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SELF-INTERSECTION OF A SPHERE ON A

COMPLEX QUADRIC

I. FARY

1. The real part Sn of a quadric V in complex, affine (n + l)-space
is a sphere. The self-intersection of Sn in F is the same as the self-
intersection of a "vanishing cycle/' introduced by Lefschetz, and plays
a certain role in [4], [5]. We will compute here this self-intersect! on
number, using elementary tools.

Let us introduce some notations. Pn+1 denotes the complex projective
space of algebraic dimension n + 1, hence of topological dimension

dim Pn+1 = 2n + 2 .

To each projective sub-space Pk of Pn+1 a positive orientation can be
given, thus it can be considered as a cycle p2k. Then we agree that

(1) ifk + l = n]+ 1, then (p2k, pn) - 1 in Pn+1

be true for the intersection numbers of cycles. This is the usual con-
vention, the one in [1], for example; in [7] another convention is
adopted.

Let x19 " ,xn+2 be a fixed system of projective coordinates in P n + 1 .
Then

(2) Qn : x\ + + xl+2 = 0

is a non-singular quadric; dim Qn = 2n. The points of Pn+1 whose last
coordinate is non-zero form a complex affine space Cn+1, and

V = Qn ΓΊ Cn+1 - [x: x e Qn, xn+2 Φ 0]

is a non-singular affine quadric. If zeCn+1, we denote by zlf « , ^ + 2

those coordinates for which zn+2 — i where i2 = — 1; thus zlf ,zn+1

are affine coordinates in Cn+1. Then

V: zl+ . . . +zl+1 = l (zeCn+1)

Sn: z\+ + zl+1 = 1, ^ , 2:w+i reαte

are the equations of an affine quadric and its real part respectively;
this real part Sn is, of course, a sphere. We consider Sn with an
arbitrarily chosen and fixed orientation as a cycle s. It is well known
(see, for example, [2], p. 35, (g)) that
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(3) the homology class s, of the cycle whose carrier is Sn

f generates

Hn(V;Z),

where Z denotes the ring of integers.
As dim V = 2 dim Sn, the self intersection number

(4) (s, s) = (Sn Sn) , (in V) ,

of s in V, is well defined; we may write (Sn, Sn) for this self intersec-
tion number, because (s, s) does not depend on the orientation of Sn,
used in (3).

2. M. F. Atiyah communicated to me his computation of the in-
tersection number (4) for n = 2, showing that the sign in [2], p. 35
(10) is not the right one.1 The determination of the sign of (4) given
below is a generalization to n dimensions of the construction of Atiyah.
In [2] we used only the fact that (4) is not zero, if n is even, hence other
results of that paper are not invalidated by the false sign in (10), p. 35. The
mistaken sign is ''classical." Wrong sign appears in [4], p. 93, Theoreme
sur les ΓΛ_X de Cu, I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104,
Theorem 45 (although in [7] not the convention (1) is used, the alter-
nation of the sign in question is independent of any convention). After
the completion of the present paper [6] appeared, where the classical
mistake in sign is corrected (see (11.3) on p. 161). The results of [1]
are in agreement with the sign (5) below.

3 Using the notations and conventions introduced above, we will
prove the following theorem.

THEOREM. Let s be the homology class of the oriented sphere Sn

in Hn(Qn; Z) where n — 2h is even. Let us denote by (s, s) the self-
intersection number of s computed with the convention (1). Then

(5) (β, 8) =

—2 , if h — — is odd
Δ

n+2 , if h = — is even

holds true.

1 I take the opportunity to correct another mistake in [2], also noticed by Atiyah. In
Proposition 2, p. 27, we have to suppose that the singularity in question is conical. In [2],
Proposition 2 is stated without proof; Atiyah gave an example showing that the statement
does not hold true, if the singularity is not conical, and gave a proof with the correct
hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus
other results of [2] are not affected by the incomplete formulation of that Proposition.
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4. We prepare the proof of this theorem; for the first part of
the proof, see [1]. (See also [3], pp. 230-232.) In order to describe
easily linear sub-spaces of Qn, we introduce new protective coordinates
in Pw+1:

uά = x2j-x + ix2j .
_ . J = l, •••,&+ 1 ( ι 2 = — 1) .

Vj — %2j—1 'Z'^i

Let us notice that

(6) Uj = Vj = 0 if and only if x2j-1 = x2j = 0 .

The equation of Qn is

u1v1 + + uh+1vh+1 = 0 ,

in the new coordinates.

We consider the following linear sub-spaces of Qn:

(7) A : Uj = 0 , j = l, . . . f λ , λ + l

(8) B : % = 0 , ί = 1,-- , λ ; vΛ+1 = 0

(9) C : v, = 0 , i = l , - , H l .

Let us remark that,

(10) i n C = Φ, B f] C is just one point,

by (6).

LEMMA 1. Let X be one of the projective spaces A, B, C. If, in
the system of equations defining X, we replace an even number of
equations uά = 0 by the corresponding v3- — 0, or vice versa, we define
a new linear sub-space of Qn belonging to the same continuous system
as X. Similarly, without leaving the continuous system containing
Bf we may replace uh = 0, vh+1 = 0 in (8) by vh = 0 and uh+1 = 0.

Proof. Let us suppose that we want to replace vx = 0, v2 = 0 in
(9) by uλ = 0, ^ 2 = 0. Let us consider the linear space

av2 + βut = 0 ,
v3 = 0, •••, vΛ+1 = 0 ,

—av1 + /3tra = 0 ,

defined for every {a, β) Φ (0, 0). This projective space is clearly con-
tained in Qn. For (1, 0) we have C and for (0,1) the desired replace-
ment. The last statement of the lemma is proved similarly using the system

auh + βuΛ+1 = 0 ,

-βvΛ + avh+1 = 0 .
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Let us consider now A, B, C as cycles of Qn, and let us denote by
a, b, c their respective homology classes in Hn(Qn; Z).

LEMMA 2. / / h is odd, then c — a. If h is even, then c = b.

Proof. If h is odd, the h + 1 equations of (9) can be replaced by
the equations % = 0, j = 1, , h + 1. Hence A and C belong to the
same continuous system. If h is even, we can replace the first h
equations defining C by u5 ~ 0, j = 1, , h. Hence C and B belong
to the same continuous system.

LEMMA 3. As to the intersection numbers, we have

(11) if h is odd, then (a, a) = 0, (b, b) = 0, (a, b) — 1 ,

(12) if h is even, then {a, a) = 1, (6, b) = 1, {a, 6) — 0 .

Proof. (1) Let h be odd. By Lemma 2 and the first equation of
(10), we have (a, a) = 0. Similarly, the second equation of (10) and
Lemma 2 prove (a, b) = 1. In order to prove (b, b) = 0, we consider
the space

We claim that B and Br are in the same continuous system. In order
to prove this statement, we use Lemma 1 twice. First, we replace the
last two equations of (8) by vh = 0, and uh+1 = 0. Second, in the
system obtained by the first step, we replace the first h — 1 equations
by Vj = 0. Now B Π Br = φ, and this proves (b, b) = 0.

(2) Let h be even. The proof of (12) is similar to the previous
one. The last two equations of (12) are immediate from (10) and
Lemma 2. Using Lemma 1, we can find presently a B", such that
B n B" be just one point.

LEMMA 4. Using the previous notations s, a, b, for homology
classes,

(13) β = ±(α - b) ,

the sign depending on the chosen orientation of Sn.

Proof. Let us denote by / the hyperplane xn+2 = 0, Then, clearly,.

An I=BΠ I.

We denote by J this intersection (J = A Π B). Let us consider a pencil
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of ά-planes, 2k + dim A = 2n + 2, in general position. If JVis a neighbor-
hood of J in B, the fc-planes of the pencil project N into a neighborhood M
of J in A. Given now a Riemann metric of Pn + 1, if JV is a small
enough neighborhood of J, the corresponding points of N, M determine
unique geodesic segments. We consider now B as a cycle, whose sim-
plexes are so small that those intersecting J are contained in N. Using
the geodesic segments introduced above which start at points of the
simplexes of B intersecting J, it is easy to construct a chain E of Qn,
such that

(14) A - B + dE

he a sum of simplexes of V = Qn — I. Hence, s being a generator of
Hn(V; Z), (14) will be homologous to a multiple of s. Thus a — b = ms
for some integer m. Now (a — b,a) — m(s, a) is ± 1 by Lemma 3,
hence m = ± 1 .

Proof of the Theorem. (1) Let us suppose that h is odd. We
use (13) and (11): (s, s) = (α — 6, α - 6) = (α, α) - (6, α) - (α, 6) + (b, b)
= - ( δ , α ) - ( α , δ ) = - 2 .

(2) Let us suppose that fe is even. This time we use (12): (s, 5)
— (α, α) + (6, 6) = +2. Hence the proof of (5) is complete.
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