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1. Introduction. This paper is a sequel to an earlier paper [6].
All notations in [6] remain in force. As in [6] we shall consider tw
probability measures f, v an the infinite product o-algebra of subsets
of the infinite product space 2 = 7#X. v is assumed to be stationary
and ¢ to be Markovian with stationary transition probabilities. Ex-
tensions to K-Markovian ¢ are immediate. v, ,, the contraction of v to
T 15 assumed to be absolutely continuous with respect to p,.,, the
contraction of ¢ to . %, ., and f,., is the Radon-Nikodym derivative. In

[6] the following theorem is proved. If Slog Joody < o and if there is

a number M such that
(1) S(logfo_n —logfy, )dv = Mforn=1,2, -

then {n'log f,.} converges in L,(v). (1) is also a necessary condition
for the L,(v) convergence of {n*log f,.}. We consider this theorem as
a generalization of the Shannon-McMillan theorem of information theory.
In the setting of [6] the Shannon-McMillan theorem may be stated as
follows. Let X be a finite set of K points. Let v be any stationary
probability measure of . and g the equally distributed independent
measure on % Then {n'logf,.} converges in L,(v). In fact, the
P(xy, x,, - -+, x,) of Shannon-McMillan is equal to K 'V f; .. The convergence
with probability one of {n7'log P(x,, -+, x,)} for a finite set X was
proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman’s
result to a countable set X. [3]. In this paper we shall prove that the
convergence with v-probability one of {rn'log f; .} follows from the follow-
ing condition.

(2) S—&Ldu§L,n:1,2,---.

0,n—1

(2) is a stronger condition than (1) since by Jensen’s inequality

logg—f—"'—"—dv = Slog—fi”—du .

0,7n—1 0,n—1

An application to the case of countable X is also discussed.
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2. The convergence theorem. As was proved in |6], condition (1)
implies the L,(v) convergence of {log f-., — log f_, _i} ([6] Theorem 1, 4).
The convergence with v-probability one is automatically true ([6] Theorem
3). Applying a theorem (with obvious modification for T not necessarily
ergodic) of Breiman ([1], Theorem 1) the convergence with v-probability
one of {n*log f,.} follows from the condition

(3) [sup log £ ss — log fss|dv < e .
We shall now investigate conditions under which (8) is valid.
Lemma 1. The following inequality is always true.

(4) Ssup logi‘—"—'—"dv < .

kz1 —k.0

Proof. Let v_,, be as in Lemma 1 [6]. Then

U_.k’o << lJ’—k,o << /’Z—k,ﬂ

and

d”—k.oz Soro AVin =f .

v, f—k.—l, dﬂ—k.io) e
Since ¢ is Markovian, v’ , , are consistent for £k =1,2, ---. We shall
prove (4) under the assumption that there is a probability measure »'
on #., which is an extension of v',, for k =1,2, ---. We shall also
prove Lemma 2 under this assumption. If no such v’ exists, the usual
procedure of representing £ into the space of real sequences may be
used and the same conclusion follows (cf. the proof of Theorem 4[6]).

Let m be a nonnegative integer and

E(m) = [sup log §— >m],

—k.0

E(m) = [sup log—fl"l < m, log formn > m].

1=5<k —jo k.0
On E(m) we have

Soro =2

Hence

|, fode=e|  fodp
By (m) By (m)

k

so that
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V[E(m)] = 27"V [E\(m)] .
Therefore
v[E(m)] = 27"V [E(m)] = 27"

and

Ssup logj}” JokAdy < Suv[E(m)] = 22 ™ < oo,

k>1 —k,0 m0

Note that (4) is proved without assuming the integrability of either
Soio

—k,—1

log f_., or log f_, _, or log ~£=k2

LEMMA 2. If there is a number L such that

(5) S-f'—"—*"—dngfork:I,&--
—k,—1
then
(6) Ssuplog f“""’du< o .,
kz1 f»k.—l

Proof. 1t is clear that

Loy = [(Leya

where V' is defined in the proof of Lemma 1.
Since {f_ioffor.-1nk =1,2,---} is a v-martingale, {(f_ro/f, ) k=
1,2, ---} is a V-semi-martingale. Hence (5) implies that

V_ o LV, S(%?"de < oo, <f::jl>

are uniformly v'-integrable and {(f_1.of f-1.-1)% (ool foa 1) ===, (dy_, o/dV')}
is a V'-semi-martingale (Theorem 4.1s, pp. 324[5]).
Hence for any set F' defined by z,, x_;, +++, x_,

o = (g or = ] (5o

so that

Sk < Stk 0 dy < Vs
(D SFf—k 1d’) SFf—k+l) -1 g SF dy @

In fact, we have just proved that
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s o

is a v-semi-martingale. Now let

F(m) = [iglp log ff—"‘——‘-’— > m]

—k,—1

and

Fg(m) = [sup log Soio = m, logi‘k—'0 >m].

1<k —J.-1 —k,—1
On F,(m) we have

Sor1 270

Hence

Srk(mf_k'_li_bo—dﬂ =27 SFk(m) (hﬁ—)zd#

y —
— 2—m f—k.O .
SFk(m) f_k,_ldv

Applying (7), we obtain

V[Fy(m)] < 2—m§ gy,

Frm) dy'
therefore,
| F(m)] < 2—mg gy <o,
F(m) d}J'
Hence

Ssup log -ff—*ﬁidu S S F(m)] = 32 "L < oo,

k=1 —k,—1

Combining Lemmas 1, 2 and noting that

S—Jf’—"i—du = S}[_:l%dv

(cf. Theorem 1, [6]), we obtain the following theorem.
THEOREM 1. If there is a mumber L such that

S—fﬂ—"——dv§Lfor n=12 -+ then

0,n—1
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[sup l10g £-40 — Tog frs 1 [dv < <o

and {n*log f,.} converges with v-probability one.
Extensions of Lemma 1, Lemma 2 and Theorem 1 to K-Markovian
/¢t are immediate.

3. The countable case. Let X be countable with elements denoted
by a. Let v be an arbitrary stationary probability measure on # Let
P(ag @, + =+, a,) = v[X, = a5, €, = @y, +++, &, = a,] .

Let
H = —5, P(a)log P(a) = —Slog P(z,)dy .

Carleson showed that
(8) H, < o

implies the L,(v) convergence of {n7'log P(x,, «,, +++, «,)} [3]. Chung
showed that (8) also implies the convergence with v-probability one of
{n*log P(x,, %1, +++, x,)} [4]. Let z be defined by

p[wm = am merl == a’ly * xn = an—*m] = P(aO)P(a’l) e P(an—m) .

¢ may be called the independent measure obtained from v. Thenv,, <
Un.. With derivative

P(xmr "'7xn)

A T B
and
fm,n —_ P(x'm’ ...’xn) —
(9) log f—m.nﬂ log Pl 7 log P(x,) .

It follows from (9) that
S(logfm —log f,, )dv < §~ log P(z,)dv = H, .

Hence (8) implies that (1) is satisfied, therefore {n='log f,.} converges
in L,(v) by Theorem 5 [6]. Since

log f,.. = log P(x,, -+, %,) + élog P(x,) ,

Carleson’s theorem follows immediately. Furthermore, it follows from
(9) and Lemma 1 that
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Ssup [log @y +-+, 21) + log P(z,)]dy < oo .
kz1 P(x—k’ ctty wo)

Hence (8) implies

P(x_y, «+-, 2_ )
sup lo » 2 gy
Skg? & P(x_y, »+-, 2,) <
and Chung’s theorem [4] follows.

By using a similar approach we shall give a sharpend version of
Carleson’s and Chung’s theorems.

Let

Pla_;, +++, a_y, ay)
Pla_y, +++,a_,)

P(ao!a~l! e,y =

and let
121: _— Z P(a’—l, LN ao)logP(aola_l, ...’a—l)
L =1

= _glOg Pz, |z, -+, T, )dy .

H, is nonnegative but may be + . It is known that

Let
H=I1lmH,.

l—o0

The limit is taken to be + o if all H, are + .

THEOREM 2. If H < o then {n=*log P(x,, *-+, ®,)} converges both in
Ly(v) and with v-probability one.

Proof. There is an I such that H, < «. We define an [-Markovian
measure ¢ on . as follows.

ﬂ[xm = Qgy g = Aqy o, T = an—m] = P(a'l)’ ey an——m)
fn—mc<l,
.u[xm = gy ppt1 = Agy ** 2, &, = an—m]
= P(am Sty al)P(a’H-l l Ay o0, a’l) e P(a’n~m { Apy—yy **°*, an—m—l)

if n—m >1. It is easy to check that g is well defined and v, , € fn....
It is clear that, if n —m > 1,

log fmn — log P(xma ) wn)

— log P(x, | ®p—gs * =, 2,,) .
fm,n—l 1_—,(967’””.’937'_1 2 ( | 14 X 1)
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The rest of the proof goes in the same manner as for the case H, < «
since Theorem 5 [6] and Lemma 1 of this paper remain true for (-
Markovian pe.
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