A THEOREM ON REGULAR MATRICES

Peter Perkins
A THEOREM ON REGULAR MATRICES

PETER PERKINS

In this paper it will be proved that if any nonnegative, square matrix P of order r is such that $P^m > 0$ for some positive integer m, then $P^{r^2 - 2r + 2} > 0$. This result has already appeared in the literature, [2], but the following is a complete and elementary proof given in detail except for one theorem of I. Schur in [1] which is stated without proof. The term regular is taken from Markov chain theory in which a regular chain is one whose transition matrix has the above property.

A graph G_P associated with any nonnegative, square matrix P of order r is a collection of r distinct points $S = \{s_1, s_2, \ldots, s_r\}$, some or all of which are connected by directed lines. There is a directed line (indicated pictorially by an arrow) from s_i to s_j in the graph G_P if and only if $p_{ij} > 0$ in the matrix $P = (p_{ij})$. A path sequence or path in G_P is any finite sequence of points of S (not necessarily distinct) such that there is a directed line in G_P from every point in the sequence to its immediate successor. The length of a path is one less than the number of occurrences of points in its sequence. A cycle is any path that begins and ends with the same point and a simple cycle is a cycle in which no point occurs twice except, of course, for the first (and last). Two cycles are distinct if their sequences are not cyclic permutations of each other. A nonnegative, square matrix P is regular if $P^m > 0$ for some positive integer m. Likewise, a graph G_P associated with a nonnegative, square matrix P is regular if there exists a positive integer m such that an infinite set of paths $A_0, A_1, \ldots, A_n, \ldots$ can be found, the length of each path being $L_n = m + n$, $n = 0, 1, 2, \ldots$. The usual notation $p_{ij}^{(m)}$ is used to denote the ijth entry of the matrix P^m. In all that follows we shall consider only regular matrices P and their associated graphs G_P.

Some immediate consequences of these definitions and the definition of matrix multiplication are the following:

1. There is a path $s_{k_1} \cdots s_{k_{m+1}}$ in G_P if and only if $p_{k_i k_{i+1}}^{(m)} > 0$ in P^m.
2. P is regular if and only if G_P is regular.
3. There exists some path from any point in G_P to any point in G_P.
4. For any given i and j there exists some m such that $p_{ij}^{(m)} > 0$.
5. If $P^m > 0$ then $P^{m+n} > 0$, $n = 0, 1, 2, \ldots$.

Let $C = \{C_1, C_2, \ldots, C_t\}$ be all the distinct simple cycles of G_P and $\{c_1, c_2, \ldots, c_t\}$ be the corresponding lengths.

Received November 21, 1960. I wish to thank Professor R. Z. Norman for his suggestions in the writing of this paper.

1 This is as treated by Kemeny and Snell in [3].
Lemma 1. The length of any cycle C^* is always of the form $c^* = \sum_{i=1}^{t} a_i c_i$, where a_i is some nonnegative integer.

Proof. Let any cycle $C^* = s_{k_1}, s_{k_2}, \ldots, s_{k_m}$ be given ($k_i = k_m$). Let $C^* = C^*_i$ and form $C^*_i + 1$ in the following manner from C^*_i: Wherever simple cycle C_i occurs in cycle C^*_i delete it except for its last point, thus forming the new cycle $C^*_i + 1$. It is clear that after the tth step there will remain only a single point of the original C^*, which has of course zero length. If we let a_i be the number of times simple cycle C_i occurred in cycle C^*_i then the lemma follows.

Theorem 1. If G_p is any regular graph then it must contain a set of simple cycles whose lengths are relatively prime.

Proof. By the regularity assumption and (1) there exists a positive integer m such that cycles of lengths $L_n = m + n$, $n = 0, 1, 2, \ldots$ can be found in G_p. Also, from Lemma 1, $L_n = \sum_{i=1}^{t} a_i c_i$ for $n = 0, 1, 2, \ldots$, and suitable a_i. Let d be the common factor of the simple cycle lengths c_i. Then

$$\sum_{i=1}^{t} a_i c_i = d \sum_{i=1}^{t} a_i c'_i$$

which could never equal $m + n$, $n = 0, 1, 2, \ldots$ unless $d = 1$.

We would like to find a least integer M such that for arbitrary points s_i and s_j there are paths beginning at s_i and ending at s_j and whose lengths are $L_n = M + n$, $n = 0, 1, 2, \ldots$. If we can do this, then, by (1), we shall have also found a least integer M such that $P^* > 0$ where P is the regular matrix associated with G_p.

Let us say that a path touches a given set of points if there is some point belonging to both the path and the set. Then we have

Lemma 2. Let G_p be a regular graph with r points, let S be a subset containing r_0 distinct points of the graph, and let g be any point of G_p. Then there always exists a path from g which touches S whose length is less than or equal to $r - r_0$.

Proof. If $g \in S$ then the lemma is trivial. Suppose $g \notin S$. By (3) there is at least one path which starts at g and touches the set S. Let $p = g_0, g_1, \ldots, s$ be such a path of shortest length. Obviously no point of S can precede the final point s in this path sequence p. Furthermore, there can be no repeated points in p, for the deletion of any cycle (except for its last point) would produce a path from g to S shorter than path p, contrary to the choice of p. Therefore, p can have at most $r - r_k$ points.
We shall say that a minimal set of relatively prime integers is a set of relatively prime integers such that if one of the integers is deleted the remaining integers are no longer relatively prime. A step along a path in G_P is a pair of consecutive points of the path sequence.

Theorem 2. If $R = \{R_1, R_2, \ldots, R_k\}$ is a set of simple cycles of graph G_P whose lengths $\{r_1, r_2, \ldots, r_k\}$ form a minimal set of relatively prime integers and if s_i and s_j are arbitrary points of G_P, then there is always a path which starts at s_i, ends at s_j, touches each cycle of R and whose length $L \leq (k + 1)r - \sum_{i=1}^{k} r_i - 1$.

Proof. Note that the set of distinct points belonging to a simple cycle contains a number of points exactly equal to the length of the cycle. Hence, by Lemma 2 there is a path from an arbitrary point s_i which touches a particular cycle R_p and whose length is less than or equal to $r - r_p$. Thus, we have the following:

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>greatest number of steps needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>arb. pt.</td>
<td>cycle</td>
<td>$r - r_1$</td>
</tr>
<tr>
<td>cycle</td>
<td>R_1</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>cycle</td>
<td>R_{k-1}</td>
<td>$r - r_k$</td>
</tr>
<tr>
<td>R_k</td>
<td>arb. pt. s_j</td>
<td>$r - 1$</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$L \leq (k + 1)r - \sum_{i=1}^{k} r_i - 1$.</td>
</tr>
</tbody>
</table>

We shall now state without proof I. Schur's theorem cited above and use it in our final theorem.

Theorem 3. (Schur) If $\{a_1, a_2, \ldots, a_n\}$ is a set of relatively prime integers with a_1 the least and a_n the greatest, then $B = \sum_{i=1}^{n} x_i a_i$ has solutions in nonnegative integers x_i for any $B \geq (a_1 - 1)(a_n - 1)$. This is a best bound for $n = 2$.

Theorem 4. If M is the least integer such that paths between any two points of G_P can be found whose lengths are $L_n = M + n, n = 0, 1, 2, \ldots$, then $M \leq r^2 - 2r + 2$.

Proof. Given any two points s_i and s_j of G_P we know by Theorem 2 that there is a path from s_i to s_j touching each of the cycles $\{R_i, R_2, \ldots, R_k\}$ and whose length is

$$L \leq (k + 1)r - \sum_{i=1}^{k} r_i - 1.$$
We can, then, interject into this path the simple cycles \(\{R_1, R_2, \ldots, R_k\} \) at the touching points, interjecting cycle \(R_i \), say \(x_i \) times. The length \(L \) of the original path has now been increased to \(L + \sum_{i=1}^{k} x_i r_i = L + B \), the second part of which, by Schur's theorem, can be made to take on any integral value \(B \) where \(B \geq (r_s - 1)(r_g - 1) \), and \(r_s = \min(r_1, r_2, \ldots, r_k) \), \(r_g = \max(r_1, r_2, \ldots, r_k) \). Therefore, we have:

\[
M \leq L + B = (k + 1)r - \sum_{i=1}^{k} r_i - r_s + r_s r_g
\]

Case I. Suppose \(k = 2 \). Then \(M \leq 3r - (r_s + r_g) - r_s - r_g + r_s r_g = 3r - 2r_s - 2r_g + r_s r_g = 3r + (r_s - 2)(r_s - 2) - 4 \). The right side of this inequality is obviously maximum when \(r_s \) and \(r_g \) are as large as possible. Recall that \(r_g \leq r \) and \(r_s \leq r - 1 \). Therefore we have:

\[
M \leq 3r + (r - 2)(r - 3) - 4 = r^2 - 2r + 2.
\]

Case II. Suppose \(k \geq 3 \). The reader may wish to skip the following formidable looking, though straightforward calculations. They result in a proof that the integer \(M \) with the desired property is in fact smaller when the arbitrary graph contains a larger set of these cycles.

Since the lengths of these cycles are a minimal set of relatively prime integers, it is certainly true that

\[
\sum_{i=1}^{k} r_i \geq r_s + [r_s + 2] + [r_s + 4] + \cdots + [r_s + 2(k - 2)] + r_g
= (k - 1)r_s + (k - 1)(k - 2) + r_g.
\]

Thus, with (7) we have:

\[
M \leq (k + 1)r - [(k - 1)r_s + (k - 1)(k - 2) + r_g] - r_s - r_g + r_s r_g
= (k + 1)r - k r_s - 2r_g + r_s r_g - (k - 1)(k - 2)
= (k + 1)r + (r_s - 2)(r_g - k) - 2k - (k - 1)(k - 2).
\]

Since \(r_g \) must be larger than \(k \), the right side again is maximum when \(r_g \) and \(r_s \) are as large as possible. But \(r_g \leq r \) and \(r_s \leq r - k + 2 \). So \(M \leq (k + 1)r + (r - k)(r - k) - k^2 + k - 2 = r^2 + (1 - k)r + k - 2 \).

This is easily seen to be less than \(r^2 - 2r + 2 \) of Case I, if \(r > 1 \). So in any case \(M \leq r^2 - 2r + 2 \).

To see that \(r^2 - 2r + 2 \) is the least value for an arbitrary graph of \(r \) points and thus for an arbitrary matrix of order \(r \), we need only consider the following example in which \(r = 3 \) and \(M = 5 \).
As a matter of fact it can be shown for any regular matrix P of order r whose graph G_P contains only two cycles, one of length r and one of length $r - 1$, that P^{r^2-2r+1} is not positive. We have, therefore, established the claim of the paper as stated in the opening paragraph.

BIBLIOGRAPHY

DARTMOUTH COLLEGE
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS
Stanford University
Stanford, California

A. L. WHITEMAN
University of Southern California
Los Angeles 7, California

F. H. BROWNELL
University of Washington
Seattle 5, Washington

L. J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Reprinted 1966 in the United States of America
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. V. Balakrishnan, Prediction theory for Markov processes</td>
<td>1171</td>
</tr>
<tr>
<td>Dallas O. Banks, Upper bounds for the eigenvalues of some vibrating systems</td>
<td>1183</td>
</tr>
<tr>
<td>A. Białynicki-Birula, On the field of rational functions of algebraic groups</td>
<td>1205</td>
</tr>
<tr>
<td>Thomas Andrew Brown, Simple paths on convex polyhedra</td>
<td>1211</td>
</tr>
<tr>
<td>L. Carlitz, Some congruences for the Bell polynomials</td>
<td>1215</td>
</tr>
<tr>
<td>Paul Civin, Extensions of homomorphisms</td>
<td>1223</td>
</tr>
<tr>
<td>Paul Joseph Cohen and Milton Lees, Asymptotic decay of solutions of differential inequalities</td>
<td>1235</td>
</tr>
<tr>
<td>István Fáry, Self-intersection of a sphere on a complex quadric</td>
<td>1251</td>
</tr>
<tr>
<td>Walter Feit and John Griggs Thompson, Groups which have a faithful representation of degree less than $(p - 1/2)$</td>
<td>1257</td>
</tr>
<tr>
<td>William James Firey, Mean cross-section measures of harmonic means of convex bodies</td>
<td>1263</td>
</tr>
<tr>
<td>Avner Friedman, The wave equation for differential forms</td>
<td>1267</td>
</tr>
<tr>
<td>Bernard Russel Gelbaum and Jesus Gil De Lamadrid, Bases of tensor products of Banach spaces</td>
<td>1281</td>
</tr>
<tr>
<td>Ronald Kay Getoor, Infinitely divisible probabilities on the hyperbolic plane</td>
<td>1287</td>
</tr>
<tr>
<td>Basil Gordon, Sequences in groups with distinct partial products</td>
<td>1309</td>
</tr>
<tr>
<td>Magnus R. Hestenes, Relative self-adjoint operators in Hilbert space</td>
<td>1315</td>
</tr>
<tr>
<td>Fu Cheng Hsiang, On a theorem of Fejér</td>
<td>1359</td>
</tr>
<tr>
<td>John McCormick Irwin and Elbert A. Walker, On N-high subgroups of Abelian groups</td>
<td>1363</td>
</tr>
<tr>
<td>John McCormick Irwin, High subgroups of Abelian torsion groups</td>
<td>1375</td>
</tr>
<tr>
<td>R. E. Johnson, Quotient rings of rings with zero singular ideal</td>
<td>1385</td>
</tr>
<tr>
<td>David G. Kendall and John Leonard Mott, The asymptotic distribution of the time-to-escape for comets strongly bound to the solar system</td>
<td>1393</td>
</tr>
<tr>
<td>Kurt Kreith, The spectrum of singular self-adjoint elliptic operators</td>
<td>1401</td>
</tr>
<tr>
<td>Lionello Lombardi, The semicontinuity of the most general integral of the calculus of variations in non-parametric form</td>
<td>1407</td>
</tr>
<tr>
<td>Albert W. Marshall and Ingram Olkin, Game theoretic proof that Chebyshev inequalities are sharp</td>
<td>1421</td>
</tr>
<tr>
<td>Wallace Smith Martindale, III, Primitive algebras with involution</td>
<td>1431</td>
</tr>
<tr>
<td>William H. Mills, Decomposition of holomorphs</td>
<td>1443</td>
</tr>
<tr>
<td>James Donald Monk, On the representation theory for cylindric algebras</td>
<td>1447</td>
</tr>
<tr>
<td>Shu-Teh Chen Moy, A note on generalizations of Shannon-McMillan theorem</td>
<td>1459</td>
</tr>
<tr>
<td>Donald Earl Myers, An imbedding space for Schwartz distributions</td>
<td>1467</td>
</tr>
<tr>
<td>John R. Myhill, Category methods in recursion theory</td>
<td>1479</td>
</tr>
<tr>
<td>Paul Adrian Nickel, On extremal properties for annular radial and circular slit mappings of bordered Riemann surfaces</td>
<td>1487</td>
</tr>
<tr>
<td>Edward Scott O’Keefe, Primal clusters of two-element algebras</td>
<td>1505</td>
</tr>
<tr>
<td>Nelson Onuchic, Applications of the topological method of Ważewski to certain problems of asymptotic behavior in ordinary differential equations</td>
<td>1511</td>
</tr>
<tr>
<td>Peter Perkins, A theorem on regular matrices</td>
<td>1529</td>
</tr>
<tr>
<td>Clinton M. Petty, Centroid surfaces</td>
<td>1535</td>
</tr>
<tr>
<td>Charles Andrew Swanson, Asymptotic estimates for limit circle problems</td>
<td>1549</td>
</tr>
<tr>
<td>Robert James Thompson, On essential absolute continuity</td>
<td>1561</td>
</tr>
<tr>
<td>Harold H. Johnson, Correction to “Terminating prolongation procedures”</td>
<td>1571</td>
</tr>
</tbody>
</table>