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The main purpose of this paper is to give some new sufficient con-
ditions for the representability of infinite dimensional cylindric algebras.
We also discuss certain problems and results in the representation theory
reported on by Henkin and Tarski in [5].

In general we adopt the notation of [5]. §1 contains some ad-
ditional notation, the statement of a representation theorem of Henkin
and Tarski frequently used in this paper, and an embedding theorem
which throws some light on that representation result. §2 is devoted
mainly to some simple proofs for known results about the general alge-
braic theory of representable cylindric algebras. Then in §38 we turn
to representation theory proper. The first result of this section gives
a sufficient condition for representability in terms of isomorphic reducts
of an algebra (this result was independently obtained by Alfred Tarski).
Then follows the definition of a new class of cylindric algebras, diagonal
cylindric algebras. The main theorem of this paper is that every diago-
nal cylindric algebra is representable; this result represents a consider-
able improvement of some previously known representation theorems.
Several interesting corollaries are derived from this result.

1. Introduction. We use the notation of [5] with the following
additions. For abbreviational purposes we use standard logical notation:
— (implies), V (there exists), and A (for all). The identity map on a
set A is denoted by &,. The function f restricted to the subset A of
its domain is denoted by f | A. If R is a binary relation and A4 is a
set, then R*(A) = {yl Vx€A<xy> € R}° If A = <A’ +, 0 =€ dx)\>x,)\<w Is
a CA,, then 2, =4, +, -, —> is the Boolean part of A. Directed
systems are understood in the sense of [7] p. 65.

We need some notions of general algebra, adapted from [9]. Let K
be a class of similar algebras; say all algebras of K are indexed by a
nonempty set Ng, so that if A e K then A = A, ODiey,, the O, being
operations on A. We let HK = the class of all homomorphic images of
algebras of K, PK = the class of all Cartesian products of systems of

Received December 15, 1960. The results of this paper were obtained in part while
the author was a National Science Foundation predoctoral fellow and in part while the
author was engaged in a research project in the foundations of mathematics directed by
Alfred Tarski and supported by the National Science Foundation (Grant No. G-14006) The
author wishes to thank Professor Alfred Tarski for the valuable advice he gave during the
preparation of this paper. The results of this paper constitute part of the author’s doctoral
dissertation submitted in May 1961 at the University of California, Berkeley.

1447
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algebras of K, and SK = the class of all subalgebras of algebras of K.
If JS Ngand e K, we let A, = {4, 0>;e;; and we let K; = {U;|Ac K}.

To fit cylindric algebras into this scheme of universal algebra, let
us make the following agreement. For each ordinal «, let M, =
{0,1,2,<0, £5,40, £, \heorcar If A=A, +, -, —, €, drderca is a CA,,
we let O,= 4+, O,=-, O,= —, Oy =2=¢, and Oy, =d,, for all
£, < a; finally we let A* = <A, 0Die, . We let CA; = {UA*|Ae CA}.
Thus CA} is a class of similar algebras in the above sense. When no
confusion results we shall identify CA, with CAZ.

In several of the proofs below we use a method of construction
whose general form is as follows. We are given a class K of similar
algebras, a directed system © = {D, =), and, for each d € D, an element
A, of K. We let R={{f,9>1f,9¢laerAsand ViepAcer(d <e— f, =
g.)}. Clearly R is a congruence relation on J[[s.ep,s; R is called the
eventually equal congruence of A and D.* In case K = CA¥ for some
a, {fI<{f,0>¢c R} is called the eventually zero ideal of A and D. In
case J & Nx and B is a subalgebra of 2[,; for each d € D, we may define
natural isomorphisms g and f of B into [[sepUsr and [[].e, A /R], re-
spectively. For each be B and de D let g(b), =b. For each be B let
f) =[g)]. If K= CA,and J =1{0,1, 2}, g and f are called the natu-
ral Boolean isomorphisms of B into [].e A, and [.e»Ua/R respectively.

The essential steps in the proofs of the representation theorems here
presented use the following theorem of Henkin and Tarski (see [5] Theo-
rem 2.15).

THEOREM A. A CA, U is representable 1f and only if for each
£ < w A can be neatly embedded in some CA,,..

There now exist purely algebraic proofs of this theorem. Theorem
A is to be contrasted with the following theorem:

THEOREM 1. If 6 = a = w, then every CA, is embeddable in some
CA;, t.e., 1s a subalgebra of the a-reduct of some CA;.”

Proof. It suffices to take the case 6 = a + 1. For each B < w we
define v® with domain a 4+ 1 by:

K if k<8,
v — tk+1if Bk <w,
R fose<a,
B if t=a,

! NgepWa/R is a reduced product in the sense of Frayne, Scott, and Tarski (Notices
Amer. Math. Soc., 5 (1958) 673). In fact, let J={X|X S D and VaenAcep (d<e—e & X)}.
Then J is an ideal in the field of all subsets of D, and R is the congruence relation on
Ilae Vg determined by J.

* This theorem, due to the author, is stated in [5].



ON THE REPRESENTATION THEORY FOR CYLINDRIC ALGEBRAS 1449

for all k <@ + 1. Thus v is one-to-one. Let 2 be a given CA,, and
let Bg be the a + 1, vP-reduct of A. Let I be the eventually zero ideal
of Band <w, =>. Let € = []5.., B/, and let g, f be the natural Boolean
isomorphisms of A into T]s..8s and € respectively. If 0 <k<pB<w
or 0=B8<w=k<a then v# =&«, and so, with aec A, (cg(@))s=
cBeg(a)s = c‘”ma = cla = g(c.)p; similarly for diagonal elements. It fol-

lows that f is a cylindric isomorphism of 2 into the a-reduct of €, as
required.?

Since for each a = w there are non-representable CA,’s, Theorems
A and 1 indicate the significance of the notion of neat embedding.

2. Universal algebra and cylindric algebra. In [5], Henkin and
Tarski state several universal algebraic properties of representable cy-
lindric algebras, indicating that their proofs use in an essential way some
metamathematical results. Thus after proving that RCA, is a universal
class, they infer that

(i) a cylindric algebra is representable if and only if every finitely
generated subalgebra of it is representable, and

(i) a cylindric algebra is representable if and only if every finite
reduct of it is representable.

Further, after proving that RCA, is equational they infer that RCA,
is closed under the taking of homomorphic images. For all these
algebraic results they raise the question concerning the existence of simple
algebraic (as opposed to metamathematical) proofs.

With the essential help of Theorem A, which, as mentioned above,
has algebraic proofs, we shall give algebraic proofs of the above results.
In addition, we obtain a new proof of the equational character of RCA,.

THEOREM 2. A homomorphic image of an RCA, is an RCA,.*

Proof. Suppose U is an RCA, and I is a cylindric ideal in %; we
want to show that /I is an RCA,. Let B be a CA,,. such that U is
neatly embedded in B (by Theorem A), where # < w. Let J be the
ideal in B generated by I. Clearly J ={b|be B and V,e (b <a)}, and
so JNA=1 It follows that the natural Boolean homomorphism of
A/I into BJJ is a cylindric isomorphism of /I onto an algebra neatly
embedded in B/J, and by Theorem A our theorem follows.

It is easy to see that RCA, is closed under direct products and
subalgebras. Hence by Birkhoff’s theorem (Theorem 2.1 of [9]), RCA,
is equational. Thus in particular, RCA, is a universal class, and the
above characterizations (i) and (ii) of RCA, follow. Recently the author

3 Theorem 1 can also be easily proved metamathematically. In fact, it was such a

proof that first occurred to the author.
¢ [5], Theorem 2.20.
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obtained simple algebraic proofs of these two characterizations. Alfred
Tarski, upon being informed of these proofs, recalled that in 1955
Saunders MacLane outlined to him a proof of a universal algebraic theo-
rem from which (i) follows; the author’s proof of (i) was a specialization
of MacLane’s proof. Since MacLane’s proof has never appeared in
print, we shall take this opportunity to present it here. Subsequent to
the above work, the author obtained a corresponding algebraic proof of
a generalization of (ii).

Of the two corollaries below, the first is a strict specialization of
the universal algebraic case, while for the second corollary we apply an
additional argument.

THEOREM 3. Let K be a class of similar algebras such that HK =
K, PK =K, and SK = K. Then for every algebra U, e K if (and
only if) every finitely generated subalgebra of U is in K.

Proof. The necessity of the condition is obvious. Now suppose that
every finitely generated subalgebra of U is in K. Let I = {F|F is a
finite subset of A}, and for each F'el let B, be the subalgebra of A
generated by F. Let R be the eventually equal congruence of B and
I, 2>, and let € = [[;e,B7/R. By hypothesis, € ¢ K. Define g with
domain A and range included in [],¢;Br by:

any element of B, if a ¢ B, ,
g(a), =

a if ae B, ,
for all a€ A and Fel. It is easy to see that the function f, defined
by f(a) = [g(a)] for all a € A, is an isomorphism of 2 into €. Hence
Ne K.
From Theorems 2 and 3 we obtain:

CoroLLARY. e RCA, if (and only if) every finitely generated
subalgebra of A is representable.’

THEOREM 4. Let K be a class of similar algebras such that HK =
K, PK = K, and SK = K. Then % e K if (and only 1f) for every finite
subset F' of Nk we have U, € SK;.

Proof. The necessity is obvious. Now suppose that the above con-
dition holds. For each finite subset F' of Nx choose B ¢ K such that
A, € B, Choose 1,€ Ng. Let I ={F|F is a finite subset of Nx and
,e F}. Let R be the eventually equal congruence of B and {I, 2>,
and let € = [[,¢,; 8% /R. Let g and f be the natural isomorphisms of

5 [5], Theorem 2.13 (i).
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Wy, into [1re Bl and €, respectively. We claim that f is an iso-
morphism of U into €. For, if 7¢ Nk, say with O¥ binary, and if
a,be A, we have for {i} S Fel

[9(0¥(a, b))]r = O¥(a, b)
= 0¥(a, b)

= 0% (a, b)

= 03" ([g(@)], [9(D)],)
= [0:(9(a), 9(0))]r -

Thus f(0¥(a, b)) = 0,(f(a), f(b)). We deduce that % € K by the hypothe-
sis of the theorem.

Again, we have a corollary for cylindric algebras. As mentined
previously, this corollary is not quite as immediate as the corollary to
Theorem 3; we need the following lemma in order to derive the corollary
easily.

LEMMA 1. Let K be a class of stmilar algebras such that PK = K
and SK = K. Suppose that U is an algebra such that for all x,yc A
with x +y there is a homomorphism f of U onto an algebra Be K
such that f(x) + f(y). Then e K.

In case additionally K = CA, it is enough to assume that for all
xeA with x + 0 there is a homomorphism f of WA into an algebra Be K
such that f(x) # 0.

The proof of this lemma is simple; it is essentially due to Birkhoff
([1).

The proof of necessity in the following corollary gives a simple
proof of Theorem 2.12 of [5].

CoroLLARY. Ue RCA, if and only if every finite reduct of A is
representable.’

Proof. Necessity. Suppose A e RCA,, i.e., U is isomorphic to a
sub-direct product of CSA,’s. Now a reduct of a product of CA4,’s is
equal to the product of the corresponding reducts. Hence we may as-
sume that 2 is a CSA,, say with base U. Suppose £ < @ and fea* is
one-to-one; let B be the «, f-reduct of A. Suppose be B and b + 0;
choose feb. For each ge U* we define g* ¢ U® by:

gs-15 if M€ range 6,
| f, otherwise.

gx

6 [5], Theorems 2.12, 2.13 (ii).
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Define F(x) = {ge U*|g* e x} for each x e B. It is easy to verify that
F is a homomorphism of B onto a CSA, such that F(b) + 0. Since b
is arbitrary, we deduce from Lemma 1 that B e RCA,.

Sufficiency. We now assume that every finite reduct of % is repre-
sentable. Let a finite subset F' of M, be called regular if there is a
finite subset G of a such that F = {0,1,2,<0, £>, €0, £, A\>} e Now
it is known, and easy to see, that an RCA, can be neatly embedded in
an RCAg for each B = «; if we apply this argument here we see that,
by our assumption, A} = BF'* for some B e RCA,, for each regular
finite subset F of M,. If F' is any finite subset of M,, then there is a
regular finite subset G such that FF = @, and so A; = (AF), S (B *)p ¢
[(RCA})s]r = (RCAZ),. Hence by Theorem 4, A* € RCA}, i.e., A ¢ RCA,.

We conclude this section with the following theorem.

THEOREM 2'. Let a and k be ordinals. Let K be the class of all
CA.’s which can be neatly embedded in a CA,... Then K is an equa-
tional class.

Proof. Clearly K is closed under direct products and subalgebras.
The proof of Theorem 2 may be applied to show that K is closed under
homomorphisms. Our theorem is now a consequence of Birkhoff’s theorem.

From this theorem we can derive two corollaries similar to the above
stated corollaries. This can be done metamathematically, in the obvious
way, or mathematically as follows. For the first corollary we can again
use Theorem 3, while for the second we can use a direct argument
similar to the proof of Theorem 4. (We do not know of any way of
using Theorem 4 or something like it to derive the second corollary.)

3. Some representation theorems. Now we shall prove several new
sufficient conditions for the representability of cylindric algebras. The
following simple lemma will be found useful in the proofs of the main
results.

LEMMA 2. Let a, B, and v be ordinals, and suppose that e B**Y
18 ome-to-one. Suppose N is a CA,, B is a CAgz, T e B4, and the follow-
wng conditions hold:

(i) T is a Boolean homomorphism of U into B,

(i) ¢BoT = Toc¥ for all £ < «,

(i) T(d%) =d>3 ., for all k£, < a.
Then T is a cylindric homomorphism of U into the a-reduct of some
CA,... If in addition the following condition holds:

(iv) BT =T forase<a+y,
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then T is a cylindric homomorphism of A into an algebra neatly
embedded in some CA,,; .

Proof. Let € be the a + v, t-reduct of B, and let D be the
a-reduct of €. Then T is a cylindric homomorphism of 2 into O, for
Tocl = ¢2oT (by (ii)) = ¢CoT = ¢PoT for each £ < a, and T(d%) =
d% ., =dS =dD for all x,» < a. If in addition (iv) holds, then for
a<k<a+v we have €T = ¢2oT = T.

As a consequence of Theorem A and Lemma 2 we have the follow-
ing representation theorem, which was independently obtained by Alfred
Tarski.

THEOREM 5. Assume that A is a CA,, 0 s a one-to-one element of
a® such that a ~ range (o) is infinite, and B is the a, o-reduct of 2.
Suppose T is an isomorphism of A into B such that AT (x) = T(x)
whenever xe A and kca ~ range (6). Then A is representable.

Proof. Let T be a one-to-one element of a®'* such that 7 | a = 4.
Then for all £ < & we have ¢%oT = c¢%oT = ¢PoT = Toc¥. Moreover,
for all £, \ < « we have T(dY) = d3 = d% .,. Finally,iffa <t <a+ o,
then ¢%oT = T. Hence by Lemma 2 U can be neatly embedded in a
CA..., and our theorem follows from Theorem A.

We should mention that recently Tarski obtained a stronger version
of Theorem 5, in which the condition “a ~ range (o) is infinite” is
replaced by the condition “a ~ range (o) + 0.

Theorem 5 leads to an interesting insight into the relationship be-
tween cylindric and polyadic algebras, of a different kind from the
insight obtained from the relationships established in [2]. A polyadic
algebra with equality is, roughly speaking, a cylindric algebra with two
additional structures: infinite cylindrification, and substitution (see [3]).
If we eliminate only the infinite cylindrification, we arrive at a notion
of a substitution on a cylindric algebra. A substitution on a CA4, U is
a function Se (44" which satisfies certain natural conditions (due to
Halmos). As a corollary of Theorem 5 we easily see that if A is a CA,
with a substitution and if & = w, then A is representable. Now from
[6] it is known that every infinite dimensional polyadic algebra is re-
presentable, while there are infinite dimensional polyadic equality alge-
bras which are not representable (with equality corresponding to the
functional equality). Here by representable we mean as in cylindric
algebras—isomorphic to a subdirect product of (O-valued functional poly-
adic algebras. Our corollary shows that by eliminating infinite cylindri-
fication we recapture representation.

It is natural to ask if the corollary can be strengthened by re-
placing “substitution” by ‘“finite substitution”—a concept defined like
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that of substitution, but in which S applies only to those tea* for
which there is a finite subset F’ of « such that t e ~ F=3§,.,. The
answer is no: for each a = w there exists a CA, with a finite substitu-
tion which is not representable. The construction of such algebras de-
pends on the results of [8], which in turn depend upon unpublished work
of Henkin and Tarski.

We now define a class of cylindric algebras which includes both the
class of simple infinite dimensional cylindric algebras and the class of
dimensionally complemented cylindric algebras. A CA, U is called a
diagonal cylindric algebra (GCA,) provided that for every non-zero a € A
and every finite subset F' of a there are distinet £, A € @ ~ F such that
a+d. #+ 0. The importance of this concept derives from the following
theorem:

THEOREM 6. Ewvery diagonal cylindric algebra is representable.”

Proof. Let A be a GCA,. We want to apply Lemma 1, with K
replaced by the class of all CA.’s which can be neatly embedded in
CA,.’s. Hence suppose that a e A and a = 0. Since A e GCA, we can
define functions g, v with domain @ inductively by letting f and v, be
distinct members of a ~ {¢,, vi| N < &} such that a-d,, + 0.

Now we prepare to apply Lemma 2. It is easy to see that there
is a unique 7 € a**! such that the following conditions hold:

(1) 7 is one-to-one,

(2) 7 is the identity on a ~ {¢,, v.|x < w},
3) ¢, = v, for each £ < w,

4) tv.= e, for each £ < o,

6) Ta=p,.

For each £ < w, let B, = A. Let I be the eventually zero ideal of B
and {w, =5, and let € = A“/I. For each xc¢ A and £ < @, define

F @) = SoSi « - SpeSirw

where Sfx = ¢o(dy,-) for all 6, 0 < a and x € A. Let T(x) = [f(x)] for
all xe¢ A. The following statements may now be verified:

(6) T is a Boolean homomorphism of 2 into C,
(M c&oT = Toc¥ for all X < «,

7 After reading a preliminary draft of this paper, Henkin obtained a generalization of
this theorem, which may be stated as follows. If for every nonzero x € A and for every finite
I' £ a there is a {€ a~T and an endomorphism T of o such that ¢,oT = T, ¢xoT = Tocx for
each k€I, and T(z)+0, then YU is representable.
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(8) T@L) =dS ., for all \, g < a,

9 &oT =T.
In verifying (7), one can make use of the following easily verified
arithmetic law:

(10) Sge,Six = ¢,S5Six for all xe A and all distinet o, 0, 7w < a.

We can now apply Lemma 2, and infer that 7 is a cylindric homo-
morphism of 2 into an algebra neatly embedded in a CA,,,. Suppose
T(a) = 0. Choose k < w such that f(e).=0. Applying successively
Sy, Sia, +++, S« we infer that Sfca =0, and so a-d, . = 0, which is
a contradiction. Since a is arbitrary, from Lemma 1 we conclude that
A can be neatly embedded in some CA,,, ©. Let g be an isomorphism
of U onto an algebra neatly embedded in D.

Let N be maximal among ideals P such that g¢*(4) N P = {0} (by
Zorn’s lemma). Let € = DN, and let pr be the natural homomorphism
of © onto €. Clearly prog is an isomorphism of U onto an algebra
neatly embedded in €. Suppose x €D, F' is a finite subset of a, and
[z} = [—d..] for all distinct k,nea ~ F. Suppose that x¢ N. Then
N U {#} generates an ideal P such that PN g*(4) =+ {0}. Choose ye A
such that g(y) # 0 and g(y) € P. Then there are £, --+,&,_,ea + 1 and
ne N such that g(y) =n +c -+ ¢, _® Let F'=FU/{Kk, -, k_}.
Then [g(y)] < [—d..] for all distinet £, xea ~ F’; but this contradicts
the fact that 2 is a diagonal cylindric algebra.

It follows that € is a GCA,,,. Hence all the preceding proof can
be applied inductively to give, in virtue of Theorem A, the desired
result.

We now proceed to derive some consequences of Theorem 6.

THEOREM 7. Ewery simple infinite dimensional algebra is a diago-
nal cylindric algebra, and so is representable.

Proof. Suppose A is a simple CA,, a = w, ac A, a + 0, and Fis a
finite subset of . There are M e w ~ 1 and p£ € " such that ¢, --+c, a =
1. Choose k, v distinet in a ~ (F'U{tt, +«-, thh}). If a-d,, =0, then,
applying ¢, ---c,.,_,, we see that d. = 0; hence 0 = 1, contradicting the
simplicity of 2.

From Theorem 7 we can infer the following negative theorem which
limits the possible extensions of Theorem 1.

THEOREM 8. If 1< a < w, then it is mot the case that every CA,
can be embedded (in the sense of Theorem 1) in a CA,.

Proof. Assume the contrary. Henkin and Tarski have constructed
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a non-representable CA, 2, in unpublished work. Clearly we may as-

sume that U is simple. Let B be a CA, such that U is a subalgebra
of the a-reduct of B. Let I be a maximal ideal in B, and let € = B/L.
By Theorem 7, € is representable. Since U is simple, AN I = {0}, and
so the natural homomorphism of 2 into € is an isomorphism. It follows
that ¥ is representable; but this is a contradiction.

A CA, U is weakly dimensionally complemented, e WDCA, if
a ~ 4x is infinite for every x e A.

THEOREM 9. Ewvery weakly dimensionally complemented cylindric
algebra 1s a diagonal cylindric algebra, and so is representable.®

Proof. Suppose U is a WDCA,, acA, a+0, and F is a finite
subset of a. Choose k£, ) distinet in a ~ F such that ¢.c,a =a. If
a-d., = 0, then a = 0, contradiction.

THEOREM 10. Let « be an infinite ordinal, and let A be a CA,.
Suppose there is a finite subset F of o ~ 8, such that [[, er — dar =
0. Then U is a diagonal cylindric algebra, and so is representable.’

Proof. Suppose ac A, a + 0, and G is a finite subset of @. Choose
kew ~1 and pea* such that ¢ maps &£ one-to-one onto the field of F,
i.e., onto (M| VycoN, vD> € For (v, \)e F)}. Also choose vea* such that
y is one-to-one and range v S a ~ G ~ (field of F'). Let

H = {vp 'k, v 2 |k, \pe F} .

Applying S50+« S8t to [l ner — den, We see that [[w.exr — dea = 0.
Moreover, H is a finite subset of a® ~ &, such that (field of H)N G = 0.
Since a # 0, choose <{x, \> ¢ H such that a-d,, #+ 0. Thus % is a diagonal
cylindric algebra.

In conclusion, we would like to make a few remarks about the
general theory of diagonal cylindric algebras. In the first place, GCA.
is properly included in RCA,; the cylindric set algebra formed from all
subsets of w” forms an example of an element of RCA, ~ GCA,; in this
algebra the element {6,} is included in the complement of every non-
unity diagonal element. Clearly GCA, is closed under direct products
and subalgebras. But from Theorem 2.19 of [5] it follows that GCA,
is not equational, and so is not closed under homomorphisms. For,

8 This is a solution of a problem of Henkin and Tarski, who showed that % is represen-
table if o« ~ (dx U 4y) is infinite for all z,y € A.

9 Actually a somewhat stronger theorem holds. In fact, instead of assuming that F' is
finite, it suffices to assume that a ~ Field (F') is infinite. Then, in general, the product
mentioned in Theorem 10 may be an infinite product.
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LCA,= GCA,c RCA,, and by the quoted theorem RCA, is the smallest
equational class including LCA,.
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