x an automor-
phism of g. Let G' be the group defined above relative to S, and let
G be the corresponding group defined relative to the standard set xS.
Then G' = xG'x™".

Proof. Let B be a subset of S which is also a vector space basis
for g. Then the matrices representing G’ relative to B are the same
as those representing G” relative to xB, whence G = G’z

4. Principal results. Throughout the next three sections, g denotes
a classical Lie algebra with a fixed standard set of generators

S={X,, H,|rel}

and corresponding Cartan subalgebra §, K is the underlying field, the
symbols G', G, O, and ‘“‘graph’’ refer to the automorphisms of g defined
relative to S as in §3, and A denotes the group of all automorphisms
of g. It is assumed that X is not of type A, if K is of characteristic
3 and not of type D, if K is of characteristic 2. These exceptional cases
are considered in §7.



AUTOMORPHISMS OF CLASSICAL LIE ALGEBRAS 1123

4.1. Conjugacy theorem. If Y, and Y, are standard Cartan sub-
algebras of g, there is x in G' such that x§, = 0,.

4.2. FEach x in A can be written uniquely x = thg, with 1 in G,
hin © and g a graph automorphism.

4.3. G and G are normal subgroups of A.
4.4. G|G 1is isomorphic to /D', hence is Abelian.

4.5. The graph automorphisms form a system of coset representa-
tives for A over G. Hence A|G is isomorphic to the group of sym-
metries of the Schlafii graph.

These results may be amplified thus:

46. G=G if XY is of type E,, F, or G, or if X 1is of arbitrary
type and K 1is algebraically closed. G|G' is isomorphic to K*|K*?, with
f=n+1,28,4,38,2 in the respective cases that X is of type A,, B,,
C., D, (n odd), E,, E, and is isomorphic to the direct product of 2
copies of K*/K** if X is of type D, (n even).

4.7. A = G with the exceptions: A|G is of order 2 if X if of type
A, (n=2), D,(n=5) or E,, and is isomorphic to the symmetric group
on 3 objects if X is type D,.

4.8. A =G, hence is simple, if 3 is of type E,, F, or G, and K
is arbitrary or if X is of type B,, C, or E, and every element of K
18 a square. A+ G otherwise.

5. The theorem of conjugation. We first show that the group G’
depends only on §, not on all of S.

51. If r and s are in 3 and r + s, then ¥ =75 if and only if
both r = — s and K 1s of characteristic 2.

Proof. Let r and s be roots such that » #s and # =35. Assume
first that K is of characteristic other than 2. The equations

('— T)(Hr) =—2=— F(Hr)

show that =+ —s. Then since ¢,¢,,=0,1,2 or 3 and &,,C,, = C,,C;; =4,
the only possibility is that ¢, =1 and K is of characteristic 3.
From ¢,, = &,, =2 = —1, we see that r and s have the same length
and form an angle of 27/3. Since X is not of type G,, this implies that
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r and s can be incorporated into a fundamental set [2, p. 19], and since
Y is not of type A,, this set contains a third root ¢ which can be taken
orthogonal to one of r, s and not to the other. But then ¢,, # ¢,, by
(1) of 2.6, contradicting 7 = 5. Now assume that K is of characteristic
2. Then all roots have the same length. Thus if 7 is orthogonal to s,
then » and s can be incorporated into a fundamental set, and since Y
is not of type D,, one reaches a contradiction just as before. On the
other hand if #» is not orthogonal to s, then the equation ¢,, = ¢,, = 0
implies that ¢,, = + 2, whence » = =4 s because » and s have the same
length. Since (— r) = 7 if K is of characteristic 2, 5.1 is proved.

5.2. Let S=1{X,, H.|re2} be the standard set of generators of
g tntroduced in §4 and let S' = {X,, H,|qe 2’} be a second standard
set such that S and S’ determine the same Cartan subalgebra ). Then
there exists a bijective mapping r — v’ of X onto X' such that

1) if r, s and v+ s are in X, then v + 8 is in X', (r +8) =
'+ 8, and (—r) = — 7, and

@) for each r in 2, H, = H, and X, = ¢, X, with ¢, in K and
cc_, = 1.

Proof. The nonzero root spaces of g relative to ) are determined
by 5.1 as {KX,} if K is not of characteristic 2 and {KX, + KX )} if K
is of characteristic 2. In the latter case, if X = kX, + [X_,, then ad X
is nilpotent only if either %k or [ is 0, as one sees by choosing a root s
of X such that » + s is also a root and then computing (ad X)*X, =
kiX,. Thus in all cases § determines {KX,} (and {KX,}) and there exist
a bijective mapping » — ' and scalars. ¢, such that X, = ¢,X,. Since
X, X, is a nonzero element of §) if and only if s= —, one has (—7r)' =
—»', and if r, s and r + s are in %, then X,X, is a nonzero element
of KX,,, by (1) of 2.6, which implies that »' 4’ is in 3’ and (r+s)' =
r + 8. Next H, =c,c_.H, by 2.4. Now one can find a root s such
that §(H,) = s(H,) + 0: if K is of characteristic 2, choose for s any
root not orthogonal to », and if K is not of characteristic 2, choose
s=7vr. Thus ¢,c.,=1, H. = H, and 5.2 is proved.

5.8. Under the assumptions of 5.2 if G" is the group defined

relative to S' wn the same way that G' is defined relative to S then
G'=G.

Proof. If either r = —s or K is not of characteristic 2, then
x. (k) X, = (exp ad kX,.)(¢;*X,) = (exp ad ke, X,) X, = x,(ke,)X,, while if K
is of characteristic 2, then
z.(k)X_, = 2. (k)(c2X_,) = ¢ X_, + kH, +FX,.)
= X_. + (ke,)H, + (ke,y’X, = xke,) X, ,
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by 5.2. Hence %,.(k) = z,(ke,) and G’ = G'.

Let us now turn to the proof of 4.1. Clearly it is enough to prove
that b, is conjugate to § under G'. For then by symmetry Y, is also
conjugate to ) and then to Y. Let S, be a standard set of generators
corresponding to h,. Assume first that K is algebraically closed (so that
G' =G by 8.1) and let G, be the group defined relative to S, in the
same way that G is defined relative to S. By a familiar argument of
Harish-Chandra (see [16, Exp. 15] or [13]), there exist y in G and y,
in G, such that y) = 5. Set x = y;'y. Then zH) =5, and by 3.2 and
5.3, G, = xGx™*, whence G, = y,Gy* =yGy* =G and # is in G. Now
assume that K is not algebraically closed. Let K be its algebraic clo-
sure and let g, ete., be the objects corresponding to g, ete., when K
1s replaced by K. As has just been shown, there is ¥ in G such that
yb = E)l By 5.2 the elements of ¥S are multiples of those of S,. One
can normalize y by multiplication by an element of A@ so that yX s
in S, for each fundamental root a, and then by 5.2, yX ., and yH, are
also in S,. Since g is generated over K by the elements H,, and g is
generated by the elements X,, X ,, it follows that ¥ =5, and yg = g.
Since y is in G and y induces an automorphism of g, a result of Ono
[10] implies that % is is G. By 3.1 one can write ¥ = xh with z in G’
and & in . Thus b = xhh) = yh =1, and 4.1 is completely proved.

By combining 3.2, 4.1 and 5.3 we get:

5.4. The group G’ is independent of the standard set of generators
used to define it.

Finally, let use observe that the word standard may be omitted
from 4.1 if K is algebraically closed and not of characteristic 2, 3 or b
because then every Cartan subalgebra is standard (see [1, thesis; 12; 2]).

6. Proofs of 4.2 to 4.8. If x is an automorphism of g, then xbis
a standard Cartan subalgebra of g. Hence by 4.1 there is j in G’ such
that j7'2h = §. Then 5.2 implies that there is a permutation » — r’ on
2 such that (1') if », s and r + s are in 3, then (» +s) = + s and
(—=7) = — 7', and (2") j2X, = ¢, X, and ¢c,c_, =1 for each r in Y. By
(1), @' is a fundamental set of roots since @ is. Hence [16, p. 16-05]
there is w in W, the Weyl group, such that w® = @'. Then replacing
J by i = jw(w) we see that the refinement @' = @ is achieved. We can
now choose & in $ so that kX, = ¢, X, for each a in &, whence
hi'2X, = X, and then h™%wX_, = X_,, because c¢,c_, = 1. Thus by
2.3 and 2.4 and the fact that A4~z is an automorphism ¢,, = €4 for
@ and b in @. That is, A2 is a graph automorphism, and 4.2 is
proved.,
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From the definitions, it is easily checked that hG'h! =G, 9gG'g™* =
G and gH9 =9 if hisin © and g is a graph automorphism. Thus
4.2 implies 4.3.

As a restatement of part of 3.1, 4.4 is true.

Next assume that the graph automorphism ¢ is in G. Let u and
1, respectively, be the subalgebra of g and subgroup of G’ generated by
those X, and z,.(k) for which 7 is positive. Then by [2, Th. 2] there
are u, w” in U, h in  and w in W such that g = uhw(w)u', whence
o(wu = h'ugu”"u < u. This implies that w maps positive roots onto
positive roots, whence w = 1. Then the equation

9X, = uhu"X, = ¢, X, + zchs ’
8>r

¢, # 0, in conjunction with the definition of graph automorphism, implies
that ¢ = 1, that 4.5 is true.

Let P and P, be the additive groups generated by the weights and
by the roots relative to 2. By a basic theorem for free modules, there
exist bases {b;} and {} of P and P, and a set of positive integers {fi}
such that b} = f.b; for each 2. Then from the definitions $/9’ is isomor-
phic to the direct product of the groups K*/K*’i, Now since @ is a
basis for P, and {a’|a < @, (2a’, b)/(b, b) = 8,,, b € @} is a basis for P, the
numbers f; can be found by reducing the matrix (c,,)(a, be @) to dia-
gonal form. In this way 4.6 is proved.

Finally, an examination of the various root systems yields 4.7, and
then 4.6 and 4.7 imply 4.8.

7. The other algebras. Continuing with the previous notation, but
dropping the assumption in the second sentence of § 4, we define G” to
be the group generated by the automorphisms of type x,(k) constructed
relative to all standard sets of generators for which Y is the correspond-
ing Cartan subalgebra. By 5.3, G” = G’ for the algebras treated there,
but this is not the case for the algebras yet to be considered.

7.1. If Y, and 9, are standard Cartan subalgebras of g, there is
x in G" such that xbh, = Y,.

7.2. In the respective cases that 3 s of type A,, D, or D, (n + 4)
and K is of characteristic 8, 2 or 2, the group G" is isomorphic to
the group G’ of type G,, F, or C,.

7.3. In the first two cases above A = G"” and in the third A|G"
18 tsomorphic to K*[K*?.

The proofs of these results require suitable analogues of 5.1 and 5.2:
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7.4, In the respective cases of 7.2, the monzero root spaces of g
relative to ) have dimensions 8, 8 or 4.

7.5. If S and S"” are standard sets of gemerators both of which
have Yy as the corresponding Cartan subalgebra, then there is x in G"
such that S and S’ = xS" satisfy the properties (1) and (2) of 5.2.

The ideas in the proofs of these results are the same for all three
types of algebras. However, the details are somewhat different. Hence
we shall restrict ourselves to a discussion of the algebra of type A, over
a field of characteristic 3.

Now the roots of a system of type G, may be so labelled that the
set of short ones is ¥ = {+a, +b, +=(a + b)} and the set of long ones is
A = {*+(a —b), =(a + 2b), (20 + b)} (see any of [1, p. 93; 3, p. 141; 16,
p. 14-06]). As has already been mentioned, the construction of 2.6 does
not yield a simple algebra if a root system of type G, is combined with
a fleld K of characteristic 3: the set S ={X,, H,|r <2} spans an ideal
which is easily seen to be a classical Lie algebra of type A4, with S as
a standard set of generators. Let g denote the ideal and m the full
algebra. First we observe that an automorphism of m which is the
identity on g is the identity on m because the adjoint action of mt on
g is faithful by 2.8 and 2.5. Thus the automorphisms of m may be
considered to act on g (the unique minimal ideal) without any ambiguity.
Now Cpp = 0Cpy=—1=2=¢,, = Gp,» Hence @ = b, and then —a@ —b =
— & — b =a. Thus @ corresponds to a root space R* spanned by those
X, for which r is in 3* = {a, b, —a — b}; a similar statement for —a
establishes 7.4. Now each 7 in 4 can be written uniquely r =t —s
with ¢t and s in 3*. Hence if % denotes the third element of 2+, x.(k)
maps X, X,, X, onto X, + kX,, X,, X, respectively. Here s,¢{,u run
through the permutations of 3+ as » runs through 4. Hence the group
generated by {z.(k)|re 4, ke K} induces in R* the three-dimensional
unimodular group. Now if S” ={Y,, J,,ge 3"} is a second standard set
of generators of g corresponding to the same Cartan subalgebra § as S,
then the root spaces, as determined by Y, are three dimensional and 23’
is of type A, whence its roots can be labelled so that R+ is spanned by
Y., Y, and Y_,._,.. Thusby what has just been said there is # in G'", the
group of type G’ for m such that, if we set 2Y, = X, and «J, = H, for
each » in 3, then X,, X,, X_,_, are scalar multiples of X,, X,, X .,
respectively. But then also X,,, = + X,.X,. is a scalar multiple of
XX, = + X,,,, with similar statements for X_, and X_,, whence the
properties H,, = H, and c,c., = 1 are proved as before. Now consider
the identity [2, p. 63, L.7]

xr+ss(k)x—s(1)xr+3s(k)Al = x—s(l)xrirzs(ik)xers(ik)xr(ik)xZTJrSS(ikZ)
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which is valid if s and » + s are in ¥, » isin 4 and k is in K. By
3.2 the left side is in G as are the first three terms on the right.
Thus the product of the last two is also, and replacing k by —k, we
conclude that z,.(k) is in G”. Thus G = G”, completing the proof of
7.5. We see by 3.2 that G”' is generated by elements of the form xx,.(k)z ™,
with # in 2 and « in G'”. Hence G’ < G'’, whence G’ = G"" and 7.2
is proved. The deduction of 7.1 and 7.3 now proceeds as before and
details are left to the reader.

8. Classification theorem. By 4.1, 5.2, 7.1 and 7.5, if two classical
Lie algebras are isomorphic, then they can be identified so that specified
standard sets of generators satisfy conditions (1) and (2) of 5.2, whence
the root systems are of the same type. Hence (see [13]).

8.1. Two classical Lie algebras are isomorphic if and only if they
have the same type.

9. Extensions. If g is obtained from an algebra g by extension of
the base field, then any automorphism of g has a unique extension to
g, whence the automorphisms of g may be described as the restrictions
to'g of those automorphisms of § which fix g. Thus if § turns out to
be a direct sum of classical Lie algebras, the results above enable us to
determine the automorphisms of g. For example, using well-known
identifications [11], we infer from 4.2 to 4.8 for g of type B, or D, that
each automorphism of the Lie algebra of those linear transformations of
a vector space of dimension not 8 over an algebraically closed field of
characteristic not 2 which are skew relative to a nonh singular symmetric
bilinear form is induced by an orthogonal transformation of the under-
lying space, and we then easily deduce if the field is not necessarily
algebraically closed that every automorphism is induced by a similitude.

A procedure often used to construct a Lie algebra g is to start
with g, a direct sum of classical Lie algebras, to then prescribe a group
F of semiautomorphisms of g, and finally to define g as the set of fixed
points of F. Let us assume that F is so chosen that g can be regarded
as a field extension of g. Then the device stated above is applicable in
the following easily proved form: the automorphisms of g are the restric-
tions to g of those automorphisms of § which commute with the elements
of F. Examples here are the analogues over general fields of the real
forms of Cartan [1, p. 899], and the algebras which can be constructed
from those classical ones which admit graph automorphisms by naturally
defined semiautomorphisms. For these latter algebras one can thus obtain
explicit statements such as 4.2 to 4.5 with the role of G' taken by the
simple groups considered in [17].
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