PRIMAL CLUSTERS OF TWO-ELEMENT ALGEBRAS

Edward Scott O’Keeffe
1. **Introduction.** The development of a structure theory for universal algebras which subsumes the familiar structure theory of Boolean and Post algebras and \(p \)-rings (Foster, [1]-[4]) has focused attention on certain classes of functionally complete universal algebras, called primal clusters. A primal cluster is a set of primal algebras in which every finite subset is strictly independent (see definitions § 2, below). Each such cluster determines a unique subdirect factorization for each algebra satisfying all the identities common to some finite subset of the cluster. In other words, every function over a direct product of strictly independent primal algebras, expressible in terms of the algebras' operations, has a decomposition and reconstruction analogous both to the Boolean theory and the Fourier transform theory. In order to broaden the domain of application of the generalized theory, we must find strictly independent sets of primal algebras.

The purpose of this paper is to present the theory of independence of primal algebras in a new dimension. Simple necessary and sufficient conditions for strict independence of primal algebras of one primitive operation, regardless of the number of elements, have been obtained [5]. We now give necessary and sufficient conditions for strict independence of certain two-element primal algebras of the same species, regardless of the number of primitive operations.

2. **Basic notions, the \(\phi \)-condition.** The following definitions are stated for easy reference.

Let \(\mathfrak{A} = (A, o_1, o_2, \cdots) \) be a universal algebra.

2.1. The *species* \(Sp = \{n_1, n_2, \cdots\} \) of \(\mathfrak{A} \) is the sequence of ranks of the primitive operations \(o_i \) of \(\mathfrak{A} \), where \(n_i \) is the rank of \(o_i \).

2.2. An *expression* \(\phi(\xi_1, \cdots, \xi_n) \) of species \(Sp \) is a finite set of one or more indeterminate symbols \(\xi_i \), composed by operation-symbols of \(Sp \).

2.3. A *strict \(\mathfrak{A} \)-function* is an expression interpreted in algebra \(\mathfrak{A} \). The notation \(\phi = \chi(\mathfrak{A}) \) means that the strict function represented by \(\phi \) in algebra \(\mathfrak{A} \) is the same as that for \(\chi \).

2.4. \(\mathfrak{A} \) is a *primal* algebra if every transformation of \(A \times A \times \cdots \times A \) into \(A \) can be represented by a strict \(\mathfrak{A} \)-function, and \(Sp \) is denumerable.

Received April 25, 1960
2.5. A finite set of algebras \{\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_p\}, all of the same species \(Sp\), is strictly independent if each given set of strict functions \(\phi_i\) has a single expression \(\psi\) which reduces to the given function \(\phi_i\) in the algebra \(\mathcal{A}_i\); i.e., \(\psi = \phi_i(\mathcal{A}_i)\).

2.6. \(\mathcal{A}\) is a primal cluster if \(\mathcal{A}\) is a set of primal algebras and every finite subset of \(\mathcal{A}\) is strictly independent. The totality of pairwise non-isomorphic primal algebras of species \([s]\) constitutes a primal cluster \([5]\). Various other categories of primal clusters are known, largely of species \([2, 1]\).

The \(\phi\)-condition is analogous to the factorization of functions of real numbers. It is simply that any strict function may be represented by any expression operating on some set of strict functions.

2.7. The \(\phi\)-condition. For every strict \(\mathcal{A}\)-function, \(\theta(\xi, \eta, \ldots, \zeta)\), and every strict \(\mathcal{A}\)-function, \(\kappa(\xi_1, \ldots, \xi_m)\), provided that no variable \(\xi_i\) occurs twice in \(\kappa\), there exist strict \(\mathcal{A}\)-functions, \(\psi_1(\xi, \eta, \ldots, \zeta), \ldots,\psi_m(\xi, \eta, \ldots, \zeta)\), such that

\[
\kappa(\psi_1(\xi, \eta, \ldots, \zeta), \ldots, \psi_m(\xi, \eta, \ldots, \zeta)) = \theta(\xi, \eta, \ldots, \zeta).
\]

Formerly primal algebras were defined to be finite. However, this property is now derived from the denumerability of \(Sp\).

Theorem 2.8. Every primal algebra is finite.

Proof. Let \(\mathcal{A} = \langle A, o_1, \ldots, o_n, \ldots \rangle\) be a primal algebra. The two-valued functions on any infinite set have a larger cardinal number than the set of expressions made of a denumerable set of operations. Therefore, the fact that the functions on \(A \times A\) to \(A\) are represented by expressions in the operations of \(A\) means that \(A\) is not infinite.

From \([5]\), we require the following basic results.

Theorem 2.9. In any primal algebra in which the primitive operations are onto transformations, the \(\phi\)-condition holds.

Theorem 2.10. Let \(\mathcal{A} = (A, o, \ldots)\) and \(\mathcal{A} = (B, o, \ldots)\) be two non-isomorphic primal algebras of the same species, \(Sp\). Then there exists a set of unary expressions \(\{\phi_i\} = \{\phi_1, \ldots, \phi_p\}\) of species \(Sp\) such that

\[
\phi_1 = \phi_2 = \cdots = \phi_p(\mathcal{A})
\]

and such that every unary \(B\)-function is equivalent modulo \(B\) to one of the \(\phi_1, \ldots, \phi_p\).
THEOREM 2.11. Let \(\{A_1, \ldots, A_n\} \) be a set of universal algebras of species \(Sp \), in which every pair of algebras is strictly independent. If the \(\phi \)-condition holds in each algebra, the set is strictly independent.

3. The two-element independence theorem. Our main result is

THEOREM 3.1. Every set of primal algebras is a primal cluster if:

(i) every algebra in the set has exactly two elements,
(ii) no two algebras are isomorphic,
(iii) no primitive operation is constant,
(iv) all algebras in the set are in the same species, \(Sp = [n_1, \ldots, n_m] \).

The proof of Theorem 3.1 is preceded by three lemmas.

Lemma 3.2. Let \(B = (\{\beta_1, \beta_2\}, o, \cdot, \cdot) \) be a two-element primal algebra with no constant primitive operations. Every expression \(\phi(\xi_1, \ldots, \xi_n) \), in which no variable occurs twice may be changed, modulo algebra \(B \), to any given function \(\chi(\xi) \) by replacing some variable by a properly chosen strict \(B \)-function \(\psi(\xi) \), and all others by constant strict \(B \)-functions.

Proof. If the expression \(\phi(\xi_1, \ldots, \xi_n) \) has but one operation-symbol \(o_i \), then, since no operation-symbol represents a constant, there are constants \(\delta_i \) and \(\gamma_i \) such that

\[
\begin{align*}
o_i(\delta_1, \ldots, \delta_n) &= \chi(\beta_1) \\
o_i(\gamma_1, \ldots, \gamma_n) &= \chi(\beta_2) .
\end{align*}
\]

We alter \(\delta_i \) to \(\gamma_i \), \(\delta_2 \) to \(\gamma_2 \), etc. until the function changes value. Some \(j \)th argument must give the change from \(\chi(\beta_1) \) to \(\chi(\beta_2) \). We choose the expression \(\psi(\xi) \) so that

\[
\begin{align*}
\psi(\beta_1) &= \delta_j \\
\psi(\beta_2) &= \gamma_j \\
o_i(\gamma_1, \ldots, \gamma_{j-1}, \psi(\beta_k), \delta_{j+1}, \ldots, \delta_n) &= \chi(\beta_k) ,
\end{align*}
\]

Since there are but two elements in the algebra \(B \), \(\chi \) is now completely represented

\[
\begin{align*}
o_i(\gamma_1, \ldots, \gamma_{j-1}, \psi(\xi), \delta_{j+1}, \ldots, \delta_n) &= \chi(\xi) .
\end{align*}
\]

On the other hand, let \(\phi(\xi_1, \ldots, \xi_n) \) be composed of \(m \) operation-symbols. Assume that the theorem holds for all expressions with fewer than \(m \) operation-symbols. \(\phi \) is a set of expressions \(\phi_1, \ldots, \phi_n \) composed by
primitive operations $o_j: \phi = o_j(\phi_1, \cdots, \phi_n)$. ϕ_1, \cdots, ϕ_n have fewer than m operation-symbols, so by assumption,

$$
\begin{align*}
(3.4) & \quad \begin{cases}
\phi_k = \gamma_k, \text{ for } k = 1, \cdots, j - 1 \\
\phi_j = \psi(\xi) \\
\phi_{j+1} = \delta_{j+1}, \cdots, \phi_n = \delta_n,
\end{cases}
\end{align*}
$$

where all variables but one have been replaced by constants. But, obviously, in $\phi_k, k \neq j$, the last variable may also be replaced by a constant, since a constant result is desired and is given by either value of the variable. This leaves only one variable in ϕ_j; but with these replacements

$$
(3.5) \quad \phi(\phi_1, \cdots, \phi_n) = \chi(\xi)
$$

and the proof is complete.

Lemma 3.3. If in two primal algebras \mathfrak{A} and \mathfrak{B}, \mathfrak{A} satisfies the ϕ-condition, then, for every $\beta \in \mathfrak{B}$ and every $a(\xi)$, there is an expression $\Pi(\xi)$ such that

$$
(3.6) \quad \Pi(\xi) = \begin{cases}
a(\xi)(\mathfrak{A}) \\
b(\mathfrak{B})
\end{cases}
$$

Proof. Modulo \mathfrak{B}, there must exist expressions for constants in \mathfrak{B}. Therefore, letting $\kappa_\beta(\xi) = \beta(\mathfrak{B})$, replace each occurrence of ξ in κ by a variable from the set ξ_1, \cdots, ξ_p, so that in $\kappa_\beta(\xi_1, \cdots, \xi_p)$, no variable occurs more than once. Applying the ϕ-condition to $\kappa_\beta(\xi_1, \cdots, \xi_p)$ with respect to \mathfrak{A}, there ψ_1, \cdots, ψ_p such that

$$
(3.7) \quad \kappa_\beta(\psi_1, \cdots, \psi_p) = a(\xi)(\mathfrak{A})
$$

By Theorem 2.10, there exists a set of expressions $\{\phi_i\}$ with

$$
(3.8) \quad \phi_i = \psi_i(\mathfrak{A}) \text{ and } \phi_1 = \phi_2 = \cdots = \phi_p(\mathfrak{B})
$$

Then

$$
(3.9) \quad \kappa_\beta(\phi_1, \cdots, \phi_p) = a(\xi)(\mathfrak{A})
$$

by (3.7), but

$$
(3.10) \quad \kappa_\beta(\phi_1, \cdots, \phi_p) = \kappa_\beta(\phi_1(\xi))(\mathfrak{B}) = \beta(\mathfrak{B})
$$

Lemma 3.4. Let $\mathfrak{A} = (A, o_1, \cdots, o_m)$ be a primal algebra of species Sp in which every primitive operation o_i is a transformation onto A. Let \mathfrak{B} be a two-element primal algebra of the same species Sp, with no constant primitive operations. Then if \mathfrak{A} and \mathfrak{B} are not isomorphic, they are strictly independent.
Proof. The operations of \(\mathcal{B} \) are transformations onto \(B \), since they are non-constant and \(B \) has only two elements. Moreover, \(\mathcal{B} \) is primal. Therefore Theorem 2.9 applies; the \(\phi \)-condition holds in algebra \(\mathcal{B} \). \(\mathcal{A} \) is also primal with the same kind of primitive operations; hence, by Theorem 2.9, the \(\phi \)-condition holds for \(\mathcal{A} \) too.

Since \(\mathcal{A} \) is primal, there exists an expression, \(\Sigma(\xi, \zeta) \), and an element \(o \in A \) such that

\[
\Sigma(\xi, o) = \xi, \\
\Sigma(o, \zeta) = \zeta.
\]

(3.11)

Let \(p \) be the number of occurrences of \(\xi \) in \(\Sigma \) and \(q \) the number of occurrences of \(\zeta \). Replace each occurrence of \(\xi \) or \(\zeta \) by a different variable from the set \((\xi_1, \cdots, \xi_p) \) or \((\zeta_1, \cdots, \zeta_q) \) respectively. Let the resulting expression be denoted \(\Sigma(\xi_1, \cdots, \xi_p, \zeta_1, \cdots, \zeta_q) \). By Lemma 3.2, there exist a strict \(\mathcal{B} \)-function \(\psi_j(\xi) \) and constant \(\mathcal{B} \)-functions such that

\[
\Sigma(\gamma_1, \cdots, \gamma_{j-1}, \psi_j(\xi), \beta_{j+1}, \cdots, \beta_{p+q}) = \zeta(\mathcal{B}).
\]

(3.12)

Suppose \(j \leq p \), then by Theorem 2.10, there are \(\phi_i(\xi) \) such that

\[
\phi_i = \begin{cases}
0(\mathcal{B}) & (i = 1, \cdots, p) \\
\gamma_i(\mathcal{B}) & (i = 1, \cdots, j - 1) \\
\psi_j(\xi) & (i = j) \\
\beta_i(\mathcal{B}) & (i = j + 1, \cdots, p)
\end{cases}
\]

(3.13)

and by Lemma 3.3, \(\phi_i(\xi) \) such that

\[
\phi_i = \begin{cases}
\xi(\mathcal{B}) & (i = p + 1, \cdots, p + q) \\
\beta_i(\mathcal{B}) & (i = p + 1, \cdots, p + q)
\end{cases}
\]

(3.14)

Thus,

\[
\Sigma(\phi_1, \cdots, \phi_{p+q}) = \begin{cases}
\Sigma(0, \xi) = \xi(\mathcal{B}) \\
\Sigma(\gamma_1, \cdots, \gamma_{j-1}, \psi_j(\xi), \beta_{j+1}, \cdots, \beta_{p+q}) = \zeta(\mathcal{B})
\end{cases}
\]

(3.15)

An exactly similar argument shows the construction if \(p < j \). Therefore, it is always possible to find an expression \(\chi \) such that

\[
\chi(\xi, \zeta) = \begin{cases}
\xi(\mathcal{B}) \\
\zeta(\mathcal{B})
\end{cases}
\]

(3.16)

and the two algebras are strictly independent by Definition 2.5.

We now return to the proof of Theorem 3.1.

Proof. Each algebra is primal, and every primitive operation is an onto transformation because none is constant and each algebra has but
two elements. Therefore, by Theorem 2.9, the φ-condition holds in each algebra. Moreover, by Lemma 3.4, each pair of algebras is independent. Therefore, by Theorem 2.11, every finite subset of \(\{A_i, \cdots\} \) is independent, and \(\{A_1, \cdots, A_n, \cdots\} \) is a primal cluster.

BIBLIOGRAPHY

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. V. Balakrishnan, Prediction theory for Markoff processes</td>
<td>1171</td>
</tr>
<tr>
<td>Dallas O. Banks, Upper bounds for the eigenvalues of some vibrating systems</td>
<td>1183</td>
</tr>
<tr>
<td>A. Białynicki-Birula, On the field of rational functions of algebraic groups</td>
<td>1205</td>
</tr>
<tr>
<td>Thomas Andrew Brown, Simple paths on convex polyhedra</td>
<td>1211</td>
</tr>
<tr>
<td>L. Carlitz, Some congruences for the Bell polynomials</td>
<td>1215</td>
</tr>
<tr>
<td>Paul Civin, Extensions of homomorphisms</td>
<td>1223</td>
</tr>
<tr>
<td>Paul Joseph Cohen and Milton Lees, Asymptotic decay of solutions of differential inequalities</td>
<td>1235</td>
</tr>
<tr>
<td>István Fáry, Self-intersection of a sphere on a complex quadric</td>
<td>1251</td>
</tr>
<tr>
<td>Walter Feit and John Griggs Thompson, Groups which have a faithful representation of degree less than $(p - 1/2)$</td>
<td>1257</td>
</tr>
<tr>
<td>William James Firey, Mean cross-section measures of harmonic means of convex bodies</td>
<td>1263</td>
</tr>
<tr>
<td>Avner Friedman, The wave equation for differential forms</td>
<td>1267</td>
</tr>
<tr>
<td>Bernard Russel Gelbaum and Jesus Gil De Lamadrid, Bases of tensor products of Banach spaces</td>
<td>1281</td>
</tr>
<tr>
<td>Ronald Kay Getoor, Infinitely divisible probabilities on the hyperbolic plane</td>
<td>1287</td>
</tr>
<tr>
<td>Basil Gordon, Sequences in groups with distinct partial products</td>
<td>1309</td>
</tr>
<tr>
<td>Magnus R. Hestenes, Relative self-adjoint operators in Hilbert space</td>
<td>1315</td>
</tr>
<tr>
<td>Fu Cheng Hsiang, On a theorem of Fejér</td>
<td>1359</td>
</tr>
<tr>
<td>John McCormick Irwin and Elbert A. Walker, On N-high subgroups of Abelian groups</td>
<td>1363</td>
</tr>
<tr>
<td>John McCormick Irwin, High subgroups of Abelian torsion groups</td>
<td>1375</td>
</tr>
<tr>
<td>R. E. Johnson, Quotient rings of rings with zero singular ideal</td>
<td>1385</td>
</tr>
<tr>
<td>David G. Kendall and John Leonard Mott, The asymptotic distribution of the time-to-escape for comets strongly bound to the solar system</td>
<td>1393</td>
</tr>
<tr>
<td>Kurt Kreith, The spectrum of singular self-adjoint elliptic operators</td>
<td>1401</td>
</tr>
<tr>
<td>Lionello Lombardi, The semicontinuity of the most general integral of the calculus of variations in non-parametric form</td>
<td>1407</td>
</tr>
<tr>
<td>Albert W. Marshall and Ingram Olkin, Game theoretic proof that Chebyshev inequalities are sharp</td>
<td>1421</td>
</tr>
<tr>
<td>Wallace Smith Martindale, III, Primitive algebras with involution</td>
<td>1431</td>
</tr>
<tr>
<td>William H. Mills, Decomposition of holomorphs</td>
<td>1443</td>
</tr>
<tr>
<td>James Donald Monk, On the representation theory for cylindric algebras</td>
<td>1447</td>
</tr>
<tr>
<td>Shu-Teh Chen Moy, A note on generalizations of Shannon-McMillan theorem</td>
<td>1459</td>
</tr>
<tr>
<td>Donald Earl Myers, An imbedding space for Schwartz distributions</td>
<td>1467</td>
</tr>
<tr>
<td>John R. Myhill, Category methods in recursion theory</td>
<td>1479</td>
</tr>
<tr>
<td>Paul Adrian Nickel, On extremal properties for annular radial and circular slit mappings of bordered Riemann surfaces</td>
<td>1487</td>
</tr>
<tr>
<td>Edward Scott O’Keefe, Primal clusters of two-element algebras</td>
<td>1505</td>
</tr>
<tr>
<td>Nelson Onuchic, Applications of the topological method of Ważewski to certain problems of asymptotic behavior in ordinary differential equations</td>
<td>1511</td>
</tr>
<tr>
<td>Peter Perkins, A theorem on regular matrices</td>
<td>1529</td>
</tr>
<tr>
<td>Clinton M. Petty, Centroid surfaces</td>
<td>1535</td>
</tr>
<tr>
<td>Charles Andrew Swanson, Asymptotic estimates for limit circle problems</td>
<td>1549</td>
</tr>
<tr>
<td>Robert James Thompson, On essential absolute continuity</td>
<td>1561</td>
</tr>
<tr>
<td>Harold H. Johnson, Correction to “Terminating prolongation procedures”</td>
<td>1571</td>
</tr>
</tbody>
</table>